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Abstract

We analyze a multistage stochastic asset allocation problem with de-
cision rules. The uncertainty is modeled using economic scenarios with
Gaussian and stable Paretian non-Gaussian innovations. The optimal al-

locations under these alternative hypothesis are compared. If the agent
has very low or very high risk aversibility, then the Gaussian and sta-
ble non-Gaussian scenarios result in similar allocations. When the risk

aversion of the agent is between these two extreme cases, then the two
distributional assumptions result in very di�erent asset allocations. Our
calculations suggest that the allocations may be up to 85% di�erent de-

pending on the level of risk aversion of the agent.
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1 Introduction

Strategic investment planning is the allocation of portfolio across broad asset
classes such as bonds, stocks, cash and real estate considering the legal and
policy constraints facing the institution. Empirical evidence by Culp et al.
[14] suggests that asset allocation is the most important factor in determining
investment performance.

Most of the early models in this �eld are either myopic or represent deter-
ministic formulations of multiperiod problems. Myopic models can not capture
long-term investment goals in the presence of transaction costs. Investment op-
tions with maturities exceeding a single period can not be included. The e�ects
of transaction costs, liquidity considerations are not accurately accounted for.
Moreover, these models tend to produce high portfolio turnovers and oppor-
tunistic asset trades.

There has been a growing interest in the development of multiperiod stochas-
tic models for asset and liability management (ALM). Kusy and Ziemba [26]
developed a multiperiod stochastic linear programming model for Vancouver
City Savings Credit Union for a 5-year planning period. Their work suggests
that their stochastic ALM model is superior to 5-year deterministic models. An-
other successful application of multistage stochastic programming is the Russell-
Yasuda Kasai model by Carino et al. [10]. The investment strategy suggested
by the model resulted in extra income of $79 million during the �rst two years
of its application (1991 and 1992). An ALM model designed by Mulvey [39]
has been implemented by the Paci�c Financial Asset Management Company.
Boender [4] reported the success of a hybrid simulation/optimization scenario
model for ALM of pension funds in the Netherlands. The application of the
model to a particular pension fund lead to a reduction of the yearly expected
contributions of $100 million. See Rachev and Tokat [51] for a review of recent
advances in ALM.

The ALM models that have gained applicability are based on stochastic
programming with or without decision rules. In these models, the future un-
certainty is modeled using discrete scenarios. A representative set of scenarios
describes the possible future environmental situations facing the institution.
There are two scenario generation techniques used in the literature: time series
analysis and stochastic di�erential equations Following Sims [53], Dert [17] used
VAR and Boender et al. [5] used VECM to generate economic scenarios for
pension plans. Boender et al. creates future price in
ation, wage growth, bond
return, cash return, equity return, real estate return and nominal GNP growth
scenarios. The innovations are assumed to follow normal distribution. Mulvey
[40] generates economic scenarios using stochastic di�erential equations, where
the innovations follow Brownian motion.

However, there is contrary evidence in the literature. Fama [19] and Mandel-
brot [27,28] found excess kurtosis in their investigation of the returns on �nancial
assets, which led them to reject the normal assumption and propose stable dis-
tribution as an alternative. Balke and Fomby [2] show that most macroeconomic
time series exhibit non-Gaussian behavior. They analyze �fteen post World War
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II US macroeconomic time series which includes Consumer Price Index (a mea-
sure of price in
ation), nominal compensation per hour in manufacturing (a
measure of wage growth), yields on AAA bonds, Standard and Poors 500 stock
price index, and GNP de
ator. They report that residuals from autoregressive
models indicate that these series show signi�cant evidence of excess kurtosis and
skewness. They conclude that even after estimating GARCH models, signi�cant
excess kurtosis and/or skewness still remains.

Using stable distributions in portfolio optimization is not a new idea. For
instance, Ziemba [58] utilized symmetric stable distribution in an approximate
portfolio optimization problem. The interest in this approached faded due to
theoretical and computational diÆculties, which outweighed its advantages. The
recent theoretical contributions and increase in the computational power facili-
tates another look at the potential bene�ts. A recent paper by Ortobelli, Rachev
and Schwartz [45] compares the optimal allocation between a risk-free asset and
a risky asset under the alternative hypothesis of normal and stable returns.
They report that the allocation might change up to 40% depending on the risk
aversion level of the agents.

A multistage stochastic asset allocation problem with decision rule is ana-
lyzed in this study. The optimal allocations achieved under scenarios that are
generated by Gaussian and stable non-Gaussian innovations are compared. We
�nd that if the agent is very risk averse,then the normal and stable scenarios
result in similar allocations. Similarly, if the agent has very low risk aversibil-
ity, then the normal and stable scenarios again result in similar allocations.
However, when the coeÆcient of risk aversion is somewhere between the two
cases, the two distributional assumptions may result in very di�erent asset allo-
cations depending on the utility function and the risk aversion of the decision
maker. The allocations may be up to 85% di�erent depending on the level of
risk aversion. Since stable economic scenarios capture risk more realistically,
they suggest more conservartive asset allocations.

Section 2 reviews the literature on multistage stochastic ALM programming
with decision rules, and Section 3 reviews the literature on scenario generation.
Stable distribution is introduced in Section 4. Our model is set up in Section
5, with the discussion of the scenario generation and asset allocation modules.
The asset allocation results are reported in Section 6. Section 7 concludes.

2 Multistage Stochastic ALMProgramming with

Decision Rules

In this method, time is discretized into n-stages across the planning horizon,
and investments are made using a decision rule, e.g. �xed mix, at the beginning
of each time period. The decision rule can easily be tested with out-of-sample
scenarios, and con�dence limits on the recommendations can be constructed.
The use of this approach hinges on discovering policies that are intuitive a nd
that will produce superior results. Decision rules may lead to non-convexities
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and highly nonlinear functions. Some decision rules used in the literature are
�xed mix, buy-and-hold, life cycle mix (Berger and Mulvey, 1998), constant
proportional portfolio insurance (Perold and Sharpe, 1988), and target wealth
path tracking (Mulvey and Ziemba, 1998). Boender (1997) and Boender et al,
(1998) describe an ALM model designed for Dutch pension funds. Their goal
is to �nd eÆcient frontiers of initial asset allocations which minimize the value
of downside risk for certain given values of average contribution rates. The
scenarios are generated across the time horizon of interest. The management
selects a funding policy, an indexation policy of the earned pension rights, and
an investment decision rule. These strategies are simulated against generated
scenarios. Then, the objective function of the optimization problem is a com-
pletely speci�ed simulation model except for the initial asset mix. The hybrid
simulation/optimization model requires the following three steps:

1. Randomly generate initial asset mixes, simulate them and evaluate their
contribution rates and downside risks.

2. Select the best performing initial asset mixes that are located at a minimal
critical distance from each other.

3. Use a local search algorithm to identify the optimal initial asset mix.

Maranas et al., (1997) adopted another approach to stochastic programming
with decision rules. They determine the optimal parameters of the decision rule
by means of a global optimization algorithm. They propose a dynamically
balanced investment policy which is speci�ed by the following parameters:

w0: initial dollar wealth,

rsit: percentage return of asset i 2 f1; 2; :::; Ig in time period

t 2 f1; 2; :::; Tg under scenario s 2 f1; 2; :::; Sg,
ps: probability of occurrence of scenario s

The decision variables are:

ws
t : dollar wealth at time t in scenario s,

�i: fraction of wealth invested in asset category i (note that it is constant
over time).

The model is a multiperiod extension of the mean-variance method. The
multi-period eÆcient frontier is obtained by varying �(0 � � � 1): The formu-
lation is as follows:

max
�i;ws

t

� mean(wT )� (1� �)var(wT )

subject to
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ws
T = w0

TY
t=1

"
IX

i=1

(1 + rsit)�i

#
; s = 1; :::; S (1)

IX
i=1

�i = 1 (2)

0 � �i � 1; i = 1; :::; I

The wealth accumulation is governed by (1). When (1) is substituted into
the objective function, we get a nonconvex multivariable polynomial function
in �i involving multiple local minima. A global optimization tool which obtains
the above eÆcient frontier, has been developed.

There are other models constructed using similar methodologies. Berger
and Mulvey (1988) describe Home Account AdvisorTM which assists individual
investors in ALM using decision rules. Sweeney et al. (1998) applies a simula-
tion/optimization scenario approach to optimal insurance asset allocation in a
multi-currency environment.

3 Scenario Generation

A scenario gives a single set of outcomes for the random variables in the model
over the planning horizon. A representative set of scenarios describes the possi-
ble future environmental situations. Traditional quantitative forecasting meth-
ods extrapolate new ideas about future developments based on the knowledge
of the past and present. However, the economic environment may change inval-
idating the past assumptions. Hence, subjective beliefs of the management has
become an essential part of scenario building. See Bunn and Salo (1993) for a
review of qualitative scenario generation techniques.

The earlier ALM models used few independent scenarios to describe uncer-
tainty. The recent models have become more sophisticated in scenario genera-
tion methods. The following are the widely accepted techniques in the literature.

3.1 Discrete Time Series Models

3.1.1 Multivariate Approach

Using Vector Autoregression (VAR) in the analysis of economic systems became
popular after an in
uential paper by Sims (1980). Following Sims, Dert (1998)
used this methodology to generate scenarios for a pension plan. He created
future price in
ation, wage in
ation, stock returns, bond returns, cash return
and real estate returns that are consistent with historical patterns in means,
standard deviations, autocorrelations and cross correlations between state vari-
ables. A Markov model was used in determining future development of each
individual participating in the pension plan. Carino et al. (1998) also employed
VAR in generating scenarios for the Yasuda Kasai model.
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VAR may sometimes diverge from long-term equilibrium. Boender et al.
(1998) extended the VAR model to a Vector Error Correction Model (VECM)
which additionally takes economic regime changes and long term equilibria into
account. First, a submodel generates future economic scenarios. Then, a liabil-
ity submodel determines the earned pension rights and payments corresponding
to each economic scenario.

The economic scenario submodule uses time series analysis. The vector of the
lognormal transformations of in
ation, wage growth, bond return, cash return,
equity return, real estate return and nominal GNP growth is yt. Diagnostic
tests revealed the order of the VAR process as 1.

yt
�N(�+
 � fyt�1 � �g;�);

where N(�;�) denotes a Gaussian distribution with mean � and covariance
matrix �.

The extended VECM is given as

yt
�N(
1yt�1 +
2C

T (xt�1 � �1IfT1g � �2IfT2g);�);

where the 
1 corresponds to the short term dynamics and the 
2 corresponds to
the long term correction. The index set T1 speci�es the period of an economic
regime with growth vector �1; and T2 gives the period of another economic
regime with growth vector �2. The second term, CT (xt�1��1IfT1g��2IfT2g);
generates the error correction to restore violations of the equilibria, while 
2

determines the speed of the response.

The parameters of the model were estimated using historical data. Then, sce-
narios were generated iteratively using the parameter estimates. They reported
that the VECM improves the explanatory power of the model. The VECM has
a clearer economic interpretation which incorporates regime changes and long
run equilibrium.

The liability submodule uses a push Markov model to determine the future
status of each individual plan member depending on age, gender, and employee
category. Given this information, the pull part of the model is used to determine
additional promotions and new employees. Then, the pension rules are applied
to compute the guaranteed pension payments and earned pension rights.

3.1.2 Cascade Approach

Wilkie (1986) suggested using a cascade structure rather than a multivariate
model in which each variable could a�ect all of the others. He considers in
ation,
ordinary shares, and �xed interest securities as the main economic determinants
of a stochastic investment model. The model includes the following variables:
in
ation, an index of share of dividends, the dividend yield on this index, (the
dividend index divided by the corresponding price index), and the yield on
consols (as a measure of the general level of �xed interest yields in the market).
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Wilkie's investigations and actuarial experience lead him to the conclusion
that in
ation is the driving force for the other investment variables. Figure 11,
depicts the cascade structure of the model. In the �gure, the arrows indicate
the direction of in
uences.

Inflation

                Dividend
             yield

Index of Consol
share dividends Yield

Figure 1: Wilkie's cascade structure

The in
ation is described using a �rst order autoregressive model. The
dividend yield depends on both the current level of in
ation and the previous
values of itself. The index of share dividends depends on in
ation and the
residual of the yield model. The consol yield also depends on in
ation and the
residual of the yield model along with the previous values of itself. Then, the
estimated parameters are used to generate future economic scenarios. Wilkie
(1995) improves this basic model.

3.2 Continuous Time Models

Mulvey (1996) designed an economic projection model for Towers Perrin using
stochastic di�erential equations. The model has a cascade structure as depicted
in Figure 22. In this model, the Treasure yield curve is considered as the driv-
ing force for the other investment variables. Government bond returns, price
and wage in
ation, stock dividend yield, and stock dividend growth rate are
analyzed within the framework of the cascade structure. Returns on primary
asset categories such as large cap stocks, small cap stocks and corporate bonds
consistent with the investment variables, are generated.

1Source: Wilkie (1986)
2Resource: Mulvey (1996)
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             Treasury Yield Curve

Price Inflation

Cash & Stock Div. Stock Div.   Wage
Treasury Yield     Growth Rate  Growth
Bond Return

  Stock Returns

Figure 2: Mulvey's cascade structure

It is assumed that short and long-term interest rates (denoted by rt and
lt, respectively), are linked through a correlated white noise term. The spread
between the two is kept under control by using a stabilizing term. This variant
of the two-factor Brennan and Schwartz (1982) model is as follows:

drt = a(r0 � rt)dt+ b
p
rtdz1;

dlt = c(l0 � lt)dt+ e
p
ltdz2;

where a and c are functions that depend on the spread between the long and
short rates, b and e are constants, and dz1 and dz2 are correlated Weiner terms.

The price in
ation rate is modeled as a di�usion process that depends on
short term interest rates:

dpt = ndrt + g(p0 � pt)dt+ h(vpt)dz3;

where pt is the price in
ation at time t, and vpt is the stochastic volatility at time
t. Since the volatility of in
ation persists, it is represented using Autoregressive
Conditional Heteroskedasticity (ARCH) model. The equation for the stochastic
volatility is given by:

dvpt = k(vp0 � vpt)dt+m
p
vptdz4;
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where g and k are functions that handle the independent movement of the under-
lying prices at time t for the price in
ation and stochastic volatility, respectively,
and h and m are constants.

Real yields are related to interest rates, current in
ation, and expectations
for future in
ation. The di�usion equation for long-term yield is

dyt = n(yu; yt; lu; lt; pu; pl)dl + q(yu; yt; lu; lt; pu; pl)dt+ u(yt)dz5;

where yu is the normative level of real yields, and n and q are vector functions
that depend upon various economic factors.

The wage in
ation is connected to price in
ation in a lagged and smoothed
fashion. The stock returns are broken down into two components: dividends and
capital appreciation, and they are estimated independently. Mulvey found that
the decomposed structure provides more accurate linkages to the key economic
factors such as in
ation and interest rates.

The parameters of the model are calibrated by considering the overall market
trends in light of historical evidence and subjective beliefs of the management.
This model has been in use at Towers Perrin since 1992. Mulvey and Thorlacius
(1998) extended the model to a global environment that links the economies of
individual countries within a common framework.

4 Stable Distribution

There are several important reasons for modeling �nancial variables using stable
distributions. Stable distributions are leptokurtotic. When compared to normal
distribution, they typically have fatter tails and higher peaks around the center.
Asymmetry is allowed. Hence, they �t the empirical distribution of the �nancial
data better.

Any distribution in the domain of attraction of a speci�ed stable distribution
will have properties which are close to the ones of stable distribution. Even if
the observed data does not exactly follow the ideal distribution speci�ed by the
modeler, in principle, the resulting decision is not a�ected. The wide use of
a normal distribution is mainly due to the fact that it is the only distribution
with �nite variance that is stable with respect to the summation scheme.

Each stable distribution has an index of stability which remains the same re-
gardless of the sampling interval adopted. The index of stability can be regarded
as an overall parameter that can be employed in inference and decision making.
However, we should note that for some �nancial data, empirical analysis shows
that the index of stability increases as the sampling interval increases.

It is possible to check whether or not a distribution is in the domain of
attraction of a stable distribution by examining the tails of the distribution.
The tails dictate the properties of the distribution.
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4.1 Description of Stable Distribution

If the sums of linear functions of independent identically distributed (iid) ran-
dom variables belong to the same family of distributions, the family is called
stable. Formally, a random variable r has stable distribution if for any a > 0
and b > 0, there exist constants c > 0 and d 2 R, such that

ar1 + br2
d
= cr + d;

where r1 and r2 are independent copies of r; and
d
= denotes equality in distri-

bution. The distribution is described by the following parameters: � 2 (0; 2]
(index of stability), � 2 [�1; 1] (skewness parameter), � 2 R (location param-
eter), and � 2 [0;1) (scale parameter). The variable is then represented as
r�S�;�(�; �): Gaussian distribution is actually a special case of stable distribu-
tion when � = 2, � = 0: The smaller the stability index is, the stronger the
leptokurtic nature of the distribution becomes, i.e., with a higher peak and fat-
ter tails. If the skewness parameter is equal to zero, as in the case of Gaussian
distribution, the distribution is symmetric. When � > 0 (� < 0), the distribu-
tion is skewed to the right (left). If � = 0 and � = 0, then the stable random
variable is called symmetric �-stable (S�S). The scale parameter generalizes
the de�nition of standard deviation. The stable analog of variance is variation,
v�, which is given by ��.

Stable distributions generally do not have closed form expressions for den-
sity and distribution functions. They are more conveniently described by char-
acteristic functions. The characteristic function of random variable r, �r(�) =
E[exp(ir�)]; is given by

�r(�) = exp
n
��� j�j�

�
1� i�sign(�) tan

��

2

�
+ i��

o
; if � 6= 1;

= exp

�
�� j�j

�
1� i�

2

�
sign(�) ln �

�
+ i��

�
; if � = 1:

The pth absolute moment of r, EjX jp = R1
0 P (jX jp > y)dy, is �nite if 0 <

p < �, and in�nite otherwise. Hence, when � < 1; the �rst moment is in�nite.
When � < 2; the second moment is in�nite. The only stable distribution that
has �nite �rst and second moments is the Gaussian distribution.

In models that use �nancial data, it is generally assumed that � 2 (1; 2]:
There are several reasons for this:

1) When � > 1; the �rst moment of the distribution is �nite. It is convenient
to be able to speak of expected returns.

2) Empirical studies support this parametrization.

3) Although the empirical distributions of the �nancial data sometimes depart
from normality, the deviation is not \too much".
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In the scenario generation, one may need to use multivariate stable distri-
butions. The extension to the multivariate case is nontrivial. Although most
of the literature concentrates on the univariate case, recently, some new results
have become available. See for example Samorodnitsky and Taqqu (1994), and
Mittnik and Rachev (1999).

If R is a stable d-dimensional stable vector, then any linear combination
of the components of R is also a stable random variable. However, the con-
verse is true under certain conditions (Samorodnitsky and Taqqu, 1994). The
characteristic function of R is given by:

�Y (�) = exp

�
�
Z
Sd

j�T sj
�
1� i sign(�T s) tan

��

2

�
�(ds) + i�T�

�
;

if � 6= 1;

= exp

�
�
Z
Sd

j�T sj
�
1 + i

2

�
sign(�T s) ln j�T sj

�
�(ds) + i�T�

�
;

if � = 1;

where � is the spectral measure which replaces the scale and skewness param-
eters that enter the desciption of the univariate stable distribution. It is a
bounded nonnegative measure on the unit sphere Sd;and s 2 Sd is the inte-
grand unit vector. The index of stability is again �, and � is the vector of
locations.

In some �nancial applications, one needs to model the dependence between
variables. Stable distributions have in�nite second moment: covariance is not
de�ned. However, subordinated Gaussian can be used to model dependence
between stable variables3. Subordinated Gaussian is de�ned as follows: Let
X~N(0; 2�2); and A~S�=2;0(1; c); X and A being independent. Then, one can

generate Z = A1=2X~S�;0(0; �
�); where c = (�

�2

�2 )[cos(��=4)]
2=�:

The 'truncated' covariance matrix can be used to capture the dependence by
leaving out the very extreme events. Let � be the truncated covariance matrix.
It can be estimated by exponential smoothing4 as follows:

c2j;t+1jt = (1� �)
1P
i=1

�iR2
jjt�i

is the diagonal element of the truncated covariance matrix , and

c2jk;t+1jt = (1� �)
1P
i=1

�iRjjt�iRkjt�i;

where � is the smoothing parameter, measures the truncated covariance between
j and k. Hence, � = fcikg and cjj = 2�2j : Suppose the truncation points are x
and �x, then Rjjt�i is de�ned as the following:

3See Mercury (1999) for a more detailed discussion.
4See Riskmetrics (1996) for a discussion of exponentail smoothing.
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Rjjt�i =

8<
:

rjt , if rjt is in (�x; x)
�x; if rjt < �x
x; if rjt > x

9=
; :

4.2 Financial Modeling and Estimation

Financial modeling involves information on past market movements. In such
cases, it is not the unconditional return distribution which is of interest, but
the conditional distribution, which is conditioned on information contained in
past return data, or a more general information set. The class of autoregressive
moving average (ARMA) models is a natural candidate for conditioning on the
past of a return series. These models have the property that the conditional dis-
tribution is homoskedastic. In view of the fact that �nancial markets frequently
exhibit volatility clusters, the homoskedasticity assumption may be too restric-
tive. As a consequence, conditional heteroskedastic models are now common
in empirical �nance. Engle's (1982) autoregressive conditional heteroskedastic
(ARCH) models, and the generalization (GARCH) of Bollerslev (1986), possibly
in combination with an ARMA model, referred to as an ARMA{GARCH mod-
els are widely used. It turns out that ARCH-type models driven by normally
distributed innovations imply unconditional distributions, which actually pos-
sess heavier tails. Thus, in this respect, ARCH models and stable distributions
can be viewed as competing hypotheses.

Mittnik et al. (1997), present empirical evidence favoring the stable hypoth-
esis over the normal assumption as a model for unconditional, homoskedastic
conditional, and heteroskedastic conditional distributions of several asset return
series.

4.2.1 Maximum Likelihood Estimation

We use an approximate conditional maximum-likelihood (ML) estimation pro-
cedure suggested by Mittnik et al. (1996). The unconditional ML estimate of
� = (�; �; �; �) is obtained by maximizing the logarithm of the likelihood func-
tion

L(�) =
TY
t=1

S�;�

�
rt � �

�

�
��1:

The estimation of all stable models is approximate in the sense that the stable
density function, S�;�(�; �), is approximated via fast Fourier transformation
(FFT) of the stable characteristic function,

Z 1

�1

eitxdH(x)=

�
expf���jtj�[1� i�sign(t) tan ��

2 ] + i�tg; if � 6= 1;
expf��jtj[1 + i� 2

� sign(t) ln jtj] + i�tg; if � = 1;
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where H is the distribution function corresponding to S�;�(�; �).
This ML estimation method essentially follows that of DuMouchel (1987),

but di�ers in that the stable density is approximated numerically by an FFT of
the characteristic function, rather than some series expansion. As DuMouchel
shows, the resulting estimates are consistent and asymptotically normal with the
asymptotic covariance matrix of T 1=2(�̂ � �0); being given by the inverse of the
Fisher information matrix. The standard errors of the estimates are obtained
by evaluating the Fisher information matrix at the ML point estimates. For
details on stable ML estimation see Mittnik et al. (1999), Mittnik and Rachev
(1999), and Paulauskas and Rachev (1999).

4.3 Comparison of Estimation Methods

When the residuals of the ARMA model hav Gaussian distribution, Least
Squares (LS) estimation is equivalent to conditional ML estimation. Further-
more, Whittle estimator is asymptotically equivalent to LS and ML estimation
methods. However, when the innovations have stable distribution, the proper-
ties of conventional estimation methods may change due to the in�nite variance
property. In the stable case, ML estimates are still consistent and asymptoti-
cally normal (DuMouchel, 1987); LS and Whittle estimates are consistent but
they are not asymptotically normal. The LS and Whittle estimates have in-
�nite variance limits with a convergence rate that is faster than that of the
Gaussian case (Mikosch, Gadrich, Kluppelberg, and Adler (1995). Calder and
Davis (1998) compare LS, Least Absolute Deviation (LAD), and ML methods
for the estimation of ARMA model with stable innovations. Their simulations
reveal that the di�erence between the estimates of the three methods is insigni�-
cant when the index of stability of the residuals is 1.75. However, when � = 1 or
� = :75; they report that the LAD and ML estimation procedures are superior
to LS estimation. ML estimation has desirable properties in both the Gaussian
and stable setting, but it is comutationally very demanding. Since the variables
of interest in this ppaer have indices of stability greate than 1.5, nonlinear LS
estimation method shas been utilized in this study. Our parameter estimates
are consistent, but they are not asymptotically normal. However, due to the
high index of stability, the parameter estimates are comparable to those that
would be achieved if ML estimation were to be used.

5 Model Setup

5.1 Asset Allocation Model

The dynamic asset allocation approach used in this study is very similar to
that of Boender5 (1998). A number of alternative initial asset allocations
are generated. These allocations are then simulated into the future by using
the economic scenarios, which are generated under the Gaussian and Stable

5See Section 2 for a brief review.
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assumptions for the innovations of the time series models. While the initial
allocations are simulated, the asset allocation is updated every month according
to �xed mix decision rule6. In general, �xed mix strategy requires the purchase
of stocks as they fall in value, and the sale of stocks as they rise in value. Fixed
mix strategy does not have much downside protection, and tends to do very
well in 
at but oscillating markets. However, it tends to do relatively poorly in
bullish markets (Perold and Sharpe, 1998).

Once the initial asset allocations are simulated, the risk and reward are
calculated corresponding to these initial allocations at the end of the horizon,
say, one year. The decision-maker then, chooses the initial asset allocation (�xed
mix proportions) today that results in the best risk-reward combination at the
end of the horizon of interest for the given decision rule.

The initial asset allocation that is selected by the decision-maker depends
on the assumptions made about the innovations of the economic scenarios. The
economic scenarios driven by stable innovations result in a di�erent risk-reward
pro�le than the economic scenarios driven by Gaussian innovations.

While we follow the general structure of Boender (1997), the objective
functions used are di�erent. We use three alternative objective functions: the
�rst two are analogs of mean-variance analysis, and the third is power utility
function.

Konno and Yamazaki (1991) advocate mean-mean absolute deviation analy-
sis as an alternative to mean-variance method. Mean absolute deviation accords
less importance to outliers, it is computationally easier to calculate, and it can
be used to model the asymmetric perception of risk around the mean return.
They show that if the returns are multivariate normally distributed, then the
two measures are essentially the same7. Since mean absolute deviation is well
de�ned for both normal and stable distributions, we use mean-mean absolute
deviation analysis.

The mean compound portfolio return of �xed mix rule i 2 f1; 2; :::; Ig at the
�nal date is:

E[ �Ri
T ] =

1
S

SP
s=1

�Ri
s;T ; where

�Ri
s;T is compound return of allocation i in time

period of 1 through T under scenario s 2 f1; 2; :::; Sg. It is calculated as

�Ri
s;T =

TQ
t=1

(1 +Ri
s;t)� 1;

where Ri
s;t is the return of the portfolio i under scenario s 2 f1; 2; :::; Sg in

time period t 2 f1; 2; :::; Tg:
6Perold and Sharpe (1988) suggest constant proportion portfolio insurance as an alternative

strategy. In this strategy, one sells stocks as they fall in value and buy stocks as they rise
in value. We will report the optimal allocations under this startegy in a later version of this
paper.

7Konno and Yamazaki (1991) compare eÆcient frontiers for NIKKEI 225 index generated
by standard deviation and mean absolue deviation risk measures. They report that the dif-
ference of the optimal portfolio generated by the two risk measures is at most 10 %. They
suggest that this di�erence can be mainly attributed to the non-normality of the data.
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Ri
s;t =

JP
j=1

wi
jrjst;

where rjst is the percentage return of asset j 2 f1; 2; :::; Jg under scenario
s in time period t, and wi

j is the proportion of funds8 of portfolio i invested in
asset j.

The mean absolute deviation of asset allocation i at the �nal date is:

MAD( �Ri
T ) =

1
S

SP
s=1

��� �Ri
s;T �E[ �Ri

T ]
��� :

The utility function de�ned over the mean �nal return and the mean absolute
deviation of �nal return is given as:

U( �Ri
T ) = E[ �Ri

T ]� c �MAD( �Ri
T );

where c is the coeÆcient of risk aversion.
We consider another risk measure which gives importance to outliers more

than mean absolute deviation but less than variance:

MD( �Ri
T ) =

1
S

SP
s=1

��� �Ri
s;T �E[ �Ri

T ]
���r ; where 1 < r < 2:

Notice that when r = 2, the above risk measure becomes the variance. Since
variance is not de�ned for non-Gaussian stable variables, we use those values of
r < 2 for which MD( �Ri

T ) is �nite, such as r = 1:5. The utility function de�ned
over the mean �nal return and this new risk measure is:

U( �Ri
T ) = E[ �Ri

T ]� c �MD( �Ri
T );

where c is the coeÆcient of risk aversion.
Finally, we consider the more traditional power utility function which has

linear risk tolerance:

U(W i) = 1
S

SP
s=1

1
(1�
)

�
W i

s

�(1�
)
; 
 > �19

where 
 is the coeÆcient of relative risk aversion, andW i
s is the �nal wealth.

Assuming that the initial wealth is 1, we compute the �nal wealth as follows:
W i

s = 1 � (1 + �Ri
s;T ):

5.2 Scenario Generation

A cascade structure similar to Mulvey10 (1996) has been adopted in this study,
(see Figure 3). However, the analysis is done in discrete time as inWilkie11(1995).
Although both studies use annual data, we have used monthly data. 3-month
Treasury bill rate and 10-year Treasury bond rate are modeled �rst as measures
of short term and long term interest rates. The price in
ation depends on the
Treasury bond rate and the previous values of in
ation. Following Wilkie's and
Mulvey's approaches, stock returns are analyzed in two components: dividend
growth and dividend yield growth.

The relationship of economic variables does not denote a one way casual
relationship, but rather indicates the sequencing of the modules. The economic

8Fix mix rule requires that wi
j does not depend on time.

9Note that U(W i) is �nite if (1� 
) < 2
10See Section 3.2 for a brief description.
11See Section 3.1.2 for a brief review.
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   Treasury Bill & Treasury Bond Returns

    Price Inflation

Stock Div.   Stock Div.
   Yield  Growth Rate

  Stock Returns

Figure 3: A cascade structure similar to Mulvey

variables are modeled using Box-Jenkins methodology. The standard Gaus-
sian Box-Jenkins techniques carry over to the stable setting with some possible
changes. There are two criteria that we used in the model section:

1) Autocorrelation function (ACF) and Partial Autocorrelation function (PACF)
were used to determine the order of the autoregressive and moving average
terms and to detect the signi�cance of the serial correlation of the residuals.
Adler, Feldman, and Gallagher (1998) compare stable, Cauchy and Gaus-
sian limits in the construction of con�dence interval for ACF and PACF.
The simulations show that when � � 1:7; Gaussian and Cauchy limits are
better than stable limits. However, for � < 1:7; while Gaussian limits still
peform in the acceptable range, Cauchy and stable limits are better than the
Gaussian limits. Gaussian limits were used in our analysis since the indices
of stability of all the residuals except for one are greater than 1:7.

2) Akaike Information Criteria was used to trade between extra explanatory
power and parsimonous parameter selection. It is valid in both the Gaussian
and the stable setting (Adler, Feldman, and Gallagher, 1998).

We do not model the time varying volatility of the economic variables. Fit-
ting ARMA-GARCH models may reduce the kurtosis in the residuals. However,
Balke and Fomby (1994) show that even after estimating GARCH models, sig-
ni�cant excess kurtosis and/or skewness still remains. Mittnik et al. (1997)
present empirical evidence favoring stable hypothesis over the normal assump-
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tion as a model for ARMA-GARCH residuals. We postpone, to a future paper,
modeling the time varying volatility in the generation of economic scenarios.

5.2.1 Level 1: Short Term and Long Term Interest Rates

3-month Treasury bill rate is used as a proxy for short term risk free interest
rate. The 10-year Treasury bond yield is used as a proxy for the long term inter-
est rate. Dickey-Fuller and Phillips Perron tests for unit root suggest that both
Treasury bill and Treasury bond are �rst order unit root processes. There is
no agreement in economic theory on whether short term and long term interest
rates have a long-term equilibrium relationship, or not. We analyze the data
to decide on this issue on empirical grounds for our data set. One option is to
ignore the nonstationarity, and simply estimate in levels. However, the classical
asymptotic theory for test statistics is nonstandard. Another option is to dif-
ference the apparently nonstationary variables before estimating the regression
equations. If the true processes are regressions in �rst di�erences, then this ap-
proach is the right one. However, the series may have been, in fact, stationary,
or a linear combination of the series might be stationary. In such circumstances,
the analysis is misspeci�ed. One needs to test for possible cointegration among
series. The disadvantage of this approach is that alternative tests for unit roots
and cointegration can produce con
icting results. One practical solution sug-
gested by Hamilton (1994), is to employ parts of all three approaches. If the
regression for the data in the levels form yields similar inferences with those in
the stationary �rst di�erence form, then one can be satis�ed that the results
were not governed by the assumptions made about unit roots; con�dence in the
speci�cation increases.

When short term and long term interest rates are allowed to have linear
trends, and the cointegration equation is allowed to have intercept and trend,
Johansen Cointegration test (1991, 1995) suggests that there is no cointegration
relationship between the two series. However, if one imposes the restriction
that the individual series have no trend and the cointegration equation has
no trend, but possibly an intercept, then Johansen Cointegration test �nds
one cointegration equation. These results are very sensitive to the time period
analyzed, as well as the assumed lag length (see Table 2). We conclude that it
is likely that there is no linear combination of short term and long term interest
rates that is stationary.

We analyze the reduced form equations by �tting a vector autoregression
(VAR) to �rst di�erences of Treasury bond and Treasury bill rates. The Akaike
Information Criteria suggests VAR(2), in which case the residuals exhibit no sig-
ni�cant serial correlation. VAR in levels suggests a similar form which increases
the con�dence in the speci�cation.

d(Tbill)t = 
1d(Tbill)t�1 + 
2d(Tbill)t�2 + 
3d(Tbond)t�1+

4d(Tbond)t�2 + �Tbillt ; (5)

d(Tbond)t = �1d(Tbill)t�1 + �2d(Tbill)t�2 + �3d(Tbond)t�1+
�4d(Tbond)t�2 + �Tbondt ; (6)

The adjusted R2 of model (5) is 0.16, and the adjusted R2 of model (6) is
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Table 1: Johansen Cointegration Test Summary
Time period 2/1965-12/1999
Lag interval 1
Individual Data Series No trend No trend Linear trend
Cointegration Eqn. No intercept/ Intercept/ Intercept/

No trend No trend Trend
L.R. Test Rank=1 Rank=1 Rank=0

Time period 2/1965-12/1999
Lag interval 2
Individual Data Series No trend No trend Linear trend
Cointegration Eqn. No intercept/ Intercept/ Intercept/

No trend No trend Trend
L.R. Test Rank=0 Rank=0 Rank=0

Time period 2/1968-12/1999
Lag interval 1
Individual Data Series No trend No trend Linear trend
Cointegration Eqn. No intercept/ Intercept/ Intercept/

No trend No trend Trend
L.R. Test Rank=1 Rank=0 Rank=0

0.14. The correlation between the residuals of the two variables is 0.56. The
residuals cannot be assumed independent in the scenario generation process.

A problem of this approach is that the second moment does not exist for
stable random variables with � < 2: The dependence structure between the
innovations of Treasury bill and Treasury bond rates cannot be modeled by
using covariance measure in the generation of stable scenarios. We derive the
dependence structure from truncated observations by leaving out the virtually
impossible values. Mercury (1998) package is used to estimate the 'truncated'
covariance matrix by exponential smoothing12 and to simulate the residuals.

Once the truncated covariance matrix for d(Tbill) and d(Tbond), � = fcikg;
is estimated, we generate

Z = A1=2X~S�;0(0; �
�);

where c = (�
�2

�2 )[cos(��=4)]
2=�; X~N(0; 2�2); and A~S�=2;0(1; c); X and A

being independent13. The dependence structure between risk factors still re-
mains: The stable random variable Z = A1=2X can be viewed informally as
N(0; 2�2A)-distributed, i.e., normal with random variance 2�2A.

The future correlated residuals for d(Tbill) and d(Tbond) are then simulated
as follows:

12Refer to Section 4.1 for estimation of the truncated covariance matrix.
13

See Section 4.1.
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1) We simulate N independent multivarite normal random variables with the
truncated covariance matrix � between components of each vector-column:

G =

2
4 X1;1 X1;2

: :
XN;1 XN;2

3
5 ; where very column is N(0;�):

2) We simulate N independent identically distributed stable random variables,
Aj;i~S�j=2;0(1; cj)

S =

2
64 A

1=2
1;1 A

1=2
1;2

: :

A
1=2
N;1 A

1=2
N;2

3
75 :

3) The matrix T which is the the dot product of G and S will contain N
simulations for d(Tbill) and d(Tbond) with the desired stable parameters:

T = G Æ S; where Tj;i~S�j ;0(0; �j);8i = 1; 2; ::N; and j = 1; 2:

T can informally be viewed asN(0;��) - distributed, with random covariance
matrix ��; where �� = f��ijg, ��jj = cjj � Aj , and �ij = cij � (AiAj)

1=2.
Note that Aj is the square of the realization from S for the j-th variable
(corresponding to d(Tbill) or d(Tbond)), and cij is an element of �.

5.2.2 Level 2: In
ation

Mulvey �nds that in
ation depends on previous in
ation rates and the current
yield curve. Since we avoided modeling the yield curve, we checked whether the
in
ation rate can be explained by changes of short term and long term interest
rates. Changes in short rate do not explain in
ation rates at 1 or 5 percent
signi�cance levels. However, changes in long rate have signi�cant explanatory
power at the 5 percent level. The residuals exhibit ARMA(1,1) structure. There
is a very signi�cant peak in the partial autocorrelation function at lag 9. When
ninth order autoregressive term is added, the serial correlation in the residuals
becomes insigni�cant. However, if a di�erent time horizon is considered, there
is no longer a signi�cant peak in the partial autocorrelation function at lag 9.
Since there is no particular reason for its existence, we conclude that it is an
outlier.

We use the following time series model for price in
ation:

Inft = cInf + 
Infd(Tbond)t + resInft
resInft = �InfresInft�1 + �Tbond�Inft�1 + �Inft ; (7)

where Inf : log di�erences of seasonally adjusted monthly CPI values.
This model gives the highest Akaike Information Criterion without leaving

any signi�cant serial correlation in the residuals. The Jarque-Bera statistic
rejects that �Inft comes from normal distribution at 1% and 5% signi�cance
levels. The residuals have a kurtosis of 8.15 and a skewness of 0.49. The
adjusted R2 of the estimated model is .51.
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5.2.3 Level 3: Stock Dividend Growth Rate and Stock Dividend

Yield

Mulvey and Thorlacius (1998) suggests dividing the stock returns into two com-
ponents: dividend and capital appreciation. They argue that by separating the
base components as dividend growth and dividend yield, one can accurately
depict cash income. The decomposed structure provides more accurate linkages
to key economic factors such as interest rates and the in
ation level. We adopt
their approach.

Mulvey (1996) observes that growth of dividends net of in
ation has been
fairly stable over the last several decades. He suggests that dividend growth can
be linked to in
ation and past dividend growth.

The data reveals that the dividend growth rate can be explained by dividend
growth rate of the previous two years and second order autoregressive terms:

Divgt = 
DivgInft + resDivgt
resDivgt = �Divg

1 resDivgt�1 + �Divg
2 resDivgt�2 + �Divg

t ; (8)

where Divg : log di�erences of dividend index of S&P 500.
The inclusion of changes in short and long rate directly in the model does

not have any signi�cant explanatory power. The residuals have no signi�cant
serial correlation left over. The kurtosis of the residuals is 6.63, and the skew-
ness is -.002. The Jarque-Bera statistic rejects that �Divg

t comes from normal
distribution at 1% and 5% signi�cance levels. The adjusted R2 of the estimated
model is .23.

The Dickey-Fuller test for unit root suggests dividend yield is a �rst order
integrated process. Hence, we model the change in the dividend yield rather
than dividend yield itself. Mulvey suggests that dividend yield depends on the
movement of short-term and long-term interest rates. However, our analysis
shows that short term interest rate as proxied by 3 month Treasury rate has
no signi�cant explanatory power for explaining dividend yield movements. The
current and the previous month's long rates have signi�cant explanatory power
(at 5% level) in explaining the change in dividend yield.

Using the Akaike Information Criteria, the time series model we suggest for
change in the dividend yield is as follows:

d(Divy)t = 
Divy
1 d(Tbond)t + 
Divy

2 d(Tbond)t�1 + �Divy
t (9)

where Divy : logarithm of monthly dividend yield of S&P 500.
This model leaves no signi�cant serial correlation in the residuals. The

Jarque-Bera statistic rejects that �Divy
t comes from normal distribution at 1%

and 5% signi�cance levels. The residuals are kurtotic and skewed. The kurtosis
is 12.02, and and the skewness is 1.56. The adjusted R2 of the estimated model
is .13.

5.2.4 Simulation of Future Scenarios

Future economic scenarios are simulated at monthly intervals. One set of sce-
narios is generated by assuming that the residuals of each variable is identical
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normally distributed. This is the classical assumption made in the literature.
Another set of scenarios is generated by assuming that the residuals are iden-
tical stable distributed. The estimated normal and stable parameters14 for the
innovations of the time series models are given in Table 3. See Figures 4-8 for
graphical comparison of stable and normal �t to the residuals.

Table 2: The estimated normal and stable parameters for the innovations
normal dist. stable dist.

innovations of � � � � � �
Price In
ation
(Inf) 6.15 e-06 .0021 1.7072 0.1073 6.15 e-06 0.0012
Dividend gr.
(Divg) 9.89 e-4 .0195 1.7505 -0.0229 9.89 e-4 0.0114
Dividend yield
(d(Divy)) -.002551 .0407 1.8076 0.2252 -.002551 0.0239
Treasury bill
(d(Tbill)) .000336 .0579 1.5600 0 0 .0308
Treasury bond
(d(Tbond)) .000818 .0339 1.9100 0 0 .0230

The scenarios have a tree structure. At each stage (month) we generate
n possible scenarios. For each scenario, we �rst generate a normal or stable
residual for Treasury bill, and calculate the corresponding Treasury bill rate for
next month. Then, given this short rate, we generate Treasury bond rate, price
in
ation, dividend growth rate and dividend yield for next month according to
the cascade structure and the time series models we have built. For instance,
the in
ation rate for next month is generated by using the Treasury bond rate,
in
ation rate and the surprise to expected in
ation this month, and the nor-
mal or stable innovation of in
ation rate next month. Note that we allow for
innovation of each economic variable in each simulated month.

At the next stage, n new o�spring scenarios are generated from the parent
scenarios. This continues until the �nal time of interest. If the horizon of
interest is three quarters, then we generate n9 alternative economic scenarios.
In this study, we generate 2 scenarios for each month, so 512 possible economic
scenarios are considered over the next three quarters.

We expect that the simulation results exhibit the long run characteristics of
the data. Monthly data from 2/1965 through 12/1999 is used for the estimation
of the time series models. The historical annualized averages (over the full es-
timation period and over the recent four years), and the simulation annualized
averages under the normal and stable hypothesis for Treasury bond rate, Trea-
sury bill rate, dividend growth rate , dividend yield, in
ation, return on S&P
500, are given in Table 4. The 9-month scenario tree is repeated 99 times. The
values in the brackets are the 5% and 95% sample quartiles of the simulated
variables.

14Stable parameters are estimated using maximum likelihood estimation method. See Sec-
tion 4.2.1.
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Figure 4: Residuals of Monthly In
ation
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Figure 5: Residuals of Monthly Change in Dividend Growth
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Figure 6: Residuals of Monthly Change in Dividend Yield

The annualized averages of the simulated data are close to the historical
data over the last four years: the historical averages are within the con�dence
bounds. However, the simulation results cannot capture the excessive returns
on the stock market over the last four years, as depicted in the third column of
Table 4.

We have not investigated the forecasting power of our model. Backtesting
results will be reported in a later study. The parameters of the time series model
can be adapted to re
ect the subject beliefs and expectations of the management
about how the economy will be performing over the next year. See Bunn and
Salo (1993) for a review of qualitative scenario generation techniques.

5.2.5 Valuation of Assets

A portfolio that is composed of Treasury bill and S&P 500 is analyzed. The
monthly return on Treasury bill is already simulated. We need to derive the
monthly return of S&P using the dividend yield and the dividend index. The
dividend index is calculated by multiplying price index with the dividend yield:

DIt = Pt �DYt ,

where DIt is the dividend index for period t, Pt is the price index for period
t, and DYt is the dividend yield for period t. The dividend growth is just log
di�erences of dividend indices.
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Figure 7: Residuals of Monthly Change in Treasury Bill
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Figure 8: Residuals of Monthly Change in Treasury Bond
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Table 3: The Historical Averages and the Simulation Averages of Economic
Variables
Average (%) Historical Historical Normal Stable
Annualized ('65-'99) ('96-'99) Scenarios Scenarios
Treasury 7.84 5.92 6.4148 6.3483
Bond Rate [6.0193, 6.8232] [5.939, 6.8195]
Treasury 6.43 4.87 5.1319 4.9515
Bill Rate [4.6389, 5.6776] [4.2795, 5.4755]
Dividend 5 3 4.2664 3.8991
Growth [1.4969, 6.9644] [-1.1176, 7.1615]
Dividend 3.57 1.69 1.1480 1.1589
Yield [1.0659, 1.2383] [1.08, 1.25]
In
ation 5 4 3.8899 3.6106

[1.4842, 6.5171] [ 0.08, 7.2405]
Return on 12.6 23.88 9.7248 10.8114
S&P 500 [5.5153, 13.9584] [4.907, 16.955]
Return on 6.43 4.87 5.1268 4.9462
T-Bill [4.6338, 5.6725] [4.274, 5.4655]

The dividend yield and dividend growth rate are simulated as explained in
the previous section. Hence, we can get back simulated future price index in
period t under scenario s from the simulated dividend growth and dividend yield
indices by

Pst =
DIst
DYst

:
Then, we can calculate the return for holding S&P 500 for a month under

scenario s as

rst =
Pst�Ps(t�1)+DIst

Ps(t�1)
:

6 Computational Results

The di�erences in the allocations under the Gaussian and stable scenarios de-
pend critically on the utility function used. The optimal allocations under the
three utility functions considered are discussed in this section.

The �rst utility function analyzed is: U( �Ri
T ) = E[ �Ri

T ]�c:MAD( �Ri
T ); where

coeÆcient c is the risk aversion coeÆcient. The mean absolute deviation and the
mean �nal compound portfolio return at the end of 3 quarters is presented in
Figure 9. The stable economic scenarios result in higher mean absolute deviation
of �nal compound return for a given mean return.

The optimal allocation depends on the risk aversion of the agents. Table
4 presents the optimal allocations under the normal and stable scenarios. If
the agents are very risk averse, c = :550 for instance, the normal and stable
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scenarios result in the same allocation (See Figure 10). If the agent has very
low risk aversibility, c = :350 for instance, then the normal and stable scenarios
again result in the same allocation (See Figure 11).

However, when the coeÆcient of risk aversion is between :350 and :550,
the two distributional assumptions result in very di�erent allocations. The
stable scenarios capture the extreme events better, and hence model the risk
more realistically. Stable scenario simulation suggest more conservartive asset
allocation. When c = :450, normal scenarios suggest 60% in S&P 500 and 40%
in Treasury bill, whereas stable scenarios suggest 10% in S&P 500 and 90% in
Treasury bill (See Figure 12).
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Figure 9: Risk-Reward Diagram under Normal and Stable Scenarios

The other utility function considered is: U( �Ri
T ) = E[ �Ri

T ]� c:MD( �Ri
T ): The

MD( �Ri
T ) and the mean �nal compound portfolio return at he end of 3 quarters

is depicted in Figure 13. The stable economic scenarios result in higher risk for
given mean return. When the agent is highly risk averse both Gaussian and
stable scenarios suggest to put all the money in Treasury bills. If the agent has
very low risk aversion, then both scenario sets result in investing 100% in the
stock. When c = 1, Gaussian scenarios suggest to put 60% in S&P 500 and 40%
in Treasury bill, whereas the stable scenarios suggest to invest 30% in S&P 500
and 70% in Treasury bill. Table 5 presents the optimal allocations under the
normal and stable scenarios.
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Table 4: Optimal Allocations under the Normal and Stable Scenarios
Normal Scenarios Stable Scenarios
Optimal Percentage Invested Optimal Percentage Invested

c S&P 500 Treasury Bill S&P 500 Treasury Bill
.350 100% 0% 100% 0%
.401 100 0 45 55
.403 100 0 40 60
.405 100 0 30 70
.420 100 0 20 80
.430 100 0 15 85
.440 80 20 10 90
.450 60 40 10 90
.460 40 60 10 90
.490 20 80 10 90
.510 10 90 10 90
.550 5 95 5 95
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Figure 10: Utility Level When Risk Aversion is High
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Figure 11: Utility Level When Risk Aversion is Low
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Figure 12: Utility Level For \Average" Investor
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Table 5: Optimal Allocations under the Normal and Stable Scenarios
Normal Scenarios Stable Scenarios
Optimal Percentage Invested Optimal Percentage Invested

c S&P 500 Treasury Bill S&P 500 Treasury Bill
.4 100% 0% 100 0%
.5 100 0 90 10
.6 100 0 70 30
.7 100 0 55 45
.8 85 15 45 55
.9 70 30 35 65
1 60 40 30 70
1.5 30 70 15 85
2 15 85 10 90
4 5 95 5 95
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Figure 13: Risk-Reward Diagram under Normal and Stable Scenarios
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Table 6: Optimal Allocations under the Normal and Stable Scenarios
Normal Scenarios Stable Scenarios
Optimal Percentage Invested Optimal Percentage Invested


 S&P 500 Treasury Bill S&P 500 Treasury Bill
.7 100% 0% 100% 0%
.9 100 0 100 0
.99 100 0 100 0
1.5 100 0 95 5
1.8 100 0 80 20
2 90 10 75 25
3 60 40 55 45
4 45 55 40 60
5 40 60 35 65
10 20 80 20 80

The last utility function analyzed is power utility of �nal wealth:

U(W i) = 1
S

SP
s=1

1
(1�
)

�
W i

s

�(1�
)
:

This utility function is not very sensitive to extreme events. Similar to the
previous utility functions, both scenario generation methods result in the same
optimal allocation when the risk aversion is very high or very low. However,
when the level of risk aversion is in between these two extremes, the di�erence
in optimal allocations is not as large as we had before, only up to 20%. When
normal scenarios suggest to put 60 % in S&P, stable scenarios suggest to put
55% in S&P. Table 6 presents the optimal allocations under the normal and
stable scenarios.
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7 Conclusion

The ALM models that are based on stochastic programming with or without
decision rules are starting to gain applicability in the industry. In these models,
the future uncertainty is modeled using discrete scenarios. A representative
set of scenarios describes the possible future economic situations facing the
institution.

Generating scenarios that realistically represent the future uncertainty is
important for the validity of the results of stochastic programming based ALM
models. The assumption underlying the scenario generation models used in the
literature is the normal distribution. The validity of normal distribution has
been questioned in the �nance and macroeconomics literature. The leptokurtic
(heavy tailed and peaked) and asymmetric nature of the economic variables can
be better captured by using stable distribution as opposed to normal distribu-
tion.

We analyze the e�ects of the distributional assumptions on optimal asset
allocation. A multistage dynamic asset allocation model with decision rules
has been set up. The optimal asset allocations found under normal and stable
scenarios are compared. The analysis suggests that the normal scenarios may
greatly underestimate risks depending on the utility function of the decision
maker. Stable scenario modeling may lead to asset allocations that are up to
85% di�erent from those of normal scenario modeling.

One drawback of the multistage stochastic asset allocation problem with
decision rule is that once a decision rule, such as �xed mix, is adopted, it is
used to update the asset allocation every period. This greatly reduces the
computational complexity of the problem. However, it lacks realism due to the
assumption of no recourse decision. In a later paper, we will analyze the asset
allocation problem using stochastic programming with recourse. We will also
evaluate the out of the sample gain of using the stable allocation instead of the
normal allocation to see if and how much the agents bene�t .

The �nancial data exhibit heavy tails, time varying volatility, and long range
dependence. This study has only considered explicit modeling of heavy tails in
the �nancial data. The conditional heteroskedastic models (ARMA-GARCH)
utilizing stable distributions can be used to describe the time varying volatility
along with the asymmetric and leptokurtic behavior. In addition to these, the
long-range dependence can also be modeled if fractional-stable GARCH models
are employed. These aspects of �nancial data will be considered in a later paper.
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8 Appendix

Appendix 1: Time Series Model

Approach 1:
d(Tbill)t = :321d(Tbond)t�1 + :320�Tbillt�1 + �Tbillt ; (3)
d(Tbond)t = :326d(Tbill)t+ resT bondt;
resT bondt = �:350resT bondt�1 + :699�Tbondt�1 + �Tbondt ; (4)

Approach 2:
d(Tbill)t = :292d(Tbill)t� :119d(Tbill) + :335d(Tbond)t�1 + �Tbillt ; (5)
d(Tbond)t = :387d(Tbond)t�1 � :225d(Tbond)t�2 + �Tbondt ; (6)

Inft = :004 + :007d(Tbond)t + resInft
resInft = :965resInft�1 � :705�Inft�1 + �Inft ; (7)
Divgt = :965Inft + resDivgt
resDivgt = �:527resDivgt�1 � :297resDivgt�2 + �Divg

t ; (8)

d(Divy)t = �:147d(Tbond)t + :459d(Tbond)t�1 + �Divy
t (9)

All of the data are monthly and they cover the period of 2/1965-12/1999.
Tbond : logarithm of 10-year Treasury constant maturity yield- averages of

business (source: Federal Reserve Board) ,
Tbill : logarithm of 3-month T bill rate, secondary market- averages of busi-

ness days on a bank discount basis (source: Federal Reserve Board),
Inf : log di�erences of seasonally adjusted monthly CPI values (source:

Federal Reserve Board),
Divg : log di�erences of dividend index, where dividend index is price index

times dividend yield (source:Datastream),
Divy : logarithm of monthly dividend yield calculated from the annualized

dividend yield (source:Datastream),
d(:): �rst di�erence operator
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