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Extending the Actor-Partner Interdependence Model to Accommodate
Multivariate Dyadic Data Using Latent Variables

Hanna Kim and Jee-Seon Kim
Department of Educational Psychology, University of Wisconsin–Madison

Abstract
This study extends the traditional Actor-Partner Interdependence model (APIM; Kenny, 1996) to
incorporate dyadic data with multiple indicators reflecting latent constructs. Although the APIM has
been widely used to model interdependence in dyads, the method and its applications have largely
been limited to single sets of manifest variables. This article presents three extensions of the APIM
that can be applied to multivariate dyadic data; a manifest APIM linking multiple indicators as mani-
fest variables, a composite-score APIM relating univariate sums of multiple variables, and a latent
APIM connecting underlying constructs of multiple indicators. The properties of the three methods in
analyzing data with various dyadic patterns are investigated through a simulation study. It is found
that the latent APIM adequately estimates dyadic relationships and holds reasonable power when
measurement reliability is not too low, whereas the manifest APIM yields poor power and high type I
error rates in general. The composite-score APIM, even though it is found to be a better alternative to
the manifest APIM, fails to correctly reflect latent dyadic interdependence, raising inferential con-
cerns. We illustrate the APIM extensions for multivariate dyadic data analysis by an example study
on relationship commitment and happiness among married couples in Wisconsin. In cases where the
measures are reliable reflections of psychological constructs, we suggest using the latent APIM for
examining research hypotheses that discuss implications beyond observed variables. We conclude
with stressing the importance of carefully examining measurement models when designing and con-
ducting dyadic data analyses.

Translational Abstract
Dyadic data contain rich information about dynamic relationships that occur within a pair of people.
The Actor-Partner Interdependence model (APIM; Kenny, 1996) has been widely used to study the
interdependence of dyad members, defining its patterns by the relative strength of influence that
members receive from their partners. This study proposes to add measurement models to the APIM
to analyze multiple correlated variables as manifestations of underlying theoretical constructs that are
interrelated between dyad members. In addition to this latent APIM approach, two other extensions
of the APIM for multivariate data are presented in comparison: Instead of including measurement
models, the manifest APIM uses observed variables simultaneously, and the composite-score APIM
analyzes sums of observed variables. The usage of the three methods and their interpretations are pre-
sented with publicly available data from married couples. Using a simulation study, we also examine
cautionary circumstances when each of the three methods may not be suitable and provide a list of
recommendations for applied researchers on how to choose and apply different APIM approaches
in practice. Overall, their performance can differ substantially depending on the context in which
the variables in the analysis are related to each other. This article concludes with a discussion of the
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importance of theory and measurement characteristics in selecting a method to analyze multivariate
dyadic data.

Keywords: dyadic data analysis, common factors, composite scores, multivariate analysis, structural
equation modeling
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Dyads refer to small groups of two members each, where mem-
bers share the same environment and actively interact with one
another. Whether it is a couple of adults, advisor and student,
patient and caregiver, or therapist and participant, their unique
interactions involve two parts: interpersonal, mutual influences
between the members of a dyad and separate individual, intraper-
sonal effects. Dyadic data consist of measures on identical con-
tents obtained from both members in a dyad. Within dyadic data,
variables that address the same content but measure different
members tend to have relatively similar values because they repre-
sent members belonging to the same dyad.
As an example, the Wisconsin Longitudinal study (WLS)

extended its sampling framework in 2004 to include spouses of
their original participants, Wisconsin high school graduates
from 1957, constructing a pool of dyadic data on married cou-
ples (Herd et al., 2014). Similarly, the National Social Life,
Health, and Aging Project (NSHAP) invited coresident spouses
and romantic partners of original participants beginning with
Wave 2 (O’Muircheartaigh et al., 2014). Such publicly avail-
able dyadic data sets are increasing in their number, with many
of them being large-scale assessment data encompassing vari-
ous contents within their survey.
For spouses and couples, it is widely discussed that the emo-

tions of partners in intimate relationships may become connected
over time (Finkel et al., 2017; Schoebi & Randall, 2015). Even
though the degree and consistency of such connection has been
empirically debated (Anderson et al., 2003; Sels et al., 2020), one
might pose that the frequency at which one felt negative emotions
recently might be closer to that of their spouse than to that of a
random person. Such dependency, specifically termed “interde-
pendence” (Galovan et al., 2017) in relationship science, cannot be
adequately addressed by conventional models designed for random
samples that assume independent units. Models for nested data
account for clustering, but only in terms of group-wise means and
residual variances, lacking specificity.
One of the most popular ways for modeling interdependence in

dyadic data has been the actor-partner interdependence model
(APIM; Kenny, 1996). It disentangles dyadic interdependence into
a combination of explicit and direct individual influences that
members experience owing to either themselves (“actor effects”)
or their partners (“partner effects”). This allows its users to decom-
pose dyadic relationships into distinct sources of intra- and inter-
personal influences and evaluate the strengths and patterns of
interdependence between dyad members in contrast to other
dyadic data analysis models. For example, the Common Fate
model (CFM; Kenny & La Voie, 1985) conceptualizes dyadic
interdependence as a uniform process occurring at the dyadic level
owing to a shared external factor rather than as a combination of
diverse individual influences. Therefore, it is generally advised
that the CFM be used when variables are assumed to reflect a

dyad-level relationship rather than interpersonal interactions
(Ledermann & Macho, 2009). For more types of dyadic data anal-
ysis models or works on intensive longitudinal dyadic data, please
refer to other textbooks and journal articles (Brinberg et al., 2021;
Chow et al., 2018; De Haan-Rietdijk et al., 2016; Gin et al., 2020;
Kenny et al., 2006).

In Figure 1, a predictor x1 is measured for members A and B
in each dyad (x1A; x1B), which is then modeled to predict the out-
come y1 for the members (y1A; y1B) in terms of two actor effects
(c11, c22; the red dashed horizontal arrows) and partner effects
(c12, c21; the blue solid diagonal arrows). Actor effects show the
impact of one’s own predictor on their own outcome as in a typi-
cal regression model, whereas partner effects represent the influ-
ence on one’s outcome received from their partner’s predictor
value. It is these partner effects by which the APIM captures
dyadic interdependence.1

Even though most applications of the APIM involve single
sets of predictors (x1A; x1B; predictor x1 measured for members
A and B in dyads) and outcomes (y1A; y1B; outcome y1 measured
for members A and B in dyads) as presented in Figure 1, often
multiple measures are involved to cover broader constructs in
psychological studies. For example, a study may aim to evaluate
the relationship between perceived relationship commitment
and happiness among married couples, using multiple items to
collectively measure those concepts. Then, modeling each of the
multiple indicators of relationship commitment or happiness
separately with several models might not adequately answer the
initial research question; instead, simultaneous evaluation of the
variables may cast a clearer picture of the dyadic dynamics
(Kim & Kim, 2021).

Previous studies have shown the possibility of incorporating
two or more sets of variables within dyadic data analysis mod-
els such as using cross-informant data (van Dulmen & Goncy,
2010), correlated explanatory variables (Stas et al., 2018), or
moderators (Garcia et al., 2015). Kim and Kim (2021) extended
the APIM to cover two sets of manifest predictors and out-
comes simultaneously. There have also been studies that par-
tially or fully incorporated latent variables within the APIM to
combine multiple indicators as shared predictors or outcomes.
Some studies form latent variables to portray longitudinal rela-
tionships with APIM (Foran & Kliem, 2015; Gistelinck et al.,
2018; Laurenceau & Bolger, 2012), which is beyond the scope
of this article.

1 Note the convention to label the partner effect of member A
attributable to member B (the path of x1B to y1A) as c12, and vice versa
(Garcia et al., 2015). To whom the outcome variable belongs, or in other
words who receives the partner effect, is what matters in naming the
partner effect parameters.
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Alexandrowicz (2015) extended the APIM to combine multi-
ple items into latent factors that were linked by covariances,
resembling a multidimensional IRT model. However, covarian-
ces were used in place of the actor and partner effects, rendering
this extension more suitable for specific instances such as model-
ing the results of a test with multiple discretized binary item
scores. Similarly, a model for dyadic item response theory
(dIRT) has been proposed, extending the social relations model
(SRM) to incorporate individual- and dyad-level latent traits con-
sisting of multiple items (Gin et al., 2020). Including such latent
variables within the SRM enables researchers to retain informa-
tive measures from the IRT framework as well as to make infer-
ences on the two-directional interaction between the latent
variables. However, unlike the APIM, the SRM considers cases
where individuals can change partners, not necessarily belonging
to a single dyad.
It is notable that latent variable modeling has been used within

dyadic data analysis, including models other than the APIM. The
common fate model (CFM) actively uses latent variables to repre-
sent a shared external cause and a joint outcome at the dyad-level
(Kenny & La Voie, 1985). However, if latent variables are to be
used in the APIM, they need to be formed separately for each
member (Hong & Kim, 2019). Unlike the CFM where indicators
of the same content for both members are grouped into constructs
representing the entire dyad, the APIM would need to represent
latent concepts for each individual. It is this distinction of meas-
ures between members that makes it possible for the APIM to
track inter- and intrapersonal influences directly. Consequently,
the measurement models of the APIM will not be equivalent to
that of the CFM, resulting in a conceptually different model.

It is therefore encouraging to see studies that combined multiple
items on existing scales into latent variables before applying the
APIM. For example, Moorman (2016) postulated husbands’ and
wives’ martial satisfaction or loneliness in relation to actor and part-
ner effects of marital conflict or four different dimensions of marital
quality. This implies the necessity of combining measurement mod-
els with the APIM to understand dyadic relationships between cer-
tain theoretical concepts of dyad members. Despite such empirical
motivation, a methodological investigation remains to be made
regarding the benefits and caveats of using latent variables to
accommodate multivariate dyadic data.

Correspondingly, it should be discussed how to implement the
APIM for analyzing dyadic data containing multiple measures of
latent variables. It is shown that without applying a latent vari-
able framework, an APIM with multiple predictors and outcomes
results in a complex model even with two indicators each for a
predictor and an outcome (Kim & Kim, 2021). Thus, multiple
manifest variables are often transformed into a composite score
by summing or averaging the responses and then analyzed using
a univariate model. However, composite scores do not suffi-
ciently cover the distinction in the contents reflected in multiple
indicators.

Measuring constructs or concepts that are not directly observ-
able is an important aspect of scientific and practical research,
and using manifest indicators that reflect change based on latent
constructs has been the dominant measurement approach for dec-
ades (Hardin, 2017). Correspondingly, using measurement mod-
els to connect latent constructs and manifest indicators has been
a core idea in factor analysis (FA), classical test theory (CTT),
item response theory (IRT), and structural equation modeling
(SEM) (Crocker & Algina, 1986; Embretson & Reise, 2013;

Figure 1
The Traditional Actor-Partner Interdependence Model

Note. Notations were modified from Kenny (1996) to maintain consistency throughout this
article. Actor effects (the red dashed horizontal arrows denoted as c11 and c22) show the
impact of one’s own predictor (x1A; x1B) on one’s own outcome (y1A; y1B) for members A
and B as in a typical regression model. Partner effects (the blue solid diagonal arrows
denoted as c12 and c21) assess the influence on one’s outcome coming from their partner’s
predictor. Residual terms of the outcomes (the circles denoted as f1 and f2) represent the
parts of the outcome that are not explained by the predictors. Covariance is allowed between
predictors (/12) and outcome residuals (w12). See the online article for the color version of
this figure.
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Harman, 1976; Kline, 2015). However, this fundamental mea-
surement theory has not been used broadly in the framework of
dyadic data analysis. Therefore, we highlight the value of adding
measurement models to the APIM and present the latent APIM
as a methodologically attractive alternative to the composite-
score APIM or an APIM with multiple manifest variables when
analyzing multivariate dyadic data. In addition to exhibiting the
interpersonal influences in terms of shared unobservable con-
cepts closer to substantive research questions, extending the
APIM within a latent variable framework will also control for
measurement errors for multivariate dyadic data analysis.
The remainder of the paper is organized as follows. In section

2, we first describe how the traditional APIM can be extended to
multivariate dyadic data by incorporating multiple manifest vari-
ables. Then, we discuss in section 3 the benefits of including a
measurement model in the APIM to reflect latent constructs
underlying multiple manifest indicators. Consequently, the pa-
rameter structure of a latent APIM is presented as a way to inte-
grate measurement theory and multivariate dyadic data analysis.
In section 4, a simulation study presents how models with and
without latent constructs may lead to distinct results for charac-
teristic dyadic relationships. The following section illustrates
how to implement the models in the context of investigating the
relationship between relationship commitment and happiness
among married couples, using example data from the WLS.
Finally, section 6 concludes with potential implications and prac-
tical recommendations for extending the APIM to multivariate
dyadic data analyses.

The Actor-Partner Interdependence Models Using
Manifest Variables

Generalizing the Traditional APIM as a Structural
Equation Model

In this section, we describe how the traditional APIM can be
applied to multivariate dyadic data by introducing a general matrix
expression and expanding the dimensions of parameter and vari-
able matrices. For consistency, we will closely follow the LISREL
notation (Jöreskog, 2001) widely used to describe structural equa-
tion models by grouping parameters into vectors or matrices hav-
ing distinct roles.
The APIM in general can be described as

yi ¼ aþ Cxi þ fi (1)

where yi is a 2p-dimensional vector of endogenous outcome varia-
bles for dyads i ¼ 1; 2; . . . ; n with p being the number of observed
outcome variables for each member of a dyad; a is a 2p-dimen-
sional vector of intercepts; xi is a 2q-dimensional vector of exoge-
nous predictor variables with q being the number of observed
predictor variables for each member of a dyad; C is a 2p3 2q ma-
trix of actor and partner effects linking variables in yi and xi ; and
fi is a 2p-dimensional vector of residual terms of the outcome var-
iables for dyads i ¼ 1; 2; . . . ; n. Hereafter, we omit the intercepts a
with no loss of generality, and parameters without subscripts i are
assumed to be equal across dyads.
Applying p ¼ q ¼ 1 to (1), the traditional APIM (Kenny, 1996)

in Figure 1 can be reformatted as

y1Ai
y1Bi

� �
¼ c11 c12

c21 c22

� �
x1Ai
x1Bi

� �
þ f1i

f2i

� �
: (2)

Expressing the APIM as in (1) and (2) shows that actor and part-
ner effects can be understood as path coefficients of a path analysis
model that link variables from dyadic data consisting of n dyads.
In addition, residual covariance (w12 ¼ w21) is allowed to reflect
any remaining covariance between the two members’ outcomes
not captured by the partner effects (Cook, 1998). Similarly, covari-
ance is also allowed between the predictor variables (/12 ¼ /21),
reflecting the belief that the predictors of members within a dyad
are not independent. This results in variance-covariance matrices
of predictors and outcome residual terms as

W ¼ var fið Þ ¼ w11 sym:
w21 w22

� �
;

U ¼ var xið Þ ¼ /11 sym:
/21 /22

� �
;

(3)

where sym. denotes symmetric matrices hereafter.

Extending the Traditional APIM to Multivariate Dyadic
Data Analysis

The APIM in (1) to (3) can be intuitively extended to the analysis
of dyadic interdependence contained in multivariate dyadic data.
Figures 2 and 3 illustrate the APIM with two and three predictors
(x1; x2; q ¼ 2; x1; x2; x3; q ¼ 3) and outcomes (y1; y2; p ¼ 2; y1; y2;
y3; p ¼ 3), respectively, for dyad members A and B. The APIM
with multiple predictors and outcomes (called the manifest
APIM) is a direct extension of the traditional APIM in (2) in
that the variable vectors xi and yi are longer, such that

y1Ai
y1Bi
y2Ai
y2Bi

2
664

3
775 ¼

c11 c12 c13 c14
c21 c22 c23 c24
c31 c32 c33 c34
c41 c42 c43 c44

2
664

3
775

x1Ai
x1Bi
x2Ai
x2Bi

2
664

3
775þ

f1i
f2i
f3i
f4i

2
664

3
775 (4)

for a manifest APIM with p ¼ q ¼ 2, and

y1Ai
y1Bi
y2Ai
y2Bi
y3Ai
y3Bi

2
6666664

3
7777775
¼

c11 c12 c13 c14 c15 c16
c21 c22 c23 c24 c25 c26
c31 c32 c33 c34 c35 c36
c41 c42 c43 c44 c45 c46
c51 c52 c53 c54 c55 c56
c61 c62 c63 c64 c65 c66

2
6666664

3
7777775

x1Ai
x1Bi
x2Ai
x2Bi
x3Ai
x3Bi

2
6666664

3
7777775
þ

f1i
f2i
f3i
f4i
f5i
f6i

2
6666664

3
7777775
(5)

for an extension with p ¼ q ¼ 3.
Consequently, the variables are now linked by multiple actor and

partner effects contained in an also larger parameter matrix C. This
implies that the actor and partner effects indicate unique effects of a
specific predictor on a particular outcome considering other predic-
tors and outcome variables. Comparing standardized actor or part-
ner effects provides a sense as to which path demonstrates stronger
interdependence among members belonging to the same dyad. We
can examine whether a member’s predictor level is associated with
their own outcome by estimating corresponding actor effects or
investigate whether one’s outcome level is affected by their part-
ner’s predictor level by estimating partner effects. It should be
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noted that unstandardized actor or partner effects are inappropriate
for this purpose because they reflect the amount of variance for
related variables.
The difference in the effects can also be tested by comparing

models with and without equality constraints (Laurenceau &
Bolger, 2012; Maroufizadeh et al., 2018). Additionally, the ratio
of a member’s partner effect to their actor effect (k) can be used to
identify the “dyadic pattern” of the relationship in that it illustrates
the relative amount and direction of interpersonal influences com-
pared with intrapersonal effects. Characteristic dyadic patterns
include the actor-only pattern (k ¼ 0), couple pattern (k ¼ 1), and
the contrast pattern (k ¼ �1; Kenny & Ledermann, 2010).
Now covariance terms can be set between all residual errors of

the outcomes (w12;w13; . . .) as well as between predictors
(/12;/13; . . .) as in (6) for a manifest APIM with two sets of varia-
bles and (7) for a manifest APIM with three sets of variables. This
is to incorporate any remaining covariances among the outcomes
not explained enough by the actor and partner effects or natural cor-
relations between predictors of members within the same dyad.

W ¼ var fið Þ ¼ var

f1i
f2i
f3i
f4i

2
664

3
775 ¼

w11 sym:
w21 w22
w31 w32 w33
w41 w42 w43 w44

2
664

3
775;

U ¼ var xið Þ ¼ var

x1Ai
x1Bi
x2Ai
x2Bi

2
664

3
775 ¼

/11 sym:
/21 /22
/31 /32 /33
/41 /42 /43 /44

2
664

3
775:

(6)

W ¼ varðfiÞ ¼ var

f1i
f2i
f3i
f4i
f5i
f6i

2
6666664

3
7777775
¼

w11 sym:
w21 w22
w31 w32 w33
w41 w42 w43 w44
w51 w52 w53 w54 w55
w61 w62 w63 w64 w65 w66

2
6666664

3
7777775
’

U ¼ varðxiÞ ¼ var

x1Ai
x1Bi
x2Ai
x2Bi
x3Ai
x3Bi

2
6666664

3
7777775
¼

/11 sym:
/21 /22
/31 /32 /33
/41 /42 /43 /44
/51 /52 /53 /54 /55
/61 /62 /63 /64 /65 /66

2
6666664

3
7777775
:

(7)

For detailed descriptions of notation, please refer to Table 1.
When the APIM in (1) is believed to have generated a set of

dyadic data, its model-implied variance and covariance terms can
be derived as

RyyðhÞ ¼ CUC0 þW;
RxyðhÞ ¼ UC0 (8)

which indicates how the actor and partner effects constitute the varian-
ces and covariances between variables in dyadic data in combination
with the variances and covariances of explanatory variables.2 Because
the manifest APIM covers multivariate dyadic data with larger dimen-
sions and more parameters, model-implied (co)variances reflect more
explanatory variables and parameters compared with those of the

Figure 2
The Actor-Partner Interdependence Model With Two Predictors and Outcomes
(Manifest APIM, p ¼ q ¼ 2)

Note. Compared with the traditional APIM in Figure 1, actor effects (the red dashed
arrows denoted as c11; c22; . . . ;c44) and partner effects (the blue solid arrows denoted as
c12; c21; . . . ;c43) now connect two sets of predictors (x1A; x1B; x2A; x2B) and outcomes
(y1A; y1B; y2A; y2B). Actor and partner effects related to the second set of outcomes (y2A; y2B)
are denoted with lighter colors for distinction. Residual terms of the outcomes (f1; f2; . . . ; f4)
are allowed to have covariances (w12;w13; . . . ;w34). Covariance is also allowed between pre-
dictors (/12;/13; . . . ;/34). See the online article for the color version of this figure.

2 (8) is derived from the model-implied covariance matrix of a path
analysis model introduced in Bollen (1989) (4.7) to (4.9), where there are
no paths between endogenous variables.
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traditional APIM.3 As a result, the parameters of the manifest APIM
with multiple variables reflect partial effects controlling for other sour-
ces of variance, comparedwith those of a traditional APIM.
It should also be noted that the number of parameters for a manifest

APIM equals the number of unique variances and covariances in the
data. The number of parameters of a manifest APIM with 2p endoge-
nous variables and 2q exogenous variables where p ¼ q becomes

8p2 þ 2p with 2pð Þ2 parameters for C and 2p 2pþ 1ð Þ
2 parameters each

forW andU. This equals the number of unique variances and covarian-
ces in the data, i.e., 1

2 2pþ 2qð Þ 2pþ 2qþ 1ð Þ ¼ 2p 4pþ 1ð Þ. For
instance, themodels presented in Figures 2 and 3 have 36 and 78 param-
eters each, being equal to the number of nonredundant (co)variances
when p ¼ q ¼ 2 and p ¼ q ¼ 3, respectively.
Therefore, under the counting rule (Bollen, 1989; Kaplan,

2009), the manifest APIM is always “just-identified” unless spe-
cific constraints are imposed. When a model is just-identified, also
referred to as saturated, the model has zero degrees of freedom
(df ¼ 0) and has only one solution. In structural equation modeling,
the solution of a just-identified model consists of a set of parameter
estimates that perfectly reproduces the observed covariance matrix.
This is a critical limitation because the fit of a just-identified model
to observed data cannot be tested, and we have no means to investi-
gate whether the model is reasonable. We might still compare sev-
eral restricted models to the full model to evaluate various
hypotheses such as whether a particular actor or partner effect is
present or whether their magnitudes are the same across members.
However, reduced models are simpler versions of the corresponding

full model, with representations bounded by the full model. Unless
we can investigate how well the full model suits observed data, it is
difficult to empirically justify one of its reduced models with added
constraints.

Analyzing Multivariate Dyadic DataWith
Composite Scores

When multiple variables are measured either to reflect a shared
psychological construct or to represent multiple related concepts,
modeling each variable separately with multiple univariate models
fails to capture the correlations within such multivariate data. The
manifest APIM presented above can be meaningful in that it eval-
uates the dyadic dynamics simultaneously, instead of conducting
separate univariate evaluations. However, it also poses two diffi-
culties in that the manifest APIM applied to multivariate dyadic
data produces multiple partial actor or partner effects controlling
for every other variable included in the model.

First, the actor and partner effects from the manifest APIM may
be of less interest unless we have specific interest in distinguishing
the unique effect of a specific predictor to an outcome after remov-
ing all other actor or partner effects in the model. If we are more

Figure 3
The Actor-Partner Interdependence Model With Two Predictors and Outcomes
(Manifest APIM, p ¼ q ¼ 3)

Note. Compared with the models in Figures 1 and 2, actor effects (the red dashed
arrows; parameters c11; . . . ; c66 omitted in figure for brevity) and partner effects (the
blue solid arrows; parameters c12; . . . ; c65 omitted in figure for brevity) now connect
three sets of predictors (x1A; x1B; . . . ; x3B) and outcomes (y1A; y1B; . . . ; y3B). Residual terms
of the outcomes (f1; f2; . . . ; f6) as well as predictors are allowed to have covariances
(w12;w13; . . . ;w56;/12;/13; . . . ;/56; parameters omitted in figure for brevity). Actor and partner
effects related to the second set of outcomes (y2A; y2B) are denoted with lighter colors for distinc-
tion. See the online article for the color version of this figure.

3 Visit Table C-1 in the online supplemental materials to see how
components involving the same variables x1 and y1 (e.g., var y1Að Þ; cov x1A;ð
y1BÞ) represent different combinations of parameters and (co)variances
depending on the underlying model, manifest APIMs with p ¼ q ¼ 1 vs.
p ¼ q ¼ 2.
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interested in the collective dyadic interaction, the multivariate
manifest APIM may be less attractive. Second, estimating and
interpreting a lot of parameters becomes too complicated as the
number of variables per dyad member (p; q) increases (Kim &
Kim, 2021). Many of the parameter estimates may be small or stat-
istically insignificant, which may indicate negligible parameter
values or a lack of power to detect multiple parameters.
Because of such practical concerns, using composite scores that

sum or average multiple variables has been a popular alternative
(Ledgerwood & Shrout, 2011; Rhemtulla et al., 2020; Rush et al.,
2020). Composite scores have also been widely used in dyadic data
analysis literature, including cases where composite scores were
used to summarize multiple items (Bardach et al., 2019; Decuyper

et al., 2018) or to simplify longitudinal data analysis (Foran &
Kliem, 2015). If we create composite scores to analyze an APIM
with multivariate dyadic data (called the composite-score APIM) as
in Figure 4, the model eventually resembles the traditional APIM
with single variables (p ¼ q ¼ 1) as in Figure 1, because composite
scores are used in place of the individual variables.

When we let

xcomp:Ai ¼ x1Ai þ x2Ai þ . . .þ xqAi;
xcomp:Bi ¼ x1Bi þ x2Bi þ . . .þ xqBi;
ycomp:Ai ¼ y1Ai þ y2Ai þ . . .þ ypAi;
ycomp:Bi ¼ y1Bi þ y2Bi þ . . .þ ypBi;

the composite-score APIM can be described as

Table 1
Notations for the Multivariate Manifest APIM

Symbol Description

x1Ai (x2Ai; x3Ai; . . . ; xqAiÞ Observed predictor variable 1 (2, 3, . . . , q) for dyad member A in dyads i ¼ 1; 2; . . . ; n
x1Bi (x2Bi; x3Bi; . . . ; xqBiÞ Observed predictor variable 1 (2, 3, . . . , q) for dyad member B in dyads i ¼ 1; 2; . . . ; n
y1Ai (y2Ai; y3Ai; . . . ; ypAiÞ Observed outcome variable 1 (2, 3, . . . , p) for dyad member A in dyads i ¼ 1; 2; . . . ; n
y1Bi (y2Bi; y3Bi; . . . ; ypBiÞ Observed outcome variable 1 (2, 3, . . . , p) for dyad member B in dyads i ¼ 1; 2; . . . ; n
cpq c11; c12; . . . ; cpq; . . . ; c2p2qð Þ The actor or partner effect linking the pth element of yi to the qth element of xi in a manifest APIM
kpq;pp0 k12;11; . . . ; k2p:2 q�1ð Þ;2p:2p0

� �
The ratio of partner effect cpq c12; . . . ; c2p:2 q�1ð Þð Þ to actor effect cpp0 c11; . . . ; c2p:2p0ð Þ, indicating the
dyadic pattern for the pth (first, . . . , 2pth) element of yi in relation to the qth (first, . . . , 2(q�1)
th) element of xi and the p0th element of xi with the same item as the qth element measured for a
different dyad member.

f1i f2i; f3i; . . . ; f2pi
� �

Residual error term of the first (second, third, . . . , 2pth) element of yi
w11 w12; . . . ;w2p:2p

� �
Variance term of f1i (covariance term between f1i and f2i, . . . , variance term of f2pi)

/11 /12; . . . ;/2q:2q
� �

Variance term of the first element of xi (covariance term between the first and second element of
xi , . . . , variance term of the 2qth element of xi)

Figure 4
The Actor-Partner Interdependence Model With Composite-Scores as Predictors
and Outcomes (Composite-Score APIM, p ¼ q ¼ 1)

Note. Actor effects (the red dashed horizontal arrows denoted as c11 and c22) show the
impact of one’s predictor composite score (xcomp:A; xcomp:B) on one’s own outcome compos-
ite score (ycomp:A; ycomp:B) for members A and B. Partner effects (the blue solid diagonal
arrows denoted as c12 and c21) assess the influence on one’s outcome composite score com-
ing from their partner’s predictor composite score. Residual terms of the outcome composite
scores (fcomp:A; fcomp:B) represent parts of the outcome composite scores that are not
explained by the predictor composite scores. Covariance is allowed between predictor com-
posite scores of dyad members (/12) and outcome composite score residuals (w12). See the
online article for the color version of this figure.
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ycomp:i ¼ Cxcomp:i þ fcomp:i (9)

where ycomp:i is a 2-dimensional vector of outcome composite scores
and xcomp:i is a 2-dimensional vector of predictor composite scores
for dyads i ¼ 1; 2; . . . ; n. C is a 23 2 matrix of actor and partner
effects linking variables in ycomp:i and xcomp:i , and fcomp:i is a 2-
dimensional vector of residual terms of the outcome composite scores
for dyads i ¼ 1; 2; . . . ; n. In expanded form, (9) can be reformatted as

ycomp:Ai
ycomp:Bi

� �
¼ c11 c12

c21 c22

� �
xcomp:Ai
xcomp:Bi

� �
þ fcomp:Ai

fcomp:Bi

� �
: (10)

Now the actor and partner effects (c11; . . . ; c22) represent rela-
tionships between composite scores of the predictors or outcome
variables, such that they convey comprehensive actor and partner
effects compared with those of the multivariate manifest APIM.
Even though such a univariate approach reduces the complexity of
estimating and interpreting a manifest APIM, it remains a question
whether simple sums of variables contain sufficient information
about multivariate dyadic relationships.
Residual covariance between the outcome composite scores

(w12 ¼ w21) as well as covariance between predictor composite scores
(/12 ¼ /21) are allowed in a similar fashion to the univariate manifest
APIM, such that the variance-covariancematrices are defined as

W ¼ var fcomp:i
� � ¼ var

fcomp:Ai
fcomp:Bi

� �
¼ w11 sym:

w21 w22

� �
;

U ¼ var xcomp:ið Þ ¼ var
xcomp:Ai
xcomp:Bi

� �
¼ /11 sym:

/21 /22

� �
:

(11)

For detailed descriptions of notation, please refer to Table 2.

The Latent Actor-Partner Interdependence Model

Benefits of HavingMeasurementModelsWithin the APIM

Measures are almost always imperfect and contain measurement
errors. This is especially the case when researchers examine indi-
vidual characteristics such as affect or stress in that they are
observed rather than manipulated (Ledgerwood & Shrout, 2011;
Rush et al., 2020). Also, the abundant use of self-report scales or
subjective assessments makes it critical to understand the effects

of measurement error on the accuracy and precision of model pa-
rameter estimates. Imperfect measures attenuate the relationship
among the concepts of interest and may result in severe bias or
misleading conclusions. Variables that are intended to measure
unobserved constructs such as relationship commitment and hap-
piness not only reflect underlying constructs but also capture the
unique variances/disturbances of the indicators.

However, the composite-score APIM and manifest APIM do
not account for measurement error, nor do they isolate the variabil-
ity of common factors from the unique variances of indicators that
are not shared by other variables. Therefore, when constructs of
interests are best viewed as reflected by their corresponding indi-
cators as in our analysis of the WLS dyadic data, the latent APIM
is a truer representation of the underlying relationships between
relationship commitment and happiness among the husbands and
wives, rather than the manifest APIM or composite-score APIM.

In the path analysis context, Cole and Preacher (2014) showed
that measurement error can make different path coefficients over-
or underestimated, cause valid models to appear invalid, and
change the substantive conclusions. The study also warned that
these problems become increasingly serious and intractable as
models become more complex. To prevent these problems, the
authors concluded that researchers should use more reliable meas-
ures, correct for measurement error, or obtain multiple measures
for latent variable modeling.

In measurement theory, manifest and latent variables form distinct
layers depending on the contents they convey. Unlikemanifest varia-
bles, latent variables represent unmeasurable entities that are related
to several empirical variables or are theoretical sources of the corre-
lation among them (Cohen et al., 1990). It is argued that latent varia-
bles are more appropriate for many psychological research questions
unless variables can be measured deterministically without unex-
plained sources of variation (Borsboom, 2008). As a consequence,
manifest or observed variables are rarely sufficient in psychology,
making it reasonable to conceive of latent variables until we have
ground to believe they can be directly observed. Therefore, if a set of
observed variables are measured in the expectation to portray an
underlying concept, they should be analyzed with methods that
acknowledge the common factor behind the measures.

Using a latent variable approach can be a theoretical break-
through when conceptualizing a way to apply the APIM to dyadic
data with multiple variables. More often, the variables we observe
are limited manifestations of theoretical concepts that we cannot
directly measure. Even though we may apply models like the

Table 2
Notations for the Composite-Score APIM

Symbol Description

xcomp:Ai xcomp:Bið Þ The composite score of predictor variables of dyad member A (B) in dyads i ¼ 1; 2; . . . ; n
ycomp:Ai ycomp:Bið Þ The composite score of outcome variables of dyad member A (B) in dyads i ¼ 1; 2; . . . ; n
c11 c22ð Þ The actor effect of dyad member A (B)
c12 c21ð Þ The partner effect representing the influence that the outcome composite score of dyad member A (B) receives from the

predictor composite score of dyad member B (A)
kA; kB The ratio of partner effect c12 c21ð Þ to actor effect c11 c22ð Þ, indicating the dyadic pattern for dyad member A (B)
fcomp:Ai fcomp:Bi

� �
Residual error term of ycomp:Ai (ycomp:Bi)

w11 w12 ¼ w21;w22ð Þ Variance term of fcomp:Ai (covariance term between fcomp:Ai and fcomp:Bi, variance term of fcomp:Bi)
/11 /12 ¼ /21;/22ð Þ Variance term of xcomp:Ai (covariance term between xcomp:Ai and xcomp:Bi, variance term of xcomp:Bi)
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composite-score APIM to analyze indicators designed to collec-
tively represent certain underlying constructs, this can be subopti-
mal in that the results hardly resonate with our intended research
hypotheses drawing on theoretical concepts. In contrast, the latent
variable approach groups the indicators together that are believed
to have been influenced by a common underlying construct. The
factor loadings of the indicators represent the strength of associa-
tion between the indicator and the latent factor behind the indica-
tors. Having a measurement model to represent such relationships
enables direct inferences about the constructs of members in a
dyad, instead of their indirect reflections. This way, the results of
studies based on observed data can still be interpreted with respect
to structural relationships closer to our research hypotheses.
There are also practical benefits to using latent variables within

the APIM in that the model becomes more parsimonious compared
with a manifest APIM that does not synthesize multiple indicators
into latent variables, while also accounting for measurement error.
When directional effects such as the actor or partner effects link
latent variables instead of individual indicators, dyadic interde-
pendence can be expressed in terms of theoretical constructs, lead-
ing to fewer model parameters. For instance, a total of 16 actor and
partner effects in Figure 2 can be replaced with just four actor and
partner effects when two indicators each are grouped across mem-
bers and endogenous/exogenous variables. In this way, we yield a
handful of representative directional effects compared with the
multitude of actor and partner effects linking manifest indicators.
Also, unlike the manifest or composite-score APIM, fitting the
latent APIM spares us degrees of freedom to test the model fit
against observed data with various model diagnostics, which can
serve as the starting point to compare reduced models representing
separate research hypotheses.

Extending the Traditional APIM to a Latent Variable
Framework

We can incorporate latent predictors and outcomes into an
APIM by specifying a measurement model in addition to a struc-
tural model (called the latent APIM). The measurement model
defines the indicators as weighted combinations of latent variables
and measurement errors, such that

xi ¼ Kxni þ di ;
yi ¼ Kygi þ ei ;

(12)

where xi is a 2q-dimensional vector of exogenous indicators for
dyads i ¼ 1; 2; . . . ; n with q being the number of observed predic-
tor indicators for each member of a dyad; ni is a 2-dimensional
vector of latent predictor variables, one each for dyad members;
Kx is a 2q3 2 matrix of factor loadings linking xi and ni; di is a
2q-dimensional vector of measurement errors of the predictor indi-
cators; yi is a 2p-dimensional vector of endogenous indicators
with p being the number of observed outcome indicators for each
member of a dyad; gi is a 2-dimensional vector of latent outcome
variables, one each for dyad members; Ky is a 2p3 2 matrix of
factor loadings linking yi and gi ; and ei is a 2p-dimensional vector
of measurement errors of the outcome indicators. We note that p
and q may differ depending on the measurement structure and
scale used in practice, but we limit our illustration to cases where
p ¼ q for the sake of simplicity.

Next, the structural model represents the relationship between
the latent predictors and outcomes as

gi ¼ Bni þ fi ; (13)

where B is a 23 2 matrix of structural actor and partner effects
linking gi and ni , and fi is a 2-dimensional vector of residual
errors of endogenous latent variables.

The latent APIM with two indicators for each latent variable
(p ¼ q ¼ 2) is depicted in Figure 5, the measurement model of
which can be formatted as

x1Ai
x2Ai
x1Bi
x2Bi
�
y1Ai
y2Ai
y1Bi
y2Bi

2
6666666666664

3
7777777777775

¼

1 0
kx1 0 0432

0 1
0 kx2

1 0
ky1 0

0432 0 1
0 ky2

2
66666666664

3
77777777775

nAi
nBi
�
gAi

gBi

2
66664

3
77775þ

d1i
d2i
d3i
d4i
�
e1i
e2i
e3i
e4i

2
6666666666664

3
7777777777775

:

(14)

Likewise, the measurement model of a latent APIM with three
indicators for each latent variable (p ¼ q ¼ 3) is depicted in
Figure 6. Having three or more indicators to identify latent varia-
bles as is generally recommended (Tabachnick et al., 2007) can be
done straightforwardly by having variable vectors and parameter
matrices of larger dimensions in the measurement model, such that

x1Ai
x2Ai
x3Ai
x1Bi
x2Bi
x3Bi
�
y1Ai
y2Ai
y3Ai
y1Bi
y2Bi
y3Bi

2
66666666666666666664

3
77777777777777777775

¼

1 0
kx1 0 0632

kx2 0
0 1
0 kx3
0 kx4

1 0
ky1 0
ky2 0
0 1

0632 0 ky3
0 ky4

2
66666666666666666664

3
77777777777777777775

nAi
nBi
�
gAi

gBi

2
66664

3
77775þ

d1i
d2i
d3i
d4i
d5i
d6i
�
e1i
e2i
e3i
e4i
e5i
e6i

2
66666666666666666664

3
77777777777777777775

:

(15)

For both cases of latent APIMs, the structural model can be
described as

gAi

gBi

� �
¼ b11 b12

b21 b22

� �
nAi
nBi

� �
þ f1i

f2i

� �
: (16)

Because the structural coefficients of the latent APIM link latent
variables (nA; nB; gA; and gB) instead of individual indicators
(x1A; . . . ; ypB), the actor effects (the red dashed horizontal arrows
denoted as b11 and b22) reflect intrapersonal effects of the latent pre-
dictors on latent outcomes. Similarly, the partner effects (the blue solid
diagonal arrows denoted as b12 and b21) indicate interpersonal effects
on one’s latent outcome due to the latent predictor of one’s partner.
Estimates of these parameters allow us to make inferences on how the
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constructs that our indicators are supposed to reflect are influenced
both interpersonally and intrapersonally within a dyad, which may be
of greater interest than inferences on raw indicators or survey items.
In the latent APIM, covariance terms are estimated between re-

sidual errors of the same outcome indicators of different members
(e.g., he13 and he24 ) and also between the same predictor indicators
of different members (e.g., hd13 and hd24 ) as in (17) for a latent
APIM with two sets of indicators (p ¼ q ¼ 2), and analogously for
latent APIMs with three or more sets of indicators. This is to allow
for correlations owing to similar variable contents or any covarian-
ces among the indicators that may not be explained by the latent
variables for each person. Covariance is also allowed between latent
predictors or latent outcomes of members A and B (/12 and w12) to
reflect similarities between the members other than dyadic interde-
pendence captured by partner effects.

H ¼ var

d1i
d2i
d3i
d4i
�
e1i
e2i
e3i
e4i

2
6666666666664

3
7777777777775

¼

hd11
0 hd22 sym:
hd31 0 hd33
0 hd42 0 hd44

he11
he22

0434 he31 0 he33
0 he42 0 he44

2
66666666664

3
77777777775
;

W ¼ var

nAi

nBi�
f1i
f2i

2
66664

3
77775 ¼

/11 sym:
/21 /22
0 0 w11
0 0 w21 w22

2
664

3
775:

(17)

For detailed descriptions for each notation, please refer to Table 3.
The covariance matrix from data following a latent APIM in

(12) and (13) can be expressed as

RyyðhÞ ¼ KðI� BÞ�1WðI� BÞ�10K0 þH; (18)

derived from the model-implied covariance matrix of a structural
equation model without direct paths between exogenous variables
(Bollen, 1989, 8.16–8.17).4 Consequently, the variances and cova-
riances of latent factors are multiplied by actor or partner effects
and factor loadings to form model-implied variance or covariance
terms between manifest indicators. As a result, the parameters of
the latent APIM act on comprehensive effects among latent varia-
bles unlike in the manifest APIM.

It is noteworthy that the number of parameters in the latent
APIM in Figure 5 with two sets of indicators for each latent factor
(p ¼ q ¼ 2) is 26.5 This is smaller than the maximum number of
possible parameters under the counting rule (Bollen, 1989; Kaplan,
2009), 1

2 2p þ 2qð Þ 2p þ 2q þ 1ð Þ ¼ 1
2 4 þ 4ð Þ 4þ 4 þ 1ð Þ ¼ 36,

resulting in the latent APIM being overidentified with additional
degrees of freedom (df ¼ 10) unlike the manifest APIM. For a
latent APIM with three sets of indicators for each latent factor
(p ¼ q ¼ 3), remaining degrees of freedom increases to 42, as the
number of parameters in Figure 6 is 36 and the maximum number

Figure 5
The Actor-Partner Interdependence Model With Latent Predictors and Outcomes (Latent APIM; p ¼ q ¼ 2)

Note. Now the actor effects (b11 and b22) and partner effects (b12 and b21) connect latent variables (nA; nB;gA;gB) instead of individual indicators
(x1A; . . . ; y2B). They can also be understood as structural coefficients in a full structural equation model. Note that the structural parameters are labeled
analogous to the manifest parameters in previous figures so that b12 indicates the link between the first latent outcome and the second latent predictor.
See the online article for the color version of this figure.

4 Visit Table C-2 in the online supplemental materials for a comparison
of model-implied (co)variances involving y1A in the manifest and latent
APIM.

5 The number of parameters in a latent APIM is K ¼ 2 p� 1ð Þ þ 2 q� 1ð Þ,
B ¼ 4,H ¼ 3pþ 3q, andW ¼ 6, respectively.
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of parameters is 78. Because the degrees of freedom of a latent
APIM are a function of the number of indicators p and q, they
increase as more sets of indicators are involved in the measurement
model. Therefore, model fit statistics of a latent APIM can be calcu-
lated even when all parameters are freely estimated.

Further model comparisons can be performed based on such a
full model, comparing nested models with different constraints
that reflect various research questions. It is notable that factor
loadings are also testable within the latent APIM. They reflect the
relative strength of relationship between a latent construct and its

Figure 6
The Actor-Partner Interdependence Model With Latent Predictors and Outcomes (Latent APIM; p ¼ q ¼ 3)

Note. As p ¼ q ¼ 3, there are additional predictor and outcome indicators compared with Figure 5, which leads to increased dimensions for factor
loadings and measurement error terms. See the online article for the color version of this figure.

Table 3
Notations for the Latent APIM

Symbol Description

x1Ai (x2Ai; x3Ai; . . . ; xqAiÞ The first (second, third, . . . , qth) indicator of the predictor factor for dyad member A in dyads i ¼ 1; 2; . . . ; n
x1Bi (x2Bi; x3Bi; . . . ; xqBiÞ The first (second, third, . . . , qth) indicator of the predictor factor for dyad member B in dyads i ¼ 1; 2; . . . ; n
y1Ai (y2Ai; y3Ai; . . . ; ypAiÞ The first (second, third, . . . , pth) indicator of the outcome factor for dyad member A in dyads i ¼ 1; 2; . . . ; n
y1Bi (y2Bi; y3Bi; . . . ; ypBiÞ The first (second, third, . . . , pth) indicator of the outcome factor for dyad member B in dyads i ¼ 1; 2; . . . ; n
kx1 kx2 ; . . . ;kxq�1

� �
The second (third, . . . , qth) factor loading representing the strength that x2Ai x3Ai; . . . ; xqAið Þ reflects nA

kxq kxqþ1 . . . ; kx2 q�1ð Þ
� �

The second (third, . . . , qth) factor loading representing the strength that x2Bi x3Bi; . . . ; xqBið Þ reflects nB
ky1 ky2 ; . . . ;kyp�1

� �
The second (third, . . . , pth) factor loading representing the strength that y2Ai y3Ai; . . . ; ypAið Þ reflects gA

kyp kypþ1 . . . ; ky2 p�1ð Þ
� �

The second (third, . . . , pth) factor loading representing the strength that y2Bi y3Bi; . . . ; ypBið Þ reflects gB

nAi nBið Þ The latent predictor for dyad member A (B) in dyads i ¼ 1; 2; . . . ; n
gA gBð Þ The latent outcome for dyad member A (B) in dyads i ¼ 1; 2; . . . ; n
d1i d2i; d3i; . . . ; d2qi

� �
Measurement error unique to the first (second, third, . . . , 2qth) element of xi

e1i e2i; e3i; . . . ; e2pið Þ Measurement error unique to the first (second, third, . . . , 2pth) element of yi
b11 b22ð Þ The actor effect of dyad member A (B)
b12 b21ð Þ The partner effect representing the influence that the latent outcome of dyad member A (B) receives from the latent

predictor of dyad member B (A)
kA; kB The ratio of partner effect b12 b21ð Þ to actor effect b11 b22ð Þ, indicating the dyadic pattern for dyad member A (B)
f1i f2ið Þ The residual error term of gA gBð Þ
w11 w12 ¼ w21;w22ð Þ Variance term of f1i (covariance term between f1i and f2i, variance term of f2i)
/11 /12 ¼ /21;/22ð Þ Variance term of nA (covariance term between nA and nB, variance term of nB)
hd11 hd1: 1þqð Þ ; . . . ; hd2q:2q

� �
Variance term of d1i (covariance term between d1i and d 1þqð Þi, . . . , variance term of d2qi)

he11 he1: 1þpð Þ ; . . . ; he2p:2p
� �

Variance term of e1i (covariance term between e1i and e 1þpð Þi, . . . , variance term of e2pi)
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indicators because at least one factor loading per construct should
be fixed to one for model identification. It can also be tested
whether they significantly differ for each member or whether they
significantly differ from one. This is a procedure of defining a
meaningful and reliable measurement model which will be the
foundation for further inferences on a dyadic relationship between
latent constructs.
After the measurement model is set up, we can also test whether

the actor effect linking the predictor and outcome for member A is
significantly different from that of member B in the same dyad.
This can be done by specifying nested models where one of them
imposes equality constraints on the two actor effects. Similar steps
apply to testing partner effect equivalence. Even though it may not
be of substantive interest, equivalence can also be tested for the
two covariance terms between predictor indicators belonging to
the same member or the residual covariance between individual
outcome indicators. If certain covariance terms do not differ,
imposing equality constraints on them can make the model more
parsimonious. In the following sections, we inspect how the
APIMs with or without measurement models may detect dyadic
interdependence differently, varying by the measurement charac-
teristics, dyadic patterns, number of indicators, and sample size.

Simulation

Purpose and Design

In this section, we present a simulation study investigating how
various dyadic relationships contained in multivariate dyadic data
can be portrayed differently by the models discussed in the previ-
ous sections. We examine if estimating the latent, manifest, or
composite-score APIM would lead to different inferences in prac-
tical dyadic data analysis situations by generating artificial multi-
variate dyadic data with distinct conditions and fitting the three
APIM extensions.
First, data were generated based on either one of the multivari-

ate dyadic data analysis models, the latent APIM or the manifest
APIM. By doing so, we expected to evaluate the performance of
the APIMs without measurement models in estimating dyadic
interdependence among latent variables, as well as the perform-
ance of the latent APIM in representing dyadic relationships when
unidimensional common factors do not apply to certain multivari-
ate dyadic data. Despite the appeal of composite scores in practice,
it is hardly plausible that multiple variables sharing common var-
iance owing to an overarching concept or being representations of
correlated notions would stem from an additive process. Also,
considering that the composite-score APIM serves as a univari-
ate alternative to the manifest APIM, we focused on examining
the potential differences of multivariate data generating models
due to different measurement models, especially the use of latent
variables.
Second, scale reliability among multiple predictor and outcome

indicators was studied as an important factor. Even though scale
reliability is reported to be critical when comparing models with
or without latent variables (Ledgerwood & Shrout, 2011; Liu &
Rhemtulla, 2022; Rush et al., 2020), applied studies frequently
overlook to design studies carefully in terms of collecting meas-
ures that are more likely to reflect true variability or adopting

high-quality scales. In this regard, we created predictors and out-
comes that had either mediocre or high reliability to highlight the
role of reliability in multivariate dyadic data analysis. We pro-
duced cases where all constructs had high reliability (Cronbach’s
a ¼ :8), following guidelines for high a values (Bandalos, 2018)
and acknowledging practical difficulties in achieving ideal reliabil-
ity levels of .90 or .95. In contrast, data with mediocre reliability
(a ¼ :4) were generated to investigate the performance of APIMs
when variables do not serve as reliable indicators of a common
factor. This was done by adjusting the amount of covariances
among predictors or outcome residuals, while keeping the
expected variance of each variable fixed. For exact values of the
parameters, refer to Tables C-3 through C-6 in the online supple-
mental materials.

Additionally, we examined whether additional predictor and
outcome indicators improved model estimation and produced
more trustworthy results. Even though it is generally expected that
adding more items would be beneficial, the strength of such influ-
ence needed to be investigated across models and reliability levels.
Data with two predictors and outcomes were simulated to illustrate
the difference in model parameters among the models, whereas
data with three predictors and outcomes were simulated to show
the change in performance with an added variable, as well as to
represent short-form scales often used in applied studies (Rush
et al., 2020).

Similarly, the number of dyads or the sample size was also
manipulated. Dyadic data analysis is characteristic in that sample
sizes are usually much smaller than what is considered standard in
other model analyses, owing to the added difficulty of recruiting
both members in a dyad and eliciting reliable responses, as well as
the relative scarcity of large-scale data bases containing dyads.
Even though sample size reach over 500 dyads in some cases (n =
779, Moorman, 2016; n = 1,648, Hong & Kim, 2019), most of the
studies on dyadic data include around 100 to 200 dyads. When
studies are conducted longitudinally through multiple assessments
or require keeping daily diaries, sample sizes are even around 50
(Chow et al., 2018; Sels et al., 2020). Considering that small sam-
ple sizes are common with dyadic data analyses, we compared
sample sizes of 200 or 100 dyads to investigate model performan-
ces under less favorable situations to make our simulation results
more applicable to applied researchers collecting and studying
dyadic data.

Finally, different data sets were generated based on characteris-
tic dyadic relationships to see whether certain patterns of underly-
ing dyadic relationships would be less correctly detected under
specific conditions. Specifically, �.5, �.25, 0, .25, and .5 were
used as the ratio of partner effect to actor effect for both members

(e.g., kA ¼ b12
b11

¼ kB ¼ b21
b22

for the latent APIM) to mimic the actor-

only (k ¼ 0), couple (k ¼ 1), and contrast patterns (k ¼ �1;
Kenny & Ledermann, 2010). Values less extreme than 1 or �1
were used to reflect the likeliness that partner effects usually tend
to be smaller in absolute values compared with actor effects in em-
pirical applications. .25 and �.25 were added as levels of k to
evaluate the models in terms of detecting small to medium partner
effects.

Consequently, our simulation design consists of 80 conditions
comparing two data generating models (latent vs. manifest APIM),
two scale reliability levels (Cronbach’s a of .8 vs. .4), two
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number of indicators (p ¼ q ¼ 2 vs. p ¼ q ¼ 3), two sample size
conditions (n ¼ 200 vs. 100), and five dyadic patterns (k ¼ �:5;f
�:25; 0; :25; :5g) in a completely crossed design.
These five factors and their levels were chosen to represent

commonly used design characteristics in actual dyadic data analy-
sis. Because they were the focus of this simulation, all other pa-
rameters were held constant across conditions only with slight
modifications to maintain specific reliability levels. We simulated
500 replication data sets for each condition using the R software
(R Core Team, 2020). Population parameters are presented in
Tables C-3 through C-6, along with the R codes used for this sim-
ulation in Supplemental Materials A-1 and A-2. No preregistration
was made for the simulation study. Evaluation criteria and findings
of this simulation study are summarized in the next subsections.

Evaluation of Simulation Results

After generating data sets and fitting the three multivariate
APIMs accordingly, we examined how closely and precisely the
intended parameters were recovered, as well as how the results of
different models compared with each other. Fitting models differ-
ent than those that generated the data sets would provide us with
hypothetical consequences as to what would follow if the measure-
ment structure was erroneously (not) accounted for when analyz-
ing multivariate dyadic data. It should be noted that we focus
exclusively on evaluating partner effects hereinafter, since it is the
partner effects by which the dynamics within dyads are character-
ized given equal actor effects.
Parameter recovery was investigated to check whether the data

generating process of this simulation was correctly reflecting the
intended model, and to explore the performance of the models
when models were correctly specified but fitted to data observed
under extreme conditions. To assess the accuracy of the latent or
manifest APIM in estimating partner effects, percentage bias was
calculated as the difference of the mean partner effect estimates
across converged replications from the true parameter value, divided
by the parameter value and multiplied by 100. Models that failed to
converge to a proper solution were excluded from evaluation.6

Precision of the partner effect estimates was assessed against
the variability in the partner effect estimates by averaging the
squared deviation of the estimates from the parameter value and
taking its square root (root mean square error [RMSE]). Smaller
percentage bias and RMSE indicate better accuracy and precision,
respectively. Coverage was assessed as the proportion of replica-
tions where partner effect confidence intervals included the true
parameter, showing the extent the estimates matched the parameter
values from which the data were generated. Last, power was
defined as the proportion of replications that produced a statisti-
cally significant partner effect estimate under a = .05. When the
true partner effects were zero (k ¼ 0), the same procedure yielded
type I error rates indicating the proportion of estimating a statisti-
cally significant partner effect our of error.
When we compared estimates of different models, estimated

dyadic patterns (k̂) were used to represent the amount of partner
effects relative to their corresponding actor effects, analogous to
assessing accuracy. If the estimated dyadic patterns from the mani-
fest or composite-score APIM did not match that of the latent
APIM when data were generated to follow the latent APIM, it
would mean that applying the manifest or composite-score APIM

to dyadic data that are reflections of common latent variables
could produce misleading results. On the other hand, if the latent
APIM estimated larger or smaller dyadic patterns out of manifest
APIM data, it would show that the latent APIM can only be trusted
when there is sufficient justification for using a measurement
model grouping multiple variables into indicators of common
latent variables.

Next, we calculated detection rates as the proportion of replica-
tions with statistically significant partner effect estimates when fit-
ting models other than the one used to generate the data set. To
make the manifest APIM with multiple sets of partner effects com-
parable to the latent or composite-score APIM with only a single
set of partner effects, we also considered the rate of detecting at
least one partner effect pertaining to a certain dyad member (i.e.,
the rate of detecting at least one partner effect out of four related
to member A in Figure 2). Finally, convergence rates of the mod-
els were recorded throughout the simulation to infer minimum
bounds required for stable estimation of the manifest, composite-
score, or latent APIM.

Behavior of Multivariate APIMs in Discovering Latent
Dyadic Relationships

In this section, we consider conditions in which we assume vari-
ables are correlated with each other because they are reflections of
common unidimensional factors. Data sets with two and three
indicators were generated from latent APIMs having different
dyadic patterns. Generated data sets based on the latent APIM suc-
cessfully recovered parameters as intended when the reliability
among the indicators measuring the same latent variable was fair
(Cronbach’s a ¼ :8). Figure 7 summarizes parameter recovery for
the partner effect b12 from Figures 5 and 6, in particular.

Panels a and b of Figure 7 show that the latent APIM recovered
the true partner effect b12 with small bias (,65%) when reliabil-
ity was relatively high (Cronbach’s a ¼ :8), even with small sam-
ple size (n ¼ 100). In contrast, when reliability was relatively low
(Cronbach’s a ¼ :4), latent partner effect estimates were likely to
be inaccurate. Estimates were more accurate with larger sample
size (n ¼ 200), but reliability was more critical in recovering accu-
rate estimates. Consequently, bias was unpredictable and large for
conditions with low reliability combined with small sample size. Other
than the unpredictable pattern of bias for the least favorable conditions,
results were similar for models with 2 and 3 indicators (panel a vs.
panel b), as well as for b12 and b21 estimates (not presented).

Panels c and d of Figure 7 show that power was only acceptable
when partner effects were of moderate size (k ¼ 60:5) and scale
reliability was relatively high (Cronbach’s a ¼ :8). Power did
increase with increased sample size (from n = 100 to n = 200), but
reliability was much more critical in that conditions with low reli-
ability failed to detect existing latent partner effects most of the
time for both sample size conditions. As expected, smaller partner

6 Refer to Tables C-7 and C-8 in the online supplemental materials for
convergence rates of models fitted to generated data from all simulation
conditions. Convergence of the latent APIM improved with higher scale
reliability and larger sample size, as well as with more indicators. The
manifest APIM and composite-score APIM did not suffer any convergence
problems even in conditions with relatively weak reliability and small
sample size.
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effects were detected with less power, requiring stricter reliability
and sample size conditions to guarantee detecting subtle partner
effects. It is notable that partner effects of zero (k ¼ 0) were only
found to be significantly different from zero for 6.1% or less of the
total replications, retaining small type I error rates of observing

spurious effects by chance. Results were similar for models with 2
and 3 indicators (panel c vs. d), as well as b12 and b21 estimates
(not presented).

When estimating latent partner effects, precision was the best
when both sample size and reliability were high (average RMSE

Figure 7
Parameter Recovery Results for Simulated Latent APIM Data

Note. The x axes present the ratio of partner effects against their corresponding actor effects, or dyadic patterns (k ¼ b12=b11), from the data generating
model. The y axes of panels a and b indicate percent bias except when k ¼ 0, where they represent bias 3 100 instead of percent bias. The y axes of pan-
els c and d indicate power when k 6¼ 0 and type I error rate when k ¼ 0. For all panels, solid lines indicate high reliability conditions (Cronbach’s
a ¼ :8), whereas dashed lines represent low reliability conditions (Cronbach’s a ¼ :4). Red and blue lines linking squares and triangles, respectively,
indicate conditions with relatively larger sample size (n ¼ 200), whereas green and purple lines linking circles and diamonds, respectively, represent con-
ditions with relatively smaller sample size (n ¼ 100). See the online article for the color version of this figure.
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.083 and .090 for 2 and 3 indicators, respectively), followed by
the high reliability and small sample size condition (average
RMSE .129 and .128 for 2 and 3 indicators, respectively) and
low reliability conditions (average RMSE .436 and .680 for 2
and 3 indicators, respectively). The latent APIM performed well
in terms of parameter coverage (average coverage = .951) across
different dyadic patterns, sample sizes, and reliability levels,
implying the generated data sets matched the intended parameter
values well.
It should be noted that the simulation conditions covered in

this study, even though they intended to resemble typical dyadic
data characteristics, are close to the point of threatening stable
estimation of latent variable models. Models fitted to data sets
with n$ 100 and Cronbach’s a ¼ :8 almost always converged
without producing Heywood cases (convergence rate . .930),
whereas they did not converge as well for data sets with n ¼ 200
and Cronbach’s a ¼ :4 (convergence rate = .688 for two indicators,
.810 for three indicators) or n ¼ 100 and Cronbach’s a ¼ :4 (con-
vergence rate = .3 for two indicators, .454 for three indicators). This
aligns with the latent variable analysis literature arguing that latent
variable analyses assume large samples (Bollen, 1989; Kline,
2015), so that at least a sample of size 100 should be obtained when
planning to use latent variable models (Hoyle, 1999), which should
be increased when the expected effect size is smaller.

Figure 8 depicts the estimated dyadic patterns (k̂), or the ratio of
partner effect estimates to their corresponding actor effect esti-
mates for the manifest and composite-score APIM fitted to data
sets generated by various latent APIMs.7 Partner effect estimates
from both the manifest and composite-score APIM reflected correct
dyadic patterns when reliability of the indicators was high, regardless
of sample size and number of indicators in the model. However,
when reliability was low, both models tended to overreflect the
dyadic patterns between latent variables. The degree of overreflection
did not seem to be influenced by sample size but was greater when
more indicators were involved in the models. The two models
behaved similarly in terms of overreflecting latent dyadic patterns.
This is possible because observed indicators or composite scores

of them contain both common factor or construct variance, as well
as variance unique to themselves such as measurement error (Bol-
len & Lennox, 1991). When reliability is low, it is plausible that
covariances from an underlying common factor is small or indicator
variances including measurement error is inflated than when reli-
ability is high. The degree of attenuation or inflation could have
acted on the ratio of partner and actor effect estimates of the APIMs
assuming manifest variables so that dyadic patterns estimated from
those models do not reflect the original dyadic interdependence
among latent constructs. Therefore, it is also possible that the accu-

rate dyadic pattern estimates (k̂) from our high reliability condition
(Cronbach’s a ¼ :8) may not be retained in other contexts.
The possibility of finding at least one partner effect estimate dis-

tinct from zero out of all partner effects related to member A in
the manifest APIM was mediocre for most conditions, except
when sample size and reliability were both favorable and moderate
partner effects existed (k ¼ 60:5; See Figure 9a and 9b). Detec-
tion rates even worsened as the number of indicators increased
from 2 to 3. Although detection rates were influenced by underly-
ing dyadic patterns, sample size, and measurement reliability,
latent dyadic patterns were poorly detected within the manifest

APIM. Even more concerning is that the manifest APIM tended to
find spurious partner effects at a nonnegligible rate when no part-
ner effect existed between each member’s latent constructs. The
detection rates when k ¼ 0 were too high than acceptable type I
error rates and were similar to the detection rates for small dyadic
patterns (k ¼ 60:25) unless reliability and sample size improved.
Thus, dyadic patterns presented by the manifest APIM may not
agree with those inherent in latent constructs among dyad members.

In contrast, detection rates for one of the partner effects when
fitting the composite-score APIM (Figure 9c and 9d) were compa-
rable with the power of latent partner effects (Figure 7c and 7d).
When reliability was high, distinct latent dyadic patterns were
detected at a rate close to the nominal power of .80, which
increased with sample size. It is also notable that positive dyadic
patterns were better detected with the composite-score APIM
rather than with the latent APIM when reliability was low, which
was more pronounced when more indicators were included in the
models. However, power was low for both models when reliability
was low and dyadic patterns indicated actor and partner effects of
opposite signs (k ¼ �0:25 or �0:5). Unlike the manifest APIM
prone to inflate error rates with multiple tests, the composite-score
APIM was free from concerns about falsely detecting nonexistent
latent dyadic patterns.

Performance of Multivariate APIMs in Discovering
Manifest Dyadic Relationships

Now we consider situations where variables are not assumed to
reflect common factors. Followingly, data sets with two and three
indicators were generated from manifest APIMs having different
dyadic patterns. The parameter values used in data generation are
presented as Tables C-5 to C-6 in the online supplemental materi-
als. Parameter recovery for one of the partner effects (c41; See Fig-
ures 2 and 3 for details) is summarized in Figure 10. Results were
comparable for other partner effects as well (not presented).

Panels a and b of Figure 10 show that percent bias of c41 esti-
mates were around 65% when reliability was relatively high
(Cronbach’s a ¼ :8), regardless of sample size. Manifest partner
effect estimates were more likely to be inaccurate when reliability
was low (Cronbach’s a ¼ :4). Estimates were more accurate with
larger sample size and higher reliability but were similar for mod-
els with 2 and 3 indicators.

Panels c and d of Figure 10 show that power for each partner
effect estimate was very low for all conditions, being somewhat
higher only when sample size and reliability were the most
favorable and moderate dyadic patterns existed. Type I error was
maintained to a minimum in general and results were similar for
models with 2 and 3 indicators. It was more likely to find at least
one statistically significant partner effect estimate among those
pertinent to member B when true partner effects existed among
manifest variables (See Figure 10e and 10f). With three variables
for each member’s predictor and outcome, such detection rate

7 For the manifest APIM, the first partner effect and its corresponding
actor effect estimate was used to calculate the dyadic pattern estimate
(k̂ ¼ ĉ12=ĉ11), because the actor effects and partner effects were simulated
symmetrically between the members. Therefore, the resulting dyadic
pattern estimates did not depend on which set of partner and actor effect
estimates were chosen.
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Figure 8
Comparison of Dyadic Pattern Estimates When Fitting the Manifest or Composite-Score APIM to Simulated Latent APIM Data

Note. The x axes present the ratio of partner effects against their corresponding actor effects, or dyadic patterns (k ¼ b12=b11), from the data generating
model. The y axes indicate the dyadic patterns calculated by dividing a partner effect from either the manifest APIM (panels a, b) or composite-score
APIM (panels c, d) by their corresponding actor effect. For all panels, solid lines indicate high reliability conditions (Cronbach’s a ¼ :8), whereas dashed
lines represent low reliability conditions (Cronbach’s a ¼ :4). Red and blue lines linking squares and triangles, respectively, indicate conditions with rela-
tively larger sample size (n ¼ 200), whereas green and purple lines linking circles and diamonds, respectively, represent conditions with relatively smaller
sample size (n ¼ 100). The black dashed line k̂ ¼ k for all panels indicate the dyadic pattern that would have resulted from fitting a latent APIM to the
generated data. See the online article for the color version of this figure.
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even exceeded .80 when dyadic patterns were distinct and other
conditions were favorable. However, the probability of falsely
detecting at least one partner effect estimate out of chance when
no true partner effects existed was substantial. The fact that this
was more of a problem with increased number of variables tells

that the manifest APIM, despite its theoretical appeal of being
able to analyze multivariate dyadic data simultaneously, has lim-
ited performance because of testing its multiple parameters.

Figure 11 depicts the estimated dyadic patterns (k̂) for the latent
and composite-score APIM fitted to data sets generated by the

Figure 9
Detection Rates of Partner Effects When Fitting the Manifest or Composite-Score APIM to Simulated Latent APIM Data

Note. The x axes present the dyadic patterns (k ¼ b12=b11) from the data generating model. The y axes of panels a and b indicate the rate of detecting stat-
istically significant partner effect related to member A when fitting the manifest APIM to simulated latent APIM data. The y axes of panels c and d indicate
the rate of detecting a statistically significant partner effect (c12) when fitting the composite-score APIM instead of the latent APIM. For all panels, solid
lines indicate high reliability conditions (Cronbach’s a ¼ :8), whereas dashed lines represent low reliability conditions (Cronbach’s a ¼ :4). Red and blue
lines linking squares and triangles, respectively, indicate conditions with relatively larger sample size (n ¼ 200), while green and purple lines linking circles
and diamonds, respectively, represent conditions with relatively smaller sample size (n ¼ 100). See the online article for the color version of this figure.
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Figure 10
Partner Effect Recovery Results and Detection Rates for Simulated Manifest APIM Data

Note. The x axes present the dyadic patterns (k ¼ c21
c22

¼ . . . ¼ c41
c42

¼ . . . ¼ c2p:2q�1

c2p2q
) from the manifest APIMs that generated the data sets for simulation.

The y axes of panels a and b indicate percent bias except when k ¼ 0, where they represent bias 3 100 instead of percent bias. The y axes of panels c and d indi-
cate the power of detecting a single partner effect (c41) when k 6¼ 0 and type I error rate when k ¼ 0. The y axes of panels e and f indicate the rate of
detecting statistically significant partner effect related to member B when fitting the manifest APIM to simulated manifest APIM data. For all panels,
solid lines indicate high reliability conditions (Cronbach’s a ¼ :8), whereas dashed lines represent low reliability conditions (Cronbach’s a ¼ :4). Red
and blue lines linking squares and triangles, respectively, indicate conditions with relatively larger sample size (n ¼ 200), whereas green and purple
lines linking circles and diamonds, respectively, represent conditions with relatively smaller sample size (n ¼ 100). See the online article for the color
version of this figure.

18 KIM AND KIM

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.



manifest APIM. Partner effect estimates from the composite-score
APIM reflected correct manifest dyadic patterns across all dyadic
patterns, regardless of sample size, reliability level, and number of
indicators. In contrast, the latent APIM always underrepre-
sented manifest dyadic patterns, except when the true dyadic

patterns were moderately positive (k ¼ c21
c22

¼ c23
c24

¼ . . . ¼ c2p;2q�1

c2p;2q
¼ 0:5,

where p ¼ q ¼ 2 or p ¼ q ¼ 3). The opposite directions of bias
for the APIMs with or without measurement models aligns with
the tendency that the bias caused by applying latent variables
inappropriately is in the opposite direction as the bias that comes

Figure 11
Comparison of Dyadic Pattern Estimates When Fitting the Latent or Composite-Score APIM to Simulated Manifest APIM Data

Note. The x axes present the dyadic patterns (k ¼ c21
c22

¼ . . . ¼ c41
c42

¼ . . . ¼ c2p:2q�1

c2p2q
) from the manifest APIMs that generated data sets for simulation. The

y axes indicate the dyadic patterns calculated by dividing a partner effect from either the latent APIM (panels a, b) or composite-score APIM (panels c,
d) by their corresponding actor effect. For all panels, solid lines indicate high reliability conditions (Cronbach’s a ¼ :8), whereas dashed lines represent
low reliability conditions (Cronbach’s a ¼ :4). Red and blue lines linking squares and triangles, respectively, indicate conditions with relatively larger
sample size (n ¼ 200), whereas green and purple lines linking circles and diamonds, respectively, represent conditions with relatively smaller sample size
(n ¼ 100). See the online article for the color version of this figure.
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from not using measurement models when the data stem from re-
flective constructs (Rhemtulla et al., 2020). The degree of underre-
presentation varied according to sample size when reliability was
low, whereas it was relatively stable for conditions with high reli-
ability. The degree of underrepresenting original dyadic patterns

when they were estimated by the latent APIM was less severe
when three indicators were involved, compared with having two
indicators in the model.

Figure 12 shows how well the partner effects among manifest
variables were detected by fitting the latent and composite-score

Figure 12
Detection Rates of Partner Effects When Fitting the Latent or Composite-Score APIM to Simulated Manifest APIM Data

Note. The x axes present the dyadic patterns (k ¼ c21
c22

¼ . . . ¼ c41
c42

¼ . . . ¼ c2p:2q�1

c2p2q
) from the manifest APIMs that generated data sets for simulation. The

y axes indicate the rate of detecting a statistically significant partner effect when fitting the latent APIM (b21) or composite-score APIM (c21) instead of
the manifest APIM. For all panels, solid lines indicate high reliability conditions (Cronbach’s a ¼ :8), whereas dashed lines represent low reliability con-
ditions (Cronbach’s a ¼ :4). Red and blue lines linking squares and triangles, respectively, indicate conditions with relatively larger sample size
(n ¼ 200), whereas green and purple lines linking circles and diamonds, respectively, represent conditions with relatively smaller sample size (n ¼ 100).
See the online article for the color version of this figure.
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APIM. For both models, partner effects distinct from zero were
more often found when reliability was high and sample size was
relatively large, even though larger sample sizes could make up
for low reliability more with composite-score APIMs unlike with
latent APIMs. Also, detection rates were higher when more varia-
bles were included in each model.
It is noteworthy that detection rates of partner effects with the

latent APIM (See Figure 12a and 12b) did not form a symmetric
V-shape as with the composite-score APIM detection rates (See
Figure 12c and 12d) or power of manifest APIM partner effects
(See Figure 10c through 10f). This follows from the latent APIM
underreflecting dyadic patterns inside manifest variables (See Fig-
ure 11a and 11b). If an effect is estimated without bias, power is
naturally higher for stronger effects and converges to type I error
rate for weaker effects. However, because the latent APIM returns
smaller dyadic patterns than the original manifest dyadic patterns,
negative dyadic patterns get detected more easily than positive
ones. This is problematic in that the rate of falsely detecting non-
existent manifest partner effects are too high than what is usually
acceptable, especially so when reliability and sample size allow for
stronger detective power. In contrast, weak positive dyadic patterns
between manifest variables do not stand a chance of being detected
when a latent APIM is chosen as the method of analysis.
On the other hand, the composite-score APIM produced sym-

metric detection rates depending on the degree of manifest dyadic
patterns, being comparable to the proportion of detecting at least
one partner effect per member when fitting the true manifest
APIM (See Figure 12c and 12d, Figure 10e and 10f). The compos-
ite-score APIM performs superior to the manifest APIM in that it
is free from detecting false partner effects when the true dyadic
patterns are actor-only (k ¼ 0). Therefore, even though fitting a
composite-score APIM may result in losing detailed information
regarding specific variables and paths among them, the composite-
score APIM can be useful in summarizing multivariate dyadic
relationships among multidimensional or purely manifest varia-
bles, without producing misleading inferences.

Summary of the Simulation Study

In this section, we conducted a simulation study investigating how
dyadic patterns in latent constructs or purely manifest variables can
be presented differently by the three multivariate extensions of the
APIM. Our simulated data sets reflected five characteristic dyadic
patterns underlying two or three indicators each for the predictor and
outcome of dyad members. Overall, the parameters from the data
sets generated in this simulation were well recovered with small bias.
Partner effects from the latent APIM showed reasonable power

trends, even though the current simulation conditions act rather as
cautionary lower bounds. When dyadic patterns are expected to be
less distinct, scale reliability and/or sample size should exceed our
presented conditions to ensure sufficient power. Reliability was criti-
cal, implying that poorly measured constructs may not work as well
as high quality measures just by increasing the sample size or number
of indicators. Even for less favorable conditions, the latent APIM did
not pose high risks of finding spurious partner effects. Power was
more problematic for the partner effects of manifest APIMs, because
multiple partial coefficients are smaller in effect sizes and induce
multiple testing. In addition, type I error rates were constantly high,
making it difficult to distinguish actual partner effects from spurious

effects. In that sense, the composite-score APIM showed superior
performance to the manifest APIM by having higher detection rates
of existing partner effects and minimal type I error rates.

When multivariate dyadic data are assumed to stem from underly-
ing common constructs, overlooking the measurement structure and
using models based on manifest variables can produce misleading
results by overreflecting latent dyadic patterns. The composite score
is not exempt from this phenomenon, making it problematic for
applied researchers to just create composite-scores out of multiple-
item scales before proceeding to fitting an APIM.

On the other hand, when multiple variables are not reflections of a
common factor, such as the components indicating one’s socioeco-
nomic status such as education level, occupational prestige, and fam-
ily income, including measurements models without inspecting
substantive theory may produce underreflecting estimates, not agree-
ing with the true dyadic patterns. Moreover, positive but small dyadic
patterns are unlikely to be detected because of such systematic bias.
In such cases, the composite score APIM can act as a superior alter-
native to the manifest APIM. The multiple partial paths that are esti-
mated in the manifest APIM may imply specific relationships
between observed variables controlling for each other, but it should
be questioned whether the problems in performance would be worth
accepting. Given that a thorough evaluation of the measurement
structure is not often reported before deciding multivariate analysis
methods, the consequences of insufficiently considering measure-
ment models is yet to be discovered.

Real Data Analysis: Relationship Between
Married Couples

Data andMotivation for the Example Analysis

In this section, we show how the models we presented in the
previous sections can be implemented in an example analysis,
using data from the WLS.8 The WLS tracks 10,317 Wisconsin
high school graduates from 1957. Survey data were successively
collected from the graduates and their selected siblings, where at
one point, spouses were also invited to participate in the study.9

Although the WLS is a longitudinal data set, data from married
couples were collected only for a single wave, making the present
study a cross-sectional investigation. In this study, we focus on 6,012
graduates and siblings who (a) participated in the 2004 wave of the
WLS, (b) completed at least a part of the telephone interview, (c)
were currently married, and (d) whose spouses were heterosexual10

and participated at least partially in a parallel telephone interview.
Using data from the WLS, we investigate the influence of per-

ceived relationship commitment on happiness among married cou-
ples. Relationship commitment is a concept that consists of three
positively related but separate components, where the cognitive

8 Publicly available data of the WLS can be accessed at https://ssc.wisc
.edu/wlsresearch/data/. Because our analysis was a secondary data analysis
of a publicly available data set not involving identifiable private
information about participants, it was not subject to IRB approval.

9 Spouses of graduates were invited in 2004, followed by the spouses of
siblings in 2006.

10 This was done for the purpose of testing the difference in influences
that wives had on husbands and vice versa. One respondent was eliminated
from subsequent analyses because both she and her spouse were female.

EXTENDING THE ACTOR-PARTNER INTERDEPENDENCE MODEL 21

T
hi
s
do
cu
m
en
ti
s
co
py
ri
gh
te
d
by

th
e
A
m
er
ic
an

Ps
yc
ho
lo
gi
ca
lA

ss
oc
ia
tio

n
or

on
e
of

its
al
lie
d
pu
bl
is
he
rs
.

T
hi
s
ar
tic
le
is
in
te
nd
ed

so
le
ly

fo
r
th
e
pe
rs
on
al
us
e
of

th
e
in
di
vi
du
al
us
er

an
d
is
no
tt
o
be

di
ss
em

in
at
ed

br
oa
dl
y.

https://ssc.wisc.edu/wlsresearch/data/
https://ssc.wisc.edu/wlsresearch/data/


component represents a long-term orientation for the relationship,
the affective component represents psychological attachment to
the relationship or the affective bond that develops between part-
ners, and the conative component represents the intention to per-
sist in the relationship (Arriaga & Agnew, 2001). In relationship
literature, it is assumed that within a committed relationship, part-
ners would become increasingly susceptible to each other’s
circumstances and emotions. This creates an emotional interde-
pendence between partners as they become increasingly close and
similar to each other, where they have a greater potential for trans-
mitting one’s emotion to the other and being disrupted by their
partner’s positive and negative experiences (Aron et al., 1992;
Arriaga & Agnew, 2001; Sels et al., 2020). Consequently, the
focus of our example analysis is to investigate the dyadic interde-
pendence that married couples experience in terms of their rela-
tionship commitment and emotional positivity, happiness.
As presented in Tables 4 and 5, the WLS contains correlated

indicators that can be viewed as manifestations of two constructs,
relationship commitment and happiness. For example, the degree
that one believes to have similar outlooks on life to that of one’s
spouse (hereafter similarity) can be viewed as the cognitive com-
ponent of relationship commitment, whereas the degree that one
feels close with one’s spouse (hereafter closeness) can be deemed
the affective component. Likewise, the degree that one has been
feeling positive emotions recently (hereafter positive affect) can be
considered as reflecting happiness. Similarly, but not identically,
having felt negative emotions less frequently (hereafter negative
affect) can show an additional aspect of happiness.
Even though these indicators are conceptualized as reflecting rela-

tionship commitment or happiness in common, they are also often
used as simple sums, or composite-scores (Aron et al., 1992; McGreal
& Joseph, 1993). It should be noted though that variables available
within the WLS may not be sufficient enough to cover all three com-
ponents of relationship commitment as presented by Arriaga and
Agnew (2001) or most conventional indicators of happiness scales
(e.g., Mattei & Schaefer, 2004; McGreal & Joseph, 1993). Consider-
ing such limitations, it should be noted that this example is not to be
interpreted as having substantive meaning, but rather as a pedagogical
example as to applying APIM to multivariate dyadic data.
The variables from the WLS data can then be used to form com-

prehensive latent factors for each member as shown in Table 6.
The factor reliability estimates in this example are above the low
reliability condition in the previous simulation study but less than
optimal, with Cronbach’s alpha being smaller than .8 (range .465–
.639). As we discussed in the Simulation section, having three or
more indicators that are valid measures for either relationship
commitment or happiness could help in terms of accuracy and
power when performing related analyses.
Among the measures presented in Table 4, missing data constitute

less than 5% of the total sample. With listwise deletion, 5,875 of
6,012 couples or approximately 97.7% of the total sample would have
been available for analysis. We imputed missing values using the vari-
ables listed in Table C-9 under the assumption that they were missing
at random (Little & Rubin, 2019). The multiple imputation package
mice (van Buuren & Groothuis-Oudshoorn, 2011) was used within
the statistical software R (R Core Team, 2020) with predictive
mean matching (Little, 1988) as the algorithm for imputation.11

Of 20 imputed data sets, the first dataset was used to explore the
best fitting model among manifest or latent APIM models with

different sets of constraints. The descriptive statistics of the
imputed variables presented in Table 7 show close resemblance to
the original variables. After finalizing the best-fitting empirical
models, analyses were run on all 20 imputed data sets, pooling
results according to Rubin’s rules (Rubin, 1987).

Implementation of the Multivariate APIM

To examine the influence of relationship commitment on happi-
ness between married persons, we analyzed the WLS data with a
latent APIM with 2 indicators as in Figure 5.12 By doing so, we
decomposed the emotional interdependence arising from relation-
ship commitment into latent interpersonal and intrapersonal
effects. Using multivariate dyadic data with two indicators each,
we expected to represent the latent constructs (relationship com-
mitment and happiness) better by the common variances contained
in multiple indicators, rather than using single manifestations of
them. It should be noted that three or more indicators are needed
to reflect these constructs close to optimally.

For comparison, a composite-score APIM as in Figure 4 was
applied to show the difference in inferences without a latent vari-
able approach. With such a model, unique variances of perceived
similarity and closeness are combined into the composite score
(cmmcomp:H ¼ simH þ closeH; cmmcomp:W ¼ simW þ closeW) to-
gether with any shared variance. The same applies to positive
and negative affect (hppcomp:H ¼ positH þ nonnegH; hppcomp:W ¼
positW þ nonnegW), rendering the meaning of composite scores
distinct from the latent variables defined by the latent APIM.
Therefore, the composite-score APIM expresses the dyadic
interdependence among married couples in terms of actor and
partner effects between composite-scores, which would not
necessarily be the same as the dyadic relationship we intended
to analyze theoretically. It is not guaranteed that results of such a
model would lead to similar inference on relationship commitment
and happiness as an analysis of the latent APIM would do.

Models were fit using the package lavaan (Rosseel, 2012) within
R (R Core Team, 2020).13 To account for the non-normality of the
observed variables in the analyses, maximum likelihood estimation
with robust standard errors (Huber, 1967; White, 1980) and robust
test statistics asymptotically equivalent to T�

2 (Yuan & Bentler,
2000)14 was used within lavaan (Rosseel, 2012) instead of the con-
ventional maximum likelihood estimation. Based on the results from
these models, we will further describe the importance of reflecting
the measurement structure of dyadic data within the APIM.

Analysis Results

The latent APIM and nested models with different sets of con-
straints showed sufficient fit to data as presented in Table 8.

11 Codes for preparing the WLS data and applying the latent and
manifest APIMs can be found in Supplemental Materials B. The analyses
were not preregistered.

12 For a figure specific to the example analysis, please see Figure D-1 in
the online supplemental materials.

13 Example codes can be found in Supplemental Materials B.
14 This option is called MLR within the statistical software Mplus

(Muthén & Muthén, 2017). The R package lavaan (Rosseel, 2012)
provides similar robust standard errors and test statistics with the argument
“estimator = mlr.”
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Because the latent APIM without any constraints in estimating the
parameters (hereafter the full model) was overidentified with 10
degrees of freedom, its fit to data could be examined by various
goodness of fit statistics. Even though the v2 test statistic was sig-
nificantly different from zero, CFI and RMSEA values both sug-
gested reasonable model fit.
Nested models were investigated to test the equivalence

between factor loadings, revealing that imposing strictly equal fac-
tor loadings for all latent variables (k1 ¼ k2 ¼ k3 ¼ k4) heavily
diminished model fit. This implies that factor loadings should be
examined as an important source of factor variance rather than
being fixed. Therefore, measurement invariance across members
should be tested and not just assumed when analyzing dyadic inter-
dependence for dyadic data with latent variables. Parameters other
than factor loadings were also tested for equivalence, such as the
actor effects for husbands (b11) and wives (b22). Consequently, an
empirical model was selected based on goodness of fit statistics and
analyzed on all 20 imputed data sets of the WLS. Estimated factor
loadings and actor and partner effects are presented in Table 9.
Estimated factor loadings indicated that perceived similarity

(simH, simW) depended relatively more on relationship commit-
ment (commH, commW) than perceived closeness did (closeH,
closeW ; k1 , 1; k2 , 1), as did (reverse coded) negative affect

(nonnegH, nonnegW) relatively more on happiness (happinessH,
happinessW), compared with positive affect (positH, positW ;
k3 > 1; k4 > 1). Testing for differences among factor loadings
showed that factor loadings linking the same construct and indica-
tors did not differ across husbands and wives (k1 ¼ k2;k3 ¼ k4
in Figure D-1 in the online supplemental materials).

Actor effect estimates (b11; b22) illustrated that one’s level of happi-
ness was positively related to their relationship commitment. Testing
for differences among the actor effects between husbands and wives
showed that the amount was not significantly greater for husbands or
wives (b11 ¼ b22 in Figure D-1). On the other hand, one’s evaluation
of relationship commitment did not significantly relate to the happiness
level of his or her partner as reflected in the insignificant partner effects
(b12; b21), which also did not differ across husbands and wives
(b12 ¼ b21 in Figure D-1). In sum, relationship commitment had a
strong positive association with one’s own happiness for both hus-
bands and wives, without any partner effects. The standardized actor
effect was .399 for husbands and .425 for wives, indicating that mar-
ried individuals with a 1 SD higher relationship commitment tended to
experience substantially higher happiness levels of about .4 SD.

Even though the latent factors relationship commitment and
happiness were separately defined for husbands and wives, it was
reasonable enough to believe that married spouses would be

Table 4
Description of Variables Used in Analysis

Variable Indicator names Survey question Scale

Similarity sim.H
sim.W

How similar do you find your outlook on life is
with that of your spouse?

1 = not at all similar
2 = not very similar
3 = somewhat similar
4 = very similar

Closeness close.H
close.W

How close are you with your current spouse? 1 = not at all close
2 = not very close
3 = somewhat close
4 = very close

Positive affect posit.H
posit.W

How happy have you been during the past four
weeks?

1 = so unhappy that life is not worthwhile
2 = very unhappy
3 = somewhat unhappy
4 = somewhat happy
5 = happy and interested in life

Negative affect nonneg.H
nonneg.W

How often did you feel fretful, angry, irritable,
anxious, or depressed in the past four weeks?

1 = almost always
2 = often
3 = occasionally
4 = rarely
5 = never (reverse coded)

Note. Indicators for husbands and wives have suffixes “�.H” and “�.W”, respectively.

Table 5
Correlation and Covariance of Variables Used in Analysis

Variable simH closeH positH nonnegH simW closeW positW nonnegW

simH 0.302 0.087 0.045 0.065 0.082 0.055 0.027 0.040
closeH 0.404** 0.155 0.039 0.053 0.060 0.058 0.021 0.037
positH 0.163** 0.196** 0.256 0.154 0.040 0.018 0.029 0.042
nonnegH 0.136** 0.155** 0.349** 0.757 0.057 0.028 0.038 0.097
simW 0.252** 0.257** 0.133** 0.112** 0.351 0.130 0.057 0.098
closeW 0.223** 0.327** 0.081** 0.073** 0.488** 0.201 0.046 0.068
positW 0.086** 0.094** 0.103** 0.079** 0.174** 0.185** 0.311 0.193
nonnegW 0.078** 0.100** 0.089** 0.120** 0.177** 0.163** 0.371** 0.867

Note. Upper-diagonal values are pairwise covariances, lower-diagonal values are pairwise correlations, and diagonal values indicate variances.
** p , .001 for correlation coefficients.
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closely related also for reasons other than their relationship com-
mitment. Therefore, residual covariance was allowed for the same
indicators among husbands and wives (hd13 ; hd24 ; he13 ; he24 ). How-
ever, such residual covariance terms were either insignificant or
minimal. No structure was assumed at the beginning, but the residual
covariances between the predictor indicators of husbands and wives
(hd13 ; hd24 ) were found to be similar enough so that restricting them
to be equal for both similarity and closeness simplified the model
without significantly diminishing model fit. See Table C-10 in the
online supplemental materials for specific covariance estimates.
The composite-score APIM in Figure D-2 incorporated all indi-

cators as manifest composite scores, without linking them to under-
lying factors by a measurement model. Consequently, the full
model was just-identified without any remaining degrees of free-
dom. Therefore, goodness of fit for the full model could not be
tested with v2 based goodness of fit measures, even though the AIC
and BIC values were much lower than those of the latent APIM in
Table 8. The goodness of fit statistics for nested models of the com-
posite-score APIM are presented in Table 10. Nested models of the
composite-score APIM showed nice fit to the data and revealed that
actor effects and partner effects did not significantly differ between
members. Consequently, this model was analyzed together with the
full model on all 20 imputed data sets of the WLS.
The actor effect estimates in Table 11 imply that one’s level of

positive and nonnegative affect was positively related to their sum
of perceived similarity and closeness. Testing for differences
among the actor effects between husbands and wives showed that
the amount was not significantly greater for husbands or wives
(c11 ¼ c22 in Figure D-2). On the other hand, one’s sum of per-
ceived similarity and closeness did not significantly relate to the
level of positive and nonnegative affect of his or her partner as

reflected in the insignificant partner effects (c12; c21), which also
did not differ across husbands and wives (c12 ¼ c21 in Figure D-2).

Even though both the latent APIM and composite-score APIM
did not find significant partner effects, it is notable that the dyadic
patterns estimated from the two models implied different dyadic
relationships. For the latent APIM, estimated dyadic patterns were

minimal, indicating an actor-only pattern ðk̂A ¼ b̂12

b̂11
¼ 0:017

0:399 ¼ 0:043;

k̂B ¼ b̂12

b̂11
¼ 0:012

0:425 ¼ 0:028Þ. However, the estimated dyadic patterns

from the composite-score APIM were meaningfully positive ðk̂A ¼
ĉ12
ĉ11

¼ 0:061
0:205 ¼ 0:298; k̂B ¼ ĉ21

ĉ22
¼ 0:050

0:215 ¼ 0:233Þ, even though they

were not statistically significant.
This relates to our findings from the simulation study that omit-

ting measurement models when multivariate dyadic data may
reflect underlying common factors could lead to overestimating
latent dyadic patterns or underestimating dyadic patterns between
manifest variables, especially when reliability is low for the varia-
bles involved in the analysis. Although the composite-score
APIM’s degree of overreflection combined with low detection
rates for relatively small effects did not result in statistically signif-
icant partner effects, this example analysis exemplifies the impor-
tance of carefully incorporating subject matter knowledge into
designing measures and choosing analytical methods. In particu-
lar, analysis results may be sensitive to the choice of model, if
combined with relatively low scale reliability.

Summary of the Example Analysis

Even though we analyzed the same data with identical dyadic
interdependence, the results differed depending on the use of

Table 6
Structures and Reliability Coefficients of Factors Used in Analysis

Type Factor (factor name) Indicator Cronbach’s a

Predictor Relationship commitment—husband (commH) simH 0.553
closeH

Relationship commitment—wife (commW ) simW 0.639
closeW

Outcome Happiness—husband (happinessH) positH 0.465
nonnegH

Happiness—wife (happinessW ) positW 0.493
nonnegW

Table 7
Descriptive Statistics of Observed and Imputed Data Sets

Variable Indicator

Observed data
Imputed set 1
(n = 6,012)

Imputed set 20
(n = 6,012)

N M SD M SD M SD

Similarity simH 5,962 3.59 0.55 3.59 0.55 3.59 0.55
simW 5,985 3.56 0.59 3.56 0.59 3.56 0.59

Closeness closeH 5,961 3.84 0.39 3.84 0.39 3.84 0.39
closeW 5,981 3.81 0.45 3.81 0.45 3.81 0.45

Positive affect positH 5,999 4.80 0.51 4.80 0.51 4.80 0.51
positW 6,000 4.80 0.56 4.79 0.56 4.80 0.56

Negative affect nonnegH 5,997 4.33 0.87 4.33 0.87 4.33 0.87
nonnegW 5,998 4.09 0.93 4.09 0.93 4.09 0.93

Note. Descriptive statistics of imputed data sets 2 to 19 resulted in almost identical values to those of imputed data sets 1 and 20.
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measurement models. The latent APIM enabled describing dyadic
relationships in terms of the latent constructs that aligned closer to
substantive theory, which in this case were relationship commit-
ment and happiness. Because it grouped relevant indicators into
latent factors, the differential effects of individual manifest varia-
bles such as the effects of similarity and closeness to positive and
negative affect could not be measured. Such research questions
would be better understood by fitting a manifest APIM with sepa-
rate paths for similarity and closeness. However, unless that is the
focus of an analysis, the results from a composite-score APIM
would be more intuitive and concise, while maintaining low risks
of detecting false effects.
Consequently, it is crucial that the variables and their measure-

ment characteristics are well defined in relation to the research
question and field of study. The way of forming latent factors
needs to be supported from substantive literature and backed up
with reliably measured scale indicators. Only then can the strength
of association between a factor and its indicators be linked to the
intended research questions. In our empirical example, the reliabil-
ity of the indicators reflecting relationship commitment and happi-
ness was decent at best (See Table 6). This could be partly
because the factors were based on only two indicators each. Even

though simply adding more indicators would not compensate for
weak indicators already included for a given factor (Ledermann &
Kenny, 2012), obtaining additional indicators that maintain proper
construct validity can boost reliability, resulting in much enhanced
model performance.

Relatedly, factor loadings need to be freely estimated and tested
further for equivalence in the latent APIM as indicative informa-
tion to the quality and structure of measurement. Combining indi-
cators equally into composite-scores without such considerations
entail the potential to producing misleading inferences. Likewise,
applying the latent APIM to multivariate data without appropriate
factor structures can lead to wrong conclusions in the opposite
direction.

Results of the latent APIM applied to the current example imply
that one’s evaluation of relationship commitment is highly related
to one’s own degree of happiness, possibly so much that additional
partner effects do not exist. This is a characteristic pattern in terms
of dyadic dynamics called the “actor-only pattern” where the ratio
of each member’s partner effect to actor effect is almost zero

(kA ¼ b12
b11

¼ 0; kB ¼ b21
b22

¼ 0; Kenny & Ledermann, 2010). Along

with our simulation study in the Simulation section, we advise

Table 8
Goodness of Fit Statistics for the Latent APIM Submodels (n = 6,012)

Model Constraints v2 (df, p)a CFI RMSEA AIC BIC

Full model — 19.392 (10, .036) 0.998 0.012 78,291.038 78,465.278
Loading equivalence testing k1 ¼ k2 22.804 (11, .019) 0.997 0.013 78,293.574 78,461.112

k3 ¼ k4 20.493 (11, .039) 0.998 0.012 78,290.732 78,458.270
k1 ¼ k2; k3 ¼ k4 23.789 (12, .022) 0.997 0.016 78,293.102 78,453.938
k1 ¼ k2 ¼ k3 ¼ k4 92.837 (13, .000) 0.983 0.032 78,372.157 78,526.292
k1 ¼ k2 ¼ k3 ¼ k4 ¼ 1 91.486 (14, .000) 0.983 0.030 78,370.316 78,517.749

Parameter equivalence testing b11 ¼ b22 22.979 (11, .018) 0.997 0.013 78,294.534 78,462.072
b12 ¼ b21 19.292 (11, .056) 0.998 0.011 78,289.073 78,456.611
cx1 ¼ cx2 21.282 (11, .031) 0.998 0.012 78,291.476 78,459.014
cy1 ¼ cy2 28.407 (11, .003) 0.996 0.016 78,299.906 78,467.444

Best fitting empirical model k1 ¼ k2; k3 ¼ k4; b11 ¼ b22;
b12 ¼ b21; cx1 ¼ cx2

27.668 (15, .024) 0.997 0.012 78,293.095 78,433.826

Note. Models in bold represent the full model without any constraints and a parsimonious empirical model.
a Robust v2 test statistics are presented instead of standard v2 values.

Table 9
Summary of Latent APIM Estimates of Factor Loadings and Actor and Partner Effects (n = 6,012)

Full model Latent APIM with constraints

Parameter Path Est. SE p Std. Est. Est. SE p Std. Est.

1 commH ! simH 1 — — 0.599 1 — — 0.607
k1 commH ! closeH 0.800 0.056 ,.001 0.675 0.784 0.030 ,.001 0.675
1 commW ! simW 1 — — 0.719 1 — — 0.687
k2 commW ! closeW 0.716 0.044 ,.001 0.680 0.784 0.030 ,.001 0.710
1 happinessH ! positH 1 — — 0.651 1 — — 0.631
k3 happinessH ! nonnegH 1.414 0.123 ,.001 0.536 1.496 0.091 ,.001 0.548
1 happinessW ! positW 1 — — 0.626 1 — — 0.645
k4 happinessW ! nonnegW 1.579 0.127 ,.001 0.593 1.496 0.091 ,.001 0.580
b11 commH ! happinessH 0.429 0.048 ,.001 0.428 0.380 0.030 ,.001 0.399
b22 commW ! happinessW 0.335 0.041 ,.001 0.407 0.380 0.030 ,.001 0.425
b12 commW ! happinessH 0.011 0.026 .678 0.014 0.013 0.021 .527 0.017
b21 commH ! happinessW 0.009 0.037 .812 0.008 0.013 0.021 .527 0.012

Note. Est. = point estimate; Std. Est. = standardized estimate. Numbers in italic indicate parameter estimates with equality constraints.
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including measurement models within the APIM if multiple dyadic
measures are taken with certain underlying constructs in mind.

Discussion

Recommendations for Using Different APIMs for
Dyadic Data Analysis

The types of inferences possible with the latent APIM, compos-
ite-score APIM, and manifest APIM were discussed, and the pa-
rameters and characteristics of the three approaches were
compared in detail. Through our analytic and empirical investiga-
tions, the effectiveness of the latent APIM became clear, espe-
cially for enabling inferences related to latent constructs and
psychological theories. However, we acknowledge that alternative
models and other approaches may be equally or more suitable for
particular contexts. There is a well-known bias and variance
(a.k.a. accuracy and precision) trade-off for methods with and
without latent variables largely in the SEM literature (Ledgerwood
& Shrout, 2011; Liu & Rhemtulla, 2022; Rhemtulla et al., 2020;
Rush et al., 2020). Also, less commonly but possibly some
observed variables can be treated as causal-formative indicators
rather than reflective or effect indicators of unmeasured constructs
(Bollen & Diamantopoulos, 2017), provided a theory supports
such use of indicators (Hardin, 2017).
In our attempt to provide guidelines for applied researchers in

deciding which APIM to use for certain contexts, we list our recom-
mendations below based on theoretical consideration and empirical
findings from the simulation study. However, we clarify that these
are guiding principles in general, and the optimal decision should not

be made without an understanding of the particular context in
consideration.

First and foremost, the researcher should investigate the rela-
tionship among multivariate dyadic data in relation to psychologi-
cal theory and literature. The selection of analytic methods and
model specifications including the directionality of the cross-
sectional association should be guided by subject-matter knowl-
edge and the properties of the measures. If the observed variables
are affected by latent constructs and thus these measures are reflec-
tive indicators as in the FA, CTT, IRT, and most SEM frameworks
(Crocker & Algina, 1986; Embretson & Reise, 2013; Harman,
1976; Kline, 2015), the latent APIM would be appropriate. Other-
wise, the composite-score APIM may be suitable, especially when
combined scores are interpretable. The manifest APIM is not gen-
erally recommended because of its model complexity and low
power of detecting moderate partner effects and the high levels of
false detection rates when an effect does not exist.

Second, the researchers should check measurement reliability
and use scales tested throughout the field if possible, or at least
with pilot studies. We highlight that the reliability of the measures
is critically important for the trustworthy estimation of dyadic pat-
terns for all types of APIMs, and a large sample size (n = 200)
does not really compensate for the low reliability of measures
(Cronbach’s a = .4).

Third, the sample size and the number of indicators matter,
especially for the latent APIM. The latent APIM is not recom-
mended when the sample size is less than 100. It is applicable with
two indicators for each construct, but three or more indicators help
model specification and interpretation (e.g., comparing factor load-
ings of multiple indicators) and will likely increase reliability.

Table 10
Goodness of Fit Statistics for Composite-Score APIM Submodels (n = 6,012)

Model Constraints v2 (df, p)a CFI RMSEA AIC BIC

Full model — 0.000 (0, –) 1.000 0.000 67,025.750 67,092.770
Actor effect equivalence testing c11 ¼ c22 0.601 (1, .438) 1.000 0.000 67,024.618 67,084.931
Best fitting empirical model c11 ¼ c22; c12 ¼ c21 0.670 (2, .715) 1.000 0.000 67,022.678 67,076.290

Note. Models in bold represent the full model without any constraints and a parsimonious empirical model.
a Robust v2 test statistics are presented instead of standard v2 values.

Table 11
Summary of the Composite-Score APIM Estimates (n = 6,012)

Full model Composite-score APIM with constraints

Parameter Path Est. SE p Std. Est. Est. SE p Std. Est.

c11 cmmcomp:H ! hppcomp:H 0.285 0.023 ,.001 0.196 0.299 0.016 ,.001 0.205
c22 cmmcomp:W ! hppcomp:W 0.313 0.023 ,.001 0.225 0.299 0.016 ,.001 0.215
c12 cmmcomp:W ! hppcomp:H 0.088 0.019 ,.001 0.069 0.079 0.015 ,.001 0.061
c21 cmmcomp:H ! hppcomp:W 0.067 0.023 .004 0.042 0.079 0.015 ,.001 0.050
/12 cmmcomp:H & cmmcomp:W 0.251 0.013 ,.001 0.353 0.251 0.013 ,.001 0.353
w12 fcomp:H & fcomp:W 0.147 0.019 ,.001 0.108 0.147 0.019 ,.001 0.108

var fcomp:H
� �

1.251 0.036 ,.001 0.945 1.251 0.036 ,.001 0.942
var fcomp:W

� �
1.472 0.038 ,.001 0.940 1.472 0.038 ,.001 0.942

var cmmcomp:Hð Þ 0.626 0.017 ,.001 1.001 0.626 0.017 ,.001 1.001
var cmmcomp:Wð Þ 0.808 0.027 ,.001 1.003 0.808 0.027 ,.001 1.003

Note. Est. = point estimate; Std. Est. = standardized estimate. Numbers in italic indicate parameter estimates with equality constraints.
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Fourth, when the sample size is less than 100, the composite-
score APIM can be a viable option. However, the researcher
should understand the shortcomings of the composite-score APIM,
especially in terms of measurement error and the inability to test
the model fit. See the Extending the Traditional APIM to Multivar-
iate Dyadic Data Analysis and Benefits of Having Measurement
Models Within the APIM sections for details. The simulation also
reveals that the relative size of partner effects compared with actor
effects are overestimated when the reliability of the variables is
low (.4).
Finally, if there is no reason to believe that multiple indicators

reflect common factors or that a linear combination of the varia-
bles is meaningful, the researcher can use the traditional APIM in
Figure 1 and conduct multiple univariate analyses for different
combinations of predictors and outcomes.

Summary, Limitations, and Future Research

Dyadic data contain rich information about dynamic relationships
in pairs of people. Owing to the rapid development of data collection,
archiving, and sharing techniques and outlets, the volume of dyadic
data with multiple indicators has increased, and the trend will likely
continue. Whereas multiple responses have often been transformed
to composite scores in dyadic data analysis, this article presents mul-
tivariate modeling approaches with latent variables and measurement
models that allow us to examine various forms of interdependence
and directional effects which possibly occur among latent constructs
in dyadic research. The measurement model that defines the latent
variables accounts for measurement errors, which may reduce the
variance of parameter estimates as well as produce less biased struc-
tural parameter estimates (Chow et al., 2015; Vij & Walker, 2016).
Having two or more indicators for each latent variable with high reli-
ability could enhance the benefits of adopting latent variables within
the APIM. The latent APIM is also parsimonious and has positive
degrees of freedom to test model fit. In our empirical analysis, the
unconstrained latent APIM has 10 degrees of freedom whereas the
unconstrained composite-score APIM has zero degrees of freedom.
Our empirical study on relationship commitment and happiness also
supported that latent actor and partner effects were more intuitive to
interpret than without latent variables.
There are a number of limitations in the current study. Although

the simulation study considered a variety of conditions involving
various dyadic patterns, different levels of reliability, sample size,
and the number of indicators, the simulation was limited to sym-
metric actor and partner effects, factor loadings, and measurement
errors for two members in a dyad. It would be interesting to
explore when one member’s effects are substantially different
from or opposite to the other member. The reliability was also set
to be consistent across multiple measures, and it would be helpful
to know whether the average or minimum reliability matters more
for valid inference.
The scope of the current study is limited to a cross-sectional

design, whereas many dyadic data analyses involve longitudinal
data and the examination of cross-lagged partner effects over time.
Therefore, the directionality of the association of interest should
be determined through theoretical investigation before applying
the analytical methods from the current study. Future research can
investigate how more complex dyadic patterns or measurement
models would impact the performances of the latent APIM in

(intensive) longitudinal dyadic data. It will also be fruitful to de-
velop dyadic methods to account for covariates as well as various
interdependence structures in multilevel dyadic data, where dyads
are nested within clusters, and between-dyad differences are
accounted for in the multilevel dyad models. Finally, the presented
multivariate APIM approaches for pairs can be extended to small
interactive groups with three or more members (e.g., a therapist and
a couple, a guardian and children, a tutor and students) that are
prevalent in the fields of psychology and education.
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