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ABSTRACT OF THE DISSERTATION

Some Fitting ideal computations in Iwasawa theory over Q and in the

theory of Drinfeld modules

by

Nandagopal Ramachandran

Doctor of Philosophy in Mathematics

University of California San Diego, 2024

Professor Cristian D. Popescu, Chair

This dissertation consists of two main topics. In the first one, we talk about

an equivariant reformulation of the plus part of the Main Conjecture of Iwasawa

theory in terms of the abstract p-adic Tate module constructed by Greither and

Popescu([14]) and the cyclotomic units ofQ. Then we discuss how the Selmer module,

introduced by Burns, Kurihara and Sano([1]) could be an unconditional replacement

for the p-adic Tate module. In the second part, we talk about how the Euler factors

in equivariant L-functions of Drinfeld modules relate to Fitting ideals of certain

modules. This discussion takes us through the theory of t-motives and helps in

defining the first “étale” and “crystalline” cohomology groups of a Drinfeld module

defined over a finite field.

viii



Chapter 1

Introduction

1.1 An Introduction to Iwasawa Theory

Starting from the 19th century, a central and difficult problem in algebraic number

theory has been to fully understand the ideal class groups of number fields. With this

in mind, Kenkichi Iwasawa, in his landmark paper [17], drawing inspiration from the

analogous situation for function fields, started looking at Zp-extensions of a number

field. More precisely, let K be a number field and let K∞ be an infinite Galois

extension of K with Γ = Gal(K∞/K) ≃ Zp. Considering a Zp-extension is equivalent

to considering a tower of Galois extensions

K =K0 ⊂K1 ⊂ . . .Kn ⊂ . . . ⊂K∞

with Gn = Gal(Kn/K) ≃ Z/pnZ. Let An denote the p-part of the ideal class group of

Kn. Then X = lim
←Ð

An is a Zp[[Γ]] = lim←Ð
Zp[Gn]-module. Understanding the structure

of X as a Zp[[Γ]]-module is a much easier task than understanding the structure

of An as a Zp[Gn]-module. Once you understand X as a Zp[[Γ]]-module, you can

take co-invariants to come down to the n-th level and deduce some properties of An.

This setting is known as classical Iwasawa theory. Iwasawa also considered other
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arithmetically relevant modules other than X.

Taking its roots from here, Iwasawa theory has now developed into a vast sub-

ject where the general principle is to understand important arithmetic invariants of

objects at the base level by considering infinite pro-cyclic extensions (going “up the

tower”) and understanding the objects at the infinite level and then descending down

to the finite level. For example, for a discussion of this in the case of elliptic curves,

abelian varieties, motives etc. see [24], [13], [12].

Going back to classical Iwasawa theory, the first chapter in its history was closed

by Mazur and Wiles in 1984 ([25]), when they proved the Main Conjecture of Iwa-

sawa theory over Q. This was first formulated by Iwasawa and we’ll now state the

version that Mazur and Wiles provided in their paper, using notation from Wash-

ington’s book ([28]).

Let p > 2 be prime. Consider the extension F = Q and K0 = Q(ζp). Let Kn =

Q(ζpn+1) andK∞ = ⋃nKn. ThenK∞/K is a Zp-extension, and is called the cyclotomic

Zp-extension of K0. Let G = Gal(K0/F ) ≃ (Z/pZ)× and Γ = Gal(K∞/K0) ≃ Zp. Let γ

denote a topological generator of Γ, i.e. Γ = ⟨γ⟩. Let Λ = Zp[[Γ]] denote the Iwasawa

algebra. It is easy to see that Zp[[Γ]] ≃ Zp[[T ]], ([28] §7.1) the one-variable power

series ring with coefficients in Zp. Let ω ∈ Ĝ denote the Teichmüller character. Then

Ĝ =< ω > . Let Lp(s,ωi) denote the p-adic L-function associated to ωi. By Iwasawa’s

construction of p-adic L-functions ([19]), for all i /≡ 1 mod p − 1 odd, there exists a

power series fωi ∈ Zp[[T ]] such that

fωi((1 + p)s − 1) = Lp(s,ω
1−i).

On the other hand, let

A = lim
Ð→

An

2



denote the injective limit of the p-part of the ideal class group of Kn’s. Let X∞

denote the Pontryagin dual of A, i.e. X∞ = HomZp(A,Qp/Zp). For χ ∈ Ĝ, let X∞(χ)

denote the χ-component of X∞. With this notation, we have the Main Conjecture

of Iwasawa Theory:

Theorem 1.1.1. (Mazur-Wiles) For χ ∈ Ĝ ∖ {ω} odd,

FittΛ(X∞(χ)) = (fχ(T )).

Here FittΛ denotes the 0-th Fitting ideal of a Λ-module. We define this in §1.3,

and it can be thought of as a measure of the “Λ-size” of that module.

This is a statement of the form “algebraic = analytic”, and Main Conjectures in

Iwasawa Theory are usually always of this form.

This was further generalized from Q to any totally real field by Wiles in 1990

([29]), and we won’t discuss that here.

As seen above, the Main Conjecture talks about a connection between the class

groups at the infinite level to a p-adic L-function for odd characters. Instead of look-

ing at it character-by-character, Equivariant Iwasawa Theory looks at algebraic and

analytically relevant modules/functions as a whole and try to establish a connection

between them.

Our main motivation is the Equivariant Main Conjecture by Greither-Popescu

([15]), and we shall now state that here.

As before, let p denote an odd prime. Let K be the cyclotomic Zp-extension of

a CM field K and let k ⊂ K be a totally real number field such that K/k is abelian

with Galois group G. Let j denote the complex conjugation in G. The “minus part”
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of a Zp[[G]]-module M is the submodule of M on which j acts as −1. Let Sp denote

the primes in K above p. Let S and T be two G-equivariant finite sets of primes with

T ∩ (S ∪ Sp) = ∅.

The Equivariant Main Conjecture is stated under the assumption that µK = 0,

i.e. AK, the injective limit of the p-part of the class groups at the finite level, is p-

divisible. Under this assumption, Greither and Popescu construct a p-adic 1-motive,

denoted by MK

S,T , and obtain a p-adic Tate module Tp(MK

S,T ) from this motive.

We’ll define this in more detail in Chapter 2. This is a Zp[[G]]-module, and sits in

an exact sequence

0→ Tp(AK,T ) → Tp(M
K

§,T ) → DivK(S ∖ Sp) ⊗Zp → 0

where Tp(AK,T ) denotes the p-adic Tate module of AK,T , the injective limit of the

p-part of the T -class groups, while DivK(S ∖ Sp) denotes the divisors supported at

primes in S ∖ Sp.

On the analytic side, there is the equivariant p-adic L-function Θ
(∞)

S,T ∈ Zp[[G]]

formed from the equivariant L-function values at the finite level. This lives on

the minus part because these L-function values are 0 at even characters, and so

Θ
(∞)

S,T ∈ Zp[[G]]−.

Now we are ready to state the Equivariant Main Conjecture as stated by Greither-

Popescu ([15]):

Theorem 1.1.2. (Greither-Popescu) Under the above hypothesis, there is an

equality of Zp[[G]]−-ideals

FittZp[[G]]
−(Tp(M

K

S,T )
−) = (Θ

(∞)

S,T ).

This theorem is dependent on the µ = 0 hypothesis, which is known only for

abelian number fields ([7]). In recent work, Gambheera and Popescu ([8]), drawing
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inspiration from the theory of Ritter-Weiss modules and Selmer modules, proved a

new Equivariant Main Conjecture without any assumptions on the µ-invariant of the

number fields involved. As we mentioned earlier, the definition of the p-adic 1-motive

is dependent on the µ = 0 conjecture, and so the algebraic side has to be replaced.

The candidate chosen for this was the minus part of the Selmer module SelTS (K)p

constructed by Burns-Kurihara-Sano ([1]), and it can be shown to be isomorphic to

Tp(MK

§,T )
− when µ = 0.

Now a natural question that arises is about what happens in the plus part of

these extensions. Unfortunately, the p-adic L-functions are all 0 on the plus side,

and therefore, that doesn’t give any useful information. Even then, there is a version

of the classical Main Conjecture on the plus side. This version, which is equivalent

to the Mazur-Wiles Theorem, establishes a connection between the class groups and

units modulo cyclotomic units. Rubin ([22] Appendix) has given an elementary proof

of this version of the Main Conjecture using the theory of Euler systems.

In Chapter 2, we’ll first state this positive part of the Main Conjecture. Then

we’ll see how this can be collected to give an Equivariant Main Conjecture over Q
using the p-adic Tate module of the 1-motive. Our main result (2.3.2) is just a

reworking of Mazur-Wiles into an equivariant setting. Since the existence of the

p-adic Tate module depends on the µ = 0 conjecture, we see what could be a good

replacement for this. Finally, we talk about possible future work trying to extend

this to general CM fields over totally real fields.

1.2 An Introduction to Drinfeld Modules

The theory of Drinfeld modules was first introduced by Vladimir Drinfel’d in

1974 ([4]) as a generalization of the concept of elliptic curves. This was first called as
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elliptic modules and also serves as a generalization to the notion of a Carlitz module,

first introduced by Carlitz in 1938 ([2]). Two excellent applications of the theory of

Drinfeld modules (and shtukas) arise in the Langlands conjectures for GLn and in

understanding explicit class field theory for global function fields.

Let p be prime, and let q be a power of p. Let k = Fq(t) denote the rational

function field over Fq and let A = Fq[t]. Let F /k be a finite separable extension, and

let OF denote the integral closure of A in F. Let τ denote the q-Frobenius, and let

OF{τ} denote the twisted ring of polynomials with coefficients in OF , i.e. with the

property that

τ ⋅ x = xq ⋅ τ

for all x ∈ OF . To this setup, we can define a Drinfeld module over OF defined on A.

A Drinfeld module E of rank r over OF is an Fq-homomorphism

ϕE ∶ A→ OF{τ}

t↦ t + ... + arτ
r

with ar ≠ 0.

Let K/F be an abelian extension with Galois group G. Let OK denote the inte-

gral closures of A in K.For any OF{τ}[G]-module M, the map ϕE gives rise to an

A[G]-module structure on M, and we denote this A[G]-module by E(M).

For any maximal ideal v0 = (πv0) of A, we can define the v0-adic Tate module

Tv0(E) of E by considering the torsion points of the action of πn
v0 on E(F ). Note

that Tv0(E) is a Av0 -module with the natural GF -action obtained from F . Inspired

from the non-equivariant setting, Popescu et. al. ([6]) defines the G-equivariant first

6



étale cohomology groups of E as

H1
v0(E,G) = (Tv0(E))

∗⊗
Av0

Av0[G]

where (Tv0(E))
∗ denotes the Av0-dual of Tv0(E).

Let v be a place of OF such that v is tamely ramified in K/F and E has good

reduction at v, i.e. v(ar) = 0. Let Ĩv ⊂ GF denote the inertia group of v, and let σ̃v

denote a choice of Frobenius in GF . This is well-defined up to elements in Ĩv. Let v0

be any place in A not lying below v. Then it is known ([6], [9]) that

P ∗,Gv (X) = det
Av0 [G]

(X ⋅ id − σ̃v ∣H
1
v0(E,G)Ĩv)

is independent of v0.

On the other hand, it is known that OK/v and E(OK/v) are free Fq[G]-modules

of equal rank. Then, it follows that FittA[G](OK/v) and FittA[G]E(OK/v) are prin-

cipal ideals and have a unique monic generator (i.e. as a polynomial in t, they have

coefficient 1). We denote these generators by ∣OK/v∣G and ∣E(OK/v)∣G, respectively.

The main result that we discuss in Chapter 3 is the following Proposition, which

is Prop 1.2.5 (2) in [6]:

Proposition 1.2.1. Let K/F and E be as above, and let v be a place of OF that is

tamely ramified in K/F. Then

P ∗,Gv (1) =
∣E(OK/v)∣G
∣OK/v∣G

∈ (1 + t−1Fq[G][[t
−1]]).

A proof of this proposition in the case that E is the Carlitz module is given in

the Appendix of [6], and our goal is a proof of this for general Drinfeld modules.

7



In Chapter 3, we’ll first state the problem more precisely. The first step is to look

at a new Drinfeld module E obtained from E by reduction mod v. Most of the proof

involves working with E. Then we’ll give an elementary proof to our statement by a

direct application of a theorem of Gekeler ([9]) that helps us understand the roots of

P ∗,Gv and also about how the Frobenius behaves as an endomorphism. This occupies

§3.4. In §3.5, we’ll state a more involved proof, thanks mostly to Popescu, involving

the concept of local Fq-shtukas. This approach helps us in defining the first étale

cohomology and first crystalline cohomology groups of E. More precisely, the Tate

module Tw0(E) is of lower rank than the other Tate modules where w0 ∈MSpec(A)

with v∣w0, and so we need a substitute for the w0-adic étale cohomology group, and

that is the crystalline cohomology group.

This is joint work with Cristian Popescu and will appear as a separate paper in

the future ([27]).

1.3 Fitting ideals

We recall the definition of the Fitting ideal of a module over a commutative ring,

and state some important results. For a nice crisp discussion on this, see the Ap-

pendix of [25].

Let R be a commutative ring with unity and let M be a finitely generated R-

module. So there exists a presentation of M of the form

⊕
I

R
ϕ
Ð→ Rn →M → 0

where I is some indexing set. Let A denote the matrix (of dimension n×∣I ∣) associated

to the map ϕ. Under this setup, we have the following definition:

Definition 1.3.1. Let i ≥ 0. The i-th Fitting ideal of M, denoted by FittiR(M), is

8



defined as the R-ideal generated by all the (n− i) × (n− i) minors of A. This can be

shown to be independent of the presentation we consider.

We’ll be mostly concerned with 0-th Fitting ideals only, but we’ll mention a cou-

ple of results involving higher Fitting ideals. We’ll denote Fitt0 by Fitt throughout

this document. The 0-th Fitting ideal of a torsion R-module can be thought of as

the “R-size” of M. This can be seen by observing that for a torsion Z-module M ,

Fitt0Z(M) = ∣M ∣Z.

Here are some simple properties of 0-th Fitting ideals:

● If M has n generators, then FittiR(M) = 0 if i > n. If M has more generators

than linearly independent relations (i.e. has a “free part”), then Fitt0R(M) = 0.

● Let AnnR(M) denote the annihilator ideal of M . If M has n generators, then

AnnR(M)
n ⊆ FittR(M) ⊆ AnnR(M).

● Let π ∶ R → R′ be a ring homomorphism. Then

FittR′(M⊗
R

R′) = π(FittR(M)).R
′.

In particular, if I ⊂ R is an ideal,

FittR/I(M/IM) = FittR(M)/IFittR(M).

9



Chapter 2

EMC over Q: the plus part

2.1 The Main conjecture in Iwasawa theory: the

plus part

Throughout this chapter, we’ll assume that p is an odd prime.

Let us first restate the Main Conjecture over Q in terms of the even charac-

ters, instead of the odd ones. We’ll follow the notation used in the Appendix

by Karl Rubin in [22]. As before, we have k = Q and Kn = Q(ζpn+1). We put

G = Gal(K0/Q) ≃ (Z/pZ)×, and Γn = Gal(Kn/K0). At the infinite level, we have

K∞ = ∪nKn and Γ = lim
←Ð

Γn = Gal(K∞/K0). Also, Gal(K∞/Q) ≃ G × Γ.

Let Cn denote the p-part of the ideal class group of Kn, while En = O×Kn
denotes

the units of OKn . Since the prime p is totally ramified in the extension Kn/Q, we

denote by Kn,p the completion of Kn with respect to the unique prime above p. Let

Un denote the 1-units in Kn,p. We denote by En the group of cyclotomic units of Kn,

i.e. the Z[Gn]-module generated by ±ζpn+1 and 1 − ζpn+1 . Denote by En the closure

of En ∩ Un in Un and by Vn the closure of En ∩ Un in Un. Note that all of these are

10



Zp[Gn]-modules.

Now we take inverse limits with respect to the norm maps as n → ∞ and de-

note them by C∞, E∞, V∞ and U∞. These are all Zp[[Gal(K∞/Q)]]-modules. Since

Zp[[Gal(K∞/Q)]] ≃ Zp[G][[Γ]], for any Zp[[Gal(K∞/Q)]]-module M and any char-

acter χ ∈ Ĝ, we can define the χ-part of M, which will be a Λ-module and we’ll

denote it by M(χ). As Λ-modules, it is known that C∞(χ) is finitely generated and

torsion for all χ ∈ Ĝ and U∞(χ)/V∞(χ) is finitely generated torsion for all even χ ∈ Ĝ.

The following theorem, due to Serre, helps us understand the structure of finitely

generated Λ-modules:

Theorem 2.1.1. (Serre) Let M be a finitely generated Λ-module. Then there exists

a quasi-isomorphism, i.e. a map with finite co-kernel and kernel, from M to

Λr ⊕∏Λ/pni ⊕∏Λ/f
mj

j

where fj’s are irreducible polynomials in Zp[T ].

If M is torsion, then r = 0 and we define the characteristic ideal of M as

char(M) = (∏pni∏ f
mj

j ).

We are now ready to state the plus-part of the main conjecture:

Theorem 2.1.2. (Mazur-Wiles) For all even characters χ ∈ Ĝ,

char(C∞(χ)) = char(E∞(χ)/V∞(χ)).

2.2 The p-adic 1-motive

In this section, we define the structure Tp(M) that forms the algebraic part of

the Equivariant Main Conjecture of Greither-Popescu ([15]). Let K/k be an infinite
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abelian extension with a finite sub-extension K/k such that K is the cyclotomic

Zp-extension of K. Let Kn denote the field at the n-th level of the tower K/K.Let

G = Gal(K/k). Let Sp denote the set of primes in K lying above p and let S and T

denote two disjoint finite sets of primes in K such that T doesn’t contain any primes

above p. Let DivK(S ∖ Sp) = ⊕v∈S∖Sp Zp.v. We denote by AKn,T the p-part of the

T ∣Kn-ray class group of Kn. Passing to the direct limits, we define

AK,T = limÐ→
AKn,T .

For ease of notation, we denote DivK(S ∖ Sp) by L and AK,T by J. The L stands for

lattice and J for Jacobian as the theory of abstract 1-motives, as defined by Greither

and Popescu, is strongly motivated by Deligne’s theory of 1-motives. For more on

this, check the Introduction of [15]. Note that there is a map δ ∶ L → J given by a

divisor D ∈ L mapping to its ideal class in J. This whole data of L, J and the map

δ ∶ L → J will be denoted byM and is called a p-adic 1-motive. We can now define

the pn-torsion and the Tate module associated toM:

Definition 2.2.1. The pn-torsion ofM is defined as

M[pn] = {(ϵ,D) ∈ J ×L ∣ ϵp
n

= δ(D)} ⊗Zp/p
nZp

and the Tate module ofM is defined as

Tp(M) = lim←Ð
M[pn]

where the transition maps are given by (ϵ,D) ⊗ 1̂↦ (ϵp,D) ⊗ 1̂.

2.3 Equivariant version of MC+

Now we go back to our base setting as in MC+. In the notation of the previous

section, we have k = Q, K = Q(ζp) and K = Q(ζp∞). In this scenario, the prime p in
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Q is totally ramified in K/k and so, by abuse of notation, we denote by p the prime

above p in K. We take S = Sp = {p} and T = ∅. Also, by the celebrated Ferrero-

Washington theorem, we have µK = 0. So we have the p-adic 1-motive M and its

Tate module Tp(M) as defined. Our goal in this section is to relate Tp(M) to units

modulo cyclotomic units in this particular setting.

Since S ∖ Sp = ∅, it is easy to see that

Tp(M) = Tp(AK).

Since AK ≃ (Qp/Zp)λK , we have

AK[p
n] = HomZp(

1

pn
Zp/Zp,AK)

with the usual G-action. Taking inverse limits, we get

Tp(AK) ≃ HomZp(Qp/Zp,AK).

On the other hand, we denote by A∨
K
the Pontryagin dual of AK, i.e.

A∨
K
= HomZp(AK,Qp/Zp).

This also has Zp[[G]]-module structure with the contravariant G-action given by

(g.τ)(x) = τ(g−1.x) for all g ∈ G, τ ∈ A∨
K
and x ∈ AK.

We have a G-equivariant non-degenerate pairing

Tp(AK) × A
∨

K
→ Zp

given by (σ, τ) ↦ τ ○ σ. This implies that we have a Zp[[G]]-module isomorphism

Tp(AK) ≃ HomZp(A
∨

K
,Zp).
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For each χ ∈ Ĝ, taking χ-components, we have an isomorphism of Λ-modules

Tp(AK)(χ) ≃ HomZp(AK(χ)
∨,Zp).

Therefore,

char(Tp(AK)(χ)) = char(HomZp(AK(χ)
∨,Zp)) = char(AK(χ)

∨)

By a theorem of Iwasawa (see Proposition 15.35 in [28]), C∞(χ) is quasi-isomorphic

to AK(χ)∨, and hence share the same characteristic ideal. Combining this with the

Mazur-Wiles Theorem above (see 2.1.2), we get that for all χ ∈ Ĝ even

char(Tp(AK)(χ)) = char(E∞(χ)/V∞(χ)).

We now use the following fact about characteristic ideals and Fitting ideals:

Remark 2.3.1. If M is is a finitely generated torsion Λ-module with no finite sub-

modules, then

FittΛ(M) = char(M).

Since Tp(AK) is a free Zp-module, it doesn’t have any finite Zp-submodules, and

hence no finite Λ-submodules.

On the other hand, it is known that ([18], [28] Theorem 13.56) for χ ≠ 1G,

U∞(χ)/V∞(χ) ≃ Λ/(gχ)Λ

where gχ is the power series in Λ that gives the p-adic L-function Lp(χ,1−s). So, this

doesn’t have any Λ-submodules. Since E∞(χ)/V∞(χ) is contained in U∞(χ)/V∞(χ),

the same is true for E∞(χ)/V∞(χ). When χ = 1G, an application of the analytic class

number formula for Qn = Q(ζpn+1)G and the Leopoldt’s conjecture for Q (which is a

Theorem), gives us E∞(1G) = V∞(1G). For more on this, see the proof of Appendix
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Lemma 6.6 (iii) in [22]. Hence in this situation too, it doesn’t have any finite sub-

modules.

Therefore, we have

FittΛ(Tp(AK)(χ)) = FittΛ(E∞(χ)/V∞(χ))

for all even characters χ ∈ Ĝ.

Recall that we denote by Zp[[G]]+ the plus part of Zp[[G]], i.e.

Zp[[G]]
+ = Zp[[G]]/(1 − j) ≃ Zp[[Gal(K+/k)]]

where j denotes the complex conjugation in Gal(K/k), and K = Q(µp∞)+. For any

Zp[[G]]-module M, we denote by M+ the Zp[[G]]+-submodule of M on which j acts

as multiplication by +1. Then

FittZp[[G]]
+(M+) = ⊕

χ∈Ĝ even

FittΛ(M(χ))

Since the component-wise Fitting ideals give us the full Fitting ideal, we have an

equality of ideals:

Corollary 2.3.2. (equivariant EMC+ over Q) For the p-adic 1-motive associated

to K = Q(µp∞) and k = Q with S = Sp and T = ∅, we have

FittZp[[G]]
+(Tp(M)

+) = FittZp[[G]]
+(E+

∞
/V +
∞
).

2.4 Unconditional EMC à la Gambheera-Popescu

The EMC as given by Greither and Popescu relies on the assumption that µK = 0.

In recent work, motivated by Dasgupta and Kakde’s work on the Brumer-Stark
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conjecture([3]), Gambheera and Popescu ([8]) formulated a new unconditional Equiv-

ariant Main Conjecture. Instead of looking at the Tate module of the p-adic 1-motive,

they look at the Selmer modules that were first defined by Burns-Kurihara-Sano

(reference). In this section, we’ll define Selmer modules, state Gambheera-Popescu’s

unconditional EMC and mention how the Tate module of the p-adic 1-motive fits in

this picture.

Let K/k be an abelian extension of number fields with Galois group G. Let S

and T be two disjoint finite sets of primes in k with S containing all the infinite

primes of k. We denote by SK and TK the primes in K above S and T, respectively.

Let K×T = {x ∈K
× ∣ v(x − 1) > 0 ∀ v ∈ TK}. Let

O×K,S,T = {x ∈K
×

T ∣ v(x) = 0 ∀ v /∈ SK}.

and

YS∪T (K) = ⊕
v/∈SK∪TK

Z.

The map x ↦ (v(x))v/∈SK∪TK
from K×T → YS∪T (K) gives rise to the following exact

sequence:

0→ O×K,S,T →K×T → YS∪T (K) → ClTS (K) → 0

where ClTS (K) denotes the (S,T )-class group of K. Taking Z-duals, we get an inclu-

sion of Z[G]-modules

(YS∪T (K))
∗ → (K×T )

∗.

This leads us to the following definition:

Definition 2.4.1. The Selmer module associated to the data (K/k,S, T ) is the

Z[G]-module given by

SelTS (K) = (K
×

T )
∗/(YS∪T (K))

∗.
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The p-adic Selmer module SelTS (K)p associated to (K/k,S, T ) is the Zp[G]-

module obtained by base-changing SelTS (K) from Z to Zp.

Now, as before, let K/k be an abelian extension with K denoting the cyclotomic

Zp-extension of K. As before, G = Gal(K/k). Let Kn denote the n-th level of the

cyclotomic tower K/K with K0 =K. Let Gn = Gal(Kn/k). Then taking inverse limits

up the tower, we define

SelTS (K)p = lim←Ð
SelTS (Kn)p

where the transition map is obtained from the restriction map (K×n+1,T )
∗ → (K×n,T )

∗.

Theorem 2.4.2. (Gambheera-Popescu) Under some mild hypotheses on S and

T, there is an equality of Zp[[G]]−-ideals

FittZp[[G]]
−(SelTS (K)

−

p) = (Θ
T
S(K/k)).

In their paper, Gambheera and Popescu have proved that, when µ = 0,

Tp(M)
−,∗ ≃ SelTS (K)

−

p

as Zp[[G]]−-modules, where (.)∗ denotes the Zp-dual. So, this unconditional version

of the EMC supersedes Greither and Popescu’s version of the EMC.

2.5 Future work

In future work, we would first like to write down a version of the EMC+ connecting

the Selmer module and the cyclotomic units. At the finite level, this is already a

result, due to Burns-Kurihara-Sano ([1]). They showed the following:

Theorem 2.5.1. (Burns-Kurihara-Sano) Let Kn = Q(ζpn+1) and k = Q and

Gn = Gal(Kn/k). Let S be a finite set of places of k containing p and ∞, and let T

be a finite set of places of k disjoint from S such that O×K,S,T is torsion-free. Then

Fitt1Zp[Gn]
(SelTS (Kn)p) = FittZp[Gn]((O

×

Kn,S,T / < cT > ⊗Zp)
∨)
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where cT = (1 − ζpn+1)δT where δT = ∏ℓ∈T (1 − ℓσ
−1
ℓ ) ∈ Zp[Gn+1].

Here, cT is actually the cyclotomic unit in this setting. So, it does turn out to be

of the form units modulo cyclotomic units.

In fact, this is just a very particular case of the actual theorem that Burns, Kuri-

hara and Sano proved. Let K/k be any abelian extension of number fields with

Galois group G. Then, under the assumption that the Equivariant Tamagawa Num-

ber Conjecture holds, they give an explicit description of the higher Fitting ideals

of the Selmer module in terms of Rubin-Stark units. For an excellent exposition on

this, see [20].

This connection between Rubin-Stark units and the class group is expected, as

Rubin-Stark units are made up of S-units and tell us information about special val-

ues of L-functions. It would be a good project to convert this general Theorem of

Burns-Kurihara-Sano to an Equivariant Main Conjecture-like statement (assuming

that the Rubin-Stark conjecture holds).
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Chapter 3

Euler factors of Drinfeld modules

3.1 The statement of the problem

Let p be a prime number and let q be a power of p. In what follows, k ∶= Fq(t)

denotes the rational function field in one variable over Fq. For any commutative Fq-

algebra R, we denote by τ the q-power Frobenius endomorphism of R. We denote

by R{τ} the twisted polynomial ring in τ , with the property that

τ ⋅ x = xq ⋅ τ ∀ x ∈ R.

Let F be a finite, separable extension of Fq(t) and let K be a finite abelian

extension of F with Galois group G. We also assume that the field of constants in

K is Fq, i.e.

K ∩ Fq = Fq

Let us denote Fq[t] by A. Note that if v denotes an arbitrary normalized valuation

on Fq(t) and ∞ denotes the normalized valuation of uniformizer 1/t, then

A = {a ∈ Fq(t) ∣ v(a) ≥ 0, for all v ≠ ∞}.

Let OF and OK denote the integral closures of A in F and K, respectively. In what

follows, we abuse notation and use the same letter for normalized valuations and the
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associated maximal ideals of elements of strictly positive valuation.

Next, we consider a Drinfeld module E of rank r ∈ N defined on A with values in

OF{τ}. More precisely, E is given by an Fq-algebra morphism

ϕE ∶ A→ OF{τ}, t↦ t ⋅ τ 0 + e1τ + ⋅ ⋅ ⋅ + er ⋅ τ
r,

where ai ∈ OF , for all i and er ≠ 0. This gives rise to a functor

E ∶ (OF{τ}[G] −modules) → (A[G] −modules).

In other words, for any OF{τ}[G]-module M, we denote by E(M) the A[G]−module

whose underlying Fq[G]–module is M and the A-action is given by

t ⋆m = ϕE(t) ⋅m = t ⋅m + e1τ ⋅m + ⋅ ⋅ ⋅ + erτ
r ⋅m.

Let v0 ∈ MSpec(A) and let Av0 and kv0 denote the completions of A and k with

respect to the valuation v0. For all n ∈ N, we denote by E[vn0 ] the Av0-module of

vn0 -torsion points of E, i.e.

E[vn0 ] = {x ∈ E(F )∣f ⋆ x = 0, for all f ∈ v
n
0 }.

The v0-adic Tate module of E is defined as

Tv0(E) = HomAv0
(kv0/Av0 ,E[v

∞

0 ]).

Since A is a PID, we also have

Tv0(E) = lim←Ð
E[vn0 ],

where the transition maps in the projective limit are given by multiplication with

a generator of v0, while E[v∞0 ] = ⋃n≥1E[v
n
0 ]. Recall that E[v

n
0 ] and Tv0(E) are free

modules of rank r over A/vn0 and Av0 , respectively, and are endowed with obvious
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Av0-linear, continuous GF -actions, where GF = Gal(F /F ).

Let v ∈ MSpec(OF ), such that v ∤ v0. Fix a choice of decomposition group

G(v) ⊂ GF , and a Frobenius morphism σ(v) ∈ G(v). Then, it is known (see [6]

and the references therein) that if E has good reduction at v (i.e. v ∤ er), the

GF -representation Tv0(E) is unramified at v and the polynomial

Pv(X) = detAv0
(X ⋅ Ir − σ(v)∣Tv0(E))

is independent of v0 and actually lies in A[X]. Above, Ir denotes the r × r identity

matrix.

Definition 3.1.1. Let M be an A[G]-module which is free of rank m as an Fq[G]-

module. Then it is known (see [6] Proposition A.4.1) that the Fitting ideal Fitt0A[G](M)

is principal and has a unique t–monic generator fM(t) ∈ A[G] = Fq[G][t] of degree

m. We denote this generator by ∣M ∣G, i.e.

∣M ∣G = fM(t) ∈ Fq[G][t].

The following is Proposition A5.1. from the Appendix in [6]:

Proposition 3.1.2. Assume that v is tamely ramified in K/F and let E be any

Drinfeld module as above. Let w0 denote the prime in A sitting below v and let

f(v/w0) = [OF /v ∶ A/w0]. Then the following hold:

1. The Fq[G]-modules OK/v and E(OK/v) are free of rank nv = [OF /v ∶ Fq] and

therefore ∣OK/v∣G and ∣E(OK/v)∣G are monic polynomials of t–degree nv.

2. We have an equality

∣OK/v∣G = Nv

where Nv denotes the unique monic generator of w
f(v/w0)

0 and f(v/w0) ∶=

[OF /v ∶ A/w0].
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Let Iv ⊂ Gv ⊂ G denote the inertia and decomposition groups of v in G, respec-

tively. Let σv be the image of σ(v) via the Galois restriction map G(v) ↠ Gv. Our

goal in this chapter is the proof of the following.

Theorem 3.1.3. Assume that v ∈ MSpec(OF ) is tamely ramified in K/F and that

E has good reduction at v. Then, we have an equality in Fq[G][[1/t]]

Pv(σvev)

Pv(0)
=
∣E(OK/v)∣G
∣OK/v∣G

,

where ev =
1
∣Iv ∣ ∑σ∈Iv σ is the idempotent of the trivial character of Iv in A[G].

A proof of the above statement in the case where E is the Carlitz module C,

defined by ϕC(t) = t + τ , was given in the Appendix of [6]. Below, we develop tech-

niques which settle the above theorem for a general Drinfeld module E.

In the introduction, we had introduced the Euler Proposition 1.2(2) gives us a

good understanding of ∣OK/v∣G. Therefore a major portion of our work is directed

towards understanding the relation between ∣E(OK/v)∣G and Pv(σvev).

3.2 Reduction of E mod v

In this section, we fix a prime v ∈MSpec(OF ) such that E has good reduction at

v. We are not assuming that v is necessarily tamely ramified in K/F . Let us denote

by w0 the prime in A that lies below v. After reduction of E mod v, we obtain the

rank r Drinfeld module E, given by the Fq-algebra morphism

ϕE ∶ A→ OF /v{τ}

where ϕE(t) = i(t) ⋅ τ 0 + ... + i(er) ⋅ τ r with i ∶ A → OF ↠ OF /v being the obvious

map. Recall that, by the notation introduced above, we have a field isomorphism
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OF /v ≃ Fqnv .

Next, we fix v0 ∈ MSpec(A), v0 ≠ w0 and consider the characteristic polynomial

of the action of the qnv -power Frobenius morphism on the free Av0–module Tv0(E)

of rank r:

fE(X) = detAv0
(X ⋅ Ir − Frobqnv ∣ Tv0(E)).

Then, fE(X) is independent of v0 and lies in A[X]. (See §4.12 in [10].) By Theorem

4.12.15 in [10] and the discussion preceding that, we have the following.

Proposition 3.2.1. Any root α of fE satisfies the following properties:

1. w(α) = 0 for all finite places w of Fq(t)(α), except for exactly one place above

w0.

2. There is only one place of Fq(t)(α) lying above ∞.

3. ∣α∣∞ = q
nv
r where ∣.∣∞ denotes the unique extension to Fq(t)(α) of the normalized

absolute value of Fq(t) corresponding to ∞.

4. [Fq(t)(α) ∶ Fq(t)] divides r.

Let Ov and Fv be the completions at v of OF and F , respectively. Our choice

of decomposition group G(v) corresponds to choosing an embedding F → Fv at the

level of separable closures of F and Fv, such that Galois restriction induces a group

isomorphism G(Fv/Fv) ≃ G(v). Since E has good reduction at v and the Galois

representations E[vn0 ] are unramified at v, it is not difficult to see that we have

E[vn0 ] ⊆ O
unr
v , for all n ≥ 1,

where Ounr
v is the integral closure of Ov in the maximal unramified extension F unr

v of

Fv in Fv. Moreover, the reduction mod v map induces isomorphisms ofAv0[[G(v)]]–

modules

E[vn0 ] ≃ E[v
n
0 ], Tv0(E) ≃ Tv0(E), (3.2.2)
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where

G(v) ∶= G(v)/I(v) ≃ G(Fqnv /Fqnv ).

The group isomorphism above sends σ(v) (the image of our choice of Frobenius σ(v)

in G(v)) to Frobqnv . Consequently, we have an equality of characteristic polynomials

in A[X]:

fE(X) = Pv(X). (3.2.3)

Consequently, Proposition 3.2.1 gives us information on the roots of the characteristic

polynomial Pv(X). The following corollary regarding the coefficients of Pv(X) will

be particularly useful in what follows.

Corollary 3.2.4. Let Pv(X) = a0 + a1X + ⋯ + ar−1Xr−1 +Xr, with a0, . . . , ar−1 ∈ A.

Then, we have

1. degt(a0) = nv and 0 < degt(ai) < nv, for all i > 0.

2. Pv(X) ∈ Fq[X][t] is a polynomial of degree nv in t with the same leading

coefficient as a0.

3. a0 = ρ⋅Nv, for some ρ ∈ F×q , where Nv is the unique monic generator of w
f(v/w0)

0 .

Above, degt(∗) denotes the degree in t of a polynomial in A = Fq[t].

Proof. Let α1, ..., αr ∈ A denote the roots of Pv(X) in the integral closure of A. Then

Pv(X) =
r

∏
i=1

(X − αi) = (−1)
r

r

∏
i=1

αi + (−1)
r−1(

r

∑
j=1

∏
i≠j

αi)X + ... +X
r

= a0 + a1 ⋅X + ⋅ ⋅ ⋅ + ar−1 ⋅X
r−1 +Xr.

Let ∣ ⋅ ∣∞ denote an extension to Fq(t)(α1, ..., αr) of the normalized absolute value of

Fq(t) corresponding to ∞ (also denoted by ∣ ⋅ ∣∞ below.) By Proposition 1.4, we have

∣αi∣∞ = q
nv
r , for all i. Therefore, we have

∣a0∣∞ = ∣
r

∏
i=1

αi∣
∞

= qnv , degt(a0) = logq(∣a0∣∞) = nv.
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Furthermore, since ∣ ⋅ ∣∞ is non-archimedean, we have

∣ai∣∞ ≤ q
nv ⋅

r−i
r , degt(ai) = logq(∣ai∣∞) ≤ nv ⋅

r − i

r
< nv, for all i ≥ 1.

This concludes the proof of part (1).

Part (2) is a direct consequence of part (1).

Next, we state a general commutative algebra result regarding Fitting ideals of

modules over certain rings of equivariant Iwasawa algebra type. For a proof of this

result, see Proposition 4.1 in [14].

Proposition 3.2.5 (Greither–Popescu). Let R be a semi-local, compact topological

ring, and let Γ be a pro-cyclic group, topologically generated by γ. Suppose that M is

an R[[Γ]]–module which is free of rank n as an R–module. Let Mγ ∈Mn(R) denote

the matrix of the action of γ on some R-basis of M. Then, we have an equality of

R[[Γ]]–ideals

FittR[[Γ]](M) = (detR(X ⋅ In −Mγ)∣
X=γ

)

An immediate consequence of the above proposition is the following.

Corollary 3.2.6. With notations as above, we have the following equalities of Av0[[G(v)]]–

ideals.

FittAv0 [[G(v)]]
(Tv0(E)) = FittAv0 [[G(v)]]

(Tv0(E))

= (detAv0
(X ⋅ Ir − σ(v) ∣ Tv0(E))∣

X=σ(v)

) = (Pv(σ(v)))

for v0 ≠ w0.

Proof. Apply the proposition above to R ∶= Av0 , Γ ∶= G(v), γ ∶= σ(v) and the module

M ∶= Tv0(E) ≃ Tv0(E),

which is Av0–free of rank r.
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Next, we fix a prime w ∈MSpec(OK) lying above v. We let G(w) = G(v) ∩GK ,

I(w) = I(v) ∩GK and σ(w) ∶= σ(v)f , where f ∶= f(w/v) = [OK/w ∶ OF /v]. Then,

σ(w) ∈ G(w) is a choice of Frobenius for w and its image σ(w) ∈ G(w) ∶= G(w)/I(w)

corresponds via the group isomorphism G(w) ≃ GOK/w to Frobqfnv .

Lemma 3.2.7. With notations as above, we have the following canonical isomor-

phisms of Av0[Gv]–modules:

1. Tv0(E)/(1 − σ(w))Tv0(E) ≃ E(OK/w)v0

2. Tv0(E)/(1 − σ(w))Tv0(E) ≃ E(OK/w)v0

where Mv0 ∶=M ⊗A Av0 for any A–module M .

Proof. Obviously, part (2) is a consequence of part (1) via the second isomorphism

in (3.2.2) above and the observation that E(OK/w) = E(OK/w), by the definition of

E. In order to prove part (1), apply the functor ∗ → HomAv0
(∗,E[v∞0 ]) to the exact

sequence of Av0–modules

0Ð→ Av0 Ð→ kv0 Ð→ kv0/Av0 Ð→ 0.

Since the Av0–module E[v∞0 ] is divisible and therefore injective (as Av0 is a PID),

the above functor is exact. Therefore, we obtain the following exact sequence of

Av0[G(v)]–modules:

0Ð→ Tv0(E) Ð→ HomAv0
(kv0 ,E[v

∞

0 ]) Ð→ E[v∞0 ] Ð→ 0. (3.2.8)

Now, it is easy to see that one has an isomorphism of kv0[G(v)]–modules

kv0 ⊗Av0
Tv0(E) ≃ HomAv0

(kv0 ,E[v
∞

0 ]), ξ ⊗ ϕ→ (x→ ϕ(ξ̂ ⋅ x)),

for all ξ, x ∈ kv0 and all ϕ ∈ Tv0(E) = HomAv0
(kv0/Av0 ,E[v

∞

0 ]), where x̂ ⋅ ξ is the class

of x ⋅ ξ in kv0/Av0 .
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Now, Proposition 3.2.1(3) shows that the eigenvalues of σ(w) = σ(v)
f
= (Frobqnv )f

acting on the kv0–vector space kv0⊗Av0
Tv0(E) are all different from 1. Consequently,

(σ(w) − 1) is an automorphism of this kv0–vector space. Consequently, when one

takes the σ(w)–invariants and coinvariants in the exact sequence (3.2.8) above, one

obtains an isomorphism of Av0[Gv]–modules

Tv0(E)/(1 − σ(w))Tv0(E) ≃ E[v
∞

0 ]
σ(w)=1 = E(OK/w)v0 ,

which concludes the proof of the Lemma.

Corollary 3.2.9. With notations as above, the following equality of A(v0)[G]–ideals

holds:

FittA(v0)[Gv]
E(OK/w)v0 = (Pv(σv)),

for all v0 ∈MSpec(A), with v0 ≠ w0. Here, Gv ∶= Gv/Iv, σv is the image of σv in Gv,

and A(v0) is the localization of A at v0.

Proof. First, note that since I(v) acts trivially on Tv0(E), the isomorphism of

Av0[Gv]–modules in Lemma 3.2.7(2) can be rewritten as an isomorphism of Av0[Gv]–

modules

Tv0(E) ⊗Av0 [[G(v)]]
Av0[G(v)] ≃ E(OK/w)v0 ,

where the ring morphism π ∶ Av0[[G(v)]] ↠ Av0[Gv] is the Av0–linear map given

by Galois restriction, which maps σ(v) → σv. The isomorphism above permits us to

apply the well known base–change property of Fitting ideals and conclude that we

have equalities of Av0[Gv]–ideals

FittAv0 [Gv]
E(OK/w)v0 = π(FittAv0 [[G(v)]]

(Tv0(E))) = (π(Pv(σ(v))) = (Pv(σv)),

where the first equality is base–change and the second equality is Corollary 3.2.6

above. Next, observe that since E(OK/w) is finite (and therefore A–torsion), we
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have isomorphisms

E(OK/w) ⊗A A(v0) ≃ (E(OK/w) ⊗A A(v0)) ⊗A(v0)
Av0 ≃ E(OK/w)v0 .

Consequently, base–change for Fitting ideals applied to the ring extension A(v0)[G] ⊆

Av0[G] and the last equality of ideals displayed above gives

Pv(σv)Av0[G] = FittA(v0)[Gv]
(E(OK/w)v0)Av0[Gv].

However, since the ring extension A(v0)[G] ⊆ Av0[G] is faithfully flat (because A(v0) ⊆

Av0 is), we have

FittA(v0)[Gv]
(E(OK/w)v0) = FittA(v0)[Gv]

(E(OK/w)v0)Av0[Gv] ∩A(v0)[Gv]

= Pv(σv)Av0[Gv] ∩A(v0)[Gv] = Pv(σv)A(v0)[Gv].

Above, we used the fact that if R ⊆ R′ is a faithfully flat extension of commutative

rings and I is an ideal in R, then IR′ ∩ R = I. (See [23], Chapter 2, Section 4,

4.C(ii).)

In the next 4 sections, we provide a proof of Theorem 3.1.3. We treat first the

unramified case.

3.3 The unramified case

We keep the notations and assumptions of the previous section. In addition, we

assume that the prime v is unramified in K/F. Consequently, we have Gv = Gv and

σv = σv throughout.

Lemma 3.3.1. Under the current assumptions, we have an equality of A(v0)[G]–

ideals

FittA(v0)[G](E(OK/v)v0) = (Pv(σv)),

for all v0 ∈MSpec(A), with v0 ≠ w0.
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Proof. In this case, we have an isomorphism of A(v0)[G]–modules

E(OK/v)v0 ≃ E(OK/w)v0 ⊗A(v0)[Gv] A(v0)[G],

for all v0 ∈ MSpec(A). (See the Appendix of [6].) Therefore, the equality in the

Lemma follows from Corollary 3.2.9 and the base–change property of Fitting ideals.

Proposition 3.3.2. Assume that v is unramified in K/F. let ρ ∈ F×q as defined in

Corollary 3.2.4(3). Then,

ρ−1Pv(σv) = ∣E(OK/v)∣G.

The proof of this statement will occupy § 3.6?

Assuming that 3.3.2 above holds, we now have our main result:

Proposition 3.3.3. Under the same conditions as in 3.3.2, the following hold.

1. ρ−1Pv(0) = ∣OK/v∣G.

2. Pv(σv)/Pv(0) = ∣E(OK/v)∣G/∣OK/v∣G in Fq[G][[t]], i.e. Theorem 3.1.3 holds.

Proof. According to Corollary 3.2.4 (see (1) and (3) in loc.cit.), Pv(0) ∈ Fq[t] and

Pv(X) ∈ Fq[X][t] = A[X], viewed as polynomials in t, have degrees equal to nv

and leading coefficients equal to ρ. Therefore, ρ−1Pv(0) and ρ−1Pv(σv) are indeed

monic polynomials of common t–degree nv. Further, Corollary 3.2.4(3) shows that

ρ−1Pv(0) = Nv which, if combined to Proposition 3.1.2(2), proves part (1) of the

statement above.

Part (2) is a direct consequence of parts (1) and 3.3.2.

Remark 3.3.4. Note that since Corollary 3.2.4 is valid in general, regardless of the

ramification status of v inK/F , the polynomials ρ−1Pv(X) and ρ−1Pv(0) are monic of
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degree nv in t in general. Consequently, the proof given to part (1) of the Proposition

above is valid in general. Also, ρ−1Pv(evσv) ∈ A[G] is a monic polynomial in t of

degree nv even in the tamely ramified case.

3.4 Proof of Proposition 3.3.2

We adopt the same notation that we used in 3.3.2 and § 3.3. In order to simplify

the notation, let

f ∶= ρ−1Pv(σv), g ∶= ∣E(OK/v)∣G.

Then, f and g are both monic polynomials in t, of degrees equal to nv. (See Propo-

sition 3.1.2(2) and Corollary 3.2.4.) Further, Lemma 3.3.1 and the definition of g

imply that they satisfy the following equalities

fA(v0)[G] = gA(v0)[G] = FittA(v0)[G]E(OK/v)v0 , for all v0 ∈MSpec(A) ∖ {w0}.

Now, it is easy to check that the total ring of fractions of A[G] is k[G]. Since g and

f are monic, they are not zero–divisors in A[G] and k[G]. Therefore, the equalities

above imply that
g

f
∈ k[G] ∩ ( ⋂

v0≠w0

A(v0)[G]
×).

This implies that there exists ξ ∈ A[G] and m ∈ Z≥0, such that

g

f
=

ξ

πm
w0

, with πw0 ∤ ξ in A[G] if m ≥ 1,

where πw0 is the unique monic generator of the maximal ideal w0. We claim that it

suffices to show that m = 0. If m = 0, we have

g = ξ ⋅ f, with ξ ∈ A[G].

However, since f and g are monic of the same degree in t, the element ξ is monic of

degree 0 in t, and therefore ξ = 1. Therefore, f = g, which would conclude the proof
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of part (2) of the Proposition above.

Suppose m > 0. Then a reduction modulo w0 (A[G] → A/w0[G], sending x → x)

gives the following equality

f ⋅ ξ = 0 in A/w0[G].

If f is a non-zero divisor, we reach a contradiction as πw0 ∤ ξ in A[G] and hence

ξ ≠ 0 in A/w0[G]. This is true if r = 1, as then f = ρ−1σv, which is a unit in A/w0[G].

Unfortunately, this is not always true for r > 1, but this argument does work in

certain situations, and so we’ll just state it here.

Repeating the same argument above, we can find a ξ′ ∈ A[G] and n ∈ Z≥0 such

that
f

g
=

ξ′

πn
w0

, with πw0 ∤ ξ
′ in A[G] if n ≥ 1.

Obviously, we also expect n = 0 and ξ′ = 1. So, if g is a non-zero divisor in A/w0[G],

then we are done again. In other words, we get that g is a non-zero divisor iff f is a

non-zero divisor.

Let us see what it means for g and f to be non-zero divisors. Reduction modulo

w0 gives us

(g) = FittA/w0[Gv](E(OK/w)/w0).

Let s ∶ A/w0[Gv] → A/w0 denote the augmentation map obtained by mapping σ ∈ Gv

to 1 ∈ A/w0. So we get

(s(g)) = FittA/w0
(E(OK/w)/(w0, σv − 1)) = FittA/w0

(E(OF /v)/w0).

Note that g is a non-zero divisor iff s(g) ≠ 0, which happens iff E(OF /v)/w0 = 0, i.e.

E(OF /v)[w0] = 0.
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On the other hand,

f = ρ−1Pv(σv).

As above, f is a non-zero divisor iff s(f) ≠ 0, i.e. Pv(1) ≠ 0. Since Pv(X) =

(X − α1) . . . (X − αr) where αi’s are as in 3.2.4, we can conclude that Pv(1) is a

non-zero divisor iff none of the αi’s are congruent to 1 modulo any prime in Fq(t)(αi)

above w0.

Remark 3.4.1. Of course, the proof of our main Proposition is not yet complete, but

we’ll take a break here to say that this much enough to prove the theorem in a very

important special case: the case of primes of supersingular reduction. A prime v in

MSpec(OF) for which E has good reduction mod v is said to be of supersingular

reduction if the reduced Drinfeld module E satisfies the following condition:

E(OF /v)[w0] = 0

where w0 ∈MSpec(A) with v∣w0. An equivalent definition is the statement that there

exists only one prime above w0 in Fq(t)(α) for any root α of Pv(X). The first defini-

tion implies that g is a non-zero divisor if v is of supersingular reduction, while the

second definition implies that f is a non-zero divisor in the same situation. Either

way, for supersingular primes v, the Proposition has been proved. It is worth men-

tioning here that the topic of supersingular primes brings up a key difference between

the theory of elliptic curves and the theory of Drinfeld modules. Poonen ([26]) has

shown that it is possible to construct Drinfeld modules with no supersingular primes

while it is known, due to Elkies([5]), that elliptic curves over Q have infinitely many

supersingular primes.

We come back to the proof of the Proposition.

Let Tw0(E) denote the w0-adic Tate module associated to E. It is a free Aw0-
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module of rank r′ = r − h where h denotes the height of E. Then we can look at

gE(X) ∶= detAw0

(X.Ir′ − Frobqd0 ∣Tw0(E)) ∈ Aw0[X].

Recall that there exists ξ′ ∈ A[G] and n ∈ Z≥0, such that

f

g
=

ξ′

πn
w0

, with πw0 ∤ ξ
′ in A[G] if n ≥ 1,

where πw0 is the unique monic generator of the maximal ideal w0.

By 3.2.7 Part 1 and a proof very similar to that of 3.2.6, we have

(g) = FittAw0 [G]
(E(OK/v)w0) = (gE(σv)).

If we prove that gE divides fE in Aw0[X], then this shows that g divides f in Aw0[G].

Hence, this shows that ξ′
πn
w0

∈ Aw0[G], which shows that n = 0 and by our discussion

above, this shows that we have f = g. So we are done with the proof once we show

that gE divides fE in Aw0[X].

Since ϕE ∶ A → Fq{τ} is an injection ([10] 4.5.2), we can consider A as being

embedded in Fq{τ}. This can be extended to get an embedding of k in Fq(τ), the

division ring of fractions of Fq{τ}. Let F ∶= τ d0 = Frobqd0 . Using this embedding, we

can consider the field extension k(F)/k.

We first state the following Theorem due to Gekeler:([9], [10] 4.12.8):

Theorem 3.4.2. 1. There is a unique place vϕ of k(F) such that vϕ(F) > 0. The

place vϕ lies above w0.

2. There is a unique place of k(F) over ∞. By abuse of notation, we’ll use ∞ for

this place too.
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3. In the category of Drinfeld modules up to isogeny, Tvϕ(ϕ) ⊗A k = 0 and for

ṽ ≠ vϕ,∞, Tṽ(ϕ) ⊗A k is of dimension t over k(F)ṽ ∶= Ok(F),ṽ ⊗A k where

t =
r

[k(F) ∶ k]
.

The third statement above is a bit vague, and we talk a bit about what it means.

There exists a Drinfeld module

ϕ̃ ∶ Ok(F) → OF /v{τ}

such that ϕ̃∣A is isogenous to ϕE, and it satisfies the following properties:

● Rank of the Drinfeld module ϕ̃ is t.

● The characteristic of ϕ̃ is vϕ, i.e. the kernel of the map

Ok(F )

ϕ
E
Ð→ OF /v{τ}

ev0
Ð→ OF /v,

where ev0(τ) = 0, is vϕ.

● Tvϕ(ϕ̃) = 0 and

dimOk(F),ṽ(Tṽ(ϕ̃)) = t

for all places ṽ ≠ vϕ,∞.

We have an isomorphism of Aw0-modules:

Tw0(ϕ̃∣A) ≃ ⊕
ṽ∣w0

Tṽ(ϕ̃).

Let mϕ ∈ A[X] denote the minimal polynomial of F over A. Then, by 4.12.12.2 in

[10], we have

Pv(X) = fE(X) =mϕ(X)
t.

Now note that, in Aw0[X], we have the decomposition

mϕ = ∏
ṽ∣w0

mṽ
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where mṽ is of degree dṽ ∶= [Ok(F),ṽ ∶ Aw0]. Here mṽ is the minimal polynomial over

Aw0 of F ∈ Ok(F),ṽ.

Since ϕ̃∣A is isogenous to ϕ,

gE(X) = detAw0

(X.Ir′ − Frobqd0 ∣Tw0(ϕ)) = det
Aw0

(X.Ir′ − Frobqd0 ∣Tw0(ϕ∣A)).

Since Tw0(ϕ∣A)) splits into the Tate modules for all primes above w0, we have

gE(X) = ∏
ṽ∣w0

det
Aw0

(X.Idṽt − Frobqd0 ∣Tṽ(ϕ̃)).

Note that Tvϕ(ϕ̃) = 0, and hence, we have

gE(X) = ∏
ṽ∣w0,ṽ≠vϕ

det
Aw0

(X.Idṽt − Frobqd0 ∣Tṽ(ϕ̃)).

The endomorphism Frobqd0 acts as multiplication by F on Tṽ(ϕ̃) ≃ Ot
k(F),ṽ

, and so

we get

gE(X) = ∏
ṽ∣w0,ṽ≠vϕ

det
Aw0

(X.Idṽt − F∣Ok(F),ṽ)
t.

Obviously detAw0
(X.Idṽt − F∣Ok(F),ṽ) =mṽ and hence we have

gE(X) = ∏
ṽ∣w0,ṽ≠vϕ

mt
ṽ,

which clearly divides fẼ in Aw0[X]. This completes the proof.

3.5 A more involved proof: local Fq-shtukas

We continue with the same notation as before, and we still assume that we are

in the unramified case. As in the previous section, the goal in this section would be

to prove that gE divides fE in Aw0[X].
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Let L1 ∶= OF /v and let L ∶= L1 = Fq be a fixed algebraic closure. Let Ga denote

the additive affine line, viewed as a scheme over Spec(Fq). We think of E as a functor

from the category of L1–algebras to the category of A–modules

E ∶ [L1–alg] Ð→ [A–mod], L′ → Ga(L
′),

where Ga(L′) is endowed with a natural A–module structure via the Fq–algebra

(injective) morphism

A
ϕ
E
Ð→ L1{τ} ⊆ L

′{τ} = EndL′
Fq
(Ga).

Definition 3.5.1. As L is a perfect field containing L1 (the field of definition of

E), we follow loc.cit. and define the t–motive over L associated to E as the left

L{τ} ⊗Fq A = L{τ}[t]–module

M(L) ∶= HomL
Fq
(E(L),Ga(L)) = L{τ},

endowed with the left L{τ} ⊗Fq A–module structure given by

(λ⊗ a) ∗ µ ∶= λ ○ µ ○ ϕE(a), for all λ ∈ L{τ}, a ∈ A,µ ∈M(L).

Remark 3.5.2. It is important to note that the L{τ}[t]–module M(L) has some

distinctive properties (see loc. cit. for proofs): First, it is obvious that M(L) is a

free L{τ} = (L{τ} ⊗ 1)–module of rank 1 (which is the dimension of the t–motive

M(L)) and (less obvious) that it is a free L[t] = (L⊗Fq A)–module of rank r (which

is the rank of the t–motive M(L).) Second, it is important to note that since L

is perfect, τM(L) is an L{τ}[t]–submodule of M(L) and, as a consequence of the

definition of ϕE, we have

(1⊗ t − ι(t) ⊗ 1)(M(L)/τM(L)) = 0,

where i ∶ A→ L1 ⊆ L is the obvious Fq–algebra map of kernel w0.
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It is not difficult to check that the evaluation pairing

E(L) ×M(L) → Ga(L), (e, µ) → µ(e)

is perfect and leads to an isomorphism of Fq-vector spaces

E(L) ≃ HomL{τ}(M(L),Ga(L)).

This can be used to give an isomorphism of A-modules

ξ ∶ E(L) ≃ HomL{τ}[t](M(L), L((t
−1))/tL[t]), e→ [µ→∑

i≥0

µ(ϕE(t
i)(e)) ⋅ t−i ],

where τ acts on L((t−1))/tL[t] by raising the coefficients of the Laurent series in

question to the q–th power and L[t] acts via multiplication. This isomorphism can

be seen readily by looking at M(L) as L{τ} with the action given by

(λ⊗ a) ⋆ g = λ ⋅ g ⋅ ϕE(a).

Then, we have an isomorphism

HomL{τ}[t](M(L), L((t
−1))/tL[t]) → HomL{τ}(M(L),Ga(L))

given by µ↦ µ where if µ(g) = ∑i≥0 git
−i, then µ(g) = g0 for any g ∈ L{τ}. It is worth

noting that then, we have

µ(g) = ∑
i≥0

µ(g ⋅ ϕE(t
i)).t−i.

Therefore µ determines µ and vice versa, and it is easy to check that this is an iso-

morphism.

For every f ∈ A, this leads to a natural isomorphism of A/f–modules

ξ[f] ∶ E[f] ≃ HomL{τ}⊗FqA/f
(M(L)/f, L[t]/fL[t]),
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after identifying L[t]/fL[t] ≃ (L((t−1))/tL[t])[f] via the isomorphism ρ̂→ t̂ρ/f .

Now, we fix an arbitrary v0 ∈MSpec(A) and let πv0 ∈ A denote the monic gener-

ator of v0. We let

Anr
v0 ∶= L⊗̂FqAv0 ∶= lim←Ð

n

(L⊗FqA/v
n
0 ), M(L)v0 ∶=M(L)⊗̂AAv0 ∶= lim←Ð

n

(M(L)⊗AA/v
n
0 ).

Note that if dv0 ∶= [A/v0 ∶ Fq], then we have natural isomorphisms of topological rings

Av0 ≃ Fqdv0 [[πv0]], Anr
v0 ≃ L[[πv0]]

dv0 .

Further, note that since M(L) is a free (L⊗Fq A = L[t])–module of rank r (see the

Remark above), then M(L)v0 is a free A
nr
v0 –module of rank r and, consequently, a free

L[[πv0]]–module of rank rdv0 . In addition, if we view Frobq as the canonical topo-

logical generator of Gal(L/Fq) = Gal(Anr
v0 /Av0), then the free Anr

v0 –module M(L)v0 is

endowed with a Frobq–semilinear endomorphism, abusively denoted τ , and given by

τ ∶= τ ⊗̂1 ∶M(L)⊗̂AAv0 Ð→M(L)⊗̂AAv0 .

The Frobq-semilinearity arises from the fact that τ(b ⋅ y) = bq ⋅ τ(y) for all b ∈ L and

y ∈M(L)w0 .

The following definition is an adaptation of the definition of an effective local

shtuka by Hartl-Singh ([16] Definition 2.4):

Definition 3.5.3. The data (M(L)v0 , τ) consisting of the free Anr
v0 –module M(L)v0

of rank r together with its Frobq–semilinear endomorphism τ defined above is called

the local Fq–shtuka over L associated to E at v0.

The link between the local shtuka (M(L)v0 , τ) and the Tate module Tv0(E) is

obtained by taking the projective limit as n→∞ of the isomorphisms ξ[πn
v0] defined

above, to get an isomorphism of Av0–modules

ξnrv0 ∶ Tv0(E) ≃ HomAnr
v0
{τ}(M(L)v0 ,A

nr
v0 ), for all v0 ∈MSpec(A).
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The following result is just the direct adaptation of Proposition 2.9 from [16] for

our particular case. Note that L = Fq is perfect.

Proposition 3.5.4. For all v0 ∈MSpec(A), the local Fq–shtuka (M(L)v0 , τ) over L

splits canonically as a direct sum of local Fq–shtukas over L

(M(L)v0 , τ) = (M(L)
ét
v0 , τ) ⊕ (M(L)

nil
v0 , τ),

where M(L)étv0 is the maximal Anr
v0 {τ}–submodule of M(L)v0 on which the restriction

of τ is bijective and M(L)nilv0 is the maximal Anr
v0 {τ}–submodule of M(L)v0 on which

the restriction of τ is topologically nilpotent (i.e. there exists an n > 0 such that

τn(M(L)nil) ⊆ πv0M(L)
nil.)

Therefore, we have

HomAnr
v0
{τ}(M(L)v0 ,A

nr
v0 ) = HomAnr

v0
{τ}(M(L)

ét
v0 ,A

nr
v0 ) ⊕HomAnr

v0
{τ}(M(L)

nil
v0 ,A

nr
v0 ).

Since τ is topologically nilpotent on M(L)nilv0 and as an isomorphism on Anr
v0 , we

have HomAnr
v0
{τ}(M(L)nilv0 ,A

nr
v0 ) = 0. Therefore, we have

ξnrv0 ∶ Tv0(E) ≃ HomAnr
v0
{τ}(M(L)

ét
v0 ,A

nr
v0 ).

The following lemma is an extension to the case of GLn(Anr
v0 ) of Lang’s well known

theorem on GLn(L) (see [21]), and is due to Popescu and Hartl.

Lemma 3.5.5. Under the above assumptions, the following hold.

1. The map GLn(Anr
v0 ) → GLn(Anr

v0 ) taking X → Frobq(X)−1 ⋅X is surjective.

2. Any free Anr
v0 –module M of finite rank n, endowed with a bijective, Frobq–

semilinear endomorphism t satisfies the property that the standard map

Mt=1 ⊗Av0
Anr

v0 →M, a⊗m→ am

is an isomorphism of Anr
v0 –modules.
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Proof. Since we have a ring isomorphism Anr
v0 ≃ L[[πv0]]

dv0 , it suffices to prove part

(1) for GLn(L[[πv0]]). So, given a matrix A ∈ GLn(L[[πv0]]), i.e.

A = A0 +A1 ⋅ πv0 + . . . , with A0 ∈ GLn(L) and Ai ∈Mn(L), for all i ≥ 1,

we need to find a matrix X ∈ GLn(L[[πv0]] given by

X =X0 +X1 ⋅ πv0 + . . . , with X0 ∈ GLn(L) and Xi ∈Mn(L), for all i ≥ 1,

such that the matrices Xi satisfy the relations

m

∑
i=0

Frobq(Xm−i) ⋅Ai =Xm, for all m ≥ 0.

Lang’s theorem (see loc.cit.) implies that part (1) is true for GLn(L), so we can

find a matrix X0 ∈ GLn(L) satisfying the 0–th relation above. After multiplying the

m–th relation above to the right by A−10 Frobq(X0)−1 =X−10 we obtain the equivalent

relation

XmX
−1
0 = Frobq(XmX

−1
0 ) +

m

∑
i≥1

Frobq(Xm−i) ⋅Ai ⋅X
−1
0 ,

which consists of one Artin–Schreier equation for each entry of XmX−10 . Since L is

algebraically closed, these equations have solutions. Therefore, inductively, one can

find matrices Xm, for all m ≥ 0, as desired.

Part (2) follows immediately from part (1) in a standard way: take a basis e of

M over Anr
v0 and let A be the matrix of t in that basis. Let X ∈ GLn(Anr

v0 ) such that

A = Frobq(X)−1 ⋅X. Then e′ ∶=X ⋅e is an Anr
v0 -basis ofM which is contained inMt=1.

This concludes the proof.

By applying the Lemma above to M ∶= M(L)étv0 and t = τ , we conclude that we

have the following natural isomorphisms of Anr
v0 {τ}–modules

M(L)étv0 ≃ (M(L)
ét
v0)

τ=1 ⊗Av0
Anr

v0 , for all v0 ∈MSpec(A).
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The above isomorphism leads to a further isomorphism of Av0–modules

HomAnr
v0
{τ}(M(L)

ét
v0 ,A

nr
v0 ) ≃ HomAv0

((M(L)étv0)
τ=1,Av0), for all v0 ∈MSpec(A),

which, if composed with the map ξnrv0 gives an isomorphism of Av0–modules

ξv0 ∶ Tv0(E) ≃ HomAv0
((M(L)étv0)

τ=1,Av0), for all v0 ∈MSpec(A).

This prompts the following.

Definition 3.5.6. The first v0–adic étale cohomolgy group of E is defined by

H1
ét(E, Av0) ∶= (M(L)

ét
v0)

τ=1, for all v0 ∈MSpec(A).

Note that the maps ξv0 lead to the following Av0–module isomorphisms.

Tv0(E)
∗ ∶= HomAv0

(Tv0(E),Av0) ≃ H
1
ét(E, Av0), for all v0 ∈MSpec(A).

Further, the first v0–adic crystalline cohomology group of E is defined by

H1
cris(E,Anr

v0 ) ∶=M(L)v0 .

Note that for all v0 ∈ MSpec(A) we have isomorphisms and inclusions of Anr
v0 –

modules

Tv0(E)
∗ ⊗Av0

Anr
v0 = H

1
ét(E,Av0) ⊗Av0

Anr
v0 ≃ H

1
cris(E,Anr

v0 )
ét ⊆ H1

cris(E,Anr
v0 ).

The following holds at primes v0 different from the characteristic of E. (See [10],

Chapter 5 as well.)

Lemma 3.5.7. If v0 is an element in MSpec(A) different from the characteristic w0

of E, then

M(L)étv0 =M(L)v0 , (M(L)v0)
τ=1 ⊗Av0

Anr
v0 ≃M(L)v0 .

In other words, τ is bijective on M(L)v0 and we have canonical isomorphisms of

Anr
v0 [τ1]–modules

Tv0(E)
∗ ⊗Av0

Anr
v0 ≃ H

1
ét(E,Av0) ⊗Av0

Anr
v0 ≃ H

1
cris(E,Anr

v0 ).
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Proof. (sketch) It is easy to show that since τ ∤ ϕE(π
n
v0) in L{τ}, τ is injective

and therefore bijective on the finite dimensional L–vector spaces M(L)/πn
v0 , for all

n ≥ 1. The bijection of τ on M(L)v0 is obtained now by taking the projective limit

as n→∞.

First, take v0 ∈MSpec(A)∖{w0} and observe that, based on the previous Lemma

and Definition, we have canonical isomorphisms of Anr
v0 [τ1]–modules

Tv0(E)
∗⊗Av0

Anr
v0 ≃ H

1
cris(E,Anr

v0 ) =M(L)⊗̂AAv0 ≃M(L)⊗L⊗FqA
(L⊗̂FqAv0) ≃M(L)⊗L[t]A

nr
v0 .

As a consequence, from the definition of fE, we have

fE(X) = detAv0
(XIr−τ1 ∣ Tv0(E)

∗) = detAnr
v0
(XIr−τ1 ∣ H

1
cris(E,Anr

v0 )) = detL[t](XIr−τ1 ∣M(L)).

The last equality proves that fE(X) is independent of v0 and that it has coefficients

in L[t]. Further, if one applies the analogues of Lemmas 3.5.5 and 3.5.7 to the fi-

nite, étale Fq–shtukas M(L)/v0n over L (see [16]), one concludes that fE(X) has

coefficients in Av0 . Since L[t] ∩Av0 = A (intersection viewed inside Anr
v0 ), fE(X) has

coefficients in A, as stated before.

Now, from the definitions, we also have similar natural isomorphisms of Anr
w0
[τ1]–

modules

H1
cris(E,Anr

w0
) =M(L)⊗̂AAw0 ≃M(L) ⊗L⊗FqA

(L⊗̂FqAw0) ≃M(L) ⊗L[t] A
nr
w0
.

Therefore, when combining these with the second note in Definition 3.5.6, we obtain

equalities

fE(X) = detL[t](XIr − τ1 ∣M(L)) = detAnr
w0
(XIr − τ1 ∣M(L) ⊗L[t] A

nr
w0
)

= detAnr
w0
(XIr − τ1 ∣ H

1
cris(E,Anr

w0
))

= detAnr
w0
(XIr − τ1 ∣ H

1
cris(E,Anr

w0
)ét) ⋅ detAnr

w0
(XIr − τ1 ∣ H

1
cris(E,Anr

w0
)nil)

= detAw0
(XIr−h − τ1 ∣ Tw0(E)

∗) ⋅ detAnr
w0
(XIr − τ1 ∣ H

1
cris(E,Anr

w0
)nil)

= gE(X) ⋅ detAnr
w0
(XIr − τ1 ∣ H

1
cris(E,Anr

w0
)nil).
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This shows that gE(X) divides fE(X) in Anr
w0
[X]. However, since gE(X), fE(X) are

both in the polynomial ring Aw0[X] = A
nr
w0
[X]τ=1, this divisibility holds in Aw0[X].

This completes the proof.

3.6 The tamely ramified case

Now suppose that v is tamely ramified in K/F. Let K ′ =KIv denote the maximal

sub-extension of K/F unramified at v. Let w′ denote the prime in K ′ lying below w.

As before, we put g = ∣E(OK/v)∣G. We have

E(OK/v) ≃ E(OK/w
′) ⊗

A[Gv]

A[G].

Hence, we have

g = ∣E(OK/w
′)∣Gv .

Recall that ev denotes the idempotent of the trivial character of Iv in A[G]. Let

e = ∣Iv ∣. Then, as given in the proof of Proposition A.5.1. in [6], we have

ev(OK/w
′) = OK′/w

′ ≃ OK/w and (1 − ev)(OK/w
′) = w/w′ = w/we.

Also, we have an equality of ideals,

FittA[Gv](E(OK/w
′)) = FittevA[Gv](evE(OK/w

′))+Fitt(1−ev)A[Gv]((1−ev)E(OK/w
′)).

Let sI ∶ A[Gv] → A[Gv/Iv] denote the augmentation map with respect to Iv. It

is easy to see that the kernel of this map is (1 − ev)A[Gv], and hence we have an

isomorphism

sI ∶ evA[Gv] → A[Gv/Iv].

In particular, we have

sI(g) = ∣E(OK′/w
′)∣Gv/Iv .
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By the unramified case, we have

∣E(OK′/w
′)∣Gv/Iv = ρ

−1Pv(σv)

where σv denotes the Frobenius of v in K ′/K. Since sI(σvev) = σv, we can rewrite

this as

sI(g) = sI(ρ
−1Pv(σvev)).

This implies that

g = ρ−1Pv(σvev) + (1 − ev)g
′

for some g′ ∈ A[Gv].

By Proposition A.4.1 in [6], we have

Fitt(1−ev)A[Gv](E(w/w
e)) = Fitt(1−ev)Fq[Gv][t](E(w/w

e)) = det
(1−ev)Fq[Gv][t]

(t.I −AE,t)

where AE,t denotes the matrix of the (1−ev)Fq[Gv]−endomorphism of E(w/we) given

by multiplication by t. For x ∈ w/we,

t ⋆ x = t.x + a1τ.x + ... + arτ
r.x

If At denotes the action of t on w/we and Aτ denotes the action of τ on w/we, then

AE,t = At + a1Aτ + ... + arA
r
τ

Since τN .x = 0 for all x ∈ w/we if qN ≥ e, the matrix Aτ is nilpotent, and hence

N = a1Aτ + ... + arAr
τ is also nilpotent. So

Fitt(1−ev)A[Gv](E(w/w
e)) = det

(1−ev)Fq[Gv][t]
(t.I −At −N)

As in the proof of Proposition A.5.1. in [6], we can find a Fq[Gv]-basis {ei}i of

OK/we ⊗Fq Fq on which At is diagonal. Hence tI −At and N commute and we have

det
(1−ev)Fq[Gv][t]

(tI −At −N) = det
(1−ev)Fq[Gv][t]

(tI −At).
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Since

det
(1−ev)Fq[Gv][t]

(tI −At) = (1 − ev)FittA[Gv](OK/w
e) = (1 − ev)(Pv(0)),

we have

(1 − ev)g = (1 − ev)ρ
−1Pv(0).

This shows that g′ = 0 and that completes our proof.

3.7 Future Work

In future work, we would like to extend this result to abelian t-modules. This is

an informal section, and we’re reusing most of the notation from §3.1.

Definition 3.7.1. A t-module E over OF of dimension n is given by an Fq-algebra

morphism

ϕE ∶ A→Mn(OF ){τ}, t↦M0 ⋅ τ
0 +M1τ + ⋅ ⋅ ⋅ +Mℓ ⋅ τ

ℓ,

where Mi ∈Mn(OF ), and (M0 − t ⋅ In)n = 0.

Similar to the case of Drinfeld modules, for any OF [G]{τ}-module M , we can

endow Mn with two A-structures:

1. E(M) denotes the A-module with action given by ϕE.

2. LieE(M) denotes the A-module with action given by ev0 ○ ϕE, where ev0 ∶

OF{τ} → OF sends τ ↦ 0. For example, t acts on an element of Mn as multi-

plication by M0, where M0 is as in the definition above.

In this case too, we can define Tv0(E) for all v0 ∈MSpec(A) and get a polynomial

Pv(X) = det
Av0

(X.I − Frobqd0 ∣Tv0(E))
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for each v ∈MSpec(OF ) of good reduction for E.

In [11], Green and Popescu have proved an Equivariant Tamagawa Number For-

mula for pure t-modules. In their work, they have defined G-equivariant L-functions

whose Euler factors are

(
Pv(σvev)

Pv(0)
)

−1

.

We can then define ∣E(OK/v)∣G and ∣LieE(OK/v)∣G as the unique monic generators

of the respective A[G]-Fitting ideals. Then we would like to show that

Pv(σvev)

Pv(0)
=
∣E(OK/v)∣G
∣LieE(OK/v)∣G

.

Much of the theory in the previous section goes through for the case of abelian mod-

ules, but an analogue of 3.2.1 doesn’t hold in this case. Something similar holds for

a smaller case of abelian t-modules, known as pure t-modules, but in future work,

we would like to provide a proof of this in the case of general abelian t-modules.

A major portion of Chapter 3 is being prepared for submission for publication.

The dissertation author was the collaborator and the coauthor for the material below:

● C. D. Popescu, N. Ramachandran, Euler factors of equivariant L-functions

of Drinfeld modules and beyond

46



Bibliography

[1] D. Burns, M. Kurihara, and T. Sano, On zeta elements for Gm, Documenta
Math. 21 (2016), 555 – 626.

[2] L. Carlitz, A class of polynomials, Trans. Amer. Math. Soc 43 (1938), no. 2,
167 – 182.

[3] S. Dasgupta and M. Kakde, On the Brumer–Stark conjecture, Annals of Math-
ematics 197 (2023), no. 1, 289 – 388.

[4] V. G. Drinfel’d, Elliptic modules, Mathematics of the USSR-Sbornik 23 (1974),
no. 4, 561.

[5] N. Elkies, The existence of infinitely many supersingular primes for every elliptic
curve over Q, Invent. Math. 89 (1987), no. 3, 561–567.

[6] J. Ferrara, N. Green, Z. Higgins, and C.D. Popescu, An equivariant Tamagawa
number formula for Drinfeld modules and applications, J. Algebra and Number
Theory 16 (2022), no. 9, 2215–2264.

[7] B. Ferrero and L. C. Washington, The Iwasawa invariant µp vanishes for abelian
number fields, Annals of Mathematics 109 (1979), no. 2, 377–395.

[8] R. Gambheera and C.D. Popescu, An unconditional main conjecture in Iwasawa
theory and applications, 2023.

[9] E.-U. Gekeler, On finite Drinfeld modules, J. Algebra 141 (1991), no. 1, 187–
203.

[10] D. Goss, Basic Structures of Function Field Arithmetic, Springer Berlin, Hei-
delberg, 1998.

47



[11] N. Green and C.D. Popescu, An equivariant Tamagawa number formula for
t–modules and applications, https://arxiv.org/abs/2206.03541 (June 2022), 27
pages.

[12] R. Greenberg, Iwasawa theory for motives, Adv. Stud. Pure Math. 153 (1989),
97 – 137.

[13] , Iwasawa theory for p-adic representations, Adv. Stud. Pure Math. 17
(1989), 97 – 137.

[14] C. Greither and C.D. Popescu, The Galois Module Structure of ℓ-adic Realiza-
tions of Picard 1-motives and Applications, Int. Math. Res. Not. 2012 (2012),
no. 5, 986–1036.

[15] C. Greither and C.D. Popescu, An Equivariant Main Conjecture in Iwasawa
Theory and applications, J. Algebraic Geom. 24 (2015), no. 4, 629 – 692.

[16] U. Hartl and R.K. Singh, Local shtukas and divisible local Anderson modules,
Canad. J. Math. 71 (2019), no. 5, 1163–1207. MR 4010425

[17] K. Iwasawa, On Γ-extensions of algebraic number fields, Bull. Amer. Math. Soc.
(2) 93 (1959), no. 3, 183–226. MR 3509953

[18] K. Iwasawa, On some modules in the theory of cyclotomic fields, Journal of the
Mathematical Society of Japan 16 (1964), no. 1, 42 – 82.

[19] , On p-adic l-functions, Annals of Mathematics 89 (1969), no. 1, 198–
205.

[20] M. Kurihara, Rubin-Stark elements and ideal class groups, RIMS Kôkyûroku
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