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Abstract

Some Inference Problems in High-Dimensional Linear Models

by

Miles Edward Lopes

Doctor of Philosophy in Statistics

University of California, Berkeley

Professor Peter J. Bickel, Chair

During the past two decades, technological advances have led to a proliferation of high-
dimensional problems in data analysis. The characteristic feature of such problems is that
they involve large numbers of unknown parameters and relatively few observations. As the
study of high-dimensional statistical models has developed, linear models have taken on
a special status for their widespread application and extensive theory. Even so, much of
the theoretical research on high-dimensional linear models has been concentrated on the
problems of prediction and estimation, and many inferential questions regarding hypothesis
tests and confidence intervals remain open.

In this dissertation, we explore two sets of inferential questions arising in high-dimensional
linear models. The first set deals with the residual bootstrap (RB) method and the distribu-
tional approximation of regression contrasts. The second set addresses the issue of unknown
sparsity in the signal processing framework of compressed sensing. Although these topics
involve distinct methods and applications, the dissertation is unified by an overall focus on
the interplay between model structure and inference. Specifically, our work is motivated by
an interest in using inferential methods to confirm the existence of model structure, and in
developing new inferential methods that have minimal reliance on structural assumptions.

The residual bootstrap method is a general approach to approximating the sampling
distribution of statistics derived from estimated regression coefficients. When the number of
regression coefficients p is small compared to the number of observations n, classical results
show that RB consistently approximates the laws of contrasts obtained from least-squares
coefficients. However, when p/n � 1, it is known that there exist contrasts for which RB
fails — when applied to least-squares residuals. As a remedy, we propose an alternative
method that is tailored to regression models involving near low-rank design matrices. In this
situation, we prove that resampling the residuals of a ridge regression estimator can alleviate
some of the problems that occur for least-squares residuals. Notably, our approach does not
depend on sparsity in the true regression coefficients. Furthermore, the assumption of a near
low-rank design is one that is satisfied in many applications and can be inspected directly
in practice.
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In the second portion of the dissertation, we turn our attention to the subject of com-
pressed sensing, which deals with the recovery of sparse high-dimensional signals from a
limited number of linear measurements. Although the theory of compressed sensing offers
strong recovery guarantees, many of its basic results depend on prior knowledge of the sig-
nal’s sparsity level — a parameter that is rarely known in practice. Towards a resolution of
this issue, we introduce a generalized family of sparsity parameters that can be estimated in
a way that is free of structural assumptions. We show that our estimator is ratio-consisent
with a dimension-free rate of convergence, and also derive the estimator’s limiting distribu-
tion. In turn, these results make it possible to set confidence intervals for the sparsity level
and to test the hypothesis of sparsity in a precise sense.
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Anatoli Juditsky for the great experience of collaborating with them at INRIA in Grenoble
during the spring of 2013. I especially thank Zäıd for being an outstanding mentor and friend
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Chapter 1

Introduction

In this chapter, we first introduce the subject of high-dimensional statistics in Section 1,
and then discuss the motivations of the dissertation in Section 2. Since the dissertation
will address two distinct areas of high-dimensional statistics, namely bootstrap methods and
compressed sensing, we provide some background on each of these topics in Sections 1.3
and 1.4. Lastly, in Section 1.5, we conclude by describing the specific contributions of the
dissertation and outlining its remaining chapters.

1.1 High-dimensional statistics

The subject of high-dimensional statistics deals with problems where relatively few obser-
vations are available to estimate a large number of parameters. Although problems of this
type have always been a part of data analysis, their prevalence in scientific applications is
relatively new, and roughly speaking, the subject did not emerge as a major branch of sta-
tistical research until the last 15 years. This situation is not an historical accident. Only
in the last couple of decades has computational power made it feasible manipulate high-
dimensional datasets in real time. Similarly, the rise of computation has also enabled new
data acquisition technologies that can measure large numbers of features simultaneously —
making high-dimensional data ubiquitous in many areas of science.

Examples

Below, we briefly describe some examples of high-dimensional data. Our small set of ex-
amples reflects just a handful of applications that have received significant attention from
statisticians in recent years. This list does not begin to scratch the surface of the numerous
areas where high-dimensional data occur. Some references that give a more wide-ranging
view of high-dimensional data include the National Research Council’s 2013 report Fron-
tiers of Massive Data Analysis [Cou13], as well as the National Science Foundation’s report
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ensuing from their 2007 workshop on Discovery in Complex or Massive Datasets: Common
Statistical Themes [Fou07]

• Internet commerce. Recommender systems are one of the most widely used tech-
nologies for selling products online [RV97]. In many cases, such systems can be thought
of in terms of a large matrix, with rows indexed by users and columns indexed by prod-
ucts. Each entry of the matrix is a score measuring a user’s preference for a product,
and these entries are the parameters of interest. The observed data consist only of
a relatively small number of preferences generated by users on products they have
already purchased, and the matrix completion problem of estimating all of these pref-
erences is clearly high-dimensional. During the last several years, the so-called Netflix
Prize attracted considerable interest to this problem in the context of movie recom-
mendations, and a large stream of research has ensued. We refer the reader to the
papers [CR09] [F+12] and the references therein.

• Networks. In recent years, there has been an explosion of research on the statistical
analysis of networks, especially with attention to information networks, biological net-
works, and social networks [Kol09]. To mention just one example concretely, consider
the application of internet security, which often deals with the task of monitoring the
traffic of packet exchanges across a network of internet protocol (IP) addresses. In
particular, it is of basic interest to detect anomalous traffic patterns [LR09]. If there
are p edges connecting the addresses, and we use a vector ∆(t) ∈ Rp to record the
number of packets exchanged along each edge at a time point t, then it is natural
to formulate the problem as detecting change points involving the p-dimensional time
series ∆(t). To see the extreme role of dimensionality in this problem, note that many
information networks have a number of nodes N on the order of several thousand, and
the number of edges is often of order p � N2. Moreover, due to the computational
constraints of counting packet exchanges, we may be limited to a number of observa-
tions ∆(1), . . . ,∆(n) with n � p. Changepoint detection in this setting is extremely
difficult, and due to the rising importance of internet security, research in this direction
is likely to continue for some time to come.

• Genomics. The human genome consists of roughly fifteen thousand genes, and the
expression level of any particular gene can be viewed as a numerical feature of an in-
dividual organism. Due to the fact that biological studies are often limited to several
dozen individuals, it is not uncommon to encounter situations where the number of
observations n is drastically less than their dimension p. An example of a problem
in statistical genomics where dimensionality plays an especially prominent role is de-
tecting a difference between a treatment population and a control population, i.e. the
two-sample test. When a large number of genes are used to make such a comparison,
it is relatively easy for “chance variation” across the genes to “explain away” any sys-
tematic difference between the two groups. In fact, the two-sample test was one of the
earliest problems where the effect of dimensionality on statistical power was quantified
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in a precise way — as shown in a seminal paper [BS96]. In the years since this work,
a substantial line of research has studied different approaches for combatting the loss
of statistical power that occurs in high-dimensional testing problems. A review of the
interactions between genomics and high-dimensional data analysis may be found in the
paper [Bic+09].

Asymptotics

Much of the classical asymptotic theory of statistics is formulated in the following way. A
set of i.i.d. observations X1, . . . , Xn is generated from a distribution Pθ on a sample space
X , where θ is an unknown parameter in a subset of p-dimensional Euclidean space, Θ ⊂ Rp.
Using the observations, an estimator θ̂ is computed, and we are interested in understanding
how well θ̂ approximates θ as n becomes large. Traditionally, the analysis of θ̂ is done under
the assumption that both Θ and X remain fixed as n → ∞, and that the entire sequence
{Xi}∞i=1 is generated from Pθ.

A drawback of the classical framework is that it is restricted to describing situations where
the dimension p is small with respect to n. This limitation creates difficulties in practical
problems, because for a particular dataset, where say n = 100 and p = 37, it is not always
clear if p should be viewed as negligible in comparison to n. In turn, we may doubt whether
the results of standard asymptotic calculations are relevant. Furthermore, in problems where
n < p, the use of asymptotics with p held fixed is often entirely inappropriate. In such cases,
where p is at least of the same order of magnitude as n, a problem is typically labelled as
high-dimensional.1

In order to describe situations where p and n are both large, various alternatives to classi-
cal asymptotics have been proposed. Some of the earliest examples of asymptotics considered
from this high-dimensional viewpoint include Huber’s program of robust regression in the
early 1970’s [Hub73], as well as the work of Kolmogorov on discriminant analysis in the
late 1960’s [Ser08, see preface], [Aiv+89]. Outside of statistics, the use of high-dimensional
asymptotics occurred even earlier during the 1950’s in connection with mathematical physics
and Wigner’s analysis of the spectra of large random matrices [Wig58].

The most standard way of formalizing the notion of p and n diverging simultaneously is to
consider a sequence of “growing models” ordered by a “latent index”, say ξ ∈ N. Specifically,
for each ξ = 1, 2, . . . , we are interested in an unknown parameter θ = θ(ξ) lying in a space
whose dimension also varies with ξ, e.g. Θ(ξ) ⊂ Rp(ξ). Furthermore, for each ξ, we observe a
number n = n(ξ) of i.i.d. samples X1, . . . , Xn(ξ) from a distribution Pθ(ξ), creating an array
whose rows are indexed by ξ. (The sample space of the Xi may also vary with ξ.) Under

this formalism, the goal is to understand how an estimator θ̂(ξ) derived from X1, . . . , Xn(ξ)

approximates θ(ξ) as (p(ξ), n(ξ)) → ∞ with ξ → ∞. For ease of notation, it has become

1Although it could be argued that non-parametric or semi-parametric problems are high-dimensional
since θ may lie in a space of infinite dimension, the term high-dimensional is most often used in the context
of parametric models involving a large but finite number of parameters.
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standard in the statistics literature to suppress the latent index, and we will mostly follow
this convention going forward.

As soon as we allow p and n tend to infinity together, it is often necessary choose their
relative rates of growth in order to carry out calculations. While this choice might appear
to be a technical detail, it is actually a fundamental demarcation point for different types
of problems in high-dimensional statistics. Typically, this choice is specified in terms of the
ratio p/n. The limiting value of the ratio (or its rate of growth) is a key parameter that
describes the asymptotic performance of many statistical methods. Numerous possibilities
have been considered, and much of the literature that allows (p, n)→∞ falls into one of the
following three cases — listed in order of increasing generality:

pκ/n→ 0 for some exponent κ ≥ 1, (1.1)

p/n→ c for some constant c ≥ 0, (1.2)

log(p)/n→ 0. (1.3)

The three cases allow for increasingly large values of p relative to n, in the sense that (1.1)
=⇒ (1.2) =⇒ (1.3). Much of the early work on extending M-estimation beyond fixed-p
asymptotics falls into the first case [Hub73; Por84; Mam89]. The second case captures a
substantial portion of the random matrix theory literature — usually with c > 0 [BS10].
With regard to the third case, much of the work on structured high-dimensional estimation
and classification has shown that the condition log(p)/n→ 0 is important in a wide variety
of problems, ranging from linear regression [Neg+12], to estimation of covariance matrices
and Gaussian graphical models [MB06; BL08].

Although the issue of choosing a proper scaling for p relative to n is sometimes un-
avoidable, another common approach is to sidestep the choice altogether by proving non-
asymptotic results — which hold for arbitrary fixed values of n and p. This approach has be-
come quite standard in the high-dimensional literature, because once a non-asymptotic result
is available, it can be further evaluated under different limits of p and n, allowing for a wider
range of possibilities to be considered. A second advantage of the non-asymptotic approach
is that it reduces the technical complications that arise when studying finite-dimensional
objects that converge to a limit in an infinite-dimensional space. Standard references on
non-asymptotic techniques in high-dimensional statistics include [BLM13] and [Ver12].

Blessings and curses of dimensionality

High-dimensional data bring not only new structures and representations of information,
but also “statistical phenomena” that fall outside the paradigm of classical statistics. Such
phenomena are often referred to as the blessings and curses of dimensionality.2

In August of 2000, during the anniversary of Hilbert’s famous 1900 address that set the
course for much of 20th century mathematics, a conference titled “Mathematical Challenges

2This phrase can be traced to Bellman’s work on control theory and optimization in the 1950’s [Bel+61].
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of the 21st Century” was held by the American Mathematical Society. At the conference,
an address given by David Donoho was titled High-Dimensional Data Analysis: The Curses
and Blessings of Dimensionality, and this address outlined how the effects of dimensionality
may shape the horizon of mathematical research [Don00]. At that time, high-dimensional
statistics was just beginning to emerge as a distinct subject of research. Writing now in
2015, the key aspects of the subject that were emphasized in Donoho’s address are no less
relevant today, and we describe some of them below.

Curses of dimensionality.

• Sampling. Monte Carlo simulation and numerical integration are fundamental aspects
of statistical research, and their success is directly tied to the task of random sampling.
Yet, due to the geometry of p-dimensional space, uniform random sampling becomes
a hopeless task even for modest values of p. Specifically, to fill the unit cube [0, 1]p

uniformly with samples to a precision of ε, roughly (1
ε
)p samples are needed. As a

result, one of the basic challenges of developing new methodology in high-dimensions
is to modify traditional sampling-based approaches.

• Computation. Algorithms for numerical linear algebra and optimization lie at the
core of statistical methodology. To this extent, computational barriers to implement-
ing these algorithms are also statistical barriers. If a set of n observations in Rp

is represented as a matrix in Rn×p with p/n � 1, then many basic algorithms such
as matrix multiplication, matrix inversion, singular value decompositions, and so on,
have complexity that is quadratic or cubic in p. Even when p is relatively tame by
modern standards, e.g. p = 106, naive implementations of such algorithms are off
the table. Given that the basic algorithms of applied mathematics have been highly
refined over the last century, it is often sensible to use a fast but statistically sub-
optimal method, rather than to further refine the computational aspects of one that
is statistically optimal. For this reason, the problem of identifying the right trade-off
between computational cost and statistical efficiency is now at the forefront of research
in high-dimensional statistics [CJ13].

• Unidentifiable models. As the number of parameters in a model becomes large,
there is more opportunity for distinct values of parameters to specify the same dis-
tribution — resulting in a model that is unidentifiable. For instance, in linear re-
gression models involving a design matrix X ∈ Rn×p, the distribution of observations
y ∼ N(Xβ, σ2) fails to be uniquely specified by β when p > n. The standard remedy
for unidentifiable models in high-dimensional problems is to impose additional struc-
tural assumptions on the parameters so that identifiability is restored. Consequently,
an essential challenge of high-dimensional modeling is to find forms of structure that
are not overly restrictive, and yet also lead to uniquely parameterized data-generating
distributions.
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• Multiple testing. When confronted with a large number of parameters, we are often
interested in discovering which parameters are “interesting”, e.g. the few genes among
thousands that are most strongly associated with a biological condition. If the task
of assessing the importance of a single parameter is formulated as a hypothesis test,
then we are dealing with a multiple testing problem. The basic issue underlying such
problems is that if we perform p independent tests each at level α ∈ (0, 1), then the
chance of finding at least one false positive is at least 1−(1−α)p ≈ pα, when α is small.
Consequently, if we are interested in testing the significance of 1,000 genes, each one
must be tested at level α = 0.00005 just to keep the chance of a single false positive
from exceeding about 5%. However, the amount of data needed to achieve even a
modest degree of power at such values of α is often beyond reach. This dilemma has
led researchers to focus instead on controlling the number of false positives as a fraction
of the total number of rejected hypotheses (i.e. the false discovery rate [BH95]), rather
than controlling the chance of just a single false positive. In turn, the challenges
involved with controlling the false discovery rate has led to a substantial development
of new methodology in high-dimensional problems.

Blessings of dimensionality.

• Concentration of measure. The concentration of measure phenomenon refers to
the fact that a “nice” function of a large number of independent random variables
is very likely to take values near its mean — provided that the variables have “light
tails”. An important example is the so-called Chernoff bound for sums of independent
sub-Gaussian variables [BLM13]. A random variable X with mean µ is said to be
sub-Gaussian with parameter σ if its moment generating function is bounded by that
of a Gaussian variable with variance σ2, i.e.

E[exp(λ(X − µ))] ≤ exp(λ2σ2/2) for all λ ∈ R. (1.4)

The Chernoff bound implies that if V1, . . . , Vp are i.i.d. sub-Gaussian variables with
parameter σ, then

P
(∣∣1

p

∑p
i=1 Vi − E[V1]

∣∣ > t
)
≤ 2 exp(− pt2

2σ2 ). (1.5)

Hence, as the dimension p becomes large, the mean of the entries of (V1, . . . , Vp) be-
comes extremely concentrated around its mean. More generally, the same principle
can be applied to many other functions of (V1, . . . , Vp). In this way, the concentration
of measure can greatly simplify the analysis of complicated random variables by ef-
fectively reducing them to constants. The books [Led05] and [BLM13] describe many
of the modern developments in probability and statistics that are connected to the
concentration of measure phenomenon.

• Universality. The term “universality” describes situations where a sequence of ran-
dom objects converges in distribution to a limit that is essentially invariant to the
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choice of the model that generated the objects. The statistical importance of this idea
is that we may hope to understand the limiting behavior of certain quantities without
assuming too much about the underlying model. Perhaps the simplest example is the
ordinary central limit theorem, which shows that any standardized sum of i.i.d. ran-
dom variables converges to a Gaussian limit, as long as the generating distribution has
a finite second moment.

With regard to high-dimensional statistics, the significance of universality is most
apparent in the context of random matrix theory. A classical example arises from
the spectra of Wigner matrices, i.e. symmetric random matrices whose entries above
the diagonal are i.i.d. variables in L2+ε. As the dimension of such matrices diverges,
a famous result of Wigner shows that their empirical spectral distribution converges
to the semi-circle law on the real line — without any other constraint on the entry-
wise distribution [Wig58]. More generally, many other instances of universality arise
in statistics derived from covariance matrices, as summarized in the book of Bai and
Silverstein [BS10].

• Approach to the continuum. In many applications, data vectors in Rp are actu-
ally discretized versions of continuous (or smooth) functions. Basic examples include
pixelated images, or discrete time series. When p becomes large and the resolution
of the observations increases, the underlying continuous structure tends to become
more apparent. For instance, a discrete time series of Gaussian observations may be
well-approximated by Brownian motion when the grid of time points is sufficiently
fine-grained, and as a result, a large collection of analytical techniques may be brought
to bear. Alternatively, when p-dimensional observations have an underlying structure
involving smooth functions, a variety of tools from functional data analysis may be
applicable [SR05].

Structure, regularization, and optimization

At first sight, the curses of high-dimensional models might seem to be inescapable facts
of life. However, for many models, their apparent dimension is much higher than their
effective dimension. For instance, in the context of genomics, potentially thousands of genes
can be used to model a biological process, but it is well known that many processes are
regulated by a specialized pathway involving a relatively small number of genes. Hence, the
relevant statistical model may have an effective dimension equal to the number of genes in
the pathway, whereas the apparent dimension is equal to the number of genes in the entire
genome. More generally, when a high-dimensional model is controlled by a small number
of “effective parameters”, it is said to exhibit low-dimensional structure. In essence, the
unifying principle of high-dimensional statistics is that a problem is tractable as long as it has
low-dimensional structure. Likewise, the crucial issues in tackling many high-dimensional
problems are finding this structure and using it to reduce the apparent dimension of the
parameter space.
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One of the most general and successful ways of harnessing low-dimensional structure
is through the algorithmic tools of optimization. Given that so many statistical methods
are based on the minimization of an objective function (e.g. a negative log-likelihood),
it is quite natural to enforce the existence of structure by adding a penalty function or
regularizer. Conceptually, the negative log-likelihood function measures lack of fit, and the
regularizer measures lack of structure. Hence, by minimizing the sum of two such functions,
a balance is struck between these competing forces. In more classical language, the use of a
regularizer can be thought of as specifying a bias-variance tradeoff, where greater influence
of the regularizer typically corresponds to more bias and less variance.

Whereas the considerations of goodness of fit and model structure are purely statistical,
the choice of a regularizer is also dictated by computational cost. In fact, much of the art
of high-dimensional methodology lies in finding regularizers that simultaneously balance all
three of these issues. Because desired model structures can often only be described exactly in
terms of non-convex regularizers (which typically lead to intractable minimization problems),
a fundamental approach to finding this balance is through convex relaxation [BV04]. This
involves replacing a non-convex penalty function with a convex “surrogate” that enforces
similar structural properties. We now give some examples to illustrate this general approach.

Sparse linear regression. Consider the standard linear model involving n observations
y = (y1, . . . , yn) generated according to

y = Xβ + ε, (1.6)

with Gaussian noise ε ∼ N(0, Ip×p), a deterministic design matrix X ∈ Rn×p and an unknown
vector of coefficients β ∈ Rp. If the number of variables p is large, then it is often sensible
to assume that many of them will have little influence on the observations. In terms of the
regression coefficients, this can be formalized by supposing that the β vector is nearly sparse,
i.e. many of its entries are negligible in comparison to a few relatively large entries. Hence, it
is natural to penalize the number of non-zero coordinates of β, which leads to the following
penalized maximum likelihood procedure,

minimize
v∈Rp

‖y −Xv‖2
2 + λ‖v‖0, (1.7)

where ‖v‖0 := #{j ∈ {1, . . . , p} : vj 6= 0} is the so-called `0 norm and λ ≥ 0 is a regularization
parameter that controls how much weight is placed on the penalty. Unfortunately, this
optimization problem is non-convex, and so a natural convex relaxation is to replace ‖v‖0

with ‖v‖1, which is the “closest” convex function to ‖v‖0 within the family of `q norms, i.e.

minimize
v∈Rp

‖y −Xv‖2
2 + λ‖v‖1. (1.8)

This procedure is known as the Lasso [Tib96], and since its inception in 1996, it has been
one of the most influential methods in the subject of high-dimensional statistics. (A closely
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related method known as Basis Pursuit was proposed around the same time by [CDS98].)
At first sight, it is not clear that the this heuristic substitution of the `1 norm will produce
solutions that accurately estimate β when it is sparse. Over the course of the last 10 years, a
huge wave of research developed around this question, and the conditions needed for the Lasso
to succeed are now largely understood. An overview of this large theoretical development is
presented in the recent book [BG11], which summarizes an enormous range of papers.

Low-rank matrix completion. Many problems involving the estimation (or completion)
of an unknown matrix can be cast in the following observation model. Suppose M ∈ Rd1×d2

is a fixed unknown matrix, and we observe

yi = 〈Xi,M〉+ εi, i = 1, . . . , n, (1.9)

where εi are centered i.i.d. noise variables, the Xi ∈ Rd1×d2 are fixed and observable matrices,
and 〈A,B〉 := tr(A>B) denotes the matrix inner product. For instance, in the case of
recommender systems, if our observations consist of n preferences, i.e. values Mjk measuring
the affinity of customer j for product k, then each matrix Xi contains all 0’s except for a 1
in its (j, k) entry, and the noise variables are identically 0.

When n is small compared to the dimensions d1 and d2, the effect of dimension is especially
acute in estimating M , since the apparent number of unknown parameters is d1d2. Clearly,
some form of structure in the matrix M is necessary in order to reliably estimate M , and
in many problems, it is plausible to suppose that M is nearly low rank. Returning to
the example of recommender systems, it is known that many customers will have similar
preferences, which is to say that many rows of M will be nearly parallel, or equivalently,
that the“effective rank” of M is small. Hence, if we assume for simplicity that the noise
variables are Gaussian, then a rank-penalized form of maximum likelihood estimation can
be solved via the problem,

minimize
W∈Rd1×d2

n∑
i=1

(
yi − 〈Xi,W 〉

)2
+ λ rank(W ), (1.10)

where λ ≥ 0. In parallel with the problem of sparse linear regression above, the rank penalty
leads to an intractable combinatorial optimization problem. Also, the standard relaxation for
the rank-regularized problem is strikingly similar to the `1 relaxation for the `0 problem. To
see the connection, if we let σ(W ) denote the vector of singular values of the matrix W , then
note that rank(W ) = ‖σ(W )‖0. Hence, the success of the `1-heuristic for `0 minimization
leads us to consider using ‖σ(W )‖1 as a regularizer in the matrix context. Specifically, the `1

norm of the singular values is more commonly referred to as the nuclear norm (or Schatten-1
norm), denoted ‖W‖∗, which yields the following convex relaxation of (1.11),

minimize
W∈Rd1×d2

n∑
i=1

(
yi − 〈Xi,W 〉

)2
+ λ ‖W‖∗. (1.11)
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The statistical properties of this procedure, as well as many others based on nuclear norm
minimization, have been intensively studied over the last few years. See for instance the
papers [KLT11], [RFP10], [CR09], [CP11], [NW12].

1.2 Motivations of the dissertation

This dissertation is motivated by an interest in two facets of the theory of high-dimensional
statistics: inference and structure.

Inference. When using the word “inference”, we have in mind problems involving confi-
dence intervals, hypothesis tests, uncertainty quantification, and so on. The common thread
among such problems is that they are concerned with measuring the fluctuations of a statis-
tic, or finding its limiting distribution.

While the past decade has seen tremendous progress in the study of high-dimensional
models, relatively little attention has been given to problems of inference, and only recently
has substantial interest shifted in this direction. The trend has been particularly strong with
regard to significance testing in high-dimensional linear models, as evidenced by the recent
works [ZZ14; JM14a; JM14b; Buh13; Van+14]. As work in this direction continues, there
remain many open questions regarding the effects of high dimension on traditional inference
tools, and a complete understanding of high-dimensional inference at large seems to lie in
the distant future.

As a starting point towards a more general theory of high-dimensional inference, it is
natural to investigate bootstrap methods, since they provide a unified framework for many
confidence intervals and hypothesis tests. To this end, Chapter 2 of the dissertation will
consider the residual bootstrap method in the context of the high-dimensional linear model.
There, our focus will be in understanding how the structure of the design matrix affects the
performance of the residual bootstrap in approximating the sampling distribution of linear
contrasts. Bootstrap methods are reviewed in Section 1.3.

Structure. As described in Section 1.1, low-dimensional structure is often the crucial
ingredient needed for statistical methods to work in high-dimensional problems. Likewise,
the field of high-dimensional statistics has been influenced by the viewpoint that the existence
of low-dimensional structure should be taken as a default assumption — because in the
absence of structure, it is unlikely that much progress can be made. This line of thought has
been codified in the so-called bet on sparsity principle [HTF09, Section 16.2.2]. Specifically,
in models where sparsity is the relevant form of structure, the principle asserts that it is best
to “use a procedure that does well in sparse problems, since no procedure does well in dense
problems”.3

3It is not our intention here to criticize the bet on sparsity principle. We only mention it as a way of
giving some context to the general problem of checking structural assumptions in high-dimensional models.
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While the practice of betting on structured models has led to great advances in method-
ology, this success may sometimes overshadow more a basic question: How do we know if it
is necessary to bet on structure? Perhaps surprisingly, the answer is not always clear. In this
regard, the high-dimensional literature has not given much consideration to the possibility
that some structural assumptions can be verified in a data-driven way. Chapter 3 of this
dissertation is motivated by a desire to investigate this issue in greater detail, and to identify
situations where the existence of low-dimensional structure can be confirmed empirically.
Given that sparsity in the linear model is a canonical example of low-dimensional structure,
it will serve as our cornerstone. In particular, the chapter develops a method to estimate the
“effective number” of non-zero coefficients in a high-dimensional linear model — without
relying on any sparsity assumptions. Because the method depends on the ability to ran-
domly generate the design matrix in a special way, the method is geared primarily to the
framework of compressed sensing, where such control can be arranged by way of a physical
measurement system. The topic of compressed sensing is reviewed in Section 1.4.

Relations between inference and structure. Inference and structure have a chicken-
and-egg relationship in high-dimensional statistics. On one hand, hypothesis tests and confi-
dence intervals are naturally suited to the task of confirming model structure. On the other
hand, many of these procedures will not work properly in high dimensions if structure is not
available.

One way of disentangling the chicken-and-egg dilemma is to play different forms of struc-
ture off of one another. This idea is especially useful when one of the structures is relatively
easy to verify. For instance, in linear models, structure in the (observed) design matrix tends
to be easier to verify than structure in the (unknown) regression coefficients. Indeed, it is a
basic theme of the dissertation that structured designs can obviate the need for sparsity in
the regression coefficients when doing inference. In this regard, we show in Chapter 2 that
when the design matrix is nearly low rank, it is possible to do inference on linear contrasts
without making any sparsity assumptions. Secondly, in Chapter 3, we show that when the
design matrix can be sampled in a prescribed way, it is possible to “test the hypothesis of
sparsity”, again without making any sparsity assumptions.

1.3 Bootstrap methods

Questions of inference often boil down to finding the sampling distributions of estimators and
test statistics. Because analytical approximations to such distributions are rarely available
outside of specialized models, a more general approach is often needed. Resampling methods
are designed to serve this purpose.

In order to approximate the sampling distribution of a statistic, it is necessary to mea-
sure how much a statistic varies over repeated experiments. When the outcome of only a
single experiment is available, resampling methods attempt to circumvent this difficulty by
evaluating the statistic on certain subsets of the full dataset. The values obtained on subsets
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then serve as “proxies” for values of the statistic in repeated experiments. Since this is such
an intuitive idea, it is difficult to precisely trace its historical origin. Even so, the earliest
work on resampling is commonly attributed to Quenouille [Que49], and Tukey [Tuk58], who
are credited with the jackknife method.4

The jackknife method involves splitting a sample of n observations into n distinct subsets
of size n − 1, by excluding one observation at a time. (Generalizations to subsets of other
sizes are also possible.) The work of Quenouille and Tukey showed that by aggregating the
values of a statistic over such subsets, it is possible to correct for bias and construct sensible
confidence intervals in certain problems. During the 1960’s and 1970’s, these early ideas
surrounding the jackknife were extended further, as in the work of Hartigan [Har69; Har75]
and Stone [Sto74]. In turn, during the late 1970’s, the understanding of resampling methods
was profoundly reshaped by the work of Efron [Efr79], who introduced bootstrap methods,
and showed that the jackknife can be viewed as an approximation thereof.5

At a high level, the “bootstrap principle” can be explained along the following lines. Sup-
pose observations X1, . . . , Xn are drawn in an i.i.d. manner from a distribution F . Also, let
T = g(X1, . . . , Xn) denote a statistic of interest, where g is a fixed function. If the distribu-
tion F were known to us, then we could generate an independent copy of the original dataset,
X ′1, . . . , X

′
n, and then compute an additional sample of the statistic using g(X ′1, . . . , X

′
n). By

repetition, we could then obtain an unlimited number of samples of T , yielding the desired
sampling distribution. The fundamental idea of the bootstrap is to carry out this scheme by
replacing F with the empirical distribution F̂ of the original sample. Said differently, this
involves generating many i.i.d. samples of size n according to X∗1 , . . . , X

∗
n ∼ F̂ , and then

computing T ∗ := g(X∗1 , . . . , X
∗
n). Repeatedly generating samples of T ∗ in this way yields the

so-called non-parametric bootstrap approximation to the desired sampling distribution of T .
Although the bootstrap is simple to describe conceptually, the mathematical problem

of understanding when it works, as well as the methodological problem of tailoring it to
specific situations, have spawned more than three decades of research on a large family of
“bootstraps”. One natural variation on the non-parametric bootstrap is to sample datasets
X∗1 , . . . , X

∗
m of size m rather than n, where m � n. When the sampling is done with

replacement, this is typically referred to as the m-out-of-n bootstrap [BGZ97], and when
it is done without replacement, the method is referred to as subsampling [PRW99]. These
strategies can lead to advantages over the non-parametric bootstrap when dealing with “non-
smooth” statistics or heavy-tailed data (see Section 2.3 of the book [PRW99] for detailed
examples). Alternatively, when it is known that the data-generating distribution F belongs
to a parametric family, say F = Fθ, then this information can be exploited by drawing i.i.d.
samples X∗1 , . . . , X

∗
n ∼ Fθ̂, where θ̂ is an estimate obtained from the original dataset. This

recipe is known as the parametric bootstrap. Lastly, with regard to linear regression models,
statistics arising from estimated coefficients can be approximated in law via the residual

4In the preface of the book [PRW99], it is remarked that an even earlier manifestation of resampling
occurs in the work of Mahalanobis [Mah46].

5A modern survey of the jackknife and the bootstrap can be found in the book of [ST95].
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bootstrap. Since this method will form the basis of our work in Chapter 2, we now review it
in detail.

The residual bootstrap

In the setting of the standard linear regression model with fixed design, many statistics of
interest are functionals of the estimated regression coefficients. The residual bootstrap (RB),
proposed by Efron in 1979 [Efr79], is one of the most widely used resampling strategies for
approximating the laws of such statistics.

To introduce the method, suppose we observe a set of values y = (y1, . . . , yn) generated
from the model

y = Xβ + ε, (1.12)

where X ∈ Rn×p is a fixed design matrix with full rank and p < n. The coefficient vector
β ∈ Rp is unknown, and the entries of ε = (ε1, . . . , εn) ∈ Rn are drawn i.i.d. according to an
unknown distribution F0 with mean 0, and unknown variance σ2 <∞. Also, let

β̂LS := (X>X)−1X>y (1.13)

denote the least squares estimator, and suppose we are interested in approximating the
distribution of g(β̂LS), where g : Rp → R is a smooth function. Clearly, the randomness in

β̂LS is generated entirely from ε. Hence, it is natural to design a resampling scheme that
is based on generating “approximate samples” of ε. If we denote the residuals of β̂LS by
ε̂ := y −Xβ̂LS, then the algebraic relation

y = Xβ̂LS + ε̂ (1.14)

makes it is plausible that ε̂ might behave like a genuine sample of ε. To make this idea more
precise, we will use the residuals to construct an approximation to F0. Specifically, consider
the distribution F̃n that places mass 1/n at each of the values ε̂i − ē, where ē := 1

n

∑n
i=1 ε̂i.

(Subtracting off the value ē merely ensures that F̃n has mean 0, as F0 does.) With the
distribution F̃n in hand, we are free to generate a limitless supply of vectors

ε∗ = (ε∗1, . . . , ε
∗
n)

i.i.d.∼ F̃n. (1.15)

Likewise, if we use β̂LS as a proxy for β, then we can generate a proxy for y according to

y∗ := Xβ̂LS + ε∗. (1.16)

In turn, a least-squares estimator computed from y∗ will be denoted by β̂∗LS. That is,

β̂∗LS := (X>X)−1X>y∗. (1.17)

In this notation, the RB approximation to the law of g(β̂LS) is simply a histogram constructed

from a large number of samples of g(β̂∗LS).
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Consistency and failure of the residual bootstrap

The groundwork for the asymptotic theory of the RB method was laid in two seminal papers
of Bickel and Freedman [Fre81; BF83]. In essence, these papers show that if p/n → 0,
then the RB method consistently approximates the laws of all contrasts involving least-
squares coefficients. Moreover, the condition p/n → 0 is necessary to the extent that if
p/n → κ ∈ (0, 1), then there is always at least one contrast for which the RB method fails
(when applied to least-squares). We will focus on the main results of the 1983 paper, since
they partly subsume those of the 1981 paper. Both papers deal with the standard regression
model with fixed design (1.12), under the assumptions stated in Section 1.3.6 In summarizing
these results with (n, p) → ∞, we will view the regression model (1.12) as being embedded
in a sequence of models where p, β, and X depend implicitly on n, but where F0 is fixed
with respect to n.

Probability metrics. The results describing the consistency and failure of the RB method
will make use of two metrics on probability distributions: the Mallow-`2 metric7 and the
Lévy-Prohorov metric. For any two random vectors U and V in a Euclidean space with `2

norm ‖ · ‖2, the associated Mallows metric d2 is defined according to

d2
2(L(U),L(V )) := inf

π∈Π

{
E
[
‖U − V ‖2

2

]
: (U, V ) ∼ π

}
, (1.18)

where L(·) denotes the law of a random variable, and the infimum is over the class Π of joint
distributions π whose marginals are L(U) and L(V ). It is worth noting that convergence
in d2 is strictly stronger than weak convergence, since it also requires convergence of second
moments. Additional properties of the metric are discussed in the paper [BF81].

Next, if µ and ν are two distributions on Rd, then Lévy-Prohorov metric dLP is defined
as

dLP(µ, ν) := inf
{
ε > 0 : µ(K) ≤ ν(Kε) + ε and ν(K) ≤ µ(Kε) + ε for all K ∈ K(Rd)

}
,

(1.19)
where K(Rd) is the collection of compact subsets of Rd, and Kε is the set of points in Rd

whose Euclidean distance to K is at most ε. The dLP metric has the important property that
it metrizes weak convergence of distributions on Rd (and in fact separable metric spaces).
It can also be shown that dLP(µ, ν) ≤ d2(µ, ν)2/3 for all µ and ν [BF83]. We refer to the
paper [GS02] for further details on the dLP metric and its relations with other metrics.

Consistency. The problem of interest is to approximate the law of a general contrast
involving least-squares coefficients,

6The paper [Fre81] considers random design as well.
7The Mallows metric has many other names in the literature, such as the Wasserstein metric, the Kan-

torovich metric, and the earth-mover distance. Also, the d2 metric can be generalized by allowing any `q
norm with q ≥ 1 to replace the `2 norm in definition (1.18).
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Ψ(F0; c) := L(c>(β̂LS − β)), (1.20)

where c ∈ Rp \ {0} is arbitrary. If we let F̃n denote the empirical law of the centered least-
squares residuals, as in Section 1.3, then the law of the RB approximation, conditionally on
y, is given by

Ψ(F̃n; c) = c>(β̂∗LS − β̂LS). (1.21)

In order to measure how well the random distribution Ψ(F̃n; c) approximates Ψ(F0; c), the
Mallows-`2 metric will be used. As a way of comparing Ψ(F0; c) and Ψ(F̃n; c) on the proper
scale, we will normalize by the standard deviation of Ψ(F0; c). A simple calculation shows
that the variance of this distribution is

v(X; c) := var(Ψ(F0; c)) = σ2c>(X>X)−1c, (1.22)

and we will write v instead of v(X; c) to lighten notation. Under this normalization, the
following theorem shows that RB consistency is uniform with respect to the choice of contrast,
provided that p is small with respect to n.

Theorem 1.1 ([BF83]). Suppose the assumptions of the model (1.12) hold, and that as
(n, p)→∞, we have p/n→ 0. Then as (n, p)→∞,

E

[
sup

c∈Rp\{0}
d2

2

(
1√
v
Ψ(F̃n; c), 1√

v
Ψ(F0; c)

)]
→ 0. (1.23)

Failure. Under the condition p/n→ κ ∈ (0, 1), the paper [BF83] demonstrates the failure
of RB approximation by way of specific contrasts. The construction of “bad” contrasts for
which RB fails is closely connected to the structure of the design matrix, and its associated
“hat matrix”

H := X(X>X)−1X>. (1.24)

The ith diagonal entry Hii (also known as a leverage score) measures the statistical leverage

of the ith design point Xi with respect to the fitted coefficients β̂LS. It is a basic fact that
for any design matrix, the leverage scores satisfy

max
1≤i≤n

Hii ≥ p/n, (1.25)

which shows that when p/n → κ ∈ (0, 1), there is always at least one design point with
non-negligible leverage. The contrasts used to demonstrate the failure of RB are based on
the existence of such design points in the high-dimensional setting.

To simplify the presentation of the counterexamples, define λn to be the distribution that
places mass 1/n at each of the numbers 1 − Hii, with i = 1, . . . , n. Since the distributions
λn are defined on the compact set [0, 1], they form a tight sequence, and by Prohorov’s
theorem, there is a subsequence along which λn converges to a weak limit, say λ. The choice
of contrasts for demonstrating the failure of RB depends on whether or not the distribution
λ is degenerate (i.e. point mass at the value

∫
tdλ(t) = 1− κ).
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Theorem 1.2 ([BF83]8). Assume the model (1.12) holds and there is a constant κ such that
as (n, p)→∞, we have p/n→ κ ∈ (0, 1). Then the statements below are true.

(i) Suppose the distribution λ is nondegenerate, and the noise distribution F0 is equal to
N(0, 1). Let c> = X>i? be the row of X corresponding to i? = argmax1≤i≤nHii. Then,

the sequence of random variables dLP( 1√
v
Ψ(F̃n; c), 1√

v
Ψ(F0; c)) does not converge to 0

in probability.

(ii) Suppose the distribution λ is degenerate. In this case, there is at least one subsequence
{in} along which Hinin → κ. Let c> be the inth row of the design along such a sub-
sequence, i.e. c> = X>in. Also suppose the noise distribution F0 is symmetric about
0, has a finite moment-generating function in an open interval about 0, and cannot be
represented as a convolution of (1−κ)F0 with another distribution. Then, the sequence
of random variables dLP( 1√

v
Ψ(F̃n; c), 1√

v
Ψ(F0; c)) does not converge to 0 in probability.

The question of finding a remedy for these counterexamples will be the subject of Chapter
2.

1.4 Compressed sensing

Historically, signal processing research has treated data acquisition and data compression
as distinct processes. Over time, this division has created a situation where the tools for
acquisition and compression are at cross purposes. In one direction, acquisition devices have
made it possible to sample signals at higher frequencies — producing larger amounts of data
at finer resolution. Meanwhile, in the opposite direction, the methods of data compression
have found new ways to faithfully represent complex signals while retaining smaller amounts
of the acquired data. These conflicting aims have led researchers to question whether or not
the division is really necessary, and to seek more efficient approaches. Indeed, to use a well
quoted remark of Donoho, “Why go to so much effort to acquire all the data when most of
what we get will be thrown away? Can’t we just directly measure the part that won’t end
up being thrown away?” [Don06]. In response to questions such as these, compressed sensing
(CS) has emerged as an alternative signal processing framework that integrates acquisition
and compression into a single process.9

To make the relationship between CS and conventional signal processing more concrete,
consider the following stylized description of an imaging problem. In order to obtain a high
quality image, a typical camera first acquires several million pixels of data from a light
source. In turn, the megabytes of raw pixels might be compressed into 100 kilobytes of data
in a specialized format for later retrieval. By contrast, a CS camera would acquire only
100 kilobytes of raw data at the outset. Also, instead of collecting the data in terms of

8We have reformulated the result slightly from its original form.
9This idea is reflected in the the phrase compressed sensing, since the word “sensing” is roughly synony-

mous with “data acquisition”.
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ordinary pixels, a CS camera would collect “random linear combinations of pixels,” which
can be transformed into a 100 kilobyte image.10 Although both cameras are able to produce
high quality images, the fact that the CS camera demands far less data acquisition turns
out to be a substantial practical advantage in certain situations. For instance, when the
light source falls outside of the visible spectrum, e.g. in infrared or terahertz imaging, light
sensors with large numbers of pixels can be very expensive to build, and moreover, the rate
of acquisition can be very slow [Cha+08]. Consequently, the ability of a CS camera to
reduce data acquisition can lead to a reduction in cost, and an increase in speed. Beyond
the context of optical imaging, other applications of compressed sensing are being actively
studied in numerous areas, such as magnetic resonance imaging, radar, and cognitive radio,
just to name a few [EK12; FR13].

As sensible as the premise of CS may appear from the previous example, the early
research in CS was initially met with some degree of skepticism [Mac09]. The skepticism
was rooted in certain ideas surrounding the Shannon-Nyquist sampling theorem, which is
a foundational result in classical sampling theory [Nyq28; Sha49]. The theorem addresses
the problem of reconstructing a bandlimited continuous-time signal11 via uniform sampling.
Roughly speaking, the theorem asserts that if the signal’s bandwidth is at most B, then
it is possible to exactly reconstruct the signal from 2B uniformly spaced samples in the
time domain. In this way, if we imagine a continuous-time signal as being represented by
a vector in Rp, with coordinates corresponding to frequency components of the continuous
signal’s (discretized) Fourier transform, then one might expect that a reliable reconstruction
would require the number of measurements to increase proportionally with p. On the other
hand, the premise of CS is that if a signal in Rp can be faithfully compressed into a vector
in Rk with k � p, then it should be possible to accurately reconstruct the signal using a
number of measurements that is of order k. Despite the perceived conflict between these two
ideas, there is in fact no logical contradiction. In essence, the Shannon-Nyquist theorem is a
“worst-case” result that provides a sufficient condition for recovery, but not a necessary one.
Meanwhile, the focus of CS is restricted to a special class of “compressible signals” for which
the classical theory is overly pessimistic. So, in essence, CS seeks to overcome the curses of
dimensionality by making use of compressibility.

Signal compressibility not only makes efficient data acquisition possible, but it is also
ubiquitous in nature. Indeed, it is often the case that natural signals have a sparse represen-
tation with respect to a specialized basis or “dictionary”. Perhaps the most well known types
of bases and dictionaries used in signal processing are based on wavelets, and the design of
carefully engineered families of wavelets for specific problems in image and audio processing
has become an extensive field of research [Mal08]. In detail, a signal x ∈ Rp is said to have
a sparse representation with respect to a dictionary D = {φ1, . . . , φp} ⊂ Rp if there exists
an expansion x =

∑p
i=1 ciφi for which most of the coefficients ci are small. If the coefficients

are sorted in order of decreasing magnitude, |c1| ≥ |c2| ≥ · · · ≥ |cp|, and if |ci| ≈ 0 for all i

10 An example of a camera constructed along these lines is the so-called “single-pixel camera” [Dua+08].
11A continuous-time real-valued signal is bandlimited if its Fourier transform has bounded support.
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greater than some number T ∈ {1, . . . , p}, then it is clear that x is well-approximated by its
T-term approximation

∑T
i=1 ciφi. To the extent that the T -term approximation is a com-

pressed version of x, a sparse representation of x has become a standard way of describing
the compressibility of x. In the ideal case where ci = 0 for all i ≥ T , the signal x is called
T -sparse with respect to D, or is said to exhibit “hard sparsity”. Although the notion of
hard sparsity offers a convenient mathematical way of quantifying how compressible a signal
is, hard sparsity gives an unsatisfactory answer for signals with many small (but non-zero)
coordinates. In Chapter 3, we will introduce a generalized family of sparsity measures as a
means of counting the “effective number” of coordinates of arbitrary signals.

Having summarized the conceptual rudiments of CS, we turn our attention in the next
subsection to the mathematical aspects of the subject, including the formulation of the CS
model, recovery algorithms, and theoretical results.

The formulation and theory of compressed sensing

The theoretical foundation CS is built upon the linear measurement model. The observations
in this model, referred to as “linear measurements”, are given by

yi = 〈ai, x〉+ σεi, i = 1, . . . , n, (1.26)

where the ai ∈ Rp are user-specified “measurement vectors”, x ∈ Rp is an unknown signal,
and the σεi are noise variables with σ > 0 being a constant representing the noise level.
The model is high-dimensional and underdetermined, in the sense that n � p. In matrix
notation, the observations y = (y1, . . . , yn) may be expressed more concisely as

y = Ax+ σε, (1.27)

where A ∈ Rn×p is the “measurement matrix” whose ith row is ai, and ε = (ε1, . . . , εn).
Conventionally, it is also assumed that there exists an orthonormal basis for Rp in which x
is sparse, or nearly sparse. That is, if the relevant basis matrix is denoted by Φ ∈ Rp×p,
then most of the entries of the vector Φx are nearly 0. But for mathematical convenience, it
is simpler to imagine that x is sparse in the standard basis of Rp, and this can be achieved
without loss of generality by absorbing Φ into A from the right, and identifying x with Φx.

Despite the resemblance of the linear measurement model (1.27) to linear regression (as
discussed in Section 1.3), the role of the measurement (design) matrix is often different in
these two settings. In general, the modern regression literature treats the design matrix
as being “given”, and the possibility of constructing the matrix in different ways to suit
different statistical goals is typically given relatively little consideration.12 By contrast, in
CS, the matrix A usually corresponds to the configuration of a measurement device, and
the response y represents a physical interaction between the device and the signal x. For

12To some extent, this belies the historical connection between the term “design matrix” and the subject
of experimental design.
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this reason, it is often assumed that the system designer has control over the choice of A.
However, depending upon the physical limitations of certain measurement systems, there are
some choices of A that, in spite of their favorable theoretical properties, are difficult to realize
in actual experiments. The problem of identifying choices of A that balance the competing
demands of theory and practice is an area of ongoing research, from both mathematical and
experimental perspectives [DE11, Section IV].

Restricted isometries. Regardless of the particular way that the matrix A is constructed,
the assumption n � p implies that A always has a nontrivial null space in the standard
CS model. In particular, this means that the model is unidentifiable in the sense that
there always exists a non-zero x that cannot distinguished from the 0 vector using only
the measurements y. It is in this respect that sparsity plays a crucial role in CS model by
restoring identifiability. If it is assumed that x is non-zero and T -sparse in the standard basis
for Rp, then a clearly minimal requirement for identifiability is that Av 6= 0 for all non-zero
T -sparse vectors v ∈ Rp. In fact, as simple as this consideration may seem, it contains the
essential idea underlying many measurement schemes.

As the subject of CS has developed, a variety of identifiability conditions have been
analyzed. Two specific examples that have been especially influential in the literature are
the restricted isometry property of order k (RIP-k) [CT05], and the null-space property of
order k (NSP-k) [CDD09; DH01], where k is a presumed upper bound on the sparsity level
of the true signal. In detail, a matrix A ∈ Rn×p is said to satisfy RIP-k if there exists a
number δk ∈ (0, 1) such that the bounds

(1− δk)‖x‖2 ≤ ‖Ax‖2 ≤ (1 + δk)‖x‖2 (RIP-k)

hold for all k-sparse vectors x ∈ Rp. Secondly, a matrix A is said to satisfy NSP-k if there
is a constant Ck > 0 such that the bound

‖v[S]‖1 ≤ Ck‖v[Sc]‖1 (NSP-k)

holds for all S ⊂ {1, . . . , p} with card(S) ≤ k, and all v in the nullspace of A. Here, v[S] ∈ Rp

is the vector obtained by setting the jth coordinate of v equal to 0 if j 6∈ S.
The importance of RIP-k and NSP-k is that they provide criteria that lead to provable

guarantees about signal recovery, and also are satisfied by a fairly large class of measurement
matrices that can be approximated in physical systems. Moreover, these properties are
“generic”, in the sense that they hold with high probability for matrices drawn from suitable
ensembles. As an example, the following theorem quantifies this idea for sub-Gaussian
measurement matrices (recall the definition of a sub-Gaussian random variable in line (1.4)).

Theorem 1.3 ([Ver12]). Let G0 be a centered sub-Gaussian distribution on R with unit
variance, and let A ∈ Rn×p be a random matrix whose entries are drawn in an i.i.d. manner
from 1√

n
G0. Then, there is a constant c depending only on the distribution G0 such that the

following is true. If δ ∈ (0, 1), k ∈ {1, . . . , p}, and

n ≥ c
δ2
k log(ep/k), (1.28)
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then with probability at least 1− 2 exp(−cδ2n), the matrix A satisfies RIP-k with δk ≤ δ.

A similar statement also holds for NSP-k, since it is implied by RIP-k for certain choices of
Ck and δk (see [EK12, Theorem 1.5]).

Recovery algorithms. During the past ten years, a remarkably large number of algo-
rithms for recovering sparse signals have been proposed and analyzed in the CS literature.
While many of these algorithms have substantial technical differences, they can be broadly
unified as “searching for the sparsest signal that is consistent with the data”. In the simplest
case of noiseless measurements where y = Ax, this idea can be formulated directly as

minimize
v∈Rp

‖v‖0

subject to y = Av.
(1.29)

Beyond its intuitive appeal, the optimization problem (1.29) offers an attractive approach
because it is known that if A satisfies certain identifiability conditions, then the true signal
x is in fact the unique solution. For instance, this is known to be the case when x is k-sparse
and A satisfies RIP-2k. Yet, in spite of its advantages, this approach is severely limited in
two respects. First, the problem (1.29) is computationally intractable in the sense that it
is NP-hard [FR13, Section 2.3]. Second, the approach has limited applicability to physical
systems, since the constraint y = Av does not allow for measurement noise.

In order to handle these limitations, some of the most well known recovery algorithms
use the `1 norm as a convex surrogate for the `0 norm, and also relax the equality con-
straint in (1.29) to an approximate version. One such algorithm is Basis Pursuit Denoising
(BPDN) [CDS98], which is formulated as the minimization problem

minimize
v∈Rp

‖v‖1

subject to ‖y − Av‖2 ≤ σε0.
(BPDN)

where ε0 is a constant that is assumed to satisfy ‖ε‖2 ≤ ε0 for all realizations of the noise
vector ε in the model (1.27). Since the problem (BPDN) is convex, efficient numerical
solvers are available, as described in the paper [VF08] and references therein. A number
of other optimization-based approaches similar to BPDN have also been proposed, such as
the Lasso [Tib96] and the Dantzig Selector [CT07]. These methods are known to enjoy
performance guarantees that are comparable to BPDN, but for brevity we do not describe
them in detail.

In addition to methods that can be implemented as a single optimization problem, an-
other large collection of methods are formulated as iterative or “greedy” procedures. The
principal advantage of these methods is that they tend to be fast, especially when the true
signal is very sparse. Roughly speaking, these algorithms proceed in the following way. If the
true signal is assumed to be k-sparse, then an initial support set is chosen, say S0 ⊂ {1, . . . , p}
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with card(S) ≤ k, and an initial estimate x̂0 is easily computed as the restricted least-squares
solution

x̂0 := argmin{‖y − Av‖2 : v ∈ Rp and supp(v) ⊂ S0}, (1.30)

where supp(v) ⊂ {1, . . . , p} denotes the set of indices j such that vj 6= 0. Then, the support
set S0 is updated to a new set S1 according to a variable selection rule involving x̂0, and a
new estimate x̂1 is computed by replacing S0 with S1 in line (1.30). Examples of popular
methods that fall into this framework include Orthogonal Matching Pursuit [MZ93; PRK93],
Compressive Sampling Matching Pursuit (CoSamp) [NT09], and Subspace Pursuit [DM09].
These algorithms have been analyzed in depth and are known to have recovery properties
similar to the Dantzig Selector, Lasso, and BPDN. A more detailed review of these methods
may be found in the book [FR13].

Theoretical results. As a way of illustrating the general nature of recovery guarantees in
CS, we present two fundamental results for the BPDN algorithm below. These results address
both achievability and optimality, providing an upper bound on the `2 approximation error,
and also revealing that for a certain class of compressible signals, the rate of approximation
error cannot be improved by any recovery algorithm whatsoever.

The following upper bound on BPDN approximation error first appeared in the pa-
per [CRT06] and was subsequently refined in later years. Our statement of the result differs
slightly from its original form in order to reflect some of these refinements [CWX10]. To fix
some notation, if k ∈ {1, . . . , p}, we define x|k ∈ Rp to be the best k-term approximation to
x ∈ Rp, i.e. the vector obtained by setting the p− k smallest entries of x (in magnitude) to
0.

Theorem 1.4 ([CRT06; CWX10]). Suppose that the model (1.27) holds, and all realizations
of the nose vector satisfy ‖ε‖2 ≤ ε0 for some absolute constant ε0 ≥ 0. Fix k ∈ {1, . . . , p},
and let A be a matrix that satisfies RIP-k with δk < 0.307. Then, there are absolute constants
c1 and c2 such that any solution x̂ to (BPDN) satisfies

‖x̂− x‖2 ≤ c1σε0 + c2
‖x−x|k‖1√

k
. (1.31)

There are several notable aspects of the theorem. First, it applies to any signal x ∈ Rp,
and to any realization of the noise variables, provided that they obey the stated `2 norm
bound. Second, the result generalizes some of the earliest recovery guarantees in CS, which
only apply in the case of noiseless measurements and hard-sparse signals. In particular, if
ε0 = 0 and ‖x‖0 ≤ k, then the result guarantees exact recovery, x̂ = x.

We now consider the question of whether or not the rate of approximation error in (1.31)
can possibly be improved by another recovery algorithm.13 For this purpose, we restrict our
attention to signals lying in a weak `q ball of radius R ≥ 0,

Bq(R, p) := {v ∈ Rp : |v|[i] ≤ R · i−1/q}, (1.32)

13Our discussion here follows the presentation of ideas in Sections 3.3 and 3.5 of the paper [Can06].
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where |v|[1] ≥ · · · ≥ |v|[p] are the sorted magnitudes of the coordinates of a vector v. This
class of signals is compressible in the sense that any signal x ∈ Bq(R, p) is well approximated
by its best k-term approximation for sufficiently large k. Specifically, if x ∈ Bq(R, p), then
it is known that for any k ∈ {1, . . . , p},

‖x− x|k‖1 . R · k1−1/q. (1.33)

Details may be found in the paper [CDD09]. Consequently, in the case of noiseless mea-
surements, if we apply Theorem (1.4) with a suitable matrix A, and use line (1.33) with the
choice k = dn/ log(ep/n)e, then for any x ∈ Bq(R, p) with q ∈ (0, 1), we have the following
bound for all solutions x̂ of (BPDN),

‖x̂− x‖2 . R ·
(

log(ep/n)
n

)1/q−1/2

. (1.34)

The significance of this bound is that it can be directly linked to a universal lower bound on
the optimal `2 approximation error for recovering signals in Bq(R, p) from linear measure-
ments. To be precise, define the minimax `2 approximation error

Mq(R, n, p) := inf
A∈Rn×p

inf
R:Rn→Rp

sup
x∈Bq(R,p)

‖R(Ax)− x‖2, (1.35)

where the second infimum is over all possible recovery algorithms that map a vector of
measurements y ∈ Rn to a signal in Rp. Remarkably, it turns out that the precise order of
Mq(R, n, p) can be calculated from approximation theory, as given in the following theorem
due to [Fou+10].

Theorem 1.5 ([Fou+10]). Suppose n ≥ log(ep/n), and q ∈ (0, 1). Then, the minimax `2

approximation error Mq(R, n, p) satisfies

Mq(R, n, p) � R ·
(

log(ep/n)
n

)1/q−1/2

. (1.36)

The result is a direct consequence of Theorem 1.1 and Proposition 1.2 of the paper [Fou+10],
which builds on the early foundational work of Kashin [Kas77], Garnaev, and Gluskin [GG84].

By comparing the upper bound in line (1.34) with the minimax rate (1.36), we reach the
conclusion that BPDN is rate optimal for noiseless measurements and signals in Bq(R, p).
Further discussion of optimality properties of recovery algorithms may be found in the
book [FR13].

1.5 Contributions and organization of the dissertation

The remainder of the dissertation is organized in two chapters. In Chapter 2, we study the
residual bootstrap (RB) method for high-dimensional regression, and in Chapter 3, we focus
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on the issue of unknown sparsity in compressed sensing. The proofs of the theoretical results
for each of these chapters may be found in Appendices A and B respectively. Also, we note
that much of the material in Chapter 2 appeared previously in our work [Lop14] published
in the proceedings of the 2014 NIPS conference, and similarly, the material in Chapter 3
builds on our work [Lop13] published in the proceedings of the 2013 ICML conference.

Chapter 2. When regression coefficients are estimated via least squares, the results of
Bickel and Freedman, presented in Section 1.3, show that the RB method consistently ap-
proximates the laws of contrasts, provided that p � n, where the design matrix is of size
n× p. Up to now, relatively little work has considered how additional structure in the linear
model may extend the validity of RB to the setting where p/n � 1. In this setting, we
propose a version of RB that resamples residuals obtained from ridge regression. Our main
structural assumption on the design matrix is that it is nearly low rank — an assumption
that is satisfied in many applied regression problems, and one that can be inspected directly
from the observed design matrix. Under a few extra technical assumptions, we derive a
simple criterion for ensuring that RB consistently approximates the laws of contrasts of the
form c>(β̂ρ − β), where β̂ρ is a ridge regression estimator and β is the vector of true coeffi-
cients. We then specialize this result to study confidence intervals for mean response values
X>i β, where X>i is the ith row of the design. More precisely, we show that conditionally on
a Gaussian design with near low-rank structure, RB simultaneously approximates all of the
laws X>i (β̂ρ − β), i = 1, . . . , n. This result is of particular theoretical significance, due to
the fact that the ordinary RB method is known to fail when approximating the laws of such
contrasts if least-squares residuals are used, as summarized in Section 1.3. Furthermore,
the assumptions underlying our consistency results are mild to the extent that they do not
depend on the existence of a limiting distribution for the contrasts c>(β̂ρ − β), and also do
not require the vector β to be sparse.

Chapter 3. The theory of Compressed Sensing (CS) asserts that an unknown signal x ∈ Rp

can be accurately recovered from an underdetermined set of linear measurements, provided
that x is sufficiently sparse. However, in applications, the degree of sparsity ‖x‖0 is typically
unknown, and the problem of directly estimating ‖x‖0 has been a longstanding gap between
theory and practice. A closely related issue is that ‖x‖0 is a highly idealized measure of
sparsity, and for real signals with entries not exactly equal to 0, the value ‖x‖0 = p is
not a useful description of compressibility. In our previous work toward addressing these
problems, [Lop13], we considered an alternative measure of “soft” sparsity, ‖x‖2

1/‖x‖2
2, and

designed a procedure to estimate ‖x‖2
1/‖x‖2

2 that does not rely on sparsity assumptions.
The present work offers a new deconvolution-based method for estimating unknown spar-

sity, which has wider applicability and sharper theoretical guarantees. Whereas our earlier
work was limited to estimating ‖x‖2

1/‖x‖2
2, this chapter introduces a family of entropy-based

sparsity measures sq(x) :=
(‖x‖q
‖x‖1

) q
1−q parameterized by q ∈ [0,∞]. This family interpolates

between ‖x‖0 = s0(x) and ‖x‖2
1/‖x‖2

2 = s2(x) as q ranges over [0, 2], and our proposed
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method allows sq(x) to be estimated for all q ∈ (0, 2] \ {1}. In particular, ‖x‖0 can be
approximated via an estimate of sq(x) when q is small. Two other advantages of the new
approach are that it handles measurement noise with infinite variance, and that it yields
confidence intervals for sq(x) with asymptotically exact coverage probability.

In addition to confidence intervals, we analyze several other aspects of our proposed es-
timator ŝq(x). An important property of ŝq(x) is that its relative error converges at the
dimension-free rate of 1/

√
n. This means that using only n = O(1) measurements, sq(x)

can be estimated to any fixed degree of relative error, even when p is arbitrarily large. Next,
in connection with recovering the full signal x, we give new insight into the role of s2(x) by
deriving matching upper and lower bounds on the relative error of the Basis Pursuit De-
noising (BPDN) algorithm, at rate

√
s2(x) log(pe/n)/n. Finally, since our proposed method

is based on randomized measurements, we show that the use of randomization is essential.
Specifically, we show that the minimax relative error for estimating sq(x) with noiseless de-
terministic measurements is at least of order 1 when n < p and q ∈ [0, 2].
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Chapter 2

A Residual Bootstrap in High
Dimensions

In this chapter, we focus our attention on high-dimensional linear regression, and our aim
is to know when the residual bootstrap (RB) method consistently approximates the laws of
linear contrasts.

To specify the model, suppose that we observe a response vector Y ∈ Rn, generated
according to

Y = Xβ + ε, (2.1)

where X ∈ Rn×p is a given design matrix, β ∈ Rp is an unknown vector of coefficients, and
the error variables ε = (ε1, . . . , εn) are drawn i.i.d. from an unknown distribution F0, with
mean 0 and unknown variance σ2 <∞. As is conventional in high-dimensional statistics, we
assume the model (2.1) is embedded in a sequence of models indexed by n. Hence, we allow
X, β, and p to vary implicitly with n. We will leave p/n unconstrained until Section 2.2,
where we will assume p/n � 1 in Theorem 2.3, and then in Section 2.2, we will assume
further that p/n is bounded strictly between 0 and 1.1 The distribution F0 is fixed with
respect to n, and none of our results require F0 to have more than four moments.

Although we are primarily interested in cases where the design matrix X is deterministic,
we will also study the performance of the bootstrap conditionally on a Gaussian design. For
this reason, we will use the symbol E[. . . |X] even when the design is non-random so that
confusion does not arise in relating different sections of the chapter. Likewise, the symbol
E[. . . ] refers to unconditional expectation over all sources of randomness. Whenever the
design is random, we will assume X ⊥⊥ ε, denoting the distribution of X by PX , and the
distribution of ε by Pε.

Within the context of the regression, we will be focused on linear contrasts c>(β̂ − β),

where c ∈ Rp is a fixed vector and β̂ ∈ Rp is an estimate of β. The importance of contrasts
arises from the fact that they unify many questions about a linear model. For instance,
testing the significance of the ith coefficient βi may be addressed by choosing c to be the

1We plan to remove this restriction in a forthcoming version of this work.
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standard basis vector c> = e>i . Another important problem is quantifying the uncertainty
of point predictions, which may be addressed by choosing c> = X>i , i.e. the ith row of the
design matrix. In this case, an approximation to the law of the contrast leads to a confidence
interval for the mean response value E[Yi] = X>i β. Further applications of contrasts occur
in the broad topic of ANOVA [LR05].

Intuition for structure and regularization in RB. The following two paragraphs
explain the core conceptual aspects of the chapter. To understand the role of regularization in
applying RB to high-dimensional regression, it is helpful to think of RB in terms of two ideas.
First, if β̂LS denotes the ordinary least squares estimator, then it is a simple but important
fact that contrasts can be written as c>(β̂LS−β) = a>ε where a>:= c>(X>X)−1X>. Hence,
if it were possible to sample directly from F0, then the law of any such contrast could be
easily determined. Since F0 is unknown, the second key idea is to use the residuals of some
estimator β̂ as a proxy for samples from F0. When p� n, the least-squares residuals are a
good proxy [Fre81; BF83]. However, it is well-known that least-squares tends to overfit when

p/n � 1. When β̂LS fits “too well”, this means that its residuals are “too small”, and hence

they give a poor proxy for F0. Therefore, by using a regularized estimator β̂, overfitting
can be avoided, and the residuals of β̂ may offer a better way of obtaining “approximate
samples” from F0.

The form of regularized regression we will focus on is ridge regression:

β̂ρ := (X>X + ρIp×p)
−1X>Y, (2.2)

where ρ > 0 is a user-specificed regularization parameter. As will be seen in Sections 2.2
and 2.2, the residuals obtained from ridge regression lead to a particularly good approxi-
mation of F0 when the design matrix X is nearly low-rank, in the sense that most of its
singular values are close to 0. In essence, this condition is a form of sparsity, since it implies
that the rows of X nearly lie in a low-dimensional subspace of Rp. However, this type of
structural condition has a significant advantage over the the more well-studied assumption
that β is sparse. Namely, the assumption that X is nearly low-rank can be inspected directly
in practice — whereas sparsity in β is typically unverifiable without special control over the
design matrix (cf. Chapter 3). In fact, our results will impose no conditions on β, other than
that ‖β‖2 remains bounded as (n, p)→∞. Finally, it is worth noting that the occurrence of
near low-rank design matrices is actually very common in applications, and is often referred
to as collinearity [DS98, ch. 17].

Contributions and outline. The primary contribution of this chapter is a complement
to the work of Bickel and Freedman [BF83] (hereafter B&F 1983) — who showed that in

general, the RB method fails to approximate the laws of least-squares contrasts c>(β̂LS− β)
when p/n � 1. (See the discussion in Section 1.3 of Chapter 1 for additional details.)
Instead, we develop an alternative set of results, proving that even when p/n � 1, RB can

successfully approximate the laws of “ridged contrasts” c>(β̂ρ−β) for many choices of c ∈ Rp
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— provided that the design matrix X is nearly low rank and that the resampled residuals
are obtained from a ridge estimator. A particularly interesting consequence of our work is
that RB successfully approximates the law c>(β̂ρ − β) for a certain choice of c that was
shown in B&F 1983 to “break” RB when applied to least-squares. Specifically, such a c can
be chosen as one of the rows of X with a high leverage score. This example corresponds to
the practical problem of setting confidence intervals for mean response values E[Yi] = X>i β.
(Additional background is given in Section 1.3 of Chapter 1, as well as in Section 2.2 in the
current chapter). Lastly, from a technical point of view, a third notable aspect of our results
is that they are formulated in terms of the Mallows-`2 metric, which frees us from having to
rely on the existence of a limiting distribution.

Apart from B&F 1983, the most closely related works we are aware of are the recent
papers [CL13], [LY13], and [EP15], which also consider RB in the high-dimensional setting.
The first two works differs from ours insofar as they focus on role of sparsity in β and do
not make use of low-rank structure in the design. (Our work deals only with structure in
the design and imposes no sparsity assumptions on β.) Lastly, the theoretical results in the
third paper [EP15] concentrate on the failure of RB in the presence of unstructured designs.

The remainder of the chapter is organized as follows. In Section 2.1, we formulate the
problem of approximating the laws of contrasts, and describe our proposed methodology for
RB based on ridge regression. Then, in Section 2.2 we state several results that lay the
groundwork for Theorem 2.4, which shows that that RB can successfully approximate all
of the laws L(X>i (β̂ρ − β)|X), i = 1, . . . , n, conditionally on a Gaussian design. Proofs are
given in Appendix A.

2.1 Problem setup and methodology

Problem setup. For any c ∈ Rp, it is clear that conditionally on X, the law of c>(β̂ρ−β)
is completely determined by F0, and hence it makes sense to use the notation

Ψρ(F0; c) := L
(
c>(β̂ρ − β)

X). (2.3)

The problem we aim to solve is to approximate the distribution Ψρ(F0; c) for suitable choices
of c.

Residual bootstrap for ridge regression. Here, we briefly explain the steps involved
in the residual bootstrap procedure, applied to the ridge estimator β̂ρ of β. To proceed
somewhat indirectly, consider the following “bias-variance” decomposition of Ψρ(F0; c), con-
ditionally on X,

Ψρ(F0; c) = L
(
c>
(
β̂ρ − E[β̂ρ|X]

)X)︸ ︷︷ ︸
=: Φρ(F0;c)

+ c>
(
E[β̂ρ|X]− β

)︸ ︷︷ ︸
=: bias(Φρ(F0;c))

. (2.4)

Note that the distribution Φ(F0; c) has mean zero, so that the second term on the right
side is the bias of Φρ(F0; c) as an estimator of Ψρ(F0; c). Furthermore, the distribution
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Φρ(F0; c) may be viewed as the “variance component” of Ψρ(F0; c). We will be interested
in situations where the regularization parameter ρ may be chosen small enough so that the
bias component is small. In this case, one has Ψρ(F0; c) ≈ Φρ(F0; c), and then it is enough
to find an approximation to the law Φρ(F0; c), which is unknown. To this end, a simple

manipulation of c>(β̂ρ − E[β̂ρ|X]) leads to

Φρ(F0; c) = L(c>(X>X + ρIp×p)
−1X>ε

X). (2.5)

Now, to approximate Φρ(F0; c), let F̂ be any centered estimate of F0. (Typically, F̂ is
obtained by using the centered residuals of some estimator of β, but this is not necessary in
general.) Also, let ε∗ = (ε∗1, . . . , ε

∗
n) ∈ Rn be an i.i.d. sample from F̂ . Then, replacing ε with

ε∗ in line (2.5) yields

Φρ(F̂ ; c) = L(c>(X>X + ρIp×p)
−1X>ε∗

X). (2.6)

At this point, we define the (random) measure Φρ(F̂ ; c) to be the RB approximation to
Φρ(F0; c). Hence, it is clear that the RB approximation is simply a “plug-in rule”.

A two-stage approach. An important feature of the procedure just described is that
we are free to use any centered estimator F̂ of F0. This fact offers substantial flexibility
in approximating Ψρ(F0; c). One way of exploiting this flexibility is to consider a two-stage

approach, where a “pilot” ridge estimator β̂% is used to first compute residuals whose centered

empirical distribution function is F̂%, say. Then, in the second stage, the distribution F̂% is
used to approximate Φρ(F0; c) via the relation (2.6). (Note that such an approach involves
two distinct regularization parameters ρ and %.)

To be more detailed, if (ê1(%), . . . , ên(%)) = ê(%) := Y −Xβ̂% are the residuals of β̂%, then

we define F̂% to be the distribution that places mass 1/n at each of the values êi(%) − ē(%)
with ē(%) := 1

n

∑n
i=1 êi(%). Here, it is important to notice that the value % is chosen to

optimize F̂% as an approximation to F0. By contrast, the choice of ρ depends on the relative

importance of width and coverage probability for confidence intervals based on Φρ(F̂%; c).
Theorems 2.1, 2.3, and 2.4 will offer some guidance in selecting % and ρ.

Resampling algorithm. To summarize the discussion above, if B is user-specified number
of bootstrap replicates, our proposed method for approximating Ψρ(F0; c) is given below.

1. Select ρ and %, and compute the residuals ê(%) = Y −Xβ̂%.
2. Compute the centered distribution function F̂%, putting mass 1/n at each êi(%)− ē(%).

3. For j = 1, . . . , B:

• Draw a vector ε∗ ∈ Rn of n i.i.d. samples from F̂%.
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• Compute zj := c>(X>X + ρIp×p)
−1X>ε∗.

4. Return the empirical distribution of z1, . . . , zB.

Clearly, as B → ∞, the empirical distribution of z1, . . . , zB converges weakly to Φρ(F̂%; c),
with probability 1. As is conventional, our theoretical analysis in the next section will ignore
Monte Carlo issues, and address only the performance of Φρ(F̂%; c) as an approximation to
Ψρ(F0; c).

2.2 Main results

A bias-variance decomposition for bootstrap approximation

To give some notation for analyzing the bias-variance decomposition of Ψρ(F0; c) in line (2.4),

we define the following quantities based upon the ridge estimator β̂ρ. Namely, the variance
is

vρ = vρ(X; c) := var(Ψρ(F0; c)|X) = σ2‖c>(X>X + ρIp×p)
−1X>‖2

2.

To express the bias of Φρ(F0; c), we define the vector δ(X) ∈ Rp according to

δ(X) := β − E[β̂ρ] =
[
Ip×p − (X>X + ρIp×p)

−1X>X
]
β, (2.7)

and then put

b2
ρ = b2

ρ(X; c) := bias2(Φρ(F0; c)) = (c>δ(X))2. (2.8)

We will sometimes omit the arguments of vρ and b2
ρ to lighten notation. Note that vρ(X; c)

does not depend on β, and b2
ρ(X; c) only depends on β through δ(X).

The following result gives a regularized and high-dimensional extension of some lemmas
in Freedman’s early work [Fre81] on RB for least squares. The result does not restrict the size
of p/n, and does not place any structural assumptions on the design matrix, or on the true
parameter β. Also, we make use of the Mallow (Kantorovich) metric defined in Section 1.3
of Chapter 1.

Theorem 2.1 (consistency criterion). Suppose X ∈ Rn×p is fixed. Let F̂ be any estimator
of F0, and let c ∈ Rp be any vector such that vρ = vρ(X; c) 6= 0. Then with Pε-probability 1,
the following inequality holds for every n ≥ 1, and every ρ > 0,

d2
2

(
1√
vρ

Ψρ(F0; c), 1√
vρ

Φρ(F̂ ; c)
)
≤ 1

σ2d
2
2(F0, F̂ ) +

b2ρ
vρ
. (2.9)
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Remarks. Observe that the normalization 1/
√
vρ ensures that the bound is non-trivial,

since the distribution Ψρ(F0; c)/
√
vρ has variance equal to 1 for all n (and hence does not

become degenerate for large n). To consider the choice of ρ, it is simple to verify that the
ratio b2

ρ/vρ decreases monotonically as ρ decreases. Note also that as ρ becomes small, the

variance vρ becomes large, and likewise, confidence intervals based on Φρ(F̂ ; c) become wider.
In other words, there is a trade-off between the width of the confidence interval and the size
of the bound (2.9).

Sufficient conditions for consistency of RB. An important practical aspect of Theo-
rem 2.1 is that for any given contrast c, the variance vρ(X; c) can be easily estimated, since

it only requires an estimate of σ2, which can be obtained from F̂ . Consequently, whenever
theoretical bounds on d2

2(F0, F̂ ) and b2
ρ(X; c) are available, the right side of line (2.9) can

be controlled. In this way, Theorem 2.1 offers a simple route for guaranteeing that RB is
consistent. In Sections 2.2 and 2.2 to follow, we derive a bound on E[d2

2(F0, F̂ )|X] in the

case where F̂ is chosen to be F̂%. Later on in Section 2.2, we study RB consistency in the
context of prediction with a Gaussian design, and there we derive high probability bounds
on both vρ(X; c) and b2

ρ(X; c) where c is a particular row of X.

A link between bootstrap consistency and MSPE

If β̂ is an estimator of β, its mean-squared prediction error (MSPE), conditionally on X, is
defined as

mspe(β̂ |X) := 1
n
E
[
‖X(β̂ − β)‖2

2

X]. (2.10)

The previous subsection showed that in-law approximation of contrasts is closely tied to the
approximation of F0. We now take a second step of showing that if the centered residuals of
an estimator β̂ are used to approximate F0, then the quality of this approximation can be
bounded naturally in terms of mspe(β̂ |X). This result applies to any estimator β̂ computed
from the observations (2.1).

Theorem 2.2. Suppose X ∈ Rn×p is fixed. Let β̂ be any estimator of β, and let F̂ be
the empirical distribution of the centered residuals of β̂. Also, let Fn denote the empirical
distribution of n i.i.d. samples from F0. Then for every n ≥ 1,

E
[
d2

2(F̂ , F0)
X] ≤ 2 mspe(β̂ |X) + 2E[d2

2(Fn, F0)] + 2σ2

n
. (2.11)

Remarks. As we will see in the next section, the MSPE of ridge regression can be bounded
in a sharp way when the design matrix is approximately low rank, and there we will analyze
mspe(β̂%|X) for the pilot estimator. Consequently, when near low-rank structure is available,
the only remaining issue in controlling the right side of line (2.11) is to bound the quantity
E[d2

2(Fn, F0)|X]. The recent work of Bobkov and Ledoux [BL14] provides an in-depth study
of this question, and they derive a variety of bounds under different tail conditions on F0.
We summarize one of their results below.
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Lemma 2.1 (Bobkov and Ledoux, 2014). If F0 has a finite fourth moment, then

E[d2
2(Fn, F0)] . log(n)n−1/2. (2.12)

Remarks. The fact that the squared distance is bounded from above at the rate log(n)n−1/2

is an indication that d2 is a rather strong metric on distributions. For a detailed discussion
of this result, see Corollaries 7.17 and 7.18 in the paper [BL14]. Although it is possible to
obtain faster rates when more stringent tail conditions are placed on F0, we will only need a
fourth moment, since the mspe(β̂|X) term in Theorem 2.2 will often have a slower rate than
log(n)n−1/2, as discussed in the next section.

Consistency of ridge regression in MSPE for near low rank designs

In this subsection, we show that when the tuning parameter % is set at a suitable rate, the
pilot ridge estimator β̂% is consistent in MSPE when the design matrix is near low-rank —
even when p/n is large, and without any sparsity constraints on β. We now state some

assumptions, using Σ̂ = 1
n
X>X to denote the sample covariance matrix.

A2.1. There is a number ν > 0, and absolute constants κ1, κ2 > 0, such that

κ1i
−ν ≤ λi(Σ̂) ≤ κ2i

−ν for all i = 1, . . . , n ∧ p.

A2.2. There are absolute constants θ, γ > 0, such that for every n ≥ 1, %
n

= n−θ and
ρ
n

= n−γ.

A2.3. The vector β ∈ Rp satisfies ‖β‖2 . 1.

Due to Theorem 2.2, the following bound shows that the residuals of β̂% may be used to
extract a consistent approximation to F0. Two other notable features of the bound are that
it is non-asymptotic and dimension-free.

Theorem 2.3. Suppose that X ∈ Rn×p is fixed and that assumptions A2.1–A2.3 hold, with
p/n � 1. Assume further that θ is chosen as θ = 2ν

3
when ν ∈ (0, 1

2
), and θ = ν

ν+1
when

ν > 1
2
. Then,

mspe(β̂%|X) .

{
n−

2ν
3 if ν ∈ (0, 1

2
),

n−
ν
ν+1 if ν > 1

2
.

(2.13)

Also, both bounds in (2.13) are tight in the sense that β can be chosen so that β̂% attains
either rate.

Remarks. Since the eigenvalues λi(Σ̂) are observable, they may be used in principle to
estimate ν and guide the selection of %/n = n−θ. However, from a practical point of view, our
experience with simulations suggests it is easier to select % via cross-validation in numerical
experiments, rather than via an estimate of ν.
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A link with Pinsker’s Theorem. In the particular case when F0 is a centered Gaussian
distribution, the “prediction problem” of estimating Xβ is very similar to estimating the
mean parameters of a Gaussian sequence model, with error measured in the `2 norm. In
the alternative sequence-model format, the decay condition on the eigenvalues of 1

n
X>X

translates into an ellipsoid constraint on the mean parameter sequence [Tsy09; Was06]. For
this reason, Theorem 2.3 may be viewed as “regression version” of `2 error bounds for the
sequence model under an ellipsoid constraint (cf. Pinsker’s Theorem, [Tsy09; Was06]). Due
to the fact that the latter problem has a very well developed literature, there may be various
“neighboring results” elsewhere. Nevertheless, we could not find a direct reference for our
stated MSPE bound in the current setup. For the purposes of our work in this paper,
the more important point to take away from Theorem 2.3 is that it can be coupled with
Theorem 2.2 for proving consistency of RB.

Confidence intervals for mean responses, conditionally on a
Gaussian design

In this section, we consider the situation where the design matrix X has rows X>i ∈ Rp drawn
i.i.d. from a multivariate normal distribution N(0,Σ), with X ⊥⊥ ε. (The covariance matrix
Σ may vary with n.) Conditionally on a realization of X, we analyze the RB approximation

of the laws Ψρ(F0;Xi) = L(X>i (β̂ρ− β)|X). As discussed in Section 3.1, this corresponds to
the problem of setting confidence intervals for the mean responses E[Yi] = X>i β. Assuming
that the population eigenvalues λi(Σ) obey a decay condition, we show below in Theorem 2.4
that RB succeeds with high PX-probability. Moreover, this consistency statement holds for
all of the laws Ψρ(F0;Xi) simultaneously. That is, among the n distinct laws Ψρ(F0;Xi),
i = 1, . . . , n, even the worst bootstrap approximation is still consistent.

In addition to the applicability of setting confidence intervals for mean response values,
our interest in approximating the laws Ψρ(F0;Xi) arises from the fact that the ordinary RB
based on least squares is known to fail in general for contrasts of this type. As discussed in
Section 1.3 of Chapter 1, the specific choice of the vector X>i that breaks the ordinary RB
depends on the behavior of the diagonal entries of the hat matrix H := X(X>X)−1X>, when
X>X is invertible. Let λn denote the (discrete) distribution that places mass 1/n at each
of the values 1 −Hii for i = 1, . . . , n. When X is a Gaussian design, and p/n → κ ∈ (0, 1)
as (n, p) → ∞, it follows from Proposition A.1 in Appendix A.5 that with probability 1,
the distributions λn converge weakly to a point mass at the value 1 − κ. In this situation,
Theorem 1.2 in Chapter 1 shows that for any subsequence {in} along which Hinin → κ (and at
least one must exist), the contrast c> = X>in leads to failure of the ordinary RB (conditionally
on the design). Interestingly, it turns out that for Gaussian designs, max1≤i≤n |Hii−p/n| → 0
almost surely, and so in fact, choosing c> to be any row of the design leads to the failure of
the ordinary RB.

We now state some population-level assumptions in preparation for the results of this
section.
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A2.4. The operator norm of Σ ∈ Rp×p satisfies ‖Σ‖op . 1.

Next, we impose a decay condition on the eigenvalues of Σ. This condition also ensures
that Σ is invertible for each fixed p — even though the bottom eigenvalue may become
arbitrarily small as p becomes large. It is also important to notice that we now use η for
the decay exponent of the population eigenvalues, whereas we used ν when describing the
sample eigenvalues in the previous section.

A2.5. There is a number η > 0, and absolute constants k1, k2 > 0, such that for all i =
1, . . . , p,

k1i
−η ≤ λi(Σ) ≤ k2i

−η.

A2.6. There are absolute constants k3, k4 ∈ (0, 1) such that for all n ≥ 3, we have the bounds
k3 ≤ p

n
≤ k4 and p ≤ n− 2.

The following lemma collects most of the effort needed in proving our final result in
Theorem 2.4. Here it is also helpful to recall the notation ρ/n = n−γ and %/n = n−θ from
Assumption 2.2.

Lemma 2.2. Suppose that the matrix X ∈ Rn×p has rows X>i drawn i.i.d. from N(0,Σ),
and that assumptions A2.2–A2.6 hold. Furthermore, assume that γ chosen so that 0 <
γ < min{η, 1}. Then, the statements below are true.
(i) (bias inequality)
Fix any τ > 0. Then, there is an absolute constant κ0 > 0, such that for all large n, the
following event holds with PX-probability at least 1− n−τ − ne−n/16,

max
1≤i≤n

b2
ρ(X;Xi) ≤ κ0 · n−γ · (τ + 1) log(n+ 2). (2.14)

(ii) (variance inequality)
There are absolute constants κ1, κ2 > 0 such that for all large n, the following event holds
with PX-probability at least 1− 4n exp(−κ1n

γ
η ),

max
1≤i≤n

1
vρ(X;Xi)

≤ κ2n
1− γ

η . (2.15)

(iii) (mspe inequalities)
Suppose that θ is chosen as θ = 2η/3 when η ∈ (0, 1

2
), and that θ is chosen as θ = η

1+η
when

η > 1
2
. Then, there are absolute constants κ3, κ4, κ5, κ6 > 0 such that for all large n,

mspe(β̂%|X) ≤
{
κ4n

− 2η
3 with PX-prob. at least 1− exp(−κ3n

2−4η/3), if η ∈ (0, 1
2)

κ6n
− η
η+1 with PX-prob. at least 1− exp(−κ5n

2
1+η ), if η > 1

2 .
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Remarks. Note that the two rates in part (iii) coincide as η approaches 1/2. At a con-
ceptual level, the entire lemma may be explained in relatively simple terms. Viewing the
quantities mspe(β̂%|X), b2

ρ(X;Xi) and vρ(X;Xi) as functionals of a Gaussian matrix, the
proof involves deriving concentration bounds for each of them. Indeed, this is plausible
given that these quantities are smooth functionals of X. However, the difficulty of the proof
arises from the fact that they are also highly non-linear functionals of X. We now combine
Lemmas 2.1 and 2.2 with Theorems 2.1 and 2.2 to show that all of the laws Ψρ(F0;Xi) can
be simultaneously approximated via our two-stage RB method.

Theorem 2.4. Suppose that F0 has a finite fourth moment, assumptions A2.2–A2.6 hold,
and γ is chosen so that η

1+η
< γ < min{η, 1}. Also suppose that θ is chosen as θ = 2η/3

when η ∈ (0, 1
2
), and θ = η

η+1
when η > 1

2
. Then, there is a sequence of positive numbers δn

with limn→∞ δn = 0, such that the event

E
[

max
1≤i≤n

d2
2

(
1√
vρ

Ψρ(F0;Xi),
1√
vρ

Φρ(F̂%;Xi)
)X] ≤ δn (2.16)

has PX-probability tending to 1 as n→∞.

Remark. Lemma 2.2 gives explicit bounds on the numbers δn, as well as the probabilities of
the corresponding events, but we have stated the result in this way for the sake of readability.

2.3 Simulations

In four different settings of n, p, and the decay parameter η, we compared the nominal 90%
confidence intervals (CIs) of four methods: “oracle”, “ridge”, “normal”, and “OLS”, to be
described below. In each setting, we generated N1 := 100 random designs X with i.i.d. rows
drawn from N(0,Σ), where λj(Σ) = j−η, j = 1, . . . , p, and the eigenvectors of Σ were drawn
randomly by setting them to be the Q factor in a QR decomposition of a standard p × p
Gaussian matrix. Then, for each realization of X, we generated N2 := 1000 realizations of Y
according to the model (2.1), where β = 1/‖1‖2 ∈ Rp, and F0 is the centered t distribution
on 5 degrees of freedom, rescaled to have standard deviation σ = 0.1. For each X, and each
corresponding Y , we considered the problem of setting a 90% CI for the mean response value
X>i?β, where X>i? is the row with the highest leverage score, i.e. i? = argmax1≤i≤nHii with
H = X(X>X)−1X>. This choice is motivated by the fact that it is known to break the
standard RB method based on least-squares fails when p/n � 1.2 Below, we refer to this
method as “OLS”.

To describe the other three methods, “ridge” refers to the interval [X>i? β̂ρ− q̂0.95, X
>
i? β̂ρ−

q̂0.05], where q̂α is the α% quantile of the numbers z1, . . . , zB computed in the proposed
algorithm in Section 2.1, with B = 1000 and c> = X>i? . To choose the parameters ρ and %
for a given X and Y , we first computed r̂ as the value that optimized the MSPE error of a

2See the discussion at the beginning of the previous section, as well as Section 1.3 of Chapter 1).
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ridge estimator β̂r with respect to 5-fold cross validation; i.e. cross validation was performed
for every distinct pair (X, Y ). We then put % = 5r̂ and ρ = 0.1r̂, as we found the prefactors
5 and 0.1 to work adequately across various settings. (Optimizing % with respect to MSPE
is motivated by Theorems 2.1, 2.2, and 2.3. Also, choosing ρ to be somewhat smaller than %
conforms with the constraints on θ and γ in Theorem 2.4.) The method “normal” refers to the

CI based on the (heuristic) normal approximation L(X>i?(β̂ρ−β)|X) ≈ N(0, τ̂ 2), where τ̂ 2 =
σ̂2‖X>i?(X>X+ρIp×p)

−1X>‖2
2, ρ = 0.1r̂, and σ̂2 is the usual unbiased estimate of σ2 based on

OLS residuals. The “oracle” method refers to the interval [X>i? β̂ρ − q̃0.95, X
>
i? β̂ρ − q̃0.05], with

ρ = 0.1r̂, and q̃α being the empirical α% quantile of X>i (β̂ρ− β) over all 1000 realizations of
Y based on a given X. (This accounts for the randomness in ρ = 0.1r̂.)

Within a given setting of the triplet (n, p, η), we refer to the “coverage” of a method as
the fraction of the N1×N2 = 105 instances where the method’s CI contained the parameter
X>i?β. Also, we refer to “width” as the average width of a method’s intervals over all of
the 105 instances. The four settings of (n, p, η) correspond to moderate/high dimension and
moderate/fast decay of the eigenvalues λi(Σ). Even in the moderate case of p/n = 0.45, the
results show that the OLS intervals are too narrow and have coverage noticeably less than
90%. As expected, this effect becomes more pronounced when p/n = 0.95. The ridge and
normal intervals perform reasonably well across settings, with both performing much better
than OLS. However, it should be emphasized that our study of RB is motivated by the desire
to gain insight into the behavior of the bootstrap in high dimensions — rather than trying
to outperform particular methods. In future work, we plan to investigate the relative merits
of the ridge and normal intervals in greater detail.

Table 2.1: Comparison of nominal 90% confidence intervals

oracle ridge normal OLS

setting 1 width 0.21 0.20 0.23 0.16

n = 100, p = 45, η = 0.5 coverage 0.90 0.87 0.91 0.81

setting 2 width 0.22 0.26 0.26 0.06

n = 100, p = 95, η = 0.5 coverage 0.90 0.88 0.88 0.42

setting 3 width 0.20 0.21 0.22 0.16

n = 100, p = 45, η = 1 coverage 0.90 0.90 0.91 0.81

setting 4 width 0.21 0.26 0.23 0.06

n = 100, p = 95, η = 1 coverage 0.90 0.92 0.87 0.42
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Chapter 3

Unknown Sparsity in Compressed
Sensing

3.1 Introduction

In this chapter, we consider the standard compressed sensing (CS) model, involving n linear
measurements y = (y1, . . . , yn), generated according to

y = Ax+ σε, (3.1)

where x ∈ Rp is an unknown signal, A ∈ Rn×p is a measurement matrix specified by the
user, σε ∈ Rn is a random noise vector, and n� p. The central problem of CS is to recover
the signal x using only the observations y and the matrix A. Over the course of the past
decade, a large body of research has shown that this seemingly ill-posed problem can be
solved reliably when x is sparse. Specifically, when the sparsity level of x is measured in
terms of the `0 norm ‖x‖0 := card{j : xj 6= 0}, it is well known that if n & ‖x‖0 log(p), then
accurate recovery can be achieved with high probability when A is drawn from a suitable
ensemble [Don06; CRT06; EK12; FR13]. In this way, the parameter ‖x‖0 is often treated as
being known in much of the theoretical CS literature — despite the fact that ‖x‖0 is usually
unknown in practice. Due to the fact that the sparsity parameter plays a fundamental role in
CS, the issue of unknown sparsity has become recognized as gap between theory and practice
[War09; Eld09; MSW08; BDB07]. Likewise, our overall focus in this chapter is the problem
of estimating the unknown sparsity level of x without relying on any sparsity assumptions.

Motivations and the role of sparsity

Given that many well-developed methods are available for estimating the full signal x, or
its support set S := {j ∈ {1, . . . , p} : xj 6= 0}, it might seem surprising that the problem
of estimating ‖x‖0 has remained largely unsettled. Indeed, given an estimate of x or S, it

might seem natural to estimate ‖x‖0 via a “plug-in rule”, such as ‖x̂‖0 or card(Ŝ). However,



CHAPTER 3. UNKNOWN SPARSITY IN COMPRESSED SENSING 37

it is important to recognize that methods for computing x̂ and Ŝ generally rely on prior
knowledge of ‖x‖0. Consequently, when using a plug-in rule to estimate ‖x‖0, there is a
danger of circular reasoning, and as a result, the problem of estimating ‖x‖0 does not simply
reduce to estimating x or S.

To give a more concrete sense for the importance of estimating unknown sparsity, the
following list illustrates many aspects of CS where sparsity assumptions play an important
role, and where it would be valuable to have an “assumption-free” estimate of ‖x‖0.

1. Modeling assumptions and choice of basis. In some signal processing appli-
cations, sparsity-based methods are not the only viable approach, and it is of basic
interest to know whether not a sparse representation is justified by data. For instance,
this issue has been actively studied in the areas of face recognition and image clas-
sification: [Shi+11; DHG13; Wan+14; RBL11]. In this context, an assumption-free
estimate of ‖x‖0 would serve as a natural diagnostic tool in model development.

A second issue that is related to model development is the choice of basis used to rep-
resent a signal. Although there are many application-specific bases (e.g. various types
of wavelet bases) that often lead to sparse representations, the ability to “validate” the
choice of basis has clear practical value. In this direction, an estimator of ‖x‖0 could
be of use in comparing the relative merits of different bases.

2. The number of measurements. If the choice of n is too small compared to the
“critical” number n∗ ≈ ‖x‖0 log(p), then there are known information-theoretic barriers
to the accurate reconstruction of x [RWY11]. At the same time, if n is chosen to be
much larger than n∗, then the measurement process is wasteful (since there are known
algorithms that can reliably recover x with approximately n∗ measurements [EK12]).
For this reason, it not only important to ensure that n ≥ n∗, but to choose n close to
n∗.

To deal with the selection of n, a sparsity estimate ‖̂x‖0 may be used in two different
ways, depending on whether measurements are collected sequentially, or in a single
batch. In the sequential case, an estimate of ‖x‖0 can be computed from a small set of

“preliminary” measurements, and then the estimated value ‖̂x‖0 determines how many
additional measurements should be collected to recover the full signal. Also, it may
not even be necessary to take additional measurements, since the preliminary set may
be re-used to compute x̂. Alternatively, if all of the measurements must be taken in

one batch, the value ‖̂x‖0 can be used to certify whether or not enough measurements
were actually taken.

3. The measurement matrix. The performance of recovery procedures depends heavily
on the sensing matrix A. In particular, the properties of A that lead to good recovery
are often directly linked to the sparsity level of x. Two specific properties that have
been intensively studied are the restricted isometry property of order k (RIP-k), [CT05],
and the null-space property of order k (NSP-k),[CDD09; DH01], where k is a presumed
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upper bound on the sparsity level of the true signal. (See Chapter 1 for definitions
and background.) Because recovery guarantees are closely tied to RIP-k and NSP-k,
a growing body of work has been devoted to certifying whether or not a given matrix
satisfies these properties [dE11; JN11; TN11]. When k is treated as given, this problem
is already computationally difficult. Yet, when the sparsity of x is unknown, we must
also remember that such a “certificate” is less meaningful if we cannot check that the
value of k is in agreement with the true signal.

4. Recovery algorithms. When recovery algorithms are implemented, the sparsity
level of x is often treated as a tuning parameter. For example, if k is a conjectured
bound on ‖x‖0, then the Orthogonal Matching Pursuit algorithm (OMP) is typically
initialized to run for k iterations [TG07]. A second example is the Lasso algorithm,
which computes a solution x̂ ∈ argmin{‖y − Av‖2

2 + λ‖v‖1 : v ∈ Rp}, for some choice
of λ ≥ 0. The sparsity of x̂ is determined by the size of λ, and in order to select the
appropriate value, a family of solutions is examined over a range of λ values [TT11]. In

the case of either OMP or Lasso, a sparsity estimate ‖̂x‖0 would reduce computation
by restricting the possible choices of λ or k, and it would also ensure that the sparsity
level of the solution conforms to the true signal. With particular regard to the Lasso,
an indirect consequence of our sparsity estimation method (introduced in Section 3.3)
is that it allows for regularization parameter to be adaptively selected when the Lasso
problem is written in “primal form”: x̂ ∈ argmin{‖y − Av‖2

2 : v ∈ Rp and ‖v‖1 ≤ t}.
See Section 3.5 for further details.

A numerically stable measure of sparsity

Despite the important theoretical role of the parameter ‖x‖0, it has a severe practical draw-
back of being sensitive to small entries of x. In particular, for real signals x ∈ Rp whose
entries are not exactly equal to 0, the value ‖x‖0 = p is not a useful description of compress-
ibility.

In order to estimate sparsity in a way that accounts for the instability of ‖x‖0, it is desir-
able to replace the `0 norm with a “soft” version. More precisely, we would like to identify
a function of x that can be interpreted as counting the “effective number of coordinates of
x”, but remains stable under small perturbations. In the next subsection, we derive such a
function by showing that ‖x‖0 is a limiting case of a more general sparsity measure based
on entropy.

A link between ‖x‖0 and entropy

Any vector x ∈ Rp \ {0} induces a distribution π(x) ∈ Rp on the set of indices {1, . . . , p},
assigning mass πj(x) := |xj|/‖x‖1 at index j.1 Under this correspondence, if x places most of

1It is also possible to normalize π(x) in other ways, e.g. πj(x) = |xj |2/‖x‖22. See the end of Section 3.1
for additional comments.
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its mass at a small number of coordinates, and J ∼ π(x) is a random variable in {1, . . . , p},
then J is likely to occupy a small set of effective states. This means that if x is sparse, then
π(x) has low entropy. From the viewpoint of information theory, it is well known that the
entropy of a distribution can be interpreted as the logarithm of the distribution’s effective
number of states. Likewise, it is natural to count effective coordinates of x by counting
effective states of π(x) via entropy. To this end, we define the numerical sparsity2

sq(x) :=

{
exp(Hq(π(x))) if x 6= 0

0 if x = 0,
(3.2)

where Hq is the Rényi entropy of order q ∈ [0,∞]. When q 6∈ {0, 1,∞}, the Rényi entropy
is given explicitly by

Hq(π(x)) := 1
1−q log

(∑p
i=1 πi(x)q

)
, (3.3)

and cases of q ∈ {0, 1,∞} are defined by evaluating limits, with H1 being the ordinary
Shannon entropy. Combining the last two lines with the definition of π(x), we see that for
x 6= 0 and q 6∈ {0, 1,∞}, the numerical sparsity may be written conveniently in terms of `q
norms as

sq(x) =

(‖x‖q
‖x‖1

) q
1−q

. (3.4)

As with Hq, the the cases of q ∈ {0, 1,∞} are evaluated as limits:

s0(x) = lim
q→0

sq(x) = ‖x‖0 (3.5)

s1(x) = lim
q→1

sq(x) = exp(H1(π(x))) (3.6)

s∞(x) = lim
q→∞

sq(x) = ‖x‖1
‖x‖∞ . (3.7)

Background on the definition of sq(x)

To the best of our knowledge, the definition of numerical sparsity (3.2) in terms of Rényi
entropy is new in the context of CS. However, numerous special cases and related defini-
tions have been considered elsewhere. For instance, in the early study of wavelet bases,

Coifman and Wickerhauser proposed exp
(
−∑p

i=1
|xi|2
‖x‖22

log( |xi|
2

‖x‖22
)
)

as a measure of effective

dimension [CW92]. (See also the papers [RK99] [Don94] [HR09].) The basic difference be-
tween this quantity and sq(x) is that the Rényi entropy leads instead to a convenient ratio
of norms, which will play an important role in our procedure for estimating sq(x).

Interestingly, in recent years, there has been growing interest in ratios of norms as mea-
sures of sparsity, but such ratios have generally been introduced in an ad-hoc manner, and
there has not been a principled way to explain where they “come from”. To this extent, our

2 Our terminology derives from the notion of numerical rank coined by [RV07].



CHAPTER 3. UNKNOWN SPARSITY IN COMPRESSED SENSING 40

definition of sq(x) offers a way of conceptually unifying these ratios.3 Examples of previ-
ously studied instances include ‖x‖2

1/‖x‖2
2 corresponding to q = 2 [Lop13],[TN11], [Hoy04],

‖x‖1/‖x‖∞ corresponding to q = ∞ [PGC12] [DH14], as well as (‖x‖a/‖x‖b)ab/(b−a) with
a, b > 0, which is implicitly defined in the paper [BKS14].4 To see how the latter quantity
fits in the scope of our entropy-based definition, one may consider a different normalization
of the probability vector π(x) discussed earlier. That is, if we put πj(x) = |xj|t/‖x‖tt for
some t > 0, then it follows that exp(Hq(π(x))) = (‖x‖tq/‖x‖t)tq/(1−q). Furthermore, if one
chooses t = b and q = a/b, then the two quantities match.

Outside the context of CS, the use of Rényi entropy to count the effective number of states
of a distribution has been well-established in the ecology literature for a long time. There,
Rényi entropy is used to count the effective number of species in a community of organisms.
More specifically, if a distribution π on {1, . . . , p} measures the relative abundance of p
species in a community, then the number exp(Hq(π)) is a standard measure of the effective
number of species in the community. In the ecology literature, this number is known as
the Hill index or diversity number of the community. We refer the reader to the papers
[Hil73] and [Jos06], as well as the references therein for further details. In essence, the main
conceptual ingredient needed to connect these ideas with the notion of sparsity in CS is to
interpret the signal x ∈ Rp as a distribution on the set of indices {1, . . . , p}.

Properties of sq(x)

The following list summarizes some of the most important properties of sq(x), and clarifies
the interpretation of sq(x) as a measure of sparsity.

(i) (continuity). Unlike the `0 norm, the function sq(·) is continuous on Rp \ {0} for all
q > 0, and is hence stable under small perturbations of x.

(ii) (range equal to [0, p]). For all x ∈ Rp and all q ∈ [0,∞], the numerical sparsity
satisfies

0 ≤ sq(x) ≤ p.

This property follows from the fact that for any q, and any distribution π on {1, . . . , p},
the Rényi entropy satisfies 1 ≤ Hq(π) ≤ log(p).

(iii) (scale-invariance). The property that ‖cx‖0 = ‖x‖0 for all scalars c 6= 0 is familiar
for the `0 norm, and this generalizes to sq(x) for all q ∈ [0,∞]. Scale-invariance encodes
the idea that sparsity should be based on relative (rather than absolute) magnitudes
of the entries of x.

(iv) (lower bound on ‖x‖0 and monotonicity in q). For any x ∈ Rp, the function
q 7→ sq(x) is monotone decreasing on [0,∞], and interpolates between the extreme

3See also our discussion of analogues of sq(x) for matrix rank in Section 3.1.
4This quantity is implicitly suggested in the paper [BKS14] by considering a binary vector x with ‖x‖0 =

k ≥ 1, and then choosing an exponent c so that (‖x‖a/‖x‖b)c = k.
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values of s∞(x) and s0(x). That is, for any q′ ≥ q ≥ 0, we have the bounds

‖x‖1
‖x‖∞ = s∞(x) ≤ sq′(x) ≤ sq(x) ≤ s0(x) = ‖x‖0. (3.8)

In particular, we have the general lower bound

sq(x) ≤ ‖x‖0. (3.9)

The monotonicity is a direct consequence of the fact that the Rény entropy Hq is
decreasing in q.

(v) (Schur concavity). The notion of majorization formalizes the idea that the coordi-
nates of a vector x ∈ Rp are more “spread out” than those of another vector x̃ ∈ Rp.
(See the book [MOA10] for an in-depth treatment of majorization.) If x is majorized
by x̃, we write x ≺ x̃, where larger vectors in this partial order have coordinates that
are less spread out. From this interpretation, one might expect that if |x| ≺ |x̃|, then x̃
should be sparser than x, where |x| := (|x1|, . . . , |xp|). It turns out that this intuition
is respected by sq(·), in the sense that for any q ∈ [0,∞],

|x| ≺ |x̃| =⇒ sq(x) ≥ sq(x̃). (3.10)

In general, if a function f satisfies f(x) ≥ f(x̃) for all x ≺ x̃ with x, x̃ lying in a set S,
then f is said to be Schur concave on S. Consequently, line (3.10) implies that sq(·) is
Schur concave on the orthant Rp

+ \ {0}. This property follows easily from the fact that
the Rényi entropy is Schur concave on the p-dimensional probability simplex.

(vi) (Equivalence with power-law decay). An alternative approach to measuring “soft
sparsity” is through the notion of a decay constraint on the sorted coordinate magni-
tudes |x|[1] ≥ · · · ≥ |x|[p]. Popular measures for coordinate-wise decay include weak `q
norm constraints, and the power-law decay profile

|x|[i] ∝ i−τ(x), (3.11)

where τ(x) > 0 is a decay parameter, cf. [Joh13; Can06]. Although the parameter
τ(x) does not have the convenient interpretation of an effective number of coordinates,
this type of sparsity model is still quite useful for describing signals with many small
(but non-zero) coordinates. Interestingly, the parameters τ(x) and s2(x) are equivalent
in the sense that they are linked by an explicit bijection. Specifically, there is an
invertible function ψ : (0, p)→ (0,∞) such that for all x ∈ Rp satisfying the power-law
condition (3.11), we have

τ(x) = ψ(s2(x)), (3.12)

and the inverse of ψ is given by ψ−1(τ) = (
∑p

i=1 i
−τ )

2 /∑p
i=1 i

−2τ . Consequently, τ(x)
is estimable whenever s2(x) is. The proof of the invertibility of ψ is given in Section B.1
of Appendix B.
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The choice of q and normalization. The parameter q controls how much weight sq(x)
assigns to small coordinates. When q = 0, an arbitrarily small coordinate is still counted as
being “effective”. By contrast, when q = ∞, a coordinate is not counted as being effective
unless its magnitude is close to ‖x‖∞. The choice of q is also relevant to other considerations.
For instance, we will show in Section 3.2 that the case of q = 2 is important because signal
recovery guarantees can be derived in terms of

s2(x) =
‖x‖2

1

‖x‖2
2

. (3.13)

In addition, the choice of q can affect the type of measurements used to estimate sq(x).
In this respect, the case of q = 2 turns out to be attractive because our proposed method
for estimating s2(x) relies on Gaussian measurements — which can be naturally re-used for
recovering the full signal x. Furthermore, in some applications, the measurements associated
with one value of q may be easier to acquire (or process) than another. In our proposed
method, smaller values of q lead to measurement vectors sampled from a distribution with
heavier tails. Because a vector with heavy tailed i.i.d. entries will tend to have just a few
very large entries, such vectors are approximately sparse. In this way, the choice of q may
enter into the design of measurement systems because it is known that sparse measurement
vectors can simplify certain recovery procedures [GI10].

Apart from the choice of q, there is a second degree of freedom associated with sq(x).
In defining the probability vector πj(x) = |xj|/‖x‖1 earlier, we were not forced to normalize
the mass of the coordinates using ‖x‖1, and many other normalizations are possible. Also,
some normalizations may be computationally advantageous for the problem of minimizing
sq(x), as discussed below.

Minimization of sq(x)? Although our work in this chapter does not deal with the prob-
lem of minimizing sq(x), some readers may still naturally be curious about what can be
done in this direction. It turns out that for certain values of q, or certain normalizations
of the probability vector π(x), the minimization of sq(x) may be algorithmically tractable
(under suitable constraints). The recent paper [Rep+15] discusses methods for minimizing
s2(x). Another example is the minimization of s∞(x), which can be reduced to a sequence
of linear programming problems [PGC12] [DH14]. Lastly, a third example deals with the
normalization πj(x) = |xj|t/‖x‖tt with t = 1/2, which leads to exp(H2(π(x)) = (‖x‖2/‖x‖4)4.
In the paper [BKS14], the problem of minimizing ‖x‖2/‖x‖4 has been shown to have inter-
esting connections with sums-of-squares (SOS) optimization problems — for which efficient
algorithms are available [Las09].

Graphical interpretations

The fact that sq(x) is a sensible measure of sparsity for non-idealized signals is illustrated
in Figure 1 for the case of q = 2. In essence, if x has k large coordinates and p − k small
coordinates, then sq(x) ≈ k, whereas ‖x‖0 = p. In the left panel, the sorted coordinates of
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three different vectors in R100 are plotted. The value of s2(x) for each vector is marked with
a triangle on the x-axis, which shows that s2(x) adapts well to the decay profile. This idea
can be seen in a more geometric way in the right panel, which plots the the sub-level sets
Sc := {x ∈ Rp : s2(x) ≤ c} with c = 1.1 and c = 1.9 where p = 2. When c ≈ 1, the vectors in
Sc are closely aligned with the coordinate axes, and hence contain one effective coordinate.
As c ↑ p, the set Sc expands to include less sparse vectors until Sp = Rp.
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Figure 3.1: Characteristics of s2(x). Left panel: Three vectors (red, blue, black) in R100 have
been plotted with their coordinates in order of decreasing size (maximum entry normalized
to 1). Two of the vectors have power-law decay profiles, and one is a dyadic vector with
exactly 45 positive coordinates (red: xi ∝ i−1, blue: dyadic, black: xi ∝ i−1/2). Color-coded
triangles on the bottom axis indicate that the s2(x) value represents the “effective” number
of coordinates. Right panel: The light grey set is given by {x ∈ R2 : s2(x) ≤ 1.9}, and the
dark grey set is given by {x ∈ R2 : s2(x) ≤ 1.1}.

Numerically stable measures of rank and sparsity for matrices

The framework of CS naturally extends to the problem of recovering an unknown matrix
X ∈ Rp1×p2 on the basis of the measurement model

y = A(X) + σε, (3.14)

where y ∈ Rn, and A is a user-specified linear operator from Rp1×p2 to Rn. In recent years,
many researchers have explored the recovery of X when it is assumed to have sparse or
low rank structure. We refer to the papers [CP11; Cha+12] for descriptions of numerous
applications. In analogy with the previous section, the parameters rank(X) or ‖X‖0 play
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important theoretical roles, but are very sensitive to perturbations of X. Likewise, it is
of basic interest to estimate robust measures of rank and sparsity for matrices. Since the
analogue of sq(·) for measuring matrix sparsity is easily derived by viewing X as a vector in
Rp1p2 , we restrict our attention to the more distinct issue of soft measures of rank.

In the context of recovering a low-rank matrix X the quantity rank(X) plays the role
that the norm ‖x‖0 does in the recovery of a sparse vector. If we let ς(X) ∈ Rp

+ denote the
vector of ordered singular values of X, the connection can be made explicit by writing

rank(X) = ‖ς(X)‖0.

As in our discussion of sparsity, it is of basic interest to consider a numerically stable version
of the usual rank function. Motivated by the definition of sq(x) in the vector case, we can
also consider

rq(X) := sq(ς(X)) =
(
‖ς(X)‖q
‖ς(X)‖1

) q
1−q

=
(
|||X|||q
|||X|||1

) q
1−q

as a measure of the effective rank of X, where q > 0 and |||X|||q := ‖ς(X)‖q. (When
q ≥ 1, |||X|||q is known as the Schatten q-norm of X.) Essentially all of the properties of
sq(·) described earlier carry over to rq(·) in a natural way, and so we do not state these
in detail. We also note that quantities related to rq(X), or special instances, have been
considered elsewhere as a measure of rank, e.g. the numerical rank 5 ‖X‖2

F

/
‖X‖2

op [RV07],
or the instance r2(X) [LJW11; TN12; NW12].

Contributions

The main contributions of the chapter can be summarized in three parts.

The family of sparsity measures {sq(x)}q≥0. As mentioned in Section 3.1, our definition
of sq(x) in terms of Rényi entropy gives a conceptual foundation for several norm ratios that
have appeared elsewhere in the sparsity literature. Furthermore, we clarify the meaning of
s2(x) with regard to signal recovery by showing in Section 3.2 that s2(x) plays an intuitive
role in the performance of the Basis Pursuit Denoising (BPDN) algorithm. Specifically, we
show that the relative `2 error of BPDN can be bounded in a sharp way by the quantity√
s2(x) log(ep/n)/n, which is formally similar to the well-known rate of `2 approximation√
k log(p)/n for k-sparse signals [Neg+12]. This connection is explained more carefully in

Section 3.2.

Estimation results, confidence intervals, and applications. Our central method-
ological contribution is a new deconvolution-based approach for estimating ‖x‖q and sq(x)
from linear measurements. The procedure we propose is of particular interest in the way
that it blends the tools of sketching with stable laws and deconvolution with characteristic

5This can be cast in the framework of rq(X) by defining the probability vector π(x) as πj(x) = |xj |2/‖x‖22
in the definition of sq(x) and then choosing q =∞.
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functions. These tools are typically applied in different contexts, as discussed in Section 3.1.
Also, the computational cost of our procedure is small relative to the cost of recovering the
full signal by standard methods.

In terms of consistency, the most important features of our estimator ŝq(x) are that it
does not rely on any sparsity assumptions, and that its relative error converges to 0 at the
dimension-free rate of 1/

√
n (in probability). Consequently, only O(1) measurements are

needed to obtain a good estimate of sq(x), even when p is large. As explained in Section 3.1,
this result naturally suggests a two-stage measurement process: First, a small initial mea-
surement price can be paid to obtain ŝq(x). Second, the value ŝq(x) can be used to adaptively
select “just enough” extra measurements for recovering the full signal. (Proposition 3.1 in
Section 3.2 indicates that this number can be chosen proportionally to ŝ2(x) log(p) when
BPDN is used for recovery.)

In addition to proving ratio-consistency, we derive a CLT for ŝq(x), which allow us to
obtain confidence intervals sq(x) with asymptotically exact coverage probability. A notable
feature of this CLT is that it is “uniform” with respect to the tuning parameter in our
procedure for computing ŝq(x). The uniformity is important because it allows us to make
an optimal data-dependent selection of the tuning parameter and still find the estimator’s
limiting distribution (see Theorem 3.2 and Corollary 3.1). In terms of applications, we show
in Section 3.5 how this CLT can be used in inferential problems related to unknown sparsity,
i.e. testing the null hypothesis that sq(x) is greater than a given level, and ensuring that
the true signal lies in the constraint set of the (primal) Lasso or Elastic net problems with
a given degree of statistical significance.

The necessity of randomized measurements. At the present time, the problem of
constructing deterministic measurement matrices with performance guarantees comparable
to those of random matrices is one of the major unresolved theoretical issues in CS [FR13,
Section 1.3] [CHJ10]. Due to the fact that our proposed method for estimating sq(x) depends
on randomized measurements, one may similarly wonder if randomization is essential to the
problem of estimating unknown sparsity. In Section 3.6, we show that randomization is
essential from a worst-case point of view. Our main result in this direction (Theorem 3.4)
shows that for any deterministic matrix A ∈ Rn×p, and any deterministic procedure for
estimating sq(x), there is always at least one signal for which the relative estimation error is
at least of order 1, even if the measurements are noiseless. This contrasts with performance
our randomized method, whose relative error is OP (1/

√
n) for any choice of x. Furthermore,

the result has a negative implication for sparse linear regression. Namely, due to the fact
that the design matrix is often viewed as “fixed and given” in many regression problems, our
result indicates that sq(x) cannot be consistently estimated in relative error in that context
(from a worst-case point of view).
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Related work

Our work here substantially extends our earlier conference paper [Lop13] and has connections
with a few different lines of research.

Extensions beyond the conference paper [Lop13]. Whereas our earlier work deals ex-
clusively with the sparsity measure ‖x‖2

1/‖x‖2
2, the current chapter considers the estimation

of the family of parameters sq(x). The procedure we propose for estimating sq(x) (as well
as our analysis of its performance) include several improvements on the earlier approach. In
particular, the new procedure tolerates noise with infinite variance and leads to confidence
intervals with asymptotically exact coverage probability (whereas the previous approach led
to conservative intervals). Also, the applications of our procedure to tuning recovery algo-
rithms and testing the hypothesis of sparsity are new (Section 3.5). Lastly, our theoretical
results in Sections 3.2 and 3.6 may be regarded as sharpened versions of parallel results in
the paper [Lop13].

Sketching with stable laws. Our approach to estimating sq(x) is based on the sub-
problem of estimating ‖x‖q for various choices of q. In order to estimate such norms from
linear measurements, we employ the technique of sketching with stable laws, which has been
developed extensively in the streaming computation literature. (The book [Cor+12] offers
an overview, and seminal papers include [Ind06] and [AMS96]). Over the last few years,
the exchange of ideas between sketching and CS has just begun to accelerate, as in the
papers [GI10] [Lop13] [LZZ14] [Ind13]. Nevertheless, to the best of our knowledge, the
present chapter and our earlier work [Lop13] are the first to apply sketching ideas to the
problem of unknown sparsity in CS.

In essence, our use of the sketching technique is based on the fact that if a random vector
a1 ∈ Rp has i.i.d. coordinates drawn from a standard symmetric q-stable law,6 then the
random variable 〈a1, x〉 has a q-stable law whose scale parameter is equal to ‖x‖q. (A more
detailed introduction is given in Section 3.3.) Consequently, the problem of estimating ‖x‖q
can be thought of as estimating the scale parameter of a stable law convolved with noise.

In the streaming computation literature, the observation model giving rise to 〈a1, x〉 is
quite different than in CS. Roughly speaking, the vector x is thought of as a massive data
stream whose entries can be observed sequentially, but cannot be stored entirely in memory.
The core idea is that by computing “sketches” 〈a1, x〉 = a11x11 + a12x2 + · · · in a sequential
manner, it is possible to estimate various functions of x from the sketches without having to
store the entire stream. Under this framework, a substantial body of work has studied the
estimation of `q norms with q ≥ 0 [CC12] [Cor+03] [Li08] [LHC07] [Ind06] [AMS96] [Fei+02].
However, results in this direction are typically not directly applicable to CS, due to essential
differences in the observation model. For instance, measurement noise does not generally
play a role in the sketching literature.

6e.g. Gaussian when q = 2 and Cauchy when q = 1.
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Empirical characteristic functions. As just mentioned, our approach to estimating
‖x‖q and sq(x) can be thought of as deconvolving the scale parameter of a stable law. Given
that stable laws have a simple analytic formula for their characteristic function (and have no
general formula for their likelihood function), it is natural to use the empirical characteristic

function Ψ̂n(t) = 1
n

∑n
i=1 exp(

√
−1tyi) as a foundation for our estimation procedure. With

regard to denoising, characteristic function are also attractive insofar as they factors over
convolution, and exists even when the noise distribution is heavy-tailed.

The favorable properties of empirical characteristic functions have been applied by several
authors to the deconvolution of scale parameters [MHL95] [MH95], [B+05] [Mei06] [Mat02].
Although the basic approach used in these papers is similar to ours, the results in these works
are not directly comparable with ours due to differences in model assumptions. Another
significantly distinct aspect of our work deals with the choice of the “tuning parameter” t
in the function Ψ̂n(t). This choice is a basic element in most methods based on empirical
characteristic functions. In detail, we show how to make an optimal data-adaptive choice
t̂, and we derive the limiting distribution of the estimator ŝq(x) that originates from Ψ̂n(t̂ ).
This leads to a significant technical challenge in accounting for the randomness of t̂, and in
order to do this, we show that the process Ψ̂n(·) arising from our model assumptions satisfies
a uniform CLT in the space C (I) of continuous complex functions on a compact interval I.
(See the paper [Mar81] or the book [Ush99] for more details concerning weak convergence
of empirical characteristic functions.) With regard to the cited line of works concerning
deconvolution of scale parameters, it seems that our work is the first to derive the limiting
distribution of the scale estimator under a data-dependent choice of tuning parameter.

Model selection and validation in CS. Some of the challenges described in Section 3.1
can be approached with the general tools of cross-validation (CV) and empirical risk mini-
mization (ERM). This approach has been used to select various parameters in CS, such as
the number of measurements n [MSW08; War09], the number of OMP iterations k [War09],
or the Lasso regularization parameter λ [Eld09]. At a high level, these methods consider
a collection of (say m) solutions x̂(1), . . . , x̂(m) obtained from different values θ1, . . . , θm of
some tuning parameter of interest. For each solution, an empirical error estimate êrr(x̂(j)) is
computed, and the value θj∗ corresponding to the smallest êrr(x̂(j)) is chosen.

Although methods based on CV/ERM share common motivations with our work here,
these methods differ from our approach in several ways. In particular, the problem of
estimating a soft measure of sparsity, such as sq(x), has not been considered from that
angle. Also, the cited methods do not give any theoretical guarantees to ensure that the
chosen tuning parameter leads to a solution whose `0 sparsity level is close to the true one.
(Note that even if CV suggests that an estimate x̂ has small error ‖x̂−x‖2, it is not necessary
for ‖x̂‖0 to be close to ‖x‖0.) This point is especially relevant in inferential problems, such
as identifying a set of important variables or making confidence statements related to an
unknown sparsity value. From a computational point view, the CV/ERM approaches can
also be costly — since x̂(j) may need to be computed from a separate optimization problem
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for for each choice of the tuning parameter. By contrast, our method for estimating sq(x)
requires very little computation.

Outline

The remainder of the chapter is organized as follows. In Section 3.2, we formulate a (tight)
recovery guarantee for the Basis Pursuit Denoising algorithm directly in terms of s2(x).
Next, in Section 3.3, we propose estimators for ‖x‖q and ŝq(x), and in Section 3.4 we state
consistency results and provide confidence intervals for ‖x‖q and sq(x). Applications to test-
ing the hypothesis of sparsity and adaptive tuning of the Lasso are presented in Section 3.5.
In Section 3.6, we show that the use of randomized measurements is essential to estimating
s(x) in a minimax sense. We defer all of the proofs to Appendix B.

3.2 Recovery guarantees in terms of s2(x)

In this section, we state two simple propositions that illustrate the link between s2(x) and
recovery conditions for the Basis Pursuit Denoising (BPDN) algorithm [CDS98]. The main
purpose of these results is to highlight the fact that s2(x) and ‖x‖0 play analogous roles
with respect to the sample complexity of sparse recovery. Specifically, we provide matching
upper and lower bounds for relative `2 reconstruction error of BPDN in terms of s2(x). These
bounds also suggest two applications of the quantity s2(x). First, the order of the reconstruc-
tion error can be estimated whenever s2(x) can be estimated. Second, when measurements
can be collected sequentially, an estimate of s2(x) from an initial set of measurements allows
for the user to select a number of secondary measurements that adapts to the particular
structure of x, e.g. n = ŝ2(x) log(p).

Setup for BPDN. In order to explain the connection between s2(x) and recovery, we first
recall a fundamental result describing the `2 error rate of the BPDN algorithm. Here, it will
be convenient to combine Theorems ?? and 1.4 stated earlier in Section ?? of Chapter 1. For
the first two results of this section, we will work under two standard assumptions underlying
those theorems.

A3.1. There is a constant ε0 such that all realizations of the noise vector ε ∈ Rn satisfy
‖ε‖2 ≤ ε0.

A3.2. The entries of A ∈ Rn×p are an i.i.d. sample from 1√
n
G0, where G0 is a sub-Gaussian

distribution with mean 0 and variance 1.

Since ε and A are both random, probability statements will be made with respect to
their joint distribution. When the noise distribution satisfies A3.1, the output of the BPDN
algorithm is a solution to the following convex optimization problem

x̂ ∈ argmin
{
‖v‖1 : ‖Av − y‖2 ≤ σε0, v ∈ Rp

}
. (BPDN)
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As a final piece of notation, for any T ∈ {1, . . . , p}, we use x|T to denote the best T -term
approximation of x, which is computed by retaining the largest T entries of x in magnitude,
and setting all others to 0.

Theorem 3.1 ([CRT06; CWX10; Ver12]). Suppose the model (3.1) satisfies the condi-
tions A3.1 and A3.2. Let x ∈ Rp be arbitrary, and fix a number T ∈ {1, . . . , p}. Then, there
are absolute constants c2, c3 > 0, and numbers c0, c1 > 0 depending only on the distribution
G0, such that the following statement is true. If

n ≥ c0T log(pe/T ), (3.15)

then with probability at least 1−2 exp(−c1n), any solution x̂ to the problem (BPDN) satisfies

‖x̂− x‖2 ≤ c2 σε0 + c3
‖x−x|T ‖1√

T
. (3.16)

An upper bound in terms of s2(x). Two important aspects of Theorem 3.1 are that
it holds for all signals x ∈ Rp, and that it measures sparsity via the T -term approximation
error ‖x − x|T‖1, rather than the idealized `0 norm. However, a main limitation is that
the detailed relationship between T and the approximation error 1√

T
‖x − x|T‖1 is typically

unknown for the true signal x. Consequently, it is not clear how large n should be chosen
in line (3.15) to ensure that ‖x − x̂‖2 is small with high probability. The next proposition
resolves this issue by modifying the bound (3.16) so that that the relative `2 error is bounded
by an explicit function of n and the estimable parameter s2(x).

Proposition 3.1. Assume conditions A3.1 and A3.2 hold, and let x ∈ Rp\{0} be arbitrary.
Then, there is an absolute constant c2 > 0, and numbers c1, c3 > 0 depending only on the
distribution G0, such that the following statement is true. If n and p satisfy log(pe

n
) ≤ n ≤ p,

then with probability at least 1−2 exp(−c1n), any solution x̂ to the problem (BPDN) satisfies

‖x̂−x‖2
‖x‖2 ≤ c2

σε0
‖x‖2 + c3

√
s2(x) log( pe

n
)

n
. (3.17)

Remarks. Note that this result holds for any n of modest size, n ≥ log(pe/n). The bound
also has a familiar form in relation to other well known recovery guarantees for hard sparse
signals, with s2(x) playing a role that is similar to ‖x‖0.

To illustrate the connection between s2(x) and ‖x‖0 in greater detail, we now briefly
summarize a standard bound on the relative `2 error of the Lasso in recovering hard sparse
signals. The Lasso estimator is defined by

x̂λ ∈ argmin{1
2
‖y − Av‖2

2 + λ‖v‖1 : v ∈ Rp}. (LASSO)

Suppose we observe y = Ax+ σε, where ε ∼ N(0, 1
n
In×n), and the number of measurements

is at least of order n & ‖x‖0 log(p). In addition, suppose that the matrix A is constructed
as 1√

n
Z ∈ Rn×p where the entries of Z are i.i.d. Rademacher variables (±1 with equal
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probability). Then, when the regularization parameter is set to λ = 4σ
√

log(p)/n, a Lasso
solution x̂λ will satisfy the bound

‖x̂λ−x‖2
‖x‖2 ≤ c

(
σ
‖x‖2 )

√
‖x‖0 log(p)

n
(3.18)

with high probability, where c is an absolute constant. (See the paper [Neg+12] for ad-
ditional details and a more general statement of the result.7 Although the bounds (3.17)
and (3.18) rely on strictly different assumptions regarding the noise vector, the assumptions
are qualitatively similar in certain situations. Note that when ε ∼ N(0, 1

n
In×n), the norm

‖ε‖2 is close to 1 with high probability, and so the assumption that ‖ε‖2 ≤ ε0 underlying
line (3.17) is comparable if ε0 is close to 1. To compare the bounds (3.17) and (3.18), observe
that if n is taken to grow at the “minimally sufficient” rate n � ‖x‖0 log(p), then the fact
that s2(x) ≤ ‖x‖0 implies √

s2(x) log(pe/n)
n

. 1. (3.19)

Under this scaling of n, if we further assume that the noise to signal ratio σ/‖x‖2 is non-
vanishing (e.g. when the signal has bounded energy and σ is held fixed), then it follows that
both of the bounds (3.17) and (3.18) are of order 1.

A matching lower bound in terms of s2(x). Our next result shows that the upper
bound (3.17) is sharp in the case of noiseless measurements. More precisely, for any choice
of A ∈ Rn×p, there is always at least one signal x̃ ∈ Rp \{0} for which the relative `2 error of
BPDN is at least

√
s2(x̃) log(pe/n)/n, up to an absolute constant. In fact, the lower bound is

applicable beyond BPDN, and imposes a limit of performance on all algorithms that satisfy
the mild condition of being homogenous in the noiseless setting. To be specific, if a recovery
algorithm is viewed as a map R : Rn → Rp that sends a vector of noiseless measurements
Ax ∈ Rn to a solution x̂ = R(Ax) ∈ Rp, then R is said to be homogenous if

R(A(cx)) = c · R(Ax) for all c > 0. (3.20)

It is simple to verify that the BPDN is homogenous in the case of noiseless measurements,
since it reduces to the ordinary Basis Pursuit (BP) algorithm, whose solution may be written
as8

x̂ ∈ argmin{‖v‖1 : Av = y, v ∈ Rp}. (BP)

7Although the paper [Neg+12] does not present their result (Corollary 2) with the noise variables having
variance of order 1/n, we use this scaling when quoting their result so that it can be compared on equal
footing with the BPDN result in Theorem 3.1. The difference in scaling arises from the fact that the entries
of A are roughly of order 1/

√
n in the paper [CRT06], whereas the entries of A are roughly of order 1 in the

paper [Neg+12]. Note also that in our definition of x̂λ the first term of the objective function is 1
2‖Av− y‖22

whereas in the paper [Neg+12] it is 1
2n‖Av − y‖22.

8If this minimization problem does not have a unique optimal solution, we still may still regard BPDN
as a well defined function from Rn to Rp by considering a numerical implementation that never returns more
than one output for a given input.
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Apart from the basic condition of homogeneity, our lower bound requires no other assump-
tions. Note also that the statement of the result does not involve any randomness.

Proposition 3.2. There is an absolute constant c0 > 0 for which the following statement is
true. For any homogenous recovery algorithm R : Rn → Rp, and any A ∈ Rn×p with n ≤ p,
there is at least one point x̃ ∈ Rp \ {0} such that

‖x̂−x̃‖2
‖x̃‖2 ≥ c0

√
s2(x̃) log( pe

n
)

n
, (3.21)

where x̂ = R(Ax̃).

3.3 Estimation procedures for sq(x) and ‖x‖qq
In this section, we describe a procedure to estimate sq(x) for an arbitrary non-zero signal
x, and any q ∈ (0, 2] \ {1}. The procedure uses a small number of measurements, makes no
sparsity assumptions, and requires very little computation. The measurements we prescribe
may also be re-used to recover the full signal after the parameter sq(x) has been estimated.
In the the first three subsections, we present the ideas underlying the procedure, and then
in the last subsection, we describe the procedure as an algorithm.

The deconvolution model

Here we describe the model assumptions that our estimation procedure for sq(x) will be
based on. (These are different from the assumptions used in the previous section.) In scalar
notation, we consider linear measurements given by

yi = 〈ai, x〉+ σεi, i = 1, . . . , n. (M)

Model assumptions. For the remainder of the paper, we assume x 6= 0 unless stated
otherwise. Regarding the noise variables εi, we assume they are generated in an i.i.d. manner
from a distribution denoted by F0. When the ai are generated randomly, we assume that
{a1, . . . , an} is an independent set of random vectors, and also that the sets {a1, . . . , an} and
{ε1, . . . , εn} are independent. The noise variables are assumed to be symmetric about 0 and
to satisfy 0 < E|ε1| <∞, but they may have infinite variance. A minor technical condition
we place on F0 is that the roots of its characteristic function ϕ0 are isolated. This condition
is satisfied by a broad range of naturally occurring distributions, and in fact, many works on
deconvolution assume that ϕ0 has no roots at all.9 The noise scale parameter σ > 0 and the
distribution F0 are treated as being known, which is a common assumption in deconvolution
problems. Also note that in certain situations, it may be possible to directly estimate F0 by
using “blank measurements” with ai = 0.

9It is known that a subset of R is the zero set of a characteristic function if and only if it symmetric,
closed, and excludes 0. [Ili76; Gne01].
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Asymptotics. Following the usual convention of high-dimensional asymptotics, we allow
the model parameters to vary as (n, p) → ∞. This means that there is an implicit index
ξ ∈ Z+, such that n = n(ξ), p = p(ξ) and both diverge as ξ →∞. It will turn out that our
asymptotic results will not depend on the ratio p/n, and so we allow p to be arbitrarily large
with respect to n. We also allow x = x(ξ), σ = σ(ξ) and ai = ai(ξ), but the noise distribution
F0 is fixed with respect to ξ. When making asymptotic statements about probability, we
view the set of pairs {(a1, ε1), . . . , (an, εn)} as forming a triangular array with rows indexed
by ξ, and columns indexed by n(ξ). Going forward, we will generally suppress the index ξ.

Sketching with stable laws in the presence of noise

For any q ∈ (0, 2], the sketching technique offers a way to estimate ‖x‖qq from a set of random-

ized linear measurements. Building on this technique, we estimate sq(x) = (‖x‖q/‖x‖1)q/(1−q)

by estimating ‖x‖qq and ‖x‖1 from separate sets of measurements. The core idea is to gen-
erate the measurement vectors ai ∈ Rp using stable laws. A standard reference on this class
of distributions is the book [Zol86].

Definition 1. A random variable V has a symmetric q-stable distribution if its characteristic
function is of the form E[exp(

√
−1tV )] = exp(−|γt|q) for some q ∈ (0, 2] and some γ > 0,

where t ∈ R. We denote the distribution by V ∼ stableq(γ), and γ is referred to as the scale
parameter.

The most well-known examples of symmetric stable laws are the cases of q = 2 and
q = 1. Namely, stable2(γ) is the Gaussian distribution N(0, 2γ2), and stable1(γ) is the
Cauchy distribution C(0, γ). To fix some notation, if a vector a1 = (a11, . . . , a1p) ∈ Rp has
i.i.d. entries drawn from stableq(γ), we write a1 ∼ stableq(γ)⊗p. Also, since our work will
involve different choices of q, we will write γq instead of γ from now on. The connection with
`q norms hinges on the following property of stable distributions, which is simple to derive
from Definition 1.

Lemma 3.1. Suppose x ∈ Rp is fixed, and a1 ∼ stableq(γq)
⊗p with parameters q ∈ (0, 2] and

γq > 0. Then, the random variable 〈x, a1〉 is distributed according to stableq(γq‖x‖q).

Using this fact, if we generate a set of i.i.d. measurement vectors a1, . . . , an from the
distribution stableq(γq)

⊗p and let ỹi = 〈ai, x〉, then ỹ1, . . . , ỹn is an i.i.d. sample from
stableq(γq‖x‖q). Hence, in the special case of noiseless linear measurements, the task of
estimating ‖x‖qq is equivalent to a well-studied univariate problem: estimating the scale pa-
rameter of a stable law from an i.i.d. sample. In the presence of noise, this key idea can be
substantially extended to obtain a consistent estimator of ‖x‖qq, as is shown in Section 3.4.
We emphasize that the extra deconvolution step is an important aspect of our method that
distinguishes it from existing work in the sketching literature (where noise is typically not
considered).
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When generating the measurement vectors from stableq(γq), the parameter γq governs
the “energy level” of the ai. For instance, in the case of Gaussian measurements with
ai ∼ stable2(γ2)⊗p, we have E‖ai‖2

2 = 2pγ2
2 . In general, for any q, as the energy level

is increased, the effect of noise is diminished. Likewise, in our analysis, we view γq as
a physical aspect of the measurement system that is known to the user. Asymptotically,
we allow γq = γq(ξ) to vary as (n, p) → ∞ in order to reveal the trade-off between the
measurement energy and the noise level σ.

The sub-problem of estimating ‖x‖qq
Our procedure for estimating sq(x) uses two separate sets of measurements of the form (M)

to compute estimators ‖̂x‖1 and ‖̂x‖qq. The respective sizes of each measurement set will
be denoted by n1 and nq. To unify the discussion, we will describe just one procedure to

compute ‖̂x‖qq for any q ∈ (0, 2], since the `1-norm estimator is a special case. The two
estimators are then combined to obtain an estimator of sq(x), defined by

ŝq(x) :=

(
‖̂x‖qq

) 1
1−q

(‖̂x‖1)
q

1−q
, (3.22)

which makes sense for any q ∈ (0, 2] except q = 1. Of course, the parameters ‖x‖0 and s1(x)
can still be estimated in practice by using ŝq(x) for some value of q that is close to 0 or
1. Indeed, the ability to approximate ‖x‖0 and s1(x) in this way is a basic motivation for
studying sq(x) over a continuous range of q.

An estimating equation based on characteristic functions

Characteristic functions offer a very natural route toward estimating ‖x‖qq. If we draw i.i.d.
measurement vectors

ai ∼ stableq(γq)
⊗p, i = 1, . . . , nq,

then the characteristic function of the measurement yi = 〈ai, x〉+ σεi is given by

Ψ(t) := E[exp(
√
−1tyi)] = exp(−γqq |t|q‖x‖qq) · ϕ0(σt), (3.23)

where t ∈ R, and we recall that ϕ0 denotes the characteristic function of the noise variables
εi. Note that ϕ0 is real-valued since we assume that the noise-distribution is symmetric
about 0. Using the measurements y1, . . . , ynq , we can approximate Ψ(t) by computing the
empirical characteristic function

Ψ̂nq(t) :=
1

nq

nq∑
i=1

e
√
−1tyi . (3.24)
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Next, by solving for ‖x‖qq in the approximate equation

Ψ̂nq(t) ≈ exp(−γqq |t|q‖x‖qq) · ϕ0(σt), (3.25)

we obtain an estimator ‖̂x‖qq. To make the dependence on t explicit, we will mostly use the

notation ν̂q(t) = ‖̂x‖qq. Proceeding with the arithmetic in the previous line leads us to define

ν̂q(t) := −1
γqq |t|q

Log+ Re
(

Ψ̂nq (t)

ϕ0(σt)

)
, (3.26)

when t 6= 0 and ϕ0(σt) 6= 0. Here, the symbol Re(z) denotes the real part of a complex
number z. Also, we define Log+(r) := log(|r|) for any real number r 6= 0, and Log+(0) := 1.
For the particular values of t where t = 0 or ϕ0(σt) = 0, we arbitrarily define ν̂q(t) = 1.
The need to use Log+ and handle these particular values of t will be irrelevant from an
asymptotic point of view. We only mention these details for the technical convenience of
having an estimator that is defined for all values of t ∈ R.

Optimal selection of the tuning parameter

A crucial aspect of the estimator ν̂q(t) is the choice of t ∈ R, which plays the role of a tuning
parameter. This choice turns out to be somewhat delicate, especially in situations where
‖x‖q →∞ as (n, p)→∞. To see why this matters, consider the equation

ν̂q(t)

‖x‖qq
= −1

(γq |t|‖x‖q)qLog+ Re
(

Ψ̂nq (t)

ϕ0(σt)

)
. (3.27)

If we are in a situation where ‖x‖q diverges while the parameters γq, σ, and t remain of order

1, then the empirical charcteristic function Ψ̂nq(t) will collapse to 0 (due to line (3.25). The
right hand side of line (3.27) may then become unstable as it can tend to a limit of the form
∞
∞ . Hence, it is desirable to choose t adaptively so that as (n, p)→∞,

γqt‖x‖q → c0, (3.28)

for some finite constant c0 > 0, which prevents Ψ̂nq(t) from collapsing to 0. When this desired
scaling can be achieved, the next step is to further refine choice of t so as to minimize the
limiting variance of ν̂q(t). Our proposed method will solve both of these problems.

Of course, the ability to choose t adaptively requires some knowledge of ‖x‖q, which
is precisely the quantity we are trying to estimate! As soon as we select a data-dependent
value, say t̂, we introduce a significant technical challenge: Inferences based on the adaptive
estimator ν̂q(t̂ ) must take the randomness in t̂ into account. Our approach is to prove a
uniform CLT for the function ν̂q(·). As will be shown in the next result, the uniformity will
allow us to determine the limiting law of ν̂q(t̂ ) as if the optimal choice of t was known in
advance of observing any data. To make the notion of optimality precise, we first describe the
limiting law of ν̂q(t̂) for any data-dependent value t̂ that satisfies the scaling condition (3.28)
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(in probability). A method for constructing such a value t̂ will be given the next subsection.
Consistency results for the procedure are given in Section 3.4.

To state the uniform CLT, we need to introduce the noise-to-signal ratio

ρq = ρq(ξ) := σ
γq‖x‖q , (3.29)

which will be related to the width of our confidence interval for ‖x‖qq. Although we allow ρq
to vary with (nq, p), we will assume that it stabilizes to a finite limiting value:

A3.3. For each q ∈ (0, 2], there is a limiting constant ρ̄q ∈ [0, 1] such that ρq = ρ̄q + o(n−1/2)
as (nq, p)→∞.

This assumption merely encodes the idea that the signal is not overwhelmed by noise asymp-
totically.

Theorem 3.2 (Uniform CLT for `q norm estimator). Let q ∈ (0, 2]. Assume that the
measurement model (M) and Assumption 3.3 hold. Let t̂ be any function of y1, . . . , ynq that
satisfies

t̂γq‖x‖q −→P c0 (3.30)

as (nq, p) → ∞ for some constant c0 6= 0 with ϕ0(ρ̄qc0) 6= 0. Then, the estimator ν̂q(t̂ )
satisfies

√
nq

(
ν̂q(t̂)

‖x‖qq
− 1
)

w−−→ N(0, vq(c0, ρ̄q)) (3.31)

as (nq, p) → ∞, where the limiting variance is strictly positive and defined according to the
formula

vq(c0, ρ̄q) := 1
|c0|2q

(
1
2

1
ϕ0(ρ̄q |c0|)2 exp(2|c0|q) + 1

2
ϕ0(2ρ̄q |c0|)
ϕ0(ρ̄q |c0|)2 exp((2− 2q)|c0|q)− 1

)
. (3.32)

Remarks. This result is proved in Appendix B.3. Although it might seem more natural to
prove a CLT for the difference ν̂q(t̂)− ‖x‖qq rather than the ratio ν̂q(t̂)/‖x‖qq, the advantage
of the ratio is that its appropriate scaling factor is

√
nq, and hence independent of the size

of the (possibly growing) unknown parameter ‖x‖qq.
Now that the limiting distribution of ν̂q(t̂) is available, we will focus on constructing an

estimate t̂ so that the limiting value c0 minimizes the variance function vq(·, ρ̄q). Since the
formula for vq(c0, ρ̄q) is ill-defined for certain values of c0, the following subsection extends the
domain of vq(·, ρ̄q) so that minimization can be formulated in a way that is more amenable
to analysis.

Extending the variance function

Based on the previous theorem, our aim is to construct t̂ so that as (nq, p)→∞,

γq t̂‖x‖q →P c
?(ρ̄q), (3.33)
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where c?(ρ̄q) denotes a minimizer of vq(·, ρ̄q). Since we assume the noise distribution is
symmetric about 0, it follows that ϕ0 is a symmetric function, and consequently vq(c, ρ) is
symmetric in c. Therefore, for simplicity, we may restrict our attention to choices of c that
are non-negative.

An inconvenient aspect of minimizing the function vq(·, ρ) is that its domain depends on
ρ — since the formula (3.32) is ill-defined at values of c0 where ϕ0(ρc0) = 0. Because we will
be interested in minimizing vq(·, ρ̂q) for some estimate ρ̂q of ρ̄q, this leads to analyzing the
minimizer of a random function whose domain is also random. To alleviate this complication,
we will define an extension of vq(·, ·) whose domain does not depend on the second argument.
Specifically, whenever q ∈ (0, 2), Proposition 3.2 below shows that an extension ṽq of vq can
be found with the properties that ṽq(·, ·) is continuous on [0,∞) × [0,∞), and ṽq(·, ρ̄q) has
the same minimizers as vq(·, ρ̄q).

When q = 2, one additional detail must be handled. In this case, it may happen for
certain noise distributions that v2(c, ρ̄2) approaches a minimum as c tends to 0 from the
right10, i.e.

lim
c→0+

v2(c, ρ̄2) = inf
c>0

v2(c, ρ̄2). (3.34)

This creates a technical nuisance in using Theorem 3.2 because v2(c0, ρ̄2) is not defined for
c0 = 0. There are various ways of handling this “edge case”, but for simplicity, we take a
practical approach of constructing t̂ so that

γ2t̂‖x‖2 →P ε2

for some (arbitrarily) small constant ε2 > 0.11 For this reason, in the particular case of
q = 2, we will restrict the domain of the extended function ṽ2(·, ·) to be [ε2,∞) × [0,∞).
The following lemma summarizes the properties of the extended variance function that will
be needed later on.

Lemma 3.2 (Extended variance function). Suppose that ϕ0 satisfies the assumptions of the
model (M), and let vq be as in formula (3.32). For each q ∈ (0, 2), put εq := 0, and let
ε2 > 0. For all values q ∈ (0, 2], define the function

ṽq : [εq,∞)× [0,∞)→ [0,∞], (3.35)

according to

ṽq(c, ρ) :=

{
vq(c, ρ) if (c, ρ) satisfies c 6= 0 and ϕ0(ρc) 6= 0,

+∞ otherwise.
(3.36)

Then, the function ṽq(·, ·) is continuous on [εq,∞)× [0,∞), and for any ρ ≥ 0, the function
ṽq(·, ρ) attains its minimum in the set [εq,∞).

10For instance, it can be checked that this occurs in the presence of noiseless measurements where ϕ0 ≡ 1,
or when the noise distribution is Gaussian. However, for heavier tailed noise distributions, it can also happen
that v2(·, ρ̄q) is minimized at strictly positive values.

11 An alternative solution is to simply avoid q = 2 and estimate sq(x) for some q close to 2.
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Remarks. A simple consequence of the definition of ṽq(·, ·) is that any choice of c ∈ [εq,∞)
that minimizes ṽq(·, ρ̄q) also minimizes vq(·, ρ̄q). Hence there is nothing lost in working with
ṽq.

Minimizing the extended variance function. We are now in position to specify the
desired limiting value c?(ρ̄q) from line (3.33). That is, for any ρ ≥ 0, we define

c?(ρ) ∈ argmin
c≥εq

ṽq(c, ρ), (3.37)

where q ∈ (0, 2] and εq is as defined in Lemma 3.2. Note that ṽq is a known function, and so
the value c?(ρ) can be computed for any given ρ. However, since the limiting noise-to-signal
ratio ρ̄q is unknown, it will be necessary to work with c?(ρ̂q) for some estimate ρ̂q of ρ̄q, which
is discussed below as part of our method for constructing an optimal t̂. Readers wishing to
bypass the technical details of the procedure should skip ahead to Section 3.4.

A procedure for optimal selection of t

At a high level, we choose t by first computing a simple “pilot” value t̂pilot, and then refining
it to obtain an optimal value t̂opt that will be shown to satisfy

t̂optγq‖x‖q →P c
?(ρ̄q). (3.38)

The pilot value of t will satisfy
t̂pilotγq‖x‖q →P c0 (3.39)

for some (possibly non-optimal) constant c0. The construction of t̂pilot will be given in a
moment. The purpose of the pilot value is to derive a ratio-consistent estimator of ‖x‖qq
through the statistic ν̂q(t̂pilot). With such an estimate of ‖x‖qq in hand, we can easily derive
a consistent estimator of ρ̄q, namely

ρ̂q := σ
γq(ν̂q(t̂pilot))1/q

. (3.40)

Next, we use ρ̂q to estimate the optimal constant c?(ρ̄q) with c?(ρ̂q), as defined in line (3.37).
Finally, we obtain an optimal choice of t using

t̂opt := c?(ρ̂q)

γq(ν̂q(t̂pilot))1/q
. (3.41)

The consistency of ρ̂q and t̂opt will be shown in Section 3.4.

Constructing the pilot value. In choosing a pilot value for t, there are two obstacles
to consider. First, we must choose t̂pilot so that the limit (3.39) holds for some constant c0.
Second, we must ensure that the value c0 is not a singularity of the function v(·, ρ̄q), i.e.
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c0 6= 0 and ϕ0(ρ̄qc0) 6= 0, for otherwise the variance of ν̂q(t̂pilot) may diverge as (nq, p)→∞.
To handle the first item, consider the median absolute deviation statistic

m̂q := med(|y1|, . . . , |ynq |), (3.42)

which is a coarse-grained, yet robust, estimate of γq‖x‖q. (The drawback of m̂q is that it
does not deconvolve the effects of noise in estimating γq‖x‖q.) If we define

t̂initial := 1/m̂q, (3.43)

then a straightforward argument (see the proof of Proposition 3.3 in Section 3.4) shows there
is a finite constant c1 > 0 such that as (nq, p)→∞,

t̂initialγq‖x‖q →P c1. (3.44)

Now, only a slight modification of t̂initial is needed so that the limiting constant c1 avoids
the singularities of vq(·, ρ̄q). Since every characteristic function is continuous and satisfies
ϕ0(0) = 1, we may find a number η0 > 0 such that ϕ0(η) > 1

2
for all η ∈ [0, η0]. The value 1

2

has no special importance. Using t̂initial, we define

t̂pilot := t̂initial ∧ η0
σ
,

where a ∧ b = min{a, b}. Combining the limit (3.44) with assumption A3.3, it follows that
t̂pilotγq‖x‖q →P c0 for some finite constant c0 > 0, since

t̂pilotγq‖x‖q = (t̂initialγq‖x‖q) ∧
(
η0

γq‖x‖q
σ

)
(3.45)

= c1 ∧ (η0
ρ̄q

) + oP (1) (3.46)

=: c0 + oP (1). (3.47)

Furthermore, it is clear that c0 is not a singularity of v(·, ρ̄q), since c0 is positive, and

ϕ0(ρ̄qc0) = ϕ0

(
(ρ̄qc1) ∧ η0

)
> 1

2
,

due to the choice of η0. This completes the description of t̂pilot.

Algorithm for estimating ‖x‖qq and sq(x)

We now summarize our method by giving a line-by-line algorithm for computing the adaptive
estimator ν̂q(t̂opt) of the parameter ‖x‖qq. As described earlier, an estimate for sq(x) is
obtained by combining norm estimates ν̂1 and ν̂q. When estimating sq(x) for q ∈ (0, 2] and
q 6= 1, we assume that two sets of measurements (of sizes n1 and nq) from the model (M)
are available, i.e.

yi = 〈ai, x〉+ σεi, with ai
i.i.d.∼ stableq(γq)

⊗p, for i = 1, . . . , nq, (3.48)

yi = 〈ai, x〉+ σεi, with ai
i.i.d.∼ stable1(γ1)⊗p, for i = nq + 1, . . . , nq + n1. (3.49)
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Once the estimators ν̂q(t̂opt) and ν̂1(t̂opt) have been computed with their respective values of
t̂opt, the estimator ŝq(x) is obtained as

ŝq(x) :=

(
ν̂q(t̂opt)

) 1
1−q(

ν̂1(t̂opt)
) q

1−q
. (3.50)

The algorithm to compute ν̂q(t̂opt) is given below.

Algorithm (Estimation procedure for ‖x‖qq, for q ∈ (0, 2]).

Input: • observations yi generated with i.i.d. measurement vectors ai ∼ stableq(γq)
⊗p, for

i = 1, . . . , nq

• measurement intensity γq

• noise level σ

• noise characteristic function ϕ0

• threshold εq defined in Lemma 3.2

1. compute t̂initial := 1/m̂q where m̂q := med(|y1|, . . . , |ynq |)
2. find η0 > 0 such that ϕ0(η) > 1

2
for all η ∈ [0, η0]

3. compute t̂pilot := t̂initial ∧ η0
σ
,

4. compute ρ̂q := σ
γq(ν̂q(t̂pilot))1/q

5. compute c?(ρ̂q) ∈ argminc≥εq ṽq(c, ρ̂q).

6. compute t̂opt := c?(ρ̂q)

γq(ν̂q(t̂pilot))1/q

7. return ν̂q(t̂opt)

3.4 Main results for estimators and confidence

intervals

In this section, we first show in Proposition 3.3 that the procedure for selecting the t̂pilot

leads to consistent estimates of the parameters ‖x‖qq, and ρ̄q. Next, we show that the optimal
constant c?(ρ̄q) and optimal variance v(c?(ρ̄q), ρ̄q) can also be consistently estimated. These
estimators then lead to adaptive confidences intervals for ‖x‖qq and sq(x) based upon ν̂q(t̂opt)
in Theorem 3.3 and Corollary 3.1.
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Consistency results

Proposition 3.3 (Consistency of the pilot estimator). Let q ∈ (0, 2] and assume that the
measurement model (M) and A3.3 hold. Then as (nq, p)→∞,

ν̂q(t̂pilot)

‖x‖qq
−→P 1 (3.51)

and
ρ̂q −→P ρ̄q. (3.52)

Remarks. We now turn our attention from the pilot value t̂pilot to the optimal value t̂opt.
In order to construct t̂opt, our method relies on the M -estimator c?(ρ̂q) ∈ argminc≥εqvq(c, ρ̂q),
where c?(·) is defined in line (3.37). Consistency proofs for M -estimators typically require
that the objective function has a unique optimizer, and our situation is no exception. Note
that we do not need to assume that a minimizer exists, since this is guaranteed by Proposi-
tion 3.2.

A3.4. The function vq(·, ρ̄q) has at most one minimizer in [εq,∞), where εq is defined in
Proposition 3.2.

In an approximate sense, this assumption can be verified empirically by simply plotting
the function vq(·, ρ̂q). In Section B.6 of Appendix B, we verify the assumption analytically in
the case of stableq noise. Based on graphical inspection, the assumption also seems to hold
for a variety of natural parametric noise distributions (e.g. Laplace, uniform[−1, 1], and the
t distribution). However, outside of special cases, analytic verification seems to be difficult,
and even the stable case is somewhat involved.

Proposition 3.4 (Consistency of c?(ρ̂q)). Let q ∈ (0, 2] and assume that the measurement
model (M) holds, as well as assumptions A3.3, and A3.4. Then, as (nq, p)→∞,

c?(ρ̂q) −→P c?(ρ̄q). (3.53)

Furthermore,

t̂optγq‖x‖q −→P c?(ρ̄q), (3.54)

and

vq(c
?(ρ̂q), ρ̂q) −→P vq(c

?(ρ̄q), ρ̄q). (3.55)

Remarks. This result is proved in Section B.4 of Appendix B.
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Confidence intervals for ‖x‖qq and sq(x)

In this subsection, we assemble the work in Proposition 3.4 with Theorem 3.2 to obtain
confidence intervals for ‖x‖qq and sq(x). In the next two results, we will use z1−α to denote
the 1 − α quantile of the standard normal distribution, i.e. Φ(z1−α) = 1 − α. To allow our
result to be applied to both one-sided and two-sided intervals, we state our result in terms
of two possibly distinct quantiles z1−α and z1−α′ .

Theorem 3.3 (Confidence interval for ‖x‖qq). Let q ∈ (0, 2] and define the estimated variance

ω̂q := vq(c
?(ρ̂q), ρ̂q). (3.56)

Assume that the measurement model (M) holds, as well as assumptions A3.3, and A3.4.
Then as (nq, p)→∞,

√
nq√
ω̂q

(
ν̂q(t̂opt)

‖x‖qq
− 1
)

w−−→ N(0, 1), (3.57)

and consequently for any fixed α, α′ ∈ [0, 1
2
],

P

[(
1−
√
ω̂qz1−α
√
nq

)
· ν̂q(t̂opt) ≤ ‖x‖qq ≤

(
1 +

√
ω̂qz1−α′√
nq

)
· ν̂q(t̂opt)

]
→ 1− α− α′. (3.58)

Remarks. This result follows by combining Theorem 3.2 with Proposition 3.4. However, if
the limit (3.57) is used directly to obtain a confidence interval for ‖x‖qq, the resulting formulas
are somewhat cumbersome. Instead, a simpler confidence interval (given in line (3.58)) is
obtained using a CLT for the reciprocal ‖x‖qq/ν̂q(t̂opt), via the delta method. For a one-sided
interval with the right endpoint being +∞, we set α′ = 0, and similarly, we set α = 0 in the
opposite case.

As a corollary of Theorem 3.3, we obtain a CLT and a confidence interval for ŝq(x) by
combining the estimators ν̂q(t̂opt) and ν̂1(t̂opt). Since each of the norm estimators rely on
measurement sets of sizes nq and n1, we make the following simple scaling assumption, which
enforces the idea that each set should be non-negligible with respect to the other.

A3.5. For each q ∈ (0, 2] \ {1}, there is a constant π̄q ∈ (0, 1), such that as (n1, nq, p)→∞,

nq
n1+nq

= π̄q + o(n
−1/2
q ). (3.59)

Corollary 3.1 (Confidence interval for sq(x)). Assume q ∈ (0, 2] \ {1}, and that the condi-
tions of Theorem 3.3 hold, as well as assumption A3.5. Also assume ŝq(x) is constructed
from independent sets of measurements (3.48) and (3.49). Letting ω̂q be as in Theorem 3.3,
define the quantities

πq := nq/(n1 + nq) and ϑ̂q := ω̂q
πq

( 1
1−q )

2 + ω̂1

1−πq ( q
1−q )

2.
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Then as (n1, nq, p)→∞,
√
n1+nq√
ϑ̂q

(
ŝq(x)

sq(x)
− 1
)

w−−→ N(0, 1), (3.60)

and consequently for any fixed α, α′ ∈ [0, 1
2
],

P

[(
1−
√
ϑ̂qz1−α√
n1+nq

)
· ŝq(x) ≤ sq(x) ≤

(
1 +

√
ϑ̂qz1−α′√
n1+nq

)
· ŝq(x)

]
→ 1− α− α′. (3.61)

Remarks. As in Theorem 3.3, we chose to present a simpler formula for the confidence
interval in line (3.61) by using a CLT for the reciprocal sq(x)/ŝq(x).

3.5 Applications of confidence intervals for ‖x‖qq and

sq(x)

In this section, we give some illustrative applications of our results for ‖̂x‖qq and ŝq(x).
First, we describe how the assumption of sparsity may be checked in a hypothesis testing
framework. Second, we consider the problem of choosing the regularization parameter for
the Lasso and Elastic Net algorithms (in primal form).

Testing the hypothesis of sparsity

In the context of hypothesis testing, the null hypothesis is typically viewed as a “straw
man” that the practitioner would like to reject in favor of the “more desirable” alternative
hypothesis. Hence, for the purpose of verifying the assumption of sparsity, it is natural for
the null hypothesis to correspond to a non-sparse signal. More specifically, if 1 < κ ≤ p is a
given reference value of sparsity, then we consider the testing problem

H0 : sq(x) ≥ κ versus H1 : 1 ≤ sq(x) < κ. (3.62)

To construct a test statistic, we use the well-known duality between confidence intervals
and hypothesis tests [LR05]. Consider a one-sided confidence interval for sq(x) of the form
(−∞, ûα], with asymptotic coverage probability P(sq(x) ≤ ûα) = 1−α+ o(1). Clearly, if H0

holds, then this one-sided interval must also contain κ with probability at least 1−α+ o(1).
Said differently, this means that under H0, the chance that (−∞, ûα] fails to contain κ is at
most α + o(1). Likewise, one may consider the test statistic

T := 1
{
ûα < κ

}
,

and reject H0 iff T = 1, which gives an asymptotically valid level-α testing procedure. Now,
by Corollary 3.1, if we choose

ûα := (1 + ϑ̂qz1−α√
n1+nq

)
ŝq(x),
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then the interval (−∞, ûα] has asymptotic coverage probability 1 − α. The reasoning just
given ensures that the false alarm rate is asymptotically bounded by α as (n1, nq, p) → ∞.
Namely,

PH0(T = 1) ≤ α + o(1).

It is also possible to derive the asymptotic power function of the test statistic. Let ϑ̂q be as
defined in Corollary 3.1, and note that this variable converges in probability to a positive
constant, say ϑq (by Proposition 3.4). Then, as (n1, nq, p) → ∞, the asymptotic power
satisfies

PH1(T = 1) = Φ
(√

n1+nq
ϑq

(
κ

sq(x)
− 1
)
− z1−α

)
+ o(1). (3.63)

The details of obtaining this limit are straightforward, and hence omitted. Note that as sq(x)
becomes close to the reference value κ (i.e. the detection boundary), the power approaches
that of random guessing, Φ(−z1−α) = α, as we would expect.

Tuning the Lasso and Elastic Net in primal form

In primal form, the Lasso algorithm can be expressed as

minimize
v∈Rp

‖y − Av‖2
2

subject to v ∈ B1(r),
(3.64)

where B1(r) := {v ∈ Rp : ‖v‖1 ≤ r} is the `1 ball of radius r ≥ 0, and r is viewed
as the regularization parameter. (Note that the matrix A here may be different from the
measurement matrix we use to estimate sq(x).) If x denotes the true signal, then B1(‖x‖1) is
the smallest such set for which the true signal is feasible. Hence, one would expect r = ‖x‖1

to be an ideal choice of the tuning parameter. In fact, the recent paper [Cha14] shows that
this intuition is correct in a precise sense by quantifying how the mean-squared prediction
error of the Lasso deteriorates when the tuning parameter differs from ‖x‖1.

When using a data-dependent tuning parameter r̂, it is of interest to have some guarantee
that the true signal is likely to lie in the (random) set B1(r̂ ). Our one-sided confidence
interval for ‖x‖1 precisely solves this problem. More specifically, under the assumptions of
Theorem 3.3, if we choose α = 0, and α′ ∈ [0, 1

2
], then under the choice

r̂ :=
(

1 +
√
ω̂1z1−α′√
n1

)
· ν̂1(t̂opt), (3.65)

we have as (n1, p)→∞
P
(
x ∈ B1(r̂)

)
→ 1− α′. (3.66)

In fact, this idea can be extended further by adding extra `q norm constraints. A natural
example is a primal form of the well known Elastic Net algorithm [ZH05], which constrains
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both the `1 and `2 norms, leading to the convex program

minimize
v∈Rp

‖y − Av‖2
2

subject to v ∈ B1(r)

v ∈ B2(%)

(3.67)

for some parameters r, % ≥ 0. Here, B2 is defined in the same way as B1. Again, under the
assumptions of Theorem 3.3, if for some α ∈ [0, 1

2
] we put

%̂ :=
(

1 +
√
ω̂2z1−α√
n2

)
· ν̂2(t̂opt), (3.68)

and if the respective measurement sets of size n1 and n2 used to construct r̂ and %̂ are
independent, then as (n1, n2, p)→∞,

P
(
x ∈ B1(r̂) ∩ B2(%̂)

)
→ (1− α)2. (3.69)

The same reasoning applies to any other combination of `q norms for q ∈ (0, 2].

3.6 Deterministic measurement matrices

The problem of constructing deterministic matrices A with good recovery properties (e.g.
RIP-k or NSP-k) has been a longstanding open direction within CS [FR13, see Sections 1.3
and 6.1] [DeV07]. Since our procedure in Section 3.3 selects A at random, it is natural to
ask if randomization is essential to the estimation of unknown sparsity. In this section, we
show that estimating sq(x) with a deterministic matrix A leads to results that are inherently
different from our randomized procedure.

At an informal level, the difference between random and deterministic matrices makes
sense if we think of the estimation problem as a game between nature and a statistician.
Namely, the statistician first chooses a matrix A ∈ Rn×p and an estimation rule δ : Rn → R.
(The function δ takes y ∈ Rn as input and returns an estimate of sq(x).) In turn, nature
chooses a signal x ∈ Rp, with the goal of maximizing the statistician’s error. When the
statistician chooses A deterministically, nature has the freedom to adversarially select an x
that is ill-suited to the fixed matrix A. By contrast, if the statistician draws A at random,
then nature does not know what value A will take, and therefore has less knowledge to choose
a “bad” signal.

In the case of random measurements, Corollary 3.1 implies that our particular estimation
rule ŝq(x) can achieve a relative error |ŝq(x)/sq(x)− 1| on the order of 1/

√
n1 + nq with

high probability for any non-zero x. Our aim is now to show that for any set of noiseless
deterministic measurements, all estimation rules δ : Rn → R have a worst-case relative error
|δ(Ax)/s2(x)− 1| that is much larger than 1/

√
n1 + nq. Specifically, when q ∈ [0, 2], we give

a lower bound that is of order (1 − n
p
)2, which means that in the worst case, sq(x) cannot
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be estimated consistently in relative error when n � p. (The same conclusion holds for
q ∈ (2,∞] up to a factor of

√
log(2p).) More informally, this means that there is always

a choice of x that can defeat a deterministic procedure, whereas the randomized estimator
ŝq(x) is likely to succeed under any choice of x.

In stating the following result, we note that it involves no randomness whatsoever —
since we assume here that the observed measurements y = Ax are noiseless and obtained
from a deterministic matrix A. Furthermore, the bounds are non-asymptotic.

Theorem 3.4. Suppose n < p, and q ∈ [0, 2]. Then, the minimax relative error for estimat-
ing sq(x) from noiseless deterministic measurements y = Ax satisfies

inf
A∈Rn×p

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣ δ(Ax)
sq(x)

− 1
∣∣∣ ≥ 1

2πe

(
1− n

p

)2 − 1
2p
.

Alternatively, if q ∈ (2,∞], then

inf
A∈Rn×p

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣ δ(Ax)
sq(x)

− 1
∣∣∣ ≥ 1√

2πe
· 1−(n/p)

1+
√

16 log(2p)
− 1

2p
.

Remarks. The proof of this result is based on the classical technique of a two-point prior.
In essence, the idea is that for any choice of A, it is possible to find two signals x̃ and x◦

that are indistinguishable with respect to A, i.e.

Ax̃ = Ax◦, (3.70)

and yet have very different sparsity levels,

sq(x
◦)� sq(x̃). (3.71)

Due to the relation (3.70), the statistician has no way of knowing whether x̃ or x◦ has been
selected by nature, and if nature chooses x◦ and x̃ with equal probability, then it is impossible
for the statistician to improve upon the trivial estimator 1

2
sq(x̃)+ 1

2
sq(x

◦) that does not even
make use of the data. Furthermore, since sq(x

◦)� sq(x̃), it follows that the trivial estimator
has a large relative error – implying that the minimax relative error is also large. (A formal
version of this argument is given in Section B.5 of Appendix B.)

To implement the approach of a two-point prior, the main challenge is to show that for
any choice of A ∈ Rn×p, two vectors satisfying (3.70) and (3.71) can actually be found. This
is the content of the following lemma.

Lemma 3.3. Let A ∈ Rn×p be an arbitrary matrix with n < p, and let x◦ ∈ Rp be an
arbitrary signal. Then, for each q ∈ [0, 2], there exists a non-zero vector x̃ ∈ Rp satisfying
Ax̃ = Ax◦ and

sq(x̃) ≥ 1
πe
· (1− n

p
)2 · p. (3.72)

Also, for q ∈ (2,∞], there is a vector x̄ satisfying Ax̄ = Ax◦ and

sq(x̄) ≥

√
2
πe

(p− n)

1 +
√

16 log(2p)
. (3.73)
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Remarks. Although it might seem intuitively obvious that every affine subspace contains
a non-sparse vector, the technical substance of the result lies in the fact that the bounds hold
uniformly over all matrices A ∈ Rn×p. This uniformity is necessary when taking the infimum
over all A ∈ Rn×p in Theorem 3.4. Furthermore, the order of magnitude of the bounds for
q ∈ [0, 2] is unimprovable when n� p, since sq(x) ≤ p. Similarly, the bound for q ∈ (2,∞] is
optimal up to a logarithmic factor. Our proof in Appendix B.5 uses the probabilistic method
to show that the desired vectors x̃ and x̄ exist. Namely, we put a distribution on the set
of vectors v satisfying Ax = Av, and then show that the stated bounds hold with positive
probability.
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[BG11] Bühlmann, P. and Geer, S. van de. Statistics for high-dimensional data: methods,
theory and applications. Springer, 2011.

[BGZ97] Bickel, P. J., Gotze, F., and Zwet, W. van. “Resampling fewer than n observa-
tions: Gains, losses, and remedies for the losses”. In: Statistica Sinica 7 (1997),
pp. 1–31.

[BH95] Benjamini, Y. and Hochberg, Y. “Controlling the false discovery rate: a practical
and powerful approach to multiple testing”. In: Journal of the Royal Statistical
Society. Series B (1995), pp. 289–300.

[Bha97] Bhatia, R. Matrix analysis. Vol. 169. Springer, 1997.



BIBLIOGRAPHY 68

[Bic+09] Bickel, P. J. et al. “An overview of recent developments in genomics and asso-
ciated statistical methods”. In: Philosophical Transactions of the Royal Society
A: Mathematical, Physical and Engineering Sciences 367.1906 (2009), pp. 4313–
4337.

[BKS14] Barak, B., Kelner, J. A., and Steurer, D. “Rounding sum-of-squares relaxations”.
In: Proceedings of the 46th Annual ACM Symposium on Theory of Computing.
ACM. 2014, pp. 31–40.

[BL00] Borwein, J. M. and Lewis, A. S. Convex Analysis and Nonlinear Optimization
Theory and Examples. CMS Books in Mathematics. Canadian Mathematical
Society, 2000.

[BL08] Bickel, P. J. and Levina, E. “Covariance regularization by thresholding”. In: The
Annals of Statistics (2008), pp. 2577–2604.

[BL14] Bobkov, S. and Ledoux, M. One-dimensional empirical measures, order statis-
tics, and Kantorovich transport distances. preprint, 2014.

[BLM13] Boucheron, S., Lugosi, G., and Massart, P. Concentration inequalities: A nonasymp-
totic theory of independence. Oxford University Press, 2013.

[BS10] Bai, Z. and Silverstein, J. W. Spectral analysis of large dimensional random
matrices. Vol. 20. Springer, 2010.

[BS96] Bai, Z. and Saranadasa, H. “Effect of high dimension: by an example of a two
sample problem”. In: Statistica Sinica 6 (1996), pp. 311, 329.
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Appendix A

Proofs for Chapter 2

A.1 Proof of Theorem 2.1

Proof. Due to line (2.4) and Lemma 8.8 in B&F 1981,

d2
2(Ψρ(F0; c),Φρ(F̂ ; c)) = d2

2

(
Φρ(F0; c),Φρ(F̂ ; c)

)
+ (c>δ(X))2. (A.1)

If ε∗ ∈ Rn is a random vector whose entries are drawn i.i.d. from F̂ , then the definition of
Φρ gives the matching relations

Φρ(F0; c) = L(c>(X>X + ρ)−1X>ε
X)

Φρ(F̂ ; c) = L(c>(X>X + ρ)−1X>ε∗
X).

(A.2)

To make use of these relations, we apply Lemma 8.9 in B&F 1981, which implies that if
w ∈ Rn is a generic deterministic vector, and if U = (U1, . . . , Un) and V = (V1, . . . , Vn) are
random vectors with i.i.d. entries, then

d2
2(w>U,w>V ) ≤ ‖w‖2

2 · d2(U1, V1)2.

Therefore,

d2
2

(
Φρ(F0),Φρ(F̂ )

)
≤ ‖c>(X>X + ρ)−1X>‖2

2 · d2
2(ε1, ε

∗
1)

= 1
σ2 · vρ(X; c) · d2

2(F0, F̂ ).
(A.3)

Combining this with line (A.1) and dividing through by vρ proves the claim.

A.2 Proof of Theorem 2.2

Proof. By the triangle inequality,

d2
2(F̂ , F0) ≤ 2 d2

2(F̂ , Fn) + 2 d2
2(Fn, F0). (A.4)
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Let F̃n be the (uncentered) empirical distribution of the residuals ê of β̂, which places mass
1/n at each value êi, for i = 1, . . . , n. The proofs of Lemmas 2.1 and 2.2 in Freedman 1981,
show that

E
[
d2(F̂ , Fn)2

X] ≤ E
[(

1
n

∑n
i=1 εi

)2]
+ E

[
d2(F̃n, Fn)2

X]
≤ 1

n
σ2 + 1

n
E
[
‖ê− ε‖2

2

X]
= 1

n
σ2 + 1

n
E
[
‖X(β − β̂)‖2

2

X],
(A.5)

where we have used the algebraic identity ê− ε = X(β − β̂), which holds for any estimator

β̂. This completes the proof.

A.3 Proof of Theorem 2.3

Proof. We begin with a simple bias-variance decomposition,

mspe(β̂%|X) = 1
n
E
[∥∥X(β̂% − E

[
β̂%|X

])∥∥2

2

X]+ 1
n

∥∥X(E
[
β̂%|X

]
− β)

∥∥2

2
. (A.6)

We will handle the bias and variance terms separately. To consider the bias term, note that
E[β̂ρ|X]− β = Bβ, where

B = (X>X + %Ip×p)
−1X>X − Ip×p.

Hence,

1
n
‖X(E[β̂%|X]− β)‖2

2 = 1
n
‖XBβ‖2

2

= β>B( 1
n
X>X)Bβ.

(A.7)

If we let li = λi(
1
n
X>X), then the eigenvalues of B( 1

n
X>X)B are of the form µi := li(%/n)2

(li+%/n)2
.

In particular, it is simple to check1 that maxi µi � %/n whenever θ ≤ ν, and so

β>B( 1
n
X>X)Bβ . %

n
‖β‖2

2 = n−θ‖β‖2
2. (A.8)

Note that this bound is tight, since it is achieved whenever β is parallel to the top eigenvector
of B( 1

n
X>X)B.

To consider the variance term, note that β̂% − E[β̂%|X] = (X>X + %Ip×p)
−1X>ε, and so

1
n
E
[∥∥X(β̂% − E[β̂%|X])

∥∥2

2

X] = 1
n

tr
((
X>X

(
X>X + %Ip×p

)−1
)2)

= 1
n

∑n∧p
i=1

(
li

li+%/n

)2
.

(A.9)

1 Note that if t ∈ R and f(t) := t(%/n)2

(t+%/n)2 , then f is maximized at t = %/n. Also, if θ ≤ ν, then there at

least one li that scales at the rate of %/n.
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It is natural to decompose the sum in terms of the index set

I(n) := {i ∈ {1, . . . , n ∧ p} : li ≥ %/n}, (A.10)

which satisfies |I(n)| � n
θ
ν . We will bound the variance term in two complementary cases;

either ν > 1/2 or ν ≤ 1/2. First assume ν > 1/2. Then,

1
n

p∑
i=1

(
li

li+%/n

)2
= 1

n

∑
i∈I(n)

(
li

li+%/n

)2
+ 1

n

∑
i 6∈I(n)

(
li

li+%/n

)2
(A.11)

. 1
n
|I(n)|+ 1

n

∫ n∧p

|I(n)|

x−2ν

(%/n)2
dx (A.12)

. n−1
(
n
θ
ν + n2θ · (|I(n)|)1−2ν

)
using ν > 1

2
(A.13)

� n−1
(
n
θ
ν + n2θ · (n θ

ν )(1−2ν)
)

(A.14)

= 2n
θ−ν
ν . (A.15)

To see that this upper bound is tight, note that in line (A.11), we can use the term-wise
lower bounds (

li
li+%/n

)2 ≥
{

1
4

if i ∈ I(n)
1
4

l2i
(%/n)2

if i 6∈ I(n),
(A.16)

and then apply an integral approximation from below (which leads to the same rate). Com-
bining the bias and variance pieces, we have shown that

1
n
E‖X(β̂% − β)‖2

2 . n
θ−ν
ν + n−θ if ν > 1

2
.

The bound is optimized when the two terms on the right side have the same rate, which
leads to the choice θ = ν

ν+1
.

In the case where ν ∈ (0, 1
2
), the calculation proceeds in the same way up to line (A.13),

where we obtain the bound

1
n

n∧p∑
i=1

(
li

li+%/n

)2
. n−1

(
n
θ
ν + n2θ · n1−2ν

)
(A.17)

= n
θ−ν
ν + n2(θ−ν). (A.18)

This bound is also tight due to the same reasoning as above. Note that in order for the
bound to tend to 0 as n → ∞, we must choose θ < ν. Furthermore, since we are working
under the assumption ν ∈ (0, 1

2
), it follows that the right side of line (A.18) has rate equal

to n2(θ−ν). Combining the rates for the bias and variance shows that

1
n
E‖X(β̂% − β)‖2

2 . n2(θ−ν) + n−θ if ν ∈ (0, 1
2
).

The bound is optimized when the two terms on the right side have the same rate, which
leads to the choice θ = 2ν

3
.
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A.4 Proof of Lemma 2.2

The proof is split up into three pieces, corresponding to parts (i), (ii), and (iii) in the
statement of the result.

The bias inequality (2.14)

We prove inequality (2.14) by combining Lemmas A.1 and A.3 below.

Lemma A.1. Assume the conditions of Lemma 2.2. For each i ∈ {1, . . . , n}, there are
independent random vectors ui(X), w(X) ∈ Rp such that the random variable X>i δ(X) can
be represented algebraically as

bρ(X;Xi) = X>i δ(X) = ui(X)>w(X).

Here, the vectors ui(X) can be represented in law as

ui(X)
L
= 1
‖z‖2 Πp(z), (A.19)

where z ∈ Rn is a standard Gaussian vector, and Πp(z) := (z1, . . . , zp). Also, the vector
w(X) satisfies the bound ‖w(X)‖2

2 ≤ ρ
4
‖β‖2

2 almost surely.

Proof. To fix notation, we write X> = Σ1/2Z> where Z> ∈ Rp×n is a standard Gaussian
matrix. Recall that δ(X) = Bβ, where

B = Ip×p − (X>X + ρIp×p)
−1X>X.

Let Z = HLG> be a signed s.v.d. for Z, as defined in Section A.5 in Appendix A, where
H ∈ Rn×p, L ∈ Rp×p, and G ∈ Rp×p. Now define ui(X) and w(X) according to

X>i δ(X) = e>i XBβ = e>i ZΣ1/2Bβ = e>i H︸︷︷︸
=:ui(X)>

LG>Σ1/2Bβ︸ ︷︷ ︸
=: w(X)

. (A.20)

From Lemma A.15 in that appendix, the rows e>i H can be represented in distribution as
1
‖z‖2 Πp(z). The same lemma also shows that the three matrices H, L, and G are independent.

Hence, to show that ui(X) and w(X) are independent, it suffices to show that w(X) is
a function only of G and L. In turn, it is enough to show that B is a function only of G
and L. But this is simple, because B is a function only of the matrix X>X, which may be
written as

X>X = Σ1/2Z>ZΣ1/2 = Σ1/2GL2G>Σ1/2. (A.21)

It remains to show that ‖w(X)‖2
2 ≤ ρ

4
‖β‖2

2 almost surely. Combining the definition of w(X)
with line (A.21) gives

‖w(X)‖2
2 = β>

(
BX>XB

)
β. (A.22)
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The eigenvalues of BX>XB are of the form µi := n (ρ/n)2li
(li+ρ/n)2

where li = λi(
1
n
X>X), and it is

simple to check that the inequality maxi µi ≤ ρ
4

holds for every realization of X.

Before proceeding to the second portion of the proof of inequality (2.14), we record some
well-known tail bounds for Gaussian quadratic forms due to Laurent and Massart [LM00],
which will be useful at various points later on.

Lemma A.2 (Laurent & Massart, 2001). Let A ∈ Rn×n be a fixed symmetric matrix, and
let z ∈ Rn be a standard Gaussian vector. Then, for every t > 0,

P
[
z>Az ≥ tr(A) + 2 |||A|||F

√
t+ 2 |||A|||op t

]
≤ exp(−t) (A.23)

and
P
[
z>Az ≤ tr(A)− 2 |||A|||F

√
t
]
≤ exp(−t). (A.24)

The next lemma completes the proof of inequality (2.14).

Lemma A.3. Assume the conditions of Lemma 2.2, and let τ > 0 be a constant. Then for
every n ≥ 1, the following event holds with probability at least 1− n−τ − ne−n/16,

max
1≤i≤n

b2
ρ(X;Xi) ≤ 5‖β‖2

2 · n−γ · (τ + 1) log(n+ 2). (A.25)

Proof. Applying the representation for bρ(X;Xi) given in Lemma A.1, there is a standard

Gaussian vector z ∈ Rn, such that ui(X)
L
= Πp(z)/‖z‖2. Consequently,

b2
ρ(X;Xi)

L
= 1
‖z‖22
· Πp(z)

(
w(X)w(X)>

)
Πp(z), (A.26)

where we may take Z and w(X) to be independent by the same lemma. Using Lemma A.2
on Gaussian quadratic forms, as well as the fact that ‖w(X)‖2

2 ≤ ρ
4
‖β‖2

2 almost surely, we
have for all t > 0,

P

[
Πp(z)>

(
w(X)w(X)>

)
Πp(z) ≥ ρ

4
‖β‖2

2

(
1 + 2

√
t+ 2t)

w(X)

]
≤ exp(−t). (A.27)

The same lemma also implies that for all t′ ∈ (0, 1
4
),

P
[

1
‖z‖22
≥ 1

(1−2
√
t′)n

]
≤ exp(−nt′). (A.28)

Now, we combine the bounds by integrating out w(X) in line (A.27) and choosing t′ =
1/16 in line (A.28). Taking a union bound, we conclude that for any t > 0, and any fixed
i = 1, . . . , n,

P

[
b2
ρ(X;Xi) ≤ ρ

n
· ‖β‖2

2 · 1
2

(
1 + 2

√
t+ 2t

)]
≥ 1− e−t − e−n/16. (A.29)
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Finally, another union bound shows that the maximum of the bρ(X,X
>
i ) satisfies

P

[
max
1≤i≤n

b2
ρ(X;Xi) ≤ ρ

n
· ‖β‖2

2 · 1
2
(1 + 2

√
t+ 2t)

]
≥ 1− e−t+log(n) − ne−n/16, (A.30)

which implies the stated result after choosing t = (τ + 1) log(n + 2), and noting that since
t ≥ 1, we have 1

2
(1+2

√
t+2t) ≤ 5t = 5(τ +1) log(n+2), as well as e−t+log(n) ≤ e−τ log(n+2) ≤

n−τ for every n ≥ 1.

The variance inequality (2.15)

The following “representation lemma” will serve as the basis for controlling the variance
vρ(X;Xi) = σ2‖X>i (X>X + ρIp×p)

−1X>‖2
2.

Lemma A.4. Assume the conditions of Lemma 2.2. For each i ∈ {1, . . . , n}, there is a
random vector vi(X) ∈ Rp and a random matrix M(X) ∈ Rp×p that are independent and
satisfy the algebraic relation

‖X>i (X>X + ρIp×p)
−1X>‖2

2 = vi(X)>M(X)vi(X).

Here, the vector vi(X) can be represented in law as

vi(X)
L
= 1
‖z‖2 Πp(z), (A.31)

where z ∈ Rn is a standard Gaussian vector and Πp(z) = (z1, . . . , zp). Also, the matrix
M(X) satisfies the algebraic relation

tr(M(X)) = ‖X(X>X + ρIp×p)
−1X>‖2

F . (A.32)

An explicit formula for M(X) is given below.

Proof. Define the matrix A := (X>X + ρIp×p)
−1X>X(X>X + ρIp×p)

−1. Then,

‖X>i (X>X + ρIp×p)
−1X>‖2

2 = e>i XAX
>ei. (A.33)

Using the notation in the proof of the previous lemma, let X = ZΣ1/2 where Z ∈ Rn×p is a
standard Gaussian random matrix. Furthermore, let Z = HLG> be a signed s.v.d. for Z,
as defined in Section A.5. Then, we define vi(X) and M(X) according to

e>i XAX
>ei = e>i H︸︷︷︸

=:vi(X)>

LG>Σ1/2AΣ1/2GL>︸ ︷︷ ︸
=:M(X)

H>ei. (A.34)

Some algebra shows that M(X) satisfies the relation (A.32). As in the proof of Lemma A.1,
the argument is completed using two properties of the signed s.v.d. of a standard Gaussian
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matrix: The rows of H can be represented as Πp(z)/‖z‖2 where z ∈ Rn is a standard
Gaussian vector, and the matrices H, L, and G> are independent. (See Lemma A.15 in
Section A.5.) To show that vi(X) and M(X) are independent, first note that vi(X) only
depends on H. Also, it is simple to check that M(X) only depends on G and L, because A
is a function only of X>X = Σ1/2GL2G>Σ1/2.)

Concentration of the variance and bounds on its expected value

Due to Lemma A.4, for each i = 1, . . . , n, we have the representation

vρ(X;Xi)
L
= 1
‖z‖22

Πp(z)>M(X)Πp(z), (A.35)

where z ∈ Rn is a standard Gaussian vector, independent of M(X). Conditionally on M(X),
the quadratic form Πp(z)>M(X)Πp(z) concentrates around tr(M(X)) by Lemma A.2. The
same lemma also implies that ‖z‖2

2 concentrates around n. In the next three subsections,
we will show that

√
tr(M(X)) concentrates around its expected value, and obtain upper

and lower bounds on the expected value. We will need two-sided bounds in preparation for
Theorem 2.4.

Concentration of
√

tr(M(X))

Lemma A.5. Assume the conditions of Lemma 2.2. Then for every t > 0, and every n ≥ 1,

P

[∣∣∣√tr(M(X))− E
√

tr(M(X))
∣∣∣ ≥ t

]
≤ 2 exp(−64

54
n1−γt2

‖Σ‖op ). (A.36)

Proof. We will show that
√

tr(M(X)) is a Lipschitz function of a standard Gaussian matrix.

Define the function gρ : R+ → [0, 1] by gρ(s) = s2

s2+(ρ/n)
, which satisfies the Lipschitz condition

|gρ(s)− gρ(s′)| ≤ Ln|s− s′|,

for all s, s′ ≥ 0, where Ln := 3
√

3
8

1√
ρ/n

.

If σ(A) = (σ1(A), . . . , σk(A)) denotes the vector of singular values of a rank k matrix A,
then we define gρ to act on σ(A) component-wise, i.e. gρ(σ(A)) = (gρ(σ1(A)), . . . , gρ(σk(A))).
Recall from Lemma A.4 that√

tr(M(X)) = ‖X(X>X + ρIp×p)
−1X>‖F (A.37)

and note that the ith singular value of the matrix X(X>X + ρIp×p)
−1X> is given by

gρ(σi(
1√
n
X)). Viewing the Frobenius norm of a matrix as the `2 norm of its singular values,

we have √
tr(M(X)) = ‖gρ(σ( 1√

n
X))‖2. (A.38)
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Write X> = Σ1/2Z> for a standard Gaussian matrix Z ∈ Rn×p, and let f : Rn×p → R be
defined according to

f(Z) :=
√

tr(M(X)).

We claim that f is Lipschitz with respect to the Frobenius norm. Let W> ∈ Rp×n be a
generic matrix, and put A = 1√

n
Σ1/2Z> and B = 1√

n
Σ1/2W>. Then,

|f(Z)− f(W )| =
∣∣∣‖gρ(σ(A))‖2 − ‖gρ(σ(B))‖2

∣∣∣ (A.39)

≤
∥∥gρ(σ(A))− gρ(σ(B))

∥∥
2

(A.40)

≤ Ln‖σ(A)− σ(B)‖2 (A.41)

≤ Ln‖A−B‖F (Weilandt-Hoffman) (A.42)

= Ln
∥∥ 1√

n
Σ1/2

(
Z> −W>)∥∥

F
(A.43)

≤ Ln√
n

√
‖Σ‖op ·

∥∥Z> −W>
∥∥
F
, (A.44)

where we have used a version of the Weilandt-Hoffman inequality for singular values [HJ91,
p.186], as well as the inequality ‖M1M2‖F ≤ ‖M1‖op‖M2‖F , which holds for any square
matrix M1 that is compatible with M2. (See Lemma A.10 in Appendix A.5.) The statement
of the lemma now follows from the Gaussian concentration inequality. (See Lemma A.13 in
Appendix A.5).

Upper bound on E
√

tr(M(X))

Lemma A.6. Assume the conditions of Lemma 2.2. Then, the matrix M(X) satisfies

E
√

tr(M(X)) .

{
n(γ−η)+ 1

2 if η ∈ (0, 1
2
)

n
γ
2η if η > 1

2
.

(A.45)

Proof. By Jensen’s inequality, it is enough to bound
√
E[tr(M(X))] from above. Define the

univariate function ψ : R+ → R+ by ψ(s) := s
(
√
s+ρ/n)2

, and observe that

tr(M(X)) = tr
((

(X>X + ρIp×p)
−1X>X

)2)
=

p∑
i=1

λ2i (Σ̂)

(λi(Σ̂)+ρ/n)2

=

p∑
i=1

ψ(λi(Σ̂
2))

= tr
(
ψ(Σ̂2)

)
.

(A.46)
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Here where we use the “operator calculus” notation ψ(A) = Uψ(D)U> where A is a symmet-
ric matrix with spectral decomposition A = UDU>, and ψ(D) is the diagonal matrix whose

ith diagonal entry is ψ(Dii). It is simple to check that ψ is a concave, and so tr(ψ(Σ̂2)) is a

concave matrix functional of Σ̂2 by Lemma A.11 in Section A.5 of Appendix A. Therefore,
Jensen’s inequality implies

E[tr(M(X))] ≤ tr(ψ(E[Σ̂2]))

=
∑p

i=1 ψ(λi(S)),
(A.47)

where we define the matrix S := E[Σ̂2]. Since X is Gaussian, Σ̂ is a Wishart matrix up to
scaling, and so Lemma A.14 in Appendix A.5 shows that this expectation may be evaluated
exactly as

S = (1 + 1
n
)Σ2 + tr(Σ)

n
Σ. (A.48)

We will now use this relation to apply an integral approximation to the right side of
line (A.47). Clearly, the eigenvalues of S are given by

λi(S) = (1 + 1
n
)λ2

i (Σ) + tr(Σ)
n
λi(Σ)

� i−2η + tr(Σ)
n
i−η.

(A.49)

Let r ∈ (0, 1) be a constant to be specified later. On the set of indices 1 ≤ i ≤ dnre
we use the bound ψ(λi(S)) ≤ 1, and on the set of indices i > dnre we use the bound
ψ(λi(S)) ≤ 1

(ρ/n)2
λi(S). Recalling the assumption ρ/n = n−γ, we may decompose the

inequality (A.47) as2

E[tr(M(X))] ≤
dnre∑
i=1

ψ(λi(S)) +

p∑
i=dnre+1

ψ(λi(S)) (A.50)

. nr + n2γ

∫ p

nr

(
x−2η + tr(Σ)

n
x−η
)
dx (A.51)

=: nr + n2γhn(η, r). (A.52)

where the function hn is defined in the last line. The bound is optimized when the two terms
on the right are of the same order; i.e. when r solves the rate equation

nr � n2γhn(η, r). (A.53)

Noting that

tr(Σ)
n
�
{
n−η if η ∈ (0, 1)

n−1 if η > 1,
(A.54)

2Note that if p/n � 1, it is still possible that nr > p for small values of n. Since we want nr ≤ p for the
integral in line (A.51), Lemma 2.2 is stated for “all large n”.
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the quantity hn(η, r) may be computed directly as

hn(η, r) �


n1−2η if η ∈ (0, 1

2
),

nr(1−2η) if η ∈ (1
2
, 1),

nr(1−2η) + nr(1−η)−1 if η > 1.

(A.55)

If we let r = r∗(η, γ) denote the solution of the rate equation (A.53), then some calculation
shows that under the assumption γ ∈ (0, 1),

r∗(η, γ) =

{
2(γ − η) + 1 if η ∈ (0, 1

2
),

γ
η

if η > 1
2
.

(A.56)

When η ∈ (0, 1) this is straightforward. To show the details for η > 1, note that the rate
equation (A.53) may be written as

nr � n2γ+r(1−2η) + n2γ+r(1−η)−1, (A.57)

which is the same as
1 � n2(γ−ηr) + n2γ−ηr−1. (A.58)

In order for both terms on the right to be O(1), the number r must satisfy the constraints

r ≥ γ
η
, (A.59)

r ≥ γ
η

+ γ−1
η
. (A.60)

Since Lemma 2.2 assumes γ ∈ (0, 1), only the first constraint matters. Furthermore, when
r ≥ γ

η
, the second term in line (A.58) is o(1), and we are reduced to choosing r so that

1 � n2(γ−ηr), which gives r = r∗(η, γ) = γ
η
. Substituting this value into line (A.52) completes

the proof. (Note from the discussion preceding line (A.52) that r must lie in the interval (0, 1),
and this requires γ/η < 1, which explains the assumption γ < min{η, 1} in Lemma 2.2.)

Lower bound on E
√

tr(M(X))

Lemma A.7. Assume the conditions of Lemma 2.2. Then, the matrix M(X) satisfies

E
√

tr(M(X)) & n
γ
2η . (A.61)

Proof. The variable
√

tr(M(X)) may be written as ‖X>X(X>X + ρIp×p)
−1‖F . Since the

Frobenius norm is a convex matrix functional, Jensen’s inequality implies

E
√

tr(M(X)) ≥
∥∥∥E[X>X(X>X + ρIp×p)

−1
]∥∥∥

F

=
∥∥∥E[(Ip×p + ρ

n
Σ̂−1

)−1
]∥∥∥

F
,

(A.62)
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where the last step follows algebraically with Σ̂ := 1
n
X>X. If we define the univariate

function f : R+ → R+ by f(s) = (1 + ρ
n
s)−1, then last inequality is the same as

E
√

tr(M(X)) ≥
∥∥E[f(Σ̂−1

)]∥∥
F
. (A.63)

It is a basic fact that f is operator convex on the domain of positive semidefinite matri-
ces [Bha97, p.117]. This yields an operator version of Jensen’s inequality with respect to the
Loewner ordering (Lemma A.12 in Appendix A.5):

E
[
f
(
Σ̂−1

)]
� f

(
E
[
Σ̂−1

])
. (A.64)

Furthermore, if two matrices satisfy A � B � 0, then ‖A‖F ≥ ‖B‖F [HJ09, Corollary 7.7.4].
Using this fact, as well as the formula for the expected inverse of a Wishart matrix [Mui82,
p. 97], we obtain

E
√

tr(M(X)) ≥
∥∥f(E[Σ̂−1

])∥∥
F

=
∥∥f( n

n−p−1
Σ−1

)∥∥
F

=

(
p∑
i=1

1(
1 + ρ

n
· n
n−p−1

λi(Σ−1)
)2

)1/2

=

(
p∑
i=1

λ2
i (Σ)(

λi(Σ) + ρ
n
· n
n−p−1

)2

)1/2

.

(A.65)

Define the index set J =
{
i ∈ {1, . . . , p} : λi(Σ) ≥ ρ

n
n

n−p−1

}
. For any i ∈ J , the ith

summand in the previous line is at least 1/4. Also, assumption A2.6 that p/n is bounded
strictly between 0 and 1, as well as the decay condition on the λi(Σ), imply that |J | � nγ/η,
which completes the proof.

Putting the variance pieces together

Combining Lemmas A.5, A.6, and A.7 with the Gaussian concentration inequality (Lemma A.13
in Section A.5 of Appendix A) immediately gives the following result. (We choose t to be
proportional to the relevant bound on E[

√
tr(M(X))] in the Gaussian concentration inequal-

ity.)

Lemma A.8. Assume the conditions of Lemma 2.2 and let tr(M(X)) be as in line (A.32).
Then, there are absolute constants κ1, κ2, . . . , κ6 > 0 such that the following upper-tail bounds
hold for all large n,

P
[

tr(M(X)) ≥ κ1n
2(γ−η)+1

]
≤ exp(−κ2n

2(1−η)+γ), if η ∈ (0, 1
2
), (A.66)
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and
P
[

tr(M(X)) ≥ κ3n
γ/η
]
≤ exp(−κ4n

1+
γ(1−η)
η ), if η > 1

2
, (A.67)

and the following lower-tail bound holds for all large n,

P
[

tr(M(X)) ≤ κ5n
γ/η
]
≤ exp(−κ6n

1+
γ(1−η)
η ), if η > 0. (A.68)

Remarks. Note that in order for the last two probabilities to be small for large values of
η > 0, it is necessary that γ < 1, as assumed in Lemma 2.2. The next result completes the
assembly of the results in this Subsection A.4. Although the first two bounds in Lemma A.9
are not necessary for the statement of Theorem 2.4, they show that the variance vρ(X;Xi)
tends 0 as n→∞ when γ < η, as assumed in Theorem 2.4. In other words, we imposed the
assumption γ < η so that confidence intervals based on Φρ(F̂%;Xi) have width that tends to
0 asymptotically.

Lemma A.9. Assume the conditions of Theorem 2.4 and let tr(M(X)) be as in line (A.32).
Assume γ < min{η, 1}. Then, there are absolute constants k1, k2, . . . , k6 > 0 such that the
following upper-tail bounds hold for all large n,

P
[

max
1≤i≤n

vρ(X;Xi) ≤ k1n
2(γ−η)

]
≥ 1− 4n exp(−k2n

γ
η ), if η ∈ (0, 1

2
) (A.69)

and
P
[

max
1≤i≤n

vρ(X;Xi) ≤ k3n
γ
η
−1
]
≥ 1− 4n exp(−k4n

γ
η ), if η > 1

2
, (A.70)

and
P
[

max
1≤i≤n

1
vρ(X;Xi)

≤ k5n
1− γ

η

]
≥ 1− 4n exp(−k6n

γ
η ), if η > 0. (A.71)

Proof. We only prove the last inequality (A.71), since the other two inequalities are proven
in a similar way. By Lemma A.4, we have

vρ(X;Xi)
L
= 1
‖z‖22

Πp(z)>M(X)Πp(z) (A.72)

where z ∼ N(0, Ip×p) and z ⊥⊥M(X). To apply the lower-tail bound for Gaussian quadratic

forms, note that Hölder’s inequality implies ‖M(X)‖F ≤
√

tr(M(X)) since ‖M(X)‖op ≤ 1
almost surely. Therefore, letting t = t′ tr(M(X)) with t′ ∈ (0, 1) in inequality (A.24) gives

P
[
Πp(z)>M(X)Πp(z) ≥ (1− 2

√
t′) tr(M(X))

M(X)
]
≥ 1− exp

(
− t′ tr(M(X))

)
(A.73)

Next, observe that inequality (A.24) with t = t′ · n for t′ ∈ (0, 1) gives,

P
[
‖z‖2

2 ≤ (1 + 4
√
t′)n
]
≥ 1− exp(−t′n). (A.74)
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If we define the event

E1 :=

{
1

1
‖z‖22

Πp(z)>M(X)Πp(z)
≤ 1+4

√
t′

(1−2
√
t′)

n
tr(M(X))

}
(A.75)

then the previous two inequalities imply

P
[
E1

M(X)
]
≥ 1− exp(−t′ tr(M(X)))− exp(−t′ · n)

≥ 1− 2 exp(−t′ tr(M(X))),
(A.76)

since tr(M(X)) ≤ n almost surely. Next, let κ5, κ6 > 0 be as in the previous lemma, and
define the event

E2 :=
{

n
tr(M(X))

≤ 1
κ5
n1− γ

η

}
, (A.77)

which has probability P(E2) ≥ 1− exp(−κ6n
1+

γ(1−η)
η ).

We now put these items together. Starting with line (A.72), if we work on the intersection
of E1 and E2, then for any fixed i = 1, . . . , n we have

P
[

1
vρ(X;Xi)

≤ 1+4
√
t′

(1−2
√
t′)

1
κ5
n

1− γ
η

]
≥ E

[
1E1 · 1E2

]
≥ 1− E

[
1Ec1 + 1Ec2

]
= 1− E

[
E
[
1Ec1
M(X)

]]
− P(Ec2)

≥ 1− 2E
[

exp(−t′ tr(M(X))
]
− P(Ec2)

= 1− 2E
[

exp(−t′ tr(M(X))) · (1E2 + 1Ec2 )
]
− P(Ec2)

≥ 1− exp(−t′κ5n
γ
η )− 3P(Ec2)

≥ 1− exp(−t′κ5n
γ
η )− 3 exp(−κ6n

1+
γ(1−η)
η )

≥ 1− 4 exp(−min{t′κ5, κ6} · n
γ
η )

(A.78)

where we have used the previous lemma to bound P(Ec2), and also the assumption γ ∈ (0, 1)

to conclude that γ
η
≤ 1+ γ(1−η)

η
. Taking a union bound over i = 1, . . . , n, proves the claim.

The last component of Lemma 2.2 is to prove the MSPE inequalities.

Proof of the MSPE inequalities

The proof of Theorem (2.3) shows that for any realization of X we have

mspe(β̂%|X) := 1
n
E
[
‖X(β̂% − β)‖2

2

X] . n−θ‖β‖2
2 + 1

n

p∧n∑
i=1

(
li
li+%

)2
, (A.79)
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where li = λi(
1
n
X>X). Now observe that the second term on the right side matches the

expression for tr(M(X)) given in line (A.46) by replacing ρ with % and multiplying by a
factor of 1

n
. Therefore, using Lemma A.8 and recalling %/n = n−θ shows that there are

absolute constants κ1, κ2, κ3, κ4 > 0 such that for all large n,

P
[
mspe(β̂%|X) ≥ κ1

(
n−θ + n2(θ−η)

)]
≤ exp(−κ2n

2(1−η)+θ), if η ∈ (0, 1
2). (A.80)

and

P
[
mspe(β̂%|X) ≥ κ3

(
n−θ + n

θ
η
−1)] ≤ exp(−κ4n

1+
θ(1−η)
η ), if η > 1

2 . (A.81)

In line (A.80), the bound mspe(β̂%|X) is optimized when n−θ � n2(θ−η), which explains the

choice θ = 2η
3

. Similarly, in line (A.81), the bound is optimized when n−θ � n
θ
η
−1, which

explains the choice θ = η
η+1

. Substituting in these values θ yields the stated result.

A.5 Background results

Results on matrices and convexity

Lemma A.10. Let M1 ∈ Rk1×k1 and M2 ∈ Rk1×k2. Then,

‖M1M2‖F ≤ ‖M1‖op‖M2‖F . (A.82)

Proof. Observe that

‖M1M2‖2
F = tr(M>

2 M
>
1 M1M2)

= tr((M>
1 M1)(M2M

>
2 ))

≤
k1∑
i=1

λi(M
>
1 M1) · λi(M2M

>
2 )

≤ ‖M1‖2
op

k1∑
i=1

λi(M2M
>
2 )

= ‖M1‖2
op‖M2‖2

F ,

(A.83)

where we have used von Neumann’s trace inequality (also known as Fan’s inequality) [BL00,
p.10] in the third line.

A result on convex trace functionals. In the following lemma, an interval of the real
line refers to any set of the form (a, b),(a, b],[a, b), or [a, b], where −∞ ≤ a ≤ b ≤ ∞. We
also define spec(M) to be the set of eigenvalues of a square matrix M . The collection of
symmetric matrices in Rp×p is denoted by Sp×p. For a univariate function ϕ, the symbol
tr(ϕ(M)) denotes

∑
i ϕ(λi(M)).
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Lemma A.11. Let I ⊂ R be an interval, and let M ⊂ Sp×p be a convex set such that
spec(M) ⊂ I for all M ∈M. Let ϕ : I → R be a convex function. Then, the functional

M 7→ tr(ϕ(M)) (A.84)

is convex on M.

A proof may be found in the paper [Pet94, Proposition 2].

Operator Jensen inequality. A function f : Sp×p → Sp×p is said to be operator convex
if for all λ ∈ [0, 1], and all A,B ∈ Sp×p,

f(λA+ (1− λ)B) � λf(A) + (1− λ)f(B), (A.85)

where A � B means that B − A is positive semidefinite.

Lemma A.12 (Operator Jensen inequality). Suppose f : Sp×p → Sp×p is operator convex,
and let A be a random Sp×p-valued matrix that is integrable. Then,

f(E[A]) � E[f(A)]. (A.86)

Proof. It is enough to show that for all x ∈ Rp,

x>f(E[A])x ≤ x>E[f(A)]x. (A.87)

For any fixed x, consider the function g : Sp×p → R defined by g(A) = x>f(A)x. It is
clear that g is a convex function in the usual sense, and so the ordinary version of Jensen’s
inequality implies g(E[A]) ≤ E[g(A)], which is the same as (A.87).

Results on Gaussian vectors and matrices

The following lemma is standard and is often referred to as the Gaussian concentration
inequality [BLM13].

Lemma A.13. Let Z ∈ Rp be a standard Gaussian vector and let f : Rp → R be an
L-Lipschitz function with respect to the `2 norm. Then for all t > 0,

P
(
|f(Z)− E[f(Z)]| ≥ t

)
≤ 2 exp

(−t2
2L2

)
. (A.88)

Next, we give a formula for the expected square of a Wishart matrix.

Lemma A.14. Let X ∈ Rn×p have rows drawn i.i.d. from N(0,Σ), and let Σ̂ = 1
n
X>X.

Then,
E[Σ̂2] = (1 + 1

n
)Σ2 + tr(Σ)

n
Σ.
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Proof. Write Σ̂ = 1
n

∑n
i=1XiX

>
i where X>i ∈ Rp is the ith row of X. If we put Mi = XiX

>
i ,

then
Σ̂2 = 1

n2

∑n
i=1M

2
i + 1

n2

∑
i 6=jMiMj.

Clearly, the Mi are independent with E[Mi] = Σ for all i, and so

E[Σ̂2] = 1
n
E[M2

1 ] + 2
n2

(
n
2

)
Σ2.

It remains to compute E[M2
1 ]. Write Xi = Σ1/2Zi where Zi is a standard Gaussian vector

in Rp, and let Σ1/2 = UΛ1/2U> be a spectral decomposition of Σ1/2 where U ∈ Rp×p is
orthogonal, and Λ is diagonal with Λii = λi(Σ). By the orthogonal invariance of the normal

distribution, Xi
L
= UΛ1/2Zi, and so

E[M2
1 ] = E[X1X

>
1 X1X

>
1 ] = UΛ1/2E

[
Z1Z

>
1 ΛZ1Z

>
1

]
Λ1/2U>. (A.89)

Define the matrix M̃1 := Z1Z
>
1 ΛZ1Z

>
1 . It is straightforward to verify that E[M̃1] is diagonal,

and its jth diagonal entry is
E[M̃1]jj = tr(Σ) + 2λj.

Therefore,
E[M̃1] = tr(Σ)Ip×p + 2Λ,

and combining this with line (A.89) gives

E[M2
1 ] = tr(Σ)Σ + 2Σ2.

Signed s.v.d. The following lemma describes the factors of an s.v.d. of a standard Gaus-
sian matrix Z ∈ Rn×p with n ≥ p. To make the statement of the lemma more concise, we
define the term signed s.v.d. below. This is merely a particular form of the s.v.d. that
ensures uniqueness. Specifically, if Z ∈ Rn×p is a full rank matrix with n ≥ p, then the
signed s.v.d. of Z is given by

Z = HLG>, (A.90)

where H ∈ Rn×p has orthonormal columns, the matrix L ∈ Rp×p is diagonal with L11 ≥
L22 ≥ · · · ≥ Lpp > 0, and G ∈ Rp×p is orthogonal with its first row non-negative, i.e. G1i ≥ 0
for all i = 1, . . . , p. It is a basic fact from linear algebra that the signed s.v.d. of any full
rank matrix in Rn×p exists and is unique [HJ09, Lemma 7.3.1]. This fact applies to Gaussian
matrices, since they are full rank with probability 1.

Lemma A.15. Suppose n ≥ p, and let Z ∈ Rn×p be a random matrix with entries drawn
i.i.d. from N(0, 1). Let

Z = HLG>, (A.91)
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be the unique signed s.v.d. of Z as defined above. Then, the matrices H, L and G are
independent. Furthermore, if H>i ∈ Rp denotes the ith row of H, then for each i = 1, . . . , n,
the marginal law of H>i is given by

H>i
L
= 1
‖z‖2 · Πp(z), (A.92)

where z ∈ Rn is a standard Gaussian vector, and Πp(z) is the projection operator onto the
first p coordinates, i.e. Πp(z) = (z1, . . . , zp).

Proof. We first argue that H, L, and G are independent, and then derive the representation
for H>i in the latter portion of the proof.

Due to the fact that the transformation Z 7→ (H,L,G) is invertible, it is possible to obtain
the joint density of (H,L,G) from the density of Z by computing the matrix Jacobian of
the factorization Z = HLG. (See the references [Mui82], [Mat97], and [ER05] for more
background on Jacobians of matrix factorizations.) To speak in more detail about the joint
density, let Vn×p denote the Stiefel manifold of n × p matrices with orthonormal columns.
Also, let Dp×p denote the set of p×p diagonal matrices, and Op×p the set of orthogonal p×p
matrices. The subset of Op×p with non-negative entries in the first row will be denoted by
On×p

+ .
Let fH,L,G : Vn×p × Dp×p ×Op×p

+ → [0,∞) denote the joint density of (H,L,G), where
the base measure is the product of the Haar distribution on Vn×p, Lebesgue measure on
Dp×p, and the Haar distribution on Op×p restricted to Op×p

+ . (See the book [Chi03] for
background on these measures). Then, it is known that fH,L,G factors according to

fH,L,G(h, l, g) = fH(h) · fL(l) · fG(g), (A.93)

where fH : Vn×p
+ → [0,∞) denotes the density of H with respect to the Haar measure

on Vn×p, and similarly for fL and fG. A derivation of the factorization (A.93) via matrix
Jacobians can be found in the paper [Jam54, Section 8]. This proves that H, L, and G are
independent.

We now prove the representation (A.92). From line 8.10 in the paper [Jam54], it is known
that fH is the density of the Haar distribution on Vn×p. If H ∈ Rn×p is a random matrix
distributed according to fH , then Theorem 2.2.1(ii) in the book [Chi03] implies that the rows
H>i can be represented as

H>i
L
= Πp(J

>
i ) (A.94)

where J>i ∈ Rn is the ith row of a Haar-distributed random matrix in On×n. Furthermore,
the rows J>i are uniformly distributed on the unit sphere on Rn, and hence can be represented
as z/‖z‖2, where z ∈ Rn is a standard Gaussian vector.

The leverage scores for Gaussian designs. Note that the hat matrix is invariant to
the covariance structure of the design points. That is, if X> = Σ1/2Z> with Z ∈ Rn×p being
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a standard Gaussian matrix, then

X(X>X)−1X> = ZΣ1/2(Σ1/2Z>Z>Σ1/2)−1Σ1/2Z>

= Z(Z>Z)−1Z>.
(A.95)

Hence, there is no loss of generality in analyzing the hat matrix with Σ = Ip×p.

Proposition A.1. Suppose there are absolute constants k1, k2 ∈ (0, 1) such that k1 ≤ p/n ≤
k2 for all (n, p). Let Z ∈ Rn×p be a random matrix with entries drawn i.i.d. from N(0, 1),
and put H = Z(Z>Z)−1Z>. Then as (n, p)→∞,

max
1≤i≤n

|Hii − p
n
| → 0 almost surely. (A.96)

Proof. Let Z = QR be a QR factorization where Q ∈ Rn×p and R ∈ Rp×p. Since Q>Q =
Ip×p, we have

H = QR(R>Q>QR)−1R>Q> = QQ>. (A.97)

It is a basic fact that Q follows that Haar distribution on the Steifel manifold of n×p matrices
with orthonormal columns. Furthermore, the proof of Lemma A.15 shows that the rows of
Q can be represented in distribution as Πp(z)/‖z‖2 where z ∈ Rn is a standard Gaussian
vector, and Πp(z) = (z1, . . . , zp). Hence, for each i = 1, . . . , n,

Hii = e>i Hei = e>i QQ
>ei

L
=
‖Πp(z)‖22
‖z‖22

. (A.98)

It is clear that line (A.96) is implied by the two following limits

max
1≤i≤n

n
p
Hii → 1 almost surely, (A.99)

and
min

1≤i≤n
n
p
Hii → 1 almost surely. (A.100)

We will only show (A.99), since the proof of the second limit is essentially the same. With
z as above, it is simple to verify the following concentration bound using lemma A.2,

P
(
an ≤ ‖Πp(z)‖22/p

‖z‖22/n
− 1 ≤ bn

)
≥ 1− 4 exp(−p1/4), (A.101)

where an and bn are numerical sequences that tend to 0.
Consequently, the union bound gives

P
(
an ≤ max

1≤i≤n
Hii − 1 ≤ bn

)
≥ 1− 4n · exp(−p1/4) (A.102)

Since p/n is bounded strictly between 0 and 1, the series
∑

n≥1 n exp(−p1/4) is finite, and
then the Borel-Cantelli lemma implies (A.99).
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Appendix B

Proofs for Chapter 3

B.1 Proofs for Section 3.1

The relation (3.12)

Proof. It is enough to show that ψ−1 has a strictly negative derivative at all positive values
of τ = τ(x). Direct calculation shows that the condition (ψ−1

p )′(τ(x)) < 0 is equivalent to
the inequality ∑p

i=1 i
−τ(x)∑p

i=1 log(i)i−τ(x)
·
∑p
i=1 log(i)i−2τ(x)∑p
i=1 log(i)i−τ(x)

<
∑p
i=1 i

−2τ(x)∑p
i=1 log(i)i−τ(x)

. (B.1)

To prove this inequality, consider the probability mass function

π(j) := log(j)j−τ(x)∑p
i=1 log(i)i−τ(x)

on the set {1, . . . , p}. By interpreting the sums in line (B.1) in terms of expectations with
respect to a discrete random variable J ∼ π, the inequality is equivalent to

E
[

1
log J

]
E
[
J−τ(x)

]
< E

[
J−τ(x)

log J

]
. (B.2)

Since the functions j 7→ j−τ(x) and j 7→ 1/ log(j) are strictly decreasing on {1, . . . , p}, it
follows from the “association inequality” ([BLM13], Theorem 2.14) that line (B.2) is true.

B.2 Proofs for Section 3.2

Proposition 3.1

Proof. Define the positive number t := n
log( pe

n
)
, and choose T = dte in Theorem 3.1. We first

verify that T log(pe
T

) ≤ 3n for every n. Observe that

T log(pe
T

) ≤ (t+ 1) log(pe
t

)

= n
log( pe

n
)
log
(
pe
n
· log(pe

n
)
)

+ log
(
pe
n
· log(pe

n
)
)
.

(B.3)
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Let r = p/n and recall that we assume n ≤ p. Simple calculus shows that for all r ≥ 1, the
quantity log

(
re · log(re)

)
is at most 1.4 log(re), and so

T log(pe
T

) ≤ n
log( pe

n
)
· 1.4 log(pe

n
) + 1.4 log(pe

n
)

≤ 1.4n+ 1.4n

≤ 3n

(B.4)

with the second step following from the assumption log(pe
n

) ≤ n. Consequently, the condi-
tion (3.15) of Theorem 3.1 is satisfied for every n under this choice of T , and we conclude
that there is an absolute constant c1 > 0 such that the bound (3.16) holds with probability
at least 1− 2 exp(−c1n). To finish the argument, observe that

1√
T
‖x− x|T‖1 ≤ 1√

t
‖x‖1 = 1√

n

√
‖x‖2

1 log(pe
n

). (B.5)

Dividing the inequality (3.16) through by ‖x‖2 leads to

‖x−x̂‖2
‖x‖2 ≤ c2

σε0
‖x‖2 + c3√

n

√
‖x‖21
‖x‖22

log(pe
n

),

and the proof is complete.

Proposition 3.2

Proof. Let B1(1) ⊂ Rp be the `1 ball of radius 1, and let R : Rn → Rp be a homogeneous

recovery algorithm. Also define the number η := 1
2
c1

√
log(pe/n)

n
where c1 > 0 is an absolute

constant to be defined below. Clearly, for any such η, we can find a point x̃ ∈ B1(1) satisfying

‖x̃−R(Ax̃)‖2 ≥ sup
x∈B1(1)

‖x−R(Ax)‖2 − η. (B.6)

Furthermore, we may choose such a point x̃ to satisfy ‖x̃‖1 = 1. (Note that if ‖x̃‖1 < 1, then
we can use the homogeneity of R to replace x̃ with the `1 unit vector x̃/‖x̃‖1 ∈ B1(1) and
obtain an even larger value on the left side.) The next step of the argument is to further
lower bound the right side in terms of minimax error, leading to

‖x̃−R(Ax̃)‖2 ≥ inf
A∈Rn×p

inf
R:Rn→Rp

sup
x∈B1(1)

‖x−R(Ax)‖2 − η, (B.7)

where the infima are over all sensing matrices A and all recovery algorithms R (possibly
non-homogenous). It is known from the theory of Gelfand widths that there is an absolute
constant c1 > 0, such that the minimax `2 error over B1(1) is lower-bounded by

inf
A∈Rn×p

inf
R:Rn→Rp

sup
x∈B1(1)

‖x−R(Ax)‖2 ≥ c1

√
log(pe/n)

n
. (B.8)
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(See [Can06, Section 3.5], as well as [Kas77] [GG84].) Using our choice of η, as well as the
fact that ‖x̃‖1 = 1, we obtain

‖x̃−R(Ax̃)‖2 ≥ 1
2
c1

√
‖x̃‖21·log(pe/n)

n
. (B.9)

Dividing both sides by ‖x̃‖2 completes the proof.

B.3 Proofs for Section 3.3

Theorem 3.2 – Uniform CLT for `q norm estimator

The proof of Theorem 3.2 consists of two parts. First, we prove a uniform CLT for a re-scaled
version of Ψ̂n(t), which is given below in Lemma B.1. Second, we extend this limit to the
statistic ν̂q(t) by way of the functional delta method, which is described at the end of the
section.

Remark on the subscript of nq. For ease of notation, we will generally drop the subscript
from nq in the remainder of the appendix, as it will not cause confusion.

Weak convergence of the empirical characteristic function. To introduce a few
pieces of notation, let c ∈ [−b, b] for some fixed b > 0, and define the re-scaled empirical
characteristic function,

ψ̂n(c) :=
1

n

n∑
i=1

e
√
−1

cyi
γq‖x‖q , (B.10)

which is obtained from the re-scaled observations yi
γ‖x‖q

d
= Si + ρqεi, where Si ∼ stableq(1),

and εi ∼ F0. The relation between Ψ̂n and ψ̂n is given by

Ψ̂n(t) = ψ̂n(γqt‖x‖q). (B.11)

The re-scaled population characteristic function is

ψn(c) := exp(−|c|q)ϕ0(ρqc), (B.12)

which converges to the function

ψ(c) := exp(−|c|q)ϕ0(ρ̄qc), (B.13)

as ρq → ρ̄q. Lastly, define the normalized process

χn(c) :=
√
n
(
ψ̂n(c)− ψ(c)

)
, (B.14)

and let C ([−b, b];C) be the space of continuous complex-valued functions on [−b, b] equipped
with the sup-norm.
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Lemma B.1. Fix any b > 0. Under the assumptions of Theorem 3.2, the random function
χn satisfies the limit

χn(c)
w−→ χ∞(c) in C ([−b, b];C), (B.15)

where χ∞ is a centered Gaussian process whose marginals satisfy Re(χ∞(c)) ∼ N(0, ω(c, ρ̄q)),
and

ω(c, ρ̄q) = 1
2

+ 1
2

exp(−2q|c|q)ϕ0(2ρ̄qc)− exp(−2|c|q)ϕ2
0(ρ̄qc). (B.16)

Proof. It is important to notice that ψ̂n(c) is not the empirical characteristic function asso-
ciated with n samples from the distribution of ψ (since ρq 6= ρ̄q). The more natural process
to work with is

χ̃n(c) :=
√
n
(
ψ̃n(c)− ψ(c)

)
, (B.17)

where ψ̃n(c) = 1
n

∑n
i=1 exp(

√
−1cy◦i ) and y◦i = Si + ρ̄qεi. (In other words, ψ̃n is the empirical

characteristic function associated with ψ.) As a first step in the proof, we show that the
difference between χn and χ̃n is negligible in a uniform sense, i.e.

sup
c∈[−b,b]

|χn(c)− χ̃n(c)| = o(1) a.s. (B.18)

To see this, observe that for c ∈ [−b, b],

|χn(c)− χ̃n(c)| = √n|ψ̂n(c)− ψ̃n(c)| (B.19)

= 1√
n

∣∣∣∑n
i=1 e

√
−1c(Si+ρqεi) − e

√
−1c(Si+ρ̄qεi)

∣∣∣ (B.20)

= 1√
n

∣∣∣∑n
i=1 e

√
−1c(Si+ρqεi)

(
1− e

√
−1c(ρ̄q−ρq)εi

)∣∣∣ (B.21)

≤ 1√
n

∑n
i=1

∣∣1− e√−1c(ρ̄q−ρq)εi
∣∣ (B.22)

≤ 1√
n

∑n
i=1 |c(ρ̄n − ρq)εi| (B.23)

≤ √n|ρq − ρ̄q| · bn
∑n

i=1 |εi|, (B.24)

where the last bound does not depend on c, and tends to 0 almost surely. Here we are using
the assumption that E|ε1| < ∞ and assumption A3.3 that ρq = ρ̄q + o(1/

√
n). Now that

line (B.18) has been verified, it remains (by the functional version of Slutsky’s Lemma [VW96,
p.32]) to prove

χ̃n
w−−→ χ∞ in C ([−b, b];C), (B.25)

and that the limiting process χ∞ has the stated variance formula. We first show that this
limit holds, and then derive the variance formula at the end of the proof. (Note that it is
clear that the limiting process must be Gaussian due to the finite-dimensional CLT.)

By a result of Marcus [Mar81, Theorem 1], it is known that the uniform CLT for empirical
characteristic functions (B.25) holds as long as the limiting process χ∞ has continuous sample
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paths (almost surely).1 To show that the sample paths of χ∞ are continuous, we employ as
sufficient condition derived by Csörgo [Cso81a]. Let Fq denote the distribution function of
the random variable y◦i = Si + ρ̄qεi described earlier. Also let δ > 0 and define the function

g+
δ (u) =

{
log(|u|) · log(log(|u|))2+δ if |u| ≥ exp(1)

0 if |u| < exp(1).
(B.26)

At line 1.17 of the paper [Cso81a], it is argued that if∫ ∞
−∞

g+
δ (|u|)dFq(u) <∞, (B.27)

then χ∞ has continuous sample paths. Next, note that for any δ, δ′ > 0, we have

g+
δ (|u|) = O

(
|u|δ′

)
as |u| → ∞. (B.28)

Hence, χ∞ has continuous sample paths as long as Fq has a fractional moment. To see that
this is true, recall the basic fact that if Si ∼ stableq(1) then E[|Si|q′ ] <∞ for any q′ ∈ (0, q).
Also, we assume that E[|εi|] < ∞, and so it follows that for any q ∈ (0, 2], the distribution
Fq has a fractional moment, which proves the limit (B.25).

Finally, we compute the variance of the marginal distributions Re(χ∞(c)). By the ordi-
nary central limit theorem, we only need to calculate the variance of Re(exp(

√
−1y◦1). The

first moment is given by

E[Re(exp(
√
−1cy◦1)] = ReE[exp(

√
−1cy◦1)] = exp(−|c|q)ϕ0(ρ̄qc).

The second moment is given by

E[(Re(exp(
√
−1cy◦1))2] = E[cos2(cy◦1)] (B.29)

= E[1
2

+ 1
2

cos(2cy◦1)] (B.30)

= 1
2

+ 1
2
ReE[exp(

√
−1 · 2cy◦1)] (B.31)

= 1
2

+ 1
2

exp(−2q|c|q)ϕ0(2ρ̄qc). (B.32)

This completes the proof of Lemma B.1.

Applying the functional delta method. We now complete the proof of Theorem 3.2
by applying the functional delta method to Lemma B.1 (with a suitable map φ to be defined
below). In the following, C (I) denotes the space of continuous real-valued functions on an
interval I, and `∞(I) denotes the space of bounded real-valued functions on I. Both are

1The paper [Mar81] only states the result when b = 1/2, but it holds for any b > 0. See the paper [Cso81b,
Theorem 3.1].
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equipped with the sup-norm.

Proof of Theorem 3.2. Since ϕ0(ρ̄qc0) 6= 0, there is some δ0 ∈ (0, |c0|) such that over the
interval c ∈ I := [c0 − δ0, c0 + δ0], the value ϕ0(ρ̄qc) is bounded away from 0. Define the
function f0 ∈ C (I) by

f0(c) = exp(−|c|q),
and let N (f0; ε) ⊂ C (I) be a fixed ε-neighborhood of f0 in the sup-norm, such that all
functions in the neighborhood are bounded away from 0. Consider the map φ : C (I) →
`∞(I) defined according to

φ(f)(c) =

 − 1
|c|q log(f(c)) if f ∈ N (f0; ε)

1 if f 6∈ N (f0; ε).
(B.33)

The importance of φ is that it can be related to ν̂q(t̂)/‖x‖qq in the following way. First, let

ĉ = t̂γq‖x‖q and observe that the definition of ψ̂n gives

√
n
( ν̂q(t̂)
‖x‖qq
− 1
)

=
√
n
(
− 1
|ĉ|qLog+

(
Re
( ψ̂n(ĉ)
ϕ0(ρq ĉ)

))
+ 1
|ĉ|qLog+

(
exp(−|ĉ|q)

))
. (B.34)

Next, let Π(ĉ) be the point in the interval I that is nearest to ĉ,2 and define the quantities
∆n and ∆′n according to

√
n
( ν̂q(t̂)
‖x‖qq
− 1
)

=
√
n
(
− 1
|Π(ĉ)|qLog+

(
Re
( ψ̂n(Π(ĉ))
ϕ0(ρqΠ(ĉ))

))
+ 1
|Π(ĉ)|qLog+

(
exp(−|Π(ĉ)|q)

))
+ ∆n

(B.35)

=
√
n
(
φ
(
Re
( ψ̂n(·)
ϕ0(ρq ·)

))
(Π(ĉ))− φ

(
f0

)
(Π(ĉ))

)
+ ∆′n + ∆n. (B.36)

We now argue that both of the terms ∆n and ∆′n are asymptotically negligible. As a result,
we may complete the proof of Theorem 3.2 by showing that the first term in line (B.36) has
the desired Gaussian limit — which is the purpose of the functional delta method.

To see that ∆n →P 0, first recall that ĉ →P c0 ∈ I by assumption. Consequently,
along any subsequence, there is a further subsequence on which ĉ and Π(ĉ) eventually agree
with probability 1. In turn, if gn is a generic sequence of functions, then eventually gn(ĉ)−
gn(Π(ĉ)) = 0 along subsequences (with probability 1). Said differently, this means gn(ĉ) −
gn(Π(ĉ)) →P 0, and this implies ∆n →P 0 since ∆n can be expressed in the form gn(ĉ) −
gn(Π(ĉ)).

Next, to see that ∆′n →P 0, notice that as soon as ψ̂n(·)/ϕ0(ρq·) lies in the neighborhood
N (f0; ε), it follows from the definition of φ that ∆′n = 0. Also, this is guaranteed to happen

2The purpose of introducing Π(ĉ) is that it always lies in the interval I, and hence allows us to work
entirely on I.
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with probability 1 for large enough n, because the function ψ̂n(·)/ϕ0(ρq·) converges uniformly
to f0 on the interval I with probability 1.3 Hence, ∆n → 0 almost surely, but we only need
∆′n = oP (1) in the remainder of the proof.

We have now taken care of most of the preparations needed to apply the functional delta
method. Multiplying the limit in Lemma B.1 through by 1/ϕ0(ρq·) and using the functional
version of Slutsky’s Lemma [VW96, p.32], it follows that

√
n
(
Re
( ψ̂n(·)
ϕ0(ρq ·)

)
− exp(−| · |q)

) w−−→ z̃(·) in C (I), (B.37)

where z̃(·) is a centered Gaussian process with continuous sample paths, and the marginals
z̃(c) have variance equal to

1
2

1
ϕ2
0(ρ̄qc)

+ 1
2

exp(−2q|c|q)ϕ0(2ρ̄qc)

ϕ2
0(ρ̄qc)

− exp(−2|c|q). (B.38)

It is straightforward to verify that φ is Hadamard differentiable at f0 and the Hadamard
derivative φ′f0 is the linear map that multiplies by − exp |·|q

|·|q . (See Lemmas 3.9.3 and 3.9.25

in [VW96].) Consequently, the functional delta method [VW96, Theorem 3.9.4] applied to
line (B.37) with the map φ gives

√
n
(
φ
(
Re
( ψ̂n(·)
ϕ0(ρq ·)

))
− φ
(

exp(−| · |q)
)) w−−−→ φ′f0(z̃)(·) in `∞(I) (B.39)

= − exp(|·|q)
|·|q z̃(·) (B.40)

=: z(·). (B.41)

It is clear that z(·), defined in the previous line, is a centered Gaussian process on I, since
z̃(·) is. Combining lines (B.38) and (B.41) shows that the marginals z(c) are given by

z(c) ∼ N(0, v(c, ρ̄q)),

where

vq(c, ρ̄q) = 1
|c|2q

(
1
2

1
ϕ0(ρ̄qc)2

exp(2|c|q) + 1
2

ϕ0(2ρ̄qc)

ϕ0(ρ̄qc)2
exp((2− 2q)|c|q)− 1

)
. (B.42)

The final step of the proof essentially involves plugging Π(ĉ) into the limit (B.39) and
using Slutsky’s Lemma. Since Π(ĉ)→P c0, and z(·) takes values in the separable space C (I)
almost surely4, the functional version of Slutsky’s Lemma [VW96, p.32] gives the following
convergence of pairs(√

n
(
φ
(
Re
( ψ̂n(·)
ϕ0(ρq ·)

))
− φ
(
f0

))
, Π(ĉ)

)
w−−−→

(
z(·), c0

)
in `∞(I)× I. (B.43)

3The fact that ψ̂n(·) converges uniformly to ψ(·) on I with probability 1 follows essentially from the
Glivenko-Cantelli Theorem [Cso81a, Equation 1.2]. To see that 1/ϕ0(ρq ·) converges uniformly to 1/ϕ0(ρ̄q ·)
on I as ρq → ρ̄q, note that since E|ε1| < ∞, the characteristic function ϕ0 is Lipschitz on any compact
interval.

4This follows from the fact that z̃(·) has continuous sample paths almost surely.
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To finish, note that the evaluation map `∞(I)×I → R defined by (f, c) 7→ f(c), is continuous.
The continuous mapping theorem [VW96, Theorem 1.3.6] then gives

√
n
(
φ
(
Re
( ψ̂n(·)
ϕ0(ρq ·)

))
(Π(ĉ))− φ

(
f0

)
(Π(ĉ))

)
w−−−→ z(c0), (B.44)

which is the desired conclusion.

Lemma 3.2 – Extending the variance function

Proof. It is simple to verify that vq(·, ·) is continuous at any pair (c0, ρ0) for which c0 6= 0 and
ϕ0(ρ0c0) 6= 0, and hence ṽq inherits continuity at those pairs. To show that ṽq is continuous
elsewhere, it is necessary to handle two cases.

– First, we show that for any q ∈ (0, 2], if (c0, ρ0) is a pair such that ϕ0(ρ0c0) = 0
and c0 6= 0, then vq(cj, ρj) → ∞ for any sequence satisfying (cj, ρj) → (c0, ρ0) with
ϕ0(ρjcj) 6= 0 and cj 6= 0 for all j. (Note that vq(·, ·) is defined in a deleted neighborhood
of (c0, ρ0) due to the assumption that the roots of ϕ0 are isolated.)

– Second, we show that for any q ∈ (0, 2), if c0 = 0, then vq(cj, ρj)→∞ for any sequence
(cj, ρj)→ (0, ρ0), where ρ0 ≥ 0 is arbitrary.

To handle the first case where c0 6= 0, we derive a lower bound on vq(c, ρ) for all q ∈ (0, 2]
and all pairs where vq is defined. Recall the formula

vq(c, ρ) = 1
|c|2q

(
1
2

1
ϕ0(ρc)2

exp(2|c|q) + 1
2
ϕ0(2ρ|c|)
ϕ0(ρ|c|)2 exp((2− 2q)|c|q)− 1

)
. (B.45)

The lower bound is obtained by manipulating the factor 1
2
ϕ0(2ρc)
ϕ0(ρc)2

. Consider the following
instance of Jensen’s inequality, followed by a trigonometric identity,

ϕ0(ρc)2 = (E[cos(ρcε1)])2 (B.46)

≤ E[cos2(ρε1)] (B.47)

= 1
2

+ 1
2
E[cos(2ρcε1)] (B.48)

= 1
2

+ 1
2
ϕ0(2ρc), (B.49)

which gives 1
2
ϕ0(2ρc)
ϕ0(ρ)2

≥ 1− 1
2

1
ϕ0(ρc)2

. Letting κq := 2− 2q we have the lower bound

vq(c, ρ) ≥ 1
|c|2q

(
1
2

1
ϕ0(ρ|c|)2

(
exp(2|c|q)− exp(κq|c|q)

)
+ exp(κq|c|q)− 1

)
, (B.50)

which holds for all (c, ρ) where vq(c, ρ) is defined. Since the quantity(
exp(2cq0)− exp(κqc

q
0)
)

is positive for all q ∈ (0, 2] and c0 6= 0, it follows that vq(cj, ρj) → ∞ as ϕ0(ρjcj) →
ϕ0(ρ0c0) = 0.
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Next, we consider the second case where (cj, ρj)→ (c0, ρ0) with c0 = 0 and ρ0 ≥ 0. Due
to the fact that all characteristic functions satisfy |ϕ0| ≤ 1, and the fact that

(
exp(2|c|q)−

exp(κq|c|q)
)

is positive when c 6= 0, the previous lower bound gives

vq(c, ρ) ≥ 1
|c|2q

(
1
2

exp(2|c|q) + 1
2

exp(κq|c|q)− 1
)
, (B.51)

which again holds for all (c, ρ) where vq is defined. Note that this bound does not depend
on ρ. A simple calculation involving L’Hospital’s rule shows that whenever q ∈ (0, 2), the
lower bound tends to ∞ as c→ 0+.

To finish the proof, we must show that for any ρ ≥ 0, the function vq(·, ρ) attains its
minimum on the set [εq,∞). This is simple because the lower bound (B.51) tends to ∞ as
c→∞.

B.4 Proofs for Section 3.4

Proposition 3.3 – consistency of pilot estimator.

Proof. We first show that there is a positive constant c1 such that t̂initialγq‖x‖q →P c1. Note
that for each i = 1, . . . , n, we have yi

γq‖x‖q ∼ Si+
σ

γq‖x‖q εi, where the Si are i.i.d. samples from

stableq(1). Let Fn denote the distribution function of the random variable |S1 + σ
γq‖x‖q ε1| and

let Fn be the empirical distribution function obtained from n samples from Fn. Then,

m̂q
γq‖x‖q = 1

γq‖x‖q ·med(|y1|, . . . , |yn|) (B.52)

= med( |y1|
γq‖x‖q , . . . ,

|yn|
γq‖x‖q ) (B.53)

= med(Fn). (B.54)

Note also that Fn
w→ F , where F is the distribution function of the variable |S1 + ρ̄qε1|.

Consequently, it follows from a standard argument given in Section B.6 of Appendix B that
med(Fn)→P med(F ), and then

m̂q
γq‖x‖q −→P med(F ) =: 1/c1. (B.55)

Altogether, we have verified that t̂initial = 1/m̂q satisfies t̂initialγq‖x‖q →P c1. Combining the
previous limit with line (3.45) and Theorem 3.2 then proves line (3.51), which in turn implies
line (3.52).

Proposition 3.4 – consistency of c?(ρ̂q).

Proof. As described in Section 3.3, we use ξ as a implicit index in our asymptotics, and
recall that by assumption A3.3, we have ρq = ρq(ξ)→ ρ̄q as ξ →∞. As a preliminary step,
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we will show c?(ρq(ξ)) is a bounded sequence. Namely, we will show there is a fixed compact
interval [εq, cmax] such that for all large ξ,

c?(ρq(ξ)) ∈ [εq, cmax]. (B.56)

To show this, let `q(c) denote the right hand side of the bound (B.51), which satisfies

`q(c) ≤ ṽq(c, ρ) (B.57)

for all q ∈ (0, 2], all ρ, and all c > 0. Also let v̄ be any number satisfying

ṽq(c
?(ρ̄q), ρ̄q) < v̄. (B.58)

Since ṽq(·, ·) is continuous, it follows that as ξ →∞,

ṽq(c
?(ρ̄q), ρq(ξ))→ ṽq(c

?(ρ̄q), ρ̄q) (B.59)

and so line (B.58) forces us to conclude that

ṽq(c
?(ρ̄q), ρq(ξ)) < v̄ for large ξ. (B.60)

Now, since `q(c)→∞ as c→∞, and `q(·) is continuous away from 0, there must be a point
cmax > 0 such that

`q(cmax) = v̄, and (B.61)

`q(c) ≥ v̄ for all c ≥ cmax. (B.62)

This shows that c?(ρq(ξ)) cannot be greater than cmax when ξ is large, for otherwise (B.62)
and (B.57) imply

v̄ ≤ `(c?(ρq(ξ))) (B.63)

≤ v(c?(ρq(ξ)), ρq(ξ)) (B.64)

≤ v(c?(ρ̄q(ξ)), ρq(ξ)) by definition of c?(·), (B.65)

contradicting line (B.60). Hence, line (B.56) is true.

Since we know that c?(ρq(ξ)) is a bounded sequence, we can show that c?(ρq(ξ)) converges
to c?(ρ̄q)) if all of its convergent subsequences do. Likewise, suppose there is some c̆ ∈
[εq, cmax], such that along some subsequence ξj →∞,

c?(ρq(ξj))→ c̆ ∈ [εq, cmax]. (B.66)



APPENDIX B. PROOFS FOR CHAPTER 3 106

We now argue that c̆ must be equal to c?(ρ̄q). Due to the continuity of ṽq(·, ·) and the
limit (B.66), we have

ṽq(c̆, ρ̄q) = lim
j→∞

ṽq(c
?(ρq(ξj)), ρq(ξj)) (B.67)

≤ lim
j→∞

ṽq(c
?(ρ̄q), ρq(ξj)) by definition of c?(·) (B.68)

= ṽq(c
?(ρ̄q), ρ̄q)) (B.69)

≤ ṽq(c̆, ρ̄q), by definition of c?(·). (B.70)

Comparing the first line and the last line forces ṽq(c̆, ρ̄q) = ṽq(c
?(ρ̄q), ρ̄q), and so the unique-

ness assumption A3.4 gives c̆ = c?(ρ̄q), as desired.

B.5 Proofs for Section 3.6

Proof of Lemma 3.3.

Proof of inequality (3.72). It is enough to prove the result for s2(x) since sq(x) ≥ s2(x) for
all q ∈ [0, 2]. Let d be the dimension of the null space of A, and let B ∈ Rp×d be a matrix
whose columns are an orthonormal basis for the null space of A. If x 6= 0, then define the
scaled matrix B̃ := ‖x‖∞B. (If x = 0, the steps of the proof can be repeated using B̃ = B.)
Letting z ∈ Rd be a standard Gaussian vector, we will study the random vector

x̃ := x+ B̃z,

which satisfies Ax = Ax̃ for all realizations of z. We begin the argument by defining a
function f : Rp → R according to

f(x̃) := ‖x̃‖1 − c(n, p)‖x̃‖2, (B.71)

where
c(n, p) := 1√

πe
(p−n)√

p
. (B.72)

The essential point to notice is that the event {f(x̃) > 0} is equivalent to

‖x̃‖21
‖x̃‖22

> c(n, p)2 = 1
πe

(1− n
p
)2p,

which is the desired bound. (Note that x̃ is non-zero with probability 1.) Hence, a vector x̃
satisfying the bound (3.72) exists if the event {f(x̃) > 0} occurs with positive probability.
We will prove that the probability P(f(x̃) > 0) is positive by showing E[f(x̃)] > 0, which
in turn can be reduced to upper-bounding E‖x̃‖2, and lower-bounding E‖x̃‖1. The upper
bound on E‖x̃‖2 follows from Jensen’s inequality and a direct calculation,
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E‖x̃‖2 = E‖x+Bz‖2

<

√
E‖x+ B̃z‖2

2

=

√
‖x‖2

2 + ‖B̃‖2
F

=
√
‖x‖2

2 + ‖x‖2
∞d.

(B.73)

The lower bound on E‖x̃‖1 is more involved. If we let b̃i denote the ith row of B̃, then the
ith coordinate of x̃ can be written as x̃i = xi + 〈b̃i, z〉, which is distributed according to
N(xi, ‖b̃i‖2

2). Taking the absolute value |x̃i| results in a “folded normal” distribution, whose
expectation can be calculated exactly as

E|x̃i| = ‖b̃i‖2

√
2
π

exp
(
−x2i

2‖b̃i‖22

)
+ |xi|

(
1− 2Φ

(−|xi|
‖b̃i‖2

))
, (B.74)

where Φ is the standard normal distribution function. Note that it is possible to have
‖b̃i‖2 = 0, in which case x̃i = xi. This separate case can be easily handled in the rest of the
argument.

When |xi|/‖b̃i‖2 is small, the first term on the right side of (B.74) dominates, and then
E|x̃i| is roughly ‖b̃i‖2. Alternatively, when |xi|/‖b̃i‖2 is large, the second term dominates, and
then E|x̃i| is roughly |xi|. Thus, it is natural to consider the set of indices I1 = {i : ‖b̃i‖2 ≥
|xi|}, and its complement I2 = {i : ‖b̃i‖2 < |xi|}. This leads us to the following bounds,

E‖x̃‖1 =
∑
i∈I1

E|x̃i|+
∑
i∈I2

E|x̃i|

≥
∑
i∈I1

‖b̃i‖2

√
2
π

exp(−1
2
) +

∑
i∈I2

|xi|(1− 2Φ(−1))

≥
∑
i∈I1

‖b̃i‖2

√
2
πe

+
∑
i∈I2

‖b̃i‖2(1− 2Φ(−1))

≥
√

2
πe

p∑
i=1

‖b̃i‖2 using (1− 2Φ(−1)) ≥
√

2
πe
,

=
√

2
πe
‖x‖∞

p∑
i=1

‖bi‖2,

(B.75)

where bi is the ith row of B ∈ Rp×d. Since the matrix B ∈ Rp×d has orthonormal columns,
it may be regarded as a submatrix of an orthogonal p× p matrix, and so the rows bi satisfy
‖bi‖2 ≤ 1, yielding ‖bi‖2 ≥ ‖bi‖2

2. Hence,∑p
i=1 ‖bi‖2 ≥

∑p
i=1 ‖bi‖2

2 = ‖B‖2
F = d ≥ p− n.
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Altogether, we obtain the bound

E‖x̃‖1 ≥
√

2
πe
‖x‖∞(p− n). (B.76)

Combining the bounds (B.76) and (B.73), and noting that d ≤ p, we obtain

E‖x̃‖1

E‖x̃‖2

>

√
2
πe
‖x‖∞(p−n)√
‖x‖22+‖x‖2∞p

=

√
2
πe

(p−n)√
‖x‖22
‖x‖2∞

+ p

≥ 1√
πe

(p−n)√
p

= c(n, p),

(B.77)

where we have used the fact that
‖x‖22
‖x‖2∞

≤ p. This proves E[f(x̃)] > 0, giving (3.72).

Proof of inequality (3.73). It is enough to prove the result for s∞(x) since sq(x) ≥ s∞(x)
for all q ∈ [0,∞]. We retain the same notation as in the proof above. Following the same
general argument, it is enough to show that

E‖x̄‖1

E‖x̄‖∞
> c̄(n, p), (B.78)

where

c̄(n, p) :=

√
2
πe

(p− n)

1 +
√

16 log(2p)
. (B.79)

In particular, we will re-use the bound

E‖x̃‖1 ≥
√

2
πe
‖x‖∞(p− n). (B.80)

The new item to handle is an upper bound on E‖x̃‖∞. Clearly, we have ‖x̃‖∞ ≤ ‖x‖∞+
‖B̃z‖∞, and so it is enough to upper-bound E‖B̃z‖∞. We will do this using a version of
Slepian’s inequality. If b̃i denotes the ith row of B̃, define the random variable gi = 〈b̃i, z〉,
and let w1, . . . , wp be i.i.d. N(0, 1) variables. The idea is to compare the Gaussian process
gi with the Gaussian process

√
2‖x‖∞wi. By Proposition A.2.6 in the book [VW96], the

inequality

E‖B̃z‖∞ = E
[

max
1≤i≤p

|gi|
]
≤ 2
√

2‖x‖∞ E
[

max
1≤i≤p

|wi|
]
,
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holds as long as the condition E(gi − gj)
2 ≤ 2‖x‖2

∞ E(wi − wj)
2 is satisfied for all i, j ∈

{1, . . . , p}. This can be verified by first noting that gi− gj = 〈b̃i− b̃j, z〉, which is distributed
according to N(0, ‖b̃i − b̃j‖2

2). Since ‖b̃i‖2 ≤ ‖x‖∞ for all i, it follows that

E(gi − gj)2 = ‖b̃i − b̃j‖2
2

≤ 4‖x‖2
∞

= 2‖x‖2
∞E(wi − wj)2,

(B.81)

as needed. To finish the proof, we make use of a standard bound for the expectation of
Gaussian maxima

E
[

max
1≤i≤p

|wi|
]
<
√

2 log(2p),

which follows from a modification of the proof of Massart’s finite class lemma [Mas00, Lemma
5.2]. Combining the last two steps, we obtain

E‖x̃‖∞ < ‖x‖∞ + 2
√

2‖x‖∞
√

2 log(2p). (B.82)

Hence, the bounds (B.80) and (B.82) clearly lead to (B.78).

Proof of Theorem 3.4

Proof. We begin by making some reductions. First, we claim it is enough to show that

inf
A∈Rn×p

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣δ(Ax)− s2(x)
∣∣∣ ≥ 1

2
1
πe
· (1− n

p
)2 · p− 1

2
. (B.83)

To see this, note that the general inequality s2(x) ≤ p implies∣∣ δ(Ax)
s2(x)

− 1
∣∣ ≥ 1

p

∣∣δ(Ax)− s2(x)
∣∣,

and we can optimize both sides with respect x, δ, and A. Next, for any fixed matrix A ∈ Rn×p,
it is enough to show that

inf
δ:Rn→R

sup
x∈Rp\{0}

∣∣∣δ(Ax)− s2(x)
∣∣∣ ≥ 1

2
1
πe
· (1− n

p
)2 · p− 1

2
, (B.84)

as we may take the infimum over all matrices A without affecting the right hand side. To
make a third reduction, it is enough to prove the same bound when Rp \{0} is replaced with
any subset, as this can only make the supremum smaller. In particular, we replace Rp \ {0}
with the two-point subset {e1, x̃}, where e1 = (1, 0, . . . , 0) ∈ Rp, and by Lemma 1, there
exists x̃ to satisfying Ae1 = Ax̃, with

s2(e1) = 1, and s2(x̃) ≥ 1
πe
· (1− n

p
)2 · p.
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We now complete the proof by showing that the lower bound (B.84) holds for the two-
point problem, i.e.

inf
δ:Rn→R

sup
x∈{e1,x̃}

∣∣∣δ(Ax)− s2(x)
∣∣∣ ≥ 1

2
1
πe
· (1− n

p
)2 · p− 1

2
, (B.85)

and we will accomplish this using the classical technique of constructing a Bayes procedure
with constant risk. For any decision rule δ : Rn → R, any A ∈ Rn×p, and any point
x ∈ {e1, x̃}, define the (deterministic) risk function

R(x, δ) :=
∣∣δ(Ax)− s2(x)

∣∣.
Also, for any prior π on the two-point set {e1, x̃}, define

r(π, δ) :=

∫
R(x, δ)dπ(x).

By Propositions 3.3.1 and 3.3.2 of [BD01], the inequality (B.85) holds if there exists a prior
distribution π∗ on {e1, x̃} and a decision rule δ∗ : Rn → R with the following three properties:

1. The rule δ∗ is Bayes for π∗, i.e. r(π∗, δ∗) = infδ r(π
∗, δ).

2. The rule δ∗ has constant risk over {e1, x̃}, i.e. R(e1, δ
∗) = R(x̃, δ∗).

3. The constant value of the risk of δ∗ is at least 1
2

1
πe
· (1− n

p
)2 · p− 1

2
.

To exhibit π∗ and δ∗ with these properties, we define π∗ to be the two-point prior that puts
equal mass at e1 and x̃, and we define δ∗ to be the trivial decision rule that always returns
the average of the two possibilities, namely δ∗(Ax) ≡ 1

2
(s2(x̃) + s2(e1)) for all x ∈ {e1, x̃}.

It is simple to check the second and third properties. To check that δ∗ is Bayes for π∗, the
triangle inequality gives

r(π∗, δ) = 1
2

∣∣∣δ(Ax̃)− s2(x̃)
∣∣∣+ 1

2

∣∣∣δ(Ae1)− s2(e1)
∣∣∣,

≥ 1
2

∣∣s2(x̃)− s2(e1)
∣∣

= 1
2

∣∣δ∗(Ax̃)− s2(x̃)
∣∣+ 1

2

∣∣δ∗(Ae1)− s2(e1)
∣∣

= r(π∗, δ∗),

(B.86)

which holds for every δ, implying that δ∗ is Bayes for π∗.

B.6 Background results

Convergence of medians for triangular array

Suppose Fn →w F . Let Fn be the empirical distribution corresponding to Fn. With regard
to the proof of Proposition 3.3, we would like to show that |med(Fn)−med(Fn)| → 0 when
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F has a continuous cdf. We will take our median to be F−1
n (1/2), i.e. the empirical quantile

process evaluated at 1/2. Also note that the distribution function F arising in the proof of
Proposition 3.3 is continuous because it arises from convolution with a stable law.

Lemma B.2. Suppose F is continuous and Fn(x)→ F (x) for all x ∈ R. Then

|F−1
n (1

2
)− F−1

n (1
2
)| → 0, a.s.

Proof. Let Gn be the empirical c.d.f. corresponding to a sample of n i.i.d. uniform variables
on [0, 1]. First note that

|F−1
n (1

2
)− F−1

n (1
2
)| = |F−1

n (G−1
n (1

2
))− F−1

n (1
2
)|

It is a basic fact that G−1
n (1

2
)→ 1

2
almost surely. Hence, it suffices to show that |F−1

n (an)−
F−1
n (a)| → 0 for any real sequence an → a. To see this, we write

|F−1
n (an)− F−1

n (a)| ≤ |F−1
n (an)− F−1(an)|+ |F−1(an)− F−1(a)|+ |F−1(a)− F−1

n (a)|.

Since F−1
n is a sequence of monotone functions converging to a continuous function F−1, it

is a basic fact that F−1
n converges uniformly to F−1 on compact subsets. Hence, the first

term on the right hand side tends to 0. It is obvious that the other terms tend to 0.

A unique minimizer for the variance function with stable noise

In this subsection, we aim to show that when the noise distribution is stableq(1), the variance
function ṽq(·, ρ̄q) has a unique minimizer in [εq,∞).5 Note that since ϕ0 has no roots in this
case, the extended variance function ṽq(c, ρ̄q) agrees with vq(c, ρ̄q) for all c 6= 0. Furthermore,
when q ∈ (0, 2) the minimizer cannot occur at c = 0 due to Lemma 3.2. Hence, when
q ∈ (0, 2) it is enough to check that vq(·, ρ̄q) has a unique minimizer in (0,∞).

Recall that the characteristic function for stableq(1) is

ϕ0(t) = exp(−|t|q), (B.87)

and it follows that for any q ∈ (0, 2], the variance function is given by

vq(c, ρ̄q) = 1
|c|2q

(
1
2

1
ϕ0(ρ̄q |c|)2 exp(2|c|q) + 1

2

ϕ0(2ρ̄q |c|)
ϕ0(ρ̄q |c|)2 exp((2− 2q)|c0|q)− 1

)
= 1
|c|2q

(
1
2

exp((2(ρ̄qq + 1)|c|q) + 1
2

exp((2− 2q)(ρ̄qq + 1)|c|q)− 1
)
.

(B.88)

Now consider the monotone change of variable u := |c|q, and notice that vq(c, ρ̄q) = f(u)/u2

where
f(u) := 1

2
exp(2(ρ̄qq + 1)u) + 1

2
exp((2− 2q)(ρ̄qq + 1)u)− 1. (B.89)

The following lemma demonstrates the desired claim by showing that u 7→ f(u)/u2 is strictly
convex on (0,∞). (We omit the simple derivative calculations involved in checking that f(u)
satisfies the conditions of the lemma.)

5Recall that εq = 0 for q ∈ (0, 2) and ε2 > 0.
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Lemma B.3. Let f : [0,∞) → R be a 4-times differentiable function such that f(0) ≥ 0,

f ′(0) ≥ 0, and f (4)(u) > 0 for all u > 0. Then, the function u 7→ f(u)
u2

is strictly convex on
(0,∞).

Proof. Let h(u) = f(u)
u2

, and let ψ(u) = u4h′′(u). To show that h′′(u) is strictly positive on
(0,∞), it suffices to show that ψ(u) > 0 for all u > 0. By direct calculation,

ψ(u) = u2f ′′(u)− 4uf ′(u) + 6f(u),

and so the assumption f(0) ≥ 0 implies ψ(0) ≥ 0. Consequently, it is enough to show that
ψ is strictly increasing on (0,∞). Since,

ψ′(u) = u2f (3)(u)− 2uf ′′(u) + 2f ′(u),

the assumption f ′(0) ≥ 0 implies ψ′(0) ≥ 0, and so it is enough to show that ψ′ is strictly
increasing on (0,∞). Differentiating ψ′ leads to a notable cancellation, giving

ψ′′(u) = u2f (4)(u),

and so the assumption on f (4)(u) > 0 for all u > 0 completes the proof.
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