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Abstract

Digital Design of Crystals: Predicting Driving Forces For Crystallization Using

Atomistic Simulations

by

Vikram Khanna

One of the most awe-inspiring class of materials are crystals. These highly ordered

groups of atoms/molecules propel our lives through myriad products we humans rely

upon. Right from the salt and sugar we consume to elevate the taste of our foods, the

silicon chips that form the brains of every computing device we use, to the life-saving

drugs that have prevented millions if not billions of deaths, all belong to the humble class

of materials — the crystal. Therefore, the engineering of this material is crucial to —

improve the manufacuring of products that touch our lives daily — ultimately improving

the quality of every human life!

The two physical attributes of a crystalline material that have a major impact on its

processability and performance are: its shape and size. For e.g., in a crystalline catalyst

one wants to engineer the shape of the crystal to maximize the area of its reactive

surfaces. In pharmaceutical applications, the crystal size distribution may determine the

rate of plasma uptake of a drug when the process is dissolution rate limited. Therefore,

engineering the shape and size of the crystals is of immense consequence.

In silico tools that can predict the shape and size of a crystal based on inputs such

as crystal structure, temperature, supersaturation, etc. are vital to efficiently navigate

the process design space. Such tools help acheive the efficiency gains by being a guiding

light to experimentalists, thus enabling cheaper and more effective screening. This dis-

sertation lays out the digital design framework to make these predictions starting from
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a molecule. It focuses on the development of a computational toolkit to predict driv-

ing forces for crystallization—a key prediction to enable size predictions—of complex

molecules harnessing atomistic simulations.
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Chapter 1

Digital Design of Crystals

Reproduced in part with permission from:

Christopher L. Burcham, Michael F. Doherty, Nicholas Francia, Vikram Khanna,

Baron Peters, Sally L. Price, Susan M. Reutzel-Edens, Matteo Salvalaglio, “Digital De-

sign of Crystals: From Molecules to Crystals,” in preperation.

Jeffery Frumkin, Vikram Khanna, and Michael F. Doherty, “Innovation in Chem-

ical Reactor Engineering Practice and Science,” Computers & Chemical Engineering,

accepted.

If you can’t model it, you don’t understand it. If you don’t understand it, you can’t

improve it.

—Prof. Michael Doherty (at the start of every senior design class)

A brief history of chemical process design

From the earliest times humans have discovered ways to use earth’s chemical resources

to improve the quality of their lives. Pigments were used to create cave paintings, later
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Digital Design of Crystals Chapter 1

leading to brightly colored paints and dyes used by ancient Egyptians to decorate their

palaces, sarcophagi, clothing and other objects. Oils, soaps, cleansers, and perfumes

were invented for beautification, and embalming. Later, the Chinese discovered saltpeter

(potassium nitrate) from which they invented gunpowder. Chemicals were developed

for extracting ores and tanning leather. And of course there was always demand for

medicines and poisons, which were constantly being developed and improved throughout

human history. Alchemists, and their modern incarnation, have been in demand for a

very long time.

Along with improved chemical formulations came improved process technology, as

seen in a lithograph of ore processing from the 1550’s shown in Figure 1(a). Notice

the three stirred tub reactors (CSTR’s) connected in series. By 1556, our chemical

engineering ancestors had already discovered that in some applications it was better to

use three smaller stirred tanks in series instead of a single stirred vessel with three times

the volume. Although it is unclear from the contemporary description of this chemical

process whether reaction is taking place in these tubs (which would thus be a practical

embodiment of a liquid–phase plug flow reactor), it is undeniable that by 1556 the concept

of staging had already been discovered. While the process looks primitive, it is in fact

quite ingenious.

2



Digital Design of Crystals Chapter 1

(a) (b)

Figure 1.1: Chemical processes then and now. (a) Ore mill illustrated in De re Metal-
lica by Georgius Agricola (Latinized pen name of author Georg Bauer), published in
1556. (b) View of the Shell Pearl gas–to–liquids plant complex in Qatar, built at a
total cost of approximately US$20 billion between 2010–2015. Figure adapted and
reprinted from Frumkin et al.[1]

In recent decades, design methods have been created for: heat exchanger networks

using pinch technology, membrane cascades, azeotropic & reactive distillation systems,

pressure swing adsorption, batch & continuous crystallization systems, and so much

more. Simulation, optimization (particularly mixed integer nonlinear programming and

global optimization) and control (especially model predictive control) of complex chemical

devices and systems have improved enormously. All these advances coupled with the

extraordinary improvements in digital computers are what led to the transition from

3
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processes like the one shown in Figure 1(a) to the one shown in Figure 1(b).

In recent years, digital design techniques are being adopted as they offer the following

advantages:

• Accelerated innovation: Through a structured exploration of the design space,

we reduce experimentation time, thereby allowing for a faster time-to-market new

products and processes.

• Better risk management: A digital design workflow serves as a digital twin of the

real process. Therefore, the digital design method allows to screen the process

paramter space and flag possible high risk outcomes.

• Reduced costs: Through screening of the process parameter space and accessing pa-

rameters which are expensive and/or difficult to achieve experimentally, computer

simulations reduce the number of physical (expensive and/or time-consuming) ex-

periments to be performed. Thus, ultimately reducing the cost of development.

A new breed of computational tool added to our toolkit—in recent decades—is molec-

ular dynamics. This tool relies on mathematical description of atomic forces and New-

ton’s third law to study the motion of atoms. The atomic information is then leveraged

to compute macroscopic properties via statistical mechanical theories. It is one of the

most fundamental approaches to model the world we live in as quoted by the famous

Physicist Richard Feynman, Everything that living things do can be understood in terms

of the jiggling and wiggling of atoms. I would go one step ahead and modify this to:

Everything that living (and non-living) things do can be understood in terms of the jig-

gling and wiggling of atoms. The following section lays out our digital design approach

to engineer crystals harnessing state-of-the-art digital tools and techniques.

4
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The Digital Design Workflow for Engineering Crystals

Among the various unit operations developed by us humans, crystallization plays a

significant role in various industries (see Figure 1.2) such as: i) food, ii) semiconductor,

iii) chemical, and iv) pharmaceutical to name a few. In the pharmaceutical industry,

crystallization has arguably a greater importance as: i) more than 90% of the small

molecule drugs are delivered in crystalline form; ii) it is not only the product purity but

also the shape and size of the crystals that are critical quality determining parameters. In

addition, the cost of developing a novel drug candidate is reported to be approximately

US$800 million, increasing at an annual rate of 7.6%.[2] Therefore, digitizing the workflow

of crystallization has a significant potential to reduce costs and risks.

Figure 1.2: Examples of crystalline materials used in various industries: (a) salt
crystals (food industry); (b) silicon wafer (semicondutor industry); (c) TiO2 catalyst
crystals (chemical industry); (d) paracetamol tablets (pharmaceutical industry)
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Crystal habit (shape) prediction plays an import role in the pharmaceutical industry

where we are interested in manufacturing crystals with certain shapes that lead to high

bio-availability.[3–5] Certain shapes such as needles (high aspect ratio) are undesirable as

they impact further processing (see Figure 1.3). Crystal habit affects dissolution rates

and stability too.[6] The crystal size distribution affects dissolution rates, hence impacts

bioavailability. It also affects filtration and drying rates[7] as well as product formulation

parameters such as flow, compactibility, and content uniformity.[8]

Figure 1.3: Examples of crystal growth shapes under optical microscopy: (a): rods,
(b): blocks, (c): needles, (d): plates. Figure adapted and reproduced from Li et al.[9]
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Digital Design of Crystals Chapter 1

The most important input parameters to designing a crystal include the molecule be-

ing crystalized, its crystal structure, temeprature, supersaturation, and growth medium.

Therefore, in our digital design approach we begin with the molecular information of the

product being crystallized as shown in Figure 1.4.

Figure 1.4: The digital design framework for crystal engineering

The next stages of the design are i) Polymorph prediction, ii) Morphology design, iii)

Solubility and driving force predictions, iv) Nucleation and Growth rate predictions, v)

Particle size distribution and its attainable region, and finally vi) Polymorph selection.

Let us delve into each of these in detail.

1.1 Polymorph Prediction

One of the most fundamental question since the discovery of polymorphism in 1832 is

perhaps—given the molecular structure of a chemical compound, can one predict its crys-

7
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tal structure?[10–12] The pharmaceutical industry’s interest in crystal structure prediction

(CSP) as a digital design tool is from desire to streamline the search for the possible

crystal forms (i.e. the polymorphs of the neat API[13] and at least it’s hydrates[14]) in

order to select the crystal form for manufacture. The main risk to avoid is the late ap-

pearance of a more stable form than the one under development, as this may lead to the

“disappearance”[15] or sudden lack of control of the manufacturing process. However, a

CSP study can be a very useful complement to the experimental screening and charac-

terisation of solid forms,[16] potentially providing confidence that the most stable form is

known, and designing an appropriate experimental search for the metastable forms that

will affect the process development. The ideal Crystal Structure Prediction (CSP) com-

putational code would predict not all the polymorphs that can be formed, but only those

that can be experimentally realised — and give a recipe for obtaining the first sample of

each polymorph. This is indeed the ultimate aim,[17] but the series of blind tests of crystal

structure prediction, which have been organised by the Cambridge Crystallographic Data

Centre[18] show that this is still an aspiration in this rapidly developing area. Currently,

the type of CSP that is being increasingly applied in industry[19] is CSP 0, a search for

the structures that are the most stable minima in the lattice energy. This is the energy

required to separate a (hypothetical) static infinite perfect crystal into infinitely sepa-

rated molecules in their lowest energy conformation, approximating the relative stability

at 0 K. Since the relative stability of polymorphs often changes with temperature and

pressure, we need to develop the calculation of a crystal energy landscape at ambient

conditions. Other thermodynamic factors, such as the balance of bulk and surface en-

ergies, reflecting particle size and environment (water activity/solvent) should also be

taken into account[20] as this can affect the relative stability of polymorphs, and can lead

to the observation of new polymorphs in confined crystallisation experiments.[21] A major

limitation of CSP 0 is that it usually generates more crystal structures within the likely
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energy range of polymorphism than are found experimentally.[22, 23] Many of these struc-

tures may be artefacts of the neglect of the temperature-dependent molecular motion

within the crystals. Other CSP 0 structures could be kinetically forbidden, because of

the relative kinetics of the nucleation and growth of different polymorphs relative to the

ability to transform to the most stable form. The current understanding of the kinetic

competition involved in apparent polymorph stability is not yet sufficiently mature to be

encapsulated into a CSP workflow. Francia et al.,[24] have devised a sytematic coarsing

approach of the CSP 0 generated crystal energy landscape harnessing MD simulation

methods and clustering using custom fingerprints. Figure 1.5 outlines their workflow

and Figure 1.6 shows their results for succinic acid in which they successfully reduce the

CSP 0 structures by over 70% at 300 K.

Figure 1.5: The polymorph filtering framework at finite temperatures.
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Figure 1.6: Analysis of the finite-temperature structures of succinic acid. (A) Lattice
energy landscape of the CSP 0-generated structures of succinic acid optimized with
the GAFF force field at 0 K showing those structures that melt at 300 K as red
crosses. (B) Finite-temperature crystal energy landscape of the cluster centers. The
size of each point refers to the number of structures that converted to the same
geometry. Known structures and most populated clusters are shown on either side
of the plot. The different clusters are labeled based on their cluster center. (C)
Final finite-temperature crystal energy landscape classified by the motifs observed
and including the new structures found during WTmetaD simulations according to
the color bar on the lower left side. Figure adapted and reproduced from Francia et
al.[24]
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1.2 Morphology Design

Once we have the polymorph of interest, we are interested in predicting the shape

and size of the crystal. The size of the crystal requires the use of absolute growth rates

of each crystal face, however, to predict the shape, one only needs the relative growth

rates.[25–27] Our group at University of California Santa Barbara (UCSB) and the Koo

group at Sogang University have been developing and upgrading mechanistic frameworks

to model complex crystals. Towards predicting shapes, our group has developed AD-

DICT—Advanced Design and Development of Industrial Crystallization Technology, a

computer software that automates the mechanistic framework and predicts crystal shapes

based on the input crystallography, temperature, supersaturation and solvent medium

by computing relative growth rates of crystal faces. Figure 1.7 shows the results of shape

predictions for a few complex molecules. Chapter 2 will dive into further details of the

digital approach to make these predictions.
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Figure 1.7: ADDICT shape predictions compared against experimental shapes: a)
Naphthalene grown in ethanol,[9] b) Anthracene grown from vapor,[9] c) Lovastatin
grown in methanol,[9] d) Olanzapine dihydrate grown in water.[28]
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1.3 Solubility

The solubility of a solute is its concentration in a solution at which it is in thermal,

mechanical and chemical equilibrium with the solid phase. Solubility plays a crucial role

in the pharmaceutical industry as the solubility of the Active Pharmaceutical Ingredient

(API) directly impacts its bioavailability. Additionally, the solubility of a compound is a

key prediction for self-consistent in-silico workflow for computing nucleation and growth

rates.[29–31] This is because, it is the solubility of a compound that determines the driving

force of crystallization for a given concentration of solute in solution. Therefore, for

in-silico nucleation and growth rate predictions, we need in-silico tools to predict the

driving forces for these processes! This dissertation focuses on these tools, and lays out

a computational framework to predict driving forces for crystallization using atomistic

simulations and advanced statistical thermodynamic frameworks.

1.4 Nucleation and Growth Rates

Predicting the nucleation and growth rates of crystals is perhaps one of the most

difficult challenges in the digital design workflow. For both these phenomena, there

is still need for a fundamental understanding of the underlying processes, in particu-

lar, nucleation. In fact, the freezing of water, i.e., the nucleation of ice, continues to

yield surprises.[32–36] Nucleation plays a decisive role in determining the crystal struc-

ture and size distribution for solution crystallization.[37] Therefore, its understanding is

crucial—to have control over the entire crystallization process. Crystal nucleation can

occur in a clear supersaturated solution—primary nucleation—or due to the presence

of parent crystals—secondary nucleation. Further, primary nucleation can occur in the

bulk volume of a particle free solution —homogeneous primary nucleation — or at inter-
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faces (e.g. solution-dust interface, solution-air interface, solution-wall interface, etc.) —

heterogeneous nucleation.

Currently, there exists two major theories that describe primary homogeneous nucle-

ation: i) Classical Nucleation Theory (CNT),[38–40] and ii) Two-step Nucleation Theory.[41, 42]

The CNT is a single step theory in which nucleation takes place by the sequential addi-

tion of single atoms/molecules to clusters. Whereas, in the two-step nucleation theory,

a crystalline nucleus appears inside a dense liquid metastable phase of solute molecules

which has intermediate stability. While the understanding of homogeneous primary nu-

cleation is still ongoing, primary heterogeneous nucleation and secondary nucleation (the

ubiquitous and dominant nucleation pathways in practical applications) still continue to

be an unsolved challenge.

Figure 1.8: Alternative nucleation pathways leading from solution to solid crystal: (a)
supersaturated solution; (b) ordered subcritical cluster of solute molecules, proposed
by classical nucleation theory; (c) liquid-like cluster of solute molecules, dense precur-
sor proposed by two-step nucleation theory; (d) ordered crystalline nuclei; (e) solid
crystal. Figure adapted and reproduced from Erdemir et al.[37]

The story on the growth side is a bit more optimistic. It is now well understood that

desolvation of the kink site (a feature on the crystal surface where growth units dock, see
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Figure 1.9) and the crystal growth unit is the rate-limiting step.[43, 44] A systematic ap-

proach to understanding the important reaction co-ordinates along which crystal growth

can be understood has been laid out by Joswiak et al.[44] Also, a key computation of

kink attachment rates that feed into a growth model has been demostrated by Joswiak

et al.[31] for sodium chloride. Using these attachement rates and the spiral growth model

(discussed in Chapter 2) Joswiak et al. show that computing in silico absolute growth

rates of crystals is now possible. Their work has laid the groundwork needed to analyse

more complex crystals.

Figure 1.9: Kink sites on a crystal surface. Figure adapted and reproduced from Li et al.[9]
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1.5 Attainable Particle Size Design

Once we have the solubility limits, the nucleation and growth rates, these parameters

can then be fed into a population balance model to compute the crystal size distribtuion.

Knowing the attainable region of crystal sizes, it is possible to generate feasible process

alternatives that allow specific crystal sizes to be obtained in a given process configura-

tion. Inspired by the attainable region approach used in the design of chemical reactor

networks and seperation systems, Vetter et al.[45] extend the computational methodology

to crystallization systems. It is useful to determine whether a desired mean particle size

can be achieved in a specific crystallizer type. Figure 1.10 shows the attainable particle

size regions for three compounds, a) Paracetamol, b) L-asparagine monohydrate, and c)

Aspirin, using different crystallizer configurations.
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Figure 1.10: Attainable Particle Size Regions for a) Paracetmol, b) L-asparagine,
c) Aspirin using cascades of mixed suspension mixed product removal (MSMPR)
crystallizers. Figure adapted and reproduced from Vetter et al.[45]
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1.6 Polymorph Selection

As mentioned earlier, crystalline polymorphism — or the ability of a compound to

exist in multiple solid-state forms — has significant impact on a crystal’s physical prop-

erties, performance and safety (for ingestible crystals, e.g. Active Pharmaceutical In-

gredients, i.e., APIs). Hence, its control is a key objective in crystallization processes.

In batch systems, one straightforward method to select and control a polymorph’s crys-

tallization is by seeding the polymorph of interest and preventing primary nucleation

in the crystallizer.[46, 47] However, polymorph control in continuous crystallization was

elusive until 2015 when Tsai and co-workers[48] produced the metastable polymorphs of

L-glutamic acid and p-aminobenzoic acid in a continous crystallizer at stable steady-state

operation. Learning about this amazing discovery, Farmer and co-workers[49] leveraged

linear stability analysis to explain why this phenomenon occurs and gave simple design

rules to engineer a crystallizer to produce a desired polymorph.[49] Figure 1.11 shows the

predictive accuracy of their model.
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Figure 1.11: There are three stability regions. In the upper left region, β is the
dominant polymorph. In the lower right region, α is dominant, and in the bottom
left corner (lim τ → 0) the trivial steady-state is stable. Yellow data points corre-
spond to the observation of the β polymorph experimentally and blue data points
correspond to the observation of α experimentally. Open markers denote thermody-
namic metastability of the solid observed at the temperature corresponding to that
experiment, while filled markers denote thermodynamically stable solid forms. Figure
adapted and reproduced from Farmer et al.[49]

The input parameters for their model are: i) nucleation rates, ii) growth rates, and

iii) relative solubilities of the potential polymorphs, iv) residence time, v)inlet concentra-

tion, and vi)temperature. These parameters are used to compute modified Damhkohler
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numbers based on which we can predict the polymorph that will be crystallized at steady-

state as shown in Figure 1.11. Using this tool, we can dial in the parameters under our

control (like residence time, inlet supersaturation, temperature, etc.) to produce our

desired polymorph as shown in Figure 1.12.

Figure 1.12: The filled square labeled A represents τ = 60 min, and the filled square
label B represents τ = 6000 min; Co (inlet concentration) = 40 kg/m3, and T = 25◦C.
The increasing-τ solution branch moves toward the bifurcation line and eventually
crosses as τ increases. Figure adapted and reproduced from Farmer et al.[49]
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Chapter 2

Crystal Growth and the Solubility

Prediction Framework

In this chapter we discuss the fundamental processes that lead to crystal growth and the

underlying parameters that determine the growth rate of a crystal—solubility being a

major one. Next, we discuss the solubility prediction framework that will enable us to

make precise in silico driving force predictions for crystal growth.

2.1 The crystal growth framework

The most basic event leading to the growth of a crystal is the incorporation of building

blocks (growth units) which could be atoms, ions, molecules, dimers, etc. from the growth

medium (vapor, solution, gel, etc.) into the crystal.[1] The growth unit preferentially

attaches into the crystal at sites called kinks as shown in Figure 2.1. The series of events

(for solution growth of organic crystals) which lead to a growth unit’s incorporation into

a kink site are as follows:[2–4]

1. Solute molecules are transported from the bulk solution to the crystal face via
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convection and diffusion;

2. Adsorption of the solute molecule on the crystal face followed by surface diffusion

to the kink site;

3. Desolvation of kink sites and solute molecules occurs;

4. The solute molecules are incorporated into the kink sites; and

5. The latent heat of crystallization is released and transported to the crystal and

solution.

Figure 2.1: Steps during crystal growth: 1) Transport of solute to crystal face, 2)
Surface diffusion, 3) Desolvation (not shown for clarity purpose), 4) Surface integration

The third and fourth steps, which comprise of desolvation of the kink site and molecule

along with the attachment of the solute at the kink are the rate limiting steps at low to

moderate supersaturations.[1] At these conditions, the crystal undergoes a layered growth

by the following two mechanisms:
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1. Spiral growth: spirals emerge from screw dislocations

2. formation of two-dimensional (2D) nuclei and their growth.

Figure 2.2: Schematic of screw dislocations and 2D nuclei

Mechanistic models such as the spiral growth model require the computation of free

energy barriers for kink attachment and detachment as shown in Figure 2.3. When fed

with this information, the mechanistic models give us the growth rate of a crystal.
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Figure 2.3: Schematic free energy diagram for the attachment and detachment of
solute growth units from kink sites. States S and X represent growth units in solu-
tion and incorporated to the crystal, respectively; j+ and j−k,i are the corresponding
attachment and detachment rates. A simplified reaction coordinate q could relate to
the distance of the growth unit from the kink site. The filled red circles represent the
growth unit which is attaching to/detaching from the kink site and the open black
circle represents the unoccupied kink site. Image adapted and reprinted from Li et
al.[5]

Shape and Size Prediction

The equilibrium shape of a crystal is one which minimizes its Gibbs Free energy for

a fixed volume or mass of crystal.[6] For a given crystal, the thermodynamically stable
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shape is given by the famous Wulff construction,[7, 8]

γ1

H1

=
γ2

H2

= ... =
γi
Hi

, (2.1)

where γi is the surface free energy of face i, and Hi is its perpendicular distance from

the center of the crystal. However, it turns out it is often the kinetics and not the

thermodynamics that determines the shape of the crystal (see Figure 2.4).

Figure 2.4: (a) 3D model of Pd nanocrystals (golden) grown on a SrTiO3 (001)
substrate (gray) in an ultrahigh-vacuum environment. (b) Evolution of the height
and length of the Pd nanocrystals. The dashed line indicates the equilibrium
shape, whereas the different markers for the data points indicate different nucleation
temperatures.[4, 9]

The shape predicted by the kinetics is modeled using the Frank-Chernov[10, 11] condi-

tion,

G1

H1

=
G2

H2

= ... =
Gi

Hi

, (2.2)
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Figure 2.5: Wulff construction using the Frank-Chernov condition

where, Gi is the absolute growth rate of face i, and Hi is its perpendicular distance from

the center of the crystal. As we can see from the Frank-Chernov equation, only relative

growth rates of the crystal faces and their relative perpendicular distances are required

to predict the shape of the crystal.

The growth rate of the crystal face is a function of the kink rate, kink density and the

height of the kink.[12] The kink rate further is a function of the attachment free energy

barrier and detachment work (see Figure 2.3). It so turns out that while calculating

relative rates it is a good approximation to assume the attachment rates are the same for

each face. Hence they fall off from the equation, and we can get good shape predictions.[5]

However, to compute absolute growth rates, there is no alternative, but to compute

the attachment rates of growth units at a kink site. We at the Doherty and Peters labs

are developing methods to efficiently compute these rates and use them to refine the
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shape predictions and more importantly to also get the size of the crystal by computing

absolute growth rates and feeding them into a population balance model such as,

∂n

∂t
= −G1

(
∂n

∂H1

+R2
∂n

∂H2

+ ...+Rn
∂n

∂Hk

)
+
nin
τ
− n

τ
(2.3)

where, G1 is the absolute growth rate of a reference face, Ri is the relative growth rate

of face i to the reference face, n is the number density distribution of the crystals, and

τ is the crystallizer residence time. Figure 2.8 summarizes the workflow to compute the

growth rate of crystal faces and ultimately the shape and size of the crystal.

Spiral Growth Mechanism[2, 13]

At low supersaturations, crystals primarily grow via a spiral growth mechanism. A

screw dislocation as shown in Figure 2.2 is the origin of the spiral. It exposes an edge

on which the growth units dock. This docking of growth units leads to the advancement

of the step. After the step has advanced to a critical length (lc), it exposes another edge

which grows in the same manner as described above. This process occurs recursively

forming a spiral and leads to a layered growth of the crystal face as shown in Figures 2.6

and 2.7.
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Figure 2.6: The mechanism of spiral growth around a screw dislocation[5]
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Figure 2.7: (a–c) CMAFM deflection images of a (001) surface in 40 µM, 60 µM,
and 100 µM BaSO4 solutions at 30 °C, respectively, showing the growth spirals that
formed from screw dislocations. The growth hillocks that likely formed from edge
dislocations are also shown in (a). (d) CMAFM deflection image of a (001) surface
in an 80 µM BaSO4 solution at 30°C showing growth spirals with a one-layer step
sequence and regular step spacing. Figure adapted and reproduced from Kuwahara
et al.[14]
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The growth rate (G) of a crystal face is given by

G =
h

τs
, (2.4)

where h is the height of the edge/kink and τs is the spiral rotation time, i.e., the time

taken to complete one rotation. The spiral rotation time is a function of the step velocity

which in turn is a function of the kink’s physical properties and net attachment rate. It

follows that[15, 16]:

G = [k+xsat][(S − 1) ln(S)][
h

τ ∗s
] (2.5)

where k+ is the attachment rate constant of the solute at the kink site (the compu-

tation of which requires the calculation of the attachment/detachment barriers), xsat is

the mole fraction of the solute at it’s solubility limit, S is the supersaturation, h is the

height of the kink and τ ∗s is a function of solvent and temperature as given in equation

(54) in Ref. [15].

Thus, the growth rate of a face of a crystal is a function of:

1. solubility & supersaturation; (driving forces)

2. the attachment rate constant;

3. kink density & kink geometry (site availability)

In order to compute growth rates, we need to compute the driving forces for crystalliza-

tion—and hence solubility of the crystal—predicted via the force field along with the rate

constants and kink densities to have a self-consistent growth rate prediction. Therefore,

next we look at the solubility prediction framework to compute the driving forces for

crystallization processes.
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Figure 2.8: The mechanistic framework to compute the shape of a crystal spanning
length scales fromO(nm) toO(mm). Image courtsey: Mark Joswiak and Carl Tilbury

2.2 The solubility prediction framework

Computational methods to predict phase equilibria and free energy differences be-

tween phases are critical for studies of nucleation and growth.[17–19] Some of the first meth-

ods predicted phase equilibria for single-component systems and gas–liquid phase equi-

libria, e.g., histogram reweighting,[20] Gibbs ensemble simulations,[21] and Gibbs–Duhem

integration methods.[22] Crystalline solids pose special challenges that require new meth-

ods. In particular, all degrees of freedom in a crystalline solid are bound, while the

molecules in a fluid phase are all free to translate and rotate. These differences have

inspired the development of very different computational methods for free energy calcu-
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lations and phase equilibria between fluids and solids. Examples include direct coexis-

tence simulations,[23, 24] thermodynamic integration from a harmonic model at 0 K,[25]

and harmonically mapped average techniques[26, 27] and transformations from real crystal

to Einstein crystal (EC)/Einstein molecule crystal to atoms or molecules in a fluid phase

(the Frenkel–Ladd approach).[28]

Direct coexistence simulations have two important limitations. First, direct coex-

istence simulations are prone to errors arising from long time scale processes such as

attachment and detachment at kinks,[29, 30] 1D nucleation of kinks,[31–33] and 2D island or

pit nucleation.[34–36] All three activated processes have been implicated as sources of error

in direct coexistence simulations.[23, 37, 38] Simulations with special “everkinked” crystal

orientations can eliminate the row/kink and island/pit nucleation steps,[38, 39] but the

attachment and detachment rates still set a fundamental limit on the efficiency of direct

coexistence results. Second, direct coexistence simulations can only estimate equilibrium

concentrations, e.g., the equilibrium solubility limit, the melting temperature, or the par-

tial pressure for evaporation. They cannot estimate the chemical potential differences at

non-equilibrium supersaturated conditions that drive crystallization.

Frenkel–Ladd[28] and related methods[40, 41] can provide chemical potentials and chem-

ical potential differences even under nonequilibrium supersaturated conditions. The

free energy difference between the gas and solid phases coupled with the solvation free

energy[42–45] provides solubilities and driving forces for solute precipitate nucleation and

growth. These approaches must either start from two reference systems (e.g., one for the

solid and one for the vapor), or else compute the free energy required to transform the

solid into a fluid. The solid-to-fluid transformation step is often affected in stages.[40, 41]

For example, in the first step, one can relax restraints on positions of atoms in the molec-

ular Einstein crystal to obtain a “freely rotatable Einstein crystal”[41] of non-interacting

molecules with restrained locations. Then, the solid-to-fluid transition is completed by
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allowing the molecules to translate throughout the lower density of the fluid. The free

energy contribution for the second step is an analytic calculation, but relaxing the rota-

tional and conformational degrees of freedom in the first step requires computation. The

difficulty in this first step will increase for large and flexible molecules.

In this dissertation, we present an alternate route to solid–fluid chemical potential dif-

ferences as shown in Figure 2.9. Instead of performing a solid-to-fluid transformation,[40, 41]

we compute absolute free energies of the solute in the two phases. For the solid phase, we

start with an Einstein crystal and use thermodynamic integration (T.I.) to compute the

absolute free energy of the crystal (including the intra-molecular free energy). For the gas

phase, we introduce a reference system called the “centroid.” We compute the free energy

of the centroid and transform it to the gas phase molecule using thermodynamic integra-

tion. We demonstrate this approach by computing a solid–vapor equilibrium prediction.

Towards this, we review procedures for computing the solid phase chemical potential and

then present procedures using the centroid and T.I. to compute the gas phase chemical

potential.
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μ𝐶

μ𝐸𝐶 μ∗

μ𝐺
μ𝐶 𝑇, 𝑃𝑠𝑎𝑡 = μ𝐺 𝑇, 𝑃𝑠𝑎𝑡

μ𝑠𝑜𝑙𝑢𝑡𝑒
𝑠𝑜𝑙𝑛

Figure 2.9: The solubility computation framework

To illustrate these methods for floppy gas phase molecules without the need for har-

monic approximations, we use the new approach to compute the solid–vapor equilibrium

for naphthalene (benchmark the framework with a rigid molecule) and succinic acid in the

temperature range of 300 K–350 K. We set the gas phase chemical potential to the solid
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chemical potential and solve to obtain the sublimation vapor pressure, P sat. We then

perform additional solvation free energy calculations to compute the chemical potential

of the solutes in the solution phase—and ultimately compute the solubility by setting

the solution phase chemical potential of the solute equal to the solid. The remaining

dessertation is outlined as follows:

• Chapter 3 completes the Frenkel-Ladd theory for computing solid chemical poten-

tials starting from any set of spring constants, this results in ca. 10% increase in

phase equilibrium predictions in exisitng literature. It also extends the Frenkel-

Ladd method to compute absolute solid free energies of solids, i.e., including the

intra-molecular free energies. This is essential for a decoupled route starting from

absolute references.

• Chapter 4 introduces the centroid—a new reference system for computing gas phase

chemical potentials pivotal in decoupling the phase equilibrium calculations. It

maps out the thermodynamic framework to compute the centroid’s free energy

and the free energy difference of the molecule from the centroid. The chapter

also discusses the thermodynamic test results to benchmark this new approach by

making use of a simple diatomic molecule system.

• Chapter 5 lays out the computational strategy to perform solvation free energy cal-

culations using the decoupling route—an efficient method that saves computational

and — more so — implentation time. The chapter also discusses a new application

of solvation free energy calculations for computing solvent modified bond energies

from first principles— the input parameters for crystal shape prediction that so far

relied on experimentally fitted parameters.

• Chapter 6 leverages the tools developed to compute absolute chemical potentials
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of the solute in the solid, gas, and solution phases to predict solid-fluid equilibria

and driving forces for crystallization from vapor and solution.

• Chapter 7 revisits the population balance and mass balance models for a mixed

suspension mixed product removal (MSMPR) crystallizer to study the impact of the

solid volume fraction on the accuray of the current models being used in literature.

It provides the accurate population and mass balance models and lays out the

approximations made to arrive at the widely used approximate models. It also

quantifies the difference between the approximate and the accurate models.

• Chapter 8 lays out the framework to create ever-kinked crystal systems that avoid

finite-size effects while studying crystal growth for a general tricilinic crytallography.
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der krystallflächen, Zeitschrift für Kristallographie-Crystalline Materials 34 (1901),
no. 1-6 449–530.

[8] C. Herring, Some theorems on the free energies of crystal surfaces, Physical review
82 (1951), no. 1 87.

[9] F. Silly, A. C. Powell, M. G. Martin, and M. R. Castell, Growth shapes of
supported pd nanocrystals on srtio 3 (001), Physical Review B 72 (2005), no. 16
165403.

[10] F. Frank, On the kinematic theory of crystal growth and dissolution processes in
growth and perfection of crystals (eds. rh doremus, bw roberts & d. turnbull)
411–417, 1958.

[11] A. Chernov, The kinetics of the growth forms of crystals, Sov. Phys. Cryst 7
(1963) 728–730.

[12] M. A. Lovette, A. R. Browning, D. W. Griffin, J. P. Sizemore, R. C. Snyder, and
M. F. Doherty, Crystal shape engineering, Industrial & engineering chemistry
research 47 (2008), no. 24 9812–9833.

[13] F. Frank, The influence of dislocations on crystal growth, Discussions of the

41



BIBLIOGRAPHY

Faraday Society 5 (1949) 48–54.

[14] Y. Kuwahara, W. Liu, M. Makio, and K. Otsuka, In situ afm study of crystal
growth on a barite (001) surface in baso4 solutions at 30° c, Minerals 6 (2016),
no. 4 117.

[15] C. J. Tilbury and M. F. Doherty, Modeling layered crystal growth at increasing
supersaturation by connecting growth regimes, AIChE Journal 63 (2017), no. 4
1338–1352.

[16] J. Li, C. J. Tilbury, M. N. Joswiak, B. Peters, and M. F. Doherty, Rate expressions
for kink attachment and detachment during crystal growth, Crystal Growth &
Design 16 (2016), no. 6 3313–3322.

[17] N. E. Zimmermann, B. Vorselaars, D. Quigley, and B. Peters, Nucleation of NaCl
from aqueous solution: Critical sizes, ion-attachment kinetics, and rates, Journal
of the American Chemical Society 137 (2015), no. 41 13352–13361.

[18] N. E. Zimmermann, B. Vorselaars, J. R. Espinosa, D. Quigley, W. R. Smith,
E. Sanz, C. Vega, and B. Peters, NaCl nucleation from brine in seeded simulations:
Sources of uncertainty in rate estimates, The Journal of Chemical Physics 148
(2018), no. 22 222838.

[19] M. N. Joswiak, B. Peters, and M. F. Doherty, In silico crystal growth rate
prediction for NaCl from aqueous solution, Crystal Growth & Design 18 (2018),
no. 10 6302–6306.

[20] A. M. Ferrenberg and R. H. Swendsen, New monte carlo technique for studying
phase transitions, Physical Review Letters 61 (1988), no. 23 2635.

[21] A. Z. Panagiotopoulos, Direct determination of phase coexistence properties of
fluids by monte carlo simulation in a new ensemble, Molecular Physics 61 (1987),
no. 4 813–826.

[22] D. A. Kofke, Gibbs-duhem integration: a new method for direct evaluation of
phase coexistence by molecular simulation, Molecular Physics 78 (1993), no. 6
1331–1336.

[23] A. Benavides, J. Aragones, and C. Vega, Consensus on the solubility of NaCl in
water from computer simulations using the chemical potential route, The Journal
of Chemical Physics 144 (2016), no. 12 124504.

[24] J. Espinosa, J. Young, H. Jiang, D. Gupta, C. Vega, E. Sanz, P. Debenedetti, and
A. Panagiotopoulos, On the calculation of solubilities via direct coexistence
simulations: Investigation of NaCl aqueous solutions and lennard-jones binary
mixtures, The Journal of Chemical Physics 145 (2016), no. 15 154111.

[25] J. Kolafa, Free energy of classical molecular crystals by thermodynamic integration
from a harmonic reference, Journal of Chemical Theory and Computation 15
(2018), no. 1 68–77.

[26] T. B. Tan, A. J. Schultz, and D. A. Kofke, Suitability of umbrella-and
overlap-sampling methods for calculation of solid-phase free energies by molecular

42



BIBLIOGRAPHY

simulation, The Journal of Chemical Physics 132 (2010), no. 21 214103.

[27] A. Purohit, A. J. Schultz, and D. A. Kofke, Implementation of harmonically
mapped averaging in lammps, and effect of potential truncation on anharmonic
properties, The Journal of Chemical Physics 152 (2020), no. 1 014107.

[28] D. Frenkel and A. J. Ladd, New monte carlo method to compute the free energy of
arbitrary solids. application to the fcc and hcp phases of hard spheres, The Journal
of Chemical Physics 81 (1984), no. 7 3188–3193.

[29] J. De Yoreo, L. Zepeda-Ruiz, R. Friddle, S. Qiu, L. Wasylenki, A. Chernov,
G. Gilmer, and P. Dove, Rethinking classical crystal growth models through
molecular scale insights: consequences of kink-limited kinetics, Crystal Growth &
Design 9 (2009), no. 12 5135–5144.

[30] J. Li, C. J. Tilbury, M. N. Joswiak, B. Peters, and M. F. Doherty, Rate expressions
for kink attachment and detachment during crystal growth, Crystal Growth &
Design 16 (2016), no. 6 3313–3322.

[31] A. G. Stack, Molecular dynamics simulations of solvation and kink site formation
at the {001} barite- water interface, The Journal of Physical Chemistry C 113
(2009), no. 6 2104–2110.

[32] M. N. Joswiak, M. F. Doherty, and B. Peters, Critical length of a one-dimensional
nucleus, The Journal of Chemical Physics 145 (2016), no. 21 211916.

[33] M. De La Pierre, P. Raiteri, A. G. Stack, and J. D. Gale, Uncovering the atomistic
mechanism for calcite step growth, Angewandte Chemie International Edition 56
(2017), no. 29 8464–8467.

[34] J. D. Weeks and G. H. Gilmer, Dynamics of crystal growth, Adv. Chem. Phys 40
(1979), no. 489 157–227.

[35] A. Chernov, Present-day understanding of crystal growth from aqueous solutions,
Progress in Crystal Growth and Characterization of Materials 26 (1993) 121–151.

[36] A. E. Nielsen, Kinetics of precipitation, vol. 18. Pergamon, 1964.

[37] M. Salvalaglio, C. Perego, F. Giberti, M. Mazzotti, and M. Parrinello,
Molecular-dynamics simulations of urea nucleation from aqueous solution,
Proceedings of the National Academy of Sciences 112 (2015), no. 1 E6–E14.

[38] J. Kolafa, Solubility of NaCl in water and its melting point by molecular dynamics
in the slab geometry and a new bk3-compatible force field, The Journal of
Chemical Physics 145 (2016), no. 20 204509.

[39] M. N. Joswiak, M. F. Doherty, and B. Peters, Ion dissolution mechanism and
kinetics at kink sites on NaCl surfaces, Proceedings of the National Academy of
Sciences 115 (2018), no. 4 656–661.

[40] L. Li, T. Totton, and D. Frenkel, Computational methodology for solubility
prediction: Application to the sparingly soluble solutes, The Journal of Chemical

43



BIBLIOGRAPHY

Physics 146 (2017), no. 21 214110.

[41] M. A. Bellucci, G. Gobbo, T. K. Wijethunga, G. Ciccotti, and B. L. Trout,
Solubility of paracetamol in ethanol by molecular dynamics using the extended
Einstein crystal method and experiments, The Journal of Chemical Physics 150
(2019), no. 9 094107.

[42] M. Mezei, P. Mehrotra, and D. Beveridge, Monte carlo determination of the free
energy and internal energy of hydration for the ala dipeptide at 25. degree. c,
Journal of the American Chemical Society 107 (1985), no. 8 2239–2245.

[43] M. Cossi, V. Barone, R. Cammi, and J. Tomasi, Ab initio study of solvated
molecules: a new implementation of the polarizable continuum model, Chemical
Physics Letters 255 (1996), no. 4-6 327–335.

[44] D. Shivakumar, J. Williams, Y. Wu, W. Damm, J. Shelley, and W. Sherman,
Prediction of absolute solvation free energies using molecular dynamics free energy
perturbation and the opls force field, Journal of Chemical Theory and
Computation 6 (2010), no. 5 1509–1519.

[45] D. L. Mobley and J. P. Guthrie, Freesolv: a database of experimental and
calculated hydration free energies, with input files, Journal of computer-aided
molecular design 28 (2014), no. 7 711–720.

44



Chapter 3

Chemical Potential in the Solid

Phase

Reproduced in part with permission from:

Vikram Khanna, Jamshed Anwar, Daan Frenkel, Michael F. Doherty and Baron Pe-

ters, “Free energies of crystals computed using Einstein crystal with fixed center of mass

and differing spring constants,” Journal of Chemical Physics, 2021, 154(16), 164509:1-8.

DOI: https://doi.org/10.1063/5.0044833. Copyright 2021 AIP Publishing.

Vikram Khanna, Michael F. Doherty and Baron Peters, “Absolute chemical poten-

tials for complex molecules in fluid phases: A centroid reference for predicting phase

equilibria,” Journal of Chemical Physics, 2020, 153(21), 214504:1-9.

DOI: https://doi.org/10.1063/5.0025844. Copyright 2020 AIP Publishing.

3.1 Introduction

Solid phase free energy computations[1–6] are widely used to predict fluid-solid equilib-

ria, [7–11] solid-solid equilibria [12] and relative stability of polymorphs.[13, 14] The Frenkel-
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Ladd method[3] computes the free energy difference between the solid under consideration

and an Einstein crystal, a reference system whose free energy is analytically known. The

method uses thermodynamic integration to transform between the Einstein crystal and

real solid. To supress a weak divergence of the integrand used in computing the free

energy, it is recommended to fix the center of mass (COM) of the system. [3, 8, 15, 16] To

compute the absolute free energy of the unconstrained crystal we need to correct for the

effect of imposing this constraint in the calculations. The numerical value of the free en-

ergy correction per atom (or molecule) tends to zero as the system size tends to infinity,

hence it is a finite-size correction. Polson et al.[15] derived an O(lnN/N) term in trans-

formation from constrained to unconstrained crystals as a finite-size correction. Their

calculation is based on an Einstein crystal with fixed center of mass and equal spring

constants. Note that an alternate method, the Einstein molecule method,[4, 6, 17, 18] does

not require a center of mass constraint or the associated corrections. However, this chap-

ter is aimed at completing the theory for the Einstein crystal method and extending it

to molecular solids accounting for intramolecular free energy—making the free energy an

absolute free energy estimate in the truest sense.

For crystals comprised of atoms with different atomic masses, different spring con-

stants (in the Einstein crystal approach[3]) can help to maintain the center of mass[8]

constraint (if the molecular dynamics package does not have built-in features to achieve

the same) by choosing mass-scaled spring constants that equate the angular frequencies.

See supplementary material for details. Alternatively, different spring constants can help

to optimize the numerical integration to compute the free energy difference by choosing

spring constants that reproduce the mean-squared displacement (MSD) of atoms in the

real crystal[16] (referred to as MSD-based springs in this article).

In this chapter, we extend the finite-size corrections of Polson et al.[15] to the case

of different spring constants in an Einstein crystal. To test the results we compare the
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solid free energies of LiI and NaCl crystals from three calculations: i) mass-scaled springs

that exert a null force on the system and help constrain the COM without the need of

built-in functions to constrain the COM, ii) MSD-based springs that reproduce the mean-

squared displacement (MSD) of atoms in the real crystal that help optimize the numerical

integration, and iii) calculations with a set of equal springs. A fourth option, not explored

here, is to artificially set all masses and spring constants to equal values, respectively,

and then analytically recover the free energies for the real masses, e.g. using equations

in Polson et al. [15] For the MSD-based and equal spring sets we make use of the built-in

center of mass constraint features in the molecular dynamics code LAMMPS[19]. These

calculations confirm that the two procedures (employing different and equal springs) are

equivalent. They also demonstrate the accuracy gained by the use of spring constants

that reproduce the MSD of atoms in the real crystal along with the relative magnitudes

of the finite-size corrections and other contributions to the absolute free energy of the

crystal.

Note that in addition to the finite size correction due to the COM constraint in the

calculations, the free energy of solids presents an intrinsic system size dependence as

shown by Vega et al.[4] These finite size corrections need to be computed by repeating

the free energy calculations for several system sizes and extrapolating to infinite size.

This intrinsic finite size effect is also computed for the LiI and NaCl crystal systems to

emphasize the difference between the two different types of finite size effects entering the

solid free energy calculations., i.e., the one stemming due to the COM constraint in the

Einstein crystal method and the other, the intrinsic finite size effect related to the cutoff

in the phonon spectrum introduced by the finite lattice size.[20–24]
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3.2 The Solid Free Energy Theory

The free energy (F ) of a real crystal (C) is computed using the following path:

FEC → FCM
EC → FCM

C → FC

where CM indicates a center of mass constraint and EC refers to an Einstein crystal.

Therefore,

FC = FEC + (FCM
EC − FEC) + (FCM

C − FCM
EC ) + (FC − FCM

C ) (3.1)

where the absolute free energy of the Einstein crystal can be obtained from its analytically

computable partition function:

βFEC = − ln (QEC) (3.2)

and the free energy differences are

β(FCM
EC − FEC) = − ln

(
QCM
EC

QEC

)
(3.3a)

β(FCM
C − FCM

EC ) = β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ (3.3b)

β(FC − FCM
C ) = − ln

(
QC

QCM
C

)
(3.3c)

In each of these formulas, Q is a partition function, β = (kBT )−1, λ is a coupling

parameter, U is a λ-dependent potential energy function that interpolates between that

of the EC and C systems.

48



Chemical Potential in the Solid Phase Chapter 3

3.2.1 Spring Constants and Finite Size Corrections for Einstein

Crystals

When all atoms have a common spring constant (k), the Helmholtz free energy of a

crystal with Nmol molecules composed of a total of N atoms, is given by Polson et al.[15]

as:

βFC =
N∑
i=1

ln

(
βkΛ2

i

2π

)3/2

+ β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− ln

( βk

2π
∑N

i=1 µ
2
i

)3/2(
V

Nmol

)
(3.4)

where Λi = (βh2/(2πmi))
1/2, h is Planck’s constant, mi is the mass of atom i, V is the

volume of the system, and µi = mi/
∑N

i=1mi.

We have combined terms in the result as given in Polson et al. so that all arguments

of logarithms are dimensionless.

Note that the corresponding equations in ref. [8], for atoms with different spring

constants cannot be combined to give a dimensionless argument to the logarithm. The

error introduced in that study, however, was marginal as the spring constants were sim-

ilar. Using our revised result shown in equation (3.10), the free energy in Ref. [8] is

revised to -97.44 ± 0.02 NmolkBT from -97.75 ± 0.02 NmolkBT . This revision results in a

shift of the predicted melting point from 1064 K to about 1140 K, some 65 K above the

experimental melting of NaCl (1074K). An independent study carried out subsequent to

Ref. [8] employing density of states calculations for the same NaCl model gave a melting

point of 1050 K.[25] In this work we provide a revised version of equation (3.4) for systems
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where atoms have different spring constants.

Since the part of the finite-size correction involving spring constants emerges from

equation (A.3a), (see Appendix A), we derive the configurational partition function ratio,

ZCM
EC /ZEC here for an EC with different spring constants (ki, i = 1, 2, ..., N).

For 1-Dimension (x-direction), the configurational partition function of an Einstein

crystal with a COM constraint is:

ZCM
EC,x =

∫
dxN

N∏
i=1

exp

[
−βki

2
x2
i

]
δ

(
N∑
i=1

µixi

)
(3.5)

Without loss of generality, we are letting all particles be attached by a spring to a point

at the origin. This makes xi the displacement of atom i in the x-direction from the tether

point (origin here).

We make the following variable transformation:

ξi = k
1/2
i xi (3.6)

with Jacobian determinant

J =

∣∣∣∣∣
N∏
i=1

k
−1/2
i

∣∣∣∣∣ (3.7)
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Therefore,

ZCM
EC,x =

∫
dξNJ

N∏
i=1

exp

[
−β

2
ξ2
i

]
δ

(
N∑
i=1

µi

k
1/2
i

ξi

)

= J

 β

2π
∑N

i=1
µ2i
ki

1/2
N∏
i=1

(
2π

β

)1/2

=

 β

2π
∑N

i=1
µ2i
ki

1/2
N∏
i=1

(
2π

βki

)1/2

=

 β

2π
∑N

i=1
µ2i
ki

1/2

ZEC,x

(3.8)

where ZEC,x is the integral in equation (3.5), but without the center of mass constraint.

See supplementary material for additional details. The extension to three dimensions

just results in three factors of (β/2π
∑

i[µ
2
i /ki])

1/2.

ZCM
EC

ZEC
=

 β

2π
∑N

i=1
µ2i
ki

3/2

(3.9)

Using equation (3.9) in place of equation (A.10a) in the derivation shown in Appendix

A, we get

βFC =
N∑
i=1

ln

(
βkiΛ

2
i

2π

)3/2

+ β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− ln


 β

2π
∑N

i=1
µ2i
ki

3/2(
V

Nmol

)
(3.10)

for an Einstein crystal system with different spring constants.
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Equation (3.10) gives the free energy of a real crystal computed using an EC system

constituting different spring constants. Note that equation (3.10) is properly dimension-

less. Moreover, equation (3.10) collapses to equation (3.4) when ki = k, i.e., when all

spring constants are equal.

3.2.2 Constraining the center of mass

In molecular dynamics (MD) simulations with standard force fields, the center of mass

can be fixed by beginning with zero total momentum and not adding external forces.

For the Einstein crystal, the springs do exert external forces so additional measures are

needed.

A simple way to fix the center of mass in a system with springs begins by making

the spring constants proportional to the atom masses, so that all atoms have the same

frquency. When all oscillators have frequency ω, the center of mass evolves as

xCM(t) = ω−1voCM sin(ωt) + xoCM cos(ωt) (3.11)

where, voCM is the initial center of mass velocity, and xoCM is the initial displacemet of the

center of mass from the tether points’ (lattice positions’) center of mass. See Appendix

B for details.

Clearly, we can maintain xCM = 0 by choosing spring constants proportional to the

atom masses, so that all atoms have the same frquency and setting initial conditions such

that voCM = xoCM = 0.

We note that certain MD packages such as LAMMPS do not need to have a net

zero external force on the system to constrain the center of mass. This is achieved by

thermostating all degrees of freedom except the center of mass and shifting all atom

coordinates after every timestep (equal to the drift in center of mass) to recenter the
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system to the initial value of the center of mass. This recentering does not alter the

dynamics of the system or change the relative coordinates of any pair of atoms.

3.2.3 Thermodynamic Integration

To compute the free energy difference between the crystal of interest and the Einstein

crystal, i.e., FCM
C − FCM

EC , we use thermodynamic integration (T.I.)[26] with a linear

homotopy[27]

U(T, VC ;λ) = (1− λ)UEC(T, VC) + λUC(T, VC) (3.12)

where U(T, VC ;λ) is the potential energy function and λ is the coupling parameter. Also,

UEC and UC are the potential energy functions of the Einstein crystal and the crystal of

interest (described by the chosen force field), respectively. Therefore

FCM
C − FCM

EC =

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

=

∫ λ=1

λ=0

〈UC − UEC〉CMλ dλ

(3.13)

where, 〈dU/dλ〉CMλ is evaluated by computing an average of (UC − UEC) over configu-

rations in the λ state canonical ensemble. Note, for 0 < λ < 1, equation (3.11) is still

applicable. See supplementary material for details.

3.3 Simulation Details

We model LiI and NaCl using the Joung Cheatham force field (the version optimized

for SPC/E).[28] All MD simulations were carried out using LAMMPS.[19]

The NVT simulations for computing the free energies were setup using the interionic

distances reported by Joung et al.,[28] of 3.05 Å, and 2.89 Å for LiI and NaCl, respectively.
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A super cell measuring 36.6 Å × 36.6 Å × 36.6 Å comprising 864 ion pairs was used for

LiI, and a super cell measuring 34.68 Å × 34.68 Å × 34.68 Å comprising 864 ion pairs

was used for NaCl. This is equivalent to 6 × 6 × 6 unit cells for both crystal systems.

To compute the intrinsic finite-size effects, systems comprising 7 × 7 × 7, 8 × 8 × 8,

and 9 × 9 × 9 unit cells were used for both crystals.

The Lorentz-Berthelot mixing rules were used for computing the interatomic pair

coefficients. We used a time step of 1 fs. Nonbonded interactions were cutoff at 1.6

nm, and 1.1 nm for LiI and NaCl, respectively, with long range electrostatics handled

by LAMMPS’ Particle-Particle-Particle-Mesh (PPPM) summation [29, 30] and a switching

function applied for Lennard-Jones interactions between 1.4-1.6 nm, and 0.9-1.1 nm for

LiI and NaCl, respectively.

A 25 point Gauss Legendre quadrature method[31] was used to evaluate the integral

in equation 3.13. The NVT simulations were run for a total of 8 ns, of which the initial 2

ns were used for equilibration and then discarded. Data every 1 ps was used to compute

the thermodynamic averages for LiI and NaCl systems (the autocorrelation times for

〈dU/dλ〉λ were approximately in the range of 50 - 400 fs, therefore a 1 ps sampling

frequency provides independent samples for each λ state. See supplementary material

for autocorrelation time calculations). The spring constants for the reference Einstein

crystals are chosen to reproduce the mean square displacement of lithium and sodium

ions at 300K. For the different springs case, respective spring constants are scaled to

compute the counter ion’s spring constant such that ki/mi is constant. Table 3.1 reports

the numerical values used in this study.
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Table 3.1: Masses (a.m.u) & spring constants (kBT/Å2)

LiI NaCl

Li+ I− Na+ Cl−

mass 6.941 126.904 22.990 35.450

ki using mass-scaled springs 35.866 655.749 77.543 119.581

ki using MSD-based springs 35.866 67.121 77.543 85.167

ki using equal springs 35.866 35.866 77.543 77.543

For the MSD-based and equal springs cases, to constrain the center of mass in

LAMMPS, we use the temp/com command in conjuction with the langevin thermo-

stat to thermostat all degrees of freedom except the center of mass. We use the recenter

command to correct for the drift in the center of mass after every time step.

3.4 Results and Discussion

For each crystal system (i.e., LiI and NaCl) we compute free energies using mass-

scaled, MSD-based and equal spring constants. Table 3.2 shows the dimensionless Helmholtz

free energies per ion pair. All components of equation 3.10 are reported to show the

relative magnitudes of corrections. See supplementary material for plots of the T.I. in-

tegrands. The free energies should match for the two procedures, i.e., with different and

equivalent springs. As seen in Table 3.2 the free energies computed using different spring

constants are in excellent agreement with the free energies computed using equivalent

spring constants, thereby successfully testing the theory. Also, the use of MSD-based

spring constants optimizes the calculations as can be seen in the near 24% uncertainty

reduction for LiI when compared to the equal spring case. This is because the MSD of
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the Li and I atoms differ significantly as can be seen by the MSD-based spring constants.

In the NaCl calculations, the MSD of the two atoms are similar, leading to marginal

accuracy gains on using MSD-based springs. We also compute the free energy of NaCl

crystal at 298 K to compare with Aragones et al.[6] Our free energy estimate at 298 K is

−311.0340 ± 0.0002 NmolkBT (using ΛNa = ΛCl = 1Å), which is in excellent agreement

with their result of −311.10± 0.1 NmolkBT.

As seen in Figures 3.1 and 3.2, the solid free energies of LiI and NaCl demonstrate a

significant system size dependence, i.e. the free energy size dependence is greater than the

calculation uncertainty. Tables 3.3 and 3.4 show the accounting of the COM constraint

finite size correction for each system size for LiI and NaCl, respectively.

We use a linear model to capture the intrinsic finite size effect and predict free energy

in the thermodynamic limit:[4]

βf(Nmol) = βf(Nmol →∞) +
d1

Nmol

(3.14)

The value of the slopes (d1) for LiI and NaCl are -14.7 ± 0.2, and -13.1 ± 0.2,

respectively.
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𝛽𝑓 𝑁!"# = 𝛽𝑓 ∞
+ 𝑑$𝑁

!"#

𝑑$ = −14.7 ± 0.2

Figure 3.1: Intrinsic system-size dependence of LiI crystal’s free energy

𝛽𝑓 𝑁!"# = 𝛽𝑓 ∞
+ 𝑑$𝑁

!"#

𝑑$ = −13.1 ± 0.2

Figure 3.2: Intrinsic system-size dependence of NaCl crystal’s free energy
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3.5 Extension to Molecular Crystals

We apply the Einstein crystal approach for polyatomic molecules differently from

previous works[10, 11, 32] to obtain an absolute free energy prediction. Li et al.[10] and

Bellucci et al.[11] tether non-collinear atoms in a molecule to their lattice sites and keep

the intra-molecular bonded and non-bonded interactions turned on. We tether each atom

in the crystal to its lattice site with all inter as well as intra-molecular bonded and non-

bonded interactions turned off. This gives a set of simple harmonic oscillators as shown

in Figure 3.3. Thus the free energy difference between the EC and the real crystal system

includes the intra-molecular and inter-molecular free energies.

(Einstein crystal: EC) (Real crystal system: C)

Figure 3.3: Transformation from an all atom Einstein crystal to a real crystal with
complete intra-molecular interactions and nonbonded intra and inter-molecular inter-
actions (green). The double lines indicate springs. Between two atoms, they represent
a bond, when attached to a single atom they represent tethering to a lattice site.

To compute ∆aEC→C(T, vC) we use thermodynamic integration (T.I)[26] with a linear

homotopy.[27]
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3.6 Conclusions

In this chapter we extend the work of Polson et al.[15] to compute free energies of

crystals using an Einstein crystal with fixed center of mass and different spring constants.

For calculations that make use of different spring constants, our result provides a revised

equation to be used in place of equation (3) in ref. [8]. We also provide necessary

conditions to help constrain the center of mass in a molecular dynamics simulations

(using MD packages with no built-in capabilities to do the same) employing springs to

tether atoms. The free energies of LiI and NaCl crystals computed using different and

equal spring constants are in excellent agreement, thus successfully testing the theory.

Our results also demonstrate a reduction in error bars when MSD-based springs are

used to optimize the calculations. The significant system size dependence of the solid

free energy after applying the COM-constraint corrections helps demonstrate the relative

magnitudes of the intrinsic and COM-constraint finite-size corrections relative to other

contributions to the absolute free energy of the crystals.
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Chapter 4

Chemical Potential in the Gas Phase

Reproduced in part with permission from:

Vikram Khanna, Michael F. Doherty and Baron Peters, “Absolute chemical poten-

tials for complex molecules in fluid phases: A centroid reference for predicting phase

equilibria,” Journal of Chemical Physics, 2020, 153(21), 214504:1-9.

DOI: https://doi.org/10.1063/5.0025844. Copyright 2020 AIP Publishing.

4.1 Introduction

Absolute free energy calculations require a reference system whose free energy is

known analytically or could be computed via simulation(s). There are many analytically

tractable reference systems for computing absolute free energies of molecules in the gas

phase: ideal gas atoms, rigid molecules, harmonic approximations, etc.[1–4] Generally, as

the reference system becomes simpler, the transformation from the reference model to

the detailed molecular system becomes more difficult. For example, the ideal gas atom

reference system is trivial, but it has fewer degrees of freedom than a gas of molecules.

One could add one gas phase atom per atom in the molecular system, but the atoms and
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the molecules will still have different numbers of vibrational, rotational, and translational

degrees of freedom. These differences would lead to poor phase space overlap between

the two systems,[5] and therefore to a difficult free energy calculation. The harmonic

approximation works very well for small molecules with stiff vibrations, but not for large

molecules with floppy structures and multiple conformational states.[6]

We propose a simple and convenient reference that permits accurate numerical abso-

lute partition functions. In the reference entity, all atoms which make up the molecule

are attached to their collective center of mass via springs as shown in Figure 4.1. We

call this system the “centroid” (represented by the symbol *) after work on quantum

nuclear partition functions.[7–10] Tethering all atoms to the center of mass makes them

a “single molecular entity” with exactly the same number of vibrations, rotations and

translational degrees of freedom as the real molecule.

:  spring

: atom

: Center of Mass (COM)

Figure 4.1: The Centroid

To compute the absolute free energy of an isolated molecule, we first compute the

free energy of a centroid made up of the same atoms which constitute the molecule.
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4.2 Computing the Free Energy of the Reference

Centroid System

The partition function of an N atom centroid system is

QN =
1∏N

i=1 Λ3
i

∫ N∏
i=1

drie
−β

2

∑N
i=1 ki||ri−r

(N)
COM ||

2

=
1∏N

i=1 Λ3
i

∫ N∏
i=1

drie
−β

2
UN (ri;r

(N)
COM )

=
ZN∏N
i=1 Λ3

i

(4.1)

where, ki is the spring constant between the atom i and the center of mass, ri and r
(N)
COM ,

are the coordinates of atom i and the center of mass of the N atom system, respectively

and Λi is the thermal de Broglie wavelength of atom i.

To compute QN and ZN , we start with the analytically tractable centroid partition

function for one (or two) atoms. We then recursively build larger centroids and their

partition functions by computing the ratios Qn/Qn−1.

QN = Q1

N∏
n=2

Qn

Qn−1

(4.2)

Our task is to compute the ratio Qn/Qn−1. The ratios are easily computed,

Qn

Qn−1

=
1

Λ3
n

Zn
Zn−1

=
1

Λ3
n

Zn
Zo
n

Zo
n

Zn−1

(4.3)
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where:

Zo
n =

∫ n∏
i=1

drie
−β

2

∑n
i=1 ki||ri−r

(n−1)
COM ||

2

=

∫ n∏
i=1

drie
−β

2
Uon(ri;r

(n−1)
COM )

(4.4)

Zo
n is the configurational partition function of a n atom system (green+yellow) where all

atoms are tethered to the COM of the n− 1 atom system (yellow).

Figure 4.2: The n atom intermediate system used in computing Qn/Qn−1 whose
partition function is given by Zon; here n = 4

We compute the ratio Zn/Z
o
n using thermodynamic perturbation i.e., (see S.I. for

details)

Zn
Zo
n

=
〈
e−β∆Un

〉
Uon

(4.5)

where, ∆Un = Un − U o
n and,

Zo
n

Zn−1

=

(
2π

βkn

) 3
2

(4.6)
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ensemble 𝑈𝑛
𝑜 ensemble 𝑈𝑛

Figure 4.3: The thermodynamic perturbation from Zon to Zn; here n = 4

Therefore, using equations 4.5 and 4.6 in equation 4.3, we get:

Qn

Qn−1

=
1

Λ3
n

Zn
Zn−1

=
1

Λ3
n

〈
e−β∆Un

〉
U0
n

(
2π

βkn

) 3
2

(4.7)

Adding particles recursively gives the partition function of the centroid, and hence the

free energy

βa∗ = − ln (QN)

= − ln

[(
vG

Λ3
1

) N∏
i=2

1

Λ3
i

〈
e−β∆Ui

〉
Uoi

(
2π

βki

)3/2
]

= − ln

(
vG

Λ3
1

)
+ βa∗,intra(T )

(4.8)

4.3 Testing the Reference Centroid System

For a simple test of the centroid system we compute the free energy of a diatomic

molecule using the centroid (see Figure 4.4) and compare it to the analytical solution:

βamolecule = − ln

(
V

2Λ(T )6

[
2

(
π

βkbond

)3/2

+ 4r2
o

(
π3

βkbond

)1/2
])

(4.9)

where, the potential energy of the bond = kbond(r − ro)
2, ro is the equilibrium bond

distance and kbond is the force constant. The diatomic molecule is: i) enclosed in a 27,000
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Å3 volume, ii) assumed to have distinguishable atoms each having a thermal de Broglie

wavelength (Λ) of 0.292 Å at 300 K, and iii) constructed of a spring having a force

constant (kbond) and bond length (ro) equal to 786 kBT/Å
2 and 1.4 Å, respectively.

Further, we compute the free energy of the molecule starting with two centroids

having different sets of springs, 1000 kBT/Å
2 and 2000 kBT/Å

2. This is because for

the centroid to qualify as a reference system, the free energy of the gas phase molecule

computed using the centroid as a reference needs to be independent of the strengths of

the springs used in the centroid. This is analogous to the free energy calculation of a

solid via the Einstein crystal approach. The spring constants used in the Einstein crystal

do not affect the final free energy of the solid. The free energies computed via the two

centroids were −18.03±0.02 kBT and −18.02±0.03 kBT which are in excellent agreement

with the analytical solution of −18.037 kBT (see Table 4.1).

kbondksp ksp

2 atom centroid Diatomic molecule

β𝑎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑 𝑘𝑠𝑝 β∆𝑎𝑐𝑒𝑛𝑡𝑟𝑜𝑖𝑑→𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑘𝑠𝑝, 𝑘𝑏𝑜𝑛𝑑 β𝑎𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 𝑘𝑏𝑜𝑛𝑑+ =

Figure 4.4: Transforming the 2-atom centroid to a diatomic molecule

Table 4.1: Absolute Helmholtz free energy of the diatomic molecule

Centroid ksp(kT/Å
2) βa∗ β∆a∗→molecule βamolecule βamoleculeanalytical

1 1000 -11.02 ± 0.01 -7.01 ± 0.02 -18.03 ± 0.02
-18.037

2 2000 -9.99 ± 0.01 -8.03 ± 0.03 -18.02 ± 0.03
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4.4 Transforming the Centroid into the Molecule

Next, we need to compute the free energy to transform the centroid into an actual

molecule. The transformation is done in stages, numbered with integers i from 1 to

5 as shown in Figure 4.5. The first stage of transformation, 1, involves going from the

centroid system to the bonded atoms. The next two stages, 2 and 3, involve turning on the

angles and dihedrals, respectively. The last two stages, 4 and 5, comprise turning on the

LJ interactions and coulombic interactions, i.e the intra-molecular pairwise interactions,

respectively. The transformation free energies are computed using equations

∆ai(T ) =

∫ λ=1

λ=0

〈
dui
dλ

〉
λ

dλ (4.10a)

where:

u1(T ;λ) = (1− λ)u(1−)(T ) + λu(1+)(T ) (4.10b)

and,

ui≥2(T ;λ) = u(i−)(T ) + λu(i+)(T ) (4.10c)

where λ is the coupling parameter, u(i+) and u(i−) are potential energies of states forward

and backward comprising transformation i, respectively. Note, in equation 4.10b we are

switching between potential energy terms whereas, in equation 4.10c we are adding a

potential energy term during each transformation i.

4 5 21 3

Figure 4.5: Transformation of a centroid to a molecule
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Thus, the free energy of the molecule is equal to the sum of the free energy of the

reference centroid system and the free energy change to go from the centroid system to

the real molecule, i.e.,

µG(T, P ) = a∗(T, vG) + ∆a∗→G(T ) + PvG (4.11)
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Chapter 5

Chemical Potential in the Solution

Phase

Reproduced in part with permission from:

Vikram Khanna, Jacob I. Monroe, Michael F. Doherty and Baron Peters, “Performing

solvation free energy calculations in LAMMPS using the decoupling approach,” Journal

of Computer Aided Molecular Design, 2020, 34, 641-646.

DOI: https://doi.org/10.1007/s10822-020-00303-3. Copyright 2020 Springer Publishing.

Yongsheng Zhao, ..., Vikram Khanna and Michael F. Doherty, “First principles based

solvent-modified bond energies for crystal engineering (place holder title)”, in preparation.

5.1 Introduction

Solvation free energy is the free energy change associated with transferring a solute

molecule from an ideal gas phase to a solution phase at a given temperature, pressure, and

solute concentration in solution. Solvation free energy computations play an important

role in computing solubilities,[1–8] partition coefficients,[9–11] activity coefficients,[12] and
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Henry’s law constants.[13] Established free energy perturbation (FEP)[14] and thermody-

namic integration (TI)[15] methods for computing the solvation free energy fully account

for solute-solvent interactions in all solute and solvent arrangements via different al-

chemical pathways. One approach, called decoupling, modulates only the interactions

between the solute and its surrounding, retaining internal interactions. Several molecular

dynamics (MD) codes (GROMACS,[16] AMBER,[17] etc.) include tools to implement the

decoupling approach but a key step of charge scaling without altering the intramolecular

coulombic interactions cannot be implemented in LAMMPS.[18] This chapter demon-

strates a procedure to implement the decoupling approach in LAMMPS without altering

the source code (an example of altering the source code can be found in the work of Paluch

et al.[19] where they modify the code of the MD simulation package MDynamix[20, 21]).

Beyond LAMMPS, our procedure can be implemented with any MD code with equivalent

functions as described in this chapter.

5.2 Thermodynamic Cycle

In order to perform a free energy calculation we need to define the end states. For

solvation free energy calculations one end state (as shown in Figure 5.1) is the isolated

molecule (A) in the gas phase along with the solution phase (B) in the background, i.e.,

state (1). The other end state is the solvated molecule in the solution (B) phase, i.e.,

state (6). In state (1), the atoms of the isolated molecule interact only with each other.

Since the molecule being solvated is isolated from the surrounding, we refer to this state

as the decoupled state, because the atoms are not interacting with (decoupled from)

the surrounding environment. In state (6), the atoms of the molecule interact with all

the atoms present in the system, including the solvent and other dissolved solutes. We

refer to this state as the coupled state. The thermodynamic cycle shown in Figure 5.1
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depicts the alternate paths between the end states for solvating a molecule.[22] We can con-

struct numerous alternate paths for computing solvation free energies, the two common

implemented paths are: i) The annihilation route, (1)→(2)→(3)→(4)→(5)→(6) and

ii) The decoupling route, (1)→(6) with an intermediate state (6’) as shown in Figure

5.2. The annihilation route involves annihilation of the solute’s pairwise (inter + intra)

interactions in the gas and solution phases. The thermodynamic path (1)→(2)→(3) is

the gas phase annihilation path, where the coulombic interactions are turned off from

(1)→(2) followed by turning off of the Lennard-Jones (LJ) interactions from (2)→(3),

in the isolated gas phase. The thermodynamic path (6)→(5)→(4) is the solution phase

annihilation path, where the coulombic interactions are turned off from (6)→(5) followed

by turning off of the LJ interactions from (5)→(4), in the solution phase. The decoupling

route involves decoupling the solute from its surrounding environment by turning off the

solute-solution pairwise interactions.

In order to compute the free energy difference between states (1) and (6), we need

to sum the free energy differences between successive states along the chosen route. The

annihilation route can be implemented in LAMMPS but so far the decoupling route

cannot as scaling the charges on the solute to decouple it from the solution does not

preserve its intramolecular interactions. However, we have developed a methodology

using which the decoupling route can be implemented in LAMMPS. In order to compute

the free energy change along path (6)→(1) we need to compute the free energy change

of turning off the solute-solution (A-B) interactions leaving the intramolecular solute

interactions turned on.
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Figure 5.1: The Thermodynamic Solvation Energy Cycle,[22] white box: isolated gas
phase; blue box: water; colored atoms: LJ=ON, coul=ON, grey atoms: LJ=ON,
COUL=OFF, and white atoms: LJ=OFF, coul=OFF. The interactions of the solute
under discussion are inter+intra for solution phase and intra only for the isolated gas
phase. Note: in state (1), (2) and (3) the solution phase (into which the isolated
molecule is being solvated) is present in the background (as explicitly shown in Figure
5.2) to complete the reactant side of the physical reaction of solvation. For clarity, we
do not show the solution phase on the left side of the figure
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5.3 Setting up the Decoupling Route

The free energy change along the path (1)→(6’)→(6) is determined by computing

the free energy change of turning on the LJ interactions between the solute (A) and the

solution (B), followed by the free energy change of turning on the coulombic interactions

between them. We use thermodynamic integration (TI)[15] to compute these free energy

changes, where

∆G(i)→(j) =

∫ λ=1

λ=0

〈
dU

dλ

〉
λ

dλ (5.1)

and U(λ) is a Hamiltonian that continuously changes from that of system (i) to system

(j ) as λ goes from 0 to 1. The decoupling route is shown in Figure 5.2. Here we are

performing a hydration free energy calculation as the molecule is being solvated in pure

water. Throughout states (1), (6’) and (6) the solute’s intramolecular LJ and coulombic

interactions are on. State (1) comprises the isolated gas phase molecule and the water

box. In state (6’) only the solute-water (intermolecular) LJ interactions are on, and in

state (6) the solute-water LJ and coulombic interactions are on. We use Gauss-Legendre

quadrature to select intermediate λ′s from (1) to (6’) and from (6’) to (6). The free

energy changes computed along these paths, ∆GLJ
solv and ∆Gcoul

solv , respectively, are then

added to give the solvation free energy (∆Gsolv).

To compute ∆GLJ
solv, the LJ interactions are turned on via the soft-core potential.[23]

A coupling parameter (λLJ) is varied between 0 and 1 to march from state (1)→(6’),

where λLJ = 0 means there are no LJ interactions between A and B, and λLJ = 1 means

the LJ interactions are completely turned on. Likewise, for the electrostatics, a coupling

parameter (λcoul) is varied between 0 and 1 to compute ∆Gcoul
solv , where

∆Gi
solv =

∫ λi=1

λi=0

〈
dU

dλ

〉
λi

dλi (5.2)
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where, i represents LJ or coul.

1

6’ 6

+

Figure 5.2: The decoupling thermodynamic path. Grey shaded area: LJA-B=ON,
COULA-B=OFF; colored atoms: intramolcular LJ and coulombic interactions=ON

5.3.1 Staging the Lennard Jones Interactions

Turning on the LJ interactions between A and B, i.e., coupling them, is straightfor-

ward in LAMMPS. The soft-core potential used in LAMMPS is given by:

ULJ(rij;λij) = λ2
ij4ε


1[

(1−λij)2
2

+
(
rij
σij

)6
]2 −

1

(1−λij)2
2

+
(
rij
σij

)6

 (5.3)

In LAMMPS we can assign a λLJ value to each pairwise interaction between the atom

types. Therefore, we set

λij = λLJ ∀ i ∈ A, j ∈ B

= 1 ∀ i = j ∈ A
(5.4)

This enables us to scale the A-B LJ interactions without altering the A-A LJ interactions.

However, one important point to note while staging the LJ interactions is that we also

need to keep the solute’s intramolecular coulombic interactions turned on. We achieve

80



Chemical Potential in the Solution Phase Chapter 5

this in our framework by setting the solute’s charge scaling parameter (described in

the following subsection), λq, equal to 10-9. This is because in the overlay potential (also

described in the following subsection), described by equation 5.7, we cannot insert integer

zero as the value for λq. Hence, we set it to 10-9 (which is as an approximate to zero).

5.3.2 Staging the Coulombic Interactions

For turning on the coulombic interactions between A and B, we need to scale the

charges on A in order to correctly account for the long range electrostatic interactions

via the particle mesh Ewald sum. However, in doing so we scale the intramolecular

coulombic interactions of A as well. This is not acceptable for the decoupling approach

as we want the intramolecular interactions of A to be “unaltered”. Thus, what we want

is

U intra
coul (rij) =

∑
i<j

k
qiqj
rij

; ∀ i, j ∈ A (5.5)

where k = 1/(4πε), ε being the permittivity of free space. However, since we scale

qi → λqqi ∀ i ∈ A, the intramolecular (A-A) electrostatic interactions become,

U intra,scaled
coul (rij;λq) =

∑
i<j

k
(λqqi) (λqqj)

rij

=
∑
i<j

λ2
qk
qiqj
rij

(5.6)
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The scaling of charges on the solute thus reduces the intramolecular interaction from

that of an ideal gas. To recover the correct intramolecular Coulomb energy, we overlay,

U overlay
coul (rij;λq) = U intra

coul (rij)− U intra,scaled
coul (rij;λq)

=
∑
i<j

(1− λ2
q)

{
k
qiqj
rij

}

=

(
1− λ2

q

λ2
q

)
U intra,scaled
coul (rij;λq)

(5.7)

over the U intra,scaled
coul (rij, λq) interactions, to recover U intra

coul (rij). This overlay of potential

is implemented in LAMMPS by using the hybrid overlay command and overlaying a

coul/cut/soft potential. This potential has the following functional form (using the scaled

charges)

Ucoul/cut/soft(rij;λcoul) =
∑
i<j

λcoulk
(λqqi) (λqqj)

rij
(5.8)

where λcoul is the user input parameter which we input as (1 − λq)
2/λ2

q (see Equation

5.7). This exact overlay correction is the main contribution in this work.

5.4 Testing the Computational Strategy

In order to test the procedure laid out for computing ∆Gcoul
solv , we compute it for two

compounds: i) ethanol and ii) biphenyl using LAMMPS and test the results against the

results obtained from GROMACS which has a built-in function for performing solvation

free energies using the decoupling approach. We compare 〈dU/dλ〉λ at each λ state

outputted by LAMMPS and GROMACS, as well as the total coulombic free energy

change to test our approach.
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5.4.1 Simulation Details: LAMMPS

We perform hydration free energy calculations using the procedure laid out in the

above sections. Ethanol and biphenyl described by the General Amber Force Field

(GAFF, version 1.7)[24] and AM1-BCC charges[25, 26] were solvated in 1288 TIP3P wa-

ter molecules.[27] The Lorentz-Berthelot mixing rules[28–30] were used for computing the

interatomic pair coefficients. The initial configurations were taken from the FreeSolv

database.[31] We used a time step of 1.0 fs. Bonds with hydrogen were constrained using

SHAKE.[32, 33] Nonbonded interactions were cutoff at 1 nm, with long-range electrostatics

handled by LAMMPS’ Particle-Particle-Particle-Mesh (PPPM) summation.[34, 35] Long-

range dispersion corrections to energy and pressure were applied. The NPT ensemble

was simulated using Nose-Hoover thermostat and barostat[36] at T = 298.15 K and P =

1.01325 bar. All systems were equilibrated for 3 ns followed by 5 ns production runs. A 15

point Gauss-Legendre quadrature method[37] was used to evaluate the integral in equation

5.2 for computing the coulombic solvation free energy. For computing the solvation free

energy due to the LJ interactions we used a 10, 15, and 15 point Gauss-Legendre quadra-

ture for 0 < λLJ < 0.2, 0.2 < λLJ < 0.4, and 0.4 < λLJ < 1.0, respectively, amounting to

a total of 40 stages. Data every 1 ps was used to compute the thermodynamic averages.

5.4.2 Simulation Details: GROMACS

For the GROMACS simulations, we follow procedures as identical as possible to those

described in the FreeSolv database,[31] only modifying run input files taken from the

FreeSolv repository[38] minimally in order to ensure compatibility with the GPU-enabled

GROMACS version 2016.1.[39] Briefly, a neighbor list was updated every 10 steps with a

cutoff for its construction of 1.2 nm. Nonbonded interactions were cutoff at 1.0 nm, with

long-range electrostatics handled by particle mesh Ewald techniques[40] and a switching
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function applied for Lennard-Jones interactions between 0.9 and 1.0 nm. Long-range

dispersion corrections to energy and pressure were applied, with all bonds involving hy-

drogens constrained via the LINCS algorithm[41] and water kept rigid via SETTLE.[42]

At each of the λ states described in other sections, we performed 2500 steepest descent

steps to minimize fully solvated structure and topology files downloaded from the Free-

Solv database.[31] After minimization, a Langevin integrator[43] was used throughout to

propagate dynamics with a 1 fs time step. We first equilibrated temperature at constant

density for 25 ps, then simulated in the NPT ensemble for 25 ps to equilibrate density

with both a tightly coupled Berendsen thermostat and isotropic barostat,[44] and finally

performed a 3.0 ns run in the NPT ensemble with a Langevin thermostat (stochastic

integrator)[43] and isotropic Parinello-Rahman barostat,[45, 46] which were also used for

production. Production runs for 5.0 ns were performed at a constant temperature of

298.15 K and pressure of 1.01325 bar, with derivatives with respect to λ and potential

energies at all states outputted every 1 ps to be averaged for thermodynamic integration

(TI).

5.5 Results and Discussion

We test our approach to compute the solvation free energies for turning on the coulom-

bic interactions between the solute and solution, ∆Gcoul
solv , in LAMMPS, by comparing our

results against GROMACS’ results (which uses intermol functionality to correctly ac-

count for the intramolecular interactions). The results are shown in Table 5.1 which are

in good agreement. The error bars on the values represent a standard 68% confidence

interval (C.I.). This means approximately 1 in every 3 simulations will give results out-

side the specified interval. Further, Figure 5.3 compares the integrand for turning on the

Coulomb interactions, 〈dU/dλq〉λq as a function of λq. As can be seen, the integrands
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are in good agreement too. Thus, we have demonstrated and tested our procedure for

performing solvation free energy calculations in LAMMPS using the decoupling approach

via counterbalancing the scaling of charges on the solute by overlaying a compensating

potential to keep the intramolecular interactions unchanged to that of an ideal gas.

Table 5.1: RESULTS FOR ∆Gcoulsolv/kBT

Compound LAMMPS GROMACS DIFFERENCE

ethanol -8.73 ± 0.02 -8.76 ± 0.02 0.03 ± 0.03

biphenyl -8.30 ± 0.02 -8.29 ± 0.02 -0.01 ± 0.03

We report the total (dimensionless) solvation free energies (∆Gsolv/kBT ) in Table

5.2 for completeness. Our values are consistent across the two tests, and agree with the

values computed by Mobley et al.[47] considering a 95% C.I. and that Mobley et al. used

15 and 5 stages, whereas we used 40 and 15 stages for turning on the LJ and coulombic

interactions, respectively. Note: We use GAFF version 1.7 instead of 1.8 in order to

make a comparison to the values reported in [31].

Table 5.2: RESULTS FOR ∆Gsolv/kBT

Compound LAMMPS GROMACS FreeSolv[31]

ethanol -5.76 ± 0.03 -5.79 ± 0.03 -5.72 ± 0.03

biphenyl -5.22 ± 0.04 -5.27 ± 0.04 -5.30 ± 0.05
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Figure 5.3: 〈dU/dλq〉λq /kBT as a function of λq for a) ethanol, b) biphenyl
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5.6 Solvent-Modified Bond Energies—A new appli-

cation for solvation free energy calcualtions

Solvent selection for solution grown crystals is perhaps one of the most critical deci-

sions while designing a crystallization process as it impacts the solubilty and morphol-

ogy of the crystal. The morphology of crystal is determined by the interaction ener-

getics—both i) within the growing crystal and ii) between the crystal and the growth

medium. The shape of a crystal grown from solution significantly differs from the one

grown from vapor as the presence of a solvent alters the relevant surface interactions due

to the solvation of crystal surfaces. Therefore, the predictions of these crystal-solvent

interactions, i.e., modification of the crystal surface interactions due to the presence of a

solvent, is crucial to accurate morphology predictions.[48]

The current interfacial energy models employed in ADDICT make use of emperical

data to predict solvent modified bond energies. This approach while fast isn’t first

principle based and relies on the need for performing experiments for every new molecule

synthesized. Also, it is not poised to be extended to solvent mixtures.

We have discovered an application of solvation free energy calculations in computing

solvent-modified bond energies which overcomes the drawbacks of the current emperical

interfacial energy models.

So what is a solvent-modified bond energy? As shown in Figure 5.4 bond en-

ergy is the amount of energy required to break a bond and take the consituent units

(atoms/molecules) to infinity—in vacuum. A solvent modified bond energy is the amount

of energy required to break a bond and take the constituent units to infinity—in the sol-

vent medium. These solvent-modified bond energies will replace the emperical solvent

models currently being employed in the mechanistic modeling of crystal growth.
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Figure 5.4: The thermodynamic framework to compute solvent-modified bond energies.

To compute the solvent-modified bond energy, we start by desolvating the bonded-

pair (−∆Gbonded−pair
solv ). This gives us a bonded-pair in vacuum. Now, we break the

bond in vacuum (∆Gbond,vacuum), resulting in two atoms/molecules in vacuum. Next,

each of these atoms/molecules is solvated yielding two atoms/molecules in the solvent

(2×∆Gsolv). Thus, in this therodynamic cycle we start from a solvated bonded-pair and

end with two solvated molecules—breaking the bond in the solvent medium.

∆Gbond,solvent = −∆Gbonded−pair
solv + ∆Gbond,vacuum + 2∆Gsolv (5.9)

Approximating, ∆(PV )bond,vacuum ≈ ∆(PV )bond,solvent and ∆(S)bond,vacuum ≈ ∆(S)bond,solvent,

we get

∆Ubond,solvent = −∆Gbonded−pair
solv + ∆Ubond,vacuum + 2∆Gsolv (5.10)

Therefore, we can compute the solvent-modified bond energy using the following three
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computations:

• ∆Gbonded−pair
solv

• ∆Ubond,vacuum

• ∆Gsolv

5.7 Conclusions

We have introduced and tested a procedure to carry out solvation free energy calcula-

tions in LAMMPS using the decoupling approach. This procedure can be implemented in

any MD code which allows the user to define ‘overlay’ potentials. We have only compared

solvation free energies between LAMMPS and GROMACS for two molecules to check the

implementation because the overlay correction is, in principle, exact. Also, while we have

chosen to implement thermodynamic integration here for simplicity, the overlay correction

should work equally well with other free energy calculations such as Bennett Acceptance

Ratio (BAR)[49] and Multistate Bennett Acceptance Ratio (MBAR).[50] We further layout

a new application of solvation free energy calcuations to compute solvent-modified bond

energies which will replace the emperical solvent models currently employed in crystal

modeling.
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Chapter 6

Predicting Solid-Fluid Equilibrium

Reproduced in part with permission from:

Vikram Khanna, Michael F. Doherty and Baron Peters, “Absolute chemical poten-

tials for complex molecules in fluid phases: A centroid reference for predicting phase

equilibria,” Journal of Chemical Physics, 2020, 153(21), 214504:1-9.

DOI: https://doi.org/10.1063/5.0025844. Copyright 2020 AIP Publishing.

Vikram Khanna, Michael F. Doherty and Baron Peters, “Predicting driving forces

for crystallization using the absolute chemical potential route,” In preparation.

6.1 Introduction

This chapter leverages the tools we have delevoped to compute a solute’s chemical

potential in the solid, gas, and solution phases to predict solid-fluid equilibria and the

driving forces for crystallization. We make predictions for two model compounds, naph-

thalene (representative of a rigid molecule) and succinic acid (representative of a floppy

molecule)—thereby spanning the two terminuses on the rigidity scale. Further, for suc-
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cinic acid, we investigate in addition to its known stable polymporh (the β polymorph),

the recently discovered γ polymorph, which has spare experimental data. The γ poly-

morph predictions demonstrate the future potential of the digital design approach where

computational studies can predict thermodynamic properties for difficult to crystallize

polymorphs/compounds subject to the accuracy of the employed force fields.

For each model compound, we begin by predicting the solid-vapor equilibrium as this

prediction employs only a single force field—the one describing the solute—allowing for a

standalone quality (accuracy) assessment of the solute’s force field. Next, we predict the

solid-solution equilibrium which involves the use of an additional solvent force field. The

accuracy of this prediction relies upon the accuracy of the following three interactions:

i) solute-solute (the accuracy of which is already assessed via the solid-vapor equilibrium

predictions), ii) solute-solvent, and iii) solvent-solvent.

Therefore, if the accuray of the solid-vapor predictions is good, the accuracy of

the solid-solution predictions can be reduced to the accuracy of the solute-solvent, and

solvent-solvent interactions. In the following sections, we make the solid-fluid equilibria

predictions and where appropriate make use of the above framework to comment on the

accuracy of the predictions.

6.2 Predicting Solid-Vapor Equilibrium

At solid-vapor equilibrium we have,

µC(T, P sat) = µG(T, P sat). (6.1a)

As shown in Figure 6.1, we start with computing the reference system’s free energy

in each of the phases followed by computing the free energy change to transform to the
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real systems.

Δμ𝐸𝐶→𝐶

μ𝐶

μ𝐸𝐶 μ∗

Δμ∗→𝐺

μ𝐺=
@ 𝑃𝑠𝑎𝑡

Figure 6.1: Computing the absolute chemical potentials of each phase. The left and
right starting points are absolute chemical potentials of the Einstein crystal and Cen-
troid, respectively

For solids with low sublimation vapor pressure (∼ mPa), we can assume that the

ideal gas law is valid, thus, we insert kBT in place for P satvG in equation 4.11. Also,

µC(T, P sat) ≈ aC(T, vC) (see Appendix H.1 for details). This enables us to compute the

Helmholtz free energy of the solid equilibrated at 1 atm and use that free energy value

in equation 6.1a. Thus, we get

aC(T, vC) = a∗(T, vG) + ∆a∗→G(T ) + kBT + ∆asym

= −kBT ln

(
vG

Λ3
1

)
+ a∗,intra(T ) + ∆a∗→G(T ) + kBT + ∆asym.

(6.1b)

From independent sets of simulations we can compute aC(T, vC), ∆a∗→G(T ) and

a∗,intra(T ). Inserting them in equation 6.1b and solving for vG we get the molar volume

of an ideal gas molecule. Finally, we get the vapor pressure by using the ideal gas law,
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i.e., P sat = kBT/v
G. Note: ∆asym accounts for the degeneracy in sampling the gas phase

for a symmetric molecule.[1, 2] For naphthalene and succinic acid, β∆asym = ln(4), and

β∆asym = ln(2), respectively.

In this work, we have not included nuclear quantum effects (NQE). Accordingly, our

results are independent of Planck’s constant, but quantized vibrations are potentially im-

portant in the free energy. The preferred calculation would include quantized vibrational

energy levels but including discrete energy levels would be difficult especially for the cen-

troid calculation. It should be straightforward to include NQE via centroid calculations

with path integral molecular dynamics.[3, 4] One of the most important applications of

free energy calculations is in tuning force fields (FFs). FFs can be tuned via two differ-

ent strategies:[5, 6] i) so that a classical MD simulation directly reproduces experimental

properties,[7–10] and ii) so that the Born–Oppenheimer potential energy surface closely

matches high level ab initio calculations. The purely classical simulations in our study

are appropriate for FFs in category (i), but for FFs in category (ii) the methods in this

work can be combined with path integral simulations to capture NQE.[11–13]

6.3 Simulation Details

We model naphthalene using the OPLS-AA force field[14] and succinic acid with the

General Amber Force Field (version 1.8)[15] and AM1-BCC charges[16, 17] (see Figure 6.2

for a ball and stick model of these molecules). We compute the vapor pressure of naph-

thalene at 4 different temepratures—298 K, 308.17 K, 318.17 K, 333.34 K, and that of

succinic acid at 6 different temperatures, namely 300K, 305K, 310K, 315K, 330K, and

350K. All molecular dynamics (MD) simulations for the solid and gas phases were per-

formed using the Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)

package.[18] All MD simulations for the solution phases were performed using OpenMM.[19]
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(a)

(b)

Figure 6.2: (a) Naphthalene molecule, (b) Succinic acid molecule

6.3.1 Solid Phase Simulations

For naphthalene, we begin with a naphthalene crystal structure from the Cambridge

Crystal Structure Database (NAPHTA52).[20] It has a monoclinic space group P21/a

with two molecules per unit cell and the following lattice parameters: a = 8.2128 Å;

b = 5.9727 Å; c = 8.6745 Å; α = 90◦; β = 123.388◦; γ = 90◦. A 5 × 6 × 4 supercell is

constructed consisting of 240 naphthalene molecules.

For β-succinic acid, we begin with the 300 K crystal structure from the Cambridge

Crystal Structure Database (SUCACB02).[21] It has a monoclinic space group P21/c

with two molecules per unit cell and the following lattice parameters: a = 5.519 Å;
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b = 8.862 Å; c = 5.101 Å; α = 90◦; β = 91.59◦; γ = 90◦. A 5 × 5 × 5 supercell is

constructed consisting of 250 succinic acid molecules.

For γ-succinic acid, we begin with its recently discovered experimental crystal struc-

ture (SUCACB19).[22] It has a monoclinic space group C2/c with four molecules per unit

cell and the following lattice parameters: a = 5.7015 Å; b = 8.4154 Å; c = 10.3538 Å;

α = 90◦; β = 90.374◦; γ = 90◦. A 6 × 4 × 3 supercell is constructed consisting of 288

succinic acid molecules.

The simulation box size and atomic positions in the unit cell required for the NVT

simulations are determined from an NPT simulation. All systems were equilibrated at

their respective temperature and a pressure of 1 atm by simulating an NPT ensemble.

A 10 ns equilibration run followed by a 10 ns production run was used to compute the

average lattice parameters and atomic positions in the unit cell. The Lorentz-Berthelot

mixing rules[23–25] were used for computing the interatomic pair coefficients. We used

a time step of 0.5-1.0 fs. Nonbonded interactions were cutoff at 1 nm with standard

tail corrections applied (see Appendix H.4 for details), with long range electrostatics

handled by LAMMPS’ Particle-Particle-Particle-Mesh (PPPM) summation.[26] The NPT

ensemble was simulated using a Langevin thermostat and Nose-Hoover barostat [27] with

P = 1 atm. A 25 point Gauss Legendre quadrature method [28] was used to evaluate the

integral in Equation 3.13. The NVT simulations were run for a total of 8 ns, of which

the initial 3 ns were used for equilibration. Data every 1 ps was used to compute the

thermodynamic averages.

The Einstein crystal method calculations have to be carried out at fixed center of

mass for numerical reasons.[29, 30] Therefore, to constrain the center of mass we setup

the simulation to have zero external force due to springs. To achieve this, we[31] i)

scale the spring constants with atomic masses so that each oscillator has equal angular

frequency,[32] ii) initialize the system with zero center of mass velocity, and, iii) initialize
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each atom at its lattice position. We first set the spring constant for hydrogen atoms by

matching the mean squared displacement and then scale it with atomic masses to get the

spring constants for carbon such that ksp,i/mi = constant.[32, 33] The spring constants for

the reference Einstein crystal in simulations at all temperatures are chosen to reproduce

the mean square displacement of hydrogen atoms in the real crystal at 298K - 300K. For

naphthalene, the spring constants for hydrogen and carbon were set to 8.09 kBT/Å
2, and

96.44 kBT/Å
2, respectively. For succinic acid, the spring constants for hydrogen, carbon,

and oxygen were set to 22 kBT/Å
2, 262.12 kBT/Å

2, and 349.20 kBT/Å
2, respectively.

6.3.2 Gas Phase Simulations

For naphthalene, the centroid was constructed by tethering the hydrogens and car-

bons to the center of mass by springs having force constants 16.786 kBT/Å
2 and 200

kBT/Å
2, respectively. For succinic acid, the centroid for succinic acid was constructed

by tethering the hydrogens, oxygens, and carbons to the center of mass by springs having

force constants 1.26 kBT/Å
2, 20.0 kBT/Å

2, and 15.01 kBT/Å
2, respectively.

The free energy of the centroid is computed using the procedure laid out in section

4.2. For adding each particle, the ratio Zn/Z
o
n is computed using a custom Monte Carlo

(MC) code. We run 100 million MC steps with a acceptance ratio between 30%-50%.

Data every 1000 MC steps is used to compute thermodynamic averages.

The free energy difference ∆a∗→G was computed in 5 sets of stages (see Tables 6.1

6.2). All simulations were performed in an NVT ensemble with a Langevin thermostat.

The simulation box was (100Å)3. No long-range interactions were used in the gas phase

simulations. The nonbonded cutoff (LJ and coulombic) was 20Å, much larger than the

molecule size in order to include all pairwise interactions. A time step of 0.1-0.5 fs was

used. For succinic acid, Stages 3,4,5 were simulated using Replica Exchange Molecular
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Dynamics to sample the COOH dihedral. Eight replicas at T = 300 K, 305 K, 310 K,

315 K, 330 K, 350 K, 500 K, 600 K were run with swaps attempted every 250-500 fs.

Note, LAMMPS log files dump replica indices at the end of the time step after the swap,

whereas the thermodynamic output is dumped at the end of the time step before the

swap. The remaining simulation details specific to each set of stages are specified in

Tables 6.1 and 6.2.

Table 6.1: Simulation details for computing ∆ai/kBT for naphthalene

β∆ai # of

Gauss points

Equilibration

period (ns)

Production

period (ns)

1 centroid→bonds 95 10 100

2 Angles 30 10 90

3 Dihedrals 30 10 90

4 LJ Soft-core 45 10 90

5 Coulombic 15 10 90

Table 6.2: Simulation details for computing ∆ai/kBT for succinic acid

β∆ai # of

Gauss points

Equilibration

period (ns)

Production

period (ns)

1 centroid→bonds 75 25 75

2 Angles 30 5 195

3 Dihedrals 30 5 195

4 LJ Soft-core 30 1 399

5 Coulombic 95 5 20
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6.4 Results and Discussion

Tables 6.3 and 6.4 show the results of the dimensionless solid phase free energies com-

puted at different temperatures for naphthalene and β-succinic acid, respectively. Tables

6.5 and 6.6 show their dimensionless intra-centroid free energies. Note, the computation

of these free energies requires simulations described in Figure 4.3 to be performed only at

any one temperature. This is because we scale the spring constants of the centroid with

temperature. Tables 6.7 and 6.8 show the results of transformation free energies of the

centroid to a molecule for naphthalene and succinic acid, respectively. Using aC(T, P sim),

∆a∗→G(T ), and a∗,intra(T ) obtained from our simulations we compute the volume (vG)

using equation 6.1b. We then use the ideal gas equation of state to compute the vapor

pressure. Figures 6.3 and 6.4 show the driving forces for crystallization—from the vapor

phase—and the vapor pressures for naphthalene and β-succinic acid, respectively. The

vapor pressures at different temeperatures for the two systems are reported in Tables 6.9

and 6.10.
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Solid Free Energy Results

Table 6.3: Absolute dimensionless Helmholtz free energies of solid naphthalene

T (K) βaEC β∆aδ1 β∆aEC→C β∆aδ2 βaC

298.00 7.217 -0.066 53.485 ± 0.003 -0.022 60.615 ± 0.003

308.17 6.311 -0.066 53.013 ± 0.003 -0.022 59.237 ± 0.003

318.17 5.449 -0.066 52.552 ± 0.003 -0.022 57.913 ± 0.003

333.34 4.192 -0.066 51.844 ± 0.003 -0.022 55.947 ± 0.003

where:[31] ∆aδ1 = aECCOM − aEC ; ∆aδ2 = aC − aCCOM

Table 6.4: Absolute dimensionless Helmholtz free energies of solid β-succinic acid

T (K) βaEC β∆aδ1 β∆aEC→C β∆aδ2 βaC

300 26.482 -0.069 -171.822 ± 0.005 -0.020 -145.429 ± 0.005

305 26.135 -0.069 -169.031 ± 0.005 -0.019 -142.985 ± 0.005

310 25.793 -0.069 -166.325 ± 0.005 -0.020 -140.621 ± 0.005

315 25.457 -0.069 -163.704 ± 0.004 -0.020 -138.336 ± 0.004

330 24.480 -0.069 -156.381 ± 0.003 -0.020 -131.990 ± 0.003

350 23.245 -0.069 -147.639 ± 0.005 -0.020 -124.483 ± 0.005

where:[31] ∆aδ1 = aECCOM − aEC ; ∆aδ2 = aC − aCCOM
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Intra-centroid Free Energies

Table 6.5: Intra-centroid dimensionless Helmholtz free energies for naphthalene

T (K) βa∗,intra

298.00 21.87 ± 0.01

308.17 21.02 ± 0.01

318.17 20.20 ± 0.01

333.34 19.02 ± 0.01

Table 6.6: Intra-centroid dimensionless Helmholtz free energies for succinic acid

T (K) βa∗,intra

300 55.62 ± 0.01

305 55.30 ± 0.01

310 54.98 ± 0.01

315 54.67 ± 0.01

330 53.76 ± 0.01

350 52.61 ± 0.01
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Figure 6.3: The saturation pressure and driving force for crystallization of naphthalene
from vapor at 298 K.

Figure 6.4: The saturation pressure and driving force for crystallization of β-succinic
acid from vapor at 300 K.
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Table 6.9: Vapor pressure of naphthalene at four different temperatures

T (K) P sat (mPa)

298.00 10.7 ± 0.6

308.17 25 ± 1

318.17 58 ± 3

333.34 181 ± 10

Table 6.10: Vapor pressure of β-succinic acid at six different temperatures

T (K) P sat (mPa)

300 0.062 ± 0.002

305 0.144 ± 0.003

310 0.323 ± 0.007

315 0.74 ± 0.02

330 6.7 ± 0.2

350 97 ± 2

Having computed the vapor pressures at various temeprature, we plot the natural log-

arithm of vapor pressure against inverse temperature, i.e., construct a Clausius-Clapeyron

plot from the vapor pressure data for each molecule. As seen in Figures 6.5 and 6.6 the

simulation points align excellently on a straight line with a regression coefficient of 0.99.

The slopes of the Clausius-Clapeyron plots give a sublimation enthalpy (∆Hsub) equal

to 15.8±0.4 kcal/mol and 30.7±0.1 kcal/mol for naphthalene and succinic acid, respec-

tively . Direct calculations of sublimation enthalpy using solid and gas phase potential

energies (see Appendix F for calculation details) give a sublimation enthalpy of 16.9±0.0

and 30.7±0.0 kcal/mol for naphthalene and succinic acid, respectively, which are in good
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agreement with the estimate we get from the Clausius-Clapeyron plots’ slopes. This is a

self consistency check, as the direct route uses the same force fields as employed in the

vapor pressure predictions. The experimental values of sublimation enthalpies (∆Hexpt
sub )

are in agreement with our predictions, too.

We also plot experimental vapor pressure data by Ambrose et al.[34] for naphthalene

and by Bilde et al.,[35] Cappa et al.[36] and Saleh et al.[37, 38] for β-succinic acid. For

β-succinic acid, since the vapor pressures being measured are extremely low (∼ mPa),

their measurement is very difficult. This can be seen from the spread in experimental

data between different research groups and the uncertainty in the respective data points.

Our vapor pressure predictions lie within the spread of the experiments[38] for β-succinic

acid and in close agreement with experiments for naphthalene. Note that the vapor

pressure predictions exponentially magnify small errors in the free energy calculations

(see Equation 6.1b). Approximately, a 0.05% error in absolute free energy estimates

translates to a 10% error in vapor pressure predictions. Thus, we can conclude from

the solid-vapor equilibrium predictions that OPLS and GAFF accurately capture the

solute-solute interactions for naphthalene and β-succinic acid, respectively.
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Figure 6.5: The Clausius-Clapeyron plot of naphthalene’s sublimation vapor pres-
sure and temperature, where P † = 1 Pa, and T † is the corresponding sublimation
temperature ; the secondary axis tick labels are the simulation data points

Figure 6.6: The Clausius-Clapeyron plot of β-succinic acid’s sublimation vapor pres-
sure and temperature, where P † = 1 Pa, and T † is the corresponding sublimation
temperature; the secondary axis tick labels are the simulation data points
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6.5 Predicting Solid-Solution Equilibrium

At solid-solution equilibrium we have

µC(T, P ) = µsolnsolute(T, P, xsat) (6.2a)

μ𝐶

μ𝐸𝐶 μ∗

μ𝐺
μ𝐶 𝑇, 𝑃𝑠𝑎𝑡 = μ𝐺 𝑇, 𝑃𝑠𝑎𝑡

μ𝑠𝑜𝑙𝑢𝑡𝑒
𝑠𝑜𝑙𝑛

Figure 6.7: Computing the absolute chemical potentials of each phase. The left and
right starting points are absolute chemical potentials of the Einstein crystal and Cen-
troid, respectively. For computing the chemical potential in the solution, we need to
perform additional solvation free energy calculations.
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aC(T, vC) = a∗(T, vsoln(xsat)) + ∆a∗→G(T ) + ∆asym + ∆Gsolv(xsat)

= −kBT ln

(
vsoln(xsat)

Λ3
1

)
+ a∗,intra(T ) + ∆a∗→G(T ) + ∆asym + ∆Gsolv(xsat)

(6.2b)

As we can see from Equation 6.2b we just need additional solvation free energy com-

putations at different concentrations to obtain the chemical potential of the solute in

solution. We harness the solvation free energy computation tools that we developed

in chapter 5 to compute the solvation free energy of naphthalene and succinic acid in

aqueous solutions.

6.5.1 Simulation Details

We perform hydration free energy calculations using the decoupling approach as laid

out in chapter 5. Naphthalene as described by the OPLS-AA[14] force field was solvated

in 864 SPC water molecules.[39] Succinic acid as described by the GAFF[15] forcefield was

solvated in 864 SPCE water molecules.[40]

The Lorentz-Berthelot mixing rules[23–25] were used for computing the interatomic

pair coefficients. The initial configurations were generated using packmol.[41] We used

a time step of 0.5 fs. Nonbonded interactions were cutoff at 1 nm, with long-range

electrostatics handled by OpenMM’s Particle Mesh Ewald (PME) summation[42]. Long-

range dispersion corrections to energy and pressure were applied.

For naphthalene, the NPT ensemble was simulated using Langevin thermostat and

a Monte-Carlo barostat at T = 298.0 K and P = 1.01325 bar. All systems were equili-

brated for 4 ns followed by 8 ns production runs. A 15 point Gauss-Legendre quadrature

method[? ] was used to evaluate the integral in equation 5.2 for computing the coulombic
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solvation free energy. For computing the solvation free energy due to the LJ interactions

we used a 45 point Gauss-Legendre quadrature. Data every 2 ps was used to compute

the thermodynamic averages.

For succinic acid, to comupte the coulombic solvation free energy a 5 point Gauss-

Legendre quadrature was employed. Replica exchange molecular dynamics (REMD)

simulations were performed to sample the COOH dihedral (see Appendix J). A total

of 22 replicas spanning temepratures 300K - 470K were used. Since, the temperatures

employed in the REMD simulations were above the boiling point of water at 1 atm, we

approximated the NPT ensemble by simulating a NVT ensemble using the average of the

box volume computed at 300K, 1 atm pressure, and Nsolute = 0, 1 . Each replica was run

for 18 ns. The first 8 ns were discarded as equilibration burn, and remaining 10 ns of

production run data was sampled every 2 ps to compute thermodynamic averages. For

computing the solvation free energy due to the LJ interactions we used a 45 point Gauss-

Legendre quadrature. We discarded parts of the trajectory where the COOH dihedral

flipped to the trans position by chance as we know from the COOH PMF that it prefers

to be in the cis conformation until it is coupled with coulombic interactions with water.

All simulations for the LJ part were run for a total of 8 ns, of which the first 4 ns of

thermodynamic data was discarded as a part of equilibration burn. Data every 2 ps was

sampled to compute thermodynamic averages.

6.5.2 Results and Discussion

Tables 6.11 and 6.12 show the results for the dimensionless solvation free energies

computed at different temperatures for naphthalene and succinic acid, respectively. Next,

using Equation 6.2b, the dimensionless free energy results for the solid, gas and solution

phases (Tables 6.3, 6.7, and 6.11, for naphthalene and Tables 6.4, 6.8, and 6.12, for
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succinic acid) we generate the solubility plots as shown in Figures 6.8 and 6.9. These

plot make use of two approximations for xNAP ≤1e-4 and xSA ≤0.05: i) the volume of

mixing is zero, and ii) ∆Gsolv(x) ≈ constant, i.e., the normalized activity coefficients

(γsolute/γ
∞
solute) is ca. 1. See Appendix G for details on normalized activity coefficients.

The solubility prediction of naphthalene, (3.66 ± 0.2) × 10−6 is in good agreement with

the predictions of Li et al.,[1] (4.74±0.8)×10−6, and the experimental value of 4.4×10−6.

Thus, successfully testing the solubility framework. The predictions for β-succinic acid

are off from the experimental values due to ∆µsolution→solid ∼ 1 kBT . This difference is

less than 1% of the free energies being computed. However, due to exponentiation, the

solubility prediction deviate substantially from experimental measurements. Nonetheless,

as is discussed in the later results, the solubility trend with temperture is captured well

by the employed force fields, i.e. GAFF + SPCE.

Table 6.11: Dimensionless solvation free energies of naphthalene (OPLS) in water (SPC)

T (K) β∆GLJ β∆Gcoul β∆Gsolv

298.00 1.83 ± 0.05 -4.65 ± 0.01 -2.82 ± 0.05

308.17 2.14 ± 0.05 -4.49 ± 0.01 -2.35 ± 0.05

318.17 2.33 ± 0.05 -4.36 ± 0.01 -2.03 ± 0.05

333.34 2.71 ± 0.04 -4.14 ± 0.01 -1.43 ± 0.05
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Table 6.12: Dimensionless solvation free energies of succinic acid (GAFF) in water (SPCE)

T (K) β∆GLJ β∆Gcoul β∆Gsolv

300.00 1.36 ± 0.05 -25.58 ± 0.06 -24.22 ± 0.08

305.00 1.58 ± 0.06 -25.18 ± 0.06 -23.60 ± 0.08

310.00 1.59 ± 0.06 -24.85 ± 0.06 -23.26 ± 0.08

315.00 1.94 ± 0.06 -24.39 ± 0.06 -22.45 ± 0.08

330.00 2.27 ± 0.06 -23.27 ± 0.06 -21.00 ± 0.08

Figure 6.8: The solubility plot for naphthalene in water. This plot shows the driving
forces for crystallization as predicted by the employed force fields, i.e., OPLS + SPC
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Figure 6.9: The solubility plot for (β and γ)-succinic acid in water. This plot shows
the driving forces for crystallization as predicted by the employed force fields, i.e.,
GAFF + SPCE and GAFF + TIP4P-Ew.

We further compute the solubility of our two model compounds at different tem-

peratures and plot the results on van’t Hoff plots (ln(xsat) vs. 1/T ) to visulaize the

solubility trend and compute the enthalpy of dissolution—given by the slope of a van’t

Hoff plot. The solubility predictions lie on a straight line bolstering the results (see Fig-

ures 6.10 and 6.11). The enthalpies of dissolution for naphthalene and β-succinic acid

are 7.8±0.4 kcal/mol, and 8.3±0.7 kcal/mol, respectively—which are in good agreement

with experimental values of 7.1 kcal/mol and 7.6 kcal/mol, respectively.
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Figure 6.10: The van’t Hoff plot for naphthalene (OPLS-AA) in water (SPC).

However, the true power of a prediction can be seen from the results of the γ-

polymorph of succinic acid. We predict a vapor pressure of 0.0142 ± 0.001 mPa (using

GAFF) and a solubility of 0.0263 ± 0.002 (using GAFF and SPCE) for the γ poly-

morph—whose vapor pressure and soulibity has not yet been measured experiementally!

In fact, the γ polymorph has not been synthesized since its first and only appearance as

a concomitant with the stable β form during an attempted purification of a peptide by

cocrystallization.[22] The solid free energy results shown in Figure 6.9 indicate that the

γ and β form are close in stability to one another—at 300 K—with the γ form being

more stable by 0.39 kBT/molecule. The only concern with this prediction is—the GAFF

force field doesn’t accurately predict the crystal structure of the γ form (as shown in Ap-

pendix E). Therefore, the true accuracy of these predictions would be unveiled by future

experiments which successfully synthesize the γ polymorph and measure its solubility.
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Figure 6.11: The van’t Hoff plot for β-succinic acid (GAFF) in water (SPCE).

6.6 Conclusion

We have developed a decoupled route to compute fluid-solid equilibria avoiding the

fluid-to-solid transformation steps. The decoupled approach requires the computation of

absolute chemical potential of the solute in the two phases. For the gas phase, this is

done by introducing a gas phase “centroid” reference system with the same number of

vibrational, rotational and translational degrees of freedom as the real molecule. This

enables us to accurately compute absolute free energies of ‘floppy’ polyatomic molecules.

For the solid phase, the absolute chemical potential is computed by capturing the in-

tramolcular free energy via the Frenkel-Ladd method. For the gas and solid free energy

calculations, we use simple thermodynamic perturbation and thermodynamic integration

methods. We compute sublimation vapor pressures, P sat, in temperature ranges 298K-

333K, and 300K-350K—for naphthalene and succinic acid—to represent the solid-vapor
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equilibrium.

The normal procedure to validate the solid state force field includes computing the

lattice energies and comparing it with experiments.[43, 44] But this test has no entropic,

i.e, free energy contribution. The solid-vapor equilibrium prediction for P sat does encom-

pass the entropic information. Thus, the calculations used in this work can aid efforts to

test and develop force fields. Further, with additional solvation free energy calculations

we leverage the absolute chemical potential route to predict the solubilities—of naphtha-

lene and β-succinic acid in aqueous solutions at various temepratures—and thus compute

driving forces for crystallization from solution, providing a crucial piece of calculation for

a complete and self-consistent in-silico absolute growth rate prediction of organic crys-

tals. Further, this route especially offers advantages when a molecules requires advanced

sampling in the gas phase, and driving forces for crystallization of multiple polymorphs

is desired. The decoupled route requires a single set of gas phase simulations requiring

advanced sampling compared to multiple sets of fluid-to-solid transformation simulations

(requiring advanced sampling) for spanning all polymorphs.
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Chapter 7

Revisting Population Balances: The

Impact of Solid Volume Fraction

Reproduced in part with permission from:

Vikram Khanna, Dennis Robinson Brown and Michael F. Doherty, “Revisting Popu-

lation Balances: The Impact of Solid Volume Fraction”, in preparation.

7.1 Introduction

The continuous mixed suspension mixed product removal (MSMPR) crystallizer is

ubiquitous in the crystallization field. Modeling the MSMPR requires solving the popu-

lation balance equation coupled with the mass balance equation, along with rate expres-

sions for crystal growth, nucleation, and other birth and death mechanisms as appropri-

ate. Over the decades, the models used to describe the MSMPR often have unstated

approximations, especially the solid volume fraction in the mass balance and the regu-

larity boundary condition. In this chapter, we lay out the full model used to describe the

MSMPR and the approximations required to arrive at its widely used form. We quantify
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the approximations using examples from the literature. While there is no inherent need

to make the approximations for numerical solutions of the model, they are essential for

gaining insights via analytical steady-state and dynamic stability analyses.

7.2 The Continuous MSMPR System

Consider a continuous MSMPR crytallizer (as shown in Figure 7.1) which is fed a

clear supersaturated solution of concentration, cin, temperature, Tin at a volumetric flow

rate, qin. The crystallizer is maintained at a temperature, T . For cooling crystallization,

T < Tin. Inside the crystallizer, the dissolved solute crystallizes (nucleation + growth),

and hence, at the outlet of the crystallizer, we have a mixed suspension with a volumetric

flow rate, q, comprising: i) the mother liquor at concentration, c and ii) solids making

up 1− ε volume fraction, where ε = Vliq/V . Note, it is the suspension volume, V , that is

assumed constant in a MSMPR (equivalent to assuming zero volume of mixing between

solvent and solute).
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Figure 7.1: A mixed-suspension mixed-product removal crystallizer

7.2.1 Population Balance

The population balance for a MSMPR crystallizer is given by:

∂n

∂t
=
nin
τ
− n

τ
+QB −QD −

∂(G · n)

∂r
+
∂(δ(r) ·G · n)

∂r
(7.1a)

n(r, t = 0) = nseed(r) (7.1b)

n(r →∞, t) = 0 (7.1c)

where:

• n is the population density of the crystals [#/(m ·m3 of suspension)]
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• nin is the population density of the crystals in the inlet stream [#/(m·m3 of suspension)]

• τ is the residence time [s]

• QB is the birth rate of crystals inside the crystallizer [#/(m ·m3 of suspension ·s)]

• QD is the death rate of crystals inside the crystallizer [#/(m ·m3 of suspension ·s)]

• G is the linear growth rate of crystals [m/s]

Equation 7.1a reduces to

∂n

∂t
= −n

τ
−G∂n

∂r
+G

∂(δ(r) · n)

∂r
+ εBδ(r) (7.2)

when:

• nin = 0, i.e., no crystals are present in the feed

• QB = εB, where B is the nucleation rate having units #/Vliq/s

• QD = 0

• G is independent of the crystal size

Equation 7.2 can be reformulated with the source terms removed and a regularity bound-

ary condition inserted, as shown in Appendix K.1 to:

∂n

∂t
= −n

τ
−G∂n

∂r
(7.3a)

n(r = 0+, t) = ε
B

G
(7.3b)
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The regularity boundary condition (given by Equation 7.3b) is approximated in the

literature to have ε = 1. However, industrial crystallizers are opperated at ε between

0.85–0.95 to have an economical yield of crystals.

The above population balance needs to be solved for in conjunction with the mass

balance to model the MSMPR. Next, we formulate the mass balance across the MSMPR.

7.2.2 Mass Balance

The mass balance across the crystallizer is given by:

Accumulation = In−Out (7.4a)

d(Vliqc)

dt
+
dM

dt
= qliq,incin − qliq,outc− (1− ε)ρq (7.4b)

where:

• d(Vliqc)/dt = Accumulation of solute mass in the liquid phase

• dM/dt = Accumulation of solute mass in the solid phase

• M = ρV (1− ε) = mass of crystals

• ρ = density of crystals

• qliq,incin = mass of solute entering in the liquid phase

• qliq,outc = εqc = mass of solute exiting in the liquid phase

• (1− ε)ρq = mass of solute exiting in the solid phase
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Assuming qliq,in = q and defining τ = V/q, equation 7.4b is transformed to:

dc

dt
=
cin
ετ
− c

τ
−
(

1− ε
ε

)
ρ

τ
+

(
ρ− c
ε

)
dε

dt
(7.5)

The above equation can be re-written as

dc

dt
=

1

ε

[(
cin − c
τ

)
− 3kvGm2(ρ− c)

]
(7.6)

where, kv is the shape volume factor and m2 is the second moment of the particle size

distribution.

Now, it is assuming ε ≈ 1 and ρ >> c that we get

dc

dt
=

(
cin − c
τ

)
− 3kvGm2(ρ) (7.7)

which is the widely used mass balance equation when modeling MSMPRs. The widely

used model—in essence—discounts the accumulation of solute inside the crystallizer in

the solid phase. Therefore, we now have the following two models for a MSMPR:

The Full Model of a MSMPR

Thus, we have the following model for an MSMPR,

∂n

∂t
= −n

τ
−G∂n

∂r
(7.8a)

n(r = 0+, t) = ε
B

G
(7.8b)

n(r, t = 0) = nseed(r) (7.8c)
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dc

dt
=

1

ε

[(
cin − c
τ

)
− 3kvGm2(ρ− c)

]
(7.9)

The Approximate Model of a MSMPR

Thus, we have the following model for an MSMPR,

∂n

∂t
= −n

τ
−G∂n

∂r
(7.10a)

n(r = 0, t) =
B

G
(7.10b)

n(r, t = 0) = nseed(r) (7.10c)

dc

dt
=
cin − c
τ
− 3kvGm2ρ (7.11)

7.3 Case study: L-glutamic acid (α and β polymorphs)

We use the L-glutamic acid crystal system modeled using the approximate model by

Li et al.[1] to compute the quantitative impact of the approximations. We employ two

quantative metrics to capture the approximations: i) Productivity of the crystallizer,

i.e., mass of crystals produced per unit time in the MSMPR, and ii) the volume weighted

mean particle size.

Next, we setup the model rate expressions and parameters. The nucleation (B) and
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growth rates (G) employed to model this system are:

Bi = kb,i

(
c

csat,i
− 1

)bi
µ2,i, (7.12)

and,

Gi = kg,i

(
c

csat,i
− 1

)gi
, (7.13)

respectively, where µ2,i is the second moment of the population density of polymorph i;

where i = α or β phase. The parameter values used in the model are:[1]

Table 7.1: L-glutamic acid parameters

Parameter

Value

i=α i=β

kb,i (#/m3/s) 3.81×104 7.95×102

bi 2.62 2.81

kg,i (m/s) 1.30×10−8 1.60×10−9

gi 1.31 1.1

csat,i (kg/m3) 11.36 8.51

ρi (kg/m3) 1532 1569

kv,i π/6 0.01

T (◦C) 25

Results and Discussion

For an inlet supersaturation of 5.84 (with respect to the β polymorph, Sin,β) and

a residence time (τ) of 2 hrs, we solve the population balance equations coupled with
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the mass balance equations for the two models. For these inlet conditions the modified

Damkohler numbers (Φα,Φβ)[2] for the α and β polymorphs are 3.653, and 1.324, respec-

tively. Since, Φα > Φβ, α is the steady-state polymorph as predicted by Figure 7.2 and

validated in Figure 7.3.

Figure 7.2: Stability diagram for polymorph selection of L-glutamic acid grown from
aqueous solution
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Figure 7.3: Polymorph percentage in MSMPR as a function of time. The crystallizer
is seeded with equal percentages of each polymorph.

Figures 7.4a, 7.5a, 7.6a, and 7.7a show the steady-state poulation density, steady-

state crystal size distribution, liquid volume fraction, and solute concentration in the

MSMPR computed using the two models, respectively. Table 7.2 gives the difference

between the approximate and the full model results for the two quantitative metrics:

productivity and volume weighted mean particle size.
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(a)

(b)

Figure 7.4: Population density of α polymorph for case: a) original csat, b) csat
increased by a factor of 10.
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(a)

(b)

Figure 7.5: Crystal size distribution of α polymorph for case: a) original csat, b) csat
increased by a factor of 10.
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(a)

(b)

Figure 7.6: Liquid volume fraction in the MSMPR for case: a) original csat, b) csat
increased by a factor of 10.
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(a)

(b)

Figure 7.7: Concentration of solute in the MSMPR for case: a) original csat, b) csat
increased by a factor of 10.
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Table 7.2: Comparing the Approximate model against the Full model: original csat

Test Metric Approximate Model Full Model Diff(%)

Productivity/q (kg/m3 of suspension) 29.8975 30.2567 -1.19%

Volume weighted Mean Particle Size (µm) 252.86 254.12 -0.50%

As we can see, the approximate model does an excellent job for these system param-

eters. However, we can see there is a small difference between the two models. Next,

we test if the ratio csat/ρ is higher, does the difference between the approximate and

the full model get amplified. For this, we artificially scale the solubility of the α and

β polymorphs by a factor of 10, and re-compute the results. As seen in Figures 7.4b,

7.5b, 7.6b, and 7.7b, the difference between the approximate and full model widens for a

higher csat/ρ ratio. Table 7.3 quantifies the difference between the two models. As seen,

the difference in the mass balance is now significant, ca. 12%, due to the higher csat/ρ

ratio. Therefore, the ratio csat/ρ does impact the accuracy of the approximate model.

To test the sensitivity of the approximate model with this ratio we solve the models for

varying csat/ρ ratios. The results shown in Table 7.4 indicate that for systems where

the solubility of the solute is high (ca. ¿ 3% of the solute’s solid density), the deviation

between the approximate and the full model maybe significant.

Table 7.3: Comparing the Approximate model against the Full model: csat scaled by 10

Test Metric Approximate Model Full Model Diff(%)

Productivity/q (kg/m3 of suspension) 298.9753 339.6082 -11.96%

Volume weighted Mean Particle Size (µm) 252.8603 269.2093 -6.07%
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Table 7.4: Difference between Approximate and Full Models for varying csat/ρ

csat/ρ Metric Approximate Model Full Model Diff(%)

0.0074

Productivity/q (kg/m3) 29.90 30.26 -1.19%

Volume weighted Mean Particle Size (µm) 252.86 254.12 -0.50%

0.0148

Productivity/q (kg/m3) 59.80 61.25 -2.38%

Volume weighted Mean Particle Size (µm) 252.86 255.45 -1.01%

0.0222

Productivity/q (kg/m3) 89.69 93.01 -3.57%

Volume weighted Mean Particle Size (µm) 252.86 256.85 -1.55%

0.0296

Productivity/q (kg/m3) 119.59 125.57 -4.76%

Volume weighted Mean Particle Size (µm) 252.86 258.32 -2.11%

0.037

Productivity/q (kg/m3) 149.49 158.95 -5.95%

Volume weighted Mean Particle Size (µm) 252.86 259.88 -2.70%

0.074

Productivity/q (kg/m3) 298.98 339.61 -11.96%

Volume weighted Mean Particle Size (µm) 252.86 269.21 -6.07%

7.4 Conclusion

In this chapter we redrive the accurate population balance and mass balance equations

for a MSMPR. We emphasize the approximations made to in the accurate model to arrive

at the widely used models in literature.[3] The approximations are excellent for majority

crystal systems, however, for crystals with high solubility the differences between the

approximate and accurate model may be significant as demonstrated by the L-glutamic
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acid case study. Note that the approximations are not necessary for numerical simulations

but they are for analytical steady-state and dynamic stability analysis.
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Chapter 8

Ever-kinked Crystal System

Reproduced in part with permission from:

Vikram Khanna, Michael F. Doherty, and Baron Peters, “The Ever-kinked Crystal

Framework for In Silico Crystal Growth Studies”, in preparation.

8.1 Introduction

Having developed a computational framework to predict driving forces for crystalliza-

tion the next piece of the puzzle to predict growth rates is computing the rate constants

for attachement and detachment events at kink sites. Joswiak et al.[1] have developed a

framework for ionic crystals, laying the necessary groundwork to compute rate constants.

The first step in their approach is to create an ever-kinked crystal slab to avoid finite-size

effects. For this, they developed a custom framework for cubic crystals. However, most

of the organic crystals (> 99.5%) belong to non-cubic crystal systems. Thus, we need to

develop a framework to develope an ever-kinked crystal slab for a general triclinic crystal

system. This section focuses on the developement of this framework.
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8.2 The Periodic Kink Problem

In order to avoid finite size effects while studying attachment and detachment pro-

cesses using simulations, we need to make sure that post either of the events, the kink

which is generated has the same environment. Consider the kink system shown in Figure

8.1. As one fills up the incomplete row, the distance between successive kinks decreases.
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(a)

(b)

Figure 8.1: Distance between kinks on addition of the growth unit reduced by one
growth unit from (a) to (b); Lines indicate the periodic boundary and lime spheres
are the periodic images of the cyan spheres. K1 and K2 are kinks, and K1p and K2p

are their periodic images, respectively.
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8.3 The Ever-kinked Solution: 2-D case

The solution is to rotate the lattice in a particular way (as shown in Figure 8.2) so that

we maintain a constant distance between successive kinks post an attachment/detachment

event. It can be seen in Figure 8.2 that on adding a growth unit (indicated by the pointer

in Figure 8.2b), the distance between the kinks does not change. Hence, we recover the

original kink system.
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(a)

(b)

Figure 8.2: Distance between kinks on addition of the growth unit remains constant
from (a) to (b); Blue lines indicate the periodic boundary and lime spheres are the
periodic images of the grey spheres

145



Ever-kinked Crystal System Chapter 8

To achieve this, we can take a crystal system and tilt it about one of the lattice axes

by one unit cell. Mathematically this transforms to solving the following set of equations:

(m.a)inew + bjnew = Lx,newi (8.1a)

−ainew + (n.b)jnew = Ly,newj (8.1b)

inew · inew = 1 (8.1c)

jnew · jnew = 1 (8.1d)

inew · jnew = cos(γ) (8.1e)

where i and j are original unit lattice vectors of the 2D lattice having values:

i = (1, 0),

j = (cosγ, sinγ),

γ is the angle between the vectors, and inew, jnew are new unit lattice vectors for the

rotated lattice,

(m, n) = no. of unit cells in i and j direction,

(Lx,new, Ly,new) = periodic box length in (i, j) direction, respectively.

Solving the above set of equations for a 2-D orthogonal lattice (i.e. γ = 90◦) we get

(see Appendix L for details):

a2m− b2n = 0 (8.2)

This result places a restriction on the supercell size we can create as m and n can only
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admit integer values. Equation 8.2 is a diophantine equation as the unknowns m and

n can only admit integer values. This result indicates that for certain crystal lattice

parameters the supercell size can be large enough to be computationally infeasible.

For the case of a cubic lattice, i.e., (a = b) equation 8.2 implies m = n. Therefore,

for cubic systems we can always create computationally feasible supercells as long as the

supercell is also cubic, i.e., m = n.

For a general γ value, we don’t get a neat result as equation 8.2.

8.4 The Ever-kinked Solution: 3-D case

For the 3-D case we can take a crystal system and tilt it about one of the lattice axes

by one unit cell, this would lead to the formation of steps. Another rotation about another

axes would lead to the formation of periodic kinks. Mathematically this transforms to

solving the following set of equations:

(m.a)inew − bjnew = Lx,newi (8.3a)

ainew + (n.b)jnew + cknew = Ly,newj (8.3b)

inew · inew = 1 (8.3c)

jnew · jnew = 1 (8.3d)

knew · knew = 1 (8.3e)

147



Ever-kinked Crystal System Chapter 8

inew · jnew = cos(γ) (8.3f)

jnew · knew = cos(α) (8.3g)

knew · inew = cos(β) (8.3h)

where i, j and k are original unit lattice vectors of the 3D lattice, and inew, jnew, knew

are new unit lattice vectors for the rotated lattice. Variables m, and n are no. of unit

cells in i and j direction, and (Lx,new, Ly,new) are periodic box lengths in (i, j) direction,

respectively.

Solving the above set of equations for a 3-D orthogonal lattice (i.e. α=β=γ=90◦) we

get:

a2m− b2n = 0 (8.4)

The above result is same as the 2D case (see equation 8.2 and see Appendix L for details).

Therefore, it is likely for many crystal systems the supercell size would be computationally

infeasible. However, by making some approximations in the lattice vectors, it maybe

possible to create ever-kinked crystal systems that satisfy the above equations. Also,

note that creating the ever-kinked crystal system by only tilting and twisting a crystal

leads to the formation of holes in the system (see Appendix L). We solve this problem by

adding an extra column of unit cells as shown in Appendix L. The final result is shown

in Figure 8.3.
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(a)

(b)

Figure 8.3: Ever-kinked cubic lattice: (a) Yellow atoms are the ones sitting in a
potential kink site, (b): Periodic kinks being displayed via dislodging an atom sitting
in a potential kink site.
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8.4.1 The Approximate Solution

Consider the case of the 3-D orthogonal lattice. Solving the ever-kinked framework

leads us to equation 8.4. Since, m and n are integers, equation 8.4 implies b2/a2 must

be a rational number. Now, since a and b are lattice constants, this is not guaranteed

for every crystal system. Therefore, for some crystal systems, equation 8.4 will not be

satisfied. For such cases, we propose an approximate solution, i.e., we approximate either

a, b, or both, such that b2
new/a

2
new is a rational number; where

bnew = b+ δb (8.5)

and,

anew = a+ δa (8.6)

Therefore, by choosing δa and δb, we approximate the lattice constants such that

(b+ δb)
2

(a+ δa)
2 =

m

n
(8.7)

This strategy enables us to pick supercell sizes that are computationally feasible and

satisfy the ever-kinked framework. See Appendix L for details.

8.5 Conclusions

In this chapter we develop a general framework to create ever-kinked crystals for

studying crystal growth using atomistic simulations that alleviates the finite-size effects.

In summary, for a given crystal system one needs to choose from the following three

system-setups to investigate growth rates:

• For computationally feasible supercell sizes create an ever-kinked system using the
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ever-kinked framework developed in this chapter.

• For computationally infeasible sizes one needs to either approximate the lattice pa-

rameters to enable a feasible supercell size, however this can develop stresses within

the crystal system and would not be the recommended route for large approxima-

tions.

• The alternative is to work with a periodic kinked system that suffers from finite

size effects and then accurately account and correct for the finite size effects.
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Chapter 9

Conclusions and Future Work

9.1 Conclusions

A digital design approach to engineer crystals is one of the most prudent ways to

reduce the risks and costs of pharmaceutical drug developement. This thesis outlines

a digital design strategy to predict crystal polymorphs, shapes, and sizes starting from

a target molecule. It focuses on developing tools to predict driving forces for crystal-

lization—accurately and precisely making use of high fidelity molecular simulations. In

summary:

Chapter 1 outlines the major design elements of the digital design strategy: namely,

polymorph prediction, shape prediction, nucleation & growth rate predictions, solubility

prediction, attainable particle size prediction, and lastly polymorph selection. The design

element with one of the most pressing challenges is nucleation, in particular, heteroge-

neous nucleation and secondary nucleation.

Chapter 2 discusses the crystal growth models to compute crystal shapes and sizes.

It presents the roadmap to predict driving forces for crystallization—a key prediction for

predicting crystal sizes—via atomistic simulations, using a decoupled approach—avoiding
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difficult to compute fluid-to-solid transitions.

Chapter 3 completes the theory for accurately computing solid free energies using the

Einstein crystal approach making use of any general set of spring constants. It delineates

the computational strategy to setup solid free energy simulations for atomic systems and

extends it for molecular systems to account for intramolecular free energies—yielding an

absolute free energy prediction.

Chapter 4 introduces a new gas phase reference system for complex molecules—the

centroid—pivotal for decoupling the phase equilibrium calculation. It lays out the com-

putational strategy to compute the free energy of the centroid and gas phase molecules,

testing it via a diatomic molecule system.

Chapter 5 develops the computational strategy to compute solvation free energies us-

ing the decoupling approach for molecular dyanmics software such as LAMMPS. It also

develops a thermodynamic pathway to compute solvent-modified bond energies—leveraging

solvation free energy calculations—which are key computations for morphology predic-

tions of crystals grown from solution.

Chapter 6 is where the above three computational tools—developed to compute chem-

ical potentials of a solute in the solid, gas, and solutions phases, respectively—are lever-

aged to compute solid-vapor and solid-solution equilibrium and predict the driving forces

for crystallization from vapor and solution of two model compounds, namely, naphtha-

lene and succinic acid. It also gives a workflow for bench marking the solute’s (target

molecule) force field while making sublimation phase equilibrium predictions via the

Clausius-Clapeyron plot.

Chapter 7 revists the population and mass balance models employed for modeling the

ubiquitously used mixed suspension, mixed product removal (MSMPR) crystallizer. It

identifies the approximations made to arrive at the widely used models in the literature

and quantifies their impact on tangible output parameters of the crystallizer—namely,
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productivity and volume weighted mean crystal size.

Chapter 8 lays out the framework to create ever-kinked crystal systems that avoid

finite-size effects while studying crystal growth for a general tricilinic crytallography.

9.2 Future Work

Solubility predictions

On the solubility prediction front, the following three directions should be explored:

• The absolute chemical potential route framework must be leveraged to compute

solubilities using different combinations of force fields for a variety of compound

types. This will enable us to understand which combination works best for a given

class of materials. For example, from morphology prediction results we believe that

the Lifson force field works well for dicarboxylic acids. Therefore, testing it for the

solublity prediction of succinic acid would be a good next step. Similarly, a well

curated database of solubility predictions would aid the future users to make wise

choices while using off the shelf force fields.

• Scaling the solute-solvent interactions (mixing rules) to match solubility predictions

with experimental data. However, this approach will add the use of experimental

data to the digital design strategy steering it away from a purely in-silico approach.

• Another addition to the solubility prediction workflow would be direct coexistence

calculations—to have a self-consistency check. We could leverage the ever-kinked

framework discussed in Chapter 8 to potentially speed up direct coexistence simu-

lations.
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Growth rate predictions

As noted in Chapter 8, for a given crystal system one needs to choose from the

following three system setups to investigate growth rates:

• For computationally feasible supercell sizes create an ever-kinked system using the

ever-kinked framework developed in Chapter 8.

• For computationally infeasible sizes one needs to either approximate the lattice pa-

rameters to enable a feasible supercell size, however this can develop stresses within

the crystal system and would not be the recommended route for large approxima-

tions.

• The alternative is to work with a periodic kinked system that suffers from finite

size effects and then accurately account and correct for the finite size effects.

The next step to compute growth rates would be to identify the important solvent

and solute collective variables (CVs) for the system under study. For this, one needs to

harvest an ensemble of Transition paths via the flexible length[1] and aimless shooting[2]

variety of Transition Path Sampling (TPS). Then prepare an extensive list of trial reaction

coordinates and rank them using the inertial version of likelihood maximization.[3] Next,

perform committor tests[4] to see how well peaked the committor distribution for the

chosen reaction coordinate comes out to be. For the chosen solute and solvent reaction

coordinate system compute free energies using harmonic umbrella sampling method.

Followed by creating global free energy surfaces and profiles. Also one needs to calculate

transmission coefficients for correcting the transition state theory predicted rates. This

framework will enable to calculate attachment and detachment rates, and gain significant

insight into the mechanism of the crystal growth process for complex molecules.
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Appendix A

Deriving the finite size correction

A.1 Breakdown of the Helmholtz free energy of a

crystal

The Helmholtz free energy calculation of a crystal is given by

fC = fEC + (fCMEC − fEC) + (fCMC − fCMEC ) + (fC − fCMC ) (A.1)

where the absolute free energy of the Einstein crystal can be obtained from its analytically

computable partition function:

βfEC =
−1

Nmol

ln (QEC) =
1

Nmol

N∑
i=1

ln

(
βkiΛ

2
i

2π

)3/2

(A.2)

and the free energy differences are

β(fCMEC − fEC) =
−1

Nmol

ln

(
QCM
EC

QEC

)
=
−1

Nmol

ln


 β

2π
∑N

i=1
µ2i
ki

3/2 (
βh2

2πM

)3/2

 (A.3a)
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β(fCMC − fCMEC ) =
β

Nmol

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ (A.3b)

β(fC − fCMC ) =
−1

Nmol

ln

(
QC

QCM
C

)
=
−1

Nmol

ln

[(
V

Nmol

) (
βh2

2πM

)−3/2
]

(A.3c)

In each of these formulas, Q is a partition function, β = (kBT )−1, λ is a coupling

parameter, U is a λ-dependent potential energy function that interpolates between that

of the EC and C systems, h is Planck’s constant, V is volume of the system, µi =

mi/
∑N

i=1mi, M =
∑N

i=1 mi, where mi is the mass of atom i, Λi = (βh2/(2πmi))
1/2, and

ki is the spring constant of the spring attached to atom i.

Therefore, the Helmhotz free energy of the crystal is

βfC =
1

Nmol

N∑
i=1

ln

(
βkiΛ

2
i

2π

)3/2

− 1

Nmol

ln


 β

2π
∑N

i=1
µ2i
ki

3/2 (
βh2

2πM

)3/2


+

β

Nmol

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− 1

Nmol

ln

[(
V

Nmol

) (
βh2

2πM

)−3/2
]

(A.4)
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The βh2/(2πM) part of the log terms cancel out, giving

βfC =
1

Nmol

N∑
i=1

ln

(
βkiΛ

2
i

2π

)3/2

− 1

Nmol

ln

 β

2π
∑N

i=1
µ2i
ki

3/2

+
β

Nmol

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− 1

Nmol

ln

(
V

Nmol

)
(A.5)

Note, combining the log terms in the above equation gives a dimensionless argument to

the logarithm.

Thus, the terms in Table 6.4 are:

Table A.1: Breakdown of the Helmholtz free energy calculation shown in Table II

Column heading Free energy term

βfEC
1

Nmol

∑N
i=1 ln

(
βkiΛ

2
i

2π

)3/2

β(fCMEC − fEC)∗ − 1
Nmol

ln

(
β

2π
∑N
i=1

µ2
i
ki

)3/2

β∆fCMEC→C
β

Nmol

∫ λ=1

λ=0

〈
dU
dλ

〉CM
λ

dλ

β(fC − fCMC )∗ − 1
Nmol

ln
(

V
Nmol

)

A.2 Computing QCM
EC /QEC:

For an N atom Einstein crystal system with uniform spring constants (k) and distin-

guishable particles,

QEC =
1

h3N
ZEC PEC (A.6)
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where,

ZEC =

∫
drN

N∏
i=1

exp

[
−βk

2
‖ri‖2

]
=

N∏
i=1

(
2π

βk

)3/2

(A.7a)

PEC =

∫
dpN

N∏
i=1

exp

[
− β

2mi

‖pi‖
2

]
=

N∏
i=1

(
2πmi

β

)3/2

(A.7b)

Similarly,

QCM
EC =

1

h3(N−1)
ZCM
EC PCM

EC (A.8)

Note that in the above equation we have h3(N−1) because with a hard constraint of a

fixed center of mass, the system “lives in” a 6N − 6 dimensional phase space. Equation

(A.8) differs from a harmonically restrained system in 6N dimensions, in which case we

would still have h3N .

ZCM
EC and PCM

EC are

ZCM
EC =

∫
drN

N∏
i=1

exp

[
−βk

2
r2
i

]
δ

(
N∑
i=1

µiri

)

=

(
βk

2π
∑N

i=1 µ
2
i

)3/2 N∏
i=1

(
2π

βk

)3/2

=

(
βk

2π
∑N

i=1 µ
2
i

)3/2

ZEC

(A.9a)

PCM
EC =

∫
dpN

N∏
i=1

exp

[
− β

2mi

p2
i

]
δ

(
N∑
i=1

pi

)

=

(
β

2πM

)3/2 N∏
i=1

(
2πmi

β

)3/2

=

(
β

2πM

)3/2

PEC

(A.9b)
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where M =
∑N

i=1mi.

Therefore,

ZCM
EC

ZEC
=

(
βk

2π
∑N

i=1 µ
2
i

)3/2

(A.10a)

PCM
EC

PEC
=

(
β

2πM

)3/2

(A.10b)

Now, using (A.6) and (A.8),

QCM
EC

QEC

= h3

(
ZCM
EC

ZEC

)(
PCM
EC

PEC

)
=

(
βk

2π
∑N

i=1 µ
2
i

)3/2 (
βh2

2πM

)3/2 (A.11)

A.3 Computing QC/Q
CM
C :

QC =
1

h3N
ZC PC (A.12)

where:

ZC =

∫
drN

N∏
i=1

exp
[
−βU(rN)

]
(A.13a)

PC =

∫
dpN

N∏
i=1

exp

[
− β

2mi

‖pi‖
2

]
=

N∏
i=1

(
2πmi

β

)3/2

(A.13b)
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now using equation (13) from Polson et al.[? ],

ZC
ZCM
C

=

∫
drN

∏N
i=1 exp

[
−βU(rN)

]∫
drN

∏N
i=1 exp [−βU(rN)] δ

(∑N
i=1 µiri

)
=

1〈
δ
(∑N

i=1 µiri

)〉
=

1
℘(rCM = 0)

=
V

Nmol

(A.14)

Note[? ] that ℘(rCM) is the probability distribution function of the center of mass.

Since, the probability distribution of the center of mass of the lattice is evenly distributed

over a volume equal to that of the Wigner–Seitz cell of the lattice positioned at the center

of the volume over which we carry out the integration in the partition function. It follows

for one molecule per Wigner-Seitz cell: ℘(rCM = 0) = Nmol/V .

Since PC = PEC we have from equation (A.10b)

PC
PCM
C

=

(
β

2πM

)−3/2

(A.15)

Therefore,

QC

QCM
C

= h−3

(
ZC
ZCM
C

)(
PC
PCM
C

)
=

(
V

Nmol

) (
βh2

2πM

)−3/2 (A.16)
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A.4 Free energy of the crystal:

Using equations (A.11) and (A.16), we have

βFC =
N∑
i=1

ln

(
βkΛ2

i

2π

)3/2

− ln

( βk

2π
∑N

i=1 µ
2
i

)3/2 (
βh2

2πM

)3/2


+ β

∫ λ=1

λ=0

〈
dU

dλ

〉
λ

dλ

− ln

[(
V

Nmol

) (
βh2

2πM

)−3/2
]

(A.17a)

βFC =
N∑
i=1

ln

(
βkΛ2

i

2π

)3/2

+ β

∫ λ=1

λ=0

〈
dU

dλ

〉CM
λ

dλ

− ln

( βk

2π
∑N

i=1 µ
2
i

)3/2(
V

Nmol

)
(A.17b)

where, Λi = (βh2/(2πmi))
1/2

Note that the log terms in equation (A.17b) have been combined to give a dimen-

sionless argument to the logarithms.
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Ensuring zero net external force due

to springs

The equation describing the displacement in x-direction of a simple harmonic oscillator

(SHO) i is,

xi(t) = Ai sin(ωit+ φi) (B.1)

where xi(t) is the displacement of SHO in x-direction from the tether position, Ai is the

amplitude, ωi =
√
ki/mi is the angular frequency of SHO, and φi is the phase.

Taking the time derivative of equation (B.1), we get

vi(t) = Aiωi cos(ωit+ φi) (B.2)

where vi(t) is the velocity at time t.

Using equation (B.2), and plugging in t = 0 gives a relation between Ai, ωi, φi, and

the initial velocity (voi ):

Ai =
voi

ωi cos(φi)
(B.3)
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Therefore,

xi(t) =
voi

ωi cos(φi)
sin(ωit+ φi) (B.4)

Now, the net force on the system (FCM) is

FCM = −
N∑
i=1

kixi

= −
N∑
i=1

ki
voi

ωi cos(φi)
sin(ωit+ φi)

= −
N∑
i=1

ki
voi

ωi cos(φi)
[sin(ωit) cos(φi) + cos(ωit) sin(φi)]

= −
N∑
i=1

ωi
miv

o
i

cos(φi)
[sin(ωit) cos(φi) + cos(ωit) sin(φi)]

(B.5)

Now if ωi = ω, i.e., ki/mi = ω2 = constant, we have

FCM = −ω sin(ωt)
N∑
i=1

miv
o
i − ω cos(ωt)

N∑
i=1

miv
o
i tan(φi)

= −ωMvoCM sin(ωt)− ω2MxoCM cos(ωt)

(B.6)

Where we have used equation (B.4) to write second term in terms of xoCM , the initial

displacement of the center of mass from the tether points’ center of mass given by

xoCM =
1

M

N∑
i=1

mi
voCM
ω

tan(φi) (B.7)

Thus, if we initialize the system such that voCM = 0 and xoCM = 0, then the center of

mass remains fixed ∀ t.

Therefore, a straghtforward way to ensure zero net external force on a system due

to springs is to i) make spring constants proportional to atomic masses such that all

oscillators have the same angular frequency, ii) initialize the system with zero center
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of mass velocity, and iii) initialize the system with all SHOs on their tethered (lattice)

positions.

Equation describing the time evolution of the center of mass

For a system having springs with different spring constants such that ki/mi is con-

stant, the center of mass is given by:

xCM(t) =
1

M

N∑
i=1

mixi

=
1

M

N∑
i=1

miAi sin(ωt+ φi)

=
1

M

N∑
i=1

mi
voi

ω cos(φi)
sin(ωt+ φi)

=
1

M

N∑
i=1

mi
voi

ω cos(φi)
[sin(ωt) cos(φi) + cos(ωt) sin(φi)]

= ω−1 sin(ωt)

(
1

M

N∑
i=1

miv
o
i

)

+ cos(ωt)

(
1

M

N∑
i=1

mi
voi
ω

tan (φi)

)

= ω−1voCM sin(ωt) + xoCM cos(ωt)

(B.8)

Note that M ẍCM(t) = FCM . Therefore equation (B.8) can be used to get the same

result as obtained in equation (B.6).

Note that during T.I. when 0 < λ < 1, we apply the force field (FF) on the atoms

in addition to the spring forces. Since,
∑

i=atoms Fi,FF = 0 (where Fi,FF is the force on

atom i due to the force field), no addtional force is exerted on the center of mass due to

it, therefore, equations (B.6) and (B.8) are still applicable.
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Appendix C

T.I. plots

C.1 T.I. integrand plot & Data for LiI crystal

Figure C.1: T.I integrand plot for LiI crystal (w/ mass-scaled springs)
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Table C.1: T.I. data for LiI (w/ mass-scaled springs)

i λi wi β 〈du/dλ〉λ

1 0.00222 0.0057 -304.63627 ± 0.00095

2 0.01167 0.01318 -305.0528 ± 0.00093

3 0.02851 0.02047 -305.14515 ± 0.00088

4 0.0525 0.02745 -305.25958 ± 0.00087

5 0.08328 0.03402 -305.38006 ± 0.00081

6 0.12037 0.04007 -305.5126 ± 0.00077

7 0.16322 0.04551 -305.64401 ± 0.00076

8 0.21117 0.05027 -305.78636 ± 0.00074

9 0.2635 0.05426 -305.93919 ± 0.00074

10 0.31941 0.05743 -306.10326 ± 0.00076

11 0.37807 0.05973 -306.28122 ± 0.00078

12 0.43857 0.06112 -306.48054 ± 0.00082

13 0.5 0.06159 -306.70411 ± 0.00086

14 0.56143 0.06112 -306.96066 ± 0.00093

15 0.62193 0.05973 -307.25967 ± 0.00102

16 0.68059 0.05743 -307.61391 ± 0.00113

17 0.7365 0.05426 -308.03824 ± 0.00129

18 0.78883 0.05027 -308.55432 ± 0.00148

19 0.83678 0.04551 -309.18988 ± 0.00172

20 0.87963 0.04007 -309.98973 ± 0.00208

21 0.91672 0.03402 -310.97968 ± 0.00253

22 0.9475 0.02745 -312.22696 ± 0.00314

23 0.97149 0.02047 -313.77678 ± 0.004

24 0.98833 0.01318 -315.64407 ± 0.00534

25 0.99778 0.0057 -317.6001 ± 0.00761
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Figure C.2: T.I integrand plot for LiI crystal (w/ MSD-based springs)
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Table C.2: T.I. data for LiI (w/ MSD-based springs)

i λi wi β 〈du/dλ〉λ

1 0.00222 0.0057 -301.54089 ± 0.00178

2 0.01167 0.01318 -302.0557 ± 0.00162

3 0.02851 0.02047 -302.28181 ± 0.00147

4 0.0525 0.02745 -302.54136 ± 0.0013

5 0.08328 0.03402 -302.79664 ± 0.00118

6 0.12037 0.04007 -303.04005 ± 0.00106

7 0.16322 0.04551 -303.25461 ± 0.00094

8 0.21117 0.05027 -303.4518 ± 0.00085

9 0.2635 0.05426 -303.62807 ± 0.00077

10 0.31941 0.05743 -303.78601 ± 0.00071

11 0.37807 0.05973 -303.92669 ± 0.00065

12 0.43857 0.06112 -304.05476 ± 0.00061

13 0.5 0.06159 -304.16861 ± 0.00059

14 0.56143 0.06112 -304.27293 ± 0.00057

15 0.62193 0.05973 -304.3709 ± 0.00055

16 0.68059 0.05743 -304.46273 ± 0.00054

17 0.7365 0.05426 -304.55084 ± 0.00055

18 0.78883 0.05027 -304.63638 ± 0.00057

19 0.83678 0.04551 -304.72041 ± 0.0006

20 0.87963 0.04007 -304.80548 ± 0.00063

21 0.91672 0.03402 -304.89086 ± 0.0007

22 0.9475 0.02745 -304.97683 ± 0.0008

23 0.97149 0.02047 -305.06433 ± 0.0009

24 0.98833 0.01318 -305.14504 ± 0.00102

25 0.99778 0.0057 -305.20683 ± 0.00117
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Figure C.3: T.I integrand plot for LiI crystal (w/ equal springs)
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Table C.3: T.I. data for LiI (w/ equal springs)

i λi wi β 〈du/dλ〉λ

1 0.00222 0.0057 -298.14578 ± 0.00343

2 0.01167 0.01318 -299.01976 ± 0.00302

3 0.02851 0.02047 -299.69576 ± 0.00249

4 0.0525 0.02745 -300.37508 ± 0.0021

5 0.08328 0.03402 -300.97966 ± 0.00177

6 0.12037 0.04007 -301.50976 ± 0.0015

7 0.16322 0.04551 -301.94525 ± 0.00133

8 0.21117 0.05027 -302.31415 ± 0.00113

9 0.2635 0.05426 -302.62698 ± 0.001

10 0.31941 0.05743 -302.89214 ± 0.0009

11 0.37807 0.05973 -303.1163 ± 0.0008

12 0.43857 0.06112 -303.30992 ± 0.00073

13 0.5 0.06159 -303.47602 ± 0.00068

14 0.56143 0.06112 -303.62078 ± 0.00065

15 0.62193 0.05973 -303.74829 ± 0.00062

16 0.68059 0.05743 -303.86337 ± 0.0006

17 0.7365 0.05426 -303.964 ± 0.00059

18 0.78883 0.05027 -304.05703 ± 0.00058

19 0.83678 0.04551 -304.14066 ± 0.00059

20 0.87963 0.04007 -304.22022 ± 0.00061

21 0.91672 0.03402 -304.29352 ± 0.00064

22 0.9475 0.02745 -304.36287 ± 0.00068

23 0.97149 0.02047 -304.42474 ± 0.00074

24 0.98833 0.01318 -304.47781 ± 0.00082

25 0.99778 0.0057 -304.51219 ± 0.00087
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C.2 T.I. integrand plot & Data for NaCl crystal

Figure C.4: T.I integrand plot for NaCl crystal (w/ mass-scaled springs)
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Table C.4: T.I. data for NaCl (w/ mass-scaled springs)

i λi wi β 〈du/dλ〉λ

1 0.00222 0.0057 -315.73798 ± 0.00116

2 0.01167 0.01318 -315.8311 ± 0.00111

3 0.02851 0.02047 -315.93651 ± 0.00104

4 0.0525 0.02745 -316.06102 ± 0.00096

5 0.08328 0.03402 -316.19545 ± 0.00088

6 0.12037 0.04007 -316.33113 ± 0.00081

7 0.16322 0.04551 -316.46303 ± 0.00074

8 0.21117 0.05027 -316.58845 ± 0.00069

9 0.2635 0.05426 -316.7066 ± 0.00064

10 0.31941 0.05743 -316.81745 ± 0.00061

11 0.37807 0.05973 -316.9217 ± 0.00058

12 0.43857 0.06112 -317.02025 ± 0.00056

13 0.5 0.06159 -317.11347 ± 0.00078

14 0.56143 0.06112 -317.2051 ± 0.00054

15 0.62193 0.05973 -317.29391 ± 0.00054

16 0.68059 0.05743 -317.3821 ± 0.00055

17 0.7365 0.05426 -317.47112 ± 0.00057

18 0.78883 0.05027 -317.56238 ± 0.0006

19 0.83678 0.04551 -317.65739 ± 0.00064

20 0.87963 0.04007 -317.75764 ± 0.00071

21 0.91672 0.03402 -317.86456 ± 0.00079

22 0.9475 0.02745 -317.97925 ± 0.00091

23 0.97149 0.02047 -318.10113 ± 0.00108

24 0.98833 0.01318 -318.22324 ± 0.0013

25 0.99778 0.0057 -318.32016 ± 0.00152
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Figure C.5: T.I integrand plot for NaCl crystal (w/ MSD-based springs)
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Table C.5: T.I. data for NaCl (w/ MSD-based springs)

i λi wi β 〈du/dλ〉λ

1 0.00222 0.0057 -314.79526 ± 0.00154

2 0.01167 0.01318 -314.92536 ± 0.00145

3 0.02851 0.02047 -315.09434 ± 0.00133

4 0.0525 0.02745 -315.28877 ± 0.0012

5 0.08328 0.03402 -315.49023 ± 0.00108

6 0.12037 0.04007 -315.68599 ± 0.00097

7 0.16322 0.04551 -315.86963 ± 0.00088

8 0.21117 0.05027 -316.03855 ± 0.0008

9 0.2635 0.05426 -316.19249 ± 0.00073

10 0.31941 0.05743 -316.33221 ± 0.00068

11 0.37807 0.05973 -316.45929 ± 0.00064

12 0.43857 0.06112 -316.57518 ± 0.0006

13 0.5 0.06159 -316.6817 ± 0.00058

14 0.56143 0.06112 -316.78046 ± 0.00056

15 0.62193 0.05973 -316.87307 ± 0.00055

16 0.68059 0.05743 -316.9611 ± 0.00055

17 0.7365 0.05426 -317.04607 ± 0.00055

18 0.78883 0.05027 -317.1294 ± 0.00057

19 0.83678 0.04551 -317.21249 ± 0.0006

20 0.87963 0.04007 -317.2967 ± 0.00064

21 0.91672 0.03402 -317.38332 ± 0.0007

22 0.9475 0.02745 -317.4732 ± 0.0008

23 0.97149 0.02047 -317.56563 ± 0.00093

24 0.98833 0.01318 -317.65477 ± 0.00109

25 0.99778 0.0057 -317.72238 ± 0.00125
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Figure C.6: T.I integrand plot for NaCl crystal (w/ equal springs)
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Table C.6: T.I. data for NaCl (w/ equal springs)

i λi wi β 〈du/dλ〉λ

1 0.00222 0.0057 -314.46466 ± 0.00168

2 0.01167 0.01318 -314.61311 ± 0.00157

3 0.02851 0.02047 -314.81036 ± 0.00143

4 0.0525 0.02745 -315.03466 ± 0.00128

5 0.08328 0.03402 -315.26395 ± 0.00114

6 0.12037 0.04007 -315.4841 ± 0.00103

7 0.16322 0.04551 -315.68848 ± 0.00093

8 0.21117 0.05027 -315.8747 ± 0.00084

9 0.2635 0.05426 -316.04292 ± 0.00076

10 0.31941 0.05743 -316.19427 ± 0.00071

11 0.37807 0.05973 -316.33077 ± 0.00066

12 0.43857 0.06112 -316.45415 ± 0.00062

13 0.5 0.06159 -316.56652 ± 0.00059

14 0.56143 0.06112 -316.66968 ± 0.00057

15 0.62193 0.05973 -316.76542 ± 0.00056

16 0.68059 0.05743 -316.85542 ± 0.00055

17 0.7365 0.05426 -316.94128 ± 0.00055

18 0.78883 0.05027 -317.02446 ± 0.00057

19 0.83678 0.04551 -317.1064 ± 0.00059

20 0.87963 0.04007 -317.18845 ± 0.00063

21 0.91672 0.03402 -317.27186 ± 0.00069

22 0.9475 0.02745 -317.35747 ± 0.00077

23 0.97149 0.02047 -317.44453 ± 0.0009

24 0.98833 0.01318 -317.52746 ± 0.00105

25 0.99778 0.0057 -317.58957 ± 0.0012
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Error Calculation

At each λi the derivative, 〈du/dλi〉λ is computed using independent samples. See auto-

correlation subsection for details.〈
du

dλ

〉
λ

= du/dλ+ σdu/dλ

= du/dλ+
σdu/dλ√
Ndata

(D.1)

where du/dλ is the sample mean, σdu/dλ is the standard error in the mean, σdu/dλ is

the sample standard deviation, and Ndata is the number of independent samples used in

computing the sample mean.

The free energy difference (∆f) is

∆f =
25∑
i=1

wi

〈
du

dλ

〉
λi

(D.2)

However, the estimate (mean) of the free energy difference (∆f) is

∆f =
25∑
i=1

wi
du

dλ i
(D.3)
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and the error in the estimate (mean) of the free energy difference is

σ∆f =

√√√√ 25∑
i=1

w2
i σ

2
du/dλi

(D.4)

D.1 Autocorrelation time

We compute the autocorrelation time for du/dλ (τdu/dλ) using the time autocorrelation

function, where:

τdu/dλ =

∫ t=∞

t=0

Cdu/dλdt (D.5)

Table D.1: Autocorrelation times of du/dλ for LiI (w/ MSD springs) at three λ values.

λ τdu/dλ (fs)

0.00222 51

0.5 47

0.997778 401
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Figure D.1: Autocorrelation function at λ = 0.00222

Figure D.2: Autocorrelation function at λ = 0.5
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Figure D.3: Autocorrelation function at λ = 0.99778
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Appendix E

Force Field Predicted Crystal

Structures

Naphthalene

Table E.1 shows a camparison of the force field predicted lattice parameters of naph-

thalene against the experimental ones. Also, Figures E.1, E.2,, and E.3, show the force

field predicted unit cell superimposed on the experimental unit cell from the x, y, and

z directional views, respectively. As seen from these predictions OPLS-AA does a good

job reproducing the naphthalene crystal structure.
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Table E.1: OPLS-AA predicted lattice parameters of naphthalene crystal

Lattice parameter Expt. OPLS-AA % ∆

a (Å) 8.213 ± 0.002 8.278 ± 0.001 0.79%

b (Å) 5.973 ± 0.001 5.991 ± 0.001 0.30%

c (Å) 8.675 ± 0.002 8.565 ± 0.001 -1.27%

α (◦) 90.00 ± 0.00 89.998 ± 0.004 0.00%

β (◦) 123.39 ± 0.02 119.14 ± 0.01 -3.44%

γ (◦) 90.00 ± 0.00 90.005 ± 0.003 0.01%
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Figure E.1: OPLS-AA predicted crystal structure (yellow) of naphthalene superim-
posed on the experimetal structure (cyan). X-direction view.
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Figure E.2: OPLS-AA predicted crystal structure (yellow) of naphthalene superim-
posed on the experimetal structure (cyan). Y-direction view.
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Figure E.3: OPLS-AA predicted crystal structure (yellow) of naphthalene superim-
posed on the experimetal structure (cyan). Z-direction view.

Succinic acid (β and γ polymorphs)

Tables E.2 and E.3 show a camparison of the force field predicted lattice parameters

against the experimental ones. Also, Figures E.4, E.5, E.6, Figures E.7, E.8, and E.9,

show the force field predicted unit cells superimposed on the experimental unit cells from

the x, y, and z directional views, for β and γ polymprphs, respectively. As seen from these

predictions GAFF does a good job reproducing the succinic acid crystal structure for the
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β polymorph, however, it doesn’t accurately predict the structure of the γ polymorph.

Table E.2: GAFF predicted lattice parameters of succinic acid crystal — β polymorph

Lattice parameter Expt. GAFF % ∆

a(Å) 5.519 ± 0.002 5.473 ± 0.001 -0.83%

b(Å) 8.862 ± 0.006 9.068 ± 0.001 2.32%

c(Å) 5.101 ± 0.001 5.314 ± 0.001 4.18%

α (◦) 90.00 ± 0.00 89.999 ± 0.003 0.00%

β (◦) 91.59 ± 0.04 89.624 ± 0.004 -2.15%

γ (◦) 90.00 ± 0.00 89.997 ± 0.003 0.00%
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Figure E.4: GAFF predicted crystal structure (yellow) of β-succinic acid superimposed
on the experimetal structure (cyan). x-direction view.
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Figure E.5: GAFF predicted crystal structure (yellow) of β-succinic acid superimposed
on the experimetal structure (cyan). y-direction view.
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Figure E.6: GAFF predicted crystal structure (yellow) of β-succinic acid superimposed
on the experimetal structure (cyan). z-direction view.
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Table E.3: GAFF predicted lattice parameters of succinic acid crystal — γ polymorph

Lattice parameter Expt. GAFF % ∆

a(Å) 5.702 ± 0.001 5.696 ± 0.001 -0.10%

b(Å) 8.415 ± 0.001 9.229 ± 0.001 9.67%

c(Å) 10.354 ± 0.001 10.318 ± 0.001 -0.35%

α (◦) 90.00 ± 0.00 89.993 ± 0.004 -0.01%

β (◦) 90.37 ± 0.00 99.438 ± 0.004 10.03%

γ (◦) 90.00 ± 0.00 90.001 ± 0.004 0.00%
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Figure E.7: GAFF predicted crystal structure (yellow) of γ-succinic acid superimposed
on the experimetal structure (cyan). x-direction view.
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Figure E.8: GAFF predicted crystal structure (yellow) of γ-succinic acid superimposed
on the experimetal structure (cyan). y-direction view.
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Figure E.9: GAFF predicted crystal structure (yellow) of γ-succinic acid superimposed
on the experimetal structure (cyan). z-direction view.
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Sublimation Enthalpy Derivation

The sublimation enthalpy for a solid is given by:

∆hsub(Teqm, Peqm) = hgas(Teqm, Peqm)− hsolid(Teqm, Peqm) (F.1)

We simulate the crystal at 1 atm. since the crystallographic data is assumed to be re-

ported at 1 atm. Also, for this direct calculation of sublimation pressure, we haven’t

calculated the equilibrium solid-vapor curve using the force field and are therefore un-

aware of the true equilibrium conditions. Hence to get hsolid at eqm we use:

hsolid(Teqm, Peqm) = hsolid(Teqm, 1 atm) +

∫ Peqm

1 atm

(
∂h

∂P

)
T

dP (F.2)

Now we need to evaluate the integral: From the fundamental equation of thermodynamics

we know that:

dh = Tds+ vdP (F.3)
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Taking the partial derivative of eqn (F.3) w.r.t P at constant T we get:

(
∂h

∂P

)
T

= T

(
∂s

∂P

)
T

+ v (F.4)

Using a Maxwell relation : (
∂s

∂P

)
T

= −
(
∂v

∂T

)
P

(F.5)

eqn (F.4) becomes: (
∂h

∂P

)
T

= −T
(
∂v

∂T

)
P

+ v (F.6)

Since: (
∂v

∂T

)
P

= vαp (F.7)

where αp is the thermal expansion coefficient, therefore eqn (F.6) becomes:

(
∂h

∂P

)
T

= v(1− Tαp) (F.8)

Therefore the integral evaluates to:

∫ Peqm

1atm

(
∂h

∂P

)
T

dP =

∫ Peqm

1atm

v(1− Tαp)dP (F.9)

Now consider: v(1− Tαp)

We know that αp,liq > αp,solid

And for water, αp = 0.0002K−1
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hence, at 300 K, (1− Tαp,solid) > 0.96

Therefore, (1− Tαp,solid) ≈ 1, gives

∫ Peqm

1 atm

(
∂h

∂P

)
T

dP ≈
∫ Peqm

1 atm

vdP (F.10)

Assuming that: v doesn’t vary much with P ,

∫ Peqm

1 atm

vdP ≈ v(Peqm − 1) ≈ v(0− 1) ≈ −8.0 J/mol (F.11)

However, the sublimation enthalpies we are dealing with are ≈ 105 J/mol, hence we can

safely neglect the integral. Therefore, eqn (F.2) evaluates to:

hsolid(Teqm, Peqm) = hsolid(Teqm, 1 atm) (F.12)

i.e. the enthalpy of the solid is invariant of Pressure. Also the vapor pressure of a solid

(Peqm) is so small (≈ 1 mPa) that ideal gas law is valid.

Therefore,

∆hsub(Teqm, Peqm) = hgas(Teqm, Peqm)− hsolid(Teqm, 1 atm) (F.13)

and,

∆hsub(Teqm, Peqm) = ugas(Teqm) + Pvgas − usolid(Teqm, 1 atm)− Pvsolid (F.14)

Since, vgas >> vsolid and Pvgas = RT, P (vgas − vsolid) ≈ RT
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Thus:

∆hsub(Teqm, Peqm) = ugas(Teqm)− usolid(Teqm, 1 atm) +RT (F.15)
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Appendix G

Activity and Activity Coefficients

In this appendix we iron out a few key definitions crucial in the context of chemical

potential calculations and applications.

G.1 Activity

When one refers to activity, there are two types of activity as laid out by the Inter-

national Union of Pure and Applied Chemistry (IUPAC):

1. Absolute activity (a): The exponential of the ratio of the chemical potential, µ, to

RT where R is the gas constant and T the thermodynamic temperature, i.e.,

a = exp
( µ

RT

)
. (G.1)

https://doi.org/10.1351/goldbook.A00019

2. Relative activity (ao): The relative activity, is defined by the equation

ao = exp

(
µ− µo

RT

)
(G.2)
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where R is the gas constant, T the thermodynamic temperature, µ the chemical

potential, and µo the standard chemical potential—the definition of which depends

on the choice of standard state.

https://doi.org/10.1351/goldbook.A00115 Note: Here µo is a standard state, which

is essentially a reference state. A user of this concept is “free” to define their own

reference state (†). For e.g., the above equation can be re-written as

a† = exp

(
µ− µ†

RT

)
(G.3)

where µ† is the reference chemical potential, and a† is the relative activity defined

relative to the reference state, †.

G.2 Activity coefficents

An activity coefficient is a thermodynamic factor used to account for deviations from

the reference state, which is usually a state that represents ideality, i.e.,

RT ln(γ†i xi) = µi − µ†i (G.4)

Therefore, using equations G.3 and G.4 we have,

γ†i =
a†i
xi

(G.5)
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G.2.1 Revisiting the Ideal Solution Model

The Gibbs free energy, G, of a mxiture is given by,

G =
∑
i

G∗i + ∆Gmix, (G.6)

where, G∗i is the free energy of i in the pure state, and for an ideal solution,

∆Gmix = NkBT
∑
i

xi lnxi. (G.7)

Therefore, we have

G =
∑
i

G∗i +NkBT
∑
i

xi lnxi. (G.8)

Now, we know that

µi =

(
∂G

∂Ni

)
T,P,Nj 6=i

(G.9)

Thus, taking the partial derivative of G wrt Ni, we get

µidi = µ∗i + kBT lnxi (G.10)

where, µ∗i is the chemical potential of pure species i in the same state of aggregation as

that of the solution, i.e., in a liquid mixture, µ∗i is the chemical potential of pure liquid i

at temperature T and pressure P . Thus, the liming behavior of Equation G.10 is,

• limxi→1 µi = µ∗i , i.e., the chemical potential of solute i tends to the pure i’s chemical

potential as xi tends to 1.

• limxi→0 µi = −∞, i.e., the chemical potential of solute i tends to negative infinity

as xi tends to 0. This is because, the number of configurations of solute i in the

solution tend to infinity as xi tends to 0.
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G.2.2 Non-ideal solution

For non-ideal solutions, the chemical potential of species i can be broken as:

µi = µidi + µexi (G.11)

where, µexi is the real solution’s deviation from the ideal one, and, we have

µi = µ∗i + kBT lnxi + µexi (G.12)

Now, by defining

µexi = kBT ln γi, (G.13)

we get:

µi = µ∗i + kBT lnxi + kBT ln γi, (G.14)

or,

µi = µ∗i + kBT ln γixi. (G.15)

where, γi(T, P,x) is the activity coefficient of species i. Thus, the activity coefficient gives

us a measure of deviation from an ideal solution. Note, this is because in Equation G.11,

we brokedown the species’ chemical potential into an ideal part and an excess part, i.e.,

the ideal solution is the reference state/system against which the non-ideality is being

measured.

Thus, the liming behavior of Equation G.15 is,

• limxi→1 γi = 1, since the chemical potential of solute i (µi) tends to the pure i’s

chemical potential (µ∗i ) as xi tends to 1, γi tends to 1.

• limxi→0 γi = γ∞i , as we solvate a species in a solution, the excess chemical potential
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of solute i tends to a constant value as xi tends to 0. Imagine solvating a molecule

in a lake vs. in an ocean, the excess potential—over the ideal—would be the same!

This is because, the molecule is only seeing and interacting with solvent molecules

(think spherical cutoffs for the interactions) in both the cases, so the free energy

change is the same.

Note, µ∗i is the chemical potential of pure species i in the same state of aggregation

as that of the solution. So, if we have a solution with ions, µ∗i is the chemical potential of

the pure ion in the liquid phase at temperature T and pressure P , which is a hypothetical

state—not measurable experimentally! Therefore, for such systems we adopt a different

convention. We define the activitity coefficient at infinte dilution of the solute to be

1. We do this by normalizing the activity coefficient in Equation G.15 by the infinite

diluation activity coefficient, i.e.,

γ†i =
γi
γ∞i

(G.16)

which gives us,

µi = µ∗i + kBT ln

(
γ∞i

γi
γ∞i

xi

)
(G.17a)

µi = µ†i + kBT ln γ†i xi (G.17b)

where,

µ†i = µ∗i + kBT ln γ∞i (G.18)

Thus, the liming behavior of Equation G.17 is,

• limxi→0 γ
†
i = 1, by construction. Here the non-ideality is being measured from a

state of an infinitely diluted solution, i.e., a refernce state.

• limxi→1 γ
†
i = 1/γ∞i .
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Thermodynamic Checks

H.1 µC(T, P sat):

µC(T, P sat) = aC(T, vC) + P satvC (H.1)

since, vC doesn’t vary much with P we can assume it is unchanged. Also, since P sat ∼mPa,

P satvC ∼10-11kBT/molecule and can be ignored. Thus,

µC(T, P sat) = aC(T, vC) (H.2)
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H.2 Testing the centroid to bond transformations

Table H.1: Centroid to bond transformations for naphthalene

ksp,C(kBT/Å
2) # of Gauss points βa∗,intra βa∗→bonded βabonded,†

2000

45 80.60 -108.53 -27.93 ± 0.17

70 80.60 -108.97 -28.36 ± 0.14

200

45 21.87 -50.17 -28.30 ± 0.09

70 21.87 -50.24 -28.36 ± 0.07

95 21.87 -50.18 -28.31 ± 0.06

20 45 -36.84 8.51 -28.33 ± 0.05

Table H.2: Centroid to bond transformations for succinic acid

ksp,O(kBT/Å
2) # of Gauss points βa∗,intra βa∗→bonded βabonded,†

2000 45 55.62 -85.65 -30.03 ± 0.10

200 75 10.72 -41.57 -30.85 ± 0.05

200 95 10.72 -41.56 -30.84 ± 0.05

20 75 -34.18 3.47 -30.72 ± 0.03

20 95 -34.18 3.49 -30.70 ± 0.03
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H.3 Sampling the COOH dihedral in the gas phase

REMD fingerprint

Figure H.1: Temperature walk of first replica (λ = 0.5), only first 5 ns shown for
clarity. The lower temperatures (300 K- 350 K) are chosen where we evaluate the vapor
pressures, the higher temperatures (500 K, 600 K) are for enhancing the sampling of
the COOH dihedral

COOH dihedral sampling improvement while switching ON coulombic inter-

actions

The integration time step in both the MD and REMD simulations is 0.5 fs, the

dihedral data is shown at an interval of 10 ps for clarity.
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Figure H.2: MD (upper) vs REMD (lower) COOH dihedral timeseries (λ = 0.047)

Figure H.3: MD (upper) vs REMD (lower) COOH dihedral timeseries (λ = 0.5)
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Figure H.4: MD (upper) vs REMD (lower) COOH dihedral timeseries (λ = 0.953)

H.4 Long range vdW correction for crystalline sys-

tems

For long range vdW interactions the standard tail correction for n different nonbond

atom types interacting with pair potential Eij(r) is given by,

Etail−correction =
1

2

n∑
i=1

Ni

n∑
j=1

ρj4π

∫ ∞
rc

gij(r)Eij(r)r
2dr, (H.3)

where gij(r) is the pair radial distribution function and rc is the cutoff value.[1] For

liquids, g(r) = 1 is a good approximation for large values of rc. For molecular crystals,

though the radial distribution function g(r) does not converge to unity, the definition

of g(r) implies that at large separation, the mean value of g(r) must be 1. Since the

vdW function and its first derivative are very flat in the region of long separation, it is

plausible to assume g(r) = 1 and use equation H.3 to calculate the tail corrections.[1] To
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test this plausibility, we compute the potential energy per unit molecule—for the initial

configuration—at various cutoffs with and without tail corrections for the naphthalene

and succinic acid crystals as shown in Figure H.5.

Figure H.5: Test system schematic for testing long range vdW corrections.

We setup a 10 × 14 × 14 and 15 × 10 × 15 system for naphthalene and β-succinic

211



Thermodynamic Checks Chapter H

acid, respectively to compute the potential energy per molecule with and without tail

corrections for rc = 10-35 Å. As seen from figures H.6 and H.7, the tail corrections

computed using equation H.3 are an excellent approximation.

Figure H.6: Testing tail corrections for the naphthalene crystal system.
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Figure H.7: Testing tail corrections for the β-succinic acid crystal system.
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Appendix I

Computing the free energy of the

centroid

Computing Zn/Z
o
n:

Zn
Zo
n

=

∫ ∏n
i=1 drie

−β
2

∑n
i=1 ki||ri−r

(n)
COM ||

2∫ ∏n
i=1 drie

−β
2

∑n
i=1 ki||ri−r

(n−1)
COM ||2

=

∫ ∏n
i=1 drie

−β
2
Un(ri;r

(n)
COM )∫ ∏n

i=1 drie
−β

2
Uon(ri;r

(n−1)
COM )

=
〈
e−β(Un−Uon)

〉
Uon

=
〈
e−β∆Un

〉
Uon

(I.1)
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Naphthalene

The results for adding atoms starting with a carbon (C) atom are:

Table I.1: Simulation results for successively adding atoms to build the centroid for
naphthalene

Atom being added n
〈
e−β∆Un

〉
Uon

C

2 2.8417 ± 0.0273

3 1.8374 ± 0.0041

4 1.5378 ± 0.0022

5 1.3976 ± 0.0014

6 1.3144 ± 0.0011

7 1.2608 ± 0.0008

8 1.2209 ± 0.0007

9 1.1931 ± 0.0006

10 1.1710 ± 0.0005

H

11 1.0126 ± 0.0000

12 1.0125 ± 0.0000

13 1.0124 ± 0.0000

14 1.0123 ± 0.0000

15 1.0123 ± 0.0000

16 1.0121 ± 0.0000

17 1.0121 ± 0.0000

18 1.0120 ± 0.0000
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Succinic acid

The results for adding atoms starting with an oxygen (O) atom are:

Table I.2: Simulation results for successively adding atoms to build the centroid for
succinic acid

Atom being added n
〈
e−β∆Un

〉
Uon

O

2 2.8403 ± 0.0097

3 1.8381 ± 0.0013

4 1.5395 ± 0.0007

C

5 1.2947 ± 0.0003

6 1.2464 ± 0.0002

7 1.2112 ± 0.0002

8 1.1853 ± 0.0002

H

9 1.0135 ± 0.0000

10 1.0134 ± 0.0000

11 1.0133 ± 0.0000

12 1.0132 ± 0.0000

13 1.0131 ± 0.0000

14 1.0129 ± 0.0000
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Computing Zo
n/Zn−1:

Zo
n

Zn−1

=

∫ ∏n
i=1 drie

−β
2

∑n
i=1 ki||ri−r

(n−1)
COM ||

2∫ ∏n−1
i=1 drie

−β
2

∑n−1
i=1 ki||ri−r

(n−1)
COM ||2

=

∫
drn

[∫ ∏n−1
i=1 drie

−β
2

∑n−1
i=1 ki||ri−r

(n−1)
COM ||

2
]
e−

β
2
kn||rn−r(n−1)

COM ||
2∫ ∏n−1

i=1 drie
−β

2

∑n−1
i=1 ki||ri−r

(n−1)
COM ||2

=

∫ +∞

−∞
drne

−β
2
kn||rn−r(n−1)

COM ||
2

=

(
2π

βkn

)3/2

(I.2)
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Appendix J

Potential Mean Force - COOH

dihedral

In this appendix we examine the relative stability of the cis and trans conformations of

the COOH dihedral in the solution phase along the coupling path shown in the figure

below.

1

6’ 6

+

Figure J.1: The decoupling thermodynamic path. Grey shaded area: LJA-B=ON,
COULA-B=OFF; colored atoms: intramolcular LJ and coulombic interactions=ON
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Potential Mean Force - COOH dihedral Chapter J

Gas Phase

Figure J.2: The potential mean force along the COOH dihedral in the gas phase—the
decoupled state—where λLJ = 0andλq = 0.

Figure J.2 shows the potential mean force of the COOH dihedral in the decoupled

state, i.e., the gas state. Since the free energy difference between the cis (φ = 0◦) and

trans (φ = 180◦) is ∼ 6 kBT —it is clear that the dihedral exists in the cis conformation.
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Potential Mean Force - COOH dihedral Chapter J

LJ-coupled State

Figure J.3: The potential mean force along the COOH dihedral in the LJ-coupled
state—where λLJ = 1, λq = 0.

Figure J.3 shows the potential mean force of the COOH dihedral in the LJ-coupled

state, i.e., the solute molecule is only coupled to the solution via the Lennard-Jones

interactions. Since the free energy difference between the cis (φ = 0◦) and trans (φ =

180◦) is once again ∼ 6 kBT —it is clear that the dihedral exists in the cis conformation.
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Potential Mean Force - COOH dihedral Chapter J

Coupled State

Figure J.4: The potential mean force along the COOH dihedral in the fully-coupled
state—where λLJ = 1, λq = 1.

Figure J.4 shows the potential mean force of the COOH dihedral in the coupled

state, i.e., the solute molecule is fully coupled to the solution via the Lennard-Jones

and coulombic interactions. In this case, since the free energy difference between the

cis (φ = 0◦) and trans (φ = 180◦) ≤ 1 kBT — the dihedral exists in the cis and trans

conformations, both.
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Appendix K

Population Balance Deep Dive

K.1 Regularity Condition

Here in this appendix we derive the regularity boundary condition for the PDE:

∂n

∂t
=
nin
τ
− n

τ
+QB −QD −

∂(G · n)

∂r
+
∂δ(r) ·G · n

∂r
(K.1)

with the initial condition and boundary conditions as n(r, 0) = n0(r) & n(∞, t) =

n(0, t) = 0, respectively

where:

1. c = concentration of the solute in the crystallizer

2. n = n(r, t) = # of crystals per unit volume of SUSPENSION with radius r and

time t

3. QB = QB(r, c) = # of crystals born at radius r per unit volume of SUSPENSION

per unit volume of time, i.e., the birth rate
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QB = εBδ(r), where:

B=nucleation rate per unit volume of LIQUID

ε = fraction of liquid in the crystallizer, i.e., ε = Vliq/Vsus

4. QD = QD(r, c) = # of crystals which die with radius r per unit volume of SUS-

PENSION per unit volume of time, i.e., the death rate

5. G = G(r, c) = the rate at which a finite size particle increases its radius, i.e. the

growth rate

Note, n(0, t) = 0, as nuclei/particles of size 0 do not exist. The smallest size nuclei are

the crticial size nuclei, i.e. r = rcrit.

Assuming nin = 0 & QD = 0, we integrate PDE K.1 around r = 0 and take the limit

as r → 0,

lim
r→0

[∫ 0+r

0−r

∂n

∂t
dr =

∫ 0+r

0−r
−n
τ
dr +

∫ 0+r

0−r
εBδ(r)dr −

∫ 0+r

0−r

∂(G · n)

∂r
dr +

∫ 0+r

0−r

∂(δ(r) ·G · n)

∂t
dr

]
(K.2)

Going left to right term wise we get:

lim
r→0

[∫ 0+r

0−r

∂n

∂t
dr

]
=

∂

∂t
lim
r→0

[∫ 0+r

0−r
ndr

]
= 0 (K.3a)

lim
r→0

[∫ 0+r

0−r

−n
τ
dr

]
= 0 (K.3b)

lim
r→0

[∫ 0+r

0−r
εBδ(r)

]
= εB (K.3c)

lim
r→0

[∫ 0+r

0−r

∂(G · n)

∂r
dr

]
= G

[
n(0+)− n(0−)

]
(K.3d)
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lim
r→0

[∫ 0+r

0−r

∂(δ(r) ·G · n)

∂r
dr

]
= G · n(0, t) = 0 (K.3e)

From the above set of equations we get the “jump condition”:

n(0+)− n(0−) =
εB

G
(K.4)

which translates into the regularity boundary condition as n(0−) = 0:

n(0+, t) =
εB

G
(K.5)

with the corresponding PDE being

∂n

∂t
= −n

τ
− ∂(G · n)

∂r
(K.6)

The regularity expression can be arrived from a “continuation” at boundary point of

view giving the “incorrect” expression in literature as:

G · n(0, t) = B (K.7)

‘Dimensionally’ this is incorrect as

#

Vsus · t
6= #

Vliq · t
(K.8)

However, the correct regularity condition (equation K.5) gives the ‘dimensions’

#

Vsus · t
=

#

Vsus · t
(K.9)
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Another footprint for the correct regularity condition can be seen in the zeroth mo-

ment equation (integrating equation K.6 wrt r from 0 to ∞),

∫ ∞
0

∂n

∂t
dr =

∫ ∞
0

−n
τ
dr −

∫ ∞
0

∂(G · n)

∂r
dr (K.10)

which gives

m0 = −m0

τ
+G · n(0) = −m0

τ
+ εB (K.11)

which is the same zeroth moment equation arrived from the ‘delta function PDE’.

Figure K.1 shows the scematic of the boundary condition. The jump in the boundary

condition at 0 is the manifestation of the delta nucleation function. Note, n(0+) = εB/G,

is the regularity boundary condition. Since the smallest size nuclei are of size rcrit,

therefore n(0+) = n(rcrit). For numerical simulations, we approximate n(0+) ≈ n(0).

0 r

n

n(0+)

n(0,t) = 0

Figure K.1: Boundary Condition Schematic
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Appendix L

Solving the Ever-kinked Crystal

System Equations

L.1 Solving the 2D Ever-kinked orthorhombic lattice

equations
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In[1]:= (*Initializing crystallography*)
γ = π / 2; (*90.0 deg*)
a = a;
b = b;

(*Setting Supercell size*)
m = m;
n = n;

(*Initializing original lattice vectors*)
i = {1, 0};
j = {Cos[γ], Sin[γ]};

(*Initializing new lattice vectors*)
iNew = {iNew1, iNew2};
jNew = {jNew1, jNew2};

(*Setting up equations for a Ever-kinked crystal surface*)
eq4 = m a iNew + b jNew ⩵ Lx i;
eq5 = n b jNew - a iNew ⩵ Ly j;

"Solving m a iNew + b jNew == Lx i && n b jNew - a iNew ⩵ Ly j"
ans = Solve[{eq4, eq5}, {iNew1, iNew2, jNew1, jNew2}]
iNew = {ans[[1, 1, 2]], ans[[1, 2, 2]]};
jNew = {ans[[1, 3, 2]], ans[[1, 4, 2]]};

"iNew.iNew:"
iNew.iNew // Simplify
"jNew.jNew:"
jNew.jNew // Simplify

"Solving iNew.jNew==cos[γ]:"
ans2 = Solve[{iNew.jNew ⩵ Cos[γ]}, {Ly}]
"Ly=f(Lx):"
Ly2 = ans2[[2, 1, 2]]

"New iNew after plugging in Ly = f(Lx)"
iNew = iNew /. Ly → Ly2

"New jNew after plugging in Ly = f(Lx)"
jNew = jNew /. Ly → Ly2

"Solving iNew.iNew==1:"
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In[1]:=

ans3 = Solve[{iNew.iNew ⩵ 1}, {Lx}] // Simplify

"Lx: (new periodic box length in i-direction)"
Lx2 = ans3[[2, 1, 2]]
"Ly: (new periodic box length in j-direction)"
Ly2 = Ly2 /. Lx → Lx2

iNew = iNew /. Lx → Lx2;
jNew = jNew /. Lx → Lx2 /. Ly → Ly2;

"New iNew after plugging Ly as a f(Lx):"
iNew
"New jNew after plugging Ly as a f(Lx):"
jNew

"New iNew.iNew: should be equal to 1"
iNew.iNew // Simplify
"New jNew.jNew: should be equal to 1"
jNew.jNew // Simplify
"New iNew.jNew: should be equal to 0"
iNew.jNew // Simplify

Out[11]= Solving m a iNew + b jNew == Lx i && n b jNew - a iNew ⩵ Ly j

Out[12]= iNew1 →
Lx n

a (1 + m n)
, iNew2 → -

Ly

a (1 + m n)
, jNew1 →

Lx

b (1 + m n)
, jNew2 →

Ly m

b (1 + m n)


Out[15]= iNew.iNew:

Out[16]=
Ly2 + Lx2 n2

(a + a m n)2

Out[17]= jNew.jNew:

Out[18]=
Lx2 + Ly2 m2

(b + b m n)2

Out[19]= Solving iNew.jNew==cos[γ]:

Out[20]= Ly → -
Lx n

m
, Ly →

Lx n

m


Out[21]= Ly=f(Lx):

Out[22]=
Lx n

m

Out[23]= New iNew after plugging in Ly = f(Lx)
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Out[24]= 
Lx n

a (1 + m n)
, -

Lx n

a m (1 + m n)


Out[25]= New jNew after plugging in Ly = f(Lx)

Out[26]= 
Lx

b (1 + m n)
,
Lx m n

b (1 + m n)


Out[27]= Solving iNew.iNew==1:

Out[28]= Lx → -
1

n
a2 m (1+m n)

, Lx →
1

n
a2 m (1+m n)



Out[29]= Lx: (new periodic box length in i-direction)

Out[30]=
1

n
a2 m (1+m n)

Out[31]= Ly: (new periodic box length in j-direction)

Out[32]=
n

m n
a2 m (1+m n)

Out[35]= New iNew after plugging Ly as a f(Lx):

Out[36]= 
n

a n
a2 m (1+m n)

(1 + m n)
, -

n

a m n
a2 m (1+m n)

(1 + m n)


Out[37]= New jNew after plugging Ly as a f(Lx):

Out[38]= 
1

b n
a2 m (1+m n)

(1 + m n)
,

m n

b n
a2 m (1+m n)

(1 + m n)


Out[39]= New iNew.iNew: should be equal to 1

Out[40]= 1

Out[41]= New jNew.jNew: should be equal to 1

Out[42]=
a2 m

b2 n

Out[43]= New iNew.jNew: should be equal to 0

Out[44]= 0
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Solving the Ever-kinked Crystal System Equations Chapter L

L.1.1 Numeric Solution for a=b=1 & γ=90◦

Figure L.1: The 2D everkinked lattice for a=b=1, γ=90◦
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In[1]:= (*Initializing crystallography*)
γ = π / 2;(*90.0 deg*)
a = 1;
b = 1;

(*Setting Supercell size*)
m = 5;
n = 5;

(*Initializing original lattice vectors*)
i = {1, 0};
j = {Cos[γ], Sin[γ]};

(*Initializing new lattice vectors*)
iNew = {iNew1, iNew2};
jNew = {jNew1, jNew2};

(*Setting up equations for a Ever-kinked crystal surface*)
eq4 = m a iNew + b jNew ⩵ Lx i;
eq5 = n b jNew - a iNew ⩵ Ly j;

"Solving m a iNew + b jNew == Lx i && n b jNew - a iNew ⩵ Ly j"
ans = Solve[{eq4, eq5}, {iNew1, iNew2, jNew1, jNew2}]
iNew = {ans[[1, 1, 2]], ans[[1, 2, 2]]};
jNew = {ans[[1, 3, 2]], ans[[1, 4, 2]]};

"iNew.iNew:"
iNew.iNew // Simplify
"jNew.jNew:"
jNew.jNew // Simplify

"Solving iNew.jNew==cos[γ]:"
ans2 = Solve[{iNew.jNew ⩵ Cos[γ]}, {Ly}]
"Ly=f(Lx):"
Ly2 = ans2[[2, 1, 2]]

"New iNew after plugging in Ly = f(Lx)"
iNew = iNew /. Ly → Ly2

"New jNew after plugging in Ly = f(Lx)"
jNew = jNew /. Ly → Ly2

"Solving iNew.iNew==1:"
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In[1]:=

ans3 = Solve[{iNew.iNew ⩵ 1}, {Lx}] // Simplify

"Lx: (new periodic box length in i-direction)"
Lx2 = ans3[[2, 1, 2]]
"Ly: (new periodic box length in j-direction)"
Ly2 = Ly2 /. Lx → Lx2

iNew = iNew /. Lx → Lx2;
jNew = jNew /. Lx → Lx2 /. Ly → Ly2;

"New iNew after plugging Ly as a f(Lx):"
iNew
"New jNew after plugging Ly as a f(Lx):"
jNew

"New iNew.iNew: should be equal to 1"
iNew.iNew // Simplify
"New jNew.jNew: should be equal to 1"
jNew.jNew // Simplify
"New iNew.jNew: should be equal to 0"
iNew.jNew // Simplify

Out[12]= Solving m a iNew + b jNew == Lx i && n b jNew - a iNew ⩵ Ly j

Out[13]= iNew1 →
5 Lx

26
, iNew2 → -

Ly

26
, jNew1 →

Lx

26
, jNew2 →

5 Ly

26


Out[16]= iNew.iNew:

Out[17]=
1

676
25 Lx2 + Ly2

Out[18]= jNew.jNew:

Out[19]=
1

676
Lx2 + 25 Ly2

Out[20]= Solving iNew.jNew==cos[γ]:

Out[21]= {{Ly → -Lx}, {Ly → Lx}}

Out[22]= Ly=f(Lx):

Out[23]= Lx

Out[24]= New iNew after plugging in Ly = f(Lx)

Out[25]= 
5 Lx

26
, -

Lx

26


Out[26]= New jNew after plugging in Ly = f(Lx)
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Out[27]= 
Lx

26
,
5 Lx

26


Out[28]= Solving iNew.iNew==1:

Out[29]= Lx → - 26 , Lx → 26 

Out[30]= Lx: (new periodic box length in i-direction)

Out[31]= 26

Out[32]= Ly: (new periodic box length in j-direction)

Out[33]= 26

Out[36]= New iNew after plugging Ly as a f(Lx):

Out[37]= 
5

26
, -

1

26


Out[38]= New jNew after plugging Ly as a f(Lx):

Out[39]= 
1

26
,

5

26


Out[40]= New iNew.iNew: should be equal to 1

Out[41]= 1

Out[42]= New jNew.jNew: should be equal to 1

Out[43]= 1

Out[44]= New iNew.jNew: should be equal to 0

Out[45]= 0
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Solving the Ever-kinked Crystal System Equations Chapter L

L.1.2 Numeric Solution for a=1.3168, b=1 & γ=45◦

Figure L.2: The 2D everkinked lattice for a=1.3168, b=1 & γ=45◦

235



In[1]:= (*Initializing crystallography*)
γ = π / 4; (*45 deg*)
a = 1.3168;
b = 1.0;

(*Setting Supercell size*)
m = 7;
n = 14;

(*Initializing original lattice vectors*)
i = {1, 0};
j = {Cos[γ], Sin[γ]};

(*Initializing new lattice vectors*)
iNew = {iNew1, iNew2};
jNew = {jNew1, jNew2};

(*Setting up equations for a Ever-kinked crystal surface*)
eq4 = m a iNew + b jNew ⩵ Lx i;
eq5 = n b jNew - a iNew ⩵ Ly j;

"Solving m a iNew + b jNew == Lx i && n b jNew - a iNew ⩵ Ly j"
ans = Solve[{eq4, eq5}, {iNew1, iNew2, jNew1, jNew2}]
iNew = {ans[[1, 1, 2]], ans[[1, 2, 2]]};
jNew = {ans[[1, 3, 2]], ans[[1, 4, 2]]};

"iNew.iNew"
iNew.iNew // Simplify
"jNew.jNew:"
jNew.jNew // Simplify

"Solving iNew.jNew==cos[γ]:"
ans2 = Solve[{iNew.jNew ⩵ Cos[γ]}, {Ly}]
"Ly=f(Lx)"
Ly2 = ans2[[1, 1, 2]]
iNew = iNew /. Ly → Ly2

"Solving iNew.iNew==1:"
ans3 = Solve[{iNew.iNew ⩵ 1}, {Lx}] // Simplify

"Lx: (new periodic box length in i-direction)"
Lx2 = ans3[[2, 1, 2]]
N[Lx2]
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In[1]:=

"Ly: (new periodic box length in j-direction)"
Ly2 = Ly2 /. Lx → Lx2
N[Ly2]

iNew = iNew /. Lx → Lx2;
jNew = jNew /. Lx → Lx2 /. Ly → Ly2;

"New iNew after plugging Ly as a f(Lx):"
iNew
"New jNew after plugging Ly as a f(Lx):"
jNew
"New iNew.iNew: should be equal to 1"
iNew.iNew // Simplify
N[iNew.iNew]
"New jNew.jNew: should be equal to 1"
jNew.jNew // Simplify
N[jNew.jNew]
"New iNew.jNew: should be equal to 0"
iNew.jNew // Simplify

Out[11]= Solving m a iNew + b jNew == Lx i && n b jNew - a iNew ⩵ Ly j

Out[12]= {{iNew1 → 0.107392 Lx - 0.00542413 Ly, iNew2 → 0. - 0.00542413 Ly,
jNew1 → 0.010101 Lx + 0.0499974 Ly, jNew2 → 0. + 0.0499974 Ly}}

Out[15]= iNew.iNew

Out[16]= 0. + 0.0115331 Lx2 - 0.00116502 Lx Ly + 0.0000588423 Ly2

Out[17]= jNew.jNew:

Out[18]= 0. + 0.00010203 Lx2 + 0.00101005 Lx Ly + 0.00499949 Ly2

Out[19]= Solving iNew.jNew==cos[γ]:

Solve: Solve was unable to solve the system with inexact coefficients. The answer was obtained by solving a
corresponding exact system and numericizing the result.

Out[20]= Ly → 2.89462 × 10-20 1.69253 × 1020 Lx - 2.64575 -2.22278 × 1041 + 4.43338 × 1039 Lx2 ,

Ly → 2.89462 × 10-20 1.69253 × 1020 Lx + 2.64575 -2.22278 × 1041 + 4.43338 × 1039 Lx2 

Out[21]= Ly=f(Lx)

Out[22]= 2.89462 × 10-20 1.69253 × 1020 Lx - 2.64575 -2.22278 × 1041 + 4.43338 × 1039 Lx2 

Out[23]= 0.107392 Lx -

1.57008 × 10-22 1.69253 × 1020 Lx - 2.64575 -2.22278 × 1041 + 4.43338 × 1039 Lx2 ,

0. - 1.57008 × 10-22 1.69253 × 1020 Lx - 2.64575 -2.22278 × 1041 + 4.43338 × 1039 Lx2 
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Out[24]= Solving iNew.iNew==1:

Out[25]= {{Lx → -13.1354}, {Lx → 9.94986}}

Out[26]= Lx: (new periodic box length in i-direction)

Out[27]= 9.94986

Out[28]= 9.94986

Out[29]= Ly: (new periodic box length in j-direction)

Out[30]= 13.102

Out[31]= 13.102

Out[34]= New iNew after plugging Ly as a f(Lx):

Out[35]= {0.997472, -0.071067}

Out[36]= New jNew after plugging Ly as a f(Lx):

Out[37]= {0.755571, 0.655067}

Out[38]= New iNew.iNew: should be equal to 1

Out[39]= 1.

Out[40]= 1.

Out[41]= New jNew.jNew: should be equal to 1

Out[42]= 1.

Out[43]= 1.

Out[44]= New iNew.jNew: should be equal to 0

Out[45]= 0.707107
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L.2 Solving the 3D Ever-kinked orthorhombic lattice

equations
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In[206]:= (*Initializing crystallography*)
γ = π / 2;(*90.00 deg*)
a = a;
b = b;
c = c;

(*Setting Supercell size*)
m = m;
n = n;

(*Initializing original lattice vectors*)
i = {1, 0, 0};
j = {0, 1, 0};

(*Initializing new lattice vectors*)
iNew = {iNew1, iNew2, iNew3};
jNew = {jNew1, jNew2, jNew3};
kNew = Cross[iNew, jNew];

(*Setting up equations for a Ever-kinked crystal surface*)
eq4 = m a iNew - b jNew ⩵ Lx i;
eq5 = n b jNew + a iNew + c kNew ⩵ Ly j;

"Solving m a iNew- b jNew⩵Lx i && n b jNew + a iNew+ c kNew⩵Ly j"
ans = Solve[{eq4, eq5}, {iNew1, iNew2, iNew3, jNew1, jNew2, jNew3}]
iNew = {ans[[1, 1, 2]], ans[[1, 2, 2]], ans[[1, 3, 2]]};
jNew = {ans[[1, 4, 2]], ans[[1, 5, 2]], ans[[1, 6, 2]]};

"iNew.iNew:"
iNew.iNew // Simplify
"jNew.jNew:"
jNew.jNew // Simplify

"Solving iNew.jNew==cos[γ]:"
ans2 = Solve[{iNew.jNew ⩵ Cos[γ]}, {Ly}]
"Ly=f(Lx):"
Ly2 = ans2[[2, 1, 2]]

"iNew with Ly=f(Lx):"
iNew = iNew /. Ly → Ly2

"jNew with Ly=f(Lx):"
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In[206]:=

jNew = jNew /. Ly → Ly2

"iNew.iNew:"
iNew.iNew // Simplify

"jNew.jNew:"
jNew.jNew // Simplify

"Solving jNew.jNew==1:"
ans3 = Solve[{jNew.jNew ⩵ 1}, {Lx}] // Simplify

"Lx: (new periodic box length in i-direction)"
Lx2 = ans3[[2, 1, 2]]
"Ly: (new periodic box length in j-direction)"
Ly2 = Ly2 /. Lx → Lx2

iNew = iNew /. Lx → Lx2;
jNew = jNew /. Lx → Lx2 /. Ly → Ly2;

"New iNew after plugging Lx as a f(Ly):"
iNew
"New jNew after plugging Lx as a f(Ly):"
jNew
"New iNew.iNew: should be equal to 1"
iNew.iNew // Simplify
"New jNew.jNew: should be equal to 1"
jNew.jNew // Simplify
"New iNew.jNew: should be equal to 0"
iNew.jNew // Simplify

Out[219]= Solving m a iNew- b jNew⩵Lx i && n b jNew + a iNew+ c kNew⩵Ly j

Out[220]= iNew1 →
Lx n

a (1 + m n)
, iNew2 →

a b2 Ly (1 + m n)

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2
,

iNew3 → -
b c Lx Ly

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2
,

jNew1 → -
Lx

b (1 + m n)
, jNew2 →

a2 b Ly m (1 + m n)

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2
,

jNew3 → -
a c Lx Ly m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2


Out[223]= iNew.iNew:
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Out[224]=
c2 Lx4 n2 + a2 (b + b m n)2 Ly2 + Lx2 n2

(a + a m n)2 c2 Lx2 + a2 (b + b m n)2

Out[225]= jNew.jNew:

Out[226]=
c2 Lx4 + a2 Lx2 + Ly2 m2 (b + b m n)2

(b + b m n)2 c2 Lx2 + a2 (b + b m n)2

Out[227]= Solving iNew.jNew==cos[γ]:

Out[228]= Ly → - Lx n   a b (1 + m n) 
a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
,

Ly → Lx n   a b (1 + m n) 
a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22


Out[229]= Ly=f(Lx):

Out[230]= Lx n   a b (1 + m n)


a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22

Out[231]= iNew with Ly=f(Lx):
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Out[232]= 
Lx n

a (1 + m n)
,  a b3/2 Lx n   a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2


a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
,

-  b c Lx2 n   a (1 + m n) a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2


a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22


Out[233]= jNew with Ly=f(Lx):

Out[234]= -
Lx

b (1 + m n)
, a3/2 b Lx m n   a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2


a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
,

-  a c Lx2 m n   b (1 + m n) a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n2


a3 b3 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a b c2 Lx2 m

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

2 a3 b3 m2 n

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22
+

a3 b3 m3 n2

a2 b2 + c2 Lx2 + 2 a2 b2 m n + a2 b2 m2 n22

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Out[235]= iNew.iNew:

Out[236]=
Lx2 n

a2 m (1 + m n)

Out[237]= jNew.jNew:

Out[238]=
Lx2

b2 (1 + m n)

Out[239]= Solving jNew.jNew==1:

Out[240]= Lx → -b 1 + m n , Lx → b 1 + m n 

Out[241]= Lx: (new periodic box length in i-direction)

Out[242]= b 1 + m n

Out[243]= Ly: (new periodic box length in j-direction)

Out[244]=  b n   a 1 + m n 
a3 b3 m

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

2 a3 b3 m2 n

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a3 b3 m3 n2

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a b3 c2 m (1 + m n)

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2

Out[247]= New iNew after plugging Lx as a f(Ly):
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Out[248]= 
b n

a 1 + m n
,  a b5/2 n 1 + m n   a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)


a3 b3 m

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

2 a3 b3 m2 n

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a3 b3 m3 n2

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a b3 c2 m (1 + m n)

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
,

- b5/2 c n   a a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)


a3 b3 m

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

2 a3 b3 m2 n

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a3 b3 m3 n2

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a b3 c2 m (1 + m n)

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2


Out[249]= New jNew after plugging Lx as a f(Ly):
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Out[250]= -
1

1 + m n
, a3/2 b3/2 m n 1 + m n   a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)


a3 b3 m

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

2 a3 b3 m2 n

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a3 b3 m3 n2

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a b3 c2 m (1 + m n)

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
,

-  a b3/2 c m n   a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)


a3 b3 m

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

2 a3 b3 m2 n

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a3 b3 m3 n2

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2
+

a b3 c2 m (1 + m n)

a2 b2 + 2 a2 b2 m n + a2 b2 m2 n2 + b2 c2 (1 + m n)2


Out[251]= New iNew.iNew: should be equal to 1

Out[252]=
b2 n

a2 m

Out[253]= New jNew.jNew: should be equal to 1

Out[254]= 1

Out[255]= New iNew.jNew: should be equal to 0

Out[256]= 0
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Solving the Ever-kinked Crystal System Equations Chapter L

L.2.1 Numeric Solution for a=b=c=1 & α=β=γ=90◦

Figure L.3: The 3D everkinked lattice for a=b=c=1, α=β=γ=90◦
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In[54]:= (*Initializing crystallography*)
γ = π / 2;(*90.00 deg*)
a = 1;
b = 1;
c = 1;

(*Setting Supercell size*)
m = 5;
n = 5;

(*Initializing original lattice vectors*)
i = {1, 0, 0};
j = {0, 1, 0};

(*Initializing new lattice vectors*)
iNew = {iNew1, iNew2, iNew3};
jNew = {jNew1, jNew2, jNew3};
kNew = Cross[iNew, jNew];

(*Setting up equations for a Ever-kinked crystal surface*)
eq4 = m a iNew - b jNew ⩵ Lx i;
eq5 = n b jNew + a iNew + c kNew ⩵ Ly j;

"Solving m a iNew - b jNew ⩵ Lx i && n b jNew + a iNew + c kNew ⩵ Ly j"
ans = Solve[{eq4, eq5}, {iNew1, iNew2, iNew3, jNew1, jNew2, jNew3}]
iNew = {ans[[1, 1, 2]], ans[[1, 2, 2]], ans[[1, 3, 2]]};
jNew = {ans[[1, 4, 2]], ans[[1, 5, 2]], ans[[1, 6, 2]]};

"iNew.iNew:"
iNew.iNew // Simplify
"jNew.jNew:"
jNew.jNew // Simplify

"Solving iNew.jNew==cos[γ]:"
ans2 = Solve[{iNew.jNew ⩵ Cos[γ]}, {Ly}]
"Ly=f(Lx):"
Ly2 = ans2[[2, 1, 2]]

"iNew with Ly=f(Lx):"
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In[54]:=

iNew = iNew /. Ly → Ly2

"jNew with Ly=f(Lx):"
jNew = jNew /. Ly → Ly2

"iNew.iNew:"
iNew.iNew // Simplify

"jNew.jNew:"
jNew.jNew // Simplify

"Solving jNew.jNew==1:"
ans3 = Solve[{jNew.jNew ⩵ 1}, {Lx}] // Simplify

"Lx: (new periodic box length in i-direction)"
Lx2 = ans3[[2, 1, 2]]
N[Lx2]
"Ly: (new periodic box length in j-direction)"
Ly2 = Ly2 /. Lx → Lx2
N[Ly2]

iNew = iNew /. Lx → Lx2;
jNew = jNew /. Lx → Lx2 /. Ly → Ly2;

"New iNew after plugging Lx as a f(Ly):"
iNew
"New jNew after plugging Lx as a f(Ly):"
jNew
"New iNew.iNew: should be equal to 1"
iNew.iNew // Simplify
"New jNew.jNew: should be equal to 1"
jNew.jNew // Simplify
"New iNew.jNew: should be equal to 0"
iNew.jNew // Simplify

Out[67]= Solving m a iNew - b jNew ⩵ Lx i && n b jNew + a iNew + c kNew ⩵ Ly j

Out[68]= iNew1 →
5 Lx

26
, iNew2 →

26 Ly

676 + Lx2
, iNew3 → -

Lx Ly

676 + Lx2
,

jNew1 → -
Lx

26
, jNew2 →

130 Ly

676 + Lx2
, jNew3 → -

5 Lx Ly

676 + Lx2


Out[71]= iNew.iNew:
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Out[72]=
16900 Lx2 + 25 Lx4 + 676 Ly2

676 676 + Lx2

Out[73]= jNew.jNew:

Out[74]=
676 Lx2 + Lx4 + 16900 Ly2

676 676 + Lx2

Out[75]= Solving iNew.jNew==cos[γ]:

Out[76]= Ly → -
Lx

26 676
676+Lx22

+ Lx2

676+Lx22

, Ly →
Lx

26 676
676+Lx22

+ Lx2

676+Lx22



Out[77]= Ly=f(Lx):

Out[78]=
Lx

26 676
676+Lx22

+ Lx2

676+Lx22

Out[79]= iNew with Ly=f(Lx):

Out[80]= 
5 Lx

26
,

Lx

676 + Lx2 676
676+Lx22

+ Lx2

676+Lx22

, -
Lx2

26 676 + Lx2 676
676+Lx22

+ Lx2

676+Lx22



Out[81]= jNew with Ly=f(Lx):

Out[82]= -
Lx

26
,

5 Lx

676 + Lx2 676
676+Lx22

+ Lx2

676+Lx22

, -
5 Lx2

26 676 + Lx2 676
676+Lx22

+ Lx2

676+Lx22



Out[83]= iNew.iNew:

Out[84]=
Lx2

26

Out[85]= jNew.jNew:

Out[86]=
Lx2

26

Out[87]= Solving jNew.jNew==1:

Out[88]= Lx → - 26 , Lx → 26 

Out[89]= Lx: (new periodic box length in i-direction)

Out[90]= 26

Out[91]= 5.09902

Out[92]= Ly: (new periodic box length in j-direction)

Out[93]= 3 3
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Out[94]= 5.19615

Out[97]= New iNew after plugging Lx as a f(Ly):

Out[98]= 
5

26
,

1

3 3
, -

1

3 78


Out[99]= New jNew after plugging Lx as a f(Ly):

Out[100]= -
1

26
,

5

3 3
, -

5

3 78


Out[101]= New iNew.iNew: should be equal to 1

Out[102]= 1

Out[103]= New jNew.jNew: should be equal to 1

Out[104]= 1

Out[105]= New iNew.jNew: should be equal to 0

Out[106]= 0
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Solving the Ever-kinked Crystal System Equations Chapter L

L.2.2 Solving the 3D Ever-kinked “Hole”

The tilting and twisting of a crystal system leads to the formation of holes in the

system as shown in Figure L.4. This is fixed by adding an extra column of unit cells as

shown in Figure L.5.
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(a)

(b)

Figure L.4: Ever-kinked cubic lattice with holes next to the kinks: (a) Yellow atoms
are the ones sitting in a potential kink site, (b): Periodic kinks being displayed via
dislodging an atom sitting in a potential kink site.
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Figure L.5: The 3D ever-kinked lattice for a=b=c=1, α=β=γ=90◦, with an added
column of unit cells to fix the “hole”

L.2.3 A case study to demonstrate the approximate solution

strategy for creating ever-kinked crystal systems

Consider the beta-succinic acid crystal system. The GAFF predicted lattice constants

are shown in Table L.1. To ease the problem we first approximate the β angle to 90◦.
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Therefore, now we just need to choose m and n such that

b2

a2
=
m

n
(L.1)

However, for the GAFF predicted lattice constants, the ratio b2/a2 is irrational. There-

fore, we need to approximate a, b or both, such that b2
approx/a

2
approx is rational. Table

L.2 shows the results for different values of δa and δb, that rationalize b2
approx/a

2
approx

within b2/a2± δ. As seen, as we relax the tolerance on the approximation (δ), we achieve

computationally feasible supercell sizes.

Table L.1: GAFF predicted lattice parameters of succinic acid crystal — β polymorph

Lattice parameter Expt. GAFF % ∆

a(Å) 5.519 ± 0.002 5.473 ± 0.001 -0.83%

b(Å) 8.862 ± 0.006 9.068 ± 0.001 2.32%

c(Å) 5.101 ± 0.001 5.314 ± 0.001 4.18%

α (◦) 90.00 ± 0.00 89.999 ± 0.003 0.00%

β (◦) 91.59 ± 0.04 89.624 ± 0.004 -2.15%

γ (◦) 90.00 ± 0.00 89.997 ± 0.003 0.00%

Table L.2: Generating approximate ever-kinked solutions within δ neighborhood

δ 0.1 0.01 0.001 0.00001 0.000001

b2

a2
|approx

8
3

11
4

129
47

140
51

571
208

δb% -1.44 0.09 -0.01 -0.00 0.00

δa% 1.46 -0.09 0.01 0.00 -0.00
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