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What you didn’t see:
Prevention and generation in continuous time causal induction

Tianwei Gong (tia.gong@ed.ac.uk)
Neil R. Bramley (neil.bramley@ed.ac.uk)

Department of Psychology, University of Edinburgh, Edinburgh, EH8 9JZ, UK

Abstract

How do people use temporal information to make causal judg-
ments? A number of studies have investigated the role of time
in inferring generative causal structure, while few have exam-
ined prevention. Here, we focus on a challenging task in which
participants learn the structure of several causal “devices” by
watching the devices’ patterns of activation over time. Each
device potentially includes both generative (producing an acti-
vation of its effect) and preventative (blocking any effect acti-
vations within a short time window) causal relationships. We
examine judgment patterns through the lens of a normative
model which incorporates actual causation with considerations
of prevention. We contrast this with a more computationally
tractable feature-based approximation. Participants’ perfor-
mance was substantially above chance in all conditions. The
majority of participants’ causal judgments were best fit by the
feature-based approximation based on delay and count heuris-
tic cues.
Keywords: causal learning; time; prevention; structure induc-
tion; Bayesian modelling

We naturally think about the world in terms of the progres-
sion of events governed by the law of cause and effect. This
means that we update our beliefs not just on the basis of un-
expected events, but also based on the absence of expected
events. If you see a FedEx employee at your door but you
have not ordered anything recently, you might be surprised
and seek an explanation such as an early birthday present.
Conversely, if you order something on Black Friday but have
not received it by Christmas, you may start to suspect that
something has gone wrong with your order. We are good at
using temporal cues to infer causal relations in these situa-
tions. The goal of this paper is to build a better understanding
of how people make both generative and preventative causal
inferences on the basis of observations of events occurring
over time.

Humans make systematic use of temporal information to
infer causal connections. Generally, people make stronger
causal attributions for short temporal delays than long tem-
poral delays (Buehner & McGregor, 2006; Shanks et al.,
1989), but this is moderated by expectation, with shorter-
than-expected delays also reducing causal judgment strength
(Buehner & May, 2002). People are also sensitive to delay re-
liability with causal judgments decreasing as increasing inter-
val variability increases between putative causes and effects
(Bramley et al., 2018; Greville & Buehner, 2010). Recently,
researchers have used gamma distributions (Bramley et al.,
2018; Bramley et al., 2017; Lucas et al., 2015; Stephan et al.,
2018) and Poisson-processes (Pacer & Griffith, 2012, 2015)
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Figure 1: Example causal device from our task in differ-
ent states: a) Inactivated; b-c) Activated; d) Participant re-
sponse interface. e) The response hypothesis space (all pos-
sible causal structures where G = generative; N = non-causal;
P = preventative).

to model human representation of temporal information and
their sensitivity to delays between events in causal reasoning.
This work shows that when observing a causal system over
time, people can identify the causal structure linking multiple
components on the basis of patterns of discrete events in time
(Bramley et al., 2018).

All of the work above, exploring structure judgments based
on temporal information, focuses on cases of generative cau-
sation, in which events such as an activation or change in
a cause variable produce other events or changes in its ef-
fects. It is less clear how and when people will infer pre-
ventative causation, in which the occurrence of one event
stops another event or change from occurring. To our knowl-
edge, the only few studies related to preventative causal judg-
ment given temporal information adopted a “rate-based” rep-
resentation (Anderson & Sheu, 1995; Griffiths & Tenenbaum,
2005; Pacer & Griffith, 2012). In these tasks, participants see
evidence about how frequently an an event occurs per unit
time. Preventative causes are inferred when the rate of an
effect temporarily decreases, while generative causes are in-
ferred when its rate temporarily increases. A key property of
this setting is that the lower the effect’s base rate, the harder it
is to reliably identify preventative influences while generative
influences become more conspicuous when the effect’s base
rate is low (Pacer & Griffith, 2012). That is, there needs to be
something there to prevent for a preventative cause to reveal
itself.
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While frequently recurring events may naturally be thought
in terms of rates, daily life often involves sparse causal evi-
dence with little in the way or regularity or re-occurrence.
Hence, we must frequently engage in reasoning at the level
of individual events, as in the FedEx example above. The
distinction between generation and prevention becomes more
profound in these sparse settings. Generation is about ex-
plaining an (otherwise unexpected) presence, but prevention
is about explaining an unexpected absence. Prima facie, this
makes preventative inference subordinate to the inference of
a generative processes or base rate because people have to ex-
pect something to happen (i.e. to be generated) before they
can be surprised that it did not. This kind of forward thinking
and expectation dynamics has not been captured by previous
models aiming to capture reasoning about generative causal
structure (Bramley et al., 2018; Bramley et al., 2017). In
this paper, we propose both computational- and algorithmic-
level solutions to this problem. How do people use temporal
cues to infer both generation and prevention in causal systems
given sparse event data.

In the rest of this paper, we first formalise our chosen learn-
ing problem and its normative solution. Then, we collect
human data and analyse performance. Finally, we contrast
normative inference with a more computationally tractable
heuristic proposal finding evidence suggesting people ab-
stract simple count and inter-event delay features that are
noisily diagnostic of causal structure.

Learning problem and normative inference
As a first foray into preventative causation in real-time causal
structure induction, we constrain our learning problem to a
space of 9 unconnected, singly connected and collider type
(i.e., common effect) causal devices (Figure 1a). However,
the experimental paradigm and computational models we in-
troduce here can be directly generalised for learning in other
(i.e., broader) causal hypothesis spaces. The devices investi-
gated in this paper were made up of two control components
(A, B) and one target component (E) (See Figure 1). The
connection between each control component and the target
component could be generative, preventative, or they could
be unrelated.

We focus on causal relationships between point events oc-
curring at a device’s components in time. Preventive infer-
ence is only possible when there is an something to prevent
(Griffiths & Tenenbaum, 2005), for example when a putative
effect component has an above zero base rate. In our task, the
target component is set to spontaneously activate with moder-
ate regularity. Meanwhile, an activation of a generative com-
ponent will produce an “extra” activation of the target com-
ponent. An activation of a preventative component will block
all activations of the target component within a short time
window, no matter whether those activations are caused by a
generative connection or by self-activation. Preventative con-
nections are thus conceived as having a broad preventative
scope (i.e., preventative connections are conceived as hav-
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Figure 2: Gamma distributions: a) Base rate; b) Genera-
tion; c) Prevention (i.e., blocking expected events); d) Exam-
ple events in continuous time (A: preventative; B: generative).

ing a broad preventative scope; Carroll & Cheng, 2009; see
Figure 2c for details). Activations of non-causal components
have no impact on the target component.

Participants’ task is to observe short clips showing devices’
patterns of activation over time and then judge which one of
the nine potential structure hypotheses (Figure 1a) is correct
for that device. The timing of self-activations, generative de-
lays, and preventative blocking windows in the clips are sam-
pled from gamma distributions according to the true underly-
ing structure (Figure 2). The actual sampled values are un-
known to the learner (human or model), but the generative
gamma parameters are assumed to be known, since partici-
pants are trained on these in the instructions.

Normative inference
As a benchmark for performance in this task, we develop an
ideal Bayesian model. The ideal reasoner is presumed to take
all activation events within the observation interval as the ba-
sis of their inference. We write this as dτ{d

(1)
X , . . . ,d(n)

X }, with
events indexed in chronological order and X indicating the
activated component. The learner then updates their prior,
here over the nine structures P(S), with a likelihood function
p(dτ|S,w) to get the posterior distribution P(S|dτ,w), given
the set of parameters w:

P(S|dτ,w) ∝ p(dτ|S,w) ·P(S) (1)

We assumed for simplicity that prior P(S) is uniform over
the potential structures (Figure 1a), and that the parameters w
(i.e., gamma shapes α and rates β) are known.

Likelihood calculation (cf. Bramley et al., 2017) then
depends on an enumerative actual causal attribution step
(Halpern, 2016). The basic idea is that accurate judgments
about type-level causal relationships (i.e., about the underly-
ing causal structure) depend on detailed considerations about
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the token-level causation giving rise to the observable evi-
dence (which particular event actually caused which partic-
ular effect). There is often a very large number of possible
ways that even a single causal hypothesis could have pro-
duced a particular pattern of observations. Therefore, in order
to maintain rational beliefs about causal structure, the ideal
reasoner considers all possible causal paths that could de-
scribe what actually happened given each possible structural
hypothesis, summing up the individual likelihood of these
possibilities to assess the overall likelihood of each “type
level” structure hypothesis having produced the observations.

Following previous research using this model (Bramley et
al., 2017), all possible actual paths of effect activations are
enumerated consistent with a candidate structure s ∈ S pro-
ducing the observed data1. Each generative path zg ∈ z should
satisfy that each effect e′ is not over-determined (i.e. has a
single true cause), and each single cause g′ does not produce
its effect twice. Then, the probability of each path is calcu-
lated based on the delay between the effect and its supposed
actual cause:

p(dτ|zg,w) = ∏
g′,e′∈zg

p(tg′→e′ = tg′e′ |zg,w) (2)

Incorporating prevention Although the actual causal at-
tribution enforces an exact one-to-one mapping from ef-
fect events to cause events and therefore guaranteed ra-
tional causal inference in the generative setting, it is cast
as a diagnostic inference process (i.e. explaining the ob-
served events under each candidate causal structure, Halpern,
2016), so does not directly capture potential surprising non-
occurrences, here the consideration of the frequency of the
target component’s self-activation in the light of potentially
preventative influences. Here, we expand the approach by
adding two forward-thinking rules to the likelihood calcula-
tion. The probability of preventative causation is calculated
based on the delay between the putative preventative control
component’s activation and its following subsequent target
component activation. This follows the logic that the shorter
the delay, the less likely it is that prevention assumption oc-
curred:

p(dτ|zp,w) = ∏
p′,e′∈zp

p(tp′→e′ < tp′e′ |zp,w) (3)

Another rational rule added here aims to represent the reflec-
tive thinking in actual causal attribution: for supposed causes
that did not have their corresponding effect e in the path, we
must attribute them as either occurring after the end of the
clip or as prevented:

p(dτ|zr,w) = ∏
g′,p′∈zr

[p(tg′→e > tend |zr,w)+

p(tg′→e < tg′p′ + tp′→e|zr,w) · p(tg′→e 6 tend |zr,w)]

(4)

1Exhausively wherever feasible and approximated otherwise

Since there can only be one true generative actual path in
the set of possible paths Zs, we then sum over all paths to get
the likelihood of the data given a candidate model s ∈ S:

p(dτ|s,w) = ∑
z∈Zs

∏
zg,zp,zr∈z

p(dτ|zg,w) · p(dτ|zp,w) · p(dτ|zr,w)

(5)

Experiment
Methods
Participants Sixty participants (26 female, aged 40 ± 13)
were recruited via Amazon Mechanical Turk and were paid
between $1.00 and $2.08 ($1.78 ± 0.19) depending on their
performance. The task took around 15 minutes23.

Design We used the generative process described above to
determine the timing of component activations in each clip,
and the activations were displayed as the component light-
ing up yellow for 350 ms (see Figure 1c and 1d). The clips
were created by sampling from the causal devices as follows.
The target component activated every 5 ± 0.5 seconds by it-
self (gamma distributed with α = 100, β = 20, Figure 2a).
The control components activate every 5± 5 seconds (α = 1,
β= 0.2, which also belongs to memoryless exponential distri-
bution, making them essentially randomly distributed in each
clip). Each activation of a generative component then pro-
duced an extra activation of the target component after a delay
of 1.5 ± 0.5 seconds (α = 9, β = 6, Figure 2b). Each activa-
tion of the preventative component blocked all activations of
the target component for 3 ± 0.5 seconds (α = 36, β = 12,
Figure 2c). The activation of control component was accom-
panied with a hand sign (Figure 1c) and participants were told
that this implied control components were intervened on or
caused by someone else, at random moments rather than fol-
lowing any informative pattern.

Eighteen 20-second clips were created (2 clips for each of
the nine structures). Each clip began with one self-activation
of the target component in order to help participants estab-
lish the base rate. We selected the clips to make sure that
each control component was activated three times within 20-
seconds and that no activation was masked by another in the
clips.

Procedure Participants clicked a “Start” button to watch
the clip in each trial, and then marked their answers for two
connections during or after the clip by clicking the connec-
tion (Figure 1e). Each clip could only be played once. The
order of 18 trials, as well as the click pattern (whether you
would click once, twice or thrice to select generative, pre-
ventative or non-causal), and the vertical position of A and
B components (above or below) were randomized indepen-
dently between participants.

Prior to the inference task, participants were told about and
trained on the timing of three types of connections as well

2Pre-registration available at https://osf.io/nrzpu/
3Material, data, analysis code available at https://osf.io/q8n72/
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Figure 3: Participants’ responses (bars) and results of model fitting (points). Titles indicate true structures (e.g., GN =
A is generative; B is non-causal). Data were modelled at the device level and collapsed into connection level to simplify
visualizations.

as the target component’s self-activation. They also practiced
how to respond, and completed one practice trial with a causal
device that included one generative connection and one non-
causal connection. Feedback was provided in the practice tri-
als but not the test trials. Participants had to pass introduction
check questions before starting the experiment. To properly
incentivize judgments, a 3-cent bonus would be paid for each
correctly identified connection during the main experiment in
addition to the basic $1 payment.

Results
We did not find an effect of position or click pattern counter-
balances, so we combined all participants’ data in the follow-
ing analyses.

Accuracy The accuracy for each participant per connec-
tion was 73 ± 17%, which is significantly above chance
(33%), t(59) = 17.58, p < .001. Most participants (92%)
performed above chance (> 17 connections correct, bino-
mial probability < .05). Accuracy was above chance lev-
els for all three connection types taken separately (genera-
tive: 80 ± 20%, t(59) = 17.77, p < .001; non-causal: 62
± 24%, t(59) = 9.22, p < .001; preventative: 76 ± 22%,
t(59) = 15.35, p < .001, Figure 3). Most connections (97%)
received above-chance correct answers (> 26/60 participants
correct, binomial probability < .05).

The accuracy for each participant at the device level (1
= correct in both connections; 0 = otherwise) was 56 ±
22%, again substantially higher than chance (11%), t(59) =
15.70, p < .001. All but one participant showed an above
chance device-level accuracy (> 4 devices correct, binomial
probability < .05). All device received above-chance correct
answers (> 11/60 participants correct, binomial probability
< .05).

The ideal Bayesian model’s accuracy was significantly
higher than participants’ at the connection level (total: 97%,

t(59) = 10.90, p < .001; generative: 100%, t(59) = 7.64, p <
.001; non-causal: 94%, t(59) = 10.21, p < .001; preventa-
tive: 98%, t(59) = 8.02, p < .001) as well as the device level
(95%, t(59) = 10.53, p < .001).

Choice Participants gave responses 33% times as genera-
tive, 31% as non-causal, 35% as preventative, so showed no
overall bias towards particular edge types (χ2(2) = 5.14, p >
.05). As shown in Figure 4, generative and preventative con-
nections were mistaken for non-causal connections, and non-
causal connections were mistaken for preventative or genera-
tive connections, while generative and preventative connec-
tions were less likely to be mistaken for one other, which
means that participants were more certain in distinguish-
ing between generation and prevention but sometimes con-
founded by non-causal connections.

In contrast, the normative ideal Bayesian model shows only
a minor deficit in distinguishing between preventative and
non-causal connections, but not between other connections.
This deviation suggests that participants may rely on other
heuristic strategies to solve the problem. In the following
section, we describe one computationally tractable heuristic
model and compare this with the normative model as well as
human performance.
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Figure 4: Overall choice patterns between different kinds of
causal connections (participants vs. normative model).
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Modelling heuristic inferences
Feature-based inference
One possible way learners might approximate Bayesian struc-
ture inference for the present learning problem is inspired by
Ullman et al.’s (2018) Simulation-based approximations and
Summary Statistics approach. This model assumes that peo-
ple leverage cues based on rough and summarised statistics
of different structure types to make inferences. The proposed
cognitive process draws on (imagined) evidence under dif-
ferent causal structures (and/or historical data from known
models) to learn statistical cues can be used to distinguish
structure approximately but efficiently. Under this proposal,
people select whatever hypothesis has the closest match in
terms of these statistical cues to the observed data. Here we
investigate two cues that people may apply to the current task:

1. Delay: the delay between control component’s activation
and its nearest target component’s activation.

2. Count: the number of following target component’s activa-
tions after one control component’s activation and before
any other activation of any control component.

These cues are certainly not exhaustive but they are rela-
tively simple to track and reasonably discriminatory between
the causal structures. For the delay cue, it is expected to see
a short interval between its activation and the target compo-
nent’s next activation if the component is a generative compo-
nent but a medium interval if there is no connection or a long
interval if it is preventative (see Figure 5 for the probability
density distribution). For the count cue, more than one ef-
fect activation is likely to follow the activation of generative
component before the next control component event, which
results from the existence of base rate activations, while most
frequently, zero effect activation’s will likely to follow the
activation of preventative components before the next con-
trol component event (Figure 5). The former cue considers
concrete delay information but ignores the possibility of dif-
ferent causal pathways, while the latter cue also ignores the
exact temporal interval between events.
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Figure 5: Empirical distributions of “delay” (left) and “count”
(right) cues in the feature-based model.

Characteristic summary statistics for each structure hy-
pothesis were constructed by simulating 20,000 twenty sec-
ond sequences of point events from each structure type, and
then calculating the empirical likelihood distribution for each
intervention (A1, A2, A3, B1, B2, B3) in each structure.
When observing a new control component’s activation, the
probability of each causal structure was estimated by the nor-
malised likelihood of the summary statistic calculated on the
observed data. For example, an initial intervention on A (i.e.,
A1) with an effect occurring 2 seconds later has a likelihood
of e.g. [.58, .40, .02] of having being produced by a gener-
ative, non-causal or preventative A→ E connection respec-
tively. Inherent to this heuristic approach is the radical simpli-
fying assumption that the features of the evidence subsequent
to each control component event are modular and indepen-
dent, that is, ignoring that they also depend on the behaviour
of the other causal components (Fernbach & Sloman, 2009).
Thus, each connection was estimated independently and then
combined to yield a probability for each causal structure. The
two cues were .68 correlated in their structure predictions un-
der the current trial set.

Model fitting with human data
We compared participants’ choice distribution for each de-
vice to the behaviour of our normative and heuristic models
as well as a random baseline. Excepting the random baseline,
we assumed that participants chose their answer according to
a softmax decision rule (Luce, 1959):

p(n) =
exp(λ · vn)

∑
n′∈N

exp(λ · vn′)
(6)

The “inverse temperature” parameter λ ∈ [0,∞] controls
how consistent the participant is in selecting the answer with
the largest vn in choice n. Larger λ means that the partici-
pant’s answer is better aligned with the model’s answer with
λ= 0 modeling random selection. For the combination of two
cues in the feature-based model, we use two λ parameters to
give weights to different cues.

Besides, we also included a noise parameter θ in our nor-
mative model to investigate whether people can follow the
mechanism of normative inference but just have less precise
temporal perception. It works by amplifying the original vari-
ance of 0.25 in gamma distributions for generative, preventa-
tive connections as well as self-activations into 0.25 ·θ, where
θ ∈ {0,1,2, . . . ,8}. We called them normative-noisy models
when θ > 1. The accuracy of these models at the device level
is summarised in the Table 1.

We fit each model to predict aggregate participant choices
as well as to individual participants using BIC as our measure
of fit. The results are shown in Table 1. The feature-based
model that combines cues of “delay” and “count” best fit hu-
man aggregate results. 75% of individual participants were
best fit by feature-based models included single or two fea-
tures, 17% were best fit by normative-noisy models, and 8%
were detected as responding randomly.
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Table 1: Model accuracy and fitting results at device level.

Model Accuracy Parameters BIC N Best

NN: 83-95% λ:2.67; θ:3 3378 10/60
FB: 45/60
delay 60% λ:3.62 3431 (23)
count 43% λ:5.49 3548 (12)
combine 43-60% λd :2.36; λc:3.03 3239 (10)
RD: 11% 4768 5/60

Note: NN:Normative & Normative-noisy; FB:Feature-based;
RD:Random. Model accuracy was calculated prior to the fit-
ting of human data and under consideration of the noise (θ)
parameter.

General Discussion
In this study, we investigated how people infer causal struc-
tures that contain generative and preventative connections on
the basis of observing a handful of events occurring in contin-
uous time. The fact that, in this setting, the effect has a base
rate of spontaneous activation makes the likelihoods of obser-
vations non-deterministic (unexpected events could always be
caused by the base rate) while the potential precense of ad-
ditional generative influences complicates the evidence. Al-
though our task is computationally challenging from the nor-
mative model perspective, performance was generally good,
with judgments well above chance for preventative, as well
as generative and non-causal connections. We thus provide
empirical evidence that people can use real-time temporal in-
formation to learn causal structure that involves preventative
as well as generative causation.

In terms of modelling, we for the first time introduced con-
siderations of prevention into an “actual causal attribution”
process model (Halpern, 2016). By exhaustively constructing
possible actual causal paths given observed data, our norma-
tive model demonstrates that near-perfect performance is pos-
sible in this setting, at least given the correct delay assump-
tions and unlimited processing power. The normative and
normative-noisy models had higher accuracy than the feature-
based model, indicating that actual attribution, the top rung
of Pearl’s so-called “ladder of causation” (2018), is key for
achieving benchmark levels of accuracy in this task. The in-
ference and approximation we present in this paper are not re-
stricted to the current paradigm but can be modified to handle
a wide range of causal systems in future studies. Essentially,
any system can be represented with a causal mechanism that
produces point events over time can be inferred and reasoned
about in this way.

Despite the accuracy win for the normative approach, hu-
man responses were better captured by our feature-based
model that established and exploited two heuristic cues: delay
and count. This model assumed that people tracked the de-
lays between putative cause-effect activations and counted the
effect events between putative cause activations, and made

causal inference by comparing these observed patterns to the
patterns characteristic to each edge hypothesis. This strategy
used simulation to sidestep the complexity of exact cause-
effect mapping and summarises the observations as cues to
reduce the memory load during watching the evidence. The
approach sacrifices precision in terms of actual causal attri-
bution but may capture how people manage the information
stream in real time caual induction settings, given the real
time nature of the evidence presentation and their limited
cognitive resources. The model also demonstrates one pos-
sible way that mental simulation could contribute to temporal
causal reasoning, as an extension to current perspectives on
mental simulation in physical reasoning (Gerstenberg et al.,
2017; Ullman et al., 2018).

In sum, this paper investigated human causal structure in-
duction from observation of real-time event patterns involv-
ing prevention as well as generation. People were capable
of real-time causal structure induction in this setting and our
modelling suggested they may achieve this via statistical cues
such as average delays and counts that are much easier to es-
tablish than the exact generative model likelihoods. Every
day we not only face surprising occurrences, but also wonder
about things that would, should or could have happened. Pre-
ventative causation may be as pervasive as generative causa-
tion but better hidden, revealing itself only through violation
of model based expectations. As such, an formal account of
preventative inference is ripe for inclusion in an account of
human causal reasoning.
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