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 5 

Abstract: A solution for the response of flexible retaining walls excited by vertically propagating shear 6 

waves in inhomogeneous elastic soil is obtained using the weak form of the governing differential 7 

equation of motion associated with the Winkler representation of earth pressures as a function of 8 

relative displacement between the wall and the far field soil. Inputs to the model include the soil shear 9 

wave velocity profile, the flexural stiffness of the wall, the elastic boundary conditions at the top and 10 

bottom of the wall, the motion at the surface of the retained soil, the distributed mass of the wall, and 11 

lumped masses at the top and bottom of the wall. The proposed solution is first verified against an 12 

available closed-form Winkler solution for uniform soil, and then with elastodynamic solutions for a wall 13 

supporting an infinite uniform elastic soil. A validation exercise is then performed using centrifuge data 14 

from flexible underground structures embedded in sand, shaken by suites of ground motions. Seismic 15 

earth pressures and bending moments are also computed using limit-equilibrium procedures based on 16 

horizontal inertial forces acting within an active wedge. The proposed solution compares favorably with 17 

the experimental data, whereas the limit equilibrium procedures produce biased predictions.   18 
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Introduction 19 

Seismic earth pressures on retaining structures have traditionally been computed using three 20 

approaches: (1) limit state methods (e.g., the "Mononobe-Okabe" or M-O method and its variants), (2) 21 

elastodynamic solutions, or (3) numerical simulations. The M-O method was originally formulated by 22 

Okabe (1924) and experimentally verified by Mononobe and Matsuo (1929). This method assumes that 23 

a pseudo-static seismic coefficient (kh) acts upon an active Coulomb-type wedge in frictional soil, which 24 

in turn results in an incremental change in the lateral earth pressure coefficient, KAE, over the static 25 

active earth pressure coefficient, KA. Variants on the classical approach derived by means of kinematic 26 

limit analysis using non-planar failure surfaces (Chen, 1975; Chen and Liu, 1990), stress fields (Mylonakis 27 

et al. 2007), and accounting for the phasing of inertial demands within the retained soil (Steedman and 28 

Zeng, 1990) are conceptually alike and provide similar results for the active case. The M-O approach is 29 

the standard of practice, and has been incorporated into numerous design documents (e.g., NCHRP 30 

2008 and BSSC 2003). 31 

A problem with the M-O method lies in its inability to account for the fundamental driver of seismic 32 

earth pressures, which is relative displacement between the wall and the retained soil in the far field. 33 

Nor does the method properly account for the factors that most strongly affect relative displacements, 34 

including wall flexibility, frequency content of the ground motion, and soil-structure interaction. 35 

Furthermore, it fails to produce a physically meaningful solution when kh is large enough to cause 36 

demand to exceed soil strength on a plane parallel to the surface of the retained soil (e.g., Mylonakis et 37 

al. 2007), a condition that is critical in seismically active regions with high design ground motion 38 

intensities. Seed and Whitman (S-W) (1970) observed that for levels of kh up to about 0.4, the M-O 39 

solution could reasonably be approximated by KAE = 0.75kh (a remarkable proportionality between 40 

"response" and "excitation" in a purely plastic solution). Because this equation is simple and stable, it is 41 

often used in lieu of the M-O method, even when kh > 0.4, which lies beyond the range intended by Seed 42 
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and Whitman. For example, Mikola et al. (2016) suggested that the S-W approach produced reasonable 43 

predictions of seismic earth pressures acting on fixed-base cantilever walls and cross-braced basement 44 

walls in centrifuge tests that produced shaking amplitudes up to about 0.75 g. 45 

Elastodynamic continuum solutions such as those by Wood (1973), Veletsos and Younan (1994a, 46 

1994b), Younan and Veletsos (2000), and Beskos et al. (2015) implicitly account for factors not 47 

considered in the M-O method, including excitation frequency, soil stiffness, and in some cases vertical 48 

soil inhomogeneity and wall flexibility. These factors all contribute to relative displacement between the 49 

wall and free-field soil, and are inherently captured in elastodynamic formulations. To facilitate tractable 50 

solutions to the governing equations of motion, boundary conditions typically involve a retained soil 51 

layer resting on a rigid base, and the input ground motion is applied at the base of the layer. These 52 

solutions tend to produce large earth pressures at the resonant frequencies of the retained soil because 53 

of the large soil displacements (relative to the base) that occur at those frequencies. However, for many 54 

walls the retained soil rests on materials better represented by a compliant base than a rigid base. As a 55 

result, the boundary conditions required to render tractable solutions do not match the boundary 56 

conditions present for most walls, and as a result, the strong resonances and associated high earth 57 

pressures predicted by most elastodynamic solutions are frequently unrealistic.  58 

Additional limitations of existing elastodynamic continuum solutions include lack of consideration 59 

for geometric nonlinearity arising from gapping between the wall and soil, and only indirect accounting 60 

for material nonlinearity by selection of strain-compatible modulus and damping values using an 61 

equivalent linear approach. Rigorous numerical simulations have the capability to overcome these 62 

limitations. Nonlinear soil and structural behavior can be incorporated using appropriate constitutive 63 

models; geometric nonlinearity at the soil-wall contact can be included using interface elements, and 64 

compliance of the soil beneath the retained soil can be modeled by extending the depth of the domain, 65 

or using pertinent wave transmitting boundaries to represent deeper soil layers (e.g., Lysmer and 66 
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Kuhlemeyer 1969, Bielak et al. 2003). Nonlinear dynamic numerical simulations are recommended 67 

where feasible. However, we recognize that project time/budget constraints often do not permit 68 

nonlinear numerical simulations, and special expertise is required. 69 

This paper extends an elastodynamic Winkler solution developed by Brandenberg et al. (2015) that 70 

eliminated the rigid base assumption by using the ground motion at the surface of the retained soil as 71 

an input rather than the motion at the base of the soil layer. The solution modeled the retaining wall as 72 

rigid and massless, and the soil as a uniform elastic continuum. Despite these limiting assumptions, it 73 

predicted seismic earth pressure resultants that agreed reasonably well with experimental data and 74 

numerical simulations. However, the distribution of seismic earth pressures did not agree well with the 75 

experimental data. This paper eliminates the assumption that the wall is rigid and massless, and models 76 

the soil as having a vertically inhomogeneous shear wave velocity. The modeling equations are 77 

formulated first, and the model is then verified with a number of available closed-form solutions before 78 

being partially validated with a suite of experimental data presented by Hushmand et al. (2016).  79 

Problem Statement 80 

The problem considered here consists of flexible wall(s) of height H retaining a soil deposit being 81 

excited by vertically propagating shear waves with surface displacement amplitude ug0, as illustrated in 82 

Fig. 1. The soil is an elastic continuum with a vertically inhomogeneous shear wave velocity profile Vs(z). 83 

Soil-structure interaction is represented by depth-dependent Winkler stiffness intensity ( )i
yk z along the 84 

vertical walls, and the walls are constrained by rotational and translational impedance constants at the 85 

top and bottom of the wall to represent soil-structure interaction effects above and below the wall, as 86 

well as structural components attached to the top and base of the wall that are not explicitly modeled. 87 

The walls have constant mass density, ρw, Poisson ratio, νw, thickness, tw, Young's modulus, Ew, and 88 

plane-strain flexural stiffness, 𝐸𝐸𝐸𝐸 = 𝐸𝐸𝑤𝑤𝑡𝑡𝑤𝑤3 [12(1 − 𝜈𝜈𝑤𝑤2 )]⁄  . Discrete masses mt and mb are lumped at the 89 
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top and bottom of the wall, respectively, to simulate the inertia of slabs and other elements that are not 90 

modeled explicitly. Two configurations are considered: (i) an infinite length soil deposit for which the 91 

free-field displacement profile is utilized as an input, and (ii) a soil deposit of finite length L for which the 92 

displacement profile at a distance yref from the wall is utilized as an input. Note that the displacement 93 

profile for configuration (ii) is influenced by the presence of the walls, and is therefore not "free-field". 94 

This condition is utilized to validate the method using experimental data. 95 

 96 

 97 

Figure 1. Schematic showing flexible wall(s) retaining (a) an infinite-length soil deposit, and (b) a finite-98 

length soil deposit of (c) vertically inhomogeneous soil being shaken by (d) a ground motion with surface 99 

amplitude ug0. 100 

Input Parameters 101 

Shear wave velocity profile 102 

The shear wave velocity profile varies continuously with depth, z, following the form by Rovithis et 103 

al. (2011) as defined by Eq. 1,  104 

( )(z) 1
n

S H
zV V b b
H

 = + −  
 

(1) 
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where VH is the shear wave velocity at the base of the wall, n is a constant that controls the shape of the 105 

VS profile, and b is a constant that controls the ratio of shear wave velocity at the surface, Vo, to that at 106 

the base of the wall, b=(Vo/VH)1/n. The shear wave velocity below depth H is not an explicit input 107 

parameter to the proposed solution, though it does influence the surface motion due to site response, 108 

and also affects the translational and rotational impedance terms at the base of the wall. 109 

Ground motion 110 

The ground surface motion is utilized as an input parameter, which is a departure from many 111 

elastodynamic solutions that utilize the ground motion at the base of the deposit, where a rigid 112 

boundary is assumed to exist (e.g., Wood 1973, Veletsos and Younan 1994, Kloukinas et al 2012, Beskos 113 

et al. 2015). These solutions predict large earth pressures near the natural frequencies of the soil layer 114 

resting on the rigid base (e.g., Brandenberg et al. 2015). However, retained soils generally rest on 115 

materials more appropriately represented with a compliant base than a rigid one. As a result, solutions 116 

derived using a rigid base assumption will produce site responses at resonant frequencies, and 117 

associated large earth pressures, that are typically unrealistic. The proposed solution overcomes this 118 

issue by utilizing the surface motion as an input parameter rather than the base motion. The surface 119 

motion must be selected to be consistent with the site conditions for the problem at hand, which will 120 

generally involve analysis of a soil profile that is much deeper than the retained soil. The free-field 121 

motion can be obtained from a ground response analysis using a program such as DEEPSOIL (Hashash et 122 

al. 2016), or by selecting measured ground motions consistent with seismic hazard for a particular site 123 

based on an ergodic site amplification function (e.g., Seyhan and Stewart 2014). 124 

For a given ug0 and angular frequency, ω, the depth-dependent displacement profile ug(z) is solved 125 

using the solution developed by Rovithis et al. (2011) as given in Eq. 2,  126 
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( ) ( ) ( ) ( )
1 2

1 1 1 12
1 1

0

( )
2

n
g n n n n

g

u z
bsp J b s N sp J sp N b s

u α α α α
π −

− − − −
+ +

 = − 
 (2) 

where ( )( )1 1os a b n= − −   , ( )1 zp b b
H

= + − , ao = ωH/VH is a dimensionless frequency, and  Jα and 127 

Nα are Bessel functions of the first and second kind, respectively, of order 𝛼𝛼 = (2𝑛𝑛 − 1) (2 − 2𝑛𝑛)⁄ .  128 

Winkler stiffness intensity  129 

The Winkler stiffness intensity, ( )i
yk z , is a function of depth, as defined by Eq. 3, where i

yHk is the 130 

Winkler stiffness intensity at the base of the wall, and f(z) is a function that defines the variation of 131 

Winkler stiffness intensity with depth. The function f(z) is the same as the form of the variation of shear 132 

wave velocity with depth, except that the exponent 2n is introduced to account for the fact that shear 133 

modulus is proportional to Vs
2. The value of i

yHk  is computed using Eq. 4, where i
yHok  is the static 134 

Winkler stiffness intensity at the base of the wall based on the solution by Brandenberg et al. (2017), as 135 

defined by Eq. 5, and ζfreq, ζflex, and ζlength are scalar adjustment factors to account for frequency, wall 136 

flexibility, and finite deposit length respectively.  137 

( ) ( )
2

( ) 1
n

i i i
y yH yH

zk z k f z k b b
H

 = ⋅ = ⋅ + −  
 (3) 

where, 138 

i i
yH yHo freq flex lengthk k ζ ζ ζ= ⋅ ⋅ ⋅  (4) 

in which, 

( )( )
( )1.97 1 2 3.012 1.06

21 2
n bi H

yHo
Gk e
H

π
ν ν

− − − = ⋅ +  − −
 

(5) 

Scaling term ζfreq captures the influence of wave propagation through the retained soil on the Winkler 139 

stiffness intensity, as defined by Eq. 6 (Kloukinas et al. 2012),  140 
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2

21
ˆ

o
freq

oc

a
a

ζ = −  (6) 

where 𝑎𝑎�𝑜𝑜𝑜𝑜 is the first-mode dimensionless natural frequency for the portion of the soil deposit above 141 

the base of the wall, which potentially may be of finite length. For the case of an infinitely long soil 142 

deposit behind the wall, 𝑎𝑎�𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑜𝑜𝑜𝑜, which is given by Eq. 7 (Brandenberg et al. 2017), 143 

( )1.95 1 2 2.110.406
2

n b
oca eπ − − −≈ − ⋅  (7) 

A more general solution for backfills of finite length L is given by the theoretical expression in Eq. 8,  144 

 2 2

2 sinh
1

ˆ
32 sinh cosh

oc oc oc oc oc

oc e e e
oc oc

e oc oc oc oc

oc oc e e

a a b a bL L
b H H

a a
a b a bL L L L

H a b H H H

ν ψ ψ ψ

ψ
ψ ψ

  
−  −   ≈ +

   
− +   

   

 
(8) 

where ψe
2 = (2-ν)/(1-ν) is a compressibility coefficient and boc is a stiffness multiplier accounting for the 145 

heterogeneity of the soil deposit (Eq.  9). For finite-length deposits, 𝑎𝑎�𝑜𝑜𝑜𝑜 > 𝑎𝑎𝑜𝑜𝑜𝑜 due to the confining 146 

effect provided by the two walls. Note that 𝑎𝑎�𝑜𝑜𝑜𝑜 = 𝑎𝑎𝑜𝑜𝑜𝑜 when L = ∞. 147 

( )2.16 1 2 2.971 1.17 n b
ocb e− − −≈ + ⋅  (9) 

Scaling term ζflex is required because Winkler stiffness intensity is higher for flexible walls than for 148 

rigid walls due to mobilization of shear stresses at the soil-wall interface caused by wall rotation during 149 

flexure. Continuum finite element solutions were used to develop an approximate solution for ζflex (Eq. 150 

10) that depends on a dimensionless Winkler constant βo given by Eq. 11 (modified from Durante et al. 151 

2018). 152 

𝜁𝜁𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 = 1 + 𝑒𝑒𝑒𝑒𝑒𝑒 �1.28 +
0.95 ∙ 𝑏𝑏 − 1.56 ∙ 𝑛𝑛 − 4.87

(𝛽𝛽0𝐻𝐻)0.80 � (10) 

4

4

i
yHo

o

k
EI

β =  (11) 
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Scaling term ζlength was derived from the solution by Brandenberg et al. (2017) for two rigid walls 153 

retaining a finite-length inhomogeneous elastic soil deposit, and is given by Eq. 12. The value of ξLength is 154 

larger than unity because (i) the two walls provide a stiffening effect that increases Winkler stiffness 155 

intensity, and (ii) the displacement profile at yref is smaller than in the "free-field" due to the restraining 156 

effects of the walls. For a given pressure at the soil-wall interface, the Winkler stiffness intensity must 157 

therefore be higher for a reference displacement profile at yref compared with a free-field reference 158 

displacement profile. The expression in Eq. (11) goes to unity when free-field conditions are allowed to 159 

occur in the retained soil (i.e., 𝑦𝑦𝑟𝑟𝑟𝑟𝑟𝑟 → ∞ and  𝐿𝐿 → ∞). Wall flexibility likely influences the effect of 160 

deposit length on Winkler stiffness intensity, but that effect has not yet been systematically quantified. 161 

2 2

2 2 2 2 2 2

ˆ
1 exp

ˆ ˆ ˆ
1 exp exp exp

oc oc o

e

length

ref refoc oc o oc oc o oc oc o

e e e

b a a L
H

y L yb a a b a a b a aL
H H H

ψ
ζ

ψ ψ ψ

 −
 − −
 
 =

     −− − −
     − − + − − −
     
     

 
(12) 

Wall Boundary Conditions  162 

The wall is represented as an elastic Euler-Bernoulli plate with constant flexural stiffness, EI, 163 

constrained by horizontal and rotational springs at the top and bottom of the wall (Fig. 1). Stiffness 164 

constants at the top and base of the wall arise from two different contributions: (i) from the soil below 165 

the base and/or above the roof diaphragm, and (ii) from structural components connected to the roof 166 

and/or base diaphragms. The equations for the springs employ a notation in which K  denotes the 167 

contribution from the soil, K denotes the contribution from structural components connected to the 168 

top and/or bottom of the wall, subscript "y" denotes horizontal translational stiffness, "xx" denotes 169 

rotational stiffness, "t" denotes the top of the wall, and "b" denotes the base of the wall.  170 

The K  terms produce reactions as a result of relative displacement between the wall and the soil 171 

either in the free-field for infinite length deposits, or at location yref for finite-length deposits. Soil 172 



10 
 

displacements at the top and base of the wall are ug(0), and ug(H), respectively, while soil rotations are 173 

zero for vertically propagating shear waves. Assuming a footing of width 2B supports the wall, and the 174 

depth from the bottom of the wall to a rigid layer is D, solutions for  ,y bK and  ,xx bK  for rigid footings 175 

resting on uniform elastic soil are given in Eqs. 13 and 14 (modified from Gazetas and Roesset, 1976; 176 

Katsiveli 2020),  177 

 ( ),
2.1 1 3 2
2

b
y b

G BK
D

ν ν
ν

 = + − −  
 (13) 



( )
2

,
11

2 1 5
b

xx b
G B BK

D
π

ν
 = + −  

 (14) 

where bG  is the average shear modulus over the depth interval from H to min(H+B, H+D), and is 178 

computed from the time-averaged shear wave velocity over this depth interval. Values of  ,xx tK  and 179 



,xx tK  are zero for the applications presented herein because the top of the wall is flush with the ground 180 

surface. However, these terms would be non-zero for structures whose top is embedded beneath the 181 

ground surface, and are therefore included in the formulation so that it is extensible to more deeply 182 

embedded structures. For cases with flexible diaphragms, an equivalent Winkler method is used to 183 

compute the flexural stiffness terms, as presented in the Appendix. 184 

Governing Differential Equation 185 

The governing differential equation for the wall is given by Eq. 15, where 
2

2
2

( ) ( )u z u z
t

ω∂
= −

∂
for a 186 

harmonic motion: 187 

4
2

4

( ) ( ) ( ) ( ) ( ) 0i
yH g w w

u zEI k f z u z u z t u z
z

ω ρ∂  ⋅ − − − = ∂
 (15) 



11 
 

A weak form approximation is adopted here to develop an analytical solution. The ug term is first moved 188 

to the right side of the expression, and both sides are multiplied by a set of depth-dependent shape 189 

functions, Φj(z), and then integrated over the wall height (Eq. 16). 190 

4
2

4
0 0 0 0

( ) ( ) ( ) (z)dz ( ) (z)dz ( ) ( ) (z)dz
H H H H

i i
j yH j w w j yH g j

u zEI dz k f z u z t u z k f z u z
z

ρ ω∂
Φ + Φ − Φ = Φ

∂∫ ∫ ∫ ∫  (16) 

A trial displacement, û , is defined as the sum of shape functions multiplied by coefficients, ci (Eq. 17). 191 

ˆ i i
i

u c= Φ∑   (17) 

The solution is exact if the shape functions match the actual displaced shape of the wall, but such shape 192 

functions generally cannot be obtained. We apply Hermite cubic polynomial shape functions (Eq. 18) to 193 

approximate the displaced shape of the wall. These functions are traditionally utilized to develop 194 

stiffness matrix solutions for a Bernoulli-Euler plate (McGuire et al. 2015), and are a reasonable 195 

approximation for beams that are stiff relative to the soil, as illustrated later.   196 

2

2

2

2

1 1 2

1

3 2

1

i

z z
H H

zz
H

z z
H H

z z
H H

    − +    
    

   −   Φ =  
    −        
  − −  

  

 (18) 

The ci coefficients are computed as described in the Appendix, and the coefficients are substituted 197 

into Eq. 17 to obtain an approximate displacement function. Although this function may provide a 198 

reasonable approximation to the true displacements, it should not be differentiated to compute 199 

accurate profiles of bending moment, shear, and subgrade reaction (e.g., Scott 1981). In fact, the 200 

subgrade reaction is proportional to the fourth derivative of wall displacement, which is zero since 201 
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Hermite cubic polynomials were used, which clearly illustrates that the derivatives of the test 202 

displacement functions are inaccurate. Rather, subgrade reaction is computed by equilibrium 203 

considerations using Eq. 19, and subsequently post-processed to obtain shear and bending moment 204 

diagrams. The subgrade reaction expression in Eq. 19 is divided into two components; the earth 205 

pressure component is the Winkler stiffness intensity multiplied by the relative displacement, and 206 

includes earth pressures arising from kinematic and inertial interaction effects. The wall inertia 207 

component captures the contribution to bending moment of the distributed mass along the wall height, 208 

which acts in addition to the earth pressure component. The wall inertia component can be 209 

conceptualized as the equivalent pressure that would have to be applied to a massless wall to generate 210 

the bending moment profile produced by the distributed inertial forces acting along the wall height. The 211 

wall inertia component is therefore not an externally applied pressure acting at the soil-wall interface, 212 

but rather an equivalent pressure (i.e., a body force) that accounts for the influence of wall inertia on 213 

bending moment. Values of shear and bending moment at the top and base of the wall are computed 214 

from the known nodal displacements and the stiffness boundary conditions at the top and bottom of 215 

the wall, and provide the necessary boundary conditions for numerical integration of Eq. 19 by the 216 

trapezoidal rule to obtain shear and bending moment distributions along the wall height. 217 

4
2

4

Wall InertiaEarth Pressure, Change in shear
force with depth

( ) ( ) ( ) ( ) ( )i
yH g w w

u zEI k f z u z u z t u z
z

σ

ρ ω
∆

∂  ⋅ = − + ∂ 





 
(19) 

Single Frequency and Frequency Domain Solutions 218 

The modeling equations formulated herein can be implemented using two approaches: a single 219 

frequency approach, or a frequency domain approach. In the single frequency (i.e., monochromatic) 220 

approach, a representative value of ug0 and ω are selected to model a specific ground motion. These two 221 
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input parameters can accurately represent a harmonic motion, but additional research is needed to 222 

clarify selection of representative values of ug0 and ω for a broadband ground motion. We restrict our 223 

use of the single frequency solution to comparisons with analytical solutions in this paper, while we use 224 

the frequency domain solution to compare with experimental observations arising from broadband 225 

ground motions.  226 

The frequency domain solution utilizes a surface motion time series as an input, and synthesizes 227 

contributions of all frequencies in the input motion. Steps implemented in the frequency domain 228 

solution are (see also Brandenberg et al. 2015):  229 

(1) compute the Fourier transform of the surface motion, Fug0. 230 

(2) for each component of Fug0 compute stiffness and mass matrices and force vectors and solve for {c} 231 

by inverting Eq. 25 (note there is a separate c  for each frequency component). 232 

(3) for each c  compute reaction forces as 233 

 = + − − 
reac a b a aF K K M c F  (20) 

where reacF  is a vector consisting of the Fourier coefficients of the shear and bending moment at the 234 

top and bottom of the wall. The stiffness matrices and force vectors in Eq. (20) are derived in the 235 

Appendix. 236 

(4) compute the inverse Fourier transform of each component of reacF to obtain shear and moment time 237 

series at the top and bottom of the wall. 238 

(5) at the time of the peak bending moment, compute the soil and wall displacement at N points evenly 239 

distributed along the height of the wall using Eqs. 2 and 17, respectively (N=10 was used for the 240 

solutions presented herein). 241 
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(6) compute the components of earth pressure at each of the N points along the wall using Eq. 19. 242 

(7) using the known shear and bending moment at the top of the wall as boundary conditions, use the 243 

trapezoidal rule to integrate the pressures from (6) to obtain values of shear and bending moment at 244 

the N points along the wall.  245 

To facilitate implementation of the proposed solution, Jupyter notebooks and files necessary to run 246 

the notebooks have been published in the DesignSafe cyberinfrastructure (Brandenberg and Durante 247 

2019). Published data products include a Python script called "SeismicEarthPressure.py" that contains 248 

functions that implement the proposed solution, two Jupyter notebooks 249 

"FrequencyDomainExamples.ipynb" and "SingleFrequencyExamples.ipynb" that import the Python script 250 

as a library and compute solutions for various combinations of soil conditions and wall flexibility 251 

conditions, a ground motion file from the Pacific Earthquake Engineering NGA-West2 database 252 

"RSN1077_NORTHR_STM-090.DT2", which is the 090 component of the displacement record from the 253 

Santa Monica City Hall during the 1994 Northridge earthquake, and an image file "Schematic.png" that 254 

defines the inputs to the models. Our intention in publishing these files is to make the calculations easily 255 

accessible to anyone interested in using them.  256 

Verification Against Published Solutions 257 

In this section we compare the proposed solution with other solutions from the literature to verify 258 

its suitability to evaluate seismic earth pressures, albeit for idealized conditions. The first verification is 259 

against a closed-form exact Winkler solution for uniform elastic soil and a massless wall (inspired by a 260 

solution available for piles by Anoyatis et al. 2013). The second is against an elastodynamic solution 261 

presented by Younan and Veletsos (2000).  262 
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Closed-Form Exact Winkler Solution 263 

This section compares the proposed solution with a closed-form exact Winkler solution for uniform 264 

elastic soil and a massless wall. By comparing with an exact Winkler solution, we are able to assess the 265 

errors introduced by the weak formulation and the use of Hermite cubic polynomial shape functions. For 266 

a uniform elastic soil profile, f(z) = 1 and ug(z) = cos(kz), where k = π/2H was selected to model a 267 

condition in which the free-field soil displacement is zero at the base of the wall. The uniform elastic 268 

solution is given by Eq. 21 (e.g., Anoyatis et al. 2013).  269 

( ) ( ) ( ) ( ) ( )0
1 2 3 4 4

cos
( ) cos sin cos sino o o o yi gz z z z

o o o o
yi

k u kz
u z e z e z e z e z

EI k k
β β β βχ β χ β χ β χ β− −= + + + +

⋅ +
 

(21) 

The beam was free against translation and rotation at the top and fixed to the soil at the base (i.e., Kyb = 270 

Kxxb = ∞, Kyt = Kxxt = 0), and the χ factors were solved to enforce these boundary conditions.  271 

Figure 2 shows distributions of wall and soil displacement, seismic pressure increment, shear force, 272 

and bending moment, where all quantities have been presented in dimensionless form. The solutions 273 

are presented for values of βoH = 0.5, 1.0, 1.5, and 2.0, where the smaller values correspond to a stiffer 274 

wall relative to the soil. The errors in the solution are negligible for βoH = 0.5 and 1.0 for all of the 275 

plotted data quantities, and very small for βoH = 1.5 and 2.0. Most reinforced concrete cantilever 276 

retaining walls must be stiff enough to limit static deformations to reasonable amounts, and generally 277 

have βoH = 1 to 2.  Furthermore, the errors are most visible in the plots of displacement and seismic 278 

pressure increment, and less significant for shear and bending moment. Bending moment is considered 279 

the most important response metric for design purposes. In general, the proposed approximate solution 280 

produces excellent agreement with the closed-form solution.  281 
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 282 

Figure 2. Distributions of dimensionless quantities including (a) wall and soil displacement, (b) seismic 283 

pressure increment, (c) shear force, and (d) bending moment. 284 

Comparison to Elastodynamic Solution 285 

Younan and Veletsos (2000) developed solutions for the dynamic response of flexible retaining walls 286 

supporting an infinitely long deposit of uniform elastic soil. We compare predictions of the model 287 

proposed herein with their solutions for flexible walls. Seismic demands are applied in the form of a 288 

horizontal static body force (corresponding to ω = 0) imposed on the soil deposit. A few definitions are 289 

required to relate their results to those formulated here. First, their solutions are formulated in terms of 290 

a dimensionless stiffness parameter, dw, that is related to βoH as indicated in Eq. 22,  291 

( ) ( )2
4 8 1 w

w od H
σ

ν
β

π ψ

−
=

⋅
 (22) 

where ( )( )2 1 2σψ ν ν= − −  and νw is the Poisson ratio for the wall material. Younan and Veletsos 292 

(2000) utilized ν = 1/3 and νw = 0.17 in their solutions, and the same parameters are adopted here. 293 
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Second, their solutions utilize the horizontal acceleration at the bottom of the retained soil, gHu , as 294 

a normalizing factor, whereas we utilize the free-field displacement at the ground surface. Furthermore, 295 

our solution requires an input frequency larger than 0, and therefore does not strictly apply to problems 296 

with uniform horizontal acceleration. To overcome these issues, we utilize a long wavelength in our 297 

solution, λ/H = 200, corresponding to kH = π/100. The relationship between acceleration and surface 298 

displacement is given by Eq. 23. 299 

( )

2

0 2 1 cos
gH

g

H u
u

G kH
ρ

=
−  

  (23) 

A comparison of the solutions is provided in Fig. 3. The pressure distributions in Fig. 3a exhibit the 300 

same general trends in which wall flexibility reduces earth pressures overall. However, the distributions 301 

for the proposed solution tend to have a smaller resultant force, PE, with a higher line of action, h/H, 302 

where h is the distance to the resultant from the base of the wall. This trend is consistent with the 303 

finding of Veletsos and Younan (1994) that analyses involving only the fundamental mode of soil and 304 

wall deformation predict a higher h/H than analyses involving all modes. The solution for ki
yH in Eq. (3) 305 

utilizes shape functions for the soil deformation profile that correspond to the first mode. Although the 306 

proposed solution over-predicts h/H and under-predicts PE, the combined effect provides bending 307 

moment values that agree well with the solution by Younan and Veletsos. The reasonable agreement is 308 

encouraging because the proposed solution is significantly simpler to implement than the series solution 309 

by Younan and Veletsos (2000), and is easily extensible to vertically inhomogeneous soil. Furthermore, 310 

continuum elastic solutions, such as those implemented by Younan and Veletsos, exhibit a singularity at 311 

the top of flexible walls in which the horizontal pressure asymptotically approaches -∞ (e.g., Borowicka 312 

1939). This singularity is unrealistic for real soils, and does not occur in the Winkler approximation. 313 
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 314 

Figure 3. Comparison of proposed solution with Younan and Veletsos (2000) showing (a) pressure 315 

distributions, (b) dimensionless soil thrust, (c) dimensionless line of action of resultant, and (d) 316 

dimensionless overturning moment.  317 

Validation Against Experimental Data 318 

Model-To-Data Comparisons 319 

The proposed solution is compared with measurements from an experimental program by 320 

Hushmand et al. (2016) involving steel box structures embedded in sand as illustrated in Fig. 4. Testing 321 

was performed on the 5.5 m-radius, 400g-ton geotechnical centrifuge at the University of Colorado 322 

Boulder. Comparisons are made for three tests, with model properties summarized in Table 1. For Test 323 

2, the structure was bolted to the base of the container, whereas for Tests 1, and 4, the structures were 324 

resting on sand as illustrated in Fig. 4. Test 3 is not used here because the tactile pressure sensors did 325 
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not function properly during the test. Dry Nevada sand No. 120 (Gs = 2.65, emin = 0.56, emax = 0.84, D50 = 326 

0.13mm, Cu = 1.67, ρ = 1.6Mg/m3) was placed at a relative density of Dr = 60%. The structures were 327 

composed of steel with ρ = 7.87 Mg/m3 and E = 200 GPa. Assuming that the shear beam container 328 

provides harmonic boundary conditions (i.e., equivalent to an infinite sequence of identical models 329 

connected to each other in series from left-to-right), the centrifuge model represents a finite length 330 

deposit with the length of the retained soil deposit equal to twice the distance from the container wall 331 

to the structure wall, such that L = 30 m. Furthermore, the accelerometer that recorded the surface 332 

input motion was positioned at a distance from the wall of the structure of yref = 11m. The structural 333 

response was measured using strain gauges mounted on the structure walls, and tactile pressure 334 

sensors placed at the interface between the sand and the structure walls. 335 

 336 

 337 

Figure 4. Experimental configuration scheme (modified after Hushmand et al. 2016). 338 

 339 

Table 1. Properties of centrifuge models at prototype scale (Hushmand et al. 2016). 340 

Test ID H (m) B 
(m) 

D 
(m) 

L 
(m) 

yref 
(m) 

tw 
(m) 

tt (m) tb (m) VH 
(m/s) 

Ky,t 
(kN/m/m) 

Kxx,t (kN-
m/rad/m) 

Ky,b 
(kN/m/m) 

Kxx,b (kN-
m/rad/m) 

Test 1 10.5 6.1 8.3 30 11 0.56 0.37 0.69 186 0 8.7e5 1.7e5 6.0e6 
Test 2 10.5 6.1 0 30 11 0.56 0.37 0.69 186 0 8.7e5 ∞  ∞  
Test 4 10.5 6.1 8.3 30 11 0.28 0.28 0.50 186 0 3.7e5 1.7e5 2.5e6 

 341 
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Shear wave velocity was not directly measured in the experiments, but rather inferred from ambient 342 

vibration data. Hushmand et al. (2016) reports that the natural frequency of the soil deposit was 4.0 Hz 343 

for Test 2. Assuming n = 0.25, b = 0.01, and ν = 0.3, which are reasonable values for cohesionless sand, 344 

the dimensionless natural frequency computed using Eq. 7 is aoc = 1.42. The value of shear wave velocity 345 

at the elevation of the base of the wall is then computed as VH = 186 m/s using Eq. 24. The sand was 346 

prepared in the same manner for all of the tests, so the same value of VH was used for Tests 1 and 4. 347 

( )2 1
no

H
oc

f HV b b
a

π −
= + −    (24) 

 348 

 Time-averaged values of VS were then computed over the depth range from H to H+D for Tests 1 349 

and 4, and values of base stiffness  ,y bK and  ,xx bK  were computed using Eqs. 13 and 14. These values 350 

were then divided by two to account for the fact that two walls were attached to the same base slab. 351 

The rotational stiffness at the top of the wall was computed from the flexural stiffness of the roof 352 

diaphragm as  , 6 /xx tK EI B= and the translational stiffness at the top of the wall was  , 0y tK =   since 353 

there were no columns or interior walls connecting the roof and floor diaphragms. 354 

A sequence of earthquake ground motions was imposed on the model using the servo-controlled, 355 

electro-hydraulic shake table. The motions consisted of the following scaled horizontal records: Sylmar 356 

Converter Station component NCS52 from the 1994 Northridge Earthquake, the LGPC Station 357 

component LGP000 from the 1989 Loma Prieta Earthquake, and the Istanbul Station component IST180 358 

from the 1999 Izmit Earthquake in Turkey. Hushmand et al. (2016) adopted a naming convention in 359 

which the motions were assigned names based on the earthquake from which they were recorded (i.e., 360 

Izmit, Loma Prieta, and Northridge), and this naming convention is utilized here for consistency with the 361 

source manuscript. Three intensities were used for the Northridge motion, and are denoted Northridge-362 
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L (low intensity), Northridge-M (medium intensity), and Northridge-H (high intensity). We obtained 363 

recorded motions from the surface of the model from Dashti (personal communication, 2017). We 364 

band-pass filtered the records using an acausal Butterworth filter with high-pass corner frequency and 365 

order of 0.2Hz and 2, respectively, and low-pass corner frequency and order of 6.0Hz and 5, 366 

respectively. High pass filtering was required to remove low frequency noise to obtain accurate velocity 367 

and displacement time series. The motions were also low-pass filtered to remove low-amplitude and 368 

high-frequency portions of the records, which were observed to cause undesired resonances in the 369 

computed solutions for some motions. 370 

Softening of the models due to strong shaking was observed in the form of lengthening of the 371 

fundamental period of the soil column, therefore an equivalent linear approach was implemented for 372 

the model predictions. Hushmand et al. (2016) adopted a modulus reduction relationship by Darendeli 373 

(2001) for the sand, and the same modulus reduction curve is adopted herein. The average shear strain 374 

in the soil over the height of the wall was obtained by taking the difference in displacement at the 375 

ground surface, and the displacement computed at the base of the wall using Eq. 2. Embedded 376 

accelerometers could conceivably be used to obtain more accurate shear strain estimates, but we did 377 

not use these sensors because we wanted our predictions to be consistent with the modeling 378 

assumption in which only the surface motion, soil properties, and structural properties are known. A 379 

strain-compatible shear wave velocity, VH,eq, was obtained by the following steps: (1) assume a value of 380 

VH,eq, (2) compute the soil displacement time series at the elevation of the top of the wall and of the 381 

bottom of the wall (Eq 2), (3) compute a time series of average strain over the wall height as the 382 

difference in displacements divided by wall height, and find the maximum value, γmax, (4) compute a 383 

representative shear strain, γeff = γmax (Mw-1)/10 following Idriss and Sun (1996), where Mw is the 384 

moment magnitude for the earthquake from which the ground motion record was obtained, (5) obtain a 385 
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G/Gmax value from the modulus reduction curve, and compute VH,eq = VH(G/Gmax)0.5, and (6) repeat steps 386 

2 through 5 until the computed value of γeff is consistent with VH,eq. 387 

Predicted profiles of wall displacement, seismic earth pressure component ∆σk, and bending 388 

moment M are presented in Fig. 5 for Test 2 with the Northridge-L motion, and in Fig. 6 for Test 1 with 389 

the Loma Prieta motion. The measured peak horizontal pressure and bending moment profiles are also 390 

plotted. The tactile pressure sensors and strain gauges were connected to different data acquisition 391 

systems that were not synchronized. Therefore, the measured pressure data are plotted at the time that 392 

the peak pressure was measured rather than at the time the peak bending moment was measured. The 393 

tactile pressure transducers directly measure the pressure at the soil-wall interface, and are compared 394 

in Figs. 5-6 with predicted values of ∆σ, which represents earth pressures at the soil-wall interface.  The 395 

predicted interface pressures and moments are both plotted for the time of peak bending moment. 396 

The bending moment data are captured quite well by the proposed solution in this case, whereas 397 

the predicted soil pressures differ from the measured soil pressures. Although we show the measured 398 

earth pressures for completeness, we focus our attention on bending moments for a number of reasons. 399 

First, the strain gauges are considered to provide more reliable measurements than the tactile pressure 400 

sensors (Dashti, personal communication 2017). Second, because of the aforementioned time difference 401 

between predicted and measured soil pressures, a match would not necessarily be expected. Third, 402 

bending moments are more important from a structural perspective.   403 

Also plotted in Figs. 5 and 6 are solutions corresponding to the Seed and Whitman (S-W) method, 404 

and in Fig. 5 for the Mononobe-Okabe (M-O) method. A friction angle of φ = 35° was utilized for these 405 

solutions, as assumed by Hushmand et al. (2016). The M-O method does not produce a solution for the 406 

Loma Prieta motion in Test 1 because the peak surface acceleration exceeded the M-O limiting value of 407 

PGA/g >= tan(φ), which is 0.7g (the measured PGA was 0.81g for the Loma Prieta motion in Test 1).  408 
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In the application of the S-W and M-O solutions, the earth pressure distribution was assumed to be 409 

triangular with the height of the resultant acting at h/H = 1/3. Seed and Whitman recommended placing 410 

the resultant at h/H = 0.6, but Mononobe and Matsuo (1929) found that (1/3H) is a more suitable 411 

resultant height for flexible walls. This is also consistent with recent observations by Wagner and Sitar 412 

(2017). Wall inertia is not included in the calculation of bending moment for the M-O and S-W solutions, 413 

which we believe is the most common approach adopted when computing bending moments arising 414 

from seismic earth pressures. The influence of wall inertia on these predictions is explored in the next 415 

section. 416 

 417 
Figure 5. Predicted and measured response quantities for the Northridge-L motion applied to Test 2. 418 
Predictions include the method proposed in this study ("predicted"), the Mononobe-Okabe method 419 
("M-O"), and by Seed and Whitman ("S-W"). The measured values of ∆σ were obtained by pressure 420 

cells, and values of M were evaluated from strain gauge data.  421 
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 422 
Figure 6. Predicted and measured response quantities for the Loma Prieta motion applied to Test 1. 423 

Predictions include the method proposed in this study ("predicted") and by Seed and Whitman ("S-W"). 424 
The Mononobe-Okabe method did not produce a solution for this motion. 425 

 426 

The S-W and M-O solutions under-predict the measured bending moments in Fig. 5, and the S-W 427 

solution also under-predicts bending moments in Fig. 6. It is interesting that the S-W solution produces 428 

earth pressures in Fig. 6 that agree reasonably well with the measured peak pressures, but under-429 

predicts bending moment. We attribute this to the lack of wall inertia in the S-W solution, and the 430 

resultant of the measured earth pressure distribution being higher than (h/H) = (1/3). The proposed 431 

solution predicts lower earth pressures, but higher bending moments compared with the S-W and M-O 432 

solutions. This is due to inertial interaction from the distributed mass along the wall and from lumped 433 

masses at the top and bottom of the wall, which are considered in the proposed solution, but not in the 434 

S-W and M-O solutions, as explored in more detail in the next section. 435 

For the purpose of comparing measurements and predictions for all of the ground motions imposed 436 

on the model, we compute residuals defined as the natural log of the maximum measured bending 437 

moment minus the natural log of the maximum bending moment predicted at the same elevation. 438 
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Residuals are summarized in Table 2, and plotted in Fig. 7. For the proposed solution, the mean and 439 

standard deviation of the residuals are 0.11 and 0.34, respectively. For comparison, Fig. 7(b) plots 440 

residuals for the Mononbe-Okabe solution and Fig. 7(c) plots residuals for the Seed and Whitman (1973) 441 

solution. The mean and standard deviation for the M-O solution are computed only for the physically 442 

meaningful solutions (PGA < 0.7g), and are 0.29 and 0.32, respectively. The mean and standard deviation 443 

for the Seed and Whitman method in this case were 0.63 and 0.29, respectively. These positive means 444 

indicate under-prediction by approximately 26% (M-O) and 47% (S-W), whereas the proposed solution 445 

produces a much lower error (10%). The standard deviations of the residuals are similar for the three 446 

methods. 447 

 448 

 449 

 Figure 7. Residuals for the proposed solution, the Mononobe-Okabe method, and the Seed and 450 
Whitman method. 451 

  452 
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Table 2. Comparison of measured and predicted bending moments and residuals for experiment by Hushmand et al. (2016). 453 

Test Motion PGA 
(g) 

PGV 
(m/s) 

PGD 
(m) 

Tm 
(s) 

Mmeas 
(kN-m/m) 

Mpred  
(kN-m/m) 

MM-O 
(kN-m/m) 

MS-W 

(kN-m/m) Respred ResM-Oa ResS-W 

1 Izmit 0.53 0.54 0.09 0.49 965 993 936 565 -0.03 0.03 0.53 

1 LomaPrieta 0.81 0.73 0.20 0.60 1452 1597 N/A 862 -0.09 -1.40 0.52 

1 Northridge-H 0.84 1.05 0.31 0.84 1440 2357 N/A 895 -0.49 -1.40 0.48 

1 Northridge-L 0.35 0.51 0.13 0.78 888 1422 435 374 -0.47 0.71 0.87 

1 Northridge-M 0.55 0.73 0.24 0.83 1246 1491 1005 583 -0.18 0.22 0.76 

2 Izmit 0.55 0.44 0.05 0.44 785 974 1005 583 -0.22 -0.25 0.30 

2 LomaPrieta 1.25 0.85 0.20 0.50 2359 2443 N/A 1325 -0.04 -1.40 0.58 

2 Northridge-H 1.08 0.74 0.23 0.63 3091 1922 N/A 1144 0.47 -1.40 0.99 

2 Northridge-L 0.46 0.36 0.07 0.56 1049 929 687 487 0.12 0.42 0.77 

2 Northridge-M 0.64 0.55 0.13 0.56 2318 1631 1565 678 0.35 0.39 1.23 

4 Izmit 0.44 0.49 0.09 0.52 514 324 557 408 0.46 -0.08 0.23 

4 LomaPrieta 1.03 0.73 0.18 0.60 1094 726 N/A 952 0.41 -1.40 0.14 

4 Northridge-H 0.84 0.97 0.25 0.86 1204 735 N/A 772 0.49 -1.40 0.44 

4 Northridge-L 0.31 0.49 0.11 0.87 616 476 306 282 0.26 0.70 0.78 

4 Northridge-M 0.48 0.76 0.20 0.85 986 558 640 439 0.57 0.43 0.81 

aMononobe-Okabe procedure does not provide a solution for PGA > 0.7g for this problem. 

 454 

  455 
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Influence of Inertial Interaction 456 

The distributed mass of the wall and lumped masses at the top and bottom of the wall were 457 

included in the predictions using the proposed solution, but not for the M-O and S-W solutions. This 458 

raises two questions: (i) what if inertia was added to the S-W and M-O solutions, and (ii) what if inertia 459 

was removed from the proposed solution? To answer the first question, bending moments for the M-O 460 

and S-W solutions were re-computed with consideration of inertial loads; the resulting residuals are 461 

plotted in Fig. 8. The acceleration was assumed to be equal to PGA when computing these forces, and 462 

half of the wall mass was lumped at the top and half at the bottom. As expected, the computed bending 463 

moments increase, which causes the residuals to decrease. The mean value of the residuals for the M-O 464 

and S-W methods now become negative, indicating over-prediction. 465 

 466 

Figure 8. Residuals for (a) the Mononobe-Okabe method with and without wall inertia, and (b) the Seed 467 
and Whitman method with and without wall inertia. Values of µ and σ are computed for the cases with 468 

wall inertia. 469 

 470 
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To investigate the significance of inertial effects in the proposed solution, bending moment profiles 471 

were re-computed with the mass terms set to zero, which corresponds to a kinematic-only solution. 472 

Residuals for the solution without mass are plotted in Fig. 9 using solid symbols, along with residuals for 473 

the solution with mass plotted using open symbols. The mean of the residuals for the solution without 474 

mass is µ = 0.46, indicating that excluding mass results in an under-prediction of bending moment. The 475 

differences in residuals with inertia and without inertia are more significant for the M-O and S-W 476 

procedures (differences in mean residuals of about 0.65-0.85, Fig. 8) than for the proposed solution 477 

(difference of 0.4, Fig. 9). This occurs because the earth pressure distribution in the proposed method is 478 

an outcome of the solution rather than a prescribed boundary condition. When wall inertia is added on 479 

top of the earth pressures computed using the M-O or S-W method, the wall displaces more in response 480 

to the inertial loading but the earth pressures remain the same.  481 

 482 

Figure 9. Residuals for proposed solution with and without wall inertia. Values of µ and σ are computed 483 
for the cases without wall inertia. 484 
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Distributions with depth of soil and wall displacement, earth pressure, and bending moment are 485 

shown in Fig. 10 for Test 2 for the Northridge-L motion for cases with and without inertia. The bending 486 

moments are larger for the simulation with inertia, but the mobilized earth pressure is smaller. The 487 

reason for this behavior is that inertial loading tends to displace the wall away from the free-field soil, 488 

which causes an increase in bending moment and a reduction in earth pressures. This is a fundamental 489 

aspect of soil structure interaction that is captured by the proposed solution, but cannot be captured by 490 

limit equilibrium methods such as M-O and S-W. Similar phasing differences between kinematic and 491 

inertial demands were observed by Athanasopoulos-Zekkos et al. (2013). 492 

 493 

Figure 10. Distributions of soil and wall displacement, seismic earth pressure, and bending moment for 494 
the Northridge-L motion for Test 2 for simulations with and without inertia loading. 495 
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Conclusions 496 

A Winkler solution was formulated for the response of flexible retaining walls to vertical wave 497 

propagation through inhomogeneous soils. A closed-form exact solution to the governing differential 498 

equation of motion does not exist, so an approximate solution was formulated using the weak form of 499 

the equation. Soil-structure interaction is modeled using non-uniform Winkler stiffness intensity 500 

distributed along the wall, and impedance functions at the top and bottom of the wall. Mass distributed 501 

along the length of the wall and lumped at the top and bottom of the wall are included in the solution. 502 

The solution is first verified using a closed-form Winkler solution for homogeneous soil, then with a 503 

more robust continuum elastodynamic solution. Finally, the proposed solution is validated using 504 

measurements from a recent experimental study, and shown to produce more accurate predictions than 505 

the limit state procedures that are commonly utilized in practice. 506 

Predictions from the proposed solution compare favorably with experimental data, but nevertheless 507 

exhibited differences between predicted and measured peak bending moment values. These differences 508 

arise, in part, from limitations of the proposed method, which include:  509 

1. Soil inelasticity is modeled using the equivalent linear (EL) method, which is a common 510 

assumption made in ground response and soil-structure interaction analyses. However, the EL 511 

method is known to produce erroneous estimates of ground motion when shaking intensity 512 

becomes strong (e.g., Zalachoris and Rathje 2015; Kim et al. 2016). The EL method is not only 513 

used in estimating the distribution of free-field soil displacement along the height of the wall, 514 

but also in the Winkler stiffness intensity distributed along the wall height. It is unclear the 515 

extent to which this assumption introduces errors in the predictions.  516 

2. Geometric nonlinearity may arise in the formation of gaps at the soil-wall interface (which might 517 

be more important for clayey backfills), but gapping is not modeled in the proposed solution.  518 
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3. The proposed solution utilizes the Winkler assumption, which is known not to faithfully model a 519 

continuum, but is useful when the Winkler stiffness intensity is carefully selected.  520 

In addition to these limitations that may have influenced comparisons with experimental data, the 521 

proposed solution also does not consider: (1) coupling of soil and water response in saturated fill, 522 

including effects such as soil liquefaction and ground failure, pore pressures arising at the soil-wall 523 

interface, and propagation of p-waves through the fluid phase, and (2) nonlinear material behavior in 524 

the wall's structural elements. Limitations in the proposed method can be overcome using numerical 525 

analyses specifically formulated for a particular problem. 526 

Structural components that are not explicitly modeled in the proposed solution are represented by 527 

lumped mass and stiffness terms. This modeling approach may be inadequate for cases where a 528 

structure attached to the top of the wall(s) or base slab exhibits a dynamic response that contributes 529 

additional inertial forces to the walls. This additional inertial interaction may contribute significantly to 530 

mobilized earth pressures, and can be modeled using techniques described by Stewart et al. (2012). 531 

We advocate that the seismic response of retaining walls should be assessed using procedures that 532 

properly account for aspects of soil-structure interaction that strongly influence response. Limit state 533 

procedures, such as the Mononobe-Okabe method and Seed and Whitman method, that have been 534 

commonly utilized for nearly the past century, are not formulated to consider relative wall-soil 535 

displacement as a driver of seismic earth pressure. As a result, they do not account for important factors 536 

that influence relative displacements and the wall pressures they produce such as wall flexibility, soil 537 

inhomogeneity, and frequency content of the ground motion. Moreover, the M-O procedure does not 538 

provide a physically meaningful solution when the input acceleration becomes larger than a threshold 539 

value, which often occurs in high seismicity regions. The proposed solution, by contrast, considers wall 540 
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flexibility, soil inhomogeneity, and ground motion frequency content, which results in more accurate 541 

predictions.  542 
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Appendix. Derivation of Stiffness matrix, mass matrix, and force vector expressions. 547 

To avoid disrupting the flow of the paper, derivations of the weak form of the governing differential 548 

equation, and the resulting stiffness matrices, mass matrices, and force vectors are presented in this 549 

appendix. The weak form of the governing differential equation is obtained by twice integrating by parts 550 

the first term on the left side of Eq. 16, resulting in Eq. 25. 551 
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(25) 

Substituting Eq. 17 into Eq. 25 for u(z), results in Eq. 26. Various terms in Eq. 26 have been assigned as 552 

either a stiffness matrix, K , mass matrix, M , or force vector, F , and the ci coefficients have been 553 

algebraically isolated in each expression. 554 
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(26) 

The expression for aK is provided by Eq. 27, and represents the traditional stiffness matrix for an Euler-555 

Bernoulli flexural plate.  556 

2 2
'' ''

3
0

2 2

12 6 12 6
6 4 6 2

( ) ( )dz
12 6 12 6

6 2 6 4

H
a
ij i j

H H
H H H HEIK EI z z

H HH
H H H H

− 
 − = Φ Φ =
 − − −
 − 

∫
 (27) 

The expression for bK was obtained using integration by parts and the general Leibniz rule for 557 

differentiation of products of functions (e.g., Olver 2000), and is given by Eq. 28. Although this 558 

expression is exact, its implementation may be susceptible to floating point errors. The integration was 559 

performed here using numerical integration by the trapezoidal rule to avoid these errors. 560 
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 561 

The mass matrix Ma is given by Eq. 29, and represents the contribution of distributed mass along the 562 

wall. 563 

2 2

2 3 2 3

2 2
0

2 3 2 3

156 22 54 13
22 4 13 3

(z) (z)dz
420 54 13 156 22

13 3 22 4

H
a w w
ij w w i j

H H H H
H H H HtM t
H H H H
H H H H

ρρ

 −
 − = Φ Φ =
 −
 
− − − 

∫
 

(29) 

The expression for the force vector aF is given by Eq. 30. This expression is not integrable, and was 564 

solved using numerical integration by the trapezoidal rule. 565 
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0
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H
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j yH g jF k f z u z z dz= Φ∫  (30) 

Having solved for the stiffness matrices, mass matrix, and force vector terms in Eq. 26, the remaining 566 

task is to solve for the first two terms that arise from integration by parts. Evaluating these terms over 567 

the limits results in a vector of shear and moment reaction forces at the top and base of the wall given 568 

by 3 2 3 2

3 2 3 2

(0) (0) ( ) ( )
T

u u u H u HEI
z z z z

 ∂ ∂ ∂ ∂
=  ∂ ∂ ∂ ∂ 

reacF . These reaction forces are represented as a function of the 569 

nodal displacement coefficients, ci, by creating stiffness matrices, a mass matrix, and a force vector 570 

representing the springs and lumped masses at the top and base of the wall.  571 

The expression for cK  represents the stiffness imposed on the wall by soil-structure interaction, and 572 

derived based on relative displacements between the wall and the soil either in the free-field (for an 573 

infinite length deposit), or at a position yref from the wall (for a finite-length deposit). When the base and 574 

roof diaphragms are rigid, =K K . However, in the case of flexible roof and base diaphragms, 575 

additional steps are required to compute the stiffness at the base. The approach adopted herein is to 576 

compute a uniform Winkler stiffness intensity for springs acting on the diaphragm that result in the 577 

rotational stiffness,  ,xx bK , for a rigid wall. The resulting equivalent Winkler stiffness intensity is given by 578 

Eq. 31 579 



,
3

24 xx bi
z

Kk
B

=  (31) 

The rotational stiffness at the connection between the wall and base slab is then computed by imposing 580 

a unit rotation on the nodes at the ends of the base slab and solving for the bending moment, which 581 

results in Eq. 32, where 4 4i
b z bk EIβ = , and EIb is the flexural stiffness of the base slab. 582 
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Noting that u3 = ug(0), θ3 = 0, u4 = ug(H), and θ4 = 0, expressions for cK and cF are given by Eqs. 33 and 583 

34.  584 
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The masses lumped at the top and bottom of the wall result in the mass matrix, bM in Eq. 35. 585 
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Values of shear and moment at the top and bottom of the wall are then computed using Eq. 36. 586 

2ω= − −reac c b cF K M c F  (36) 

Substituting Eq. 36 into 26 and collecting terms results in Eq. 37. Values of c are then solved by matrix 587 

inversion.   588 

{ }12 2ω ω
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