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Factors Identified Using Time-lapse Electrical Resistivity Tomography and Hydro-2	

Thermal Modeling 3	

  4	

Anh Phuong Tran, Baptiste Dafflon, Gautam Bisht, Susan S. Hubbard 5	

Earth and Environmental Sciences Area, Lawrence Berkeley National Laboratory 6	

 7	

Abstract: 8	

Quantitative understanding of controls on thaw layer thickness (TLT) dynamics in the 9	

Arctic peninsula is essential for predictive understanding of permafrost degradation 10	

feedbacks to global warming and hydrobiochemical processes. This study jointly 11	

interprets electrical resistivity tomography (ERT) measurements and hydro-thermal 12	

numerical simulation results to assess spatiotemporal variations of TLT and to determine 13	

its controlling factors in Barrow, Alaska. Time-lapse ERT measurements along a 35-m 14	

transect were autonomously collected from 2013 to 2015 and inverted to obtain soil 15	

electrical resistivity. Based on several probe-based TLT measurements and co-located 16	

soil electrical resistivity, we estimated the electrical resistivity thresholds associated with 17	

the boundary between the thaw layer and permafrost using a grid search optimization 18	

algorithm. Then, we used the obtained thresholds to derive the TLT from all soil 19	

electrical resistivity images. The spatiotemporal analysis of the ERT-derived TLT shows 20	

that the TLT at high-centered polygons (HCPs) is smaller than that at low-centered 21	

polygons (LCPs), and that both thawing and freezing occur earlier at the HCPs compared 22	

to the LCPs. In order to provide a physical explanation for dynamics in the thaw layer, 23	

we performed 1-D hydro-thermal simulations using the community land model (CLM). 24	

Simulation results showed that air temperature and precipitation jointly govern the 25	

temporal variations of TLT, while the topsoil organic content (SOC) and polygon 26	

morphology are responsible for its spatial variations. When the topsoil SOC and its 27	

thickness increase, TLT decreases. Meanwhile, at LCPs, a thicker snow layer and 28	

saturated soil contribute to a thicker TLT and extend the time needed for TLT to freeze 29	

and thaw. This research highlights the importance of combination of measurements and 30	
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numerical modeling to improve our understanding spatiotemporal variations and key 31	

controls of TLT in cold regions. 32	

 33	

1. Introduction 34	

Thaw layer dynamics and its feedbacks to climate change in permafrost regions are a 35	

focus of intensive investigations (e.g., Schuur et al., 2009). Thaw layer dynamics may 36	

influence the decomposition of the enormous carbon pool contained in the subsurface, 37	

releasing CO2 and CH4 to the atmosphere, and therefore, potentially increasing global 38	

warming. Thaw layer thickness (TLT) also influences the groundwater direction, surface 39	

topography and ecological landscape in the permafrost regions (e.g., Turetsky et al., 40	

2002; Hinzman et al., 2005) as well as the groundwater storage capacity. In turn, the 41	

changes in topography and landscape affect the partitioning of precipitation into runoff 42	

and infiltration [e.g., Kane et al., 2008]. As a result, it is crucial to quantitatively 43	

characterize the thaw layer and its controlling factors to increase our predictive 44	

understanding of permafrost system behavior. 45	

Thaw layer dynamics can be explored using numerical simulations or field investigations. 46	

Numerical approach considers near-surface atmospheric forcing (e.g., air temperature, 47	

precipitation, radiation, wind speed, humidity, and air pressure), vegetation 48	

characteristics and soil properties (e.g., porosity, water retention curve, hydraulic 49	

conductivity, thermal conductivity, and heat capacity) to simulate the surface-subsurface 50	

hydro-thermal processes and thaw layer spatiotemporal variability, often in high 51	

resolution. Development of these models is often challenging due to the complexity of 52	

hydro-thermal processes that need to be included, such as radiation exchange, 53	

evapotranspiration, root water uptake, and snowmelt, as well as water phase transition 54	

and its associated landscape deformation (Painter et al., 2013). In addition, the common 55	

lack of model input data (e.g., vegetation, soil properties, and bedrock location) and 56	

system states (e.g., liquid/ice content, soil temperature, and groundwater table) inhibits 57	

calibration and validation of these models.  58	

 59	

Combining hydro-thermal modeling with multi-scale observations can lead to improved 60	
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understanding of the thaw layer dynamics and its drivers. Thaw layer dynamics can be 61	

characterized using a range of field-based techniques. Traditional techniques include 62	

mechanical probing, vertical soil temperature measurements and visual observations 63	

(e.g., Brown et al., 2000). While these traditional techniques provide the relatively 64	

accurate measurements of TLT, they are labor – intensive and often do not provide dense 65	

spatiotemporal information. Several noninvasive geophysical techniques have 66	

demonstrated utility for TLT estimation. For example, Arcone et al. (1998); Hinkel et al. 67	

(2001); Jørgensen and Andreasen (2007) and Léger et al. (2017) employed ground-68	

penetrating radar (GPR) to characterize the thaw layer. Schaefer et al. (2015) used 69	

Interferometric Synthetic Aperture Radar (InSAR) to estimate the thaw depth at Barrow.  70	

You et al. (2013) employed electrical resistivity tomography (ERT), ground temperature 71	

monitoring, frost table probing and coring to detect the permafrost depth. Hubbard et al. 72	

(2013) combined Lidar data with multiple geophysical (ERT, GPR, electromagnetic) and 73	

point measurements to characterize the thaw layer and permafrost variability over a large 74	

area. However, the time span of most of these studies were limited, taking place from few 75	

measurements to one growing season. There is a lack of data tracking the spatiotemporal 76	

variations of TLT over the course of a year, or many years. There have been only few 77	

studies that cover several years. For example, Hilbich et al. (2008) used ERT and 78	

temperature observations in seven years to explore the long-term and short-term 79	

variations of the freezing/thawing process in alpine permafrost and its links to the 80	

atmospheric temperature. Dafflon et al. (2017) used one-year multiple datasets obtained 81	

from autonomous above- and below-ground measurements, including ERT, to monitor 82	

the annual cycle of freezing/thaw dynamics (winter – growing season – freezing) and its 83	

link to surface processes.  84	

 85	

Besides monitoring TLT, identifying the factors that control TLT dynamics is important 86	

as well. Hubbard et al. (2013) found that TLT co-varied with several parameters, 87	

including vegetation, soil physical properties, soil water content, polygon morphology 88	

and seasonal temperature. Hinzman et al. (1991) and Tran et al. (2017) identified soil 89	

organic carbon (SOC) as a main factor that governs the hydro-thermal and thaw layer 90	

dynamics in the Alaskan Arctic. Nelson et al. (1998) stated that topography, via near-91	
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surface hydrology, is closely linked to the variations of TLT. Wright et al. (2009) 92	

reported that the spatial pattern of TLT strongly correlates with the soil moisture 93	

distribution, and found that its temporal variations are influenced by air temperature and 94	

precipitation. Hinkel and Nelson (2003) analyzed data collected at seven circumpolar 95	

active layer monitoring (CALM) sites in northern Alaska during the 1995-2000 period 96	

and found that the annual maximum thaw depth is controlled by air temperature. 97	

Meanwhile, its spatial variations depend on vegetation, substrate properties, snow cover 98	

and soil surface topography. Blok et al. (2010) observed that the shrub expansion in the 99	

Arctic region may increase soil temperature and TLT. McClymont et al. (2013) showed 100	

that soil temperature in winter in the peat plateau is considerably lower than that in the 101	

bog. Dafflon et al. (2017) showed that subsurface soil moisture and thaw depth in the 102	

Arctic tundra exhibit a strong correlation with the vegetation greenness.  Using numerical 103	

simulations, Nicolsky et al. (2007) showed that inclusion of surface SOC in the land 104	

surface model could improve the TLT estimation. In a study at Barrow, Alaska, Atchley 105	

et al. (2016) performed a sensitivity analysis and found that TLT is the most sensitive to 106	

top organic layer thickness and snow depth, but relatively insensitive to water saturation.  107	

 108	

The above studies indicate the need to simultaneously investigate the spatiotemporal 109	

variations of TLT and identify the factors that control these variations in permafrost 110	

regions. Our study addressed this requirement using the following model-data integration 111	

approach. We first estimated TLT variations in time and space using time-lapse 112	

subsurface electrical resistivity images, which were obtained by inversion of ERT 113	

measurements in an ice wedge polygon dominated tundra in Barrow, Alaska. Secondly, 114	

we used the probe-based TLT measurements and co-located soil electrical resistivity to 115	

determine the electrical resistivity thresholds that separate the thaw layer from the 116	

permafrost layer using the grid search optimization algorithm. Then, these thresholds 117	

were used to derive TLT from soil electrical resistivity images over a period from 2013 to 118	

2015. Next, we analyzed the annual and multiannual variations of the soil electrical 119	

resistivity and TLT. Finally, we performed numerical hydro-thermal simulations to 120	

explore TLT dynamics and to investigate the factors that govern these dynamics, 121	

including soil properties, morphology and atmospheric forcing. Compared to previous 122	
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studies, this study advances the knowledge of how to use long-term measurements to 123	

provide a more comprehensive picture of the spatiotemporal variability of TLT and its 124	

controlling factors. In addition, the joint interpretation of measurements and numerical 125	

modeling provides new insights and decreased uncertainty about the controls of TLT 126	

dynamics. 127	

  128	

2. Description of study site and data availability 129	

 130	

Our study site is associated with the Department of Energy’s Next-Generation Ecosystem 131	

Experiment (NGEE) Arctic project and is situated at the Barrow Environmental 132	

Observatory in Alaska (Figure 1). The NGEE site is characterized by ice-wedge 133	

polygons, which include low-centered polygon (LCP), flat-centered polygon (FCP) and 134	

high-centered polygon (HCP) morphologic features (Hubbard et al., 2013). The polygon 135	

morphology largely controls the spatial distribution of snow thickness (Wainwright et al., 136	

2017) and TLT (e.g.,Gangodagamage et al., 2014). In the summer season, while the 137	

centers of the LCPs are usually fully filled with water, the HCPs are relatively dry and 138	

unsaturated. Sedges, grasses, mosses, and dwarf shrubs are main vegetation types at this 139	

site. The mean annual air temperature is around –12°C and that in summer (June to 140	

August) is 3.3°C. The annual precipitation is 173 mm in which summer rain contributes 141	

up to 42% (Liljedahl et al., 2011). Thawing occurs during the growing season from June 142	

to October and the maximum TLT ranges from 25 to 65 cm (Shiklomanov et al., 2010).  143	

 144	

We established a 35-m intensive transect at this site, which traverses a HCP, a FCP, and a 145	

LCP. An above- and below-ground autonomous measurement system, which included 146	

ERT and other measurements, was installed (Figure 1). Probe-based TLT, snow depth, 147	

TDR and GPR data were also occasionally manually acquired. Soil samples were 148	

collected during the summer of 2014 at the thaw layer of five locations along the transect. 149	

In this study, we utilized the time-lapse ERT, probe-based TLT data, and physical soil 150	

properties estimated from the soil samples.  151	

 152	

The ERT data were acquired along the transect using Wenner-Schlumberger 153	
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configuration with a 0.5 m electrode spacing. The time-lapse ERT measurements were 154	

autonomously acquired daily over a long-time period from 08/15/2013 to 07/07/2016. 155	

However, because the last measurements in 2016 were collected at the beginning of the 156	

summer season, we only used data from 2013 to 2015 for our spatiotemporal analysis. 157	

Details of the acquisition were provided by Dafflon et al (2017). 158	

 159	
Figure 1: (Left panel) Location of the study site (red square) near Barrow, Alaska, 160	

USA. (Right panel) Aerial view of the ERT transect (dashed line), which traverses a 161	

high-centered polygon (HCP, 0<X<10 m), a flat-centered polygon (FCP, 10<X<22 162	

m) and a low-centered polygon (LCP, 22<X<35 m). The red lines separate these 163	

three polygons. 164	

 165	

The time-lapse images of soil electrical resistivity along the transect were obtained by 166	

inversion of ERT measurements using the boundless electrical resistivity tomography 167	

(BERT) model developed by Rücker et al. (2006). The unstructured mesh was internally 168	

generated by BERT and kept the same for all the inversions. The grid cell size, which is 169	

controlled by the model, increases from the surface to the bottom layer. In this study, we 170	

set the maximum area of a grid cell at 0.5 m2. The maximum cell width at the surface 171	

layer was set at 25% of the electrode spacing (0.5 m). For inversion, we used both 172	

electrical resistance and phase data contained in ERT measurements with a relative 173	

measurement error of 5%.  174	

 175	

The probe-based TLT data were measured at all locations of ERT electrodes (71 176	

locations) on seven days during the 2013 – 2016 period (Figure 2). Based on these 177	

measurements and co-located soil electrical resistivity images collected on the nearest 178	
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days, we estimated the electrical resistivity thresholds that separate the thaw layer and 179	

permafrost layer at each electrode location, as described in section 3.2. Then, these 180	

thresholds were used to specify TLT from all electrical resistivity images in the period 181	

from 08/15/2013 to 12/31/2015.  182	

 183	
Figure 2: Probe-based TLT data acquired at all ERT electrode locations along the 184	

intensive transect during period from 2013 to 2016. Two red solid lines separate the 185	

HCP, FCP and LCP. 186	

 187	

For evaluating the impact of soil properties on TLT, soil cores of top 0.3 m of the thaw 188	

layer were collected at five locations along the ERT transect in summer 2014 using a 189	

plastic tube pushed down to various depths and then excavated. In this study, we defined 190	

the SOC content as the volumetric fraction of SOC in SOC-mineral mixture without 191	

pores as in the Community Land Model (CLM). Table 1 indicates that there is a sharp 192	

change in both soil porosity and SOC content between depths of 0.075 and 0.15 m at all 193	

locations. For example, at the LCP – SOC location of ~X=29 m (see Figure 1), the 194	

porosity reduces from 95% to 82% and the SOC content reduces from 94% to 51%. As 195	

for the horizontal variations, the most notable difference in the soil properties is observed 196	

at ~X=3 m along the transect and refer later as the HCP – mineral location. Both soil 197	

porosity and SOC content at this location are significantly smaller than those at the other 198	

locations. For example, the porosity and SOC content of the top 0.075 m at the HCP – 199	
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mineral location are respectively 78% and 68%, while at the other locations the porosity 200	

is greater than 86% and the SOC content is greater than 94%. Based on various 201	

investigations at the NGEE site, the high mineral content at the HCP – mineral location is 202	

likely linked to the presence of a type of non-sorted circle that has limited expression at 203	

the surface at several locations over the site but mostly in the HCP. There is not much 204	

difference in soil properties among the HCP, FCP and LCP. The top 0.075 m at all of the 205	

other locations are approximately identical. The spatial variations of soil porosity at 206	

depths of 0.15, 0.21 and 0.26 m are significant with the porosity ranging from 51% to 207	

82% and the SOC content ranging from 16% to 51%. It is worth noting that there is 208	

another definition of SOC content, which is the percentage of the SOC in total volume of 209	

bulk soil (shown at the bottom row of Table 1). Table 1 shows that when the SOC content 210	

in soil material increases, the soil porosity increases, and therefore, the SOC content in 211	

bulk soil decreases. 212	

 213	

Table 1: Soil porosity and volumetric SOC content at depths z=0.075, 0.15, 0.21 and 214	

0.26 m and location X=3, 8 m (HCP), 12, 17 m (FCP) and 29 m (LCP) along the ERT 215	

transect (refer to Figure 1). The SOC content which is defined in CLM as its 216	

volumetric percentage in SOC-mineral material was used in this study. For 217	

comparison, the SOC content estimated as its volumetric percentage in total volume 218	

of bulk soil is also presented. 219	

 220	

Polygon type HCP FCP LCP 

X (m) 

3 

HCP-mineral 

location 

8 

HCP-SOC location 

12 

FCP-SOC location 

17 

FCP-SOC location 

29 

LCP-SOC location 

z (m) 0.075 0.15 0.075 0.15 0.21 0.075 15 0.21 0.26 0.075 0.15 0.21 0.26 0.075 0.15 0.21 

Porosity (%) 78 38 92 51 66 86 60 68 70 89 63 64 61 95 82 52 

SOC (%vol/vol 

of soil material, 

CLM) 

68 19 96 16 44 95 40 39 46 94 30 31 26 94 51 20 

SOC (%vol/vol 

of bulk soil) 
15 12 8 8 15 14 16 13 14 11 11 11 10 5 9 10 
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 221	

3. Spatial and temporal analysis of electrical resistivity and thaw layer thickness 222	

3.1. Spatial and temporal analysis of soil electrical resistivity data 223	

 224	

Figure 3 presents the estimated soil electrical resistivity images at specific times over the 225	

period from May to November 2014. The figure indicates that vertical variations in 226	

electrical resistivity at the end of winter and beginning of summer (05/02/2014 and 227	

06/15/2014), are related to the presence of a shallow frozen active layer and upper 228	

permafrost (high resistivity) located over a saline permafrost layer (lower resistivity), the 229	

latter documented by Dafflon et al. (2016). During this spring and early summer period, 230	

there is not much difference in the vertical resistivity distribution between LCP, FCP, and 231	

HCPs. However, when thawing occurs, there is a thaw layer with low resistivity above 232	

the permafrost and saline permafrost. We observed that this layer remained relatively 233	

conductive until the beginning of winter. In the horizontal direction, Figure 3 shows that 234	

TLT at the LCP is larger and remains unfrozen longer than that at the HCP. For example, 235	

on 11/16/2016, while there is no thaw layer at the HCP, there is still a shallow thaw layer 236	

at the LCP.  237	
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 238	
Figure 3: Time-lapse electrical resistivity images (in Log10(Ohm.m)) along the 239	

intensive transect. Red lines separate the HCP (left), FCP (middle) and LCP (right). 240	

One image per month from May 2014 to November 2014 is shown. 241	

 242	

To enable detailed analysis of temporal variations of soil electrical resistivity and its link 243	

to soil liquid content in the growing season, we transformed the electrical resistivity to 244	

the temporally-normalized value (𝛿) as below: 245	
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   𝛿!" =
!!"!!!
!!

= !!"
!!
− 1      (1) 246	

in which subscripts t and j denote the measurement at time instant t and BERT grid cell j; 247	

𝜌  represents the soil electrical resistivity; 𝜌! =
!
!

𝜌!"!
!!!  is the temporal mean of 248	

electrical resistivity at grid cell j; M is the number of ERT measurements over the 249	

considered period (08/15/2013 – 12/31/2015). The advantage of this normalization is that 250	

it removes variability due to soil physical characteristics, which do not change with time, 251	

and highlights changes due to freeze state and moisture content. For example, if the 252	

relationship between water liquid and soil electrical conductivity follows Archie’s 253	

formula 𝜌 = 𝜙! 𝑆!!𝜎! + 𝜙!! − 1 𝜎! !! (Archie, 1942), the temporally-normalized 254	

resistivity at a certain BERT grid cell is formulated as: 255	

   δ = !!
!!!! !!!!! !!
!!
!!!! !!!!! !!

− 1 ≈ !!
!

!!
! − 1    (2) 256	

in which 𝑆!! is the liquid saturation; 𝑆!! is the temporal mean of 𝑆!!; 𝜙 is the soil porosity; 257	

𝜎! and 𝜎! are, respectively, the water conductivity and soil surface conductance; and m 258	

and n are the cement and saturation exponential coefficients. Equation (2) illustrates that 259	

the temporal normalization removes the effect of temporally constant terms (assuming 260	

soil porosity and soil surface conductance do not vary significantly) and highlight the 261	

temporal variations of soil liquid water. 262	

 263	

The temporal variations of the temporally-normalized resistivity in the 3-month period 264	

(August to November) in 2013 and 5-month period (from June to November) in 2014 and 265	

2015 are compared in Figure 4. There were no data in June and July of the year 2013. In 266	

general, the soil depth with low resistivity gradually increases from June to reach a 267	

maximum in September or October. Compared to 2014, thawing in 2015 occurs earlier. 268	

For example, while most of the normalized resistivity on 06/15/2014 is lower than zero at 269	

the HCP, thawing occurs at almost the whole transect on 06/15/2015. In addition, of the 270	

three years, the normalized resistivity from June to October is lowest in 2014. However, 271	

the lowest normalized resistivity in November is observed in 2013. These results imply 272	

that the air temperature in the summer of 2015 was highest, but coldest in the winter (see 273	

Figure 9), while the winter of 2013 is warmest. This fact will be clarified in the later 274	
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section where numerical simulations are performed to physically explain the 275	

spatiotemporal variations of soil electrical resistivity.  276	

 
Figure 4: Comparison of temporally-normalized electrical resistivity at different 

times from August to November of 2013 and from June to November of 2014 and 

2015. Red lines separate the HCP (left), FCP (middle) and LCP (right). The 

normalization was based on the temporal mean of soil electrical resistivity over the 

2013-2015 period. 

 277	

3.2. Estimation of thaw layer thickness from electrical resistivity data 278	

 279	

In this section, we combined the probe-based TLT measurements along the study transect 280	

(7 datasets) and co-located soil electrical resistivity from the ERT images to determine 281	

the resistivity threshold for separating the thaw layer and permafrost. The reason we used 282	

this approach is that the number of probe-based TLT measurements is sparse and 283	

insufficient to perform the spatiotemporal analysis of TLT. Meanwhile, ERT 284	

measurements collected from 2013 to 2015 are plentiful in space and time. As a result, if 285	

TLT can be derived from ERT measurements, we can explore the spatiotemporal 286	

variations of TLT with high spatiotemporal resolution over the duration of the ERT 287	

autonomous acquisition period. 288	

 289	
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Due to the lateral heterogeneity of polygon morphology and soil characteristics, a 290	

common electrical resistivity threshold for the whole transect is not feasible. 291	

Consequently, an individual threshold was defined at each ERT electrode location where 292	

the probed-based TLT measurements were available (71 locations). The threshold was 293	

estimated by minimizing the objective function, which represents the misfit between the 294	

probed-based and ERT-derived TLT and is defined as below: 295	

  𝛷 𝜌!!!"#!!"#,! = 𝐴𝐿𝑇!"#$,!! − 𝐴𝐿𝑇!"#,!! !!
!!!     (3) 296	

in which 𝛷  is the objective function; 𝐴𝐿𝑇!"#$,!!  and 𝐴𝐿𝑇!"#,!! , respectively, are the 297	

measured and ERT-derived TLT at time t and location j.  N=7 is the number of probed-298	

based TLT measurements at location j. The grid search algorithm was employed to 299	

determine the resistivity threshold at each location j. The grid search algorithm simply 300	

divides the parameter search space into grid nodes and calculates the objective function at 301	

each node. The optimal solution is found at the node where the objective function is 302	

minimal. For constraining the inversion, we assumed that the maximum TLT is 0.7 m. 303	

The electrical resistivity threshold that generates a TLT greater than this value will not be 304	

considered. 305	

 306	

Figure 5a compares the probed-based and ERT-derived TLT at a 1:1 scale. This is the 307	

best agreement between two terms that we can obtain by grid search algorithm. The 308	

correlation between them is 0.65. Compared to measurements, TLT derived from soil 309	

electrical resistivity is overestimated with a bias ratio of 1.11. The differences between 310	

the two TLT values is likely mainly due to the ERT and probed-based TLT measurement 311	

errors, BERT inversion errors, and differences in measurement time of ERT and probed-312	

based TLT.  313	

 314	

The estimated electrical resistivity thresholds show large spatial variations ranging from 315	

130 to 774 Ohm.m along the transect (Figure 5b). In order to compare these spatial 316	

variations with that of the soil electrical resistivity, we plotted the average electrical 317	

resistivity at the top 0.3 m on 09/22/2014 as an illustration. The figure shows that the 318	

spatial variations of the resistivity threshold are similar to those of the electrical 319	

resistivity in the topsoil. The comparison between the resistivity threshold and surface 320	
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elevation also shows that there is a positive correlation between the resistivity threshold 321	

and the surface elevation. This can be explained by the fact that soil tends to be drier at 322	

higher elevations, and therefore, the soil electrical resistivity is also larger. For example, 323	

the threshold is pronounced high at the location X=6 m of the HCP because it is situated 324	

at the higher elevation than the other locations along the transect.  325	

  
(a) (b) 

Figure 5: (a) Comparison of ERT-derived and probed-based TLT. The figure is the 326	

best agreement between these two terms obtained by grid search optimization. (b) 327	

Electrical resistivity threshold (solid red line), average electrical resistivity at the top 328	

0.3 m on 09/22/2014 (dashed blue line) and surface elevation (solid black line) along 329	

the transect. Two solid green lines separate the HCP, FCP and LCP. 330	

 331	

3.3. Spatial and temporal variations of thaw layer thickness 332	

 333	

Based on the electrical resistivity thresholds determined in the previous section, we 334	

estimated TLT along the intensive transect from the soil electrical resistivity images. 335	

Figure 6 presents TLT versus time and space for the three years 2013, 2014 and 2015. As 336	

for the spatial variations of TLT, the figure indicates that while there is not much 337	

difference in TLT between the HCP and FCP, TLT at the LCP is significantly larger than 338	

that at the HCP and FCP (except for the HCP location X=1 – 6 m). TLT is also different 339	

within each polygon type, especially at the HCP. TLT at the HCP location X=1-6 m is 340	

larger than that at the HCP location X=6-10 m. For example, while TLT in 2015 at X=1-6 341	

m is up to 0.69 m, that at X=6-10 m is less than 0.5 m. In the section 4.2 below, we will 342	
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prove that while the difference in TLT among the polygon types is caused primarily by 343	

the topography morphology, the difference within each polygon is controlled by the soil 344	

properties. 345	

 346	

As for the temporal variations, Figure 6 also shows that freezing occurs later at the LCP 347	

than at the HCP and FCP. At the end of growing season, TLT at the LCP is considerably 348	

thicker than the FCP and HCP. For example, on 10/31/2013, the average TLT at the LCP 349	

is around 0.44 m, it is 0 and 0.05 m at the HCP and FCP, respectively. Thawing at the 350	

HCP and FCP also occurs earlier than that at the LCP but the difference is relatively 351	

small among these polygon types. 352	

 353	

Through comparing TLT over the three years of measurements, we found that the onset 354	

of thawing and freezing was different in different years. For example, thawing began 355	

much earlier in 2015 (06/24/2015) than in 2014 (07/05/2014) because air temperature in 356	

early summer of 2015 is higher than that in 2014. Due to thicker snow depth, freezing in 357	

2013 occurred later than in 2015, which is especially visible at the LCP. While there was 358	

no thaw layer on 10/31/2015, TLT on that date was relatively high in 2013 (0.44 m). 359	

These relationships between the thaw/freeze onset and meteorological forcing will be 360	

subsequently described section 4.4 below.  361	

 362	
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Figure 6: The ERT-derived TLT versus time and space along the ERT transect and 363	

over the 2013-2015 period. For comparing the TLT variations of different years, we 364	

considered the fixed time period from 01 June to 20 December of each year. White 365	

regions represent no data periods. Red lines separate the HCP (left), FCP (middle) 366	

and LCP (right).  367	

 368	

4. Numerical simulation 369	

4.1. Surface-subsurface hydro-thermal model 370	

 371	

In this section, we physically explain the above spatiotemporal variations of electrical 372	
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resistivity and TLT as well as the factors controlling these variations using numerical 373	

simulations. We performed 1-D hydro-thermal simulations in a soil column using CLM 374	

model. CLM can simulate hydro-thermal processes from bedrock to the top of canopy 375	

with consideration of different land surface processes (e.g., evapotranspiration, radiation 376	

balance, snow melting/accumulation) and the phase transition of water (from liquid to ice 377	

and vice versa). Soil heat conduction in the subsurface is modeled by the diffusion 378	

equation, while soil liquid water dynamics is modeled by Richard’s equation (Richards, 379	

1931) with influences of runoff, evaporation, canopy transpiration, root water uptake, and 380	

groundwater recharge. Evaporation and transpiration are separately calculated for the soil 381	

surface and vegetation using the Monin-Obukhov similarity theory. Melting or freezing 382	

occurs when temperature in snow/soil greater or lower than the water freezing 383	

temperature (273.15 K). The rate of phase change is determined by the energy excess (for 384	

melting) or deficit (for freezing) that needs to change soil/snow temperature to the water 385	

freezing temperature. For more information about this model, we refer to Oleson et al. 386	

(2013).  387	

 388	

In CLM, soil hydro-thermal parameters (i.e., soil thermal conductivity, heat capacity, 389	

saturated hydraulic conductivity and water retention curve) are calculated from soil types 390	

(sand, clay and soil organic content). Formulas for these relationships are presented in 391	

details in Lawrence and Slater (2008). As for vegetation, CLM allows assignment of 17 392	

plant functional types (PFTs) with the predefined leaf area index (LAI), stem area index 393	

(SAI), and plant top and bottom heights. In this study, we selected the C3 Arctic grass 394	

plant type.  395	

 396	

We developed a soil column including 32 soil layers in which hydrological simulation 397	

was performed at 27 topsoil layers and thermal simulation was performed at all 32 layers. 398	

The total thickness of 27 topsoil layers was 2.4 m and that of 5 bottom layers was 3.1 m. 399	

We performed CLM simulations over the period from 01/01/2013 to 12/31/2015. The 400	

model was run during a spin-up period from 01/01/1996 to 12/31/2012 to generate 401	

realistic initial conditions for our simulations. Meteorological input data for CLM 402	

includes atmospheric temperature, pressure, precipitation, wind speed, and downward 403	
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solar and longwave radiation. These data in the 1996-2013 period were obtained from the 404	

NGEE database (Xu and Yuan, 2014). For the 2013-2015 period, we obtained 405	

precipitation data from Barrow Airport station. The other data were taken from the 406	

NOAA Barrow station (http://www.esrl.noaa.gov/gmd/obop/brw/). CLM can provide 407	

multiple outputs such as soil temperature and soil liquid/ice content at different depths, 408	

runoff, surface water depth, snow depth, evaporation, transpiration, infiltration and 409	

groundwater recharge, etc. TLTs are determined as the largest soil depth where soil 410	

temperature is greater than or equal to the water freezing temperature. 411	

 412	

We performed four synthetic cases to evaluate the influence of topsoil properties (SOC 413	

content and soil porosity) (using cases HCP_lowSOC_topLayer, HCP-414	

thinSOC_topLayer, and HCP_thickSOC_topLayer), and polygon morphology (using 415	

cases HCP_thinSOC_topLayer and LCP_thinSOC_topLayer) on the TLT (Table 2). 416	

These four cases represent the four typical conditions in term of polygon morphology and 417	

soil properties of the LCP and HCP. 418	

 419	

Table 2: Description and parameters that were used by CLM model to evaluate the 420	

influence of SOC content and polygon morphology on the thaw depth 421	
Case  Parameters Description 

HCP_lowSOC_topLayer 

- Surface parameters: Slope=𝜋/3, fmax=1 

- Porosity: 0-0.125 m: 0.78; 0.125-0.6 m: 0.38; 

0.6-5.5 m: 0.5 

- SOC: 0-0.125 m: 68%, 0.125-0.6 m: 30%, 

0.6-3.1 m: 6%  

Relatively low porosity 

and low SOC content at 

the top layer (thickness: 

0.125 m) of the HCP. 

HCP_thinSOC_topLayer 

- Surface parameters: Slope=𝜋/3, fmax=1 

- Porosity: 0-0.075 m: 0.92; 0.075-0.15 m: 

0.51; 0.15-0.21 m: 0.66; 0.21-5.5 m: 0.5 

- SOC: 0-0.075 m: 96%, 0.075-0.15 m: 16%, 

0.15-0.21 m: 44%, 0.21-5.5 m: 6% 

High porosity and high 

SOC content at the thin 

top layer (thickness: 

0.075 m) of the HCP.  

HCP_thickSOC_topLayer 

- Surface parameters: Slope=𝜋/3, fmax=1 

- Porosity: 0-0.125 m: 0.92; 0.125-0.15 m: 

0.51; 0.15-0.21 m: 0.66; 0.21-3.1 m: 0.5 

- SOC: 0-0.125 m: 96%, 0.125-0.15 m: 16%, 

High porosity and high 

SOC content at the 

thick top layer 

(thickness: 0.125 m) of 
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0.15-0.21 m: 44%, 0.21-5.5: 6%  the HCP.  

LCP_thinSOC_topLayer 

- Surface parameters: Slope=0.02, fmax=0.2 

- Porosity: 0-0.075 m: 0.95; 0.075-0.15 m: 

0.82; 0.15-0.21 m: 0.52; 0.21-3.1 m: 0.5 

- SOC: 0-0.075 m: 94%, 0.075-0.15 m: 51%, 

0.15-0.21 m: 20%, 0.21-5.5: 6 m 

High porosity and high 

SOC content at the thin 

top layer (thickness: 

0.075 m) of the LCP. 

 422	

4.2. Effect of SOC on the spatiotemporal dynamics of thaw layer thickness 423	

In this section, we explore the impacts of soil porosity and volumetric SOC content on 424	

the hydro-thermal dynamics and TLT variations. These impacts were evaluated by 425	

comparing the CLM simulation results of three synthetic cases, namely, 426	

HCP_lowSOC_topLayer, HCP_thinSOC_topLayer, and HCP_thickSOC_topLayer 427	

(Table 2 and Figure 7a). The model parameters of these three cases are identical except 428	

for the layer thickness, soil porosity and SOC content of the top layer.  The 429	

HCP_lowSOC_topLayer case mimics the soil properties at the HCP-mineral location 430	

~X=3 m (see Table 1) with a porosity of 0.78 and a SOC content of 68% at 0-0.125 m 431	

depth, and 0.38 and 19% at 0.125-0.6 m depth. The HCP_thinSOC_topLayer and 432	

HCP_thickSOC_topLayer cases represent the soil properties at the HCP-organic location 433	

~X=8 m but with different thicknesses of the top layer to evaluate the effect of the SOC 434	

layer thickness on TLT. The top layer thickness is 0.075 m for the 435	

HCP_thinSOC_topLayer case and 0.125 m for the HCP_thickSOC_topLayer case, which 436	

are the upper and lower limits of the SOC thickness observed in the ERT transect. For 437	

both cases, this top layer has a porosity of 0.92 and a SOC content of 96%.  438	

 439	

Figure 7d clearly indicates that when the SOC content at the topsoil layer increases, TLT 440	

decreases. TLT also decreases when the thickness of topsoil SOC content increases. 441	

Similarly, the soil temperature in the HCP_lowSOC_topLayer case is higher than that at 442	

the HCP_thinSOC_topLayer and HCP_thickSOC_topLayer cases (Figure 7c). However, 443	

soil liquid water saturation in the HCP_lowSOC_topLayer case is smaller (Figure 7b). 444	

This is reasonable because when the SOC content is higher, the soil heat capacity 445	

increases and the soil thermal conductivity decreases (Lawrence and Slater, 2008). This 446	

causes the summer variations in the atmospheric temperature to propagate more slowly to 447	
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the deep layers. As a result, the soil temperature is higher and TLT is thicker in 448	

HCP_lowSOC_topLayer case. In addition, because the organic material holds water 449	

better than mineral, the water saturation in the HCP_thinSOC_topLayer and 450	

HCP_thickSOC_topLayer cases is higher than that in the HCP_lowSOC_topLayer case. 451	

It is worth noting that, there are several abrupt changes in TLTs during the 2013-2014 452	

period. It is because TLTs are very sensitive to the change of soil temperature. As a 453	

result, a small change in soil temperature can cause significant variations of TLTs. These 454	

abrupt variations appear in 2013-2014 because compared to 2015, air temperature in 455	

these years varies in a larger range (Figure 7d). 456	

 
(a) Soil porosity and SOC profiles 

 
(b) Soil water liquid saturation 
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(c) Soil temperature 

 
(d) TLT 

Figure 7: Soil porosity (solid blue) and SOC (dotted-red) profiles (a). 

Spatiotemporal variations of soil liquid water saturation (b), soil temperature (c) 

and TLT (d) in time (x-axis) and space (y-axis) during 2013-2015 period. For 

reference, air temperature is also plotted (d). The HCP_lowSOC_topLayer case 

represents the HCP – mineral location with a low SOC content and soil porosity. 

The HCP_thinSOC_topLayer and HCP_thickSOC_topLayer cases mimic the HCP – 

organic location with a high SOC content and soil porosity at the top layer with a 

thickness of 0.075 and 0.125 m, respectively. 

 457	

4.3. Effect of polygon morphology on spatiotemporal variations of thaw layer 458	

thickness 459	

In this section, we investigated the impact of polygon morphology on TLT variability by 460	
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comparing the simulation results of HCP_thinSOC_topLayer and 461	

LCP_thinSOC_topLayer cases. The LCP_thinSOC_topLayer case mimics the LCP-SOC 462	

location at ~X=29 m (Table 2). Although there are differences in the soil porosity and 463	

SOC content, the most profound difference between the two cases is the polygon 464	

morphology. Due to the effect of polygon morphology, while a large portion of water 465	

from precipitation or/and snowmelt contributes to runoff at the HCP, runoff is much 466	

smaller at the LCP. In CLM, the total liquid water at the soil surface is partitioned into 467	

surface runoff, surface water storage and infiltration (Appendix A). The surface runoff is 468	

calculated by the saturation-excess mechanism, i.e., surface runoff appears only at the 469	

saturated parts of soil surface. Runoff is controlled by parameter 𝑓!"# (Equation 2 of 470	

Appendix), which is the maximum fraction of soil surface that can be saturated and 471	

ranges from 0 to 1. Runoff is potentially larger for a higher 𝑓!"#. The surface water 472	

storage represents the wetlands and sub-grid scale water body (e.g., pond). As shown in 473	

the Appendix A, the depth of the surface water storage increases when the topographic 474	

slope (𝛽) decreases. The decreasing topography slope also causes the smaller lateral 475	

drainage of groundwater. In this study, the effect of polygon morphology on the hydro-476	

thermal dynamics was accounted by assigning 𝑓!"# = 1 , 𝛽 = 𝜋/3  for the 477	

HCP_thinSOC_topLayer case and 𝑓!"# = 0.2, 𝛽 = 0.02 for the LCP_thinSOC_topLayer 478	

case. In addition, at the beginning of the simulation period (01/01/1996), the soil porosity 479	

at the LCP was fully filled by liquid water and ice, while ice and liquid water content at 480	

the shallow surface of the HCP (≥ 0.4 m) was equal to 20% of the porosity. Below this 481	

depth, the soil porosity was also fully saturated.  482	

 483	

Figure 8e shows that the TLT at the HCP is shallower than that at the LCP, which is 484	

suitable with the observations derived from ERT measurements. The HCP was only 485	

relatively wet when melting occurs and then became drier because a large part of liquid 486	

water flowed down to its surrounding lower locations. The surface water body appears at 487	

the beginning of snowmelt period and rapidly disappears (Figure 8a). By contrast, 488	

because runoff was relatively small, soil at the LCP was fully saturated and the surface 489	

water storage still exists (Figure 8a, c). Snow depth at the LCP is also higher than at the 490	

HCP (Figure 8b). It is because at the beginning of winter, when first snow falls, it may 491	
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transform to liquid (due to the fact that soil surface temperature is still greater than 0oC). 492	

At the HCP, soil is unsaturated and slope is high, so this liquid mainly partitions into 493	

runoff and infiltration. Meanwhile, this liquid remains at the surface of the LCP because 494	

soil at the LCP is totally saturated and its slope is low. When soil temperature is equal or 495	

below 0oC, surface water is transformed to ice. The thicker snow layer keeps soil at the 496	

LCP warmer during the winter and costs less heat to melt when summer comes, which 497	

makes a deeper thaw depth. Within the soil layer, the ice/liquid water content impacts the 498	

freezing/thawing in two opposite ways. Higher ice/liquid water content at the LCP leads 499	

to the higher soil thermal conductivity, which helps to move more heat from the top to 500	

lower layers for thawing. By contrast, higher ice content requires more heat to thaw it. As 501	

a result, the competition between these two processes will influence the TLT variations. 502	

It is worth noting that in this study we did not consider the difference in vegetation 503	

characteristics between the HCP and LCP. Lichens, which primarily cover the HCP, have 504	

a higher albedo than graminoid, which mainly cover the LCP. Therefore, inclusion of this 505	

spatial variability of vegetation may more increase the difference in TLT between the 506	

HCP and LCP. In addition, because CLM is a 1-D model, the influence of the subsurface 507	

lateral flow was not accounted for in this study. We also only concentrated on the hydro-508	

thermal dynamics in the active layer and shallow permafrost (top 2.4 m). The dynamics 509	

of the saline permafrost layer that is partially unfrozen was not considered.    510	

 511	

Figure 8e also shows that both thawing and freezing at the HCP occurs earlier than at the 512	

LCP. This can be explained by the fact that the thicker snow layer in winter and the 513	

thicker water surface layer in summer at the LCP caused soil at the LCP respond more 514	

slowly to the variations of atmospheric temperature. In addition, more ice/liquid water 515	

content at the HCP also takes a longer time to melt. 516	

 517	
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a) Surface water depth b) Snow depth 

  

c) Soil liquid water saturation  d) Soil temperature 

 
e) TLT 

Figure 8: (a, b) Simulated surface water depth and snow depth; (c, d, e) Variations 

of soil liquid water saturation, soil temperature and TLT in time (x-axis) and soil 

depth (y-axis) during 2013-2015 period. The HCP_thinSOC_topLayer case 

represents the HCP with 𝒇𝒎𝒂𝒙 = 𝟏, 𝜷 = 𝝅 𝟑, and the LCP_thinSOC_topLayer case 
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represents the LCP with 𝒇𝒎𝒂𝒙 = 𝟎.𝟐, 𝜷 = 𝟎.𝟎𝟐.  

 518	

4.4. Effect of meteorological forcing on temporal dynamics of hydro-thermal 519	

variables and TLT  520	

To explore controls on TLT temporal variations, we present in Figure 9 the measured 521	

meteorological forcing data (air temperature, yearly-accumulated snow precipitation and 522	

rainfall) as well as simulated snow thickness and simulated soil temperature at depths of 523	

0.02, 0.13 and 0.5 m during the 2013-2015 period for the LCP_thinSOC_topLayer case. 524	

For comparison, soil temperature at a depth of 0.5 m is also presented. In order to 525	

evaluate the agreement between modeling and simulation of soil temperature, we 526	

employed the Nash-Sutcliffe coefficient (E): 527	

  𝐸 = 1− 𝑴!!𝑶! !!
!!!

𝑶!!! !!
!!!

        (4) 528	

in which Mt and Ot are, respectively, the simulated and measured soil temperature at time 529	

t. 𝑂 is the average of measured soil temperature over the measurement period T. The 530	

Nash-Sutcliffe coefficient varies from -∞  to 1. The accuracy of model prediction 531	

increases when this coefficient approaches 1. Figure 9a shows that the agreement 532	

between the CLM simulations and measurements of soil temperature is relatively good 533	

with a Nash–Sutcliffe coefficient of 0.86. CLM accurately predicts the soil temperature in 534	

summer time of all three years. However, the simulated soil temperature is remarkably 535	

lower than the measured value at the beginning of winter. These may come from the fact 536	

that the soil freezing temperature at the site is lower than the freshwater freezing 537	

temperature due to its salinity while its variations with soil salinity were not accounted 538	

for in CLM.  539	

 540	

Figure 9c indicates that the simulated TLT is slightly smaller than the ERT-derived TLT 541	

and well agrees with probe measurements. This difference may be caused by the 542	

overestimation of ERT measurements (see Figure 5a). In addition, in this study we did 543	

not try to calibrate the CLM model but used the measured soil properties to directly 544	

parameterize the model. As a result, the errors in model prediction may be caused by 545	



	 26	

uncertainties in some model parameters, such as soil porosity, SOC content and 546	

topographic factors. Because TLT is very sensitive to the freezing temperature, a small 547	

error in soil temperature around the water freezing temperature can cause a significant 548	

change in TLT. 549	

 550	

As for the temporal variation, Figure 9 indicates that the annual variations in atmospheric 551	

temperature (at 2-m above the soil surface) and precipitation (both snow and rainfall) are 552	

the primary controls on the temporal variations of TLT. Indeed, comparing to 2014, the 553	

atmospheric temperature in summer 2013 and summer 2015 were relatively high (Figure 554	

9a). The maximum air temperature for 2013, 2014 and 2015 is, respectively, 11.6, 10.6 555	

and 12.1 oC and the average temperature in the summer (from June 15 to September 15) 556	

of these three years is 3.8, 3.1 and 3.8 oC. As a result, the soil temperature in 2013 and 557	

2015 was slightly higher. The time span that TLT exists in 2013 and 2015 is also longer 558	

than that in 2014. Comparison of TLT in two years 2013 and 2015 indicates that the time 559	

span that TLT remains at its maximum depth (0.6 m) in 2013 was shorter than that in 560	

2015. Although air temperature in the two years was similar, we interpret this difference 561	

to be due to the presence of a thick snow layer (which was caused by large precipitation 562	

in the 2014-2015 winter). The snow layer kept the soil warmer, and therefore, was more 563	

susceptible to thaw. As for the freezing time, the high precipitation and high air 564	

temperature in the 2013 led to the latest freeze onset out of the three years. By contrast, 565	

freezing occurred earlier in 2014 due to low air temperature and in 2015 due to thin snow 566	

depth. 567	
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(a) Measured air temperature at 2 m above the soil surface, measured soil temperature at 
0.5 m depth and simulated soil temperature at 0.02, 0.13 and 0.5 m 

 
(b) Measured Yearly-accumulated snow/rainfall precipitation and simulated snow depth 

 
(c) Simulated and ERT-derived TLT 

Figure 9: (a) Observed atmospheric temperature at 2-m above the soil surface, 568	

measured soil temperature at 0.5 m depth and simulated soil temperature at depths 569	

of 0.02, 0.13 and 0.5 m during 2013-2015; (b) Observed yearly-accumulated snow 570	

and rainfall precipitation and simulated snow thickness; (c) Simulated, ERT-571	

derived and probe-based TLT in the same 3-year period. Soil temperature, snow 572	

thickness, and TLT were obtained by CLM simulation with the 573	

LCP_thinSOC_topLayer case. Atmospheric temperature and snow/rainfall 574	

precipitation were measured at the Barrow site. Measured soil temperature at a 575	

depth of 0.5 m from 08/15/2013 to 08/07/2015 was obtained at the LCP of the 576	

intensive ERT transect. 577	

 578	
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5. Conclusion 579	

 580	

This study analyzes the spatiotemporal dynamics of the electrical resistivity and TLT 581	

along a 35-m intensive transect in Barrow, AK by jointly using ERT measurements and 582	

through performing physically-based modeling simulations. The spatiotemporally dense 583	

ERT measurements allowed investigation of the annual variations of electrical resistivity 584	

and TLT as well as their comparisons in different years and seasons. By combining 585	

measurements and numerical simulations, our research provides a valuable approach to 586	

confidently interpret the spatiotemporal variations of TLT. The numerical simulation 587	

supports our ERT based interpretation of TLT spatial variability and dynamics, while the 588	

measurements enhanced the reliability of the numerical modeling, providing validations 589	

of simulation results and insights about sources of errors.  590	

 591	

Based on the probe-based TLT measurements and co-located soil electrical resistivity 592	

images obtained by inversion of ERT data, we estimated the electrical resistivity 593	

thresholds along the intensive transect that separated the thaw layer from permafrost. The 594	

electrical resistivity thresholds were estimated by minimizing the misfit between point 595	

TLT measurements and those obtained from ERT using the grid search algorithm. Using 596	

these thresholds, we then derived TLT from electrical resistivity images in the 2013-2015 597	

period. We subsequently analyzed the spatiotemporal variations of both soil electrical 598	

resistivity and ERT-derived TLT. The spatial analysis indicates that within each polygon 599	

feature, TLT at locations with high SOC content is thinner than locations with low SOC 600	

content values. Compared to the LCP, the HCP is drier and has a shallower thaw layer. 601	

The freezing occurred earlier at the HCP than at the LCP. The temporal analysis shows 602	

that of three years 2013, 2014, and 2015, TLT in 2014 is smallest. Using this approach, 603	

we were able to determine TLT with a high spatiotemporal resolution over a long period. 604	

This in turn allowed to investigate the TLT dynamics in detail, which had not been 605	

possible in previous studies. However, uncertainties of TLT values obtained by this 606	

approach were not quantitatively considered in this study. The main uncertainty sources 607	

include measurement errors of ERT and thaw probe, ERT inversion uncertainties and 608	
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resistivity threshold uncertainties. Our on-going study will individually quantify each of 609	

these uncertainties and their contribution to the uncertainties of ERT-derived TLTs. 610	

 611	

The numerical simulations were performed to identify the factors that control the 612	

spatiotemporal variations of TLT and electrical resistivity. We investigated the influence 613	

of soil properties, polygon morphology and meteorological forcing on the spatiotemporal 614	

dynamics of the soil electrical resistivity and TLT. The results show that the spatial 615	

variations of TLT within each polygon feature are due to the soil porosity and SOC 616	

content. At the locations with a higher SOC content and correlated soil porosity, the soil 617	

thermal diffusivity is lower, and therefore, the heat flux from the top to lower layers in 618	

the summer is smaller. As a result, TLT at these locations is shallower. Meanwhile, the 619	

difference in TLT among the polygon features HCP, FCP and LCP strongly depends on 620	

polygon morphology. At the LCP, the snow layer is thicker due to the phase transition of 621	

surface water to ice and the entrapment	of	snow. The isolation effect of this thicker snow 622	

layer causes the thawing and freezing at the LCP occur later than those in the HCP, and 623	

makes the maximum TLT larger at the LCP. The temporal variations of TLT are strongly 624	

controlled by the atmospheric temperature and precipitation. TLT in 2014 is thinnest 625	

because the atmospheric temperature in summer of this year is low. Due to thick snow 626	

layer, which was caused by large precipitation, the freezing in 2013 occurred later than 627	

the other two years. TLT in 2015 was largest due to the fact that the summer temperature 628	

was high and the snow in the 2014-2015 winter was thick. Our conclusion about the role 629	

of SOC content is similar to Atchley et al. (2016), who investigated the individual impact 630	

of SOC, liquid water saturation, surface water in summer, and snow depth in winter. 631	

However, because snow depth, surface water, liquid water saturation in Barrow are 632	

closely related and controlled by polygon morphology, we evaluated the impact of 633	

polygon morphology on snow depth, surface water and liquid saturation and their overall 634	

contribution to TLT, rather than assessing each of these topography-controlled factors 635	

individually as per Atchley et al (2016). 636	

 637	

By comparing TLT derived from probe and ERT measurements and CLM simulation 638	

results, we found that the CLM model estimated the spatiotemporal variations of TLT 639	
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well and could be used to identify the factors controlling these variations. However, there 640	

are still some limitations of this model. First, the freezing temperature is fixed in CLM so 641	

that it cannot account for the impact of soil salinity on freezing/thawing. Secondly, CLM 642	

only considers the diffusive heat transport and ignores the advective heat transport. As a 643	

result, the heat exchange between the top and lower layers simulated in the model is 644	

smaller than the reality, especially at the HCP where soil water dynamics is stronger than 645	

at the LCP. Thirdly, the subsurface lateral flows of heat and water were not simulated in 646	

CLM, which may influence the evaluation of topography effect. Finally, the dynamics of 647	

heat and liquid water in the saline permafrost layer were not considered in this study due 648	

to lack of information of soil properties at this layer. 649	

 650	

This study demonstrates that combination of the above and below-ground measurements 651	

with the numerical modeling can help us to better understand the TLT dynamics and 652	

controls on their spatial and temporal variations. It provides important knowledge about 653	

the relationship between TLT and polygon morphology, soil properties and atmospheric 654	

forcing for upscaling from local scale with intensive dense measurements to larger scales, 655	

which is crucial for assessing the permafrost feedbacks to global warming. 656	
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Appendix A 785	

 786	

1. Saturation-excess runoff 787	

 788	

In CLM, the total liquid water at the soil surface (𝑞!"#,!) is the sum of rainfall arriving at 789	

soil surface and snowmelt water. This total liquid water is partitioned into surface runoff, 790	

surface water storage and infiltration. The determination of surface runoff (𝑞!"#$) is 791	

based on the saturation-excess mechanism, i.e., the runoff occurs at the saturated parts of 792	

soil and is calculated as below: 793	

   𝑞!"#$ = 𝑓!"#𝑞!"#,!       (1) 794	

where 𝑞!"#,! is calculated as the sum of the precipitation liquid arriving the soil surface 795	

and water liquid from snowmelt; 𝑓!"# denotes the saturated fraction which is calculated 796	

as: 797	

  𝑓!"# = 𝑓!"#𝑒!!.!!!"#$!∇      (2) 798	

in which 𝑓!"#, ranging from 0 to 1, is the maximum saturated fraction; 𝑓!"#$ is a decay 799	

factor (m-1); 𝑧∇ is the water table depth. In this study, the center of the LCP has a lower 800	

elevation compared to surrounding locations. Incoming water from precipitation or/and 801	

snowmelt will fill this center pond before generating runoff. In order to simulate this 802	

phenomenon, we set fmax at a small value (fmax = 0.2) to keep water at the surface of the 803	

center of LCP. 804	

 805	

2. Surface water storage 806	

CLM also considers the water that stays in the depression of the soil surface (surface 807	

water storage). The relationship between surface water mass and surface water depth in 808	

CLM is formulated as below: 809	

  𝑊 = !
!
1+ 𝑒𝑟𝑓 !

! !
+ !

!!
𝑒
!!!

!!!      (3) 810	

Where 𝑒𝑟𝑓 = !
!

𝑒!!!𝑑𝑡!
!!  is the error function; W is the surface water storage (kg/m2); 811	

d is the surface water depth (m); 𝜎 is the microtopography factor and calculated as: 812	

  𝜎 = 𝛽 + 𝛽! !       (4) 813	
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in which 𝛽! = 𝜎!"#
!
!  with 𝜎!"# = 0.4 is the maximum value of 𝜎 and 𝜂 = −3 is an 814	

empirical coefficient. 815	

 816	




