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TEACHER’S CORNER

On Fitting a Multivariate Two-Part
Latent Growth Model

Shu Xu,1 Shelley A. Blozis,2 and Elizabeth A. Vandewater3

1New York University
2University of California, Davis

3The University of Texas at Austin

A 2-part latent growth model can be used to analyze semicontinuous data to simultaneously
study change in the probability that an individual engages in a behavior, and if engaged,
change in the behavior. This article uses a Monte Carlo (MC) integration algorithm to study
the interrelationships between the growth factors of 2 variables measured longitudinally where
each variable can follow a 2-part latent growth model. A SAS macro implementing Mplus is
developed to estimate the model to take into account the sampling uncertainty of this simula-
tion-based computational approach. A sample of time-use data is used to show how maximum
likelihood estimates can be obtained using a rectangular numerical integration method and an
MC integration method.

Keywords: longitudinal semicontinuous variables, Monte Carlo integration, multivariate two-
part latent growth curve model

A common aim within the behavioral sciences is understand-
ing change in a measured response. Longitudinal data allow
for assessment of change. With longitudinal data, individuals
are observed at multiple time points to gain an understand-
ing of the ways in which a behavior changes according to
time. The appropriate statistical method used for the analy-
sis of longitudinal data is based on theoretical considerations
concerning the behavior under study, as well as characteris-
tics of the data, including the response distribution. Measures
of substance use (e.g., Blozis, Feldman, & Conger, 2007;
Witkiewitz & Masyn, 2008), problem behaviors (e.g., Petras,
Nieuwbeerta, & Piquero, 2010; Vazsonyi & Keiley, 2007),
and time use are examples of variables that often follow
a semicontinuous distribution (Olsen & Schafer, 2001) in
which a variable takes on a high proportion of zeros with the
remaining scores being positive and continuous. In consid-
ering the distribution of time spent using a computer among

Correspondence should be addressed to Shelley A. Blozis, Department
of Psychology, University of California, Davis, One Shields Avenue, Davis,
CA 95616, USA. E-mail: sablozis@ucdavis.edu

adolescents, for example, a large proportion of zeros results
if a substantial portion of a sample report that they did not
use a computer.

In comparison to continuous data, the semicontinuous
data just described may yield two distinct pieces of infor-
mation about a behavioral response. The first describes
whether or not an individual engaged in a behavior, as indi-
cated by a response value of 0 versus any positive value.
The second is the magnitude of the response when it does
occur, as indicated by positive response values. Longitudinal
semicontinuous data present an analytic challenge given both
the response distribution and the need to model change or
growth in the response. This is a challenge because responses
with this distribution are difficult to classify into any general
distribution commonly considered for latent growth models,
including linear and generalized linear models.

Different approaches to the analysis of semicontinuous
data have been considered. One approach is to apply methods
that are appropriate for normally distributed data. In a study
of drug use, for instance, given the high frequency of report-
ing a zero in a single type of drug use, a composite item could
be created as a sum of multiple drug uses or a sum of drug
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132 XU, BLOZIS, VANDEWATER

use in various occasions to reduce the skewness of the data
(e.g., Hoffmann, Cerbone, & Su, 2000). This approach might
help to satisfy the analytical model assumptions; however,
researchers might not be able to directly address questions
that are closely related to the particular outcomes of interest.
Thus, inference is limited to the composite item. Another
approach is to dichotomize the response into two discrete
categories with one that denotes an absence of the behavior
(i.e., those responses equal to zero) and the other that denotes
that the behavior was observed (i.e., positive scores are set
equal to a value different from 0, such as 1; e.g., Duncan,
Duncan, & Strycker, 2006). A consequence of this proce-
dure, however, is that individual differences in the positive
responses are likely to be eliminated. That is, the analysis
ignores the extent to which individuals vary in terms of the
magnitude of their responses.

In some cases it might be important to make the distinc-
tion between the two aspects of such behaviors: whether or
not a behavior occurred and the magnitude of the response
when the behavior did occur. In this situation, an analy-
sis of a semicontinuous variable could best be carried out
with a method that simultaneously addresses these two fea-
tures. In separating the two features, it might also be possible
to study different predictors of each aspect of a behavior,
rather than to assume that the same predictors relate to each.
Specifically, one set of predictors might account for the prob-
ability that a behavior occurs, and the same or a different set
might best account for the magnitude of the response when
it does occur. These issues could be addressed by a two-part
model.

A two-part latent growth model was developed for
semicontinuous variables observed over time while account-
ing for the within-individual correlations typically observed
in longitudinal data (Olsen & Schafer, 2001; Tooze,
Grunwald, & Jones, 2002). In a two-part latent growth
model, two new variables are created to represent (a) the
presence or absence of a behavior, and (b) the magnitude
of the behavior when it occurs. Two submodels, a random-
effects logistic growth model and a latent growth model
for normally distributed data, are used to model the binary
and the positive responses, respectively. The random effects
of each submodel may covary at the second level of the
model. Thus, the two model components are jointly esti-
mated. Allowing the random effects of the two model com-
ponents to covary might be important for model estimation;
more specifically, an incorrect assumption of independence
between the random effects of the two submodels could
result in biased estimates (Su, Tom, & Farewell, 2009).
In a two-part growth curve model with random intercepts
in both the binary and continuous submodels, for exam-
ple, a failure to model a positive correlation between the
random intercepts might result in a positive bias in the esti-
mate of the intercept of the continuous submodel. A two-part
latent growth model has been considered for longitudinal
substance-use data (Blozis et al., 2007; Brown, Catalano,

Fleming, Haggerty, & Abbott, 2005; Liu, Ma, & Johnson,
2008; Weaver, Cheong, MacKinnon, & Pentz, 2011).

In many longitudinal studies, two or more semicontinuous
variables are measured across time with the goal of under-
standing how different variables might be related to one
another over time. Time-use data, for example, have been
used to study possible links between electronic media and
other behaviors (e.g., reading), a topic of interest to policy-
makers and researchers (Altheide, 1997). Researchers might
be interested in questions such as these: How much time
do adolescents spend using a computer and reading? Does
time spent in these behaviors change as children grow older?
What is the relationship between using a computer and
reading over time?

To study the relationships between longitudinal measures,
one variable could be hypothesized, for instance, to affect
another variable within each measurement occasion (at the
occasional level, or Level 1), or change in one variable might
be hypothesized to be related to change in another variable
(at the individual level, or Level 2). The latter kind of model
is referred to as a multivariate latent growth model (Blozis,
2004, 2007; MacCallum, Kim, Malarkey, & Kiecolt-Glaser,
1997; Reinsel, 1992). In a multivariate latent growth model,
two or more normal variables are each assumed to follow
a latent growth model. At the second level of the model
for observed measures, for example, the random effects that
characterize growth in each response can covary. In this way,
the model allows for the study of the linear associations
between features of changes, such as intercepts and slopes,
of multiple variables.

Although the concept of a multivariate two-part latent
growth model is a natural extension of the model for a sin-
gle semicontinuous response, estimation of the model can be
computationally intensive and difficult. The joint distribution
of a binary and continuous variable is in general not easy
to compute, particularly when the variables are observed
longitudinally (Skrondal & Rabe-Hesketh, 2004; Verbeke &
Davidian, 2008). Thus, the joint modeling of two or more
semicontinuous variables consequently increases the compu-
tational load. These issues suggest a great challenge in the
estimation of a multivariate model for semicontinuous data.

Other approaches have been proposed for the analysis of
positive continuous data with a high proportion of zeros.
These methods can be classified as either one-part or two-
part (joint) models. One-part models (e.g., a latent growth
model or a generalized latent growth model) were described
earlier in this article. A two-part latent growth model is con-
sidered appropriate if the zeros in a data set represent true
zeros (Olsen & Schafer, 2001), such that the zero repre-
sents the actual level of the outcome. A competing model,
a Tobit latent growth model (Wang, Zhang, McArdle, &
Salthouse, 2008) based on a Tobit model (Tobin, 1958) for
cross-sectional censored data, is considered appropriate if
the zeros result from a censoring process. In this case, zero
could be a proxy of a missing or negative value. In a more
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TWO-PART LATENT GROWTH MODELS 133

complicated situation where samples are drawn from more
than one population, a mixture model approach (e.g., a finite
mixture model) could be used (Muthén, 2001). In other
cases, if the outcome variable is a count variable with a large
proportion of zeros, then a zero-inflated Poisson or a zero-
inflated negative binomial model (Hall, 2000) might be most
appropriate.

This article considers a multivariate two-part latent
growth model to simultaneously investigate two longitudi-
nal behavioral outcomes, each of which is assumed to follow
a two-part latent growth model. This allows one to study
the relationships between latent characteristics of change in
each of the two aspects of two different behaviors. This rep-
resents a complex joint modeling of two continuous and
two dichotomous responses. In the reminder of this article,
we first provide a brief review of a two-part latent growth
model. We then develop a multivariate two-part latent growth
model. We discuss assumptions about missing data and
describe available estimators and computational algorithms.
The statistical software package Mplus (Muthén & Muthén,
1998–2010) can be used to obtain maximum likelihood
(ML) estimates of such complex models using numerical
integration methods. A SAS macro is developed to invoke
Mplus to obtain ML estimates with standard errors that are
approximated by first-order derivatives (denoted henceforth
as MLF). The macro relies on a Monte Carlo (MC) integra-
tion method for a multivariate two-part latent growth model
that joins two semicontinuous measures. An empirical exam-
ple from a time-use study illustrates an application of a
multivariate two-part growth model. Related issues are then
discussed.

A TWO-PART LATENT GROWTH MODEL

Readers are referred to Olsen and Schafer (2001) and Tooze
et al. (2002) for details and applications of a two-part
latent growth model. The model is briefly reviewed here.
Let yi = (yi1, . . . , yini )

′ for individual i be a set of ni

repeated semicontinuous responses measured at occasion
j = 1, 2, . . . , ni, where the subscript i on ni indicates that
individuals can be observed a different number of times. The
repeated measures are assumed to be observed according to
time, denoted by ti = (ti1, . . . , tini )

′, where the specific times
of measurement can vary between individuals. It is assumed
for convenience that the values of y could range from zero to
any positive number.

Assuming that a portion of the responses are equal to zero
and the remaining values are positive, two new variables are
created. For individual i, let ui = (ui1, . . . , uini )

′ be a set of ni

binary responses with values equal to 1 if the corresponding
values of yi are greater than zero and equal to 0 otherwise.
Let mi = (mi1, . . . , miki )

′ be a set of ki continuous and pos-
itive responses that are equal to the corresponding values of
yi if those values are greater than zero; values are missing

otherwise. A joint response set yi
∗ is then created by stacking

the two new variables: yi
∗ = (ui

′, mi
′)′.

The set of responses yi
∗ is assumed to follow a two-

part latent growth model. For the binary component uij,
a generalized latent growth model (Liang & Zeger, 1986)
that assumes a Bernoulli distribution is applied. Using a
logit link function, repeated measures of the log-odds of
the binary outcome are considered a linear function of time
ti. Specifically, let π ij denote the probability of observ-
ing a behavior (i.e., P(uij = 1)) for individual i, then
ηij = logit(P(uij = 1)) = log(πij/(1 − πij)) is the correspond-
ing log-odds. Assuming linear change in the log-odds, for
example, a latent logit growth model for a response at the jth
occasion as a function of tij, is

ηij = α0i + α1itij

The coefficients α0i and α1i may each be sums of fixed and
random effects, α0i = α0 + a0i and α1i = α1 + a1i, where the
expected values of α0i and α1i are α0 and α1, respectively. The
coefficients α0 and α1 denote the expected log-odds of the
behavior for tij = 0 and the expected change in the log-odds
per unit of time, respectively. The individual-specific random
effects a0i and a1i are assumed to be normal and deviate about
their respective fixed effects. The random effects can covary.
The variances of a0i and a1i are summary measures of the
extent to which individuals vary with regard to these change
features.

Next, the set of positive and continuous responses are
assumed to follow a latent growth model (Meredith &
Tisak, 1984, 1990). Conditional on whether the behavior is
observed at time tij, mij is considered a function of time tij
plus an error term, εij. Assuming the behavior changes at a
constant rate, for example,

mij = β0i + β1i tij + εij,

where, for individual i, β0i is the expected response given
tij = 0, and β1i is the expected change in the response per
unit of time. As in the logit model, the coefficients β0i and β1i

may be sums of fixed and random effects. The fixed effects
β0 and β1 are common to all individuals and describe the
population-level response. The random effects b0i and b1i

are assumed to be normal and to deviate about their cor-
responding fixed effects at the second level of the model.
The random effects at the second level can covary with each
other but are assumed to be independent of the time-specific
error εij that varies at the first level. The variances of the
random effects at the second level summarize the extent
of individual differences in the change features. The set of
occasion-specific errors εi = (εi1, . . . , εiki )

′ are assumed to
be independent between individuals. Conditional on time and
the individual-specific growth function, the errors could be
assumed to be normally distributed with mean 0 and to have
constant variance σ 2

ε across measurement occasions. In some
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134 XU, BLOZIS, VANDEWATER

applications, the errors might be allowed to covary between
occasions or to have nonconstant variance across time.

The models for the binary and continuous responses can
be considered jointly by allowing covariances between the
random effects at the individual level of each submodel.
Assuming two random effects for each submodel, for
instance, the random effects of the logit model, ai = (a0i,
a1i)′, and those of the continuous model, bi = (b0i, b1i)′, are
assumed to have a joint normal distribution:

⎛
⎜⎝

a0i
a1i

b0i

b1i

⎞
⎟⎠ ∼ N

⎛
⎜⎝
⎛
⎜⎝

0
0
0
0

⎞
⎟⎠ , � =

⎛
⎜⎝

φa00

φa1a0 φa11

φb0a0 φb0a1 φb00

φb1a0 φb1a1 φb1b0 φb11

⎞
⎟⎠
⎞
⎟⎠

where the expected values of the random effects are equal to
zero, and the matrix � is a symmetric covariance matrix.

Missing Data

Similar to many longitudinal studies, missing data are likely
to result from studies of semicontinuous longitudinal data but
possibly due to multiple sources. One source that is shared
with other longitudinal studies is that the behavioral measure
might be missing for any occasion, such as if an individual
misses an interview or has dropped out of the study. If the
probability of missing data is independent of the missing data
but possibly related to the observed data, the data are said to
be missing at random (MAR; Rubin, 1976). Inference of a
latent growth model is considered valid if data are MAR.
This is also the case for a two-part latent growth model
(Olsen & Schafer, 2001).

Another source of missing data is due to the creation
of the new variables that are to be analyzed. Specifically,
the measure of the conditional magnitude of the response
m is treated as missing if an individual did not engage in
the behavior (i.e., if u = 0, m is conditionally missing).
Under a two-part latent growth model, a value of zero for
the semicontinuous variable is a random realization of the
extent to which an individual engages in the behavior. Thus,
the realization of m is also random. Further, the probabil-
ity that m is missing is dependent on the value of u. As a
result, inference from a two-part latent growth model is con-
sidered valid if missing data are MAR assuming that u has
been observed.

MULTIVARIATE TWO-PART LATENT GROWTH
MODEL

A multivariate two-part latent growth model is developed by
jointly modeling two or more longitudinal semicontinuous
response variables, each assumed to be due to a two-part
latent growth model. For ease of presentation, two longitu-
dinal semicontinuous variables are considered. As described

later, the repeated measures could be related at both the
occasion and the individual levels.

A multivariate response set is created by stacking the
separate sets of responses relating to the binary and con-
tinuous variables created from each of the two original
semicontinuous variables. First, let u1i = (u1i1, . . . , u1in1i )

′
and u2i = (u2i1, . . . , u2in2i )

′ for individual i be a set of ni =
n1i + n2i binary responses relating to the first and sec-
ond semicontinuous variables, respectively. Then, let m1i =
(m1i1, . . . , m1ik1i )

′ and m2i = (m2i1, . . . , m2ik2i )
′ for individ-

ual i be a set of ki = k1i + k2i continuous responses relating to
the first and second semicontinuous variables, respectively.
Finally, let the set yi

∗ = (u′
1i, m′

1i, u′
2i, m′

2i)
′ be the multivariate

response set.
At the first level of the multivariate two-part latent

growth model, the two measured behaviors might be related
through the time-specific errors of the continuous parts
of each submodel. Let ε1i = (ε1i1, . . . , ε1ik1i )

′ and ε2i =
(ε2i1, . . . , ε2ik2i )

′ for individual i be the occasion-level errors
of the first and second continuous response variables, m1i

and m2i, respectively. The errors are assumed to be normally
distributed with means equal to 0 and covariance matrix �i:

(
ε1i

ε2i

)
∼ N

((
0
0

)
, �i =

(
�1i

�21i �2i

))

where �i is a symmetric covariance matrix that contains
the covariance matrices of the two continuous response vari-
ables, �1i and �2i, as well as a nonsymmetric matrix of the
covariances between the errors of the two variables,�21i. The
matrices could vary between individuals with regard to their
dimensions, as determined by the number of observations of
each variable for the individual, but typically do not differ
otherwise. If, for instance, the errors of the models for both
m1i and m2i are assumed to have constant variances across
time and to covary only within the same occasions, the errors
might be assumed to have the following distribution:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ε1i1

ε1i2
...

ε1ikli

ε2i1

ε2i2
...

ε2ik2i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
...
0
0
0
...
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, �i =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ 2
1
0 σ 2

1
...

...
. . .

0 0 . . . σ 2
1

σ21 0 · · · 0 σ 2
2

0 σ21 . . . 0 0 σ 2
2

...
...

. . .
...

...
...

. . .

0 0 . . . σ21 0 0 . . . σ 2
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where σ 2
1 and σ 2

2 are the variance of the occasion-specific
error of the continuous response from the first and second
behavior, respectively, and σ21 is the covariance between the
errors of the two responses within the same occasion.

At the second level of the model, the two measured behav-
iors could be related through the covariances between the
latent change characteristics of the binary and continuous
parts of each submodel. Assuming linear change in each
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TWO-PART LATENT GROWTH MODELS 135

outcome and random effects for the intercepts and time
effects, for example, let c1i = (a10i, a11i, b10i, b11i)′ for
individual i be a vector of the random effects relating to
the binary and continuous submodels, respectively, for the
first measure, and similarly, c2i = (a20i, a21i, b20i, b21i)′ be
the comparable vector for the second measure. The random
effects are assumed to be normally distributed with means
equal to 0 and covariance matrix �:

(
c1i

c2i

)
∼ N

((
0
0

)
, � =

(
�1

�21 �2

))
,

where �1 and �2 are the covariance matrices of the latent
change characteristics for the first and second variables,
respectively, and �21 is a nonsymmetric matrix of the covari-
ances between the latent change characteristics of the differ-
ent measures. Assuming unique variances and covariances
among the random effects, for example, the distribution of
the random effects is

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a10i

a11i

b10i

b11i

a20i

a21i

b20i

b21i

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∼ N

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0
0
0
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, � =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

φa100

φa11a10 φa111

φb10a10 φb10a11 φb100

φb11a10 φb11a11 φb11b10

φa20a10 φa20a11 φa20b10

φa21a10 φa21a11 φa21b10

φb20a10 φb20a11 φb20b10

φb21a10 φb21a11 φb21b10

φb111

φa20b11 φa200

φa21b11 φa21a20 φa211

φb20b11 φb20a20 φb20a21 φb200

φb21b11 φb21a20 φb21a21 φb21b00 φb211

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Estimators and Algorithms

Once a statistical model is defined, an appropriate estimator
and computational algorithm are chosen for specifying the
rules for obtaining parameter estimates using certain compu-
tational procedures, based on observed data. In Mplus, avail-
able maximum likelihood (ML) estimators vary according to
the analytic model and outcome variable type. A two-part
latent growth model for a single semicontinuous response
variable requires a joint distribution of a binary and a con-
tinuous distribution, random effects at the second level of
the model, and allowance for missing data. Three estimators,
ML, MLR and MLF, are available in Mplus to accommodate
these features.

ML provides estimates with conventional standard errors.
MLR is ML with standard errors that are robust to violations

of the normality assumption. As described earlier, MLF is
ML with standard errors that are calculated using first-order
derivatives. These three estimators differ in their approach
to approximating the Fisher information matrix. ML and
MLR rely on an approximation to the Fisher information
matrix that is based on second-order derivatives, whereas
the approximation under MLF relies on first-order deriva-
tives (Muthén, 1998–2004). For large samples, ML, MLR,
and MLF produce equivalent results. These three estimators
are available for a two-part latent growth model for one
semicontinuous outcome, as specified earlier in this article.

In estimating a complex model such as a multivariate
two-part latent growth model using Mplus, however, ML
and MLR are not available, and the MLF estimator is auto-
matically implemented. Generally, MLF is recommended
for computationally demanding estimation problems such
as the current model, although research is needed to help
understand the optimal number of integration points and
increments for different kinds of problems.

Taking a likelihood-based approach, a goal in fitting a
model to data is to obtain a set of parameter values that
make the data most likely to be observed relative to any
other parameter values. If latent variables are treated as
random and parameters are fixed and unknown, inference
is usually based on a marginal likelihood, the likelihood
of the data given the latent variables, integrated over the
latent variable distribution. Computationally, the parame-
ters would maximize the likelihood function over its sample
space.

Mplus is a flexible statistical software package that can
be used to fit such complex models using numerical inte-
gration for ML estimation. Researchers can choose the one
that is considered most appropriate given the complexity of
a model and computational resources. The default integra-
tion type in Mplus is STANDARD, a rectangular (trapezoid)
numerical integration method that uses 15 integration points
per dimension. The integral of a function over a single
dimensional space, the interval (a, b) for example, can be
approximated by dividing the area bounded between a and
b into multiple “rectangles” and summing the areas of the
rectangles. This method can be extended to handle higher
dimensions.

Given the computational demands that are inherent to
the multivariate two-part latent growth model, a rectan-
gular numerical integration method might not be feasible
given the high-dimension computational problem; instead,
MC integration (see Skrondal & Rabe-Hesketh, 2004) is
applied. MC integration is an MC simulation-based approach
that uses a random number generator to compute integrals,
an approach that is considered preferable in dealing with
estimation problems that require high-dimensional integra-
tion. Supposing we wish to compute an integral function
f (x) over sample space d, we could alternatively uniformly
generate random samples over a space D, where d is a sub-
set of D. The area of d is then estimated as the fraction
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136 XU, BLOZIS, VANDEWATER

multiplied by the area of D. The larger the number of sample
points, the more accurate the estimates. The main advan-
tage of MC integration lies in its simplicity. The number
of generated random samples, or integration points, can
be specified by the researcher. For a suitably large num-
ber of integration points, this approach is considered to
be very accurate. Users can implement MC integration in
Mplus by selecting the “ALGORITHM = MONTECARLO”
option.

In Mplus, a default of 500 random integration points
is implemented for the MC integration algorithm. In some
cases, one might wish to consider a series of analyses based
on a range of integration points to take into account the sam-
pling uncertainty of random integration points. A strategy for
determining a suitable number of integration points is to plot
parameter estimates across different numbers of integration
points and select the number that demonstrates stability in
the parameter estimates.

A SAS Macro Using MC Integration

To vary the number of random integration points when
implementing the MC integration method using Mplus, we
developed an SAS macro %M2Pfiles to invoke Mplus within
SAS. The macro requires that users supply a data file and
an Mplus input script file that specifies the multivariate
two-part latent growth model. The macro uses the SAS X
command to repeatedly invoke Mplus for the estimation
of a model with a range of user-specified number of inte-
gration points. Output files are extracted corresponding to
different integration points. This SAS macro is provided in
Appendix A.

Although the notation used here for a two-part latent
growth model and a multivariate two-part latent growth
model is presented in long format (by the stacking of vari-
ables, as described earlier), the input data used in Mplus is
actually in wide format such that each individual has mul-
tiple variables rather than multiple data records. Examples
of Mplus input data and syntax codes are provided in
Appendix B.

EXAMPLE: LONGITUDINAL MEASURES OF
TIME-USE BEHAVIORS

Longitudinal measures of time-use behaviors were col-
lected from a sample of children who participated in the
Child Development Supplement (CDS), a part of the Panel
Study of Income Dynamics (PSID) project. The PSID
began in 1968 with a representative sample of U.S. chil-
dren and families; details of the study can be found in
Hill (1991). More recently, data on the PSID children
and their families have been obtained through the CDS
(Hofferth, Davis-Kean, Davis, & Finkelstein, 1997; Mainieri,
2006). Data were collected on average at 5-year intervals in

1997, 2002, and 2007, with response rates for the families
within waves of 82%, 88%, and 76% for the time diaries,
respectively.

For the PSID project, parents maintained a daily diary of
their children’s activities. The majority of families (70%)
included in this subsample provided data for two children,
and the remaining families included data for one child. Only
data from the older of two siblings interviewed were included
in this study. For the 5 twins included in the subsample,
data for one of the two children were arbitrarily selected.
Data for children who had reached the age of 18 years or
older by the third wave were excluded from continued par-
ticipation in the project. Using these selection criteria, a
subset of 1,041 children were included for study here, of
which 156 had measures for 1997 only, 76 for 2002 only,
15 for 2007 only, 573 for any 2 years, and 291 for all
3 years. The missing data were assumed to MAR, such that
whether an individual was missing data could be related to
the observed measures but not the missing data. Here, mea-
sures of time spent reading (Reading) and using a computer
(Using a Computer), measured in hours and summed over
1 weekday and 1 weekend day for each study wave, were
studied.

A Two-Part Latent Growth Model for Individual
Time-Use Measures

A two-part latent growth model was fitted separately to
Reading and Using a Computer measures to assess the form
of growth in the probability of use and extent of conditional
use in each behavior. This is a useful first step to obtain
reasonable starting values for the larger multivariate model.
Three forms of growth (i.e., no growth, linear growth, and
quadratic growth) were fitted to each variable to assess the
form of change as a function of the child’s age. Age was
centered at 13 years. In each model, the intercepts for each
part of the growth model (i.e., that for the binary response
and that for the continuous response) were specified to be
random at the child level. The linear effects of time, but not
the quadratic effect, were also assumed to be random. Given
that children had at most three measures for a given variable,
it is not possible to include more than two random effects
in a model while assuming that the random effects covary.
Estimates based on MLR and MLF were obtained using
a rectangular and an MC integration procedure for com-
parison. Integration points ranging from 400 to 2,000 with
increments of 200 points were selected for use with the MC
integration procedure. Given that only MLF was available
for fitting the large, more complex model, estimates of these
simpler models produced by MLR and MLF were compared
in this initial step in the data analysis to document any impor-
tant differences, particularly with regard to the estimated
standard errors.
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TWO-PART LATENT GROWTH MODELS 137

A Multivariate Two-Part Latent Growth Model for
Time-Use Data

Our goal in jointly modeling the time-use outcomes was
to investigate (a) the probability, (b) the extent, and (c) the
relationship between the probability and extent of reading
and using a computer at home. The Reading and Using
a Computer measures collected from the same individual
might share some common characteristics. Thus, these out-
comes are likely to be correlated. A model was formulated
based on the results from the previous analyses in which each
time-use variable was considered individually. Estimates
based on MLF were obtained through the MC integration
method implemented in Mplus, with integration points rang-
ing from 400 to 2,000 in 200-point increments. Statistical
tests were performed at the .05 level.

RESULTS

Descriptive statistics of age in years at each year of mea-
surement are given in Table 1. The proportion of zeros and
descriptive statistics for the positive values of Reading and
Using a Computer are also provided. Figure 1 displays the
histograms of Reading and Using a Computer over the three
measurement occasions.

Single-Outcome Two-Part Latent Growth Model

Indexes of model fit (i.e., the Akaike Information Criterion
[AIC] and the Bayesian Information Criterion [BIC]; values
not reported) indicated that change in each aspect of Reading
and Using a Computer was best described by a linear growth
model with random intercepts in each submodel of the binary
and conditional continuous outcome. The random intercepts
of the two model parts were allowed to covary. As shown in

Tables 2 and 3 for Reading and Using a Computer, respec-
tively, estimates of the fixed effects, variances of the Level
1 errors, and variances of the random intercepts at Level
2 produced by rectangular and MC integration methods
using MLF were in close agreement. The SEs using dif-
ferent estimators differed only slightly (SEs from MLR are
available on request).

A test of the assumption of homogeneity of variance
for the occasion-specific errors for Reading and Using a
Computer indicated differences in the variances across time,
χ2(2) = 74.46, p < .01 for Reading; χ2(2) = 72.86, p < .01
for Using a Computer. Thus, a model that allowed for unique
variances at each time point was retained.

Multivariate Two-Part Latent Growth Model

A multivariate two-part latent growth model was fitted to the
two time-use variables studied. This model could not be esti-
mated with rectangular integration using an Intel dual-core
processor 2.8 GHz, 4 GB RAM computer on a 32-bit operat-
ing system, as the computational capacity was exceeded. The
final results were based on MLF through MC integration.
A path diagram of the fitted model is presented in Figure 2.
A plot of one of the parameters is presented in Figure 3.
In this plot, the values of the parameters (vertical axis) are
plotted against the number of MC integration points (hor-
izontal axis). As can be seen, the parameter estimate does
not vary appreciably across the number of integration points.
Parameter estimates and standard errors based on MLF using
1,600 integration points are provided in Table 4. Parameter
estimates and standard errors do not differ appreciably from
the corresponding values obtained from the analyses in
which measures of Reading and Using a Computer were
considered individually.

For time spent reading, the estimated log odds that
a child will read at age 13 is α10 = −1.12(SE = 0.09),

TABLE 1
Descriptive Statistics for a Subsample of Child Development Supplement Children

n % of Zeros n M SD Skewness

Age
1997 900 7.59 1.46 −0.10
2002 827 13.11 1.50 −0.10
2007 399 16.31 0.88 −0.09

Time spent Reading
Proportion of Reading Conditional extent of Reading

1997 900 56.56% 391 1.03 0.91 1.82
2002 827 68.56% 260 1.45 1.44 2.59
2007 399 78.7% 85 1.21 1.10 1.80

Time spent Using a Computer
Proportion of Using a Computer Conditional Extent of Using a Computer

1997 900 87.67% 111 1.68 1.29 1.73
2002 827 62.39% 311 2.39 2.18 1.80
2007 399 40.35% 238 3.14 2.83 2.36

Note. N = 1,041.
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138 XU, BLOZIS, VANDEWATER

FIGURE 1 Histograms of time-use variables over repeated measures. Time spent on Using a Computer and Reading is calculated as a sum over 1 weekday
and 1 weekend day. The missing values are denoted as N/A.

corresponding to a probability of (1/(1 + exp(1.12)) =
0.25. The log odds that a child will read declined lin-
early with age (α11 = −0.15, SE = 0.02). Conditional that
a child did read, the estimated mean time spent reading at
age 13 was β10 = 1.16, suggesting an average of slightly
more than 1 hour spent reading across the 1 weekday and
1 weekend day. Additionally, the estimated time spent read-
ing increased slightly (β11 = 0.04, SE = 0.02) on average
with age.

Next, the estimated probability that a child used a com-
puter at age 13 was α20 = –0.65 (SE = 0.07), corresponding

to a probability of (1/(1 + exp(0.65)) = 0.34. On average,
the log odds that a child used a computer increased with
age (α21 = 0.28, SE = 0.02). Conditional that a child did
use a computer, the estimated mean time spent using a com-
puter at age 13 was β20 = 2.41 (SE = 0.18), an estimate of
nearly 2.5 hours across the 2 days of measurement. On aver-
age, time spent using a computer increased at a rate of about
β21 = 0.16 (SE = 0.03) with age.

At the occasion level, previous analyses suggested dif-
ferences between the variances of the time-specific errors
of both Reading and Using a Computer across the three
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TWO-PART LATENT GROWTH MODELS 139

TABLE 2
Parameter Estimates for a Two-Part Latent Growth Model for

Repeated Measures of Time Spent on Reading

Rectangular
Integration

Monte Carlo
Integration

Fixed Effect Estimate SE Estimate SE

Logit submodel
Intercept α0 −1.11 0.09 −1.01 0.09
Age α1 −0.15 0.03 −0.15 0.02

Continuous submodel
Intercept β0 1.16 0.11 1.14 0.11
Age β1 0.04 0.02 0.03 0.02

Variances of Level 1 residuals and Level 2 random intercept
Level 1

σ 2
97 0.61 0.09 0.61 0.09

σ 2
02 1.89 0.14 1.89 0.14

σ 2
07 1.11 0.16 1.10 0.15

Level 2
φ00 1.43 0.30 1.38 0.30
φ10 0.20 0.12 0.21 0.11
φ11 0.21 0.08 0.21 0.08

Note. Results from Monte Carlo integration are based on 1,000 integra-
tion points with maximum likelihood estimates with standard errors that
are approximated by first-order derivatives. φ00 = variance of the random
intercept of the binary model part; φ10 = covariance between the random
intercept of the binary and continuous model part; φ11 = variance of random
intercept of the continuous model part.

measurement occasions. Also within occasion, a likelihood
ratio test for a possible covariation between Reading and
Using a Computer suggested that the two behaviors did
not covary within occasion, assuming the covariance was
constant across time, χ2(1) = 1.30, p = .25.

At the individual level, the standard error of the estimated
variance of the random intercept of the continuous submodel
for Using a Computer was not large relative to the size of
the estimated variance (
44 = 0.37, SE = 0.34), suggesting
that a model with a random intercept might not be appre-
ciable. We conducted a test of the null hypothesis that the
variance of the random intercept of the continuous submodel
was zero, which is equivalent to testing the null hypothe-
sis that four parameters, namely the variance of the random
intercept and its covariances with the remaining three ran-
dom effects, are all zero. It is important to note that this null
hypothesis places the variance parameter on the boundary
of the parameter space, so that the p value for the standard
chi-square approximation for the likelihood ratio test tends
to be conservative (Pinheiro & Bates, 2000). The appropri-
ate null distribution in this case is a mixture of χ2(4) and
χ2(3), with each having an equal weight of 0.5 (see Verbeke
& Molenberghs, 2000). Given the log-likelihood of the null
model is –4992.67, and of the alternative model is –4990.09,
twice the difference in these likelihoods is 5.16. Adopting
this rule, the p value for the comparison of two nested models
can be calculated as

TABLE 3
Parameter Estimates for a Two-Part Latent Growth Model for

Repeated Measures of Time Spent on Using a Computer

Rectangular
Integration

Monte Carlo
Integration

Fixed Effect Estimate SE Estimate SE

Logit submodel
Intercept α0 −0.66 0.07 −0.66 0.07
Age α1 0.29 0.02 0.29 0.02

Continuous submodel
Intercept β0 2.39 0.18 2.40 0.18
Age β1 0.16 0.03 0.16 0.03

Variances of Level 1 residuals and Level 2 random intercept
Level 1

σ 2
97 1.36 0.35 1.36 0.35

σ 2
02 4.14 0.43 4.15 0.43

σ 2
07 7.64 0.50 7.65 0.50

Level 2
φ00 0.92 0.29 0.91 0.29
φ10 0.12 0.24 0.09 0.23
φ11 0.42 0.34 0.41 0.34

Note. Results from Monte Carlo integration are based on 1,000 integra-
tion points with maximum likelihood estimates with standard errors that
are approximated by first-order derivatives. φ00 = variance between the
random intercept of the binary and continuous model part; φ10 = covari-
ance between the random intercept of the binary and continuous model part;
φ11 = variance of random intercept of the continuous model part.

p = 1

2
p(χ2(4) ≥ 5.16) + 1

2
p(χ2(3) ≥ 5.16) = 0.62

.

From this we concluded that the variation in time spent
on Using a Computer at age 13 was not different
from 0.

An estimated covariance of 0.72 (SE = 0.14), χ2(1) =
29.90, p < .001, between the random intercepts relating
to the log odds of Reading and the log odds of Using a
Computer was statistically different from zero, suggesting
that at 13 years of age, the likelihood that a child will read is
positively related to the likelihood that a child will use a com-
puter. No other association was detected between the latent
growth characteristics of Reading and Using a Computer.

DISCUSSION

Semicontinuous variables are common in many areas of
behavioral research. Such variables are characterized by
a response scale in which some scores take on a single
value (often zero) and the remaining scores are continu-
ous (usually positive). Given this response distribution, it
might be useful to distinguish between the two features of
the response in studying whether or not individuals engage
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140 XU, BLOZIS, VANDEWATER

FIGURE 2 Path diagram of a multivariate two-part latent growth model for longitudinal measures of Reading and Using a Computer. uRD97, uRD02,
uRD07 are binary measures of Reading in 1997, 2002, and 2007, respectively; mRD97, mRD02, mRD07 are nonzero measures of Reading in 1997, 2002,
and 2007, respectively; similar measures are provided for measures of Using a Computer in 1997, 2002 and 2007, respectively; Intercept RD α10i = random
intercept of Reading binary model part; Slope RD α11 = slope of Reading binary mode part; Intercept RD β10i = random intercept of Reading continuous
model part; Slope RD β11 = slope of Reading continuous model part; Intercept CO α20i = intercept of Using a Computer binary model part; Slope CO α21 =
slope of Using a Computer binary model part; Intercept CO β20i = intercept of Using a Computer continuous model part; Slope CO β21 = slope of Using a
Computer continuous model part; σ 2

RD97, σ 2
RD02, and σ 2

RD07 are variance of residuals of Reading continuous model part in 1997, 2002, and 2007, respectively;
similar measures are provided for measures of Using a Computer in 1997, 2002 and 2007, respectively.

FIGURE 3 Stable parameter estimates across a multivariate two-part latent growth model across different integration points. α20 = intercept of Using a
Computer binary model part; MC = Monte Carlo. (Figure appears in color online.)

in a particular behavior (e.g., adolescent alcohol use), and if
they do, to measure the extent to which they engage (e.g.,
amount of alcohol use). A two-part latent growth model
might be considered for a single longitudinal semicontinuous
variable.

This article develops a multivariate two-part latent growth
model for the study of two variables that individually follow
a two-part latent growth model. Thus, the model consid-
ers the joint distributions of two binary and two continuous
response variables. The statistical software package Mplus
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TWO-PART LATENT GROWTH MODELS 141

TABLE 4
Parameter Estimates for a Multivariate Two-Part Latent Growth

Model for Repeated Measures of Time Spent on Reading and Using
a Computer

Reading
Using a

Computer

Estimate SE Estimate SE

Fixed effect
Logistic submodel

Intercept α10 −1.12 0.09 Intercept α20 −0.65 0.07
Age α11 −0.15 0.02 Age α21 0.28 0.02

Continuous Submodel
Intercept β10 1.16 0.10 Intercept β20 2.41 0.18
Age β11 0.04 0.02 Age β21 0.16 0.03

Level 1 residual variance
σ 2

RD97 0.60 (0.09) σ 2
CO97 1.36 0.35

σ 2
RD02 1.89 (0.14) σ 2

CO02 4.16 0.43

σ 2
RD07 1.11 (0.16) σ 2

CO07 7.83 0.50

Level 2 covariance matrix


 =
⎡
⎢⎣

1.43 (0.30)
0.20 (0.12) 0.21 (0.08)
0.72 (0.14) 0.10 (0.08) 0.78 (0.26)

−0.25 (0.20) −0.07 (0.14) 0.07(0.23) 0.37 (0.34)

⎤
⎥⎦

Note. Results from Monte Carlo integration with maximum likelihood
estimates with standard errors that are approximated by first-order deriva-
tives are based on 1,600 integration points. The Level 2 covariance matrix is
a symmetric matrix; on the diagonal are the variance of random intercepts
of the binary model part of Reading, continuous model part of Reading,
binary model part of Using a Computer, and continuous model part of Using
a Computer, respectively. The off-diagonal components are the covariances
between each of the four random effects.

can be used to estimate such a model using MC integration.
This article also develops an SAS macro to invoke Mplus
to fit a series of multivariate two-part latent growth models
using a range of numbers of integration points for MC. Final
results can be obtained by assessing the stability of parameter
estimates across different numbers of integration points.
Another approach is the quasi-Newton optimization of the
likelihood approximated by adaptive Gaussian quadrature
that can be implemented using SAS PROC NLMIXED (an
SAS example code is provided by Tooze et al., 2002). The
multidimensional integration that is necessary to evaluate
a likelihood function is difficult, however, in fitting a two-
part latent growth curve model, with greater difficulty in a
multivariate case. This could present a great computational
challenge if using PROC NLMIXED to fit such a model.

In the illustrative example, two estimation methods, MLR
and MLF, were used to fit a univariate two-part latent
growth model for measures of time spent reading and using
a computer, respectively. Both estimators provide similar
estimates with slight differences in the estimated standard
errors. In small samples, ML estimates with robust stan-
dard errors are often preferred to those obtained using MLF
given the robustness of MLR to the normality assumption.
In some cases (e.g., a multivariate two-part latent growth
model), however, ML with robust standard errors cannot be

computed given that a high-dimensional integral is required
to compute a second-order derivative. Thus, MLF might be
the only option.

Given the complexity of a multivariate two-part growth
curve model, MC integration was applied in estimating the
correlation between two longitudinal semicontinuous vari-
ables in a study of time use in children. For MC integration,
integration points from 400 to 2,000 were selected; however,
the models failed to converge for integration points of 400,
600, 800, and 2,000. We also selected the Mplus default
value of 500 and the model failed to converge. Finally,
the results from MC integration based on 1,600 integration
points are presented in Table 4 for this study. A plot can be
considered to evaluate the stability of a parameter estimate
under different integration numbers. An unstable estimate
of a parameter is represented by a fluctuant band, as shown
in Figure 4. A plot of unstable estimates could present an
upward or downward trend. In this study, all of the parame-
ter estimates and model fit indices achieved stability, with the
exception of the covariance between the random intercepts of
the binary submodel and the continuous submodel of Using
a Computer. We also found that, consistently across different
integration points, the estimated standard errors were large
relative to the size of the corresponding covariance. Given
that the remainder of the parameter estimates was stable and
the interpretation of this parameter will not change across
different integration points, we decided to report the final
results based on the 1,600 integration points. Additionally,
one fundamental disadvantage of MC integration is that its
accuracy increases only as the square root of the number of
random integration points increases (Teukolsky, Vetterling,
& Flannery, 2007). Therefore, if the accuracy requirements
are modest, or if the computation budget is large, then the
technique is highly recommended as one of great generality.
More studies need to be done to explore the range of optimal
numbers of integration points and increments.

Finally, empirical studies in the social sciences often
encounter data in which respondents born in different years
are observed at multiple points in time (e.g., Glenn, 2007).
This often presents a challenge of separating age, cohort, and
time effects because two or three of these effects are always
confounded. We simplified our demonstration by studying
age effects in a multivariate two-part latent growth model,
although the effects of age and time were confounded.
Further, we assumed that the cohort effects in the growth tra-
jectories were negligible. Given differences in baseline ages
for children in this study, measuring change as a function
of age required the assumption of age convergence, which
implies that younger people and older people differ only
by age, and that between-person, cross-sectional age effects
are equivalent to within-person, longitudinal aging effects
(Hoffman, Hofer, & Sliwinski, 2011).

Miyazaki and Raudenbush (2000) proposed an approach
for studying multiple cohorts in a longitudinal design to
address an interaction between participant’s age and cohort.
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142 XU, BLOZIS, VANDEWATER

FIGURE 4 Unstable parameter estimates of a multivariate two-part latent growth model across different integration points. 
43 = covariance between
random intercepts of Using a Computer. MC = Monte Carlo. (Figure appears in color online.)

Using this approach, the coefficients that describe growth at
the individual level can be specified as a function of cohort
membership, allowing, for instance, for the slope of the
growth trajectory to vary on average between cohorts. In this
study, for instance, cohorts could be formed based on year of
birth. Selecting one birth cohort as the comparison or refer-
ence group, indicator variables would be created to represent
the different birth cohorts. These indicator variables would
then enter the model at the second level to test whether there
are cohort differences in the characteristics used to describe
change.
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APPENDIX A
SAS MACRO FOR IMPLEMENTING A MULTIVARIATE TWO-PART LATENT GROWTH

MODEL USING MC INTEGRATION

∗ This document contains the SAS syntax to remotely access Mplus to fit a multivariate two-part latent
growth model;
∗ The Mplus syntax to fit a multivariate two-part latent growth model is in Mplus version 4 format, in
which a new binary and continuous variable is pre-created by the user for each semi-continuous variable.
Since Mplus version 5, a new statement “Data Twopart” is introduced to define a semi-continuous variable.
A binary and continuous variable will be automatically created, and a logarithmic transformation will
be applied to the continuous variable by default. To be consistent to the mathematical notation in the
article, an example code in Mplus version 4 format is provided in Appendix A;
∗∗ Model: Multivariate TWO-PART LATENT GROWTH MODEL;
∗ Specify the path where the estimates will be saved;
%let path = E:\;
libname new "&path";
%macro M2Pfiles(minnumb = , maxnumb = , bynumb = ) ;
%do intnumb = &minnumb %to &maxnumb %by &bynumb;
∗ Step 1: save each replication as a separate temp .txt file with the same file name;
∗ Specifying the macro variable &intnumb allows the user to provide a range of integration numbers using
MC integration;
data mplus;
file "d:\simcode.txt ";
∗ Type in Mplus code. Attention, only code written in lower case will work;
put@1 "title: joint distribution of computer use and rd, ";
put@1" binary + continuous data , 2 level; ";
put@1" data: file is empiricalstudy.dat ; ";
put@1" format is free; ";
put@1 "variable: ";
put@1 " names are id68pn male agec97 agec02 agec07 ";
put@1 " uco97 uco02 uco07 mco97 mco02 mco07 ";
put@1 " urd97 urd02 urd07 mrd97 mrd02 mrd07 agepm1 agepm2 ; ";
put@1 "missing is . ; ";
put@1 " usevariables are agec97 agec02 agec07 mco97 mco02 mco07 ";
put@1 " uco97 uco02 uco07 urd97 urd02 urd07 mrd97 mrd02 mrd07; ";
put@1 " categorical are uco97 uco02 uco07 urd97 urd02 urd07 ; ";
put@1 "tscores = agec97 agec02 agec07 ; ";
put@1 "analysis: type = missing random; ";
put@1 " integration = montecarlo(&intnumb); ";
put@1 " estimator = mlf; ";
put@1 "model: ";
put@1 " !! co data; ";
put@1 " ! binary part; ";
put@1 " iuco suco | uco97 uco02 uco07 at agec97 agec02 agec07 ; ";
put@1 " suco@0; ";
put@1 " ! continuous part; ";
put@1 " imco smco | mco97 mco02 mco07 at agec97 agec02 agec07 ; ";
put@1 " smco@0; ";
put@1 " mco97 mco02 mco07 ∗ 4.74 ; ";
put@1 " [suco ∗ 0.29];[imco ∗ 2.39]; [smco∗0.16]; ";
put@1 " iuco ∗ 0.92; imco ∗ 0.42; ";
put@1 " !! rd data; ";
put@1 " ! binary part; ";
put@1 " iurd surd | urd97 urd02 urd07 at agec97 agec02 agec07 ; ";
put@1 " surd@0; ";
put@1 " ! continuous part; ";
put@1 " imrd smrd | mrd97 mrd02 mrd07 at agec97 agec02 agec07 ; ";
put@1 " smrd @0; ";
put@1 " mrd97 mrd02 mrd07 ∗1.149 ; ";
put@1 " [surd ∗ -0.15]; [imrd ∗ 1.14]; [smrd ∗ 0.03]; ";
put@1 " iurd ∗ 1.38; imrd ∗ 0.21; ";
put@1 " ! the random intercepts of the two parts are correlated; ";
put@1 " imco with iuco ∗ 0.78; ";
put@1 " iurd with iuco ∗ 0.72; ";
put@1 " iurd with imco ∗ -0.25; ";
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TWO-PART LATENT GROWTH MODELS 145

put@1 " imrd with iuco ∗ 0.10; ";
put@1 " imrd with imco ∗ 0.06; ";
put@1 " imrd with iurd ∗ 0.12; ";
put@1 " output: tech1 tech4; ";
;
run;
∗ Step 2: run one replication at a time in Mplus remotely from SAS;
∗ & inputname: indicate the file contains the input Mplus code;
∗ & outputname: indicate the file contains the output Mplus code;
%let inputname=d:\simcode.txt;
%let outputname=d:\simcode&intnumb..out;
option noxwait xsync;
data _null_;
x "mplus &inputname &outputname";
run;
quit;
∗Step 3: extract the estimators from each replication;
%let filename=d:\simcode&intnumb..out;
filename ABC "&filename";
∗∗ Read the parameter estimates from simcode&intnumb..out;
data modelfit;
infile ABC length=lg;
input @;
input @1 eachline $varying200. lg;
x1 = index(eachline,"H0 Value");
x2 = index(eachline,"Number of Free Parameters ");
x3 = index(eachline,"Akaike (AIC)");
x4 = index(eachline,"Bayesian (BIC)");
x5 = index(eachline,"Sample-Size Adjusted BIC");
if x1=11 or x2 =11 or x3=11 or x4 = 11 or x5 = 11 ;
run;
data modelfit2;
set modelfit;
varname = compress(substr(eachline,1,39));
value = substr(eachline,39,20);
keep varname value;
run;
PROC TRANSPOSE data = modelfit2 out = modelfit3;
id varname;
var value;
run;
data modelfit4;
set modelfit3;
ind = &intnumb;
H0LikeValue = input(H0Value, 20.4);
NofParms = input(NumberofFreeParameters, 20.0);
AIC = input(Akaike_AIC_, 20.4);
BIC = input(Bayesian_BIC_,20.4);
AdjBIC = input(Sample_SizeAdjustedBIC, 20.4);
drop H0Value NumberofFreeParameters Akaike_AIC_ Bayesian_BIC_ Sample_SizeAdjustedBIC _name_;
run;
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗;
data estimates;
infile ABC length=lg;
input @;
input @1 eachline $varying200. lg;
d1=index(eachline,"IMCO");
d2=index(eachline,"IMRD");
d3=index(eachline,"IUCO");
d4=index(eachline,"IURD");
d5=index(eachline,"SMCO");
d6=index(eachline,"SMRD");
d7=index(eachline,"SUCO");
d8=index(eachline,"SURD");
d9=index(eachline,"MCO97");
d10=index(eachline,"MCO02");
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d11=index(eachline,"MCO07");
d12=index(eachline,"MRD97");
d13=index(eachline,"MRD02");
d14=index(eachline,"MRD07");
d15=index(eachline,"UCO97$1");
d16=index(eachline,"URD97$1");
if d1 = 5 or d2 = 5 or d3 = 5 or d4 = 5 or d5 = 5 or d6 = 5 or d7 = 5 or d8 = 5 or d9 = 5 or d10 = 5
or d11 = 5 or d12 = 5 or d13 = 5 or d14 =5 or d15 = 5 or d16 = 5;
run;
data estiamtes2;
set estimates;
if _N_ = 15 then delete ;
if _N_ = 16 then delete ;
if _N_ = 17 then delete ;
if _N_ = 18 then delete ;
if _N_ = 19 then delete ;
if _N_ = 20 then delete ;
Estimates = substr(eachline,12,21) ;
SE = substr(eachline,30,12) ;
Walds = substr(eachline,40,12) ;
keep varname Estimates SE Walds ;
run;
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗;
∗So far, all the values are still Strings (characteristic type);
data estimates3;
set estiamtes2;
Estimates1 = input(Estimates, 22.4);
SE1 = input(SE , 22.4);
Walds1 = input(Walds, 22.4);
drop Estimates SE Walds Std StdXY;
RUN;
proc transpose data=estimates3 out = estimate4 LET ; RUN;
data estimate5;
set estimate4;
ind = &intnumb;
rename col1 = IUCO_IMCO;
rename col2 = IURD_IUCO;
rename col3 = IURD_IMCO;
rename col4 = IMRD_IUCO;
rename col5 = IMRD_IMCO;
rename col6 = IMRD_IURD;
rename col7 = m_IUCO;
rename col8 = m_SUCO;
rename col9 = m_IMCO;
rename col10 = m_SMCO;
rename col11 = m_IURD;
rename col12 = m_SURD;
rename col13 = m_IMRD;
rename col14 = m_SMRD;
rename col15 = thr_CO;
rename col16 = thr_RD;
rename col17 = var_IUCO;
rename col18 = var_SUCO;
rename col19 = var_IMCO;
rename col20 = var_SMCO;
rename col21 = var_IURD;
rename col22 = var_SURD;
rename col23 = var_IMRD;
rename col24 = var_SMRD;
rename col25 = res_CO97;
rename col26 = res_CO02;
rename col27 = res_CO07;
rename col28 = res_RD97;
rename col29 = res_RD02;
rename col30 = res_RD07;
run;
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TWO-PART LATENT GROWTH MODELS 147

∗Combine the model fit and estimators of the same replication;
data combine;
merge estimate5 modelfit4;
by ind;
run;
∗Step 4: save the parameter estimates and model fit indices;
proc append base = new.mpluscombine_
COREfeml force;
run;
∗end intnumb loop;
%end;
%Mend M2Pfiles ;
∗run the macro with user-specified parameters;
%M2Pfiles(minnumb = 400, maxnumb = 2000 , bynumb = 200 ) ;

APPENDIX B
CREATING AN MPLUS INPUT DATA SET FOR A TWO-PART LATENT GROWTH MODEL

Mplus data sets containing multilevel or hierarchical data can be organized in one of two ways: (a) multiple record data set (referred to as long format), in which
data are structured in multiple rows per individual, and (b) multiple variable data set (referred to as wide format), in which one row with multiple variables is
used to record measures from an individual on multiple occasions. To use Mplus for a two-part latent growth model, a wide format data set is needed. One can
use the “Data Twopart:” statement as initially introduced in Mplus Version 5, which is shown in Example Code 1. For any version of Mplus, the script can be
written as though it is a case of structural equation modeling, as shown in Example Code 2. In a free format Mplus input data set, a missing record is coded as
a comma and each variable is separated by an empty column. Codes 1 and 2 have the same function. They both prepare the data.

Example Code 1 for MPlus Version 5 and Higher

There are nine variables for each observation. The “Names = ” statement specifies the original semicontinuous variable. Mplus will automatically recode the
variable into a binary and a continuous outcome, the names of which are specified in the “Binary = ” and the “Continuous = ” statements, respectively. Note
that if the “Data Twopart:” statement is specified, Mplus applies a natural log transformation to the values of the continuous model part by default. Users can
specify the “Transform = ” statement to override the default. In the “Variable:” command, the “Names =” statement specifies the original variables in the
input data set. The “Usevariables =” statement defines the variables used in the model specification. The binary or categorical dependent variables in model
estimation are provided in the “Categorical = ” statement. In our example, these nine variables from the input data set are age centered at 13 years old across
three measures in columns 1 through 3, original semicontinuous measures of Using a Computer in columns 4 through 6, and original semicontinuous measures
of Reading in columns 7 through 9.

Data Twopart:
Names = CO97 CO02 CO07 RD97 RD02 RD07;
Binary = uCO97 uCO02 uCO07 uRD97 uRD02 uRD07;
Continuous = mCO97 mCO02 mCO07 mRD97 mRD02 mRD07;
Transform = NONE;

Variable:
Names = agec97 agec02 agec07 CO97 CO02 CO07 RD97 RD02 RD07;
Usevariables = agec97 agec02 agec07 uCO97 uCO02 uCO07 mCO97 mCO02 mCO07
uRD97 uRD02 uRD07 mRD97 mRD02 mRD07;
Categorical = uCO97 uCO02 uCO07 uRD97 uRD02 uRD07;

Input data:

−4.79 0.82 5.17 2.63 4.18 . 0.65 0 .
−6.82 −1.11 3.17 0 0 4.42 0.17 0 0
−6.79 −1.27 3.17 0 1 0 1 1.5 0
−5.98 −0.26 4 0 1.42 3 0 1.83 0
−4.1 1.59 5.83 0.83 0 . 0.33 1.17 .
−6.92 −1.11 3.17 0 0 4.82 0.92 0 1.17
−4.38 1.4 5.58 . 2.12 . . 1.5 .
. . .

−4.05 1.81 6.33 2.83 0.5 . 0.12 0 .
−3.06 2.65 7.17 0 4.42 . 0.25 0 .
−6.13 −0.9 3.42 0.75 2.58 2.92 2.38 1.08 0
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Example Code 2

There are 15 variables for each observation, which are age centered at 13 years old across three measures in columns 1 through 3, recoded binary variable of
Using a Computer in columns 4 through 6, recoded continuous variable of Using a Computer in columns 7 through 9, recoded binary variable of Reading in
columns 10 through 12, and recoded continuous variable of Reading in columns 13 through 15.

Variable:
Names = agec97 agec02 agec07 uCO97 uCO02 uCO07 mCO97 mCO02 mCO07
uRD97 uRD02 uRD07 mRD97 mRD02 mRD07;
Usevariables = agec97 agec02 agec07 uCO97 uCO02 uCO07 mCO97 mCO02 mCO07
uRD97 uRD02 uRD07 mRD97 mRD02 mRD07;
Categorical = uCO97 uCO02 uCO07 uRD97 uRD02 uRD07;

Input data:

−4.79 0.82 5.17 1 1 . 2.63 4.18 . 1 0 . 0.65 . .
−6.82 −1.11 3.17 0 0 1 . . 4.42 1 0 0 0.17 . .
−6.79 −1.27 3.17 0 1 0 . 1 . 1 1 0 1 1.5 .
−5.98 −0.26 4 0 1 1 . 1.42 3 0 1 0 . 1.83 .
−4.1 1.59 5.83 1 0 . 0.83 . . 1 1 . 0.33 1.17 .
−6.92 −1.11 3.17 0 0 1 . . 4.82 1 0 1 0.92 . 1.17
−4.38 1.4 5.58 . 1 . . 2.12 . . 1 . . 1.5 .
. . .

−4.05 1.81 6.33 1 1 . 2.83 0.5 . 1 0 . 0.12 . .
−3.06 2.65 7.17 0 1 . . 4.42 . 1 0 . 0.25 . .
−6.13 −0.9 3.42 1 1 1 0.75 2.58 2.92 1 1 0 2.38 1.08 .
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