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Abstract

Towards optimal prediction and transforms for video compression

by

Bharath Vishwanath

The focus of the dissertation is on optimal prediction paradigms and the comple-

mentary design of transforms for video compression. One main line of research is on

motion compensated prediction for spherical videos. Standard approaches project spher-

ical videos onto planes for processing with traditional 2D video coding standards. Such

approaches are significantly sub-optimal as standard video coders only allow for block

translations in the critical tool of motion compensated prediction, which is incompatible

with the expected motion in projected spherical video. Specifically, the effective sampling

density varies over the sphere and the resulting locally varying warping yields complex

non-linear motion in the projected domain. Moreover, motion vector in the projected do-

main does not have a useful physical interpretation. To address these shortcomings, the

thesis presents a rotational motion model that performs motion compensation in terms

of rotations along geodesics on the sphere. Rotation preserves object shape and size on

the sphere. A motion vector in this model implicitly specifies an axis of rotation and the

degree of rotation about that axis, to convey the actual motion of objects on the sphere.

Complementary to the novel motion model, an effective motion search technique that is

tailored to the sphere’s geometry is presented for improved motion estimation. The the-

sis then considers an important class of spherical videos whose dynamics involve camera

motion. The thesis presents a new geodesic translation motion model that captures the

motion field on the sphere, and capitalizes on insights into the perceived motion on the

sphere due to camera translation. Specifically, surrounding static points are perceived as
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moving along their respective geodesics, which all intersect at the poles corresponding to

the camera velocity axis. The method further exploits insights into the displacement rate

of static points, which depends on object depth and degree of elevation on the sphere

(with respect to the camera velocity axis). Complementary to the new motion model,

a search grid tailored to capture expected geodesic motion on the sphere for effective

motion estimation is presented.

Another focus related to predictor optimization is on design of prediction filters for adap-

tive compression of non-stationary signals with applications to video coding. The design

poses several challenges including: i) catastrophic instability due to statistical mismatch

driven by error propagation through the prediction loop, and ii) severe non-convexity

of the cost surface that is often riddled with poor local minima. Motivated by these

challenges, the thesis presents a near-optimal method for designing prediction modes

for adaptive compression. The design builds on a stable, open-loop platform, but with

a subterfuge that ensures that it is asymptotically optimized for closed-loop operation.

The non-convexity is handled by deterministic annealing, a powerful optimization tool

to avoid poor local minima. The impact of the design paradigm on practical applications

is demonstrated by designing temporal prediction filters in video coding.

The second line of research focuses on offline design of transforms for inter-prediction

residuals, a complementary step to the effective prediction paradigms. Existing codecs for

regular 2D videos use standard trigonometric transforms. These transforms are only op-

timal under certain assumptions that are highly questionable for inter-prediction residue.

For projected spherical videos, derivation of transforms even under certain assumptions

is a highly challenging task. Thus, there is a strong motivation for a data-driven ap-

proach to learn these transforms. The joint design of multiple transform modes is highly

challenging due to critical stability problems inherent to feedback through the codec’s

prediction loop, wherein training updates inadvertently impact the signal statistics the
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transform ultimately operates on, and are often counter-productive. It is the premise of

this work that a truly effective switched transform design procedure must account for

and circumvent this shortcoming. We introduce a data-driven approach to design optimal

transform modes for adaptive switching by the encoder. Most importantly, to overcome

the critical stability issues, the approach is derived within an asymptotic closed loop

(ACL) design framework. The design yields transforms that outperform the transforms

obtained by standard design procedures.
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Chapter 1

Introduction

Video forms an important component of the data consumption and constitutes a major

part of the internet traffic. Evidently, there is a pressing need for better compression

algorithms. A recent challenge to the research community is the compression of spherical

videos that forms the backbone of many virtual reality related applications. In contrast

to the regular videos that have limited field of view, spherical videos have a 360◦ field

of view that enables the user to view in any desired direction. There is also a growing

interest in augmented reality related applications that gives six degrees of freedom that

enables the user to navigate in a virtual environment. Here too, spherical video forms the

key factor in realising such applications. Due to increased field of view, spherical videos

generate enormous amounts of data. Thus, there is a clear need for efficient compression

tools tailored to spherical videos.

Most of the video codecs including the recent HEVC [1] and AV1 [2] divide the frame

into blocks and compress them by four fundamental steps, namely, prediction, transform,

quantization and entropy coding. The first step of prediction involves predicting the

current block of pixels from previous reconstructed pixels. It can either be i) inter-

prediction: wherein the best matching block from a reconstructed frame is used as the
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prediction signal and the offset to the matching block ( often called a motion vector) is

sent to the decoder or ii) intra-prediction: wherein the current block is predicted from

the reconstructions of the adjacent blocks in the current frame. The resulting prediction

residual is transformed by different kernels such as discrete cosine transform (DCT),

asymmetric discrete sine transform (ADST) etc. The key purpose of the transform

block is to decorrelate the prediction residual and achieve energy compaction with as

few transform coefficients as possible. These transform coefficients are then quantized

and entropy coded. Quantizer decides the information to remove (usually high frequency

signals), and optimizes the bit allocation based on the bit-rate requirement. Entropy

coding optimizes the codebook based on the prior probability information to minimize

the average number of bits needed to get the resulting bit-stream.

The thesis focuses on optimization of prediction and transform modules. The first line

of research considers optimization of prediction module. Initial focus is on motion com-

pensated prediction for spherical videos. As mentioned earlier, spherical videos generate

enormous amounts of data and demand for efficient compression tools. Existing methods

simply project spherical videos onto planes using various geometries and use 2D codecs

for compression. The projection introduces warping, resulting in complex non-linear mo-

tion of objects in the projected domain. Traditional codecs use block based translational

motion model which is highly ineffective in capturing the complex non-linear motion

in the projected domain. Further, during motion estimation at the encoder, the fixed

search pattern in the projected plane results in spatially varying pattern on the sphere

which severely compromises the compression efficiency. To address these shortcomings,

the chapter 2 of the thesis introduces a rotational motion model that performs motion

compensation on the sphere in the natural way. Specifically, given a vector v correspond-

ing to the center of the block mapped to the sphere and a new vector v′ to which v

is to be motion compensated, the model proposes to rotate v to v′ along the geodesic

2



connecting them. The same rotation operation is applied for the rest of the pixels in the

block. Complementary to the motion model, a search pattern is defined on the sphere

that is agnostic of the location of the block on the sphere and the projection geometry.

Only for the purpose of defining the search pattern, the block is treated as though it

is on the equator. The search pattern thus defined will be the same for all the blocks

irrespective of its location on the sphere. The proposed motion model and the search

pattern are defined on the sphere and can thus be easily extended to any arbitrary projec-

tion format. Experimental results show huge bit-rate savings over the standard methods

demonstrating the efficacy of the proposed method.

Chapter 3 focuses on an important class of spherical videos with camera motion. The

chapter introduces a geodesic translation motion model to capture the perceived motion

of the surrounding objects on the sphere due to camera motion. The core observation

is that, with camera motion, all the surrounding static objects are perceived to move

along their respective geodesics that all intersect at the points where the camera velocity

vector intersects the sphere. The model perfectly accounts for the perspective distortions.

Specifically, as the objects approach the camera, it is perceived to get magnified and

vice versa, which is perfectly captured by geodesic translation. The motion vectors in

the model are largely 1-D, resulting in huge bit-rate savings in conveying the motion

vectors to the decoder. The chapter then analyses the rate of displacement of pixels

on the sphere as related to depth of the object and the camera velocity. The analysis

yields a relationship that opens door for a motion vector modulation scheme (under

the mild assumption of constant depth for a block). A motion vector is sent to the

decoder that corresponds to the amount of geodesic translation of the center of the

block. The modulation scheme is then applied to derive the motion vectors for other

pixels in the block. Finally, the chapter introduces a motion search grid that adapts to

the direction of the camera motion. The grid is defined such that the first component
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of the motion vector captures the geodesic translation of the center of the block and the

second component captures the actual motion of object that is independent of the camera

motion. For capturing the actual object motion, the grid leverages a novel equal-area

projection based motion vector distribution consistent with expectation of actual intrinsic

object motion. Experimental results show that the proposed method outperforms the

standard approaches and brings huge bit-rate savings.

The next focus in the prediction optimization is the design of prediction filters for

compression of non-stationary signals with emphasis on video coding. Most of the real-

world signals are non-stationary and effective compression of such signals should involve

adaptivity. Chapter 4 considers adaptive prediction, wherein, adaptivity is achieved by

dividing the signal into blocks of signals and choosing the best prediction filter from

a set of offline-trained prediction filers. The design poses several challenges including i)

design instability due to closed-loop nature of the coder ii) non-convexity of the cost func-

tion that traps the design in poor local-minima. The chapter discusses a general design

framework to overcome these challenges that are in fact inherent to almost all compres-

sion scenarios. The design instability is tackled by an asymptotic closed-loop (ACL)

framework. ACL is an iterative design framework in which, predictors are optimized

for a given set of reconstructions and the reconstructions are updated in an open-loop

fashion with the new predictors. Open-loop updates ensure design stability, with the sub-

terfuge that the design on convergence optimizes predictors for closed-loop operation of

the coder. The non-convexity of the cost function is handled by re-deriving for this prob-

lem setting the powerful non-convex optimization tool of deterministic annealing. DA

solves the initialization problem inherent to all greedy approaches. Its careful annealing

schedule avoids poor local minima. The chapter thus gives a near-optimal solution for

a fundamental problem of prediction filter design. The chapter then considers an im-

portant application of the proposed design in video compression. For a novel temporal
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prediction paradigm of transform domain temporal prediction (TDTP) earlier proposed

in our lab, prediction modes are derived in the light of the proposed design strategy. In

TDTP, the prediction filters are in high-dimensional space and thus a DA based solution

is very effective in avoiding local minima. The framework is then broadened to design

extended block TDTP filters, wherein the prediction filters are obtained as least square

estimates. This paves way to apply the design to a rich class of problems whose optimal

solutions are obtained as least-square estimates.

The second line of research focuses on offline learning of transform kernels for inter-

prediction residuals in video coding. Traditionally, DCT is used as the transform kernel

for inter-prediction residual. To enable better adaptation to residue statistic, recent

codecs allow other transforms including ADST, flip-ADST etc. However, the optimal-

ity of such transforms for inter-prediction residual is highly questionable. Moreover, for

projected spherical videos, the residue statistic is expected to be very different from

the residue statistic in regular 2D videos, and further expected to vary for different ge-

ometries. Due to non-uniform sampling induced on the sphere, an analytical solution

to derive the optimal transform (by working in spherical domain) is nearly impossible.

Thus, in chapter 5, we pursue a data driven approach to learn the transform kernels.

The design is plagued by instability issue due to closed-loop nature of the codec that

is exacerbated compared to predictor design, since the design involves a larger set of

parameters to be optimized. We thus propose an ACL based transform optimization

strategy that efficiently handles the stability issues. The proposed design yields trans-

forms that outperform the transforms designed by standard methods as demonstrated in

the experimental results.
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Chapter 2

Rotational Motion Model for

Spherical Video Coding

2.1 Introduction

An immersive experience for users is enabled by capturing video with 360◦ view of the

world on a sphere, allowing end users to dynamically control the viewing direction. To

simplify storage, transmission and efficient access to desired portions of the 360◦ video,

the data are projected onto planes via one of several possible geometries, e.g., equirect-

angular, cubemap, octahedron or icosaherdon [3]. In each case a uniform sampling of

the plane induces a variable sampling density on the sphere which, in turn, introduces

significant warping that varies in magnitude depending on location.

With its increased field of view, 360◦ video represents a considerably larger volume

of data than that of standard 2D video, and hence the practicality of applications using

such video critically depends on powerful compression algorithms that are tailored to this

signal characteristics. A central component in modern video codecs such as H.264 [4] and

HEVC [1] is motion compensated prediction, often referred to as “inter-prediction”, which
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is tasked with exploiting temporal redundancies. Standard video codecs use a (piecewise)

translational motion model for inter prediction, while some non-standard approaches

considered extensions to affine motion models that may be able to handle more complex

motion, at a potentially significant cost in side information (see recent approaches in

[5, 6]). Still, in 360◦ video, the amount of warping induced by the projection varies for

different regions of the sphere, and yields complex non-linear motion in the projected

plane, for which both the translation motion model and its affine motion extension are

ineffective. Note that even a simple translation of an object on the unit sphere leads to

complex non-linear motion in the projected domain. Thus, a new motion compensated

prediction technique that is tailored to the setting of 360◦ video signals is needed.

Since 360◦ video represents the scene captured on the unit sphere, it is most natural to

characterize motion on that sphere. We thus propose a rotational model to characterize

angular motion on the sphere. In the proposed framework, we define motion as rotation

of a block of pixels on the surface of the sphere along geodesics and transmit information

specifying this rotation as “motion vector” in lieu of the block displacement in the 2D

projected geometry. Since rotations are unitary transformations, the proposed motion

model preserves the shape and area of the objects on the sphere. This model also ensures

that given a motion vector, regardless of a block’s location on the sphere, it is rotated

to the same extent. This feature addresses the motion search suboptimalities of current

approaches, by allowing the search pattern, range and precision to be independent of the

position of the block on the sphere. Complementary to the motion model, we propose

employing location invariant search grid around the center of the coding block on the

sphere for further performance improvement. Performing motion compensation on the

sphere and having a fixed motion search pattern makes the proposed approach agnostic

of the projection geometry and hence universally applicable to all projection geometries.

Substantial gains in experiments validate the efficacy of the proposed approach.
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2.2 Background

2.2.1 Overview of Common Projections

Sphere to plane mappings have been studied extensively, and a plethora of such

projections are covered, e.g., in [3]. In this section, we briefly review a few important

projection geometries. Perhaps the most popular projection, with extensive historical

use is equi-rectangular projection (ERP), which is also commonly encountered in many

virtual reality applications to this day. Beside ERP, we also review equatorial cylindrical

projection (ECP), which is among the best known projection formats for video compres-

sion applications. Each projection format is presented concisely. For detailed mappings,

please refer to [7].

Equirectangular Projection

The sampling pattern induced on the sphere by ERP, and the corresponding projec-

tion to 2-D, are shown in Fig. 2.1.

Let (φ, θ) be the spherical coordinates of a point on the unit sphere and (xp, yp) be

the coordinates in the projected domain. ERP can be represented mathematically as:

xp = (1 +
φ

π
)
W

2

yp = (1− 2θ

π
)
H

2
(2.1)

where W and H are respectively the width and height of the 2-D projection. Mapping a

point in ERP back to sphere is straightforward from (2.1). ERP induces on the sphere

a vertical (along longitude) sampling density that is constant. However, the horizontal

(along latitude) sampling density increases as we move towards the poles.
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Figure 2.1: Sampling pattern induced on sphere due to equirectangular projection
(top) and corresponding 2-D projection (bottom)
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Figure 2.2: Equatorial Cylindrical Cube-map: Mapping of equatorial sphere region
onto cylinder (left) and mapping of polar discs to square faces (right)

Equatorial Cylindrical Projection

Equatorial cylindical projection (ECP) was proposed in [8] and is shown in Fig. 2.2.

In ECP, the equatorial region corresponding to {−sin−1 2
3
≤ φ ≤ sin−1 2

3
} is mapped

to four faces of the cube via Lambert equi-area sampling [3]. The remaining two faces

correspond to the polar caps which are first mapped to planar discs and then stretched

to fit the square faces.

2.2.2 Relevant Work

In this section, we introduce the standard encoding pipeline for spherical videos, and

summarize various recent motion-compensated prediction techniques for spherical video

compression.

Standard Spherical Video Coding Pipeline

The standard spherical video coding pipeline is shown in Fig. 2.3 and discussed in

detail in [9]. The original spherical video is projected onto a plane (or planes) via a

projection format such as ERP, cubemap, etc. The projected video is then encoded
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Figure 2.3: Standard spherical video coding pipeline

using a standard video coder. At the decoder, the projected video is decoded, and

mapped back to the sphere to obtain the reconstructed spherical video. As previously

explained, employing a standard video coder in this manner is highly suboptimal, as it

fails to characterize accurately natural motion in spherical video, due to the warping

introduced by the geometric projection.

Spherical video coding techniques

A few approaches have been proposed recently to either model motion in 3-D space

or to manage discontinuities between cube faces. Li et al. proposed a 3-D translational

motion model [10, 11] in which a block of pixels is mapped to the sphere and then linearly

translated in 3-D space. The translated pixels must then be re-projected onto the sphere,

causing distortion. The approach in [12] models motion of objects on a plane tangential

to the sphere. The approaches in [13] and [14] consider projection onto multiple cube

faces, and try to minimize errors due to discontinuities across face boundaries. A motion

vector scaling approach is proposed in [15] to reduce the cost of motion vectors.

A closely related problem is that of motion compensated prediction in video captured

with fish-eye cameras, where projection to a plane also leads to significant warping. A

few interesting approaches have been proposed to address this problem in [16, 17], but

these are not applicable to motion under different projection geometries for 360◦ videos.

A spherical rotation approach was proposed recently in [18] for encoding ERP. Their

motivation was to identify so-called static points in an ERP video and then rotate the

sphere such that the static points are the new poles of the rotated ERP. The algorithm
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in [18] relies on local statistics to find a rotation angle that would help standard 2-D

motion compensated prediction in the ERP domain. This method is not extendable to

other projection formats.

2.3 Prediction Framework with a Rotational Motion

Model

Since motion compensation in the projected domain lacks a precise physical meaning,

we propose to perform motion compensation directly on the sphere. Let us consider a

block of pixels in the current frame in the projected domain, which we seek to predict

from the reference frame. An example of such a block in the ERP domain is illustrated

in Fig. 3.2(a). We first map the block of pixels in the current frame to the sphere using

the inverse projection mapping. The example block in Fig. 3.2(a) mapped back to the

sphere is illustrated in Fig. 3.2(b). Let the center of this coding block in the projected

domain correspond to vector v on the sphere. Our proposed motion search grid around

the vector v is described next.

2.3.1 Proposed Motion Search

As previously mentioned, one of the main shortcomings of performing motion search

in the projected domain is that the corresponding (on the sphere) search range, pattern

and precision vary across the sphere. Since we propose to perform motion compensation

directly on the sphere we overcome such arbitrary variations and employ the same search

pattern for blocks everywhere on the sphere, agnostic of the projection geometry.

Let {(m,n)} be the set of integer motion vectors and let R be the predefined search

range, i.e., −R ≤ {m,n} ≤ R. We treat v, the vector on the sphere corresponding to the
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center of the current prediction unit, as if it were the vector on the sphere corresponding

to zero yaw and pitch. An integer motion vector (m,n) then defines the rotation of v to

a new point v′ whose spherical coordinates (φ′, θ′) are given by:

φ′ = m∆φ, θ′ = n∆θ (2.2)

where, ∆φ and ∆θ are predefined step sizes. Let H denote the height of the ERP frame,

then ∆θ is chosen to be π
H

as it corresponds to the change in the pitch (elevation) when

we move by a single integer pixel in vertical direction. Similarly, ∆φ is chosen to be 2π
W

,

where W denotes the width of the ERP frame. For cube projections, the step sizes are

chosen to be π
2W

where W corresponds to the width of the cube face. For each successive

stage of motion vector refinement, the step sizes are correspondingly halved, leading to

a direct correspondence with the hierarchical motion vector refinement in HEVC.

2.3.2 Proposed Rotation of the Block

Once we have the new vector v′ corresponding to a motion vector (m,n), we rotate

v to v′ along the geodesic from v to v′, via the Rodrigues’ rotation formula [19]. This

formula gives an efficient method for rotating a vector v in 3D space about an axis

defined by unit vector k, by an angle α. Let (x, y, z) and (u, v, w) be the coordinates of

the vectors v and k respectively. The coordinates of the rotated vector v′ will be:

x′= u(k · v)(1− cosα) + x cosα + (−wy + vz) sinα,

y′= v(k · v)(1− cosα) + y cosα + (wx− uz) sinα,

z′= w(k · v)(1− cosα) + z cosα + (−vx+ uy) sinα (2.3)
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Figure 2.4: Comparison of motion search grids: Search pattern defined in projected
domain in HEVC mapped to sphere (top) and proposed location invariant search
pattern (bottom)
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where k · v is the dot product of vectors k and v. Since we want to rotate v to v′ along

the geodesic from v to v′, we calculate the corresponding axis of rotation k and angle of

rotation α, to employ Rodrigues’ rotation formula. The axis of rotation k is the vector

perpendicular to the plane defined by the origin, v and v′ and is obtained by taking the

cross product of vectors v and v′, i.e,

k =
v × v′

|v × v′|
. (2.4)

The angle of rotation is given by,

α = cos−1(v · v′). (2.5)

Given this axis and angle, we rotate all the points in the current block with same rotation

operation. Rotation of block in Fig. 3.2(b) along the geodesic from v to v′ is illustrated

in Fig. 3.2(c). After rotation, we map the rotated block to the reference frame using

the forward projection. An illustration of rotated block mapped back to ERP domain

is shown in Fig. 3.2(d). Since the projected location might not be on the sampling

grid of the reference frame, we perform interpolation in the reference frame to get the

pixel value at the projected coordinate. The proposed motion compensation technique

is summarized in Algorithm 1.
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(a) A block in current ERP frame (b) Block mapped to sphere

(d) Rotated block mapped to reference ERP frame (c) Geodesic rotation of block on sphere

Figure 2.5: Steps in motion compensation with rotational motion model
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Algorithm 1: Proposed motion compensation technique

1: Map the block of pixels in the current coding unit on to the sphere.
2: Define a search pattern around the center of the block v as discussed in 2.3.1, to get

the possible set of reference locations { v′ }.
3: Define a rotation operation which rotates v to v′ along the geodesic from v to v′.
4: Rotate all the pixels in the block with the rotation operation defined in Step 3.
5: Map the rotated coordinates on the sphere to the reference frame in projected

geometry.
6: Perform interpolation in the reference frame to get the required prediction.

2.3.3 Comparison of Motion Models

Different motion compensation techniques lead to different shape changes of the object

on the sphere. Fig. 2.6 illustrates the differences in the proposed approach, the motion

model proposed in [10], and the motion compensation in HEVC. Marked in yellow is the

block of pixels in ERP projected on to the sphere. The pixel locations in the reference

frame derived based on different motion models are marked in red. Translation in ERP

leads to a shrinkage of the block as we move away from the equator and is clearly seen in

Fig. 2.6(a). As discussed earlier, 3D translation followed by projection on to sphere leads

to change in shape and size of the block which is clearly seen in Fig. 2.6(b). The proposed

approach preserves the shape and size of the block which is illustrated in Fig.2.6(c). While

both our approach and the approach in [10] perform motion estimation on the sphere,

our approach significantly differentiates in that the motion model is in terms of rotations

on the sphere instead of translation in 3D space. Moreover, the search pattern in [10]

depends on the projection geometry and varies across the sphere in contrast to the fixed

search pattern employed in the proposed approach.
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(a) Motion Compensation in HEVC (b) 3D translation motion model

(c) Proposed rotational motion model

Figure 2.6: Comparison of motion models: Model effect on block shape as seen on sphere
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2.4 Experimental Results

2.4.1 Simulation Settings

The proposed encoding procedure was implemented with HM-16.15 [20] as the video

codec. Geometry conversion and the sample rate conversion were performed using the

projection conversion tool 360Lib-3.0 [21]. The proposed method was tested over five

video sequences [22], [23] and [24]. The first one second of these videos were encoded

at four QP values of 22, 27, 32 and 37 in random access profile. We provide results

with ERP and ECP as the low resolution projection formats. ERP is encoded at 2K

resolution. The face width for ECP is chosen to be 576 so that the total number of

samples is approximately the same as ERP, namely, 2K. We use sinc interpolation at

1
64

th
pixel accuracy to derive prediction signal from the reference frame.

2.4.2 Objective results

For objective results, bit-rate reduction is calculated as per [25] over standard HEVC

encoding technique for all the approaches. We measured the distortion in terms of end-

to-end weighted spherical PSNR [26], as recommended in [9] and [27]. Our nearest

competitor is the 3-D translation model [11]. Table 2.1 compares the 3-D translation

model and rotational motion model in terms of bit-rate reduction over HEVC, for the

Y component, and provide results in conjunction with projections ERP and ECP. Note

that 3-D translation model gives worse results than HEVC for ECP and thus has not

been included for comparison. It is clear from the table that rotational motion model

gives significant gains when compared to 3-D translational model and 2-D translation

model employed in projected domain by HEVC. The rate-distortion (RD) curves for the

bicyclist and balboa sequences for different projection formats are shown in Fig. 4.7-3.7.

19



Overall, the results demonstrate consistent performance gains at all bit-rates and across

different geometries.

Table 2.1: BD-rate gains in % for Y-component by employing rotation motion model
over HEVC using translation motion model in projected domain

Geometry Sequence 3-D Translation Rotational
model in [11] model

ERP
Glacier 13.9 16.9

Chairlift 3.5 7.5
Bicyclist 2.4 12.7

Driving in Country 1.7 12.4
Kiteflite 2.1 5.1
Average 4.7 10.9

ECP
Glacier 6.0

Chairlift 2.5
Bicyclist 4.2

Driving in Country 5.1
Kiteflite 1.5
Average 3.9

2.4.3 Subjective results

To get subjective results, we compressed videos with specified target bit-rate with

HEVC anchor and the proposed method. Fig. 2.9 shows significant improvement in

the visual quality for example frames from the “chairlift” sequence with the proposed

motion model as compared to HEVC based encoding at the same bit rate. Specifically,

HEVC has a ‘washed out’ appearance since many details of the texture are lost while the

proposed method retains much of the visual textures.
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2.5 Conclusions

This chapter proposes a novel rotational motion model for 360o video coding, which

effectively captures the motion of the objects directly on the sphere. The chapter also

proposes a motion search pattern that is independent of the position of the block on the

sphere. The proposed framework retains the shape and size of the object after motion,

while being agnostic of the projection geometry. The substantial gains compared to

standard HEVC and other motion models, demonstrate the effectiveness of the proposed

technique.
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Figure 2.7: RD curves for (a) glacier and (b) chair sequences with ERP as the
projection format
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Figure 2.9: Subjective comparison for chairlift sequence encoded at constant bit-rate
with ERP as projection format: HEVC (top) and proposed method (bottom)
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Chapter 3

Geodesic Translation Motion Model

for Spherical Video Coding

3.1 Introduction

In this chapter, we consider an important class of spherical video signals that involves

motion dominated by camera translation. Such signals are frequently encountered in

numerous applications, including robotics and navigation, sports and outdoor activities,

etc. The prevalence of this class of video signals, and the enormous amount of data

generated, necessitate the design of efficient compression tools that are tailored to this

scenario. None of the recent work discussed in the previous chapter account for camera

motion during motion compensation. In this chapter, we propose a motion compensation

procedure to capture on the sphere the accurate motion field that is due to camera

translation. An important basic observation is that straight lines in 3-D space map to

geodesics on the sphere. Thus, in the case of camera translation, all surrounding static

objects exhibit relative motion along straight lines in 3-D space (parallel to the camera

velocity vector), which is mapped to perceived motion along geodesics on the sphere.
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More specifically, the proposed method builds on the core realization that all static

points in the environment are perceived to move on the sphere along their respective

geodesics, namely, geodesics that intersect at the two points where an axis aligned with

the camera velocity vector “pierces” the sphere. This characterization of the motion on

the sphere also accounts for the perspective deformations that are due to camera motion.

Specifically, it captures the magnification effects as objects approach the camera, and

vice versa.

Having established the nature of perceived motion trajectories of surrounding objects

on the sphere, the approach is further refined to characterize the rate of translation of

pixels along their geodesics. A mathematical analysis sheds light on the rate of geodesic

translation of pixels as related to the corresponding elevation of the pixels on the sphere

with respect to the camera velocity axis. Based on this realization, we propose a motion

vector modulation scheme, wherein, the geodesic translation prescribed for the center

of a block of pixels, is modulated to extract refined individual motion vectors for the

pixels in the block, which account for their respective degrees of elevation. The motion

vector modulation scheme captures the variations in perceived motion across pixels in the

block to yield significantly improved prediction and consequently additional coding gains.

Moreover, since a 1-D motion vector is (largely) sufficient to capture the motion that is

mostly along the geodesics, unlike the general 2-D motion vector required by all existing

approaches, the proposed approach achieves significant savings in side information bit

rate to convey motion vectors to the decoder. Nevertheless, to correct for the possibility

of non-stationary objects whose motion is independent of the camera motion, we allow

for a second motion component to capture lateral displacement (away from the geodesic).

Overall, pixels in a prediction unit are mapped to the sphere, moved along the geodesics

defined by the camera motion, where the rate of translation of each pixel along its

geodesic is determined by the proposed modulation scheme, and finally mapped back
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to the reference frame in the projected geometry to derive the ultimate prediction signal.

Another focus of this chapter is on the motion search module. The motion model

efficacy in video coders largely depends on an effective motion search procedure. In

the context of spherical videos, a fixed search pattern in the projected plane induces a

spatially varying search pattern on the sphere, which is unnatural and undesirable. To

overcome this shortcoming, this chapter proposes to define search grid on the sphere

making it agnostic of the geometry. Further, the grid reflects the expected geodesic

motion of the objects due to camera motion.

Thus, in contrast with standard spherical video coders that perform their motion

analysis and compensation in the “warped” projected domain, the approach proposed

herein effectively conducts its analysis in the natural domain of the sphere. It is im-

portant to emphasize that the proposed motion estimation and compensation is hence

independent of the projection format.

3.2 Geodesic Motion Compensated Prediction

This section presents the proposed geodesic translation motion model. We first illus-

trate, in a simple setting, the perceived motion of objects on the sphere, due to underlying

camera motion. Based on these observations, we introduce a geodesic-based framework

for motion compensated prediction. We then focus on the precise rate of translation

of pixels along geodesics, and refine the standard motion vector definition for a block,

by proposing a motion vector modulation framework to capture the exact motion of

each pixel in the block. Finally, we introduce a location invariant motion search grid

that effectively circumvents shortcomings of standard motion estimation in the projected

domain.
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3.2.1 Motion Compensation by Geodesic Translation

Perceived Motion on the Sphere

In order to illustrate the perceived motion on the sphere, resulting from translational

motion of the camera, consider a viewer at the origin, enclosed by a sphere, as shown in

Fig. 3.1. The viewer sees point P, in the 3-D environment, through its projection point

S on the sphere. As the camera moves forward according to its velocity vector v, the

stationary point P is perceived as displaced to point P′ relative to the viewer. Clearly, its

corresponding projection on the sphere advances along the arc S-S′. It is important to

note that the arc S-S′ is a segment of a geodesic that connects the two points where the

camera velocity axis intersects the sphere. Building on this observation, we see that given

constant translational motion of the camera, static surrounding points are perceived as

moving on the sphere along their respective geodesics, which all intersect at the poles of

the camera motion axis. It follows from these observations that the most natural way to

capture the perceived motion of objects is by characterizing their geodesic translation on

the sphere, in sharp contrast with the complex non-linear characterisation that would be

necessary in the projected domain. Thus, based on the above observations, we propose

a motion compensation procedure on the sphere, as discussed next.

Geodesic-based Motion Compensation

As we observed, in cases of video dominated by camera motion, it is most natural to

capture the perceived motion directly on the sphere. Specifically, motion compensation

on the sphere will be performed as translation of a block along appropriate geodesics.

The proposed method assumes that the direction of camera motion is known, as most

smart phones and 360 cameras include sensors such as accelerometer, gyroscope, etc.,

to detect and estimate motion, which can be fed to the video encoder. However, when
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Figure 3.1: A static point’s perceived trajectory on the sphere due to camera motion

such information is not available, it can be estimated directly from the video (see, e.g.,

[28]). Given the camera velocity vector, we define geodesics that intersect at the two

points where an axis aligned with this vector pierces the sphere. In other words, these

two points are the “camera motion poles”. With this setup in place, the specific three

steps are specified and explained next:

a) Sphere mapping : Consider a block of pixels in the current frame, which needs to

be predicted with motion compensation. Fig. 3.2a illustrates one such block in an ERP

frame. We first project the block onto the sphere. For simplicity of presentation, let us

define spherical coordinates with respect to the camera motion vector. Specifically, for

pixel (i, j) in the prediction block, let (θij, φij) be the spherical coordinates relative to

the polar axis defined by the camera velocity vector. A block of pixels mapped to the

sphere and the spherical coordinate system with respect to camera translation vector is

shown in Fig. 3.2b. This step facilitates work on the sphere in a manner that is entirely

agnostic of the projection format.
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(a) Block of pixels in the projected domain (b) Block mapped to the sphere

(d) Block mapped back to the projected domain (c) Translation along geodesics

Figure 3.2: The geodesic translation motion model
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b) Geodesic translation: Given a motion vector (m,n), we move a pixel on the sphere

along its geodesic to arrive at the spherical coordinates of the reference pixel as,

θ′ij = θij +m∆θs, φ
′
ij = φij + n∆φs (3.1)

where ∆θs and ∆φs are predefined step sizes (more on the design choices in the experi-

mental section). Note that if the video motion field is entirely determined by translational

motion of the camera, we only expect motion along the geodesics with no “lateral” mo-

tion, i.e., θ′ij = θij. From the compression perspective, this results in notable bit-rate

savings in terms of significant reduction in the side information allocated to motion vec-

tors. Nevertheless, we allow for 2-D motion vectors to account for actual object motion,

unrelated to camera translation. Fig. 2.3b illustrates the geodesic translation of the block

for a static object. It is evident from the figure that the proposed approach accounts

for perspective distortions. Specifically, in the illustration, the object appears magnified

as the camera approaches the object. Moreover, the motion vectors convey the amount

of geodesic translation on the sphere, unlike motion vectors in the projected domain of

standard techniques which afford little physical meaning or interpretation.

c) Projection and interpolation: The reference frame is still in the 2-D projection

format. Thus, after geodesic translation of the block on the sphere, the translated pixels

on sphere are projected to the reference frame. The projected coordinates may not be on

the sampling grid of the reference frame. We thus perform interpolation in the projected

domain to obtain the value of the prediction signal at the projected coordinate. Fig. 3.2d

illustrates the reference block obtained by geodesic translation and mapping back to the

projected domain.
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3.2.2 Rate of Displacement: Motion Vector Modulation

The motion compensation so far exploits the nature of perceived motion on the sphere,

due to camera motion, and translates all pixels in a block by the same distance on their

respective geodesics. In this section, we further examine the rate of displacement of these

pixels. Intuitively, it is easy to see that the rate of displacement of static surrounding

points along their geodesics is inversely related to their depth, thereby reflecting the

well known parallax effect, albeit in the context of spherical video. Moreover, even for

objects at constant depth, the rate of translation depends on their position on the sphere.

Mathematical analysis sheds light on the exact relationship of the rate of displacement

with object depth and the elevation of the block on the sphere. This analysis leads to

a motion vector modulation scheme that captures the exact motion of each pixel in a

block.

Geodesic Displacement Analysis

In order to analyze the exact motion of each pixel along its geodesic, let us focus on

the plane defined by P, P′ and the origin O, as shown in Fig. 3.3. Let φ be the elevation

of point P with respect to the camera motion axis (i.e., relative to the corresponding

“equator”), and let ∆φ be the change in elevation due to camera translation. Applying

the law of sines to triangle POP′ we get,

|OP|
sin(∠OP′P)

=
|PP′|

sin(∠P′OP)
(3.2)

It is easily seen that ∠OP′P = π
2
− (φ + ∆φ). OP is the depth of the point, denoted as

d, and PP′ is the amount of camera translation denoted as t. We thus have the following
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Figure 3.3: Relation between geodesic displacement, elevation, depth and camera translation

relation,

d

t
=

cos(φ+ ∆φ)

sin(∆φ)
(3.3)

To motion-compensate a block of pixels, we make the simplifying assumption that all

pixels in the block are approximately at the same depth from the origin. In case the pix-

els do not have any constant depth, the encoder can always split the block via quad-tree

partitioning and get blocks of approximately constant depth. Thus, the ratio d
t

remains

constant for all pixels in the block. This yields a relationship between the elevation of

a pixel φ and the corresponding elevation change ∆φ. Armed with this observation, we

extend the motion compensation procedure in 3.2.1 to account for the actual rate of

translation of pixels.
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Motion Compensation with Modulated Motion Vectors

Similar to motion compensation summarized in sub-section 3.2.1, a block of pixels that

needs to be inter-predicted is mapped to the sphere. Let (θij, φij) be the corresponding

spherical coordinates with respect to the camera translation vector. Let (θc, φc) be the

spherical coordinates of the center of the block after mapping to the sphere. Given a

motion vector (m,n), the center of the block is translated along its geodesic as,

θ′c = θc +m∆θs, φ
′
c = φc + n∆φs (3.4)

where ∆θs,∆φs are predefined step-sizes similar to (3.1). Let us specifically denote the

change in elevation by ∆φc, i.e, ∆φc = n∆φs. Now, for a pixel Pij in the block, under

the assumption of constant depth across pixels in a block, we obtain from (3.3):

cos(φij + ∆φij)

sin(∆φij)
=

cos(φc + ∆φc)

sin(∆φc)
=
d

t
= k (3.5)

where ∆φij is the change in elevation of Pij on the sphere and k is a constant. By simple

trigonometry we obtain the relationship,

∆φij = tan−1(
cosφij

k + sinφij
) (3.6)

Thus, given the change in elevation of the center of the block, the elevation change

for each individual pixel, or the amount of translation along its respective geodesic, is

modulated according to (3.6). The pixels are thus translated to points with spherical

coordinates given by,

θ′ij = θij +m∆θs, φ
′
ij = φij + ∆φij (3.7)
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The translated pixels are then mapped to the reference frame to derive the prediction

signal. Here too, the mapped pixel will often not fall on the sampling grid of the ref-

erence frame. We thus perform interpolation as needed to obtain the properly sampled

prediction signal. The extended motion compensated prediction that accounts for the

rate of displacement of individual pixels can thus be summarized as:

• A block of pixels is mapped to the sphere and the spherical coordinates (θij, φij)

are derived with respect to the camera translation vector

• For a given motion vector (m,n), the block center on the sphere is translated

according to (3.4).

• The change in elevation for each pixel in the block is calculated according to (3.6)

and they are translated according to (3.7).

• The translated pixels are mapped to the reference frame to derive the prediction

signal.

Note that motion vector modulation proves particularly effective in low bit-rate cod-

ing, since the encoder tends to use larger blocks, where motion vector modulation has

significant impact in accurately capturing motion variations within the block.

3.2.3 Motion Search Grid Adaptation

To gain the full benefit of the proposed motion model, we rely on efficient motion

estimation procedures, the efficacy of which critically depends on the motion search grid.

We first consider the shortcomings of the standard search grid, and then propose means to

overcome these shortcomings, as well as to adapt the grid to account for camera motion.
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Shortcomings of the Standard Search Grid

As observed in the discussion of projection formats, uniform sampling in the projec-

tion plane induces non-uniform sampling on the sphere. Thus, employing a fixed search

pattern in the projection plane leads to spatially varying search patterns on the sphere.

This observation is illustrated for the case where ERP is employed, in Fig. 3.2.3(a). Ob-

serve how the search pattern varies spatially on the sphere, in a way that depends on the

arbitrary North-South pole. For the current scenario with camera motion, motion of the

center of the block is expected to be along its respective geodesic. However, the search

grid doesn’t exploit this observation and need not have grid points along the expected

geodesic. Moreover, for a mere ‘approximation’ of the motion of the center of the block,

we need a 2-D motion vector in the projected domain. Thus, there is a clear motivation

for the optimization of the search grid.

Proposed Search Grid Adaptations

To address the above mentioned shortcomings, we define a search grid on the sphere

that directly captures the expected motion of the center of the block due to camera

motion. Given a motion vector (m,n), the first component is used to capture change

in yaw and the second component to capture change in elevation with respect to the

camera velocity vector. This interpretation of motion vectors leads to the search pattern

illustrated in Fig. 3.2.3(b). The proposed approach offers two benefits: It eliminates

dependence on the arbitrary parameters of the projection (e.g., ERP’s dependence on

the North-South pole), and it explicitly captures the expected geodesic translation of the

center of the block. Further, all the grid points on this geodesic corresponds to the case

where m = 0, i.e, there is no change in yaw. Thus, for static objects, we have motion

vectors that are 1-D, leading to bit-rate savings in side-information.
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In case of object motion that is independent of camera motion, we use the component

m to capture any “lateral” motion. Specifically, the component of the motion vector ‘m’

captures the change in azimuth as m∆θ. It is important to note that, as we move away

from the equator towards a camera motion pole, m∆θ corresponds to smaller lateral dis-

placement. In terms of motion search pattern during motion estimation, this corresponds

to a “shrinking” search grid, as illustrated in Fig. 3.2.3(b). This leads to suboptimality

in estimating object motion that is independent of camera motion. It also results in

excess penalty in side information needed to convey the lateral motion to the decoder,

since small lateral displacement for blocks closer to the pole translate to large values of

m. Thus, we need further search grid optimization to account for object motion with the

following desired characteristics: i) The grid range should be agnostic of the elevation of

the block with respect to the camera velocity vector. ii) For the scenario with dominant

camera motion, we expect less ‘lateral displacement’, which motivates denser grid points

near the center of the block, to capture the change in azimuth. However, we still must

preserve the search range to handle occasional large object motions. To achieve the first

desired characteristic, only for the purpose of defining the search grid, we proceed as if

the block were at the equator, thereby eliminating the dependence of the search grid on

the elevation of the block. To achieve dense grid close to the center of the block along

the azimuth and yet not compromising on the search range, we define grid points in the

spirit of equal area projection (EAP). In EAP, the longitudes are sampled such that,

the sampling density decays as the cosine of the elevation, resulting in dense sampling

close to the equator and spare sampling as we move towards the pole. We exploit this

observation to have non-uniform density of motion vectors along the azimuth such that,

we have dense sampling close the center of the block and spare sampling as we move away

from center. Specifically, given a motion vector (m,n), the component m now represents
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the change is azimuth as,

∆θc = Ksin−1(
m

R
),−R ≤ m ≤ R (3.8)

where R is the search range. The choice of K determines the search range on the sphere,

since m = ±R corresponds to ∆θc = ±K π
2
. For ERP, the width W corresponds to

field of view of 2π, so K is chosen to get a search range of 2πR
W

rad on the sphere. This

yields K = 4R
W

. Similarly, for cube projections, the face-width W corresponds to field of

view of π
2
. Thus, K = R

W
. The proposed distribution of grid points along the azimuth

is illustrated in Fig. 3.4, in comparison with the uniform distribution. Note how the

proposed grid is denser near the center and becomes sparser as we move away, while

maintaining the same search range. The proposed sampling pattern in conjunction with

its agnostic nature with respect to the elevation of the block on the sphere, is illustrated

in Fig. 3.2.3(c).

Combining all the coding tools that we have discussed, the overall motion estimation

algorithm at the encoder is summarized in Algorithm 4. The decoder essentially does

this operation only for the best motion vector.

3.3 On efficient implementation of the geodesic model

The proposed method consists of mappings between projection format and the sphere

and interpolations in reference frame that can be computationally very expensive. In this

section, we explain our efforts to reduce the complexity. We consider each step in the

proposed method and discuss the relevant optimizations:
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Figure 3.4: Comparison of the proposed EAP based distribution of motion vectors
along the azimuth and uniform distribution of motion vectors

Sphere Mapping

The first step in the proposed method involves mapping a block from a plane onto

the sphere and computing the spherical coordinates with respect to the camera velocity

vector. Given the projection format, the set of samples on the sphere are fixed. Thus,

we create a look-up table of the spherical coordinates for all the pixels in the projected

domain. This is a one-time computation whose results can then be reused for all frames,

during motion estimation and compensation. The created look-up table greatly alleviates

the burden of mapping from projection format to the sphere for a block in a given frame.

Geodesic translation

For geodesic translation without modulated motion vectors, this step simply involves

adding (∆θ,∆φ) for all pixels in the block and doesn’t call for much optimization. How-

ever, with motion vector modulation, we need trigonometric functions, for which we use

look-up tables to reduce complexity.
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(a) (b)

(c)

Figure 3.5: Comparison of motion search patterns: (a) HEVC search pattern defined
in projection format, (b) Search pattern aligned with the expected geodesic motion of
the center of the block and (c) Geodesic aligned search pattern optimized to account
for object motion
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Inverse projection and interpolation

After geodesic translation, the proposed method involves mapping pixels back to the

reference frame and performing interpolation in the reference frame (in the projected

domain). Mapping between pixels on the sphere to the projection plane often involves

complex trigonometric operations, where again we employ look-up tables to minimize the

computational burden. During motion estimation, it would be computationally expensive

to perform higher order interpolation for every pixel in the block for each choice of motion

vector. In order to mitigate this concern, for the initial integer motion estimation stage,

we up-sample the reference frames and use nearest neighbor interpolation in the up-

sampled reference frame to derive prediction signal. An up-sampling factor of four was

seen to be a good trade-off between memory and performance. For successive motion

vector refinements we use sinc interpolation in the reference frame at 1
64

pixel precision.

We note that the central focus of this chapter is to demonstrate the potential of the

geodesic motion model and the above mentioned optimizations enumerate our initial

efforts to reduce complexity.

3.4 Experimental Results

3.4.1 Simulation Settings

The proposed encoding procedure was implemented with HM-16.15 [20] as the video

codec. Geometry conversion and the sample rate conversion were performed using the

projection conversion tool 360Lib-3.0 [21]. The proposed method was tested over five

video sequences [22], [23] and [24], which are dominated by translational motion of the

camera. The first one second of these videos were encoded at four QP values of 22, 27,

32 and 37 in random access profile. We provide results with ERP and ECP as the low
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Algorithm 2: Overall motion estimation algorithm

Map the block onto the sphere;
Let (θc.φc) be the spherical coordinates of the center with respect to camera
velocity vector;

Define search pattern as discussed in 3.2.3 ;
for each point on sphere in search pattern do

(a) The center of the block is moved to (θ′c, φ
′
c) given by the search pattern;

(b) Set ∆θc = θ′c − θc and ∆φc = φ′c − φc;
(c) Define k = cos(φc+∆φc)

sin(∆φc)
;

for each pixel in the block do
i) New azimuth is (θi,j + ∆θc);

ii) New elevation is calculated as φi,j + tan−1(
cosφij
k+sinφij

) ;

iii) Map the new pixel on sphere to the projected domain;
iv) Perform interpolation in the projected domain to get the prediction
signal;

end
(d) Calculate the error between the original block and the predicted block;

end
Choose the best motion vector that minimizes prediction error.
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resolution projection formats. ERP is encoded at 2K resolution. The face width for ECP

is chosen to be 576 so that the total number of samples is approximately the same as

ERP, namely, 2K. The step sizes ∆θs and ∆φs are chosen to be π
H

, where H is the height

of the ERP video. The corresponding step sizes for ECP with face-width W is chosen

to be π
2W

since a face-width of W corresponds to a field of view of π
2
rad. We use sinc

interpolation at 1
64

th
pixel accuracy to derive prediction signal from the reference frame.

3.4.2 Objective results

For objective results, bit-rate reduction is calculated as per [25] over standard HEVC

encoding technique for all the approaches. We measured the distortion in terms of end-

to-end weighted spherical PSNR [26], as recommended in [9] and [27]. In [29], we had

already shown that the rotational model outperforms other existing approaches, and this

is the reason it was selected here as leading (nearest) competitor. Table 3.1 compares the

proposed method and rotational motion model [29] in terms of bit-rate reduction over

HEVC, for the Y component, and provide results in conjunction with projections ERP,

EAC and ECP, respectively. It is clear from the table that the new motion model tailored

to the translation motion of camera gives significant gains when compared to models

that do not properly account for camera motion. The rate-distortion (RD) curves for

the bicyclist and balboa sequences for different projection formats are shown in Fig. 4.7-

3.7. Overall, the results demonstrate consistent performance gains at all bit-rates and

across different geometries. As regards the complexity, unoptimized encoder and decoder

has complexity over 40x and 8x respectively compared to HEVC anchor. The proposed

optimizations in section 3.3 cuts down the complexity to 10x-15x for the encoder and 3x

for the decoder.
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Table 3.1: BD-rate gains in % for Y component over HEVC for rotation motion model
and the geodesic translation motion model

Geometry Sequence Rotational motion Proposed
model in [29] Method

ERP
Bicyclist 12.7 24.8
Chairlift 7.5 14.5

Broadway 1.8 22.6
Balboa 3.2 29.7
Harbor 4.6 35.9

Average 5.9 25.5

ECP
Bicyclist 4.2 15.7
Chairlift 2.5 6.8

Broadway 0.6 6.7
Balboa 1.6 8.8
Harbor 0.9 2.2

Average 2.0 8.0

3.4.3 Subjective results

To get subjective results, we compressed videos with specified target bit-rate with

HEVC anchor and the proposed method. Fig. 3.8 shows significant improvement in

the visual quality for example frames from the “balboa” sequence with the proposed

motion model as compared to HEVC based encoding at the same bit rate. Specifically,

we draw attention to the edges of the building where the proposed method has a crisp

reconstruction as against to the highly distorted reconstruction of HEVC.

3.5 Conclusions

This chapter proposes a novel encoding technique for spherical videos with dynam-

ics dominated by camera motion. The proposed approach leverages insights into the

perceived motion of static objects on the sphere, and the perspective distortion due to

camera motion. The motion model is agnostic of the projection format and the approach
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is extendable to other geometries in a straightforward manner. Experimental results

yield substantial bit rate reduction and demonstrate the effectiveness of the proposed

framework.
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Figure 3.6: RD curves for (a) bicyclist and (b) balboa sequences with ERP as the
projection format
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Figure 3.7: RD curves for (a) bicyclist and (b) balboa sequences with ECP as the
projection format
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Figure 3.8: Subjective comparison for balboa sequence encoded at constant bit-rate
with ERP as projection format. anchor (top) and proposed method (bottom)
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Chapter 4

Efficient Predictor Mode Design for

Adaptive Prediction

4.1 Introduction

Linear prediction is an integral part of most modern compression systems [1, 30, 31],

tasked with removing temporal or spatial redundancies in signals. Often, the design of

prediction filters assumes that the signal is stationary. However, most real-world sig-

nals are non-stationary and naturally call for adaptive compression systems. A common

paradigm to achieve adaptivity involves block-based encoding, wherein the source signal

is partitioned into blocks and the prediction filters can be adapted per block. However,

sending per-block prediction filter specification would incur considerable overhead. In-

stead, a common, cost-effective approach is to design a ‘codebook’ of predictors, which

is also available to the decoder, and have the encoder convey the index of the predictor

(mode) used to predict a given block. The performance gains of such an adaptive system

critically depend on efficient design of all prediction modes.

The design of a codebook of prediction modes poses several challenges. The design
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can be viewed as ‘quantization’ of the prediction filter parameter space. The cost-function

depends on both the codebook and the encoder decisions (assigning codebook entries to

individual signal blocks). Note that the cost is piece-wise constant with respect to the

encoder decisions (the encoder does not modify a decision until the block content changes

sufficiently) which implies that the corresponding derivatives vanish almost everywhere.

This makes it impossible to employ standard gradient-based algorithms. A common

remedy is to design predictors in a “K-means” clustering fashion [32], wherein the design

iterates between choosing the best prediction modes for the blocks (i.e., nearest neighbor

rule for the encoding decisions) and then updating the prediction modes (centroid rule).

It is well known that the performance of greedy approaches depends on initialization,

and there is substantial risk of getting trapped in poor local optima. The prevalence of

local optima, coupled with the piecewise constant property of the cost function, make the

design of a codebook of prediction filters a highly challenging, non-convex optimization

problem.

The problem is further exacerbated by stability issues that arise due to the coder’s

prediction loop. Specifically, note that the optimal set of prediction filters depends

on the reconstructed signal from which predictions are made. But the reconstructed

signal itself depends on the prediction filters in use. Clearly, we have a “chicken and

egg” problem here, and this complex interplay between predictors and reconstructions

makes codebook design a challenging problem. The dependency between predictors and

reconstructions calls for an iterative design technique, wherein optimal predictors are

designed for the given reconstruction statistics, and then the reconstructions are updated

with the designed predictors. In the standard closed-loop technique (see for e.g., [33]

for quantizer design and [34] for a stochastic gradient version), the predictors designed

in a given design iteration, i.e., given a training set of reconstructed blocks, are then

plugged into the encoder and applied to a newly reconstructed signal in the next iteration,
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which will likely exhibit different statistics. This statistical mismatch can (and often

does) grow as the encoder proceeds down the sequence, due to propagation through the

prediction loop, causing severe design instability. As an effective remedy, the asymptotic

closed-loop (ACL) design paradigm was proposed in [35]. ACL operates in an open-loop

fashion by predicting from the (now fixed) reconstructed samples in the previous iteration.

Thus, the predictors are applied to the same reconstruction statistics they were designed

for, thereby eliminating statistical mismatch and ensuring better reconstructions over

iterations. Nevertheless, as will be explained in Section II, on convergence, the design

effectively operates in closed-loop fashion, and optimizes the predictors for closed-loop

operation.

ACL provides a stable design platform. However, the design is still plagued by many

poor local minima of the cost function. To address this, we propose a deterministic

annealing (DA) approach to design prediction modes. DA [36] is a powerful non-convex

optimization tool, inspired by principles of statistical physics and information theory.

The probabilistic nature of DA yields an effective cost function via expectation, which

is differentiable with respect to the prediction modes. At high temperature (maximum

randomness), at the early stage of the algorithm, all the prediction modes are shown to

coincide (at convergence all modes are identical), regardless of initialization, and they

will only separate (through a sequence of phase transitions in the physical analogy) as

the temperature is lowered. In other words, DA is independent of the initialization.

Its annealing schedule gradually reduces the randomness of the solution so as to avoid

poor local minima. The overall method proposed herein embeds ACL within the DA

framework. The benefits of DA are complemented by the stable design platform of ACL,

effectively addressing the central design challenges enumerated above.

The design of prediction modes has many practical applications involving adaptive

prediction. In this chapter, we consider an important application, namely, predictor de-
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sign in video coding. Modern video coders exploit temporal correlations by employing mo-

tion compensated prediction [1]. Simple pixel copying of the best (motion-compensated

and possibly interpolated) block from the reference frame is used to obtain the prediction

signal. The resulting prediction error is then decorrelated by a transform, typically the

discrete cosine transform (DCT), and the transform coefficients are quantized and sent

to the decoder. Such pixel-to-pixel temporal prediction is suboptimal in that it ignores

significant spatial correlations in the video signal. Several approaches that account for

spatial correlations include multi-tap filtering [37, 38] and three-dimensional subband

coding [39, 40], which incur high encoder complexity. An earlier work from our lab [41]

proposed an effective way to account for complex spatio-temporal correlations by first

applying the transform to spatially decorrelate a block, and subsequently performing

temporal prediction of the resulting uncorrelated transform coefficients. The temporal

evolution of each transform coefficient in a block, along its motion trajectory, is modelled

as a first order auto-regressive process. Thus, we have a set of uncorrelated temporal

processes, each representing the temporal evolution of a given coefficient (or “frequency”)

in the block. Moreover, transform domain temporal prediction (TDTP) perfectly cap-

tures and exploits the variations in temporal correlations across frequencies, which are

otherwise masked in the pixel domain.

Modern video coders employ sub-pixel motion compensation for improved prediction,

by interpolating the reference blocks to fractional pixel accuracy. Interpolation filters

also use information from outside the block boundary, a fact that must be accounted

for when optimizing prediction modes. Moreover, sub-pixel interpolation filters, when

considered in the transform domain, interfere with the operation of TDTP filters. Thus,

to completely disentangle the effect of interpolation filters and to account for boundary

information, extended block TDTP (EB-TDTP) was proposed in [42]. With EB-TDTP,

an extended reference block is first spatially decorrelated via DCT. Temporal prediction
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filters are then applied for the extended transform blocks. This is followed by inverse-

DCT and interpolation to obtain the prediction signal. The optimal EB-TDTP filters

were shown to be least square estimates [42], which enhances the performance beyond

that offered by the standard correlation coefficient formulation.

Video signals exhibit significant variations in local statistics. This requires the coder

to adapt to local statistics, and an effective approach involves a set of trained prediction

modes for the encoder to choose from. The EB-TDTP filter is a high-dimensional vector

and the problem at hand effectively corresponds to vector quantizer design, a notorious

non-convex optimization problem. Here too, standard closed-loop design suffers from

significant instability issues. We thus propose a DA-ACL framework to learn prediction

filters to address these challenges.

4.2 Background

4.2.1 Linear prediction

Fig. 4.1 shows a predictive compression system. Let xn, 0 ≤ n ≤ N be the input

samples. The signal is modelled as a first-order auto-regressive process. The current

sample xn is predicted from the previous reconstructed sample as,

x̃n = αx̂n−1 (4.1)

where x̂n represents the reconstruction. The resulting prediction error, xn− x̃n, is quan-

tized and sent to the decoder. The predictor is designed to minimize the sum of squared
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prediction errors given by

E =
N∑
n=1

(xn − αx̂n−1)2 (4.2)

The optimal predictor, obtained by basic linear estimation derivation, is

α =

∑
n xnx̂n−1∑
n x̂

2
n−1

(4.3)

In order to adapt the predictor to variations in signal statistics, let the input be par-

titioned into groups or blocks of samples {g}. Let Ng be the set of samples belong-

ing to a particular block g. The encoder is given a choice of K prediction filters

{αk, k = 1, 2, . . . , K}. The encoder chooses the best prediction mode for each block

of samples. Let the best prediction mode for a given block g be α̂g ∈ {αk}. The problem

at hand is to design the prediction filters {αk} such that the overall sum of squared

prediction error

E ′ =
∑
g

∑
n∈Ng

(xn − α̂gx̂n−1)2, (4.4)

is minimized.

The piecewise constant nature of the cost function, with respect to the encoder’s mode

decisions, renders standard convex optimization algorithms inapplicable to the current

scenario. A common, suboptimal remedy is the “K-modes” predictor design which we

discuss next.
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Figure 4.1: A simple first order predictive compression system

4.2.2 Iterative K-mode predictor design

Let us assume for the moment that we have a set of reconstructed samples x̂n at the

encoder. Given these reconstructions, we can design prediction modes in a way similar

to “K-means” clustering. With an initialization of the prediction modes, the following

steps are performed iteratively:

• Mode assignment: For a given block g, assign the best mode from the set of pre-

diction modes which minimizes the squared prediction error for the block.

• Prediction modes update: Let Nk be the union of samples from blocks that share

the same prediction mode. Similar to (4.3), the optimal prediction mode αk for

this cluster is given by,

αk =

∑
n∈Nk xnx̂n−1∑
n∈Nk x̂

2
n−1

(4.5)

Such “K-modes” predictor design optimizes the predictors for a given fixed set of re-

constructions. However, in practice, these reconstructions will themselves depend on the

predictors in use. This necessitates a two-fold optimization strategy, wherein, reconstruc-

tions and predictors are optimized iteratively. Given an updated set of prediction modes,

there are several optional ways to update the reconstructions, leading to the following

design paradigms.
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4.2.3 Open-loop, closed-loop and asymptotic closed-loop design

Various techniques have been proposed in the context of joint design of predictors and

quantizers. Since in most of modern video codecs the quantizer is fixed (up to scaling),

our focus here is on predictor design given fixed quantizers, while noting that the same

principles are also applicable to other predictive coder modules such as quantizers. In

open-loop predictor design (see e.g., [33]), the predictor is designed using original samples,

which do not depend on the predictors and the design is inherently stable. However, since

the predictor must ultimately be applied to reconstructed samples, to avoid decoder

drift, it will in fact operate on statistics mismatched with the design phase. In closed-

loop design, predictors are designed iteratively. Let α̂ig be the predictor for block g in

iteration i. The reconstructed samples for the corresponding block in iteration i + 1 is

updated as,

x̂i+1
n = α̂igx̂

i+1
n−1 + êi+1

n (4.6)

where êi+1
n is the quantized prediction error en = xn− α̂igx̂i+1

n−1. Predictor α̂ig was designed

for reconstruction in iteration i: {x̂in}. However, it is applied to the reconstructed samples

of iteration i+1: {x̂i+1
n }. This mismatch results in design instability, which is exacerbated

due to feedback through the prediction loop, and often proves catastrophic at low rates.

To tackle this issue, ACL was proposed in [35]. ACL enjoys the best of both worlds. At

each iteration, the samples are predicted and reconstructed in open loop fashion as,

x̂i+1
n = α̂igx̂

i
n−1 + êi+1

n (4.7)

where êi+1
n is the quantized prediction error ei+1

n = xn− α̂igx̂in−1. The predictor α̂ig is used

with reconstructed samples x̂in, the same set of samples that it was designed for, thereby

eliminating statistical mismatch and the resulting design instability. The new set of
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Figure 4.2: Standard closed-loop design for predictor optimization

Figure 4.3: Predictor optimization with asymptotic closed-loop design

reconstructed samples are then used to design prediction modes αi+1
k . Upon convergence,

the reconstructed samples remain the same over iterations. Thus, predicting from x̂in is

same as predicting from x̂i+1
n , which is essentially closed-loop operation. The predictors

designed are thus optimal for closed-loop operation. Fig. 4.2 depicts closed-loop design

and Fig. 4.3 illustrates ACL design. Note that the prediction loop of CL is open in ACL

which disallows propagation through the loop and hence avoids change in statistics.

With this background, we next introduce the proposed paradigm for predictor modes

design.
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4.3 Deterministic Annealing Based Predictor Design

The hard prediction mode assignment to every signal block makes it difficult to opti-

mize the system with respect to the prediction modes, as the derivatives with respect to

mode decisions vanish almost everywhere. Hence an iterative K-mode design, a variant

of “K-means” clustering was proposed in [43]. However, this only ensures convergence

to a local minimum and renders the system highly sensitive to initialization. A related

problem is encountered in quantizer design, where the piecewise constant nature of the

quantizer makes it a challenging optimization problem. In order to jointly overcome the

fundamental challenges of non-convexity and design instability, we propose to embed the

ACL based minimization of the overall prediction error within the DA framework. The

proposed approach is inspired by, and builds on the deterministic annealing (DA) frame-

work of [36]. DA is motivated by the intuition gained from annealing process in physical

chemistry, where certain systems are driven to their low energy states by gradual cool-

ing of the system. Analogously, we introduce controlled randomness in the prediction

mode assignment for the blocks, but deterministically minimize the overall prediction

error, thereby avoiding many poor local minima. The inherent probabilistic nature of

DA allows us to deterministically optimize the effective cost function, an appropriate

expectation function that efficiently accounts for and replaces the stochastic wandering

on the cost surface of the classical method of simulated annealing [44]. The amount

of randomness is measured by the Shannon entropy and is essentially controlled by the

“temperature” of the system. The prediction mode assignment is no longer piecewise

constant, and is differentiable everywhere, thus paving the way to effective optimization

of prediction modes.
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4.3.1 Prediction Mode Derivation

We consider a random setting wherein for each block, a prediction mode is chosen in

probability. Thus, the mean squared prediction error to minimize in ACL iteration i is

taken as the expectation,

J =
∑
g

∑
k

∑
n∈Ng

PgP
i
k|g(xn − αikx̂in−1)2 (4.8)

where Pg is the probability assigned to input data block g which is assumed to be uniform

over all signal blocks. Association probability P i
k|g is the probability that prediction mode

αk is selected for input block g. The degree of randomness in the system is naturally

measured by the Shannon entropy:

H = −
∑
g

∑
k

P i
gk log(P i

gk), (4.9)

where P i
gk = PgP

i
k|g is the joint probability distribution over prediction modes and train-

ing data blocks. The optimization problem is naturally restated as the minimization of

the Lagrangian cost function, directly analogous to the Helmholtz free energy of statis-

tical physics:

L = J − TH, (4.10)

where Lagrange parameter T controls the randomness of the solution. As an aside,

there is an alternative (equivalent) way of formulating the problem, which is to maximize

the Shannon entropy under a constraint of a given level of expected distortion, i.e, to

maximize the Lagrangian given by,

L′ = H − βJ (4.11)
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The motivation to maximize entropy stems from Jaynes’s celebrated maximum entropy

principle [45] which states that of all the probability distributions that satisfy a given

set of constraints, it is beneficial to choose the one that maximizes the entropy, thereby

avoiding the implicit imposition of any restrictive assumptions. It is obvious that the

solution that minimizes the Lagrangian in (4.10) also maximizes the Lagrangian in (4.11).

Returning to the formulation of (4.10), note that the degree of randomness is controlled

by Lagrangian parameter T , which corresponds to temperature in the physical analogy.

As we lower T , we trade entropy for prediction error. At the limit of zero randomness,

we in fact directly minimize the overall prediction error.

A notable benefit of randomization is that the expected distortion is now differentiable

with respect to the mode decisions (now association probabilities rather than binary deci-

sions). Minimizing the Lagrangian cost with respect to the association probabilities P i
k|g,

while additionally imposing the obvious constraint
∑

k P
i
k|g = 1 (legitimate probabilities),

yields the Gibbs distribution:

P i
k|g =

e
−

∑
n∈Ng (xn−α

i
kx̂
i
n−1)

2

T∑
j e
−

∑
n∈Ng (xn−α

i
j
x̂in−1)

2

T

(4.12)

Note that at high temperatures, we in fact maximize the system entropy and the associ-

ation probabilities are indeed uniform.

The optimal prediction modes satisfy,

∂J

∂αik
=

∑
g

∑
n∈Ng

2PgP
i
k|g(xn − αikx̂in−1)(−x̂in−1)

= 0 (4.13)
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Thus, the optimal prediction modes are given by,

αik =

∑
g

∑
n∈Ng P

i
k|gxnx̂

i
n−1∑

g

∑
n∈Ng P

i
k|g(x̂

i
n−1)2

(4.14)

At this point, it is instructive to pause and compare the solution from DA (4.14) to

the prediction modes in standard K-modes design (4.5). As we see in (4.5), the cross

correlations and auto-correlations are taken as expectations over samples classified to

a particular mode. However, in (4.14), the expectations are taken, with respect to the

association probabilities, over the entire training set. Thus, in standard K-modes design

in (4.5), the samples have highly localized influence, as they only impact the “nearest

mode”, thus blinding the system to possible better solutions further away. In other words,

it is easy to get trapped in poor local optima. In contrast, in a DA based solution, each

sample influences all the prediction modes through their association probabilities and

the degree of influence varies with temperature. Specifically, at high temperature, all the

association probabilities are uniform. Thus, the optimal prediction modes converge to

and coincide at the correlation coefficient of the entire training set, the globally optimal

single prediction mode. As the temperature is lowered, the degree of influence decreases

and at the limit of zero temperature, the design is similar to the standard K-modes

design. From this viewpoint, the standard K-modes design is a hard, zero-temperature

design.

4.3.2 Overall design

The design starts with a closed-loop initialization of the reconstructions and at a

high temperature T0. As observed earlier, at high temperatures, given the uniform asso-

ciation probabilities, all the prediction modes coincide at the optimal single prediction

mode of (4.3), regardless of initialization. Thus, DA is effectively independent of ini-
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tialization. As the temperature is lowered, the association probabilities become more

“discriminating” and the solution less random. As the system is cooled it reaches certain

temperatures called “critical temperatures”, where the existing solution with its set of

prediction modes is no longer stable. Thus, with slight perturbations, the number of

distinct modes increases as new prediction modes emerge through cluster splits. This

phenomenon corresponds to “phase transitions” in the physical analogy.

At each temperature, the design iterates between predictor design and reconstruction

update. For a given set of reconstruction statistics, the predictor design iterates between:

• a) Computing association probabilities for the prediction modes (4.12)

• b) Updating prediction modes (4.14)

These monotonically non-increasing steps minimize the Lagrangian L. Upon con-

vergence, the reconstructed samples x̂i+1
n in a block g are updated in ACL fashion as,

x̂i+1
n =

∑
k

P i
k|g(α

i
kx̂

i
n−1 + êi+1

n,k ) (4.15)

where, êi+1
n,k is the quantized prediction error. Open-loop update ensures better recon-

structions. Thus, ACL iterations are also monotonically non-increasing, ensuring the con-

vergence of reconstructions. Upon convergence in reconstructions, the system is cooled

and the process is repeated. Once the cooling is complete, the system gives prediction

modes that minimize the overall prediction error (4.4) and that are optimal for closed-

loop operation. The overall design procedure is summarized in Algorithm 3.

Having introduced a general framework for predictor design, we next consider an

important application in the context of video coding.
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Algorithm 3: Proposed DA-ACL predictor design

initialize: closed-loop reconstructions, T=T0;
while T < T min do

while ACL iter < max ACL iter do
(a) Predictor design:
do

(i) Optimize association probabilities;

(ii) Optimize prediction modes;

while association probabilities converge
(b) ACL update of reconstructions;
break on convergence;

end
Cool system: T = bT;

end

4.4 Predictor Design in Video coding

Motion compensated prediction is a central component in modern video coders, tasked

with removing temporal redundancies, which is critical to the overall compression effi-

ciency of the coder. The best matching block from the reference frame is used as the

prediction for the current block. Simple pixel copying, however, largely ignores the spa-

tial correlations between pixels, and renders the prediction suboptimal. Moreover, pixel

copying implicitly assumes that the temporal correlation coefficient is one at all frequen-

cies. The invalidity of this implicit assumption is illustrated by the temporal correlation

coefficients evaluated for various DCT coefficients in Table 4.1, over a sample sequence.

Note how the correlation varies with frequency. Thus, to completely disentangle spatial

and temporal correlations and to exploit the true frequency dependent nature of tem-

poral correlations, transform domain temporal prediction (TDTP) was proposed in [41]

which we briefly discuss next.
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4.4.1 Transform Domain Temporal Prediction

TDTP models the temporal evolution of each transform coefficient as a first order AR

process. In other words, we have parallel, uncorrelated AR processes, one per frequency

(transform coefficient). Let xn be a particular transform (say, DCT) coefficient in a given

block in frame n, along a motion trajectory. The evolution of xn is thus modeled as,

xn = αx̂n−1 + en (4.16)

where x̂n−1 is the corresponding DCT coefficient of the block in reconstructed frame

n − 1, along the motion trajectory, and en is the innovation sequence. The optimal

prediction coefficient that minimizes the mean square prediction error is given by (4.3).

By performing temporal prediction in the transform domain, TDTP effectively achieves

both temporal and spatial decorrelation. Further, TDTP captures the variation of tem-

poral correlation with spatial frequency, by optimizing the predictor for each transform

coefficient.

We observe that if one were to use the entries of Table 4.1 as predictor coefficients,

the effect would be coincidentally similar to that of a low-pass filter. Video coders use

sub-pixel motion compensation which employs low-pass filters for interpolation. These

interpolation filters interfere with TDTP, and may compromise its performance. Thus,

to completely disentangle the effects of interpolation filters and TDTP filters, extended-

block transform domain temporal prediction ( EB-TDTP) was proposed in [42]. For

simplicity and clarity of presentation, we first consider the basic design of TDTP modes,

and then extend it to EB-TDTP.
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Table 4.1: Temporal correlation coefficients, along motion trajectory, of DCT coeffi-
cients in the block

0.99 0.96 0.92 0.91 0.89 0.84 0.79 0.67
0.97 0.95 0.91 0.87 0.83 0.78 0.73 0.58
0.96 0.93 0.88 0.86 0.84 0.75 0.69 0.6
0.93 0.88 0.88 0.84 0.79 0.72 0.64 0.58
0.89 0.90 0.90 0.84 0.75 0.66 0.62 0.46
0.83 0.89 0.84 0.83 0.70 0.58 0.54 0.44
0.83 0.81 0.82 0.74 0.62 0.53 0.49 0.4
0.77 0.71 0.62 0.66 0.58 0.45 0.39 0.38

4.4.2 Problem Formulation

Let us consider an input training set which is partitioned into segments, each of which

is called a group of pictures (GOP). Let the set of frames in a GOP be denoted by Ng.

At the GOP level, the encoder switches between prediction modes {αk}, where each

αk is a matrix of prediction coefficients. Let us consider a block b in frame n that is

inter-predicted from a reference block in frame n − 1. Let the prediction mode chosen

for the GOP g be α̂g. We spatially decorrelate the block and perform prediction in the

DCT domain. The temporal prediction of the pth DCT coefficient, xn,b,p, is thus,

x̃n,b,p = α̂g,px̂n−1,b,p (4.17)

where x̂n−1,b,p is the corresponding DCT coefficient of the reference block. The problem

at hand is to design the prediction modes to minimize the overall prediction error of the

training set. Thus, the cost function is,

ETDTP =
∑
g

∑
n∈Ng

∑
b

∑
p∈b

(xn,b,p − α̂g,px̂n−1,b,p)
2 (4.18)
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4.4.3 Deterministic Annealing Based TDTP Mode Design

Similar to the previous scenario, the proposed TDTP mode design enjoys the comple-

mentary benefits of ACL and DA. We randomize the association of TDTP modes to the

GOPs. In an ACL iteration i, let P i
k|g denote the probability of assigning TDTP mode

αik to GOP g. The prediction error to be minimized is thus given by the expectation,

JTDTP =
∑
g

∑
k

∑
n∈Ng

∑
b

∑
p

PgP
i
k|g(xn,b,p − αik,px̂in−1,b,p)

2 (4.19)

where Pg denotes the probability of the input GOPs (assumed uniform). The degree of

randomness is measured by the Shannon entropy,

HTDTP = −
∑
g

∑
k

P i
gk log(P i

gk), (4.20)

where P i
gk = PgP

i
k|g is the joint distribution over TDTP modes and input GOPs. The

cost function to be minimized is the Lagrangian,

LTDTP = JTDTP − THTDTP (4.21)

Assuming uniform distribution over the training set, the association probabilities that

minimize the Lagrangian cost (subject to the additional constraint
∑

k P
i
k|g = 1), are

given by the Gibbs distribution:

P i
k|g =

e
−

∑
n∈Ng

∑
b
∑
p(xn,b−α

i
k,px̂

i
n−1,b,p)

2

T∑
j e
−

∑
n∈Ng

∑
b
∑
p(xn,b,p−α

i
j,p
x̂i
n−1,b,p

)2

T

(4.22)

Next, we note that the Lagrangian depends on the prediction modes only through the

expected prediction error J , as all other terms only depend on the association probabili-
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ties. Moreover, since the transform coefficients are uncorrelated, we obtain the following

partial derivative with respect to each component of the prediction mode, which we then

set to zero to obtain the necessary condition for optimality:

∂J

∂αik,p
=

∑
g

∑
n∈Ng

∑
b

{2PgP i
k|g(xb,n,p − αik,px̂ib,n−1,p)

(−x̂ib,n−1,p)}

= 0 (4.23)

Thus, the pth component of the optimal prediction modes is given by,

αik,p =

∑
g

∑
n∈Ng

∑
b P

i
k|gxb,n,px̂

i
b,n−1,p∑

g

∑
n∈Ng

∑
b P

i
k|g(x̂

i
b,n−1,p)

2
(4.24)

The optimal predictor for a particular DCT coefficient is clearly a variant of the

standard optimal linear estimator for that particular coefficient, computed over the entire

training set, while accounting for the association probabilities P i
k|g with respect to which

the expectation is defined.

The overall design is similar to 4.3.2, where the design starts from a high temperature

and is gradually cooled. At high temperatures, the association probabilities are uniform

as is obvious from (4.22) and all the TDTP modes given by (4.24) are coincidental. At

a given temperature T , the design iterates between optimizing predictors and updating

reconstructions in ACL way. Optimizing predictors for a given reconstruction set involves

computing association probabilities as (4.22) and updating updating prediction modes

according to (4.24). Upon convergence, the reconstructed samples in GOP g are updated
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via ACL as,

x̂i+1
n,b,p =

∑
k

P i
k|g(α

i
k,px̂

i
n−1,b,p + êi+1

k,n,b,p) (4.25)

where, êi+1
k,n,b,p is the quantized prediction error ei+1

k,n,b,p = xn,b,p − αik,px̂in−1,b,p. Upon con-

vergence in reconstructions, the system is cooled and the process is repeated. As the

temperature is lowered, the system becomes more deterministic with the emergence of

more TDTP modes through a sequence of phase transitions. At the limit of zero temper-

ature, the prediction modes directly minimize the squared distortion and the prediction

modes designed are optimal for the closed-loop operation.

Having introduced the DA based TDTP mode design, we next consider predictor de-

sign with extended block TDTP which disentangles the effects of sub-pixel interpolation

filters and transform domain prediction filters.

4.4.4 Transform Domain Temporal Prediction with Extended

Blocks

Video coders employ sub-pixel motion compensation in which interpolated reference

blocks are used as prediction signals. To obtain the interpolated signal, the coder makes

use of boundary samples outside the reference block. Thus, applying TDTP on the

interpolated signal is effectively considering spatial and temporal decorrelations in the

subspace of the interpolated signal, in contrast with decorrelating in the actual space

of the boundary-extended reference block. Moreover, as observed earlier, interpolation

filters interfere with TDTP filters. EB-TDTP effectively addresses these challenges by

first scaling the extended block pixels according to the temporal prediction coefficients

in the transform domain, and then applying the interpolation filters. To formulate this

mathematically, let Yn,b be the block b of dimensions B1 ×B1 in frame n, which is to be
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Figure 4.4: Flow chart of the proposed DA-ACL-TDTP design algorithm

predicted. Let Ŷ mv
n−1,b be the reference block in frame n− 1, of dimensions B2 ×B2(B2 >

B1), to which the video coder applies interpolation to obtain the prediction signal. Let the

vertical and horizontal interpolation filters be denoted as Iv and Ih, which are matrices

of sizes B1 × B2 and B2 × B1, respectively. Thus the interpolated prediction signal of

standard coders is,

Ỹ = IvŶ
mv
n−1,bIh (4.26)
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Figure 4.5: Illustration of extended block transform domain temporal prediction

and the prediction signal from “plain” (i.e., without “extended block”) TDTP is,

ỸTDTP = D′B1
[{DB1(IvŶ

mv
n−1,bIh)D

′
B1
} ◦ FB1 ]DB1 (4.27)

where DB1 is the DCT matrix, FB1 is the TDTP filter and ◦ denotes component-wise

matrix multiplication.

In EB-TDTP, we first spatially decorrelate the extended block Ŷ mv
n−1,b by a separable

DCT. Then, the extended block TDTP filter FB2 is applied to the transformed extended

block. This is followed by inverse transform and interpolation to derive the prediction

signal. Thus, EB-TDTP of Yn,b, as illustrated in Fig. 4.5 can be formulated as,

ỸEB−TDTP = IvD
′
B2
{{DB2Ŷ

mv
n−1,bD

′
B2
} ◦ FB2}DB2Ih (4.28)

To derive the predictor FB2 , letK1 = IvD
′
B2

, K2 = DB2Ih, and X̂mv
n−1,b = DB2Ŷ

mv
n−1,bD

′
B2

.

The prediction error can thus be written as,
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EEB−TDTP=
∑
n

∑
b

∥∥∥Yn,b − Ỹn,b∥∥∥2

=
∑
n

∑
b

∥∥∥Yn,b −K1(X̂mv
n−1,b ◦ FB2)K2

∥∥∥2

=
∑
n

∑
b

[

B1∑
r=1

B1∑
s=1

{Yn,b(r, s)−

B2∑
i=1

B2∑
j=1

FB2(i, j)X̂
mv
n−1,b(i, j)K1(r, i)K2(j, s)}2]

(4.29)

This is essentially a least-squares estimation problem of minimizing,

EEB−TDTP =
∑
n

∑
b

∥∥An,bfB2
− tn,b

∥∥2
, (4.30)

where fB2
is a vector representation (containing all elements) of matrix FB2 . An,b and

tn,b are derived as,

An,b(u, v) = X̂mv
n−1,b(i, j)K1(r, i)K2(j, s) (4.31)

tn,b(u) = Yn,b(r, s) (4.32)

where, u = rB1 + s and v = iB2 + j. The optimal predictor is given by,

fB2
= (
∑
n

∑
b

ATn,bAn,b)
−1(
∑
n

∑
b

ATn,btn,b) (4.33)

As seen from (4.33), the optimal predictor computation is essentially posed as a

classic least-squares problem. The discussion so far involved a single predictor. To
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realize the full potential of EB-TDTP, we need a set of EB-TDTP filters to achieve

adaptivity, which implies the design of an efficient set of prediction modes. We note that

multiple prediction modes introduce optimization in a higher dimensional parameter

space, making the design more prone to be trapped in local poor minima. Thus, there is

strong motivation to pursue a DA based solution.

4.4.5 EB-TDTP Mode Derivation

The design involves randomization of the prediction mode assignment to GOPs. At

a given temperature T and ACL iteration i, let conditional probability P i
k|g denote the

probability of assigning EB-TDTP mode F i
k to GOP g. The prediction error to be

minimized is given by the expectation:

JEB−TDTP =
∑
g

∑
k

∑
n∈g

∑
b

PgP
i
k|g
∥∥Aig,n,bfik − tn,b

∥∥2
(4.34)

where Pg denotes the probability of the input GOPs (assumed uniform). The degree

of randomness is measured by the Shannon entropy,

HEB−TDTP = −
∑
g

∑
k

P i
gk log(P i

gk), (4.35)

where P i
gk = PgP

i
k|g is the joint distribution over EB-TDTP modes and input GOPs. The

cost function to be minimized is the Lagrangian,

LEB−TDTP = JEB−TDTP − THEB−TDTP (4.36)

The problem at hand is posed as the minimization of the entropy-constrained La-

grangian JEB−TDTP . The association probabilities that minimize the Lagrangian cost
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subject to the standard normalization constraint (adding up to 1), are given by:

P i
k|g =

e−
∑
n∈g

∑
b‖Aig,n,bfik−tn,b‖2

T∑
j e
−

∑
n∈g

∑
b‖Aig,n,bfij−tn,b‖2

T

(4.37)

Minimizing the expected distortion with respect to the prediction modes yields,

∂J

∂fik
=

∑
g

∑
n∈g

∑
b

P i
k|g((A

i
g,n,b)

TAig,n,bfk − (Aig,n,b)
T tn,b)

= 0 (4.38)

Thus, the optimal prediction modes are given by,

fik = {
∑
g

∑
n∈g

∑
b

P i
k|g((A

i
g,n,b)

TAig,n,b)}−1

{
∑
g

∑
n∈g

∑
b

P i
k|g((A

i
g,n,b)

T tn,b)} (4.39)

The overall design is similar to the design of TDTP modes.

4.5 Experimental Results

4.5.1 A simple First Order Predictive Encoder

The first experiment considers the simple setting of scalar, first order predictive cod-

ing. We chose speech signals as a real-world source data. A set of six speech files from

the EBU SQAM database were chosen for simulations [46]. Half of the speech files were

used as the training set for designing prediction modes and the remaining half as the

test set. A set of six prediction modes were designed. A fixed dead-zone quantizer was
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Figure 4.6: First-order scalar predictive coding. Reconstructed SNR vs average bits
per sample for the test set of speech files

employed for quantization. Different R-D points were obtained by varying Lagrange mul-

tiplier of entropy constrained quantization. The 3 competitors were: closed-loop (CL),

“plain ACL”, and the proposed method (DA-ACL). While DA-ACL is independent of

initialization, CL and ACL designs were repeated with multiple initializations and the

best results were selected. Fig. 4.6 shows the reconstructed SNR versus bit rate. It is

evident from the results that the proposed DA-ACL method gives significant 0.4dB and

5dB gains over competitors ACL and CL, respectively.

4.5.2 Video Coding Results

The proposed method was implemented in HM 14.0. We chose low-delay P or LDP

profile for our experiments. For all the experiments, the encoder only uses the previous

frame as reference. The anchor is the HEVC codec which performs conventional pixel

domain prediction, i.e, either simple pixel copying or an interpolated block from the refer-

ence frame. The competing codec uses EB-TDTP prediction modes. A EB-TDTP mode

is a collection of filters for all the block sizes. Thus, specifying a EB-TDTP mode for a

GOP completely specifies the prediction filters for all the block sizes. To minimize the
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encoding complexity, EB-TDTP filters are used only during motion compensation and

are not used during motion estimation. In other words, during motion search, conven-

tional pixel domain prediction is used to decide the best motion vector and only during

motion compensation, we perform transform domain prediction with EB-TDTP filters.

We consider four QP values of 22, 27, 32 and 37 for our simulations. The implementation

details for training EB-TDTP modes are discussed next.

Training EB-TDTP filters

EB-TDTP filters depend on reconstruction statistic which varies with QP value.

Thus, EB-TDTP modes are trained conditioned on QP value. For each QP value, we

design four EB-TDTP modes by each of the following design methods:

i) Standard closed-loop design denoted CL: predictors are optimized in ‘K-modes’ clus-

tering method and the reconstructions are updated in standard closed-loop method. This

is the traditional approach to predictor design and suffers from both initialization due to

‘K-modes’ style design of predictors and the design instability due to closed-loop update

of reconstructions.

ii) K-mode design with “plain ACL” denoted ACL: predictors are still optimized in ‘K-

modes’ clustering method, but reconstructions are updated in ACL way. This design

enjoys stability due to ACL but still suffers from initialization problem.

iii) The proposed method denoted DA-ACL: predictors are optimized by DA and the

reconstructions are updated in ACL fashion. This solves both the initialization and the

design instability issues.

The aforementioned methods perform iterative optimization of predictors and recon-

structions. Given a set of predictors, reconstructions are updated by using HEVC codec.

During reconstruction update, reconstruction statistic for different block sizes are col-

lected for predictor optimization in the next design iteration. The predictor optimization
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is done in a separate module outside the codec. The training set sequences are listed in

Table 4.2.

4.5.3 Testing

The trained prediction modes are stored at both encoder and decoder. The encoder

does a brute-force search over all prediction modes for each GOP and selects the best

mode. The average bit-rate reduction by using EB-TBTP modes over HEVC perform-

ing conventional pixel domain prediction is calculated as per [25]. The bit-rate savings

achieved by using EB-TDTP modes from CL, ACL and DA-ACL design methods for the

test set sequences are tabulated in Table 4.3. The rate-distortion (RD) curves for some

example test sequences are shown in Fig. 4.7 (note that, we have only plotted three R-D

points for better visualization). Significant bit-rate reduction over the test set provides

clear evidence for the utility of proposed approach. The seemingly less gains at low bit-

rates can be explained from the fact that at low bit-rate, a large number of transform

coefficients are quantized to zero, leaving us less parameters to optimize. Moreover, a

certain PSNR improvement, say 0.1dB, bears more significance in low bit-rate regime

than it does in the high bit-rate regime. As regards the complexity, employing transform

domain prediction with a particular EB-TDTP mode, increases the encoder complexity

by a factor of two. Further, since the encoder does brute-force search over four modes,

the overall encoding complexity is 8x compared to anchor. The decoder just uses the

best mode and thus has a complexity increase of 2x compared to the anchor. Various ap-

proaches can be explored for fast selection of prediction modes and fast implementation

of transform domain prediction.
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Figure 4.7: Comparison of performance of EB-TDTP modes designed by ACL and
DA-ACL methods over HEVC for test sequences of (a) Coastguard, (b) Kimono, (c)
Soccer and (d) BasketballDrive sequence.

4.6 Conclusions

This chapter presents a novel near-optimal procedure for designing prediction modes

for adaptive compression systems. It effectively resolves significant shortcomings due

to statistical mismatch and design instability of standard approaches. The deterministic

annealing-based framework enables direct optimization of the overall cost with respect to

prediction mode decisions, and avoids many poor local minima that trap its competitors.

Substantial gains in the experiments demonstrate the efficacy of the proposed approach.
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Table 4.2: The training set of video sequences for EB-TDTP design

Sequence
Tennis (1080p)

Pedestrian (1080p)
Parkjoy (720p)
Vidyo3 (720p)
BQMall (720p)

Racehorses (240p)
Paris (cif)

Waterfall (cif)
City (cif)

Stefan (cif)
Highway (cif)
Mobile (cif)

Table 4.3: Performance over the test set: bit-rate savings over HEVC ( in % ) for the
Y component by employing EB-TDTP filters designed from CL, ACL and DA-ACL
design paradigms

Sequence CL ACL DA-ACL
Kimono (1080p) 7.2 8.5 11.3
Tractor (1080p) 12.8 14.4 15.7

Parkscene (1080p) 5.9 6.0 6.5
BasketballDrive (1080p) 7.5 7.6 10.3
KristenAndSara (720p) 8.0 8.1 8.3

vidyo4 (720p) 14.3 16.1 16.5
Ducks (720p) 12.4 13.6 14.2

Mobisode2 (480p) 3.8 3.8 4.2
BQTerrace (480p) 0.4 1.8 2.8

Keiba (480p) 6.1 6.6 7.5
BasketballPass (240p) -1.2 -0.1 0.2

Mobisode2 (240p) -1.8 0.4 1.1
Coastguard (cif) 7.4 7.6 11.2
Bridge-far (cif) 3.9 5.3 6.3

Soccer (cif) 7.9 8.7 9.7
Salesman (qcif) -3.7 -0.2 0.9

Average 5.7 6.6 7.9
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Chapter 5

Transform Design for the

Inter-Prediction Residual in Video

Coding

5.1 Introduction

Transform coding is an essential component in video compression, wherein it is applied

to the prediction residual after a block of pixels has undergone intra or inter-prediction.

The goal is to achieve energy compaction in as little transform coefficients as possible.

For a given stationary signal statistics, it is well known that the Karhunen- Loève trans-

form (KLT) is the optimal decorrelating transform. However, its dependency on signal

statistics and its high computational complexity compromise its practicality. Instead,

the discrete cosine transform (DCT) has been the most widely adopted transform due

to its fast implementation and good energy compaction property, as well as the theoret-

ical justification provided to its ability to approximate performance of KLT on certain

Gauss-Markov processes [47]. Inter-prediction residue exhibits a wide range of statis-
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tic. Thus, to achieve better compression, there has been growing interest in employing

switched transforms that adapt to variations in signal statistics. The latest open source

codec AV1 [2] allows switching within a set of known trigonometric transforms such as

DCT and ADST in order to capture some additional gains. The authors in [48] also

propose to use known trigonometric transforms for inter-prediction residuals which was

later adopted in JEM codec [49]. The trigonometric transforms are optimal only under

certain model assumptions. The validity of such assumptions and the optimality of these

transforms is highly questionable for inter-prediction residual. Thus, there is a strong

motivation for a data-driven approach to learn these transforms. For projected spherical

videos, the residue statistic is expected to be very different from the residue statistic in

regular 2D videos, and further expected to vary for different geometries. Due to non-

uniform sampling induced on the sphere, an analytical solution to derive the optimal

transform (by working in spherical domain) is nearly impossible. Again, there is a strong

motivation to pursue a data driven approach to learn the transform kernels.

A major challenge in the joint design of multiple transform modes is due to the in-

stability inherent to the closed-loop design of the coder. Updated transforms are applied

to prediction residuals to obtain new reconstructions, which in turn affect the prediction

residual statistics. This complex interplay between the transforms and reconstructions

makes effective transform design quite elusive. In standard closed-loop design, the trans-

forms and reconstructions are optimized in an iterative design procedure. For a given

fixed set of reconstructions in a certain design iteration, the residue signal and the corre-

sponding optimal transforms are computed. The transforms are used in the next iteration

to update reconstructions. The transforms are designed for a given residue statistic and

are applied with a different residue statistic in the next design iteration. The resulting

statistical mismatch generates error that propagates through the prediction loop causing

design instability. Transform design involves design of a large set of parameters and
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the design suffers severely from this instability causing severe hindrance in transform

optimization. In the previous chapter, we used ACL to address design instability in pre-

dictor design. In this chapter, we extend the ACL paradigm to effective transform design.

Specifically, transforms are designed iteratively, in an open loop that ensures design sta-

bility, but with a subterfuge that guarantees that upon convergence, the transforms are

optimal for closed loop operation. Thus, in this chapter, we use ACL as a stable hence

effective platform for designing multi-mode transforms. Note that, while the focus is on

the design of separable transforms which are preferred due to their lower complexity, the

proposed design paradigm is general and applicable to non-separable transforms.

5.2 Background

5.2.1 Separable KLT

Let e be a random vector of (say, prediction residual) samples, whose covariance

matrix is Ce. Let T be the transform matrix. The transform-domain signal vector y is

given by

y = Te, (5.1)

and its covariance matrix Cy is

Cy = TCeT
′ (5.2)

The optimal transform that diagonalizes Cy, i.e., decorrelates the components of y is

precisely KLT, whose basis vectors are the eigenvectors of Ce.

In the context of video coding, let E be the random prediction residual block. Let

Tr and Tc be the respective KLTs for the row covariance Cr and column covariance Cc,
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of E. The transform-domain signal can be written as,

Y = TcET′r (5.3)

KLTs are optimal for given statistics of the prediction residual signal. But updating

the transforms changes the reconstructions and hence also the residual signal statistics,

requiring a new KLT calculation. Thus, transform design requires an iterative procedure.

Next we summarize the standard iterative approach.

5.2.2 Closed-Loop Design

Standard closed-loop techniques (see e.g., [34]), when applied to transform design,

employ transforms trained on the residual sequence of iteration i to transform the residue

in the next iteration i+ 1, i.e,

yi+1 = Tiei+1 (5.4)

where the residual ei+1 = xn − x̂i+1
n−1 is the prediction error in iteration i+ 1 (assuming

prediction coefficient of one, as is common practice in video coding). Thus transform Ti,

optimal for the previous residual sequence {ei}, is in fact applied to a potentially very

different residual sequence in iteration i + 1. This results in statistical mismatch which

tends to grow as errors propagate in the prediction loop, and the resulting instability

may prove catastrophic at low rates. Fig. 5.1 illustrates closed-loop design.

5.3 Relevant Work

Much of the work on transform design focused on the intra-prediction residual, includ-

ing the derivation of asymmetric trigonometric transforms to leverage the directionality

of intra-prediction, which were further shown to approach KLT optimality under mild
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Figure 5.1: Closed-loop design of transforms

Markovian assumption [50] as well as several other approaches to mode-dependent trans-

forms (e.g., [51, 52, 53]). The design of transforms for inter-prediction residuals, however,

attracted significantly less attention, perhaps due to the fact such transforms do not ex-

hibit as “obvious” properties such as the directionality inherent to intra prediction modes,

and are hence more challenging to design. As mentioned earlier, recent codecss switch

between known trigonometric transforms. However, to realize the full potential of multi-

modal transforms, it is necessary to look beyond the known trigonometric transforms,

and employ a data-driven approach that statistically learns the optimal set of transforms.

Recently efforts in data-driven approach can be classified into following categories:

Online learning of transforms

As the name suggests, the transforms are learnt on the fly during the encoding and

decoding process (see for e.g, [54]). Computation of covariance matrix and its eigen

vectors is highly complex. Thus, online learning of transforms is not generally preferred.

We will focus on the practical alternative of an offline design paradigm. Some of the

works in offline design is discussed next.
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Offline learning of transforms

A notable work in this vein includes [55], where residue statistics are collected from

a training set and the resulting KLT is given as an option during encoding. Another

interesting work is the graph based transforms in [56], in which, along with the computa-

tion of covariance matrix, additional constraints about the model assumptions for video

signal are imposed while computing transforms. Other relevant approaches include the

1-D transforms developed in [57], directional DCTs in [58], row column transforms in

[59] and layered-Givens transforms in [60]. All these approaches largely ignore what is a

critical difficulty of closed-loop iterative design of modules of a predictive coding system.

Specifically, in the case of transforms, an updated transform changes the reconstructions,

which in turn modify the prediction residual statistics on which the transform update

was premised. Authors in [48] realize this dependency in designing secondary trans-

form kernels for intra-prediction residuals and pursue a closed-loop design of transforms.

For, intra-prediction, the design instability doesn’t post a challenge. However, for inter-

prediction residue, the instability is a critical issue. Addressing the design instability

forms the central focus of the current chapter.

Most of the work related to spherical video coding is focused on projection geometry

optimization (see for e.g, [61]) or prediction optimization (including our own work and

other efforts summarized in [62]). Some of the recent work including [63] optimize trans-

forms for spherical image compression. However, none of these efforts consider transform

optimization for inter-prediction residue in projected spherical videos. Transform opti-

mization for spherical videos forms another core contribution of the current chapter.
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5.4 Proposed Method

In this section, we propose a stable design paradigm for learning the transforms.

The design considers transform design in variable block setting. We leverage the fact

that block size implicitly conveys some information about nature of residue statistic

and this information is available to the decoder as well. We exploit this fact and for

each block size or partition size indexed by s, we design Ms separable transforms, which

we also refer to as transform modes. Thus, the problem at hand is to design a set of

transform modes for different block sizes {Ts}, where Ts corresponds to a set of Ms pairs

of row and column transforms denoted {{Ts,m,r,Ts,m,c}},m = 1, 2..Ms. An iterative

design technique is needed to optimize transforms and update reconstructions. Given

a training set of residual sequences, a clustering based framework is presented first to

enable transform modes design.

5.4.1 Clustering

Let {Ei
b,n} be the training sequence of prediction residual where Ei

b,n is block b in frame

n, obtained by subtracting from source block Xb,n its motion-compensated prediction

X̂
i

bmv ,n−1

Ei
b,n = Xb,n − X̂

i

bmv ,n−1 (5.5)

To design the transform-modes, we employ an algorithm in the spirit of “K-means clus-

tering”, which iterates between following steps :

(a) Nearest neighbor step: This corresponds to assigning the best transform for each

block. The mode assignment decisions need to be RD-optimal and take into ac-

count the total cost of coding the transform coefficients and signaling these modes

to the decoder. Thus, given a set of transforms, we get the block partitions and
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mode assignments by plugging these transforms in the codec. Note that the recon-

structions here are held fixed and thus the codec is run in an open-loop fashion

rather than a closed-loop fashion. This differentiation will be more clear after the

discussion of reconstruction update that follows shortly.

(b) Centroid step: This step corresponds to design of optimal row and column trans-

forms design for each mode. In other words, separable KLT is designed for each

cluster of residue corresponding to a particular block size s and mode m.

We next consider how to embed within the approach an ACL paradigm for transform

design so as to avoid the notorious instability of closed-loop design.

5.4.2 Asymptotic Closed Loop Design

As discussed in 5.2.2, the main shortcoming of the closed-loop approach is the de-

sign instability due to error propagation in the prediction loop. ACL design effectively

resolves the stability issue by updating the reconstructions in an open-loop fashion as

illustrated in Fig. 5.2. The updated transforms are used with the same set of residual

sequences for which they were designed. This ensures increasingly better reconstructions

over the iterations. However, on convergence, the reconstructed sequence remains es-

sentially unchanged. Therefore, predicting from the previous iteration’s reconstructions

approaches equivalence with predicting from the current iteration, i.e., it effectively op-

erates in closed-loop. Thus, ACL asymptotically optimizes transforms for closed-loop

operation. For the problem at hand, given optimal transform-modes from a design iter-

ation i, the transform signal is obtained as,

Yi
b,n = Ti

c,bestE
i
b,nT

i′
r,best (5.6)
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where Ti
c,best,T

i
r,best are the best row and column transforms chosen by the en-

coder from the transforms designed in iteration i. This is followed by, quantization,

de-quantization and inverse transform to obtain the block Ê
i

b,n. Note how the transforms

designed in iteration i is used on the same set of residuals Ei
b,n. The reconstructions are

updated as,

X̂
i+1

b,n = X̂
i

bmv ,n−1 + Ê
i

b,n (5.7)

The overall design procedure has been illustrated in Algorithm 4. First, a closed-loop

initialization is performed to obtain a reconstructions sequence. Standard trigonometric

transforms are used as initialization for the transform modes in each block size. The algo-

rithm then iterates between “K-means” style transform-modes design for a given residual

statistic and the reconstruction update in ACL fashion. Note that, after a reconstruction

update, we update the encoder decisions including the motion vectors, ensuring opti-

mal encoder decisions for the new reconstructions. We use these decisions to generate

prediction residue for the next iteration. Upon convergence, both the reconstructions

and the encoder decisions remain the same, and hence the system effectively operates in

closed-loop fashion.

We note that in our earlier work [64], we had fixed block setting. This resulted in wide

range of residue statistic and prompted us to design super-modes of transforms to cover

such a statistic. Each super-mode is a collection of collection of set of separable transforms

or the transform-modes. The adaptivity was such that the encoder could switch between

super-modes at the GOP level and further switch between the transform modes of the

chosen super-mode at the GOP level. In the current variable block setting, we exploit

the partition of the residue statistic in terms of block sizes and achieve significant gains

by designing different transform modes for different block sizes and overcome the need
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Figure 5.2: Asymptotic closed-loop design of transforms

of super-modes to effectively cover the residue statistic.

Algorithm 4: Overall design approach

initialize: reconstructed sequence from closed loop encoder, standard
trigonometric transform modes;
while ACL iter < max ACL iter do

Generate residue statistics;
Design transform-modes:
while M mode iter< Max M mode iter do

(i) Assign best transform-mode to each block ;
(ii) Design KLTs for each mode in each block size;
break on convergence;

end
Update reconstructions in ACL fashion ;
Update encoder decisions with new transforms;
break on convergence ;

end
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5.5 Experimental Results

5.5.1 Simulation Setting

We designed transforms for the AV1 codec, which includes a set of sixteen separable

transform modes for block sizes of 4X4 and 8X8 and a set of twelve separable transforms

for block size 16X16. We optimize these transforms from our ACL based design. We note

that both in AV1 anchor and the codec that uses transforms obtained from proposed

design method has rectangular partitioning of residue. For rectangular partitions default

transforms from AV1 are used. We use real time encoding configuration of AV1 and

perform design at fixed target bit-rate. We first illustrate the critical design instability

in closed-loop design and illustrate how ACL gives a stable platform.

5.5.2 ACL as a stable design platform

In order to illustrate the stability issues with the standard closed-loop design, we

consider optimizing transforms for mobile cif sequence at a target bit-rate of 100Kbps.

(More specific implementation details pertaining to training will be presented shortly).

The YUV-PSNR of the reconstructed sequence for closed-loop design iterations are plot-

ted in Fig.5.3. Note how in many design iterations, employing the updated transforms

in-fact kills the performance compared to the previous iteration. In contrast, ACL en-

sures better reconstructions by using transforms on the same set of residue statistics it

was designed. As can be seen from the plot, the reconstructed sequence converges after

certain design iterations ensuring that the transforms obtained are optimal for closed-loop

operation of the codec.
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Figure 5.3: Illustration of design instability in closed-loop design and ACL as a stable
platform design

5.5.3 Training

We design transforms from both the standard closed-loop design approach and the

proposed ACL approach. In both these approaches, given a fixed set of reconstructions,

the transforms are optimized in a “K-means” clustering approach. For the nearest neigh-

bor step in the clustering, we plug the transforms in the codec and get the R-D optimal

classification of residue to the transform modes. Once we obtain the classification of

residue of each block size into different modes, we optimize the transforms in each clus-

ter in each block size by computing the KLT for that cluster. Computation of KLT is

done outside the codec and corresponds to the centroid step. The algorithm iterates

between these two steps till convergence. Upon convergence, in closed-loop design, the

reconstructions are updated by plugging these transforms in the codec and performing

a closed-loop run of the codec. In ACL, the reconstructions are updated in open-loop

fashion. To achieve this, the codec is given the reconstructions from the previous design

iteration and the prediction is performed from these reconstructions instead of the re-

constructions of the current iteration. The above process of transform optimization and

reconstruction update are performed iteratively. For closed-loop design, design almost
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always never converges. Thus, we run the design for a maximum of ten iterations. For

ACL, we run the design till we hit convergence ( typically achieved in 7-12 iterations).

For regular 2D videos, we design transforms for cif and HD resolution sequences. For

spherical videos, we consider EAC whose face width is 512. The training set is listed in

Table 5.1. As mentioned earlier, the training was done at constant bit-rate configuration

of AV1. Target bit-rate was varied to get different RD points. Since the residue statistic

changes with bit-rate, we design transforms for each target bit-rate. The bases images

obtained for the first transform mode in 8X8 blocks initialized to DC-DCT is shown in

Fig.5.4 and Fig.5.5 for the case of HD sequence training at target rate of 1000 Kbps

and the EAC training at target rate of 2000 kbps respectively. Note how the obtained

transforms are very different from the bases images of any trigonometric transform.

5.5.4 Testing

Bit-rate reduction over the baseline (which uses trigonometric and identity trans-

forms) is calculated as per [25]. The results for the test set sequences are shown in

Tables 5.2-5.4. It is evident that the proposed method brings significant gains over AV1

for all categories of sequences.

5.6 Conclusions

This chapter presents an efficient offline-design procedure to learn transforms for inter-

prediction residuals. Critical design instability was circumvented by deriving the method

within the asymptotic-closed loop framework. Significant bit-rate reduction substantiates

the potential of this data-driven approach to effectively learn transforms and outperform

standard trigonometric transforms.
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Table 5.1: The training set of video sequences for transform design

cif HD EAC
bridge-close basketballdrive broadway
bridge-far cactus chair

mobile parkscene glacier
highway station
foreman tennis
tempete
flower
bus
city
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Figure 5.4: Bases images for 8X8 block for first transform mode initialized to DC-
T-DCT obtained for HD sequence training at 700Kbps

Figure 5.5: Bases images for 8X8 block for first transform mode initialized to DC-
T-DCT obtained for EAC sequence training at 1000Kbps
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Table 5.2: % bit-rate savings on test set for YUV-PSNR over AV1 for cif sequences
(uses trigonometric transforms).

Test Bit-rate Savings
Sequence over AV1

silent 2.4
soccer 1.1
akiyo 2.7

bowing 3.3
hall 1.0

mother-daughter 4.2
paris 1.3

coastguard 2.6
stefan 2.4

ice 0.8

Average 2.2

Table 5.3: % bit-rate savings on test set for YUV-PSNR over AV1 for HD sequences.
Test Bit-rate Savings

Sequence over AV1
bqterrace 3.2
kimono 1.9

pedestrian 2.9
sunflower 2.3
tractor 2.0

Average 2.4

Table 5.4: % bit-rate savings on test set for YUV-PSNR over AV1 for EAC sequences.
Test Bit-rate Savings

Sequence over AV1
skate 3.6

driving 0.7
kite 1.3

harbor 3.4
balboa 0.8

Average 1.9
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