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ABSTRACT OF THE DISSERTATION 

 

 
Development and Application of Advanced Methodologies  

for Genome Dissection 

 
 

by 

 
 

Han Qu 
 

Doctor of Philosophy, Graduate Program in Plant Biology 

University of California, Riverside, December 2022 

Dr. Zhenyu Jia, Chairperson 

 

 

 

Next-generation sequencing (NGS) technologies have become an established and 

affordable framework for generating genomic information about living organisms. NGS 

data usually are bulky, complicated, and imperfect, which makes processing and 

analyzing NGS data challenging. Although many methods for NGS data analysis have 

emerged in the past years, the continuing development of advanced algorithms and tools 

is desperately wanted to tackle the dramatically growing data. Moreover, there are always 

misunderstandings between the end user and the developer. Proper, well-developed, 

explicit pipelines and many real data tests could bridge the gap between data generation 

and hypothesis testing.  

 

The first chapter proposed an advanced algorithm IIIandMe, which infers chromosome-

scale haplotypes using genomic data of single gametes. Theoretically, only three gametes 
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are sufficient in our hypothesis, and then the simulation of maize data and real data of 

citrus were tested as shreds of evidence. In the second chapter, the EM algorithm for 

probit and logistic regressions was introduced in a language style that is easy to 

understand by biologists to analyze binary traits in biology and agriculture and thus 

promotes wide applications of the generalized linear model (GLM) and generalized linear 

mixed model (GLMM) to biological problems. The third chapter performed whole 

genome phylogenomic analyses to decipher the phylogenetic relationships and 

diversification within the Punica genus. Our phylogenomic pipeline has empowered the 

use of low-coverage and fragmented whole genomes, providing productive perspectives 

for future research of other model groups. The fourth chapter provided a general 

mechanism for establishing circadian rhythm heterogeneity during development and 

disease progression governed by chromatin structure. We report that knockout of the 

lineage-specifying Hnf4a gene in mouse liver causes associated reductions in the 

genome-wide distribution of core clock component BMAL1 and accessible chromatin 

marks (H3K4me1 and H3K27ac), underlying circadian control of peripheral metabolism 

and its observed perturbation in human diseases. 
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Chapter 1 IIIandMe: An Algorithm for Chromosome-scale Haplotype 

Determination Using Genome-wide Variants of Three Haploid 

Reproductive Cells 

 

Our recent algorithm, Hapi, infers chromosome-scale haplotypes using genomic data of a 

small number of single gametes. Its advanced version, IIIandMe, is proposed here to 

achieve comparable phasing accuracy with as few as three gametes, pushing the analysis 

to its limit. The new method is validated with simulation and a citrus gamete dataset. The 

rapid advances in genotyping technologies promise a broad application of IIIandMe in 

disclosing important genetic information. 

 

1.1 Introduction 

Mounting evidence has shown the benefit of using haplotype variants over single 

nucleotide polymorphisms (SNPs) in various genetic analyses, including genome-wide 

association studies (Yang et al. 2012; Howard et al. 2017; Lambert et al. 2013; Zhang et 

al. 2021), detection of the signatures of positive selection (Fariello et al. 2013), deducing 

genetic admixture, introgression, and demographic history (Lohmueller, Bustamante, and 

Clark 2009; Palamara et al. 2012). Accurate chromosomal haplotypes are needed to 

identify causal haplotype variants for further genetic dissection. We recently developed 

the Hapi algorithm to infer chromosome-length haplotypes using the genotypic data of 

several single gametes (Li et al. 2020). Multi-step preprocessing steps, including removal 

of erroneously genotyped markers and iterative imputation of missing markers, are 
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implemented by Hapi when the quality of gamete data is suboptimal. With the rapid 

advancement of biotechnologies, high-resolution genotyping with negligible errors will 

be achieved in the foreseeable future. Here we present a new and advanced chromosome-

phasing algorithm, IIIandMe, which only requires three gametes when genotypic data are 

of high quality. Compared to Hapi, IIIandMe is logically more straightforward and 

computationally more efficient. 
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 1.2 IIIandMe Algorithm 

 

Figure 1.1 The rationale of the core 3-gamete algorithm implemented by IIIandMe. Cases 1 
& 2: The genotypes of two out of three gamete chromosomes are complementary or identical, 
respectively. Therefore, the parental haplotypes can be immediately obtained. Case 3: Two or 
three gamete chromosomes have breakpoints. (a) The workflow of implementing one-locus-a-
step walking with majority voting (WMV).  A common region (S-S-S) is first identified, followed 
by the consequent detections of crossovers (labeled with flag) on both sides of this common 
region. Haplotype 1 is first inferred and haplotype 2 can be obtained by flipping haplotype 1. (b) 
Pattern-transition diagram facilitating the detection of the gamete chromosome with a crossover. 
The red, orange, blue and purple boxes represent S-S-S, D-S-S, S-S-D and S-D-S, respectively. 
The color arrows denote the pattern-to-pattern transition at a locus with the detected crossover 
and the associated letters (L, M and N) indicate the chromosome with that crossover. 

 

We illustrate how IIIandMe works given the genotypic data of the ordered heterozygous 

SNPs (hetSNPs) along a chromosome, where two different colors (green and yellow in 
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Figure 1.1) represent two complementary (or reciprocal) paternal haplotypes for a 

diploid genome. The same principles apply to phasing other chromosomes independently. 

A few prerequisite rules (or assumptions) are needed for the subsequent reasoning and 

computation described in IIIandMe. Rule {1} – DNA breakpoints due to crossovers are 

randomly positioned (between two adjacent hetSNPs) along any haploid gamete 

chromosome. Rule {2} – Theoretically, there exists a complementary haploid 

chromosome of any observed haploid chromosome (recombinant or nonrecombinant) in a 

given gamete; these two reciprocal chromosomes may be thought of as the product from 

the same meiotic event. However, it is very unlikely (probability close to zero) to sample 

these two reciprocal gamete chromosomes since the sample space (the population of all 

gametes from the donor) is hypothetically large. Rule {3} – Based on rule {2}, the 

probability that two sampled gamete chromosomes having breakpoints at the same 

position is also close to zero. This is likely to be true if marker density is substantially 

higher relative to the frequency of crossovers. Rule {4} – If two gamete chromosomes in 

a sample have complementary or identical genotypes, then both must represent the intact 

parental haplotypes (without breakpoint). 

We start from the haploid genotypes for three gamete chromosomes, labeled with L, M 

and N, respectively (Figure 1.1). In the simplest scenarios with two nonrecombinant 

gamete chromosomes (shown in Cases 1 or 2), the parental haplotypes for that 

chromosome can be immediately obtained according to rule {4}. Panel a of case 3 

represents a common scenario where at least two gamete chromosomes have breakpoints. 

A walking with majority voting (WMV) strategy is implemented, described as follows, to 
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infer the parental phases of the chromosome. A common region, denoted by the pattern of 

S-S-S (red box), will be first identified across the three gamete chromosomes and used as 

an initial phased fragment of a parental haplotype. If no such a common region can be 

found, we simply flip the entire genotype of one or two original gamete chromosomes to 

yield a common region (Appendix A). The word ‘flip’ refers to the swap between the 

two reciprocal genotypes of the parents at heterozygous loci (rule{2}). This common 

region, representing a phased fragment of one parental haplotype (Haplotype 1 in Figure 

1.1), is then used as the backbone of Haplotype 1 from which we can extend on both 

sides through WMV. There are four genotype patterns for gamete chromosomes L, M and 

N, i.e., S-S-S (red box), D-S-S (orange box), S-S-D (blue box) and S-D-S (purple box), at 

each hetSNP locus, where S and D denote ‘same’ and ‘different’ genotypes, respectively. 

In the one-locus-a-step ‘walk’, a transition between any two genotype patterns indicates a 

crossover on only one of these three chromosomes based on the majority voting principle. 

For example, a transition from S-S-S to D-S-S implies a crossover on chromosome L. In 

WMV, we monitor transfers between these genotype patterns to detect crossover-bearing 

chromosomes and infer the genotypes along Haplotype 1 using a pattern-transition 

diagram (panel b of Case 3). Haplotype 2, which is complementary to haplotype 1, can be 

simply obtained by flipping the genotypes of the inferred Haplotype 1. See Online 

Methods for more complicated phasing scenarios with three gamete chromosomes. 
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1.3 Results 

1.3.1 Simulation of maize data 

Whole-genome sequencing data of 24 meiotic tetrads from a maize accession were 

initially published in (Li et al. 2015) and 24 ‘mutually independent’ microspores were 

selected for developing Hapi (R. Li et al. 2020). A survey on the data of these 24 

microspores showed that, on average, 1.015 microspores have a crossover at the same 

locus (between the same two adjacent hetSNPs), which is consistent with rule {3}. In the 

simulation, we selected chromosome 1 (82710 hetSNPs) of six microspores, in which two 

microspores have a crossover at the same locus. In each simulation scenario, we always 

included these two special microspores. Specifically, in a 3-gamete analysis with these 

two microspores, we randomly picked the third one from the rest of the four microspores, 

yielding four possible combinations (choose 1 out of 4) of a set of 3 microspores. The 

data of each combination were analyzed by Hapi and IIIandMe, respectively; the average 

performances for two chromosome-phasing methods, including time consumption, total 

RAM usage, and inference accuracy, are presented in Figures 1.2 A-3, B-3 and C-3, 

accordingly. In a similar way, the 4-gamete, 5-gamete, and 6-gamete analyses were 

performed with 6 (choose 2 out of 4), 4 (choose 3 out of 4), and 1 (choose 4 out of 4) 

combinations, respectively, and the average performances of respective methods are also 

summarized in Figure 1.2. Compared to Hapi, IIIandMe had significantly reduced time 

consumption and RAM usage in the simulation (Figures 1.2 A and B). In the 3-gamete 

and 4-gamete analyses, neither method was able to correctly derive the parental 

haplotypes of chromosome 1, owing to the fact that two microspores have a common 
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crossover (Figure 1.2 C-3 and C-4). Nevertheless, in the 5-gamete and 6-gamete 

analyses, greater than 50% of the microspores do not have crossover at this locus so the 

two rounds of majority votings were able to identify these two chromosomes with a 

common crossover and inferred the parental haplotypes of chromosome 1 accurately 

(Figure 1.2 C-5 and C-6). 
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Figure 1.2 Performance comparison between IIIandMe and Hapi when analyzing 3, 4, 5 or 6 
single gamete cells, respectively, in the simulation (A, B and C) and in the analysis of a citrus 
dataset (D). 
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1.3.2 Real citrus data analysis 

We also demonstrated IIIandMe and Hapi using our dataset of a citrus accession, 

Clementine de Nules, including the diploid genotypic data for 540-2365 ordered hetSNPs 

on 9 chromosomes and haploid genotypic data for 6 single pollen grains. The cultivar has 

been assayed using a customized SNP array (AxiomTM Citrus56AX) that was designed 

at UCR by Dr. Mikeal Roose. This dataset has been deposited and is publicly available in 

the Citrus Genome Database (https://www.citrusgenomedb.org/). When analyzing any set 

of 3 pollen grains, 20 candidate haplotypes (choose 3 out of 6) were estimated for each of 

9 chromosomes by each method. As shown in Figure 1.2 D-3, both methods were able to 

infer the parental haplotypes with 100% accuracy because no two or more pollen grains 

carry a common crossover at any loci. The inference accuracies for 4-gamete, 5-gamete, 

and 6-gamete analyses were also 100%, as displayed in Figure 1.2 D. 

 

1.4 Discussion 

We demonstrated that IIIandMe, which applies to genomic data of high quality, can 

accurately infer chromosomal haplotypes using three or a few more single gametes and is 

computationally much more efficient than Hapi. Our goal is to reduce the sample size 

substantially, and therefore operational cost, for phasing individual genomes, such that 

population-based genetics and clinical genetics studies become affordable and feasible. 

Theoretically, only three gametes are sufficient, likely pushing the boundary to its 

possible limit. However, errors may arise if two gametes have a common crossover at the 

same locus, which is a very rare occurrence in practice. To overcome this possible but 
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unlikely deficiency, we suggest using 5 or 6 gametes rather than 3 and propose a k-

gamete strategy, where k is the number of gametes and k > 3. The same 3-gamete core 

algorithm is repeatedly applied to each combination set of 3 gametes from k gametes, 

resulting in multiple candidate chromosomal haplotypes. Consensus haplotypes are then 

derived with high-level of confidence, ruling out the potential adverse influences that 

stem from (1) a common crossover shared by two gametes and/or (2) occasional mistakes 

in genotypic data. In the near future, these two defect sources will likely be eliminated 

from the rapidly advancing technologies by further increasing the genetic marker density 

(DNA resolution) and decreasing the genotyping error rate, further perfecting the 

performance of IIIandMe. We foresee that IIIandMe will find its way to become 

impactful in many genetic research areas and applications. 
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Chapter 2 An Expectation and Maximization Algorithm for Binary 

Data Analyses 

 
Probit and logistic regressions are routinely used to analyze binary traits in biology and 

agriculture. The expectation and maximization (EM) algorithm has been developed for 

probit regression analysis under the latent variable assumption. However, computing the 

variance matrix of the estimated parameters from the EM algorithm is not provided as a 

byproduct of the iteration process and thus requires additional efforts to derive the 

variance matrix. In this study, we presented Thomas Louis’s (1982) observed information 

matrix for the EM algorithm. We also extended the methods from the probit regression 

analysis to the logistic regression analysis, including the EM algorithm and the variance 

matrix of the estimated parameters. Using a rice data set, we demonstrated that the EM 

estimated parameters and their estimated errors are identical to the results from PROC 

PROBIT and PROC LOGISTIC of the SAS software package, which use the Newton-

Raphson algorithm to deliver the parameters and their standard errors.  

 

2.1 Introduction 

Binary traits are very common in farm animals and agricultural crops. Typical examples 

include disease resistance (resistant vs. susceptible), flower color (white vs. purple) and 

twinning in sheep (yes vs. no). Analyzing binary traits requires special statistical 

technologies beyond linear models. Although linear model analysis has been adopted by 
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geneticists to map quantitative trait loci (QTL) for binary traits (Visscher et al. 2009), it is 

not encouraged in general. One reason is that the predicted responses may fall outside of 

the natural range between 0 and 1. Generalized linear models (GLM) are particularly 

designed for analyzing discretely distributed traits, including binary traits as a special 

case (Nelder and Wedderburn 1972). The GLM is a hybrid technology between linear 

models and the maximum likelihood methods. The distribution of a discrete trait provides 

the likelihood function to be maximized. A link function of the expectation of the trait 

provides a linear model for parameter estimation. The GLM is sufficiently general to 

cover all traits with distributions from the exponential family (McCullagh and Nelder 

1989).  

 

A binary response variable is often assumed to be controlled by a hidden variable that is 

continuously distributed, called the liability or the latent variable. The distribution of the 

liability is also assumed to be normal for the probit regression analysis. If the liability is 

greater than zero (an assumed threshold), the individual will show one of the two 

phenotypes of the binary trait; otherwise, the individual will show the other phenotype. 

The assumed normal liability is then described by a linear model with interested factors 

as independent variables in the linear model. Under the liability model, all properties of 

the normal distribution can be used in parameter estimation and statistical tests.  

 

The maximum likelihood (ML) method is a general method for parameter estimation. For 

most problems, the solution of the parameters is often implicit and thus iterations are 
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required. However, when applied to linear models with a normally distributed residual 

error, the ML solution of the parameters is explicit. Therefore, a variable associated with 

a normal error is better analyzed via the ML method. The assumed latent variable of the 

binary trait is normally distributed in the probit regression analysis. Therefore, the ML 

method is the ideal tool for binary data analysis under the liability model. The liability is 

a missing variable (missing value). When the missing value is not missing, the beautiful 

solution of the linear model applies. The expectation and maximization (EM) algorithm 

(Dempster et al. 1977) is a special algorithm for the ML method. There are two 

requirements in order to use the EM algorithm: (1) the problem must be formulated as a 

missing value problem; (2) if the missing value is not missing, the solution of the 

parameters is mathematically attractive (beautiful). Both requirements of the EM 

algorithm are satisfied for binary trait analysis. Therefore, the liability model provides the 

best example for the EM algorithm. McCulloch (McCulloch 2000) presented a mini 

review on generalized linear models, where he introduced the EM algorithm for binary 

data analysis. This mini review traced the original concept of “probit analysis” back to 

1934 by Bliss (Bliss 1934; Bliss 1935) who plotted  against the log dose (log ) 

of nicotine to kill aphids at this dose and found that the relationship appeared to be 

described by a two-segment linear regression, where  is the binomial 

proportion with  killed aphids out of a total of  aphids at dose . When , 

the probit of , , can be treated as the response variable and the log dose 

( ) as an independent variable with a weight denoted by , which is the inverse of 

1 ˆ( )jp
-F jd

ˆ /j j jp m n=

jm jn jd ˆ0 1jp< <

ˆ jp
1 ˆ( )jp
-F

log  jd jW
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the variance for the quantile corresponding to . Bliss’s (Bliss 1934; Bliss 1935) probit 

regression is limited to binomial data with large number of trials because  cannot take 

0 or 1. Fisher (Fisher 1935), for the first time, modeled a binomial trait with the ML 

method that defines the probit link, which is drastically different from the probit 

transformation (Bliss 1935). With the probit link function, the expectation of the 

observed binomial data is defined as . This allowed Fisher (Fisher 1935) to 

explicitly write the binomial log likelihood function at each dose and then the overall log 

likelihood function of the entire sample. The Newton-Raphson algorithm is often used to 

search for the MLE of the parameters. When the link function is used,  never appears 

in the likelihood function; instead,  and  both enter the likelihood function 

separately. When  for all , the binomial trait becomes a binary 

(Bernoulli) trait, where  is the sample size. So, Fisher’s maximum likelihood can 

handle binary traits as a special case of binomial traits.  

 

McCulloch (McCulloch 2000) introduced the EM algorithm for estimating  of a binary 

trait and found that the EM algorithm is remarkably similar to the “working probit” 

model developed by Finney (Fanney 1952), who proposed a pseudo response variable 

evaluated at the current parameter  and used a weighted least squares method to 

update the parameters, 

  (1) 
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ˆ jp

( )j jp X b=F

ˆ jp

jm jn

1jn = 1, ,j n= !

n

b

( )tb

( 1) 1( )t T TX WX X WZb + -=



 15 

where  is a pseudo response variable (a function of the parameter at iteration t) and W 

is the weight, which is defined as 

  (2) 

We prefer to call the pseudo response variable the “working response variable.” In the 

EM algorithm of McCulloch (McCulloch 2000), the E-step involved the conditional 

expectation of the latent variable given the observed binary trait as shown below, 

  (3) 

where  is the normal liability. This is the expectation of a truncated standardized 

normal distribution. The maximization step is represented by 

  (4) 

Like any other EM algorithms, there is no easy way to calculate the variance matrix of 

the estimated parameter, , and a simple extension of the linear model variance 

matrix for , , does not apply here. This is one motivation of the current study.  

 

The liability model makes it easier to analyze binary traits using the Bayesian approach 

(Albert and Chib 1993), where the missing liability for each individual can be simulated 

from a truncated normal distribution via the Markov chain Monte Carlo (MCMC) 

algorithm (Brooks 1998). Burton (Burton 1999) also developed Gibbs samplers under the 

Bayesian framework to study the generalized linear mixed model (GLMM) for binary 

data analysis. Although the Bayesian method can be computationally inferior relative to 
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the ML method, it does not depend on the large sample asymptotic theory for calculating 

the variance matrix of the estimate parameters and thus provides appropriate results of 

significance tests. Chakraborty and Khare (Chakraborty and Khare 2017) also studied the 

Bayesian method for binary data analysis and further investigated the convergence 

properties of the Gibb samplers. Yi and Xu (Yi and Xu 2000) adopted the Bayesian 

method for mapping quantitative trait loci (QTL) underlying binary disease traits. More 

Bayesian approaches to binary data analyses can be found in Sorensen et al (Sorensen et 

al. 1995), Czado (Czado 1994), Girolami and Rogers (Girolami and Rogers 2006) and 

McDermott et al (McDermott et al. 2016). 

 

The GLMs reviewed so far only deal with fixed effects. When the model effects include 

both the fixed effects and the random effects, the model becomes GLMM (Breslow and 

Clayton 1993; Wolfinger and O'connell 1993). DeMaris (DeMaris 1995) first applied the 

GLMM to quantitative genetics to estimate the heritability for binary traits. McCulloch 

(McCulloch 1994) first investigated the EM algorithm applied to GLMM for estimation 

of variance components for binary data. The simplified version of the GLMM of 

McCulloch (McCulloch 1994), when the linear predictors only included fixed effects, is 

the EM algorithm for GLM. However, the information matrix of the estimated fixed 

effects was not given by McCulloch (McCulloch 1994). Beyond the EM algorithm for 

GLM of binary data analysis, measurement errors of independent variables of the fixed 

effects have been investigated (Schafer 1993; Xu et al. 2003). An interesting problem is 

the interval QTL mapping for binary traits, where the independent variable (genotype 
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indicator variable for a locus between two markers) is entirely missing (Xu et al. 2003). 

The liability model of Xu et al (Xu et al. 2003) involves missing values for the response 

variable and missing values for the predictors. Xu et al (Xu et al. 2003) were able to use a 

double layer EM algorithm to estimate genetic parameters (QTL effects). The approach is 

similar to what McCulloch (McCulloch 1994) did for the GLMM of binary data analysis 

where a similar double layer EM algorithm is involved.  

 

While the GLM and GLMM for binary data analysis often take advantages of the probit 

link function because the latent variable is normal, which is consistent with the normal 

error distribution of the linear models and the linear mixed models, the logistic regression 

is more often used for classification involving two categorical groups. A similar EM 

algorithm does not exist for logistic regression. Therefore, the second motivation of this 

study is to propose an EM algorithm for logistic regression under the latent variable 

assumption. In addition to logistic regression, Liu (Liu 2004) and Azevedo & Andrade 

(Azevedo and Andrade 2013) suggested to use a t distribution with  to describe 

the latent variable. Such an analysis is called the robit analysis (Liu 2004). Link families 

beyond logit and probit were discussed by Czado (Czado 1994). 

 

The overall motivations of this study are: (1) investigate the EM algorithm for probit 

analysis with an emphasis on developing the information matrix of the estimated 

parameters; (2) develop a similar EM algorithm for logistic regression; (3) illustrate the 

EM algorithms applied to agricultural data analysis and QTL mapping.  

7df =
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2.2 Theory and Methods 

2.2.1 The liability model and the likelihood function 

Let  be an underlying variable with a normal distribution of unit variance (called the 

liability). The variable controls the status of a binary trait, which is denoted by , where 

 for the presence of a character and  for the absence of the character. The 

relationship between the binary phenotype and the liability is assumed to be 

  (5) 

All individuals with the character have a liability greater than 0 and all individuals 

without the character have a liability less than 0. So, we do not know the value of the 

liability for an individual but given the binary phenotype, we have partial information 

about the liability. The model for the liability is 

  (6) 

where  is the residual with a standardized normal distribution. The 

parameters are  and the independent variables are 

. The probability of  is 

  (7) 

and the probability of  is  
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where  is the cumulative distribution function (CDF) of the standardized normal 

variable. Corresponding to , we call  the probability density function 

(PDF) of the standardized normal distribution. Since the normal distribution is 

symmetrical around the mean (zero for the standardized normal distribution), 

 and . Define the log likelihood function for 

individual j by 

  (9) 

The population-wise log likelihood function takes the sum of all individual-wise log 

likelihood functions, which is 

  (10) 

We now review several existing algorithms to find the maximum likelihood estimates 

(MLE) of the parameters ( ) and then introduce the EM algorithm under the liability 

model and develop the variance-covariance matrix of the estimated parameters.  

 

2.2.2 The Newton-Raphson algorithm 

The maximum likelihood estimates of the parameters are obtained via the Newton-

Raphson algorithm described by 

  (11) 
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where  is called the score vector (first order partial derivatives) and 

 is called the Hessian matrix (second order partial derivatives). 

Explicit expressions of the score and hessian matrices are available for the probit 

regression analysis, but numeric derivatives are often used in Once the iteration process 

converges, the observed information matrix is 

  (12) 

Therefore, the variance matrix of the estimated parameters is approximated by  

  (13) 

Details of the variance matrix is 

  (14) 

The exact information matrix is 

  (15) 

and the exact variance matrix should be 

  (16) 
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  (17) 

and the p-value is 

  (18) 

where  represents a variable from a Chi-square distribution with one degree of 

freedom.  

 

The first and second numeric differentials of the likelihood function with respect to the 

parameters are available in R and other computer languages. Users do not have much 

control of the iteration process because the Newton-Raphson iteration equation is 

numerical, not explicit.  

 

2.2.3 The generalized linear model approach 

The generalized linear model takes advantage of the properties of the exponential family 

of distribution for the liability. With the normal distribution of the liability, the 

expectation and the variance of  are  

  (19) 

and 

  (20) 
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  (21) 

and the negative Hessian matrix is 

  (22) 

where  is the partial derivative of the expectation with respect to the parameters, i.e., 

  (23) 

The weight is 

  (24) 

The Newton-Raphson iterative equation is 

  (25) 

where 

  (26) 

The increment shown in equation (26) has a familiar weighted least square form. 

Therefore, the algorithm is also called the iteratively reweighted least squares (IRWLS) 

method. 
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2.2.4 The expectation and maximization algorithm  

2.2.4.1 The EM algorithm 

We have formulated the problem as a missing value problem. Is the solution 

mathematically beautiful if  is observed? If  is not missing, the solution for  is 

  (27) 

This is the least squares solution and it is beautiful. So, the two conditions for application 

of the EM algorithm are met and thus we will go ahead to develop the EM algorithm for 

binary data analysis. Let  and  be the probability density function (PDF) and 

the cumulative distribution function (CDF) for the standardized normal variable. Two 

properties of the standardized normal distribution are  and 

. The EM algorithm for estimating the parameters is 

  (28) 
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  (31) 

 

The EM algorithm is represented by the two steps after the parameters are initialized.  

 

Summary of the EM algorithm: 

Step (0): Initialize the parameter values,  for ; 

Step (1): Take the expectation step by calling equation (30); 

Step (2): Take the maximization step by calling equation (28); 

Step (3): Increment t by  and go back to step (1) if  is not 

sufficiently small, otherwise stop the loop and report the MLE of the parameters .  

 

The Louis information matrix (Louis 1982) for the estimated parameter is  

  (32) 

The variance-covariance matrix of the estimated parameters is 

  (33) 
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which is called selection intensity in quantitative genetics (Falconer and Mackay 1996). 

The conditional variance of the liability given  is 

  (35) 

Let  be a diagonal matrix with elements holding the squared selection 

intensities. We can express the conditional variance matrix by  and 

thus . Therefore, the variance-covariance matrix of the 

estimated parameters is 

  (36) 

The Wald test for the regression coefficient is 

  (37) 

and the p-value is 

  (38) 

where  represents a variable from a Chi-square distribution with one degree of 

freedom.  

 

2.2.4.2 Derivation of the EM algorithm 

The expectation of the complete-data likelihood function is the target function for 

maximization. The complete-data log likelihood function is 

  (39) 
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The expectation of the complete log likelihood function is 

  (40) 

The partial derivative of  with respect to  is 

  (41) 

Setting , yields  

  (42) 

Therefore, 

  (43) 

which is the maximization step. The expectation step has been introduced before in 

equation (29) or equation (30).  

 

The Thomas Louis (1982) information matrix for the estimate parameters is 
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Therefore, 

  (47) 

As a result, 

  (48) 

 

2.2.5 EM Algorithm for logistic regression 

The liability model for logistic regression is the same as the probit regression, which is 

  (49) 

The residual of the model is assumed to follow a standardized logistic distribution, 

, where  is the location parameter and  is the scale 

parameter. The scale parameter is not the standard deviation, which is , in the 

standardize logistic distribution. Unlike the normal liability model, the complete-data log-

likelihood function for the logistic model does not have a clean form. This makes the EM 

algorithm for the logistic regression intractable. However, we simply copied the formula 

from the probit regression and adopted the maximization step by  

  (50) 

where the conditional expectation is the expectation of a truncated logistic distribution. 

There is no explicit expression of the truncated expectation, but a numerical function is 

available in R (Nadarajah and Kotz 2006), which is 
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if  and  

 (52) 

if . The Louis (Louis 1982) information matrix used in equation (32) does not 

apply here. We now propose an alternative method for the variance of  from the 

logistic regression model.  

 

Recall that  defined in equation (49) is a logistic variable. If we know , we can 

take the inverse of  to obtain a weight, , which will allow us to 

calculate  

  (53) 

We now use the delta method to approximate . We first use the Taylor series 

expansion to linearize the relationship between  and  at , which is  

  (54) 
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  (56) 

Solving for the variance of the liability, we get 

  (57) 

Therefore, the weight is approximated by 

                              (58)     

2.3 Results 

2.3.1 Association between the “dark purple pericarp color” and agronomic traits in 

rice 

This trait is controlled by a single gene called the OSC1 gene (Saitoh et al. 2004). 

Presence of this gene causes the entire rice plant to show the dark purple color. The 

phenotype was coded as 1 for the presence of the purple color and 0 for the absence of 

the purple color. The population consists of 210 recombinant inbred lines (RIL) from the 

cross between two elite rice cultivar. Among the 210 RILs, 91 were purple colored and 

119 were regular green colored. The agronomic traits (variables) include yield (YD), 

tiller number per plant (TP), grain number (GN), 1000-grain-weight (KGW), grain length 

(GL), grain width (GW) and heading date (HD). The traits were evaluated with four 

replications (two years and two locations) (Yu et al. 2011). The data are provided in 

Appendix B-S1. The probit model is
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where  is the intercept. The data were analyzed using three algorithms under both the 

probit model and the logistic model. The first algorithm is the Newton-Raphson (NR) 

algorithm using our own R code. The second algorithm is the EM algorithm developed in 

this project. The third algorithm is although the Newton-Raphson algorithm but 

implemented with PROC PROBIT and PROC LOGISTIC in SAS. Results from the 

probit model analysis are shown in Table 2.1 while Table 2.2 shows the results from the 

logistic model analysis. 

 

Table 2.1 Estimated parameters and tests from the probit regression model analysis. 

Parameter 
 

EM NR SAS Test 

Estimate StdErr Estimate StdErr Estimate StdErr Wald p-Value 

Intercept -9.5129 6.2314 -9.5129 6.2312 -9.5129 6.2314 2.33 0.1269 

YD 0.0166 0.1017 0.0166 0.1017 0.0166 0.1017 0.03 0.8707 

TP 0.1150 0.2384 0.1150 0.2384 0.1150 0.2384 0.23 0.6294 

GN 0.0019 0.0253 0.0019 0.0253 0.0019 0.0253 0.01 0.9395 

KGW -0.2787 0.1239 -0.2787 0.1239 -0.2787 0.1239 5.06 0.0245 

GL 0.9646 0.2945 0.9646 0.2945 0.9646 0.2945 10.72 0.0011 

GW 3.0556 0.7804 3.0557 0.7804 3.0557 0.7804 15.33 0.0001 

HD -0.0408 0.0151 -0.0408 0.0151 -0.0408 0.0151 7.25 0.0071 

 

 

 

INTb
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Table 2.2 Estimated parameters and tests from the logistic regression model analysis. 

Parameter 
 

EM NR SAS Test 

Odds Ratio 
 

Estimate StdErr Estimate StdErr Estimate StdErr Wald p-Value 

Intercept -15.4488 10.2063 -15.9031 10.1854 -15.9031 10.2882 2.3894 0.1222 
 

YD 0.0291 0.1648 0.0224 0.1643 0.0224 0.1651 0.0184 0.892 1.023 

TP 0.1814 0.3904 0.2022 0.3893 0.2022 0.3915 0.2669 0.6054 1.224 

GN 0.0028 0.0411 0.0038 0.0410 0.0038 0.0412 0.0086 0.9262 1.004 

KGW -0.4595 0.2033 -0.4494 0.2028 -0.4494 0.2027 4.915 0.0266 0.638 

GL 1.5842 0.4875 1.5701 0.4874 1.5700 0.4901 10.2631 0.0014 4.807 

GW 4.9920 1.3152 5.0465 1.3172 5.0465 1.3258 14.4888 0.0001 155.478 

HD -0.0667 0.0250 -0.0666 0.0250 -0.0666 0.0250 7.108 0.0077 0.936 

 

For the probit model analysis (Table 2.1), all three algorithms produced identical results 

for both the estimated parameters and the standard errors (StdErr) of the estimates. This 

observation validated the EM algorithm. Among the seven variables (agronomic traits), 

four variables appear to be related to the color trait. The p-value of  is significant at 

the 0.05 level. The p-values of the remaining three significant variables are all very small, 

especially trait GW with a p-value of 0.0001.  

 

The conclusions from the probit regression analysis also apply to the logistic regression 

analysis (Table 2.2). The NR and the SAS results of the logistic analysis are identical, 

subject to small differences due to floating point errors of the computers. The EM 

algorithm, however, produced slightly different results from the NR and the SAS 

algorithms. The differences are negligibly small, which validated the EM algorithm. The 

ˆ
KGWb
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standard errors of the estimated parameters for the EM algorithm differ slightly from 

those of the NR and SAS analyses (Table 2.2). For the EM algorithm, we also drew 1000 

samples with replacement to calculate the bootstrap variances and standard deviations 

among the 1000 samples (Efron 1979). Appendix B-S2 provide the bootstrap variance-

covariance matrix of the EM estimated parameters along with the NR and SAS variance-

covariance matrices. From the covariance matrices, we extracted the diagonal elements 

and took square roots of the variances to get the standard errors, which are listed in Table 

2.3. The bootstrap standard errors are consistently larger than the standard errors from the 

NR algorithm and the SAS procedure. This observation indicates that using the observed 

information of an estimated parameter to calculate the variance of the estimate is biased 

downward. The expected information may improve the estimation of the standard error of 

a parameter over the observed information. 

The logistic regression analysis produced odds ratio statistics as by products. The odds 

ratio is a very common statistic in human genetics studies, although it is rarely reported in 

agricultural statistics. The odds ratios for the GL and GW are very high, much higher 

than unity, which is expected under the null model. The highest odds ratio occurs for trait 

GW, which is  

 (60) 

where  is the sum of all Betas except .  
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Table 2.3 Standard errors of the estimated parameters from the logistic regression 

analysis. 

Parameter Bootstrap NR SAS 

Intercept 11.4194 10.2063 10.2882 

YD 0.1765 0.1648 0.1651 

TP 0.4364 0.3904 0.3915 

GN 0.0449 0.0411 0.0412 

KGW 0.2155 0.2033 0.2027 

GL 0.5145 0.4875 0.4901 

GW 1.4526 1.3152 1.3258 

HD 0.0280 0.0250 0.0250 

 

 

 

2.3.2 Association between the “dark purple pericarp color” and a molecular marker 

in rice 

The purple color trait is controlled by a gene (OsC1) located on chromosome 6 at 

position 31.014 cM. This gene is within Bin868 (a marker) of the rice genome. We 

choose a neighboring marker (Bin871) that is about 3 cM away from Bin868 for this 

association study. The genotype data for Bin871 are also presented in Appendix B-S1. 

The probit model for this association study is  

  (61) 

Results from three algorithms (EM, NR and SAS) under two models (the probit and 

logistic models) are shown in Table 2.4. Again, all three algorithms produced almost 

1
871 871( ) INT BIN BINXµ b b-F = +
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identical results under both the probit model and the logistic model. The test statistics, 

however, are different between the probit and the logistic models. This is because the 

Wald test statistics are extremely high, leading to extremely small p-values. The small 

model (a single independent variable) allows us to show the iteration processes of the EM 

algorithm and the NR algorithm under the two models (Figure 2.1). Clearly, the EM 

algorithm took more iterations (about 40) to converge at a predetermined criterion while 

the NR algorithm took just 6 iterations to converge at the same criterion.  

 

Table 2.4 Estimated parameters for association between the color trait and Bin871. 

    EM NR SAS 

Model Parameter Estimate StdErr Estimate StdErr Estimate StdErr 

Probit Intercept -1.6041 0.2145 -1.6041 0.2145 -1.6041 0.2145 

 
Effect 3.4300 0.3082 3.4304 0.3082 3.4304 0.3082 

Logistic Intercept -2.8565 0.4599 -2.8565 0.4599 -2.8565 0.4599 

  Effect 6.2059 0.6857 6.2064 0.6858 6.2063 0.6858 
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Figure 2.1 Convergence processes for parameters of the regression of color on Bin871. The 
first row (panels A and B) shows the result from the probit model analysis and the second row 
(panels C and D) shows the result from the logistic model analysis. The first column (panels A 
and C) shows the result from the EM algorithm and the second column (panels B and D) shows 
the result from the NR algorithm. 

 

2.3.3 Genome scanning for the “dark purple pericarp color” trait in rice 

The rice genome in this RIL population consists of 1619 bins (a bin is a block of SNP 

markers with identical segregation pattern). We scanned the entire genome to show the 

estimated marker effect for every bin of the genome. Figure 2.2 illustrates the genome-
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wide estimated parameters (intercepts and bin effects) for the color trait. First, there is no 

visual difference between the EM algorithm and the NR algorithm in both the estimated 

intercepts (upper panels) and the estimated marker effects (lower panels). Secondly, the 

estimated parameters (intercept and effect) from the logistic model analysis deviated 

more from zero than the effects from the probit model analysis. The estimates from the 

logistic model are approximately  times the estimates from the probit 

model. Thirdly, the estimated parameters (intercept and effect) peak at Bin871 from 

chromosome 6, which is 3 cM away from Bin868 where the OsC1 gene is located. Three 

bins (Bin866, Bin867 and Bin868) have been excluded from the plot because the 

segregation patterns of the three bins match the color phenotypes and thus no legal 

estimates are available for the three bins.  

/ 3 1.8138p =
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Figure 2.2 Genome-wide estimates of parameters for the color trait of the rice population. 
The first row (panels A and B) shows the intercept and the second row (panels C and D) shows 
the regression coefficient (effect). The first column (panels A and C) shows the result of the EM 
algorithm and the second column (panels B and D) shows the result of the NR algorithms. 

 

We now compare the estimated parameters from the EM algorithm and those from the 

NR algorithm under the probit model and the logistic model. Figure 2.3 shows the plots 

of the estimated parameters (intercept and regression coefficient) from the NR algorithm 

against the estimates from the EM algorithm for the 1619 bins. All points are on the 

diagonal lines, indicating that the EM algorithm and the NR algorithm produced identical 

results.  
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Figure 2.3 Comparison of estimated parameters from the EM algorithm with the estimates 
from the NR algorithm. The first row (panels A and B) shows the comparison of the intercept. 
The second row (panels C and D) shows the comparison of the regression coefficient (effect). 
The first column (panels A and C) shows the comparison from the probit model analysis and the 
second column (panels B and D) shows the comparison from the logistic model analysis. 

 

Figure 2.4 compares the standard errors of the estimates from the EM algorithm and the 

standard errors from the NR algorithm. Again, all points are on the diagonals, indicating 

that the standard errors from Louis’s (1982) method for the EM algorithm are the same as 

those from the NR algorithm.  
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Figure 2.4 Comparison of standard errors of estimated parameters from the EM algorithm 
with the standard errors from the NR algorithm. The first row (panels A and B) shows the 
comparison of the intercept. The second row (panels C and D) shows the comparison of the 
regression coefficient (effect). The first column (panels A and C) shows the comparison from the 
probit model analysis and the second column (panels B and D) shows the comparison from the 
logistic model analysis. 

 

The OsC1 gene is located within Bin868 on chromosome 6. This bin co-segregates 

exactly with the OsC1 gene. The NR algorithm cannot handle this degenerating issue 

properly, as shown in Figure 2.5 where the estimated parameters at Bin868 are 
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drastically different from the nearby markers (Bin869, Bin870 and Bin871). This 

problem is called “complete separation” where the maximum likelihood estimates of the 

parameters do not exist (Hosmer and Lemeshow 1989; DeMaris 1995), . The 

segregations of Bin866 and Bin867 differ from the OsC1 gene (Bin868) by two and one 

individuals, respectively. These two bins are nearly identical to the OsC1 gene and thus 

the NR algorithm also failed to provide reasonable estimates of the parameters (see 

Figure 2.5). The EM algorithm, however, provides very good estimates of the parameters 

because the estimated parameters of the three bins are much the same as their 

neighboring bins (see Figure 2.5). This phenomenon demonstrates that the EM algorithm 

behaves better than the NR algorithm in handling special situations like this, although it 

took a very large number of iterations to converge.   
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Figure 2.5 Estimated parameters (intercept and coefficient) for markers around the OSC1 
gene (within Bin868) on chromosome 6 of the rice genome. Panel A shows the estimated 
marker effect (regression coefficient) from the probit model. Panel B shows the estimated marker 
effect (regression coefficient) from the logistic model. Panel C shows the estimated intercept 
from the probit model. Panel D shows the estimated intercept from the logistic model. 

 

2.4 Discussion 

Given the more general Newton-Raphson algorithm for the maximum likelihood 

estimation of parameters, why do we need the EM algorithm in the first place? Answers 

to this question depend on the problems to be addressed. In most problems, the first and 

the second order derivatives of the likelihood function do not have explicit forms. 

Numerical derivatives must be used to code the NR algorithm, which makes the iteration 

process much more like a black box. If the iteration process fails, it is hard to debug the 
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code. The EM algorithm, however, makes the coding much easier and users can easily 

code the EM algorithm themselves and thus have a better control for the iteration process. 

More importantly, the EM algorithm is often more stable than the NR algorithm 

(Camilleri 2009). This is because one of the properties of the EM algorithm: the objective 

function at the parameters of the next iteration always higher than the objective function 

at the parameters at the current iteration (Dempster et al. 1977). The NR algorithm, 

however, does not guarantee for the parameters to always move in the direction of 

increasing the objective function. Sometimes the parameters at the next iteration may 

cause the Hessian matrix not invertible and thus the iteration process gets crashed. This is 

why a Newton-Raphson ridge (NRR) algorithm may be adopted to improve the stability 

of the NR algorithm.  

 

Unlike the NR algorithm that produces the variance matrix of the estimated parameters as 

a byproduct of the iteration process, the EM algorithm does not produce such a variance 

matrix in an automatic way. The Louis’s (Louis 1982) information matrix must be 

derived if such a variance matrix is needed. In many problems, derivation of the Louis 

information matrix can be very complicated, which is often the criticism of the EM 

algorithm. However, situations where straightforward derivation of the Louis information 

matrix do exist. The EM algorithm for the probit regression analysis under the latent 

variable presented here is a typical example of the latter. In many cases, the EM 

algorithm is just an intermediate step of a larger problem and the variance of the 

estimated parameters is not needed.  
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The Louis information matrix for the EM algorithm (Louis 1982) and the information 

matrix for all the ML methods are only appropriate for large samples. For small samples 

where the asymptotic theory does not apply, Bayesian methods implemented via the 

MCMC algorithm are highly recommended because the empirical variance matrix of the 

parameters drawn from the posterior samples is less biased. If the MCMC algorithm is 

too costly in terms of computational time required, the bootstrap method (Efron 1979) 

should be adopted to obtain a less biased variance matrix, as demonstrated in the rice data 

analysis from this study.  

 

The logistic regression is more often used to analyze binary traits than the probit 

regression. One of the reasons is that the CDF of the logistic distribution is explicit while 

the CDF of the normal distribution is not and it involves numerical integration. Prior to 

the advent of the popular computers, numerical integration was computationally costly. 

Being able to avoid numerical integration in the CDF of the logistic distribution is a big 

advantage over the normal distribution. The logistic regression under the latent variable 

assumption indicates that the error of the liability follows a standard logistic distribution. 

An EM algorithm similar to the probit regression has not been developed for the logistic 

regression analysis. We simply adopted the formulas of the EM algorithm from the probit 

regression to the logistic regression. To our surprise, the same EM formula works 

perfectly for both the probit regression and the logistic regression.  
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We tried to derive the EM algorithm for the logistic regression anew and realized that this 

was a bad example to use the EM algorithm. Given the PDF of the logistic distribution,  

  (62) 

The complete-data log likelihood function is 

  (63) 

The expectation of the complete-data log likelihood function involves the expectation of 

a natural log function. Neither the first order derivative nor the second order derivative 

has an explicit form as what we see in the complete-data likelihood function for the 

normal distribution.  

 

Generalized linear models, e.g., the probit regressions, and generalized linear mixed 

models are routinely used in statistics. However, many biologists may not be familiar 

with the technology and thus often try to avoid using GLM and GLMM. This study 

introduces the EM algorithm for probit and logistic regressions in a language style that is 

easy to understand by biologists and thus promotes wide applications of the GLM and 

GLMM to biological problems.  
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Chapter 3 Whole Genome-based Insights Into the Phylogeny of Punica 

 

Pomegranate (Punica granatum L.) is a perennial fruit tree and has been widespread 

worldwide as a traditional medical product for over 4000 years. Punica protopunica Balf. 

is one of the only two species of the Punica genera, considered the “sister” of P. 

granatum. However, due to its unique independent evolutionary line, it was also 

hypothesized as the ancestor of P. granatum., beyond the taxonomic classification. 

Phylogenetic relationships and diversification within the Punica genus are classic and hot 

scientific topics that have been elucidated by fossil, morphological, molecular and 

environmental data. Further resolution of relationships within the genus is still needed 

and can be achieved by analysis of whole genomic data. In this study, important 

pomegranate germplasm from the United States was sequenced to resolve the 

complication, including 40 accessions of 2 species: P. granatum. and P. protopunica. We 

assembled the genomes, predicted and annotated genes, and identified orthologous 

coding sequences, which were then used to investigate the relevance and power of 

phylogenomic relationship inference. The phylogenetic tree of the whole genome data 

yielded highly node-supported, indicating P. protopunica. as both sister and ancestor 

groups of P. granatum., which was consistent with the traditional taxonomy. Our 

framework provides an efficient and inexpensive methodology for characterizing any 

unknown cultivars. These analyses also provided for a robust number of annotated genes 

among accessions to conduct studies on the genomic underpinnings of essential traits 
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such as pest and disease resistance, seed hardness, flavor, tree size, and reduced fruit 

cracking rates, among others. Moreover, the data here provide a valuable resource for 

analyzing pomegranates and facilitating future breeding and trait association studies. 

 

3.1 Introduction 

The rapid development of next-generation sequencing (NGS) has transformed the field of 

molecular phylogenetics into phylogenomic, where genome-scale data reconstructs the 

evolutionary biology of organisms (Kapli, Yang, and Telford 2020; Young and Gillung 

2020). Traditional molecular phylogenetic studies include relatively few loci and are 

therefore limited by stochastic or sampling error (Young and Gillung 2020). This 

obstacle can be addressed successfully using much larger sequencing data, as modern 

phylogenomics analysis makes use of hundreds to thousands of loci across the whole 

genome (Zhang et al. 2019; Sims et al. 2009). Furthermore, whole genomes are 

particularly suited to resolving evolutionary relationships where sequence variation is 

limited by taxonomic level, early divergence, significant differences in morphology, 

rapid speciation, or slow genome evolution (Zhou et al. 2021).  

 

Pomegranate (P. granatum) has been an ancient fruit tree since prehistoric times and 

becoming an arising profitable crop due to its attractive features, such as its bright 

appearance and abundant medicinally valuable compounds (Chandra et al. 2010). This 

fruit belongs to the family Punicaceae Horan. (Lythraceae Jaume St.-Hil.), which 

contains a single genus Punica L., with two species: P. granatum and P. protopunica. P. 
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granatum has its natural distribution in central Asia, from Iran to northern India, and 

spreads to the Mediterranean basin, East Asia, North and South America, and South 

Africa (Chen, Zhang, and Yuan 2019; Ja et al. 2020). The second species in Punica, P. 

protopunica, is only distributed on the Yemeni island of Socotra of the Arabian Peninsula 

and is considered an ancestral species (Zeynalova 2017) or an independent evolutionary 

branch (Chandra et al. 2010). This species exhibits several morphological differences 

compared with P. granatum, i.e., larger and coarser leaves, different foliage, smaller fruit 

size and pink flower, evergreen, continuous flowering, and white seeds (Ja et al. 2020). 

Even if it is the only congeneric species of P. granatum (2n = 16), the haploid number of 

P. protopunica (2n = 14) chromosomes is n = 7, unlike n = 8 in P. granatum (Teixeira da 

Silva et al. 2013). The difference was considered a primitive characteristic of P. 

protopunica as an ancestor of the domesticated species P. granatum. Recently, several 

researchers studied the genetic diversity and relationship between the two species based 

on morphological and biochemical characterization, molecular markers, and genotypes. 

Youssef et al. (Youssef et al. 2018) and Mohammad et al. (Shahsavari et al. 2022) 

supported the hypothesis that P. protopunica could be an ancestor of P. granatum. 

However, those genetic studies of pomegranate were based on analysis of selected loci, 

and the evolution of the Punica genera remains a difficult problem. Then whole genome-

scale phylogenomic studies can be helpful in supplementing previous research.  

 

The primary goal of this study was to increase the resolution of the molecular phylogeny 

of Punica genera by maximizing the number of taxa sampled and the number of genetic 
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markers used. We selected 40 pomegranate accessions, including 38 accessions of P. 

granatum and 2 accessions of P. protopunica, making up most of the available 

pomegranate germplasm from the United States. Our study presents a procedure for 

inferring complete genus-level phylogenies from averaged 16.3X Illumina genome data, 

making this the most comprehensive study to date. The pipeline builds on existing 

methods to (1) de novo assembly of 40 pomegranate accessions, (2) predict and annotate 

assembled genomes, (3) retrieve orthologous genes, and (4) reconstruct a phylogenomic 

tree (Figure 3.1). In addition to evaluating the hypothesis on relationships within the 

Punica genus, this study provides a valuable and complete analytical framework for 

phylogenomic analysis. 

 

 

Figure 3.1 The flowchart illustrates creating and validating sequence data for 40 
pomegranate accessions. 
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3.2 Materials and methods 

3.2.1 Taxon sampling and sequencing 

Forty samples were sent to the company for whole genome sequencing. Genomic DNA 

samples were individually processed in paired-end Illumina using TruSeq DNA libraries 

and Illumina-compatible barcoded DNA adaptors with an average insert size of 338 bp.  

 

3.2.2 Quality check and pre-processing raw sequencing data 

FastQC v.0.11.9 (Andrews 2010) and MultiQC v.1.10 (Ewels et al. 2016) were 

performed to access the quality of sequencing data as it calculates statistics about the 

composition and quality of raw sequences. Given the quality report, raw reads were 

cleaned using Trimmomatic v.0.36 (Bolger, Lohse, and Usadel 2014) by removing low-

quality bases from their beginning (LEADING:5) and the end (TRAILING:5), by 

eliminating reads below 50 bp (MINLEN:50), by evaluating read quality with a sliding 

window strategy (SLIDINGWINDOW:5:15), and by trimming ‘TruSeq3’ adaptors.  

 

3.2.3 Genome size estimation and heterozygosity 

A k-mer count analysis was done using Jellyfish v.2.2.10 (Marçais and Kingsford 2011) 

on the trimmed sequencing data to avoid the lower quality part of the read. After 

converting the 17-mer counts into a histogram format, this file was analyzed using the 

Genomescope v.2.0 (Vurture et al. 2017) tool for genome size, heterozygosity ratio and 

repeat length. 
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3.2.4 De novo Assembly of whole genomes and evaluation 

The trimmed sequencing data was preliminarily assembled using SPAdes genome 

assembler v.3.15.5 (Prjibelski et al. 2020) in ‘-carful’ mode. The kmer size values 21, 33, 

55, and 77 were tested for assemblies. RagTag v.2.1.0 (Alonge et al. 2021) was 

performed for scaffolding and improving genome assemblies with the draft reference 

genome. At last, the resulting assembly was analyzed for completeness and quality using 

QUAST v.5.0.2 (Gurevich et al. 2013) and BUSCO v.5.4.2 (Manni et al. 2021) with the 

eudicots_odb10 dataset. 

 

3.2.5 Repetitive element identification 

De novo and homology-based approaches were performed for repetitive content using 

three passes of the program RepeatMasker v.4.1.2-p1 (Smit et al. 2013) in soft-masking 

mode. An initial run was conducted using well-curated repeat libraries for the target 

organism. Simple, complex, and interspersed repeats are annotated using repeat 

consensus sequences from Myrtales included in the RepBase and DFam 5.0 (Bao, 

Kojima, and Kohany 2015; Hubley et al. 2016). The result was then passed into the 

second and third run of RepeatMasker with custom, species-specific known and unknown 

repeat libraries generated using RepeatModeler v.2.0.3 (Smit et al. 2008). Finally, three 

rounds of outputs were combined and summarized to create a GFF3 file, which is 

compatible with downstream annotation software that interprets masking.  
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3.2.6 Genome annotation 

The soft-masked genome was annotated using funannotate v.1.8.13 (Palmer and Stajich 

2019) with the options ‘--repeat2evm --organism other --busco_db eudicots_odb10’, and 

the flag ‘--max_introlen’ was set to 272000. Funannotate used Evidence Modeler (EVM) 

v.1.1.1 (Haas et al. 2008) to combine ab initio gene model predictions with protein 

evidence aligned to the draft reference genome (Luo et al. 2020) and the 

UniProtKB/SwissProt curated protein database. The protein evidence was mapped to the 

assembled genome using Diamond v.2.0.14 (Buchfink, Reuter, and Drost 2021) and 

Exonerate v.2.4.0 (Slater and Birney 2005). Ab initio gene predictions were synthesized 

using self-training GeneMark-ES v.4.69_lic (Brůna, Lomsadze, and Borodovsky 2020) 

and combined with identified BUSCO conserved orthologs as inputs to EVM. After 

double-checking that EVM BUSCO consensus models are correct, they were used to 

train Augustus v.3.3.3 (Stanke et al. 2006) to obtain high-quality Augustus predictions 

(HiQ). The BUSCO training set was also conveyed to train SNAP v.2006-07-28 (Korf 

2004) and GlimmerHMM v.3.0.4 (Majoros, Pertea, and Salzberg 2004). Finally, the 

EVM combines all ab initio gene predictions and protein alignments into weighted 

consensus gene structures to generate a final annotation file.  

 

3.2.7 Orthology detection and alignment cleaning 

The newly annotated protein sequences from the forty pomegranate accessions were used 

to identify orthologous proteins with OrthoFinder v.2.5.4 (Emms and Kelly 2019). 

Multiple sequence alignments were achieved by MAFFT v.7.505 (Katoh et al. 2002) with 
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the ‘auto’ setting. The alignment trimming was conducted using TrimAl v.1.4.rev15 

(Capella-Gutiérrez, Silla-Martínez, and Gabaldón 2009) with recommended ‘-

automated1’ parameter. 

 

3.2.8 Phylogenetic tree inference 

Maximum likelihood models (LG+F+G & PMSF) were implemented for phylogenetic 

tree inference using IQ-TREE v.2.2.0.3 (Nguyen et al. 2015). Phylogenomic analyses 

were performed using ML methods on concatenated amino-acid datasets of selected 7120 

orthologous proteins. First, an ML analysis was performed using a single LG model (Le 

and Gascuel 2008) for amino acids, one discrete gamma rate category (+G4 option) , and 

empirical among acid sequences estimated from data (+F option). In addition, node 

supports were calculated with 1000 ultrafast bootstrap replicates. These ML analyses 

assumed a single rate matrix for the whole data; however, rate heterogeneity is 

widespread in phylogenomic data sets and should be considered. The posterior mean site 

frequency (PMSF) (Wang et al. 2018) is the amino-acid profile for each alignment site 

computed from an input mixture model and a guide tree. A second ML analysis was 

performed in the ‘MFP’ mode, which made the IQ-TREE perform ModelFinder 

(Kalyaanamoorthy et al. 2017) to determine the best-fit model. 
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3.3 Results 

3.3.1 Genome size estimation 

Plant genomes span several orders of magnitude in size, gene duplications, alternative 

gene splicing, ploidy and gene retention following genome duplication, which make plant 

genomes large and complex (Claros et al. 2012). Therefore, essential characteristics of 

genomes must be deplored before selecting appropriate plant genome analysis methods, 

especially de novo assembler. For example, genome size appears to be related to the type 

of interspersion. Plant species with smaller genomes have longer interspersion and 

smaller lengths of repetitive sequences (Cvrčková 2016; McKain et al. 2018). 

Furthermore, high heterozygosity could introduce false segmental duplications in 

assemblies when heterozygous sequences from two haplotypes are assembled into 

separate contigs and scaffolded adjacent to each other rather than merged (Claros et al. 

2012; Voshall and Moriyama 2018). These characteristics in advance can reveal if the 

following analysis could handle the full complexity of the genome. In our study, the 

Illumina data were analyzed for k-mer depth frequency distribution to estimate the 

genome size, heterozygosity and the number of repetitive sequences in the forty 

pomegranate accessions. The estimated genome size was calculated by the ratio of the 

total number and the average depth of the 17-mers. The estimated genome size ranges 

from 326 (‘Blaze’) to 371M (‘Punica_protopunica_S14258A’) (Table 3.1), which is 

approximately close to several published draft reference genomes size of 320-362 Mb 

(Luo et al. 2020; Qin et al. 2017; Yuan et al. 2018; Usha et al. 2022). The heterozygosity 

is from 0.23% (‘Toryu_Shibori’) to 0.57% (‘Punica_protopunica_S14258A’), and the 
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amounts of repetitive sequences were roughly between 51.5% to 54.1%. The reported 

characteristics showed the low-complicated personality of the forty pomegranate 

accessions.  
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3.3.2 Genome assembly 

We assembled the genomes using SPAdes, which contains reads error and mismatch 

correction tools in resulting contigs and scaffolds. To establish a near complete genome, 

RagTag was performed for automating assembly scaffolding and patching. To evaluate 

the accuracy and completeness of the SPAdes and RagTag genome assembly, we first 

compared the total length of scaffolds, the number of scaffolds, N50, and genome 

fraction percentage when scaffolds aligned to the draft reference genome. The total 

average length of SPAdes scaffolds was about 204.48 Mb and increased to 262.67 Mb 

after RagTag scaffolding, the average N50 was improved significantly from 19.22 Kb to 

33.55 Mb (Table 3.1), and the average number of scaffolds (larger than 5 Kb) dropped 

from 11609 to 414. In addition, the average genome fraction was grown from 73.15% to 

80.11% (Table 3.1), though having two exceptions, the ‘Punica_protopunica_S14258A’ 

and ‘Punica_protopunica_Hawaiian’ were roughly 21%. This result agrees with our 

preknowledge that the two accessions are relatively unrelated to the others. 

 

Additionally, we have assessed the integrity of the genome assembly with single-copy 

orthologs with the eudicots_obd10 database. The RagTag assembly contained 

approximately 91.64% of the 2326 conserved eudicots genes, higher than 87.73% in the 

SPAdes assembly (Table 3.1), as more fragmented BUSCOs were present in the SPAdes 

assembly. All in all, the results of these assessments indicate that the forty pomegranate 

genome assembly is considered complete and high-quality given 16X sequencing depth. 
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3.3.3 Repetitive content identification 

The initial run using RepBase and DFam canonical repeat library identified a relatively 

small portion of the repetitive sequences. On average, 4.04% of the assembly comprises 

simple repeats, retroelements, a few known interspersed repeats and DNA transposons. 

And then, two more rounds of masking were implemented using a library of known and 

unknown repeats generated by RepeatModeler. These rounds were split so known 

elements would be preferentially annotated over the unknown to the degree possible. The 

known elements are mostly LTR repeats, especially Gypsy/DIRS1 groups of 

retrotransposons, accounting for about 21.82% of the assembled genome. Ultimately, 

results from each round were analyzed together to produce the final repeat annotation. An 

average of 48.91% of sequences were masked as repeats, and 

‘Punica_protopunica_S14258A’ ranked first (Table 3.1). 

 

3.3.4 Gene prediction and orthology detection 

We detected protein-coding genes in the P. granatum and  P. protopunica genome 

assembly by a combination of methods: Ab initio and homology-based prediction. 

Overall, an average of 28504 genes, 28098 mRNAs, and 405 tRNAs were predicted and 

annotated, with an average exon number per gene of 4.72 and an average CDS length of 

200 bp (Table 3.1).  

 

Phylogenetic relationships should always be estimated based on sequences that are 

related by orthology (Young and Gillung 2020; Zhang et al. 2019). Orthogroups are 
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sequence clusters containing genes that descended via speciation from a single gene in 

the last common ancestor of all the species. Typically, if more than 80% of the genes are 

found in the orthogroups, we assume most of the critical genes are involved in the 

analysis. In our case, 99.5% of genes were assigned to orthogroups (Table 3.1), 

suggesting that nearly all genes are considered for ortholog detection. To limit gene 

duplication problems, we selected 7120 orthogroups with only one gene per species. 

Multiple sequence alignments and the last trimming alignments steps were performed for 

large-scale phylogenomic analyses. Gap/ambiguity percents of the output are below 1.8% 

on average, expect the two accessions of P. protopunica, with 3.57% and 3.70%, 

separately.  

 

3.3.5 Phylogenomic analyses 

Despite the fragmented nature of the genomes, we obtained a resolved and relatively 

supported phylogeny displaying the relationships of the forty accessions of pomegranate. 

Two models were implemented here to compare: the PMSF model, and the 

VT+F+I+I+R10, which IQ-TREE determines as the ‘best-fit’ model. No matter which 

model was performed, when the branch length is shown, we can easily observe that the 

two accessions of P. protopunica are distinctly related to all other P. granatum 

accessions (Figure 3.2A, 3.3A). The dramatic genetic distance recognizes them as two 

species, which is in agreement with previous studies (Youssef et al. 2018; Shahsavari et 

al. 2022). To better understand the relationships of the other accessions of P. granatum, 

we ignored the branch length temporarily. The node support of the PMSF model is much 
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stronger than the ‘best-fit’ model, especially for the circled part in Figures 3.2 B and 3.3 

B. The two models gave the same topology except the showed part, indicating that this 

topology part is robust. However, due to potentially high similarities among the circled 

accessions, the bootstrap support of the circled part is relatively low, making unstable 

topology. Another vital piece of information was gained from here, the ‘Eversweet’ 

grown at the USDA germplasm repository seems to be a different genotype than the 

‘Eversweet’ grown in Florida. As debates have surrounded the phylogenetic positions of 

the two Punica species, our studies suggest the P. protopunica as both sister and ancestor 

groups of P. granatum, as eighteen P. granatum accessions viewed P. protopunica as an 

ancestor with strong bootstrap support.  
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Figure 3.2 Phylogenomic relationships of pomegranate based on supermatrix analyses. The 
number on each line represents the branch length, and the purple circle represents support values. 
(A) ‘best-fit’ model detected in IQ-TREE (B) PMSF model. 
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Figure 3.3 Phylogenomic relationships of pomegranate based on supermatrix analyses with 
branch length hiding. The purple circle represents support values. (A) ‘best-fit’ model detected 
in IQ-TREE (B) PMSF model. 
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3.4 Discussion 

Pomegranate is one of the first cultivated fruits and is even considered sacred to many 

world religions and peoples. Evolutionary relationships have remained unsolved in most 

accessions of pomegranate, especially the precious germplasms in the United States. 

Whole genome sequencing allows us to resolve and understand evolutionary histories 

that are increasingly complex and complete. We still face substantial challenges in data 

accessibility and method shortcomings, such as few genomes available, method 

complexity and running time. Here, we meet the challenge of phylogenomic 

reconstruction by orthologous CDS identification from contigs obtained with whole-

genome sequencing. Available annotation pipelines designed for highly fragmented and 

low-coverage genomes depend on a reference genome, selecting scaffolds similar to the 

reference protein (Allio et al. 2020). However, our phylogenomic pipeline has 

empowered the use of ab initio and similarity-based gene prediction in low-coverage 

genomic data, ensuring sufficient and novel transcripts are targeted even if the species is 

not closely related to the reference genome. Our study can provide productive 

perspectives for future research of other model groups and demonstrate the promising 

potential of low-coverage phylogenomic analyses. Moreover, based on the developed 

pipeline, we produced valued assembled genomes, well-annotated genes and new 

evidence of pomegranate classification, unveiling novel relationships and confirming 

previous hypotheses. 
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Chapter 4 HNF4A defines tissue-specific circadian rhythms by 

beaconing BMAL1::CLOCK chromatin binding and shaping rhythmic 

chromatin landscape 

 
Transcription modulated by the circadian clock is diverse across cell types, underlying 

circadian control of peripheral metabolism and its observed perturbation in human 

diseases. We report that knockout of the lineage-specifying Hnf4a gene in mouse liver 

causes associated reductions in the genome-wide distribution of core clock component 

BMAL1 and accessible chromatin marks (H3K4me1 and H3K27ac). Ectopically 

expressing HNF4A remodels chromatin landscape and nucleates distinct tissue-specific 

BMAL1 chromatin binding events, predominantly in enhancer regions. Circadian 

rhythms are disturbed in Hnf4a knockout liver and HNF4A-MODY diabetic model cells. 

Additionally, the epigenetic state and accessibility of the liver genome dynamically 

change throughout the day, synchronized with chromatin occupancy of HNF4A and 

clustered expression of circadian outputs. Lastly, Bmal1 knockout attenuates HNF4A 

genome-wide binding in the liver, likely due to downregulated Hnf4a transcription. Our 

results may provide a general mechanism for establishing circadian rhythm heterogeneity 

during development and disease progression, governed by chromatin structure. 
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4.1 Introduction 

The circadian clock is a molecular oscillator that aligns behavior and physiology with 

daily light-dark cycles. The core of the mammalian circadian clock, composed of two 

interlocked transcriptional feedback loops, relies on chromatin occupancy of the master 

transcription factor heterodimer BMAL1::CLOCK at the E-box DNA element. 

BMAL1::CLOCK positively regulates expression of the Period (Per1, Per2, Per3), 

Cryptochrome (Cry1, Cry2), and Rev-erb (Nr1d1, Nr1d2) genes at the beginning of the 

feedback cycles. Protein dimer composed of PER and CRY suppresses the transcriptional 

activity of BMAL1::CLOCK, closing the first feedback loop. Formation of the second 

feedback loop is achieved by the nuclear receptor REV-ERBs to repress the transcription 

of Arntl (Bmal1) gene (and to a lesser extent on Clock gene) (Takahashi 2017).  

While many peripheral organs have circadian clocks, the identities of rhythmic outputs 

are considerably divergent across tissues (Panda et al. 2002; Storch et al. 2002; R. Zhang 

et al. 2014; Ruben et al. 2018; Mure et al. 2018), contributing to organ-specific 

physiology and disorders associated with circadian misalignment (Bass and Lazar 2016). 

However, the molecular mechanisms involved in generating heterogeneous circadian 

rhythms remain unclear. Tissue-specific chromatin occupancy of the core clock 

transcription factors BMAL1::CLOCK and REV-ERB has been described, identifying 

co-occupancy of tissue-specific transcription factors (Perelis et al. 2015; Beytebiere et al. 

2019; Y. Zhang et al. 2015). In the context of these prior studies, it will be intriguing to 
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apply genetic approaches to ascertain whether tissue-specific TFs influence clock TFs’ 

loading onto chromatin, and the other way around.  

In multicellular organisms, cells from different tissues exhibit specialized gene 

expression profiles in part achieved by physically sequestering unnecessary genes into 

heterochromatin. Genes that are required for particular tasks of a cell type display an 

accessible chromatin structure allowing for the binding of necessary machineries to 

facilitate gene expression (Clapier and Cairns 2009). Chromatin remodeling that opens 

condensed chromatin structures is initiated by the recruitment of lineage-specifying 

pioneer transcription factors to their target DNA sequences at enhancers. The pioneer TFs 

recruit histone methyltransferases MLL3/4 to deposit histone mark H3K4me1, whereby 

the condensed DNA wrapped around histones is loosened (Jozwik et al. 2016). 

Completely activated enhancers feature bimodal distribution of histone modifications 

H3K4me1 and H3K27ac, nucleosome depletion, and recruitment of other transcription 

factors and coactivators (Mayran and Drouin 2018). Instead of being simply correlated 

with chromatin accessibility, H3K4me1 has an active regulatory role by serving as 

docking sites for chromatin remodelers (Local et al. 2018). Due to the activity of ATP-

dependent chromatin remodelers (Clapier et al. 2017) and three-dimensional chromatin 

folding (Yadon et al. 2013), chromatin remodeling commonly creates extended 

accessibility beyond the central nucleosomes that pioneer TFs bind.  

With most (~16%) transcripts exhibiting circadian expression, the liver is the primary 

organ controlled by the circadian clock (R. Zhang et al. 2014). The hepatic circadian 
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transcripts are highly organ-specific and involved in most principal functions of the liver, 

including glucose homeostasis, lipogenesis, bile acid synthesis, mitochondrial biogenesis, 

oxidative metabolism, amino acid turnover, and xenobiotic detoxification. Indeed, 

environmental or genetic disruption of the circadian clock exacerbates the development 

of liver diseases such as non-alcoholic fatty liver disease (NAFLD), hepatitis, cirrhosis, 

and hepatocellular carcinoma (HCC).The hepatocyte nuclear factor 4A (HNF4A) is a 

nuclear receptor specifically expressed in the liver, kidney, pancreas, and intestinal tracts 

(Sladek et al. 1990). Mutation or dysregulation of the Hnf4a gene is associated with 

human diseases such as maturity-onset diabetes of the young (MODY) and HCC 

(Colclough et al. 2013; Hatziapostolou et al. 2011). Whole-body Hnf4a knockout resulted 

in embryonic lethality, and liver-specific knockout mice displayed severe hepatocyte 

differentiation defects and premature death by 8 weeks of age (W. S. Chen et al. 1994; 

Hayhurst et al. 2001a; Parviz et al. 2003). We previously demonstrated that HNF4A 

modulates peripheral circadian clocks in cell cultures (Qu et al. 2018). Here, we further 

interrogate the interface between HNF4A and the circadian clock in the liver tissue where 

they both play critical roles. We found that HNF4A supervises BMAL1 chromatin 

binding seemingly by remodeling chromatin accessibility. Synchronized with HNF4A 

recruitment (Qu et al. 2018), mouse liver displayed increased genome-wide chromatin 

accessibility during the night. Furthermore, the circadian clock contributes to chromatin 

remodeling likely through regulating HNF4A. Our results reveal a collaborative effort 

between HNF4A and the clock machinery in shaping tissue-specific chromatin landscape 

and circadian rhythms that are vital for liver biology.  



 67 

4.2 Materials and methods 

4.2.1 Raw Data 

Raw data of ChIP-seq and ATAC-seq (fastq files) for NGS experiments are available on 

GEO under accession code GSE157452 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE157452]. GSE35262 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE35262] and E-MTAB-941 

[https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-941/] were used to analyze 

PPARA, HNF1A, and LXR deposition at BMAL1 binding sites. GSE39860 

[https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE39860] and SRA025656 

[https://www.ncbi.nlm.nih.gov/sra/?term=SRA025656] were used for reanalysis of 

H3K4me1 circadian rhythms. CircaDB [http://circadb.hogeneschlab.org/] was used for 

identification of circadian transcripts.  

 

4.2.2 ChIP-seq analysis 

Single-end ChIP-seq reads were trimmed using Trimmomatic v.0.36 and then aligned to 

hg38 or mm10 genome with Bowtie2 v.2.3.4.1. BAM files were processed using 

SAMtools v.1.10 and PCR duplicates were removed with PicardTools v.2.18.3. Peaks 

were called in MACS2 v.2.1.2 using default settings and IgG mock ChIP files for 

normalization. BAM files of replicate samples were merged using SAMtools. BIGWIG 

track coverage files were generated from merged BAM files using the DeepTools v.3.3.0 

bamCoverage command with RPGC normalization.  
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Heatmaps and metaplots were generated by the computeMatrix, plotHeatmap, and 

plotProfiles functions of DeepTools v.3.3.0 using BIGWIG files (replicates merged) and 

scaled regions. DiffBind v.3.2.7 was used to make PCA plots. Statistically significantly 

differential peaks were called and MA plots were generated by using the DESeq2 method 

within DiffBind, which selected differential regions based on ChIP signals in each 

replicate and FDR-corrected q-value of 0.05.  

HOMER v.4.11.1 mergePeaks program was used to identify overlapping binding loci of 

two transcription factors. In order to define the sites as “overlapping,” peak centers of the 

two binding sites must be at a distance less than or equal to 500 bp. Note that the peak 

numbers may not add up exactly since the function automatically resolves redundant 

overlaps by dropping one fragment during analysis. Motif enrichment analysis was 

performed using HOMER findMotifsGenome.pl command and scanned +/- 200 bp from 

the peak center for binding sites of transcription factors, and +/- 750 bp for histone 

modifications. HOMER annotatePeaks.pl command was used to make annotations of 

genomic features. The functional analyses of GO term (“Biological Process” sub-

ontology) and KEGG pathway were performed using the clusterProfiler package in R or 

DAVID (https://david.ncifcrf.gov). 

 

4.2.3 ATAC-seq analysis 

Paired-end ATAC-seq reads were trimmed using Trimmomatic v.0.36 and then mapped 

to mm10 mouse genome using Bowtie2 v.2.3.4.1. SAMtools v.1.10 was used to generate 

BAM files, remove PCR duplicates, and remove mitochondrial DNA. MACS2 v.2.1.2 
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was used for peak calling with the following parameters: --nomodel --broad --shift -100 -

-extsize 200 --keep-dup all.  

 

4.2.4 Quantification and statistical analysis 

The significance of differences between peak distance, period length, and gene 

expression was evaluated by unpaired Student’s t-test (two-tailed), with significant 

differences at p < 0.05. For motif analysis, HOMER findMotifsGenome.pl calculated P-

values using cumulative binomial distribution. For GO term and KEGG pathway 

analyses, clusterProfiler calculated P-values using hypergeometric distribution which 

were then adjusted for multiple comparison. 

 

4.3 Results 

4.3.1 BMAL1 chromatin binding is attenuated in the Hnf4a knockout liver 

Previously we discovered an extensive genome-wide colocalization of HNF4A and 

BMAL1::CLOCK in the mouse liver (Qu et al. 2018). While physical interactions and 

genome-wide co-occupancy between the diurnal regulatory machinery and tissue-specific 

transcription factors have been reported (Kriebs et al. 2017; Menet, Pescatore, and 

Rosbash 2014; Trott and Menet 2018), to our knowledge, how the tissue-specific factors 

may affect BMAL1::CLOCK recruitment has not been studied. To investigate the 

influence of HNF4A on BMAL1::CLOCK chromatin occupancy and circadian rhythms, 

we crossed Hnf4a floxed mice (Hayhurst et al. 2001a) with Albumin-Cre mice and Per2-

luciferase mice in the same C57BL/6J background to generate liver-specific Hnf4a 
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knockout (Hnf4afl/fl Alb-Cre+/- Per2-luc+/+
; HKO) and control (Hnf4afl/fl Alb-Cre-/- Per2-

luc+/+
; Ctrl) mice (see Methods). In the HKO liver, RT-qPCR confirmed a ~75% 

decrease in Hnf4a transcript level accompanied by downregulation of the classic HNF4A 

target genes ApoC3, Fabp1, Ppara, and Hnf1a (Appendix C-Figure 1a). The liver-to-

body-weight ratio was significantly increased for the HKO mice (Appendix C-Figure 

1b). Histopathological analyses revealed extensive vacuolization in the HKO hepatocytes 

and marked lipid accumulation throughout the liver tissue (Appendix C-Figure 1c). 

Remarkably, in contrast with the premature lethality of HKO mice constructed with 

Albumin-Cre mice in the FVB genetic background (Hayhurst et al. 2001a), the HKO 

mice we constructed here live to at least the age of 9 months. The Hnf4a knockout liver 

exhibited more severe pathological lesions and greater changes in gene expression in 

male mice than the female (Hayhurst et al. 2001b; Holloway et al. 2008), although the 

HCC development rate was sex-independent (Fekry et al. 2019). To eliminate sex as a 

confounder, we used male mice throughout the study. We mapped genome-wide BMAL1 

binding profiles in liver samples collected from three HKO mice and three control mice 

at ZT6 when BMAL1 binding reaches maximum intensity (Koike et al. 2012). Principal 

component analyses (PCA) of the three ChIP-seq replicates revealed clustering of 

samples from the same genotype (Appendix C-Figure 2a). Surprisingly, about 79% 

(5,273 out of 6,660) of the total BMAL1 peaks were prominently attenuated by Hnf4a 

removal, including ones located within the E-box-containing core clock genes (Figure 

4.1a, b). In addition to the clock genes, KEGG and gene ontology (GO) pathway analyses 

of the HKO-reduced BMAL1 binding genes identified enrichment of the metabolic 
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pathways, such as glucose and cholesterol metabolism, especially when compared with 

unchanged binding sites (Appendix C-Figure 2b, c). Therefore, circadian regulation of 

these key tissue-specific nodes (Tahara and Shibata 2016) is supervised by HNF4A. The 

strong impact HNF4A exerted on BMAL1::CLOCK cistrome seemed to occur post-

translationally, because BMAL1 transcript and protein levels were not reduced but rather 

moderately increased in the HKO liver, potentially related to downregulated Nr1d1 and 

Nr1d2 encoding transcriptional repressors of Bmal1 (Figure 4.1c, d).  

Motif analysis of the HKO-reduced BMAL1 peaks indicated an enrichment of the 

HNF4A-binding motif, apart from the E-box element (Appendix C-Figure 2d). We 

parsed all BMAL1 peaks into three groups based on signal variation in response to Hnf4a 

knockout: ones that were reduced (5,273 peaks), enhanced (3 peaks), or not significantly 

changed (1,384 peaks). On average, BMAL1 peaks of higher intensity tended to be more 

responsive to Hnf4a ablation (Figure 4.1e). We also plotted HNF4A ChIP-seq signals 

when they reach maximum at ZT16 (Qu et al. 2018) at each position of the BMAL1 

peaks, finding HNF4A to display higher accumulation at the HKO-reduced BMAL1 

peaks relative to the unchanged peaks (Figure 4.1e). In contrast, for transcription factors 

PPARA, HNF1A, and LXR that were downregulated upon Hnf4a removal (Appendix C-

Figure 1a), by analyzing legacy ChIP-seq data (Boergesen et al. 2012; Faure et al. 2012), 

we did not observe their differential accumulation at the BMAL1 peaks (Figure 4.1e). 

Consistently, their binding motifs ranked far behind the HNF4A-binding sequence at the 

HKO-reduced BMAL1 peaks (Appendix C-Figure 2d). The distance from a BMAL1 
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peak to the nearest HNF4A peak was significantly smaller in general for the HKO-

reduced BMAL1 binding sites than the unchanged ones (Appendix C-Figure 2e). Out of 

the 3,517 BMAL1 peaks that colocalize with HNF4A occupancy, 3,309 (94%) were 

greatly reduced by Hnf4a removal (Figure 4.1f-h and Appendix C-Figure 2f). These 

data collectively indicate that HNF4A directly regulates global BMAL1 chromatin 

binding in the mouse liver. The underlying mechanisms do not involve gene expression 

regulation but are likely achieved on chromatin in a spatially restricted manner. 
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Figure 4.1 BMAL1 chromatin binding is attenuated in the Hnf4a knockout liver. a Heatmap 
of BMAL1 ChIP-seq signals at ZT6 in control (left) or HKO (right) liver centered at all BMAL1 
peaks in control liver. Peaks are ordered vertically by signal strength. b MA plot showing 
differential BMAL1 occupancy in control and HKO livers, using a threshold of FDR < 0.05. The 
x-axis represents the mean number of reads (log scaled) within the peaks across all samples. The 
y-axis represents the log fold change between the two samples. BMAL1 bindings at the core 
clock genes are highlighted. c Transcript level of genes was determined by RT-qPCR using liver 
samples isolated from control or HKO mice at ZT6. Displayed are the means ± SD (n = 4) 
normalized to Rplp0 expression levels. Statistical significance was determined by two-tailed 
Student’s t-test. d Protein levels were determined by western blot analysis using liver samples 
isolated from control or HKO mice at ZT6. Two independent experiments were repeated with 
similar results. e BMAL1 peaks in control and HKO livers were partitioned into three categories 
with DiffBind (the HKO-enriched group has only 3 peaks and couldn’t be plotted), and then the 
corresponding TF occupancy at each BMAL1 binding site was plotted. Each horizontal line 
represents a single BMAL1 binding site. Peaks were ordered vertically by strength of BMAL1 
ChIP signal in control liver. f Venn diagram showing overlap between all BMAL1 binding sites 
(at ZT6) and all HNF4A binding sites (at ZT16). Overlapping peaks were identified using 
the mergePeaks command in HOMER (see Methods). Note that the peak numbers may not add up 
exactly since the function automatically resolves redundant overlaps by dropping one fragment 
during analysis.  g Venn diagram showing overlap between BMAL1-binding sites that were 
significantly reduced in HKO liver (at ZT6) and all HNF4A binding sites (at ZT16). h Venn 
diagram showing overlap between the HNF4A-BMAL1 co-occupancy sites identified in (f) and 
(g). i A summary of de novo motif analysis showing significance values of E-box enrichment at 
the HKO-unchanged or HKO-reduced BMAL1 peaks. 
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4.3.2 Hnf4a knockout alters genome-wide epigenetic landscape 

The cooperative loading of transcription factors may involve two mechanisms: 1) a 

simultaneous loading mediated by protein-protein interactions; 2) a sequential loading 

that requires a pioneer TF to open up local chromatin for other factors to bind (Mayran 

and Drouin 2018). Notably, we detected physical interactions between BMAL1 and 

HNF4A in liver cells (Qu et al. 2018). To evaluate the possibility of HNF4A recruiting 

BMAL1 to the genome, we compared enrichments of the E-box element at HKO-

unchanged and HKO-reduced BMAL1 binding sites. The “% of targets” and “p-value of 

enrichment” reported by HOMER analysis indicated that the E-box sequence was present 

at a similar frequency within the two categories of BMAL1 binding sites (Figure 4.1i). 

Moreover, there were a considerable fraction (1,902/5,256=36%) of HKO-reduced 

BMAL1 binding sites indeed not displaying exactly overlapping HNF4A occupancy 

(Figure 4.1g). Therefore, it is unlikely for the HNF4A-BMAL1 physical interactions to 

be generally responsible for the HNF4A-dependent BMAL1 occupancy. We were 

prompted to ask if HNF4A acts as a pioneer TF and facilitates the accessibility of a broad 

range of chromatin that is a prerequisite for BMAL1 binding to occur.  

The chromatin loading of a pioneer TF initiates increases in accessible/primed enhancers 

marked by H3K4me1 and subsequent chromatin activation marked by H3K27ac (Mayran 

and Drouin 2018). Therefore, the intensity of H3K4me1 and H3K27ac defines chromatin 

landscape and is indicative of pioneer TFs’ activity. In agreement with our prediction, we 

observed a clear reduction in genome-wide H3K4me1 and H3K27ac deposition upon 
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Hnf4a knockout (Figure 4.2a, b and Appendix C-Figure 3a, b), with the HNF4A-

binding motif overrepresented at the HKO-reduced sites for both histone marks (Figure 

4.2c and Appendix C-Figure 3c). To interrogate to what extent HNF4A is involved in 

early steps of chromatin remodeling, we looked into H3K4me1 and found it generally 

reduced at HNF4A binding sites upon Hnf4a knockout (Appendix C-Figure 3d). In 

addition, HNF4A tended to accumulate more intensively at the H3K4me1 sites that 

would be significantly reduced by Hnf4a knockout (about 41.3% of total peaks), relative 

to the unchanged H3K4me1 sites (Figure 4.2d). The distance from an H3K4me1 peak to 

the nearest HNF4A peak was noticeably smaller for the HKO-reduced H3K4me1 sites 

(Appendix C-Figure 3e). Similarly, the extent of H3K27ac loss in the HKO liver was 

positively correlated with the intensity of local HNF4A binding (Appendix C-Figure 3f). 

Motif analysis of all H3K4me1-marked regions in the control liver revealed maximal 

enrichment of the HNF4A-binding motif (Figure 4.2e), in agreement with a global 

profiling finding HNF4A occupancy overrepresented in accessible regions of liver 

chromatin (C. Liu et al. 2019). Taken together, HNF4A potentially serves as a key 

pioneer factor remodeling the active chromatin landscape in the liver. Of note, we found 

the local deposition of H3K4me1 and H3K27ac marks was specifically reduced by Hnf4a 

knockout at the HKO-reduced BMAL1 sites (Figure 4.2f and Appendix C-Figure 3g), 

supporting a working model that HNF4A supervises BMAL1 loading by helping 

establish a permissive chromatin landscape.  
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Figure 4.2 Hnf4a knockout alters the genome-wide epigenetic landscape. a, b Heatmap of 
H3K4me1 (a) or H3K27ac (b) ChIP-seq signals at ZT6 in control (left) or HKO (right) liver 
centered at all peaks in control liver. Peaks are ordered vertically by signal strength. c Motif 
analysis of HKO-deprived H3K4me1 sites. Known consensus motifs are shown with 
corresponding enrichment significance values. d H3K4me1 peaks in control and HKO livers were 
partitioned into three categories with DiffBind (the HKO-enriched group has only 23 peaks and 
couldn’t be plotted), and then the corresponding HNF4A occupancy (at ZT16) at each H3K4me1 
site was plotted. Each horizontal line represents a single H3K4me1 site. Peaks were ordered 
vertically by strength of H3K4me1 ChIP signal in control liver. e Motif analysis of all H3K4me1 
marked sites in the control liver. Known consensus motifs are shown with corresponding 
enrichment significance values. f Metaplot showing average intensity of BMAL1, H3K4me1, and 
H3K27ac ChIP-seq signals (all at ZT6) in control or HKO livers surrounding HKO-unchanged 
(upper panel) or HKO-reduced (lower panel) BMAL1 peak centers.  

 

4.3.3 Ectopic HNF4A expression reprograms epigenetic landscape and induces 

tissue-specific BMAL1 bindings 

Next, we sought to assess BMAL1 cistromes before and after HNF4A action in a 

biological system that has never been exposed to HNF4A protein. We ectopically 

expressed the adult isoform HNF4A2 in human bone osteosarcoma epithelial U2OS cells 
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where the endogenous Hnf4a expression is negligible (“The Human Protein Atlas” n.d.). 

1,742 BMAL1 peaks were moderately reduced by HNF4A2 expression (Figure 4.3a and 

Appendix C-Figure 4a), seemingly resulting from the downregulation of Bmal1 

transcription (Figure 4.3b). In the meanwhile, we identified 311 BMAL1 binding events 

that were significantly enhanced or gained de novo in response to HNF4A2 expression, 

compared with the GFP expression group (Figure 4.3a and Appendix C-Figure 4a). 

These HNF4A2-induced BMAL1 peaks were more frequently located at distal or intronic 

enhancer regions (Figure 4.3c) and enriched with the HNF4A-binding motif ranking 

second only to the E-box element (Figure 4.3d). To interrogate the biological relevance 

of HNF4A2-induced BMAL1 bindings, we examined whether they occur in cells where 

HNF4A is naturally expressed. BMAL1 and HNF4A ChIP-seq signals from human liver 

cancer Hep3B or HepG2 cells were plotted correspondingly at each position of the 

BMAL1 binding sites we just profiled in U2OS-GFP and U2OS-HNF4A2 cells. 

Interestingly, BMAL1 ChIP signals in Hep3B cells displayed an analogous pattern to the 

U2OS-HNF4A2 dataset, i.e. signals at the U2OS-HNF4A2-enriched peak sites were 

stronger than those at the U2OS-GFP-enriched ones (Figure 4.3e), indicating the U2OS-

HNF4A2-induced BMAL1 peaks to be specifically expressed in liver cell cultures. 

Furthermore, endogenously expressed HNF4A in Hep3B or HepG2 cells was found to 

accumulate more abundantly at the U2OS-HNF4A2-induced BMAL1 peaks than the 

other sites (Figure 4.3e). Therefore, the BMAL1 binding events we have induced in 

U2OS cells by introducing genome-wide occupancy of HNF4A2 may represent a true 

aspect of tissue-specific BMAL1 cistromes.  
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Chromatin landscape was confirmed to be remodeled by HNF4A2 expression, according 

to ChIP-seq profiling of H3K4me1 and H3K27ac (Figure 4.3f and Appendix C-Figure 

4b-d). In line with that observed at the gained BMAL1 peaks, the HNF4A2-enhanced 

H3K4me1 and H3K27ac sites were more likely located in distal or intronic enhancer 

regions (Appendix C-Figure 4e, f), concordant with a general recognition that lineage-

specifying transcription factors exert physiologic effects through interactions with tissue-

specific enhancers (Mayran and Drouin 2018). The U2OS-HNF4A2-enhanced H3K4me1 

sites were confirmed to enrich more HNF4A occupation than the other sites in liver cells 

(Figure 4.3g), suggesting that HNF4A2 binding is directly responsible for the induced 

H3K4me1 deposition. The subset of H3K4me1 sites that were mildly reduced by 

HNF4A2 expression, considering the minimal on-site HNF4A localization in liver cells 

(Figure 4.3g), likely resulted from indirect effects of HNF4A2 ectopic expression. 

Lastly, distinct from the other BMAL1 peaks, the HNF4A2-induced BMAL1 peaks were 

marked by locally enhanced deposition of H3K4me1 and H3K27ac upon HNF4A 

expression (Figure 4.3h and Appendix C-Figure 4g). To exhibit the HNF4A2-

reprogrammed BMAL1, H3K4me1, and H3K27ac peaks in higher resolution, we present 

genome tracks of representative genes (SLC25A42, DOK4, CDHR2, and PLPP3) in 

Figure 4.3i and Appendix C-Figure 5. The fetal HNF4A isoforms lacking the N-

terminal activation domain AF-1 relative to the adult isoforms are specifically expressed 

in the embryonic liver and diseased liver. They occupy much the same set of genome loci 

as the adult isoforms do yet exhibit a lower transcriptional activity (Deans et al. 2021; 

Lambert et al. 2020). We found that ectopically expressing the fetal isoform HNF4A8 
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induced tissue-specific BMAL1 binding likewise (Appendix C-Figure 6), arguing that 

HNF4A-regulated BMAL1 recruitment is invariable during liver development and 

disease transition. Taken together, we programmed tissue-specific BMAL1 bindings by 

remodeling E-box-containing enhancers which are otherwise actively masked by 

nucleosomes. Existing literature has demonstrated that functional BMAL1::CLOCK 

occupancy at circadian enhancers closely correlates with the oscillation of the target 

genes (Fang et al. 2014; Vollmers et al. 2012). We speculate that in some cases HNF4A 

expression alone is not enough for achieving efficient chromatin opening and the 

presence of additional chromatin remodeling factors is necessary. 
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Figure 4.3 Ectopic HNF4A2 expression reprograms epigenetic landscape and induces tissue-
specific BMAL1 bindings. a MA plot showing differential BMAL1 occupancy in U2OS-GFP 
and U2OS-HNF4A2 cells, using threshold of FDR < 0.05. The x-axis represents the mean 
number of reads (log scaled) within the peaks across all samples. The y-axis represents the log 
fold change between the two samples. b Transcript level of genes in U2OS-GFP or U2OS-
HNF4A2 cells was determined by RT-qPCR. Displayed are the means ± SD (n = 3 cell culture 
wells) normalized to Rplp0 expression levels. Statistical significance was determined by two-
tailed Student’s t-test. c Distribution of genomic annotations of HNF4A2-enhanced BMAL1 
peaks. d Motif analysis of HNF4A2-enhanced BMAL1 binding sites. de novo consensus motifs 
are shown with corresponding enrichment significance values. e BMAL1 peaks in U2OS-GFP 
and U2OS-HNF4A2 cells were partitioned into three categories with DiffBind. Then the 
corresponding BMAL1 and HNF4A occupancy in Hep3B or HepG2 cells were plotted by 
centering at each BMAL1 binding site in U2OS cells. Each horizontal line represents a single 
BMAL1 binding site in U2OS. Peaks were ordered vertically by strength of BMAL1 ChIP signal 
in U2OS. f MA plot showing differential H3K4me1 occupancy in U2OS-GFP and U2OS-
HNF4A2 cells, using threshold of FDR < 0.05. The x-axis represents the mean number of reads 
(log scaled) within the peaks across all samples. The y-axis represents the log fold change 
between the two samples. g H3K4me1 peaks in U2OS-GFP and U2OS-HNF4A2 were partitioned 
into three categories with DiffBind. Then the corresponding HNF4A occupancy in Hep3B or 
HepG2 cells was plotted by centering at each H3K4me1 site. Each horizontal line represents a 
single H3K4me1 site. Peaks were ordered vertically by strength of H3K4me1 ChIP signal in 
U2OS. Heatmaps of GFP- and HNF4A2-enriched peaks are highlighted in the inset. h Metaplot 
showing average intensity of BMAL1, H3K4me1, or H3K27ac ChIP-seq signals in U2OS-GFP 
or U2OS-HNF4A2 cells surrounding centers of BMAL1 peaks of indicated groups. i IGV 
genome tracks showing BMAL1, HNF4A, H3K4me1, and H3K27ac enrichment at the 
SLC25A42 gene in indicated cells, based on normalized ChIP-seq read coverage. Track heights 
are indicated. 
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4.3.4 Circadian rhythms are disturbed by Hnf4a knockout and HNF4A-MODY 

mutation 

We previously showed that Hnf4a knockdown caused varying degrees of circadian 

rhythm disruption in cell cultures including period shortening and complete arrhythmicity 

(Qu et al. 2018). Consistently, tissue explants of HKO liver exhibited a shorter period of 

Per2-Luc oscillation ex vivo (Figure 4.4a, b). Control and HKO liver tissues were 

collected every four hours from mice housed under a 12-h light:12-h dark cycle 

(LD 12:12). RT-qPCR quantification of the core clock transcripts revealed robust 

circadian oscillations in the control liver, while a dampening was observed after Hnf4a 

ablation (Figure 4.4c). This phenotype was especially clear for Dbp, Nr1d1, and Nr1d2 

(Figure 4.4c), genes that are distinct from the other E-box-containing clock genes and 

lost expression in the Bmal1 knockout mice (Fang et al. 2014; A. C. Liu et al. 2008). 

Downregulation of the three BMAL1::CLOCK-dependent genes was confirmed by 

dimmed local H3K4me1 and H3K27ac signals and associated with dysregulated BMAL1 

recruitment (Figure 4.4d and Appendix C-Figure 7). Since Hnf4a is minimally 

expressed outside the liver, kidney, pancreas, and intestinal tracts, we do not expect it to 

act on the master circadian clock in the SCN or animal behaviors.  

Hnf4a mutations were frequently identified in patients with MODY, a rare form of 

diabetes (Colclough et al. 2013). In agreement, disrupting Hnf4a expression in mouse 

islets or insulinoma cells resulted in impaired glucose-stimulated insulin secretion (Gupta 

et al. 2005). Interestingly, insulin secretion by pancreatic � cells is rhythmic, and 
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perturbation of the circadian cycles contributes to diabetes (Perelis et al. 2015; Marcheva 

et al. 2010). Our results provide an excellent opportunity for investigating whether 

HNF4A-MODY mutations connect clock dysregulation to the development of diabetes. 

R85W is a mutation within the DNA-binding domain of HNF4A that was repeatedly 

identified in MODY patients (Flanagan et al. 2010; Improda et al. 2016). To investigate 

this connection, we generated homozygous R85W mutation using CRISPR-Cas9 and 

surprisedly found the mutant cells to exhibit fundamentally disrupted circadian rhythms 

(Figure 4.4e and Appendix C-Figure 8a), resembling cells carrying Hnf4a homozygous 

knockout (Figure 4.4f and Appendix C-Figure 8b). Therefore, HNF4A-MODY patients 

may express dysregulated circadian rhythms which potentially contribute to the disease’s 

pathogenesis and progression. 
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Figure 4.4 Circadian rhythms are disturbed by Hnf4a knockout and HNF4A-MODY 
mutation. a, b Liver tissue explants were isolated from mice of indicated genotypes and recorded 
for Per2-Luc bioluminescence. Period lengths of Per2-Luc oscillation were plotted (means ± SD, 
n = 5 or 6) and statistical significance was determined by two-tailed Student’s t-test (a). 
Representative bioluminescence records show Per2-Luc circadian profiles in control or HKO 
liver (b). c Control and HKO mouse livers were harvested at 4-h intervals over the course of 24 h. 
Transcript level of genes was analyzed by using RT-qPCR. Displayed are the means ± SD (n = 3 
or 4) normalized to non-oscillating Rplp0 expression levels. P-values determined by two-tailed 
Student’s t-test were displayed. d IGV genome tracks showing HNF4A (at ZT16), BMAL1 (at 
ZT6), H3K4me1 (at ZT6), and H3K27ac (at ZT6) enrichment at the Dbp gene in liver tissues, 
based on normalized ChIP-seq read coverage. Track heights are indicated. e, f Representative 
effect of Hnf4a(R85W) point mutation (e) or Hnf4a knockout (f) on Bmal1-Luc oscillation in 
human Hep3B cells (n = 3).  
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4.3.5 HNF4A governs liver-specific circadian transcription 

The chromatin remodeling activity and rhythmic recruitment (Qu et al. 2018) of HNF4A 

prompted us to test whether the hepatic chromatin landscape is dynamically shaped 

throughout the day. We performed ChIP-seq analyses of H3K4me1 and H3K27ac with 

wild-type mouse livers collected at ZT16, the peak time of HNF4A binding (Qu et al. 

2018), or the antiphase ZT6. Interestingly, the genome-wide deposition of H3K4me1 or 

H3K27ac was overall higher at ZT16 (Figure 4.5a, b and Appendix C-Figure 9a, b). 

ATAC-seq that assesses genome-wide chromatin accessibility by probing open chromatin 

showed an analogous pattern (Figure 4.5c). Indeed, our results indicating that chromatin 

accessibility in the liver is greater at night are in agreement with observations that the 

phases of cycling transcripts remarkably clustered between midnight and dawn in the 

developmentally related liver and kidney where HNF4A is tissue-specifically expressed 

(R. Zhang et al. 2014; Koike et al. 2012). Therefore, the genome-wide HNF4A 

occupancy, chromatin opening, and circadian output gene expression are in phase and 

potentially causally linked. Indeed, we identified the HNF4A-binding motif most 

enriched at the ZT16-enhanced H3K4me1 or H3K27ac sites (Appendix C-Figure 9c-f). 

The night-time enhanced HNF4A recruitment potentially induces bursts of genome-wide 

gene expression by facilitating DNA accessibility by transcriptional machinery. 

We identified 6,995 H3K4me1 peaks that were prominently stronger at ZT16 than ZT6 

and 44,765 statistically unchanged peaks (Appendix C-Figure 9c). Relative to the 

unchanged peaks, genes with ZT16-enhanced H3K4me1 peaks were more likely involved 
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in the circadian rhythm pathway, along with critical aspects of hepatic functions, in 

particular cholesterol metabolism, gluconeogenesis, insulin resistance, drug metabolism, 

and autophagy (Figure 4.5d). Indeed, all of these cellular processes were characterized to 

operate under circadian control (Tahara and Shibata 2016) and feature rhythmic 

expression of key regulatory genes (Panda et al. 2002). Other than glucose metabolism, 

HNF4A is well characterized in the regulation of lipid and xenobiotic metabolisms 

(Hwang-Verslues and Sladek 2010; Yin Liya et al. 2011). HNF4A-MODY patients also 

exhibit liver disorders such as increased LDL cholesterol levels owing to altered 

expression of apolipoprotein genes (Ng et al. 2019; Pearson et al. 2005). Therefore, the 

central mechanisms underlying HNF4A-regulated hepatic metabolisms may involve 

circadian regulation whereby HNF4A synchronizes the metabolic activities with active 

food intake after dark.  

To further interrogate HNF4A roles in tissue-specific circadian transcription, we assessed 

circadian rhythms of genes that were significantly downregulated by Hnf4a knockout 

(Walesky et al. 2013) or most differentially expressed at all time points by Bmal1 

knockout (Yang et al. 2016). CircaDB (Pizarro et al. 2013) identified 38% of HNF4A-

downregulated and 37% of BMAL1-regulated genes robustly rhythmic, higher than the 

ratio of 16% for general hepatic transcripts (R. Zhang et al. 2014). The HNF4A-regulated 

circadian transcripts tend to peak at the pre-dawn “rush hours” (Appendix C-Figure 10a, 

b) and are highly enriched in the pathways of circadian rhythm, lipid and cholesterol 

metabolism, amino acid metabolism, redox reactions, and liver development (Appendix 
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C-Figure 10c-f), strongly arguing that HNF4A regulates tissue-specific circadian 

rhythms. 

 

Figure 4.5 Mouse liver chromatin is more accessible at night, synchronized with HNF4A 
recruitment. a-c Heatmap of H3K4me1 ChIP-seq (a), H3K27ac ChIP-seq (b), or ATAC-seq (c) 
signals within liver tissues sampled at ZT16 (left) or ZT6 (right) and centered at all peaks of 
ZT16. Peaks are ordered vertically by signal strength. d KEGG pathway analysis was performed 
for genes having ZT16-ZT6-common or ZT16-enriched H3K4me1 peaks as defined in Appendix 
C-Figure 9c. 

 

4.3.6 The circadian clock modulates genome-wide DNA binding of HNF4A 

To evaluate how HNF4A activity is supervised by the circadian clock, we first induced 

chronic circadian disruption in mice by performing a jet lag protocol for four weeks. At 

the end of the treatment, remarkably, the night-time enhanced HNF4A recruitment was 
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reversed, i.e. HNF4A ChIP-seq signals at ZT16 were no longer greater than those at ZT4 

(Qu et al. 2018) (Figure 4.6a and Appendix C-Figure 11a). Therefore, the daily cycle 

of HNF4A chromatin loading is generated by the circadian clock. We then assessed 

whether BMAL1 in turn regulates HNF4A chromatin binding by using the liver-specific 

Bmal1 knockout mouse model (Storch et al. 2007) (see Methods). We mapped genome-

wide DNA binding of HNF4A at ZT16 in liver samples collected from liver-specific 

Bmal1 knockout (Bmal1fl/flAlb-Cre+/-
; BKO) or control mice (Bmal1fl/flAlb-Cre-/-

; Ctrl), 

identifying about 14% (4,576 out of 32,201) of total HNF4A ChIP-seq peaks reduced and 

about 1% (321 out of 32,201) enhanced in BKO liver (Figure 4.6b, c and Appendix C-

Figure 11b). KEGG and GO term analyses of the BKO-reduced HNF4A binding sites 

revealed genes involved in cancer pathogenesis among most enriched. Other 

overrepresented categories included Wnt/β-catenin signaling and cell cycle pathways 

(Appendix C-Figure 11c, d). HNF4A inhibits Wnt/β-catenin signaling and cell cycle 

progression, potentially underlying its tumor-suppressive roles (Lv, Zhou, and Tang 

2021). In comparison, genome-wide binding of the well-characterized hepatic pioneer 

factor FOXA2 (Mayran and Drouin 2018) was barely affected by Bmal1 knockout 

(Appendix C-Figure 11e, f). BMAL1 co-occupancy was only slightly more enriched at 

the BKO-reduced HNF4A binding sites (19.2% colocalized with BMAL1 binding) than 

the control sites (14.0% for total HNF4A peaks; 10.3% for BKO-unchanged peaks) 

(Appendix C-Figure 11g, h), therefore, it is unlikely for chromatin recruitment mediated 

by protein-protein interactions to play a dominant role in the regulation. Instead, we 

found Hnf4a transcription steadily downregulated by 20-30% upon Bmal1 removal at all 
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sampling times (Figure 4.6d). Since BMAL1 directly binds to the Hnf4a gene body 

(Appendix C-Figure 11i), BMAL1::CLOCK likely modulates HNF4A chromatin 

binding through transcriptional regulation. Analogous to Per2 transcripts, although 

dampened, Hnf4a oscillation was not abolished by Bmal1 removal (Figure 4.6d). Since 

the night-enhanced Hnf4a expression was not altered by fasting (Qu et al. 2018), 

mechanisms rather than feeding behavior may be involved in clock-independent Hnf4a 

oscillation.  
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Figure 4.6 The circadian clock modulates genome-wide DNA binding of HNF4A. a Heatmap 
of HNF4A ChIP-seq signals within liver tissues sampled at ZT4 (left) or ZT16 (right) after jet lag 
treatment and centered at all HNF4A peaks of ZT4. Peaks are ordered vertically by signal 
strength. b Heatmap of HNF4A ChIP-seq signals at ZT16 in control (left) or BKO (right) liver 
centered at all HNF4A peaks in control liver. Peaks are ordered vertically by signal strength. c 
MA plot showing differential HNF4A peaks in control and BKO livers, using threshold of FDR < 
0.05. The x-axis represents the mean number of reads (log scaled) within the peaks across all 
samples. The y-axis represents the log fold change between the two samples. d Control and BKO 
mouse livers were harvested at 4-h intervals over the course of 24 h. Transcript level of genes was 
analyzed by using RT-qPCR. Displayed are the means ± SD (n = 3) normalized to non-oscillating 
Rplp0 expression levels. P-values determined by two-tailed Student’s t-test were displayed. 
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4.3.7 Bmal1 knockout alters epigenetic landscape seemingly due to attenuated 

HNF4A activity 

To assess whether chromatin remodeling is responsible for BMAL1-regulated HNF4A 

genome binding, we profiled genome-wide locations of H3K4me1 and H3K27ac at ZT16 

in control or BKO liver tissues. Overall, the histone marks were not greatly changed by 

BKO (Figure 4.7a, b and Appendix C-Figure 12a, b) especially when compared with 

HKO (Figure 4.2a, b). Statistical analysis identified small subgroups that were 

significantly reduced or enhanced by Bmal1 knockout (Figure 4.7c, d). For instance, 

genes exhibiting significantly reduced histone modifications included Nr1d2; genes 

exhibiting significantly enhanced histone modifications included Npas2 (Figure 4.7e).  

Motif analysis of the BKO-enhanced H3K4me1 (n=264) or H3K27ac (n=134) peaks 

identified the ROR response element (RORE), binding motif of transcriptional repressors 

REV-ERBs (Appendix C-Figure 12c, d). Interestingly, at the BKO-reduced H3K4me1 

(n=987) or H3K27ac (n=101) peaks, we did not identify the E-box element but instead 

found an enrichment of nuclear receptor binding sites, with the HNF4A-binding motif 

top-ranked (Appendix C-Figure 12e, f). About 4.6% of total H3K4me1 peaks display 

colocalization with BMAL1 binding within a distance of 500 bp. This degree of BMAL1 

colocalization remained similar for the BKO-unchanged (4.5%) and BKO-reduced 

(4.0%) subgroups of H3K4me1 sites (Figure 4.7f and Appendix C-Figure 12g), 

indicating BMAL1 occupancy not enriched at the BKO-reduced H3K4me1 sites. In 

contrast, H3K4me1 peaks having HNF4A colocalization increased from a background of 
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19.0% to 27.5% at the BKO-reduced sites and decreased to 16.6% for the BKO-

unchanged sites (Figure 4.7f and Appendix C-Figure 12h). We consider HNF4A co-

occupancy enriched at the BKO-reduced H3K4me1 sites, given that only 42% of the 

HKO-reduced H3K4me1 peaks exhibited HNF4A colocalization within the same 

distance of 500 bp (Appendix C-Figure 12i). We noticed that HNF4A occupancy was 

selectively reduced at the BKO-reduced H3K4me1 sites compared with the unchanged 

sites (Appendix C-Figure 12j). Importantly, we plotted H3K4me1 and H3K27ac ChIP-

seq signals at each position of the BMAL1 or HNF4A peaks to find both histone marks 

specifically attenuated by BKO at HNF4A peaks (Figure 4.7g) rather than at BMAL1 

peaks (Figure 4.7h). Therefore, BMAL1::CLOCK occupancy does not directly regulate 

active epigenetic modifications at ZT16 but through positively modulating HNF4A. 

Taken together, it is unlikely for BMAL1 to regulate HNF4A cistrome through chromatin 

remodeling. 
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Figure 4.7 Bmal1 knockout alters epigenetic landscape in the liver, seemingly due to 
attenuated HNF4A activity. a, b Heatmap of H3K4me1 (a) or H3K27ac (b) ChIP-seq signals at 
ZT16 in control (left) or BKO (right) liver and centered at all peaks in control liver. Peaks are 
ordered vertically by signal strength. c, d MA plot showing differential H3K4me1 (c) or 
H3K27ac (d) peaks in control and BKO livers, using threshold of FDR < 0.05. The x-axis 
represents the mean number of reads (log scaled) within the peaks across all samples. The y-axis 
represents the log fold change between the two samples. e IGV genome tracks showing BMAL1 
(at ZT6), HNF4A (at ZT16), H3K4me1 (at ZT16), and H3K27ac (at ZT16) enrichment at Nr1d2 
and Npas2 genes in control or BKO liver, based on normalized ChIP-seq read coverage. Track 
heights are indicated. f Percentages of three groups of H3K4me1 sites colocalizing with BMAL1 
or HNF4A peaks. Peak numbers for percentage calculation are in Appendix C-Figure 12g, h. g 
Metaplot showing average intensity of HNF4A, H3K4me1, and H3K27ac ChIP-seq signals (all at 
ZT16) in control or BKO livers surrounding HNF4A peak centers in control liver. h Metaplot 
showing average intensity of BMAL1 (at ZT6), H3K4me1 (at ZT16), and H3K27ac (at ZT16) 
ChIP-seq signals in control or BKO livers surrounding BMAL1 peak centers in control liver.  
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4.4 Discussion 

Our findings demonstrate that HNF4A may act as a pioneer TF creating tissue-specific 

repertoires of accessible cis-regulatory elements. Consistently, the HNF4-binding 

element was top-scoring in accessible chromatin regions in the intestinal duodenal 

epithelium (L. Chen, Toke, Luo, Vasoya, Fullem, et al. 2019; L. Chen, Toke, Luo, 

Vasoya, Aita, et al. 2019). HNF4A was essential for maintaining active histone signature 

H3K27ac in the intestine and liver (L. Chen, Toke, Luo, Vasoya, Fullem, et al. 2019; 

Thakur et al. 2019). While HNF4A was an established fundamental liver development 

regulator, it was not as well characterized in the process of chromatin remodeling as 

another hepatic TF FOXA/HNF3 (Mayran and Drouin 2018; Nagy, Bisgaard, and 

Thorgeirsson 1994; Li, Ning, and Duncan 2000). Nevertheless, we found the HNF4A-

binding motif more enriched than the FOXA motifs in H3K4me1-positive liver genome 

regions (Figure 4.2e). HNF4A was essential and to some extent sufficient for 

establishing liver-specific chromatin landscape (Figure 4.2, 4.3). Notably, among all 

hepatic TFs, HNF4A was the most important in converting human fibroblasts to 

hepatocyte-like cells (hiHeps) (Sekiya and Suzuki 2011; Nakamori et al. 2017). These 

observations collectively suggest that HNF4A remodels the chromatin landscape for 

active gene expression changes during development. To gain mechanistic insights, direct 

nucleosome binding studies will be needed in future to clarify whether HNF4A can 

independently displace histones like FOXA/HNF3 does or engages ATP-dependent 

enzymes to expand the ‘‘openness’’ of local chromatin (Mayran and Drouin 2018). 
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The REV-ERB regulation of metabolic genes was reported to require chromatin 

recruitment by hepatic transcription factors (Y. Zhang et al. 2015; 2016). The activity of 

pancreatic cycling gene expression displayed a correlation with the binding of the 

pancreas-specific transcription factor PDX1 (Perelis et al. 2015). Despite these insights 

into a role of the lineage-specifying TFs, there has been a gap in understanding the 

molecular basis of tissue-specific rhythmicity whose misalignment is closely associated 

with organ-specific disorders (Bass and Lazar 2016). By using loss-of-function and gain-

of-function genetic models, we demonstrate that the lineage-specifying HNF4A is critical 

and in some cases sufficient for establishing liver-specific BMAL1 cistrome, seemingly 

independent of direct recruitment but by means of providing permissive chromatin 

structure. Our results may provide a molecular basis for tissue-specific BMAL1::CLOCK 

cistromes depending on the chromatin structures likely arising from early events in tissue 

development. Systematic profiling of 20 diverse human cell types identified ∼25% of 

genes displaying cell-type-specific expression that is explained by alterations in 

chromatin structures (Marstrand and Storey 2014). Our discoveries suggest that tissue-

specific chromatin landscape profoundly shapes the circadian rhythms, providing a 

unifying mechanism for circadian rhythm heterogeneity across tissue types. We recently 

reported that the genome-wide BMAL1::CLOCK occupancy in glioblastoma stem cells 

was more expanded as compared with normal neural stem cells (Dong et al. 2019). Given 

that chromatin structure alterations are prevalent in tumor tissues (Corces et al. 2018), our 

findings may provide additional insights into reprogrammed circadian clocks now found 

in cancer and many other disease states.  
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Liver-specific Hnf4a removal undermined BMAL1 occupancy at most of its target genes 

including the E-box-containing core clock genes (Figure 4.1b), downregulated 

transcription of the BMAL1::CLOCK-dependent core clock genes Dbp, Nr1d1, and 

Nr1d2 (Figure 4.4c), and shortened the period of Per2-Luc oscillation (Figure 4.4a, b). 

Potentially resulting from altered Nr1d1 and Nr1d2 expression, Bmal1 transcription was 

upregulated in HKO liver at ZT6 (Figure 4.1c) and downregulated by HNF4A ectopic 

expression (Figure 4.3b and Appendix C-Figure 6a). The adult HNF4A was reported to 

repress Bmal1 expression less than the fetal form (Fekry et al. 2018), potentially 

underlying the mild Bmal1 upregulation in HKO liver where the adult HNF4A is 

specifically targeted due to spatiotemporal expression of Albumin-Cre. It seems that the 

HNF4A actions on BMAL1::CLOCK activity are multilayered, including promoting the 

chromatin binding, transrepressing the transcriptional activity (Qu et al. 2018), and 

negatively regulating Bmal1 transcription. These seemingly contradictory modes of 

action are indeed prevalently employed by circadian clock regulators so as to maintain 

circadian homeostasis, by virtue of the nature of the interlocking negative feedback loops 

(Mohawk, Green, and Takahashi 2012). For instance, CRY stabilization lead to 

suppression of BMAL1::CLOCK transcriptional activity and a simultaneous increase in 

Bmal1 transcription which was largely attributable to downregulated Rev-erb genes 

(Hirota et al. 2012). Given that Dbp, Nr1d1, and Nr1d2 were downregulated in the HKO 

liver (Figure 4.4c), the chromatin remodeling activity of HNF4A seems to play a 

dominant role here by positively impacting BMAL1::CLOCK activities. The robust 

BMAL1::CLOCK transrepression activity we have characterized (Qu et al. 2018) can 
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serve as a second mechanism for HNF4A to fine-tune circadian rhythms only after 

BMAL1::CLOCK is efficiently recruited to the target genes. In aggregate, our results 

indicate that HNF4A is a key modulator of the core circadian clock machinery.  

Largely in agreement with prior studies (Koike et al. 2012; Vollmers et al. 2012) 

(Appendix C-Figure 9g-h), genome-wide H3K4me1 and H3K27ac deposition as well as 

chromatin accessibility assessed by ATAC-seq were increased during the night (Figure 

4.5a-c). The rhythmic recruitment of HNF4A may stimulate a synchronized day-night 

transition of chromatin accessibility, which intriguingly coincides with the predawn “rush 

hours” of circadian gene transcription in the liver (Koike et al. 2012; R. Zhang et al. 

2014). Zhang et al. (R. Zhang et al. 2014) profiled circadian transcriptomes of 12 

different mouse organs and found the phase distribution of circadian transcripts in the 

liver and kidney to exhibit patterns distinct from the other ten organs, i.e. being clustered 

between midnight and dawn. Given that out of the 12 organs investigated, only the liver 

and kidney indeed express the HNF4A protein, HNF4A is likely responsible for the 

unique repertoire and phase distribution of circadian outputs in the two organs. Even 

though the pioneer activity of HNF4A is higher at night, BMAL1, H3K4me1, and 

H3K27ac ChIP-seq signals were all considerably reduced at noon (ZT6) by Hnf4a 

knockout (Figure 4.1, 4.2). Therefore, HNF4A seems to determine the hepatic chromatin 

landscape from morning till night. Collectively, the chromatin remodeling activities of 

HNF4A may control tissue-specific circadian rhythms through two mechanisms: 1) to 

facilitate BMAL1::CLOCK recruitment during the day and secure the operation of the 
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core clock; 2) to open chromatin maximally during the night and promote predawn-

clustered expression of tissue-specific circadian outputs.  

Finally, the rhythmic HNF4A genome binding was disrupted by chronic jet lag (Figure 

4.6a). BMAL1 promoted efficient genome binding of HNF4A, likely independent of 

protein-protein interactions or chromatin remodeling but through activating Hnf4a 

transcription (Figure 4.6, 4.7). Bmal1 knockout only slightly altered H3K4me1 and 

H3K27ac at ZT16 (Figure 4.7a-d). The RORE element was enriched at BKO-enhanced 

modification sites; the BKO-reduced modification sites did not enrich E-box element or 

BMAL1 colocalization but were associated with HNF4A binding (Figure 4.7f-h). 

Therefore, BMAL1::CLOCK modulates hepatic epigenetic landscape potentially by 

activating target genes, namely Rev-erbs and Hnf4a. These results incidentally support 

our main finding that HNF4A shapes hepatic chromatin landscape. The circadian clock 

regulates HNF4A transcription and rhythmic DNA binding whereby it contributes to 

hepatic epigenetic landscape.  
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Appendix A  

 

 

 Figure S1. The strategy of flipping gametes when no common region is found. 
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Appendix B 

Table S1. The population consists of 210 recombinant inbred lines (RIL) from the cross 
between two elite rice cultivars. 
 

RIL yd tp gn kgw gl gw hd OsC1 Bin871 

R001 26.55 11.575 98.6 24.232

5 

9.74 3 80.1 0 1 

R002 18.65 12.975 61.8 23.395 9.595 2.78 74.333

33333 

0 1 

R003 21.362

5 

12.25 74.1 24.02 9.61 2.905 78.566

66667 

0 1 

R004 26.94 9.9 126.65 22.257

5 

8.36 2.94 86.666

66667 

1 0 

R005 26.032

5 

11.4 88.55 26.127

5 

8.88 3.25 93.666

66667 

1 0 

R006 26.022

5 

11.425 106.1 21.62 8.815 2.94 85.9 0 1 

R007 25.885 11.15 91.675 25.44 8.925 3.045 82.566

66667 

0 1 

R008 31.955 12.025 106.75 25.187

5 

9.555 2.91 86 0 1 

R009 31.162

5 

9.825 123.17

5 

25.682

5 

9.375 2.94 91.333

33333 

1 0 
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R010 28.092

5 

11.45 87.85 28.745 9.42 3.45 79.766

66667 

0 1 

R012 31.227

5 

11.525 89.3 29.915 9.595 3.43 94.233

33333 

0 1 

R013 24.81 9.875 102.7 24.107

5 

8.23 3.415 97.233

33333 

1 0 

R014 21.772

5 

10.2 79.125 26.567

5 

9.185 3.07 84.9 1 0 

R015 28.867

5 

8.25 149.32

5 

23.392

5 

8.475 3.155 89.766

66667 

1 0 

R016 33.757

5 

12.95 99.325 25.525 9.26 2.98 94.566

66667 

1 0 

R017 30.722

5 

12.175 98.5 25.35 9.27 3.105 91.566

66667 

1 0 

R018 27.69 10.8 97.25 25.627

5 

9.17 3.37 85 0 1 

R019 27.46 10.35 98.575 25.947

5 

8.805 3.43 83 1 0 

R020 29.402

5 

11.1 102.22

5 

26.052

5 

8.975 3.445 83.766

66667 

1 1 

R021 34.32 10.625 125.6 26.097

5 

8.165 3.655 99.333

33333 

0 1 
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R022 13.835 7.775 74.75 23.785 8.48 3.14 66.333

33333 

1 0 

R023 23.83 12.45 94.225 20.38 8.205 2.86 70.666

66667 

1 0 

R025 26.38 11.25 122.5 19.022

5 

8.125 2.77 90.666

66667 

1 0 

R027 27.08 8.55 134.92

5 

23.512

5 

8.285 3.445 81.433

33333 

0 0 

R028 21.627

5 

11.1 80.875 24.665 8.75 3.065 73.766

66667 

1 0 

R029 28.132

5 

11.9 93.25 25.405 8.6 3.24 80.9 0 0 

R030 27.66 10.95 91.45 27.772

5 

9.77 3.145 81.233

33333 

0 1 

R031 24.22 12.375 77.125 26.245 9.405 3.305 76.233

33333 

0 1 

R032 20.63 11.1 82.325 22.57 9.115 2.76 79.766

66667 

0 1 

R033 31.262

5 

10.875 114.67

5 

25.065 8.85 3.065 81.766

66667 

0 1 

R034 30.085 10.375 117.15 24.852

5 

8.85 3.095 80.566

66667 

0 1 
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R036 29.347

5 

12.8 109.02

5 

21.44 8.075 2.985 87.233

33333 

1 0 

R039 20.927

5 

11.675 69.05 26.32 10.33 2.82 72.566

66667 

0 1 

R040 33.402

5 

11.8 128.95 22.235 8.725 2.96 80.333

33333 

0 1 

R041 33.85 11.95 126.47

5 

22.665 8.57 2.815 86 1 0 

R042 28.397

5 

10.7 101 26.295 9.525 3.235 92.1 1 0 

R043 25.58 11.075 83 27.752

5 

9.885 3.305 80.9 0 1 

R044 20.727

5 

10.975 75.775 25.345 9.61 2.97 91.433

33333 

0 1 

R045 25.49 10.225 92.9 26.317

5 

8.67 3.395 80.9 0 1 

R046 30.44 10.2 119.87

5 

24.79 8.625 3.325 96.333

33333 

0 1 

R048 29.932

5 

12.1 115.77

5 

21.395 8.755 3.015 81.1 0 1 

R049 19.015 11.45 73.75 20.337

5 

7.97 2.9 81.1 1 0 



 105 

R050 23.885 8.65 111.15 24.297

5 

8.875 3.025 84.1 1 0 

R051 29.41 11.025 97.3 27.792

5 

9.765 3.26 79.9 0 1 

R053 14.47 9.75 68.15 22.352

5 

8.91 2.9 66.1 1 0 

R054 24.77 10.825 96.125 24.22 8.1 3.275 72.433

33333 

1 0 

R055 21.147

5 

12.375 87.275 20.005 8.155 2.825 77.333

33333 

0 1 

R056 27.357

5 

12.625 85.85 25.28 9.74 2.8 86.254

26731 

1 0 

R057 27.93 11.1 119.17

5 

21.395 8.38 3.14 81 0 1 

R059 25.527

5 

12.275 82.8 25.56 9.455 3.255 82.9 1 0 

R060 16.432

5 

10.35 73.875 21.097

5 

8.685 2.785 70.120

93398 

1 0 

R061 26.37 10.575 98.7 25.292

5 

8.595 3.3 82.9 1 0 

R062 27.172

5 

9.875 110.4 24.932

5 

8.415 3.335 80.566

66667 

1 0 
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R063 17.27 9.65 71.625 25.35 8.875 3.385 68.566

66667 

1 0 

R064 27.652

5 

10.975 95.95 26.512

5 

8.665 3.35 78.333

33333 

0 1 

R065 26.742

5 

9.425 102.65 27.965 8.775 3.355 78 1 0 

R066 21.997

5 

11.575 96.4 20.032

5 

8.265 2.965 76.9 0 1 

R067 21.695 10.425 101.9 20.397

5 

9.035 2.84 82.9 0 1 

R068 27.9 12.225 86.275 26.532

5 

8.64 3.47 84 1 1 

R069 28.047

5 

11.875 91.375 26.662

5 

8.18 3.12 86.766

66667 

1 0 

R070 25.532

5 

11.1 108.02

5 

21.367

5 

8.55 2.99 84.333

33333 

0 1 

R071 31.562

5 

11.025 124.7 22.87 8.255 3.195 84.666

66667 

0 1 

R072 26.277

5 

12.8 89.1 23.832

5 

8.35 3.14 87.1 0 1 

R073 16.867

5 

10.475 66.25 25.685 8.97 3.215 78.333

33333 

0 1 



 107 

R074 20.965 10.825 74.175 26.952

5 

9.025 3.25 79.9 0 1 

R075 23.732

5 

11.575 76.425 26.587

5 

9.24 2.98 91.020

93398 

0 1 

R076 30.507

5 

9.2 142.52

5 

22.975 8.185 3.02 87.9 0 1 

R077 25.165 11.375 80.8 27.922

5 

10.22 3.065 78.433

33333 

0 1 

R078 26.517

5 

10.475 93.25 26.567

5 

9.9 3.14 96.9 0 1 

R079 31.187

5 

11.15 118.47

5 

23.482

5 

8.5 3.055 89 0 1 

R080 32.7 11.2 130.92

5 

21.882

5 

7.805 3.47 99.233

33333 

0 1 

R081 31.147

5 

10.5 122.87

5 

24.017

5 

8.525 3.15 81.1 0 1 

R082 30.455 11.05 111.7 24.56 8.465 3.115 79.766

66667 

0 1 

R083 32.985 10 112.65 28.577

5 

8.655 3.405 97.233

33333 

1 0 

R084 23.98 11.8 114.42

5 

18.202

5 

7.795 2.795 91.766

66667 

1 0 
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R086 26.985 11.925 90.625 25.012

5 

9.655 2.885 88 1 0 

R087 26.337

5 

11.15 89.175 25.84 9.425 2.92 90.766

66667 

1 0 

R089 11.87 11.275 58.8 18.025 8.51 2.59 62.9 0 1 

R090 26.145 9.9 117.47

5 

22.695 8.105 3.1 82.1 0 1 

R092 34.322

5 

10.25 139.2 24.867

5 

8.45 3.235 80.9 1 0 

R093 26.005 9.475 102.77

5 

27.61 9.31 3.275 81.766

66667 

0 1 

R094 29.542

5 

9.4 138.35 23.005 7.65 3.525 95.1 1 0 

R097 19.542

5 

13.125 61.125 24.622

5 

8.545 3.105 75.9 0 1 

R098 24.7 11.9 86.55 23.855 9.045 2.995 85.766

66667 

0 1 

R099 26.862

5 

11.625 111 21.02 8.41 2.93 80.1 0 1 

R100 30.827

5 

11 135.17

5 

20.982

5 

8.27 2.99 81.766

66667 

0 1 

R101 27.797 9.325 131.05 22.905 8.125 3.34 95 0 1 
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5 

R103 24.257

5 

10.8 102.62

5 

21.857

5 

8.955 2.78 95 0 1 

R105 36.99 11.825 109.55 28.092

5 

9.63 3.2 99.666

66667 

1 0 

R106 25.327

5 

10.475 88.3 28.192

5 

9.295 3.255 73.9 0 1 

R107 34.425 11.075 133.15 23.367

5 

8.23 3.4 100.33

33333 

1 0 

R108 21.797

5 

10.675 76.25 27.492

5 

9.13 3.235 91.1 1 0 

R109 26.007

5 

13.4 90.175 22.38 8.625 2.81 83.9 1 0 

R111 18.412

5 

11.8 77.25 21.9 8.655 2.66 66.333

33333 

1 0 

R112 20.755 11.15 84.85 23.505 9.29 2.905 72.433

33333 

0 1 

R113 26.062

5 

10.55 105 23.76 8.58 3.085 76.333

33333 

0 1 

R115 26.445 9.325 115.92

5 

25.027

5 

8.855 3.025 81.433

33333 

1 0 

R116 24.49 11.6 103.9 20.625 8.08 2.805 78.766 1 0 
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66667 

R118 9.96 11.075 50.175 18.945 8.945 2.635 58 0 1 

R119 28.775 11.25 94.9 27.367

5 

8.535 3.435 71.9 0 1 

R120 26.557

5 

12.325 91.55 23.78 8.725 2.99 82.566

66667 

0 1 

R121 27.565 11.05 123.55 20.95 8.375 2.81 84.333

33333 

1 0 

R122 27.365 10.95 93.4 27.205 8.61 3.325 82.1 1 0 

R123 24.945 10.4 110.2 22.107

5 

8.595 2.82 85.766

66667 

0 1 

R125 20.962

5 

11.625 79.225 22.492

5 

8.05 3.12 84.566

66667 

0 1 

R126 23.675 11.125 97.8 21.895 8.045 2.98 78.566

66667 

0 1 

R127 21.177

5 

10.15 85.125 24.89 8.995 3.24 82.9 0 1 

R128 28.268

87805 

11.545

97561 

110.94

69512 

22.247

37805 

8.765 2.825 94.233

33333 

0 1 

R129 17.772

5 

12.4 61.5 23.587

5 

9.53 2.66 66 1 0 

R130 24.988 8.9209 111.19 25.029 8.255 3.305 99.233 1 0 
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87805 7561 69512 87805 33333 

R131 24.452

5 

9.45 112.32

5 

23.845 8.495 3.295 79.766

66667 

0 1 

R132 29.24 11.4 87.075 29.057

5 

9.005 3.38 86.9 0 1 

R133 23.442

5 

11.825 94.25 21.607

5 

8.78 3.05 85.433

33333 

1 0 

R135 28.082

5 

9.325 138.7 22.297

5 

8.48 2.875 87.433

33333 

1 0 

R137 27.767

5 

11.925 84.075 28.56 9.515 3.115 88.333

33333 

1 0 

R138 28.437

5 

12.525 104.65 22.042

5 

8.92 2.825 90.566

66667 

1 0 

R139 22.6 10.675 83.05 26.167

5 

8.63 3.36 79.233

33333 

0 1 

R140 24.472

5 

13.5 78.225 23.645 9.575 2.85 77.333

33333 

0 1 

R141 22.812

5 

13 78.7 22.845 8.15 3.04 69.433

33333 

1 1 

R142 28.317

5 

10.575 104.3 25.257

5 

9.975 2.955 87.1 1 0 

R143 30.28 10.55 122.82 23.637 9.01 2.99 83.9 0 1 
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5 5 

R144 21.802

5 

10.225 102.4 21.89 8.805 2.69 71.766

66667 

0 1 

R145 18.062

5 

13.725 63.725 20.617

5 

8.635 2.735 66.1 1 0 

R146 24.577

5 

7.1 134.65 26.187

5 

8.515 3.45 102 1 0 

R147 30.175 10.925 92.9 29.635 9.775 3.325 91.333

33333 

1 0 

R148 29.492

5 

10.575 97.175 28.662

5 

9.445 3.29 93 1 0 

R149 21.062

5 

10.425 83.1 24.927

5 

8.655 3.31 75.9 0 1 

R150 20.98 9.85 93.525 22.637

5 

9.45 2.86 79.9 0 1 

R151 23.36 10.575 107.97

5 

20.672

5 

8.355 3.055 88.433

33333 

0 1 

R152 26.492

5 

10.075 110.07

5 

24.102

5 

8.755 3.49 82.766

66667 

0 1 

R153 26.315 11.55 97.15 24.232

5 

8.435 3.385 79.9 1 0 

R154 20.127 10.75 88.3 21.902 7.77 3.26 75.9 0 1 
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5 5 

R155 29.057

5 

14.55 99.8 20.045 8.04 2.76 80 0 1 

R156 27.552

5 

12.575 86.275 25.645 9.2 3.06 79.433

33333 

0 1 

R157 26.072

5 

12.6 89.175 23.897

5 

8.6 2.855 77.433

33333 

0 1 

R158 23.147

5 

10.35 89.35 24.792

5 

9.62 3.17 94.433

33333 

0 1 

R159 24.635 9.6 105.47

5 

24.505 8.605 3.345 82.233

33333 

0 1 

R160 29.695 10.025 99.05 29.505 9.5 3.275 91.333

33333 

1 0 

R161 24.742

5 

10.35 89.925 26.455 9.595 3.17 83.1 0 1 

R163 28.012

5 

11.975 83.65 28.077

5 

9.97 3.07 78.433

33333 

1 0 

R164 29.447

5 

12.2 90 26.952

5 

9.255 3.215 86.666

66667 

1 0 

R166 25.7 9.075 115.6 24.667

5 

9.075 3.33 93.333

33333 

0 1 

R167 17.385 10.475 68.625 24.787 8.06 3.31 68.433 1 0 
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5 33333 

R168 30.407

5 

11.125 112.12

5 

24.512

5 

8.58 3.07 77.566

66667 

0 1 

R169 33.067

5 

10.8 118.47

5 

25.487

5 

8.69 3.125 83.1 1 0 

R170 26.632

5 

10.4 91.025 28.462

5 

9.49 3.405 78.333

33333 

0 1 

R171 25.777

5 

9.3 118.87

5 

23.545 9.425 2.885 78.333

33333 

1 0 

R172 25.132

5 

11.325 111.17

5 

20.127

5 

8.035 3.165 86.9 0 1 

R173 25.852

5 

10.6 110.37

5 

22.457

5 

7.97 3.125 78.766

66667 

1 0 

R174 24.282

5 

11 101.22

5 

22.242

5 

7.895 3.15 73.333

33333 

0 1 

R175 22.805 9.075 88.95 28.587

5 

8.935 3.41 78.566

66667 

0 1 

R176 22.66 11.725 77.15 24.992

5 

9.32 3.02 80.333

33333 

0 1 

R177 24.55 10.075 84.85 29.067

5 

9.42 3.315 80.666

66667 

0 1 

R178 27.882 12.625 105.2 21.207 7.845 2.98 86.566 1 0 
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5 5 66667 

R179 27.485 11 93.5 27.007

5 

9.62 3.185 88.433

33333 

0 1 

R180 31.265 9.2 119.42

5 

28.015 8.88 3.345 82 1 0 

R181 24.747

5 

11.2 87.775 25.485 9.24 3.155 81 1 0 

R182 22.635 12.05 75.925 25.47 9.165 3.16 78.233

33333 

1 0 

R183 25.492

5 

10.775 81.35 29.312

5 

9.805 3.09 87.233

33333 

1 0 

R184 26.443

87805 

9.7209

7561 

104.99

69512 

26.172

37805 

8.89 3.24 84.233

33333 

1 0 

R185 25.135 9.75 110.57

5 

23.042

5 

8.565 2.88 93.433

33333 

1 0 

R186 30.122

5 

10.45 115.65 25.28 9.52 2.855 88.766

66667 

1 0 

R187 29.07 9.55 111.72

5 

27.24 9.105 3.18 85.1 0 1 

R188 27.162

5 

9.8 103.42

5 

26.96 9.47 3.18 89.333

33333 

0 1 

R189 26.88 12.425 81.925 27.075 8.88 3.075 76.433 0 0 
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33333 

R190 25.925 12.875 80.75 25.825 9.925 2.84 78.1 0 1 

R191 29.552

5 

10.65 138.27

5 

20.407

5 

8.475 2.78 88.666

66667 

1 0 

R193 29.225 14.375 88.15 23.835 8.365 2.96 79.433

33333 

0 1 

R194 31.162

5 

11.1 118.5 23.205 8.395 3.24 93.666

66667 

0 1 

R195 29.852

5 

10.275 130.32

5 

22.707

5 

8.705 2.995 85.766

66667 

1 0 

R196 25.352

5 

8.2 122.52

5 

25.777

5 

8.33 3.4 92.333

33333 

0 0 

R197 23.775 11.25 90.725 23.425 8.095 3.33 90.566

66667 

1 0 

R198 27.44 11.35 106.92

5 

22.567

5 

8.79 2.9 87.666

66667 

0 1 

R199 24.032

5 

10.975 84.175 26.77 8.54 3.34 75.666

66667 

0 1 

R200 18.862

5 

9.525 83.1 23.692

5 

8.265 3.295 81.766

66667 

1 0 

R202 22.245 9.725 109.97

5 

21.317

5 

8.47 2.96 82.9 0 1 
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R203 24.852

5 

11.1 84.8 26.575 9.08 3.33 81.566

66667 

0 1 

R204 17.975 12.55 67.875 21.162

5 

8.755 2.68 67.233

33333 

1 0 

R205 27.175 12 80.65 28.352

5 

9.52 2.97 93.9 1 0 

R206 27.582

5 

10.275 111.97

5 

24.632

5 

8.02 3.165 82.333

33333 

1 0 

R208 29.83 9 113.95 29.43 10.08 3.33 84.1 1 1 

R209 30.525 10.4 139.2 21.472

5 

7.945 3.02 87.1 1 0 

R210 29.545 10.7 104.7 26.612

5 

9.32 3.265 97.566

66667 

0 1 

R211 24.228

87805 

10.645

97561 

97.346

95123 

24.092

37805 

8.2 3.215 73.233

33333 

1 0 

R213 18.942

5 

8.9 83.2 25.02 8.42 3.245 80.566

66667 

0 1 

R214 26.697

5 

10.475 118.75 21.66 9.055 2.93 94.766

66667 

1 0 

R216 24.277

5 

9.4 97.825 26.517

5 

8.99 3.145 88.766

66667 

1 0 

R218 29.765 10.85 127.6 22.092 8.315 2.99 80.1 0 1 
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5 

R219 16.675 10.6 66.125 24.107

5 

8.14 3.29 79.766

66667 

0 1 

R220 32.547

5 

11.575 126.6 22.29 8.785 2.94 86.9 0 1 

R221 20.545 10.525 77.9 25.37 9.56 2.975 74.1 0 1 

R222 25.292

5 

8.65 100.67

5 

29.09 9.325 3.415 89.433

33333 

1 0 

R223 28.195 10.1 103.8 26.532

5 

8.565 3.55 77.9 0 1 

R224 23.77 10.675 108.72

5 

21.142

5 

8.34 3.005 76.9 0 1 

R225 31.052

5 

10.325 111.62

5 

27.355 8.745 3.22 75.566

66667 

0 1 

R226 20.997

5 

11.625 74.55 24.962

5 

8.7 2.95 72.766

66667 

0 1 

R227 26.715 10.675 111.82

5 

23.177

5 

8.32 3.385 79.233

33333 

0 1 

R228 25.545 9.775 121.25 22.127

5 

8.145 3.305 77.233

33333 

0 1 

R229 29.032

5 

9.95 120.1 24.485 8.29 3.34 86.433

33333 

0 1 
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R230 28.21 12.85 101.57

5 

21.607

5 

8.455 2.95 86.433

33333 

0 0 

R231 15.406

37805 

8.1209

7561 

64.746

95123 

21.967

37805 

8.8225

59809 

3.0324

64115 

57.566

66667 

0 1 

R232 26.71 10.6 112.72

5 

22.412

5 

8.705 3.09 80.766

66667 

0 1 

R233 29.305 11.525 105.95 24.047

5 

9.25 2.885 88.566

66667 

1 0 

R234 25.59 10.85 104.7 23.582

5 

8.71 2.915 85.433

33333 

1 0 

R235 29.757

5 

10.825 122.2 22.647

5 

8.21 3.16 82 1 0 

R236 22.512

5 

11.225 91.125 22.325 8.5 2.805 74.566

66667 

0 1 

R237 19.742

5 

12.975 71.5 21.412

5 

9.175 2.66 79.1 1 0 

R238 28.197

5 

8.525 121.52

5 

27.152

5 

8.84 3.18 86.9 1 0 

R239 30.762

5 

10.275 112.97

5 

26.642

5 

8.905 3.285 83.233

33333 

0 1 

R241 27.575

58613 

11.607

6555 

94.843

42107 

26.261

85407 

8.72 3.455 86.9 0 1 
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Table S2. The bootstrap variance-covariance matrix of the EM estimated parameters along 

with the NR and SAS variance-covariance matrices. 
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Appendix C 

 

Figure S1. BMAL1 chromatin binding was substantially attenuated in Hnf4a knockout 
liver. (A) PCA plot of BMAL1 ChIP-seq counts across consensus BMAL1 peaks in WT and 
HKO (at ZT6). (B) Distribution of genomic annotations of all the BMAL1 peaks in WT. (C) 
Distribution of genomic annotations of BMAL1 peaks significanlty reduced by Hnf4a knockout. 
(D) Base pair unit distance from each BMAL1 peak to the closest HNF4A peak was calculated 
and box-plotted. Statistical significance was determined by Student’s t-test. (E) Venn diagram 
showing overlap between BMAL1-binding sites that were not significantly changed in HKO (at 
ZT6) and all HNF4A binding sites (at ZT16).  



 122 

 

Figure S2. Hnf4a knockout alters genome-wide epigenetic landscape. (A-B) PCA plot of 
H3K4me1 (A) or H3K27ac (B) ChIP-seq counts at ZT6 across consensus peaks in control and 
HKO liver. (C) Motif analysis of HKO-deprived H3K27ac sites. Known consensus motifs are 
shown with corresponding enrichment significance values. (D) H3K4me1 occupancy in control or 
HKO liver was plotted at each HNF4A binding site (at ZT16). Each horizontal line represents a 
single HNF4A binding site. (E) Base pair unit distance from each H3K4me1 peak to the closest 
HNF4A peak was calculated and box-plotted. Statistical significance was determined by 
Student’s t-test. (F) H3K27ac peaks in control and HKO livers were partitioned into three 
categories with DiffBind (the HKO-enriched group has only 3 peaks and couldn’t be plotted), and 
then the corresponding HNF4A occupancy (at ZT16) at each H3K27ac site was plotted. Each 
horizontal line represents a single H3K27ac site. (G) BMAL1 peaks in control and HKO livers 
were partitioned into three categories with DiffBind (the HKO-enriched group has only 3 peaks 
and couldn’t be plotted), and then the corresponding H3K4me1 or H3K27ac occupancy (at ZT6) 
at each BMAL1 binding site was plotted. Each horizontal line represents a single BMAL1 
binding site. 
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Figure S3. Ectopic HNF4A expression created tissue-specific BMAL1 binding events by 
stimulation of chromatin accessibility. (A) PCA plot of BMAL1 ChIP-seq counts across 
consensus peaks in U2OS-GFP and U2OS-HNF4A. (B) PCA plot of H3K4me1 ChIP-seq counts 
across consensus peaks in U2OS-GFP and U2OS-HNF4A. (C) PCA plot of H3K27ac ChIP-seq 
counts across consensus peaks in U2OS-GFP and U2OS-HNF4A. (D) MA plot showing 
differential H3K27ac occupancy in U2OS-GFP or U2OS-HNF4A cells, using threshold of FDR < 
0.05. The x-axis represents the mean number of reads (log scaled) within the peaks across all 
samples. The y-axis represents the log fold change between the two samples. (E) Motif analysis 
of HNF4A-enhanced H3K4me1 sites. Known consensus motif was shown with corresponding 
enrichment significance values. (F) Distribution of genomic annotations of HNF4A-induced 
H3K4me1 sites. (G) Distribution of genomic annotations of HNF4A-induced H3K27ac sites. (H) 
BMAL1 peaks in U2OS-GFP and U2OS-HNF4A cells were partitioned into three categories with 
DiffBind, and then the corresponding H3K4me1 and H3K27ac occupancy at each BMAL1 
binding site was plotted. Each horizontal line represents a single BMAL1 binding site.  
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Figure S4. Representative genome tracks showing HNF4A-induced BMAL1 peaks and 
locally enhanced H3K4me1 and H3K27ac marks. (A) Four representative BMAL1 binding 
events significantly induced by HNF4A were highlighted in Fig. 3A MA plot. (B-E) IGV genome 
tracks of BMAL1, HNF4A, H3K4me1, and H3K27ac enrichment at DOK4 (B), PLPP3 (C), 
SLC25A42 (D), CDHR2 (E) gene loci in indicated cells based on normalized ChIP-seq read 
coverage. Track heights are indicated.  
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Figure S5. Genome tracks showing HKO-reduced BMAL1 peaks and locally decreased 
H3K4me1 and H3K27ac marks at core clock genes in the mouse liver. IGV genome tracks of 
BMAL1, HNF4A, H3K4me1, and H3K27ac enrichment at Dbp (A), Nr1d1 (B), Nr1d2 (C), and 
Cry2 (D) gene loci in indicated genotypes based on normalized ChIP-seq read coverage. Track 
heights are indicated.  
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Figure S6. Hnf4a knockout and R85W mutation were generated in Hep3B cells using 
CRISPR-CAS9. (A) The homozygous Hnf4a-R85W mutant line was validated by Sanger 
sequencing. (B) The Hnf4a knockout line was validated by NGS.  
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Figure S7. Liver chromatin is more accessible in the evening. (A) PCA plot of H3K4me1 
ChIP-seq counts across consensus H3K4me1 peaks at ZT16 and ZT6. (B) PCA plot of H3K27ac 
ChIP-seq counts across consensus H3K27ac peaks at ZT16 and ZT6. (C) KEGG pathway 
analysis of genes at the common or ZT16-enriched peaks identified from a comparison between 
H3K4me1 ChIP-seq signals at ZT6 and ZT16.  
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Figure S8. BMAL1 is involved in chromatin remodeling. (A) PCA plot of H3K4me1 ChIP-seq 
counts across consensus H3K4me1 peaks in WT and BKO (at ZT16). (B) Motif analysis of BKO-
reduced H3K4me1 sites defined in (Fig. 6A). Known consensus motifs are shown with 
corresponding enrichment significance values. (C) Venn diagram showing overlap between 
H3K4me1 (at ZT16) and BMAL1 peaks (at ZT6). (D) Venn diagram showing overlap between 
H3K4me1 and HNF4A peaks (both at ZT16).  
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Figure S9. BMAL1 controls chromatin remodeling through regulation of HNF4A. (A) PCA 
plot of HNF4A ChIP-seq counts across consensus HNF4A peaks in WT and BKO (at ZT16). (B-
C) Venn diagram showing overlap between BMAL1 (at ZT6) and HNF4A (at ZT16) peaks. (D) 
IGV genome tracks showing BMAL1 enrichment at Hnf4a gene. (E) Heatmap of FOXA2 ChIP-
seq signals (at ZT16) in WT (left) or BKO (right) liver centered at all FOXA2 peaks of WT. 
Peaks are ordered vertically by signal strength. (F) PCA plot of FOXA2 ChIP-seq counts across 
consensus FOXA2 peaks in WT and BKO. (G) Metaplot showing average intensity of HNF4A, 
H3K4me1, and H3K27ac signals surrounding HNF4A peak centers in WT or BKO liver. (H) 
PCA plot of HNF4A ChIP-seq counts across consensus HNF4A peaks at ZT4 and ZT16 after 
chronic jet lag.  

 

 

 



 130 

Bibliography  

Fariello, María Inés, Simon Boitard, Hugo Naya, Magali SanCristobal, and Bertrand Servin. 
2013. “Detecting Signatures of Selection Through Haplotype Differentiation Among 
Hierarchically Structured Populations.” Genetics 193 (3): 929–41. 
https://doi.org/10.1534/genetics.112.147231. 

Howard, David M., Lynsey S. Hall, Jonathan D. Hafferty, Yanni Zeng, Mark J. Adams, Toni-
Kim Clarke, David J. Porteous, et al. 2017. “Genome-Wide Haplotype-Based Association 
Analysis of Major Depressive Disorder in Generation Scotland and UK Biobank.” 
Translational Psychiatry 7 (11): 1–9. https://doi.org/10.1038/s41398-017-0010-9. 

Lambert, J.-C., B. Grenier-Boley, D. Harold, D. Zelenika, V. Chouraki, Y. Kamatani, K. 
Sleegers, et al. 2013. “Genome-Wide Haplotype Association Study Identifies the 
FRMD4A Gene as a Risk Locus for Alzheimer’s Disease.” Molecular Psychiatry 18 (4): 
461–70. https://doi.org/10.1038/mp.2012.14. 

Li, Ruidong, Han Qu, Jinfeng Chen, Shibo Wang, John M Chater, Le Zhang, Julong Wei, et al. 
2020. “Inference of Chromosome-Length Haplotypes Using Genomic Data of Three or a 
Few More Single Gametes.” Molecular Biology and Evolution 37 (12): 3684–98. 
https://doi.org/10.1093/molbev/msaa176. 

Li, Xiang, Lin Li, and Jianbing Yan. 2015. “Dissecting Meiotic Recombination Based on Tetrad 
Analysis by Single-Microspore Sequencing in Maize.” Nature Communications 6 
(March): 6648. https://doi.org/10.1038/ncomms7648. 

Lohmueller, Kirk E., Carlos D. Bustamante, and Andrew G. Clark. 2009. “Methods for Human 
Demographic Inference Using Haplotype Patterns From Genomewide Single-Nucleotide 
Polymorphism Data.” Genetics 182 (1): 217–31. 
https://doi.org/10.1534/genetics.108.099275. 

Palamara, Pier Francesco, Todd Lencz, Ariel Darvasi, and Itsik Pe’er. 2012. “Length 
Distributions of Identity by Descent Reveal Fine-Scale Demographic History.” American 
Journal of Human Genetics 91 (5): 809–22. https://doi.org/10.1016/j.ajhg.2012.08.030. 

Yang, Jian, Teresa Ferreira, Andrew P. Morris, Sarah E. Medland, Genetic Investigation of 
ANthropometric Traits (GIANT) Consortium, DIAbetes Genetics Replication And Meta-
analysis (DIAGRAM) Consortium, Pamela A. F. Madden, et al. 2012. “Conditional and 
Joint Multiple-SNP Analysis of GWAS Summary Statistics Identifies Additional 
Variants Influencing Complex Traits.” Nature Genetics 44 (4): 369–75. 
https://doi.org/10.1038/ng.2213. 

Zhang, Fan, Chunchao Wang, Min Li, Yanru Cui, Yingyao Shi, Zhichao Wu, Zhiqiang Hu, 
Wensheng Wang, Jianlong Xu, and Zhikang Li. 2021. “The Landscape of Gene-CDS-
Haplotype Diversity in Rice: Properties, Population Organization, Footprints of 
Domestication and Breeding, and Implications for Genetic Improvement.” Molecular 
Plant 14 (5): 787–804. https://doi.org/10.1016/j.molp.2021.02.003. 



 131 

Albert JH, Chib S. 1993. Bayesian Analysis of Binary and Polychotomous Response Data. 
Journal of the American Statistical Association 88: 669-679. 

Azevedo C, Andrade D. 2013. CADEM: A conditional augmented data EM algorithm for fitting 
one parameter probit models. Brazilian Journal of Probability and Statistics 27: 245-262. 

Bliss CI. 1934. The method of probits. Science 79: 38-39. 

Bliss CI. 1935. The calculation of the dosage-mortality curve. Annals of Applied Biology 22: 
134-167. 

Breslow NE, Clayton DG. 1993. Approximate inference in generalized linear mixed models. J 
Am Stat Assoc 88: 9-25. 

Brooks S. 1998. Markov chain Monte Carlo method and its application. Journal of the Royal 
Statistical Society: Series D (The Statistician) 47: 69-100. 

Burton PR, et. al. 1999. Genetic variance components analysis for binary phenotypes using 
generalized linear mixed models (GLMMs) and Gibbs sampling. Genetic Epidemiology 
17: 118-140. 

Camilleri L. 2009. Bias of Standard Errors in Latent Class Model Applications Using Newton-
Raphson and EM Algorithms. JACIII 13: 537-541. 

Chakraborty S, Khare K. 2017. Convergence properties of Gibbs samplers for Bayesian probit 
regression with proper priors. Electronic Journal of Statistics 11: 177-210, 134. 

Czado C. 1994. Bayesian inference of binary regression models with parametric link. Journal of 
Statistical Planning and Inference 41: 121-140. 

DeMaris A. 1995. A Tutorial in Logistic Regression. Journal of Marriage and Family 57: 956-
968. 

Dempster AP, Laird NM, Rubin DB. 1977. Maximum Likelihood from Incomplete Data via the 
EM Algorithm. Journal of the Royal Statistical Society Series B (Methodological) 39: 1-
38. 

Efron B. 1979. Bootstrap methods: Another look at the Jackknife. The Annals of Statistics 7: 1-
26. 

Fanney DJ. 1952. Probit Analysis. Cambridge University Press, U. K. 

Fisher RA. 1935. Appendix to “The Calculation of the Dose-Mortality Curve” by C. Bliss. 
Annals of Applied Biology 22: 164-165. 

Girolami M, Rogers S. 2006. Variational Bayesian Multinomial Probit Regression with Gaussian 
Process Priors. Neural Computation 18: 1790-1817. 

Hosmer DW, Lemeshow S. 1989. Applied Logistic Regression. New York, Wiley. 



 132 

Liu C. 2004. Robit Regression: A Simple Robust Alternative to Logistic and Probit Regression. 
In Applied Bayesian Modeling and Causal Inference from Incomplete‐Data Perspectives,  
doi:https://doi.org/10.1002/0470090456.ch21, pp. 227-238. 

Louis TA. 1982. Finding the observed information matrix when using the EM algorithm. Journal 
of the Royal Statistical Society Series B (Methodological) 44: 226-233. 

McCullagh P, Nelder JA. 1989. Generalized Linear Mixed Models. Chapman & Hall/CRC, New 
York. 

McCulloch CE. 1994. Maximum likelihood variance components estimation for binary data. 
Journal of the American Statistical Association 89: 330-335. 

McCulloch CE. 2000. Generalized linear models. Journal of the American Statistical Association 
95: 1320-1324. 

McDermott P, Snyder J, Willison R. 2016. Methods for Bayesian variable selection with binary 
response data using the EM algorithm. arXiv preprint arXiv:160505429. 

Nadarajah S, Kotz S. 2006. R Programs for Truncated Distributions. Journal of Statistical 
Software, Code Snippets 16: 1 - 8. 

Nelder JA, Wedderburn RWM. 1972. Generalized Linear Models. Journal of the Royal Statistical 
Society, Ser A 135: 370-384. 

Saitoh K, Onishi K, Mikami I, Thidar K, Sano Y. 2004. Allelic diversification at the C (OsC1) 
locus of wild and cultivated rice: nucleotide changes associated with phenotypes. 
Genetics 168: 997-1007. 

Schafer DW. 1993. Likelihood analysis for probit regression with measurement errors. 
Biometrika 80: 899-904. 

Sorensen DA, Andersen S, Gianola D, Korsgaard I. 1995. Bayesian inference in threshold models 
using Gibbs sampling. Genet Sel Evol 27: 229-249. 

Visscher PM, Haley CS, Knott SA. 2009. Mapping QTLs for binary traits in backcross and F2 
populations. Genetical Research 68: 55-63. 

Wolfinger c, O'connell M. 1993. Generalized linear mixed models a pseudolikelihood approach. 
Journal of Statistical Computation and Simulation 48: 233-243. 

Xu S, Yi N, Burke D, Galecki A, Miller RA. 2003. An EM algorithm for mapping binary disease 
loci: application to fibrosarcoma in a four-way cross mouse family. Genetical Research 
82: 127-138. 

Yi N, Xu S. 2000. Bayesian mapping of quantitative trait loci for complex binary traits. Genetics 
155: 1391-1403. 



 133 

Yu H, Xie W, Wang J, Xing Y, Xu C, Li X, Xiao J, Zhang Q. 2011. Gains in QTL detection 
using an ultra-high density SNP map based on population sequencing relative to 
traditional RFLP/SSR markers. PLoS One 6: e17595. 
doi:17510.11371/journal.pone.0017595. 

Alonge, Michael, Ludivine Lebeigle, Melanie Kirsche, Sergey Aganezov, Xingang Wang, 
Zachary B. Lippman, Michael C. Schatz, and Sebastian Soyk. 2021. “Automated 
Assembly Scaffolding Elevates a New Tomato System for High-Throughput Genome 
Editing.” bioRxiv. https://doi.org/10.1101/2021.11.18.469135. 

Andrews, S. 2010. “FastQC A Quality Control Tool for High Throughput Sequence Data.” 2010. 
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/. 

Bao, Weidong, Kenji K. Kojima, and Oleksiy Kohany. 2015. “Repbase Update, a Database of 
Repetitive Elements in Eukaryotic Genomes.” Mobile DNA 6 (1): 11. 
https://doi.org/10.1186/s13100-015-0041-9. 

Bolger, Anthony M., Marc Lohse, and Bjoern Usadel. 2014. “Trimmomatic: A Flexible Trimmer 
for Illumina Sequence Data.” Bioinformatics 30 (15): 2114–20. 
https://doi.org/10.1093/bioinformatics/btu170. 

Brůna, Tomáš, Alexandre Lomsadze, and Mark Borodovsky. 2020. “GeneMark-EP+: Eukaryotic 
Gene Prediction with Self-Training in the Space of Genes and Proteins.” NAR Genomics 
and Bioinformatics 2 (2): lqaa026. https://doi.org/10.1093/nargab/lqaa026. 

Buchfink, Benjamin, Klaus Reuter, and Hajk-Georg Drost. 2021. “Sensitive Protein Alignments 
at Tree-of-Life Scale Using DIAMOND.” Nature Methods 18 (4): 366–68. 
https://doi.org/10.1038/s41592-021-01101-x. 

Capella-Gutiérrez, Salvador, José M. Silla-Martínez, and Toni Gabaldón. 2009. “TrimAl: A Tool 
for Automated Alignment Trimming in Large-Scale Phylogenetic Analyses.” 
Bioinformatics 25 (15): 1972–73. https://doi.org/10.1093/bioinformatics/btp348. 

Chandra, Ram, Dhinesh Babu, Vilas Jadhav, and Jaime Teixeira da Silva. 2010. “Origin, History 
and Domestication of Pomegranate.” Fruit, Vegetable and Cereal Science and 
Biotechnology 4 (December): 1–6. 

Chen, M., T.K. Zhang, and Z.H. Yuan. 2019. “Evolution and Classification of Pomegranate.” 
Acta Horticulturae, no. 1254 (October): 41–48. 
https://doi.org/10.17660/ActaHortic.2019.1254.7. 

Claros, Manuel Gonzalo, Rocío Bautista, Darío Guerrero-Fernández, Hicham Benzerki, Pedro 
Seoane, and Noé Fernández-Pozo. 2012. “Why Assembling Plant Genome Sequences Is 
So Challenging.” Biology 1 (2): 439–59. https://doi.org/10.3390/biology1020439. 

Cvrčková, F. 2016. “A Plant Biologists’ Guide to Phylogenetic Analysis of Biological 
Macromolecule Sequences.” Biologia Plantarum 60 (4): 619–27. 
https://doi.org/10.1007/s10535-016-0649-8. 



 134 

Emms, David M., and Steven Kelly. 2019. “OrthoFinder: Phylogenetic Orthology Inference for 
Comparative Genomics.” Genome Biology 20 (1): 238. https://doi.org/10.1186/s13059-
019-1832-y. 

Ewels, Philip, Måns Magnusson, Sverker Lundin, and Max Käller. 2016. “MultiQC: Summarize 
Analysis Results for Multiple Tools and Samples in a Single Report.” Bioinformatics 32 
(19): 3047–48. https://doi.org/10.1093/bioinformatics/btw354. 

Gurevich, Alexey, Vladislav Saveliev, Nikolay Vyahhi, and Glenn Tesler. 2013. “QUAST: 
Quality Assessment Tool for Genome Assemblies.” Bioinformatics (Oxford, England) 29 
(8): 1072–75. https://doi.org/10.1093/bioinformatics/btt086. 

Haas, Brian J, Steven L Salzberg, Wei Zhu, Mihaela Pertea, Jonathan E Allen, Joshua Orvis, 
Owen White, C Robin Buell, and Jennifer R Wortman. 2008. “Automated Eukaryotic 
Gene Structure Annotation Using EVidenceModeler and the Program to Assemble 
Spliced Alignments.” Genome Biology 9 (1): R7. https://doi.org/10.1186/gb-2008-9-1-r7. 

Hubley, Robert, Robert D. Finn, Jody Clements, Sean R. Eddy, Thomas A. Jones, Weidong Bao, 
Arian F.A. Smit, and Travis J. Wheeler. 2016. “The Dfam Database of Repetitive DNA 
Families.” Nucleic Acids Research 44 (Database issue): D81–89. 
https://doi.org/10.1093/nar/gkv1272. 

Ja, Guerrero-Solano, Jaramillo-Morales Oa, Jiménez-Cabrera T, Urrutia-Hernández Ta, Chehue-
Romero A, Olvera-Hernández Eg, and Bautista M. 2020. “Punica Protopunica Balf., the 
Forgotten Sister of the Common Pomegranate ( Punica Granatum L.): Features and 
Medicinal Properties-A Review.” Plants (Basel, Switzerland) 9 (9). 
https://doi.org/10.3390/plants9091214. 

Kalyaanamoorthy, Subha, Bui Quang Minh, Thomas K. F. Wong, Arndt von Haeseler, and Lars 
S. Jermiin. 2017. “ModelFinder: Fast Model Selection for Accurate Phylogenetic 
Estimates.” Nature Methods 14 (6): 587–89. https://doi.org/10.1038/nmeth.4285. 

Kapli, Paschalia, Ziheng Yang, and Maximilian J. Telford. 2020. “Phylogenetic Tree Building in 
the Genomic Age.” Nature Reviews Genetics 21 (7): 428–44. 
https://doi.org/10.1038/s41576-020-0233-0. 

Katoh, Kazutaka, Kazuharu Misawa, Kei‐ichi Kuma, and Takashi Miyata. 2002. “MAFFT: A 
Novel Method for Rapid Multiple Sequence Alignment Based on Fast Fourier 
Transform.” Nucleic Acids Research 30 (14): 3059–66. 
https://doi.org/10.1093/nar/gkf436. 

Korf, Ian. 2004. “Gene Finding in Novel Genomes.” BMC Bioinformatics 5 (1): 59. 
https://doi.org/10.1186/1471-2105-5-59. 

Le, Si Quang, and Olivier Gascuel. 2008. “An Improved General Amino Acid Replacement 
Matrix.” Molecular Biology and Evolution 25 (7): 1307–20. 
https://doi.org/10.1093/molbev/msn067. 



 135 

Luo, Xiang, Haoxian Li, Zhikun Wu, Wen Yao, Peng Zhao, Da Cao, Haiyan Yu, et al. 2020. 
“The Pomegranate (Punica Granatum L.) Draft Genome Dissects Genetic Divergence 
between Soft- and Hard-Seeded Cultivars.” Plant Biotechnology Journal 18 (4): 955–68. 
https://doi.org/10.1111/pbi.13260. 

Majoros, W. H., M. Pertea, and S. L. Salzberg. 2004. “TigrScan and GlimmerHMM: Two Open 
Source Ab Initio Eukaryotic Gene-Finders.” Bioinformatics (Oxford, England) 20 (16): 
2878–79. https://doi.org/10.1093/bioinformatics/bth315. 

Manni, Mosè, Matthew R Berkeley, Mathieu Seppey, Felipe A Simão, and Evgeny M Zdobnov. 
2021. “BUSCO Update: Novel and Streamlined Workflows along with Broader and 
Deeper Phylogenetic Coverage for Scoring of Eukaryotic, Prokaryotic, and Viral 
Genomes.” Molecular Biology and Evolution 38 (10): 4647–54. 
https://doi.org/10.1093/molbev/msab199. 

Marçais, Guillaume, and Carl Kingsford. 2011. “A Fast, Lock-Free Approach for Efficient 
Parallel Counting of Occurrences of k-Mers.” Bioinformatics 27 (6): 764–70. 
https://doi.org/10.1093/bioinformatics/btr011. 

McKain, Michael R., Matthew G. Johnson, Simon Uribe‐Convers, Deren Eaton, and Ya Yang. 
2018. “Practical Considerations for Plant Phylogenomics.” Applications in Plant Sciences 
6 (3). https://doi.org/10.1002/aps3.1038. 

Nguyen, Lam-Tung, Heiko A. Schmidt, Arndt von Haeseler, and Bui Quang Minh. 2015. “IQ-
TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood 
Phylogenies.” Molecular Biology and Evolution 32 (1): 268–74. 
https://doi.org/10.1093/molbev/msu300. 

Palmer, Jon, and Jason Stajich. 2019. “Nextgenusfs/Funannotate: Funannotate v1.5.3.” Zenodo. 
https://doi.org/10.5281/zenodo.2604804. 

Prjibelski, Andrey, Dmitry Antipov, Dmitry Meleshko, Alla Lapidus, and Anton Korobeynikov. 
2020. “Using SPAdes De Novo Assembler.” Current Protocols in Bioinformatics 70 (1): 
e102. https://doi.org/10.1002/cpbi.102. 

Qin, Gaihua, Chunyan Xu, Ray Ming, Haibao Tang, Romain Guyot, Elena M. Kramer, Yudong 
Hu, et al. 2017. “The Pomegranate (Punica Granatum L.) Genome and the Genomics of 
Punicalagin Biosynthesis.” The Plant Journal 91 (6): 1108–28. 
https://doi.org/10.1111/tpj.13625. 

Shahsavari, Shiva, Zahra Noormohammadi, Masoud Sheidai, Farah Farahani, and Mohammad 
Reza Vazifeshenas. 2022. “A Bioinformatic Insight into the Genetic Diversity within 
Pomegranate Cultivars: From Nuclear to Chloroplast Genes.” Genetic Resources and 
Crop Evolution 69 (3): 1207–17. https://doi.org/10.1007/s10722-021-01297-z. 

 



 136 

Sims, Gregory E., Se-Ran Jun, Guohong Albert Wu, and Sung-Hou Kim. 2009. “Whole-Genome 
Phylogeny of Mammals: Evolutionary Information in Genic and Nongenic Regions.” 
Proceedings of the National Academy of Sciences 106 (40): 17077–82. 
https://doi.org/10.1073/pnas.0909377106. 

Slater, Guy St C, and Ewan Birney. 2005. “Automated Generation of Heuristics for Biological 
Sequence Comparison.” BMC Bioinformatics 6 (February): 31. 
https://doi.org/10.1186/1471-2105-6-31. 

Smit, Arian F., Robert Hubley, Jullien M. Flynn, Clément Goubert, Jeb Rosen, Andrew G. Clark, 
and Cédric Feschotte. 2008. “RepeatModeler Open-1.0.” Preprint. Genomics. 
https://doi.org/10.1101/856591. 

 Smit, Arian F., Robert Hubley, Jullien M. Flynn. 2013. “RepeatMasker Open-4.0.” Preprint. 
Genomics. https://doi.org/10.1101/856591. 

Stanke, Mario, Oliver Keller, Irfan Gunduz, Alec Hayes, Stephan Waack, and Burkhard 
Morgenstern. 2006. “AUGUSTUS: Ab Initio Prediction of Alternative Transcripts.” 
Nucleic Acids Research 34 (suppl_2): W435–39. https://doi.org/10.1093/nar/gkl200. 

Teixeira da Silva, Jaime, Tikam Rana, Diganta Narzary, Nidhi Verma, Deodas Meshram, and 
Shirish Ranade. 2013. “Pomegranate Biology and Biotechnology: A Review.” Scientia 
Horticulturae 160 (August): 85–107. 

Usha, Talambedu, Sushil Kumar Middha, Dinesh Babu, Arvind Kumar Goyal, Anupam J. Das, 
Deepti Saini, Aditya Sarangi, et al. 2022. “Hybrid Assembly and Annotation of the 
Genome of the Indian Punica Granatum, a Superfood.” Frontiers in Genetics 13: 786825. 
https://doi.org/10.3389/fgene.2022.786825. 

Voshall, Adam, and Etsuko N. Moriyama. 2018. “Next-Generation Transcriptome Assembly: 
Strategies and Performance Analysis.” Bioinformatics in the Era of Post Genomics and 
Big Data, June. https://doi.org/10.5772/intechopen.73497. 

Vurture, Gregory W, Fritz J Sedlazeck, Maria Nattestad, Charles J Underwood, Han Fang, James 
Gurtowski, and Michael C Schatz. 2017. “GenomeScope: Fast Reference-Free Genome 
Profiling from Short Reads.” Bioinformatics 33 (14): 2202–4. 
https://doi.org/10.1093/bioinformatics/btx153. 

Wang, Huai-Chun, Bui Quang Minh, Edward Susko, and Andrew J. Roger. 2018. “Modeling Site 
Heterogeneity with Posterior Mean Site Frequency Profiles Accelerates Accurate 
Phylogenomic Estimation.” Systematic Biology 67 (2): 216–35. 
https://doi.org/10.1093/sysbio/syx068. 

Young, Andrew D., and Jessica P. Gillung. 2020. “Phylogenomics — Principles, Opportunities 
and Pitfalls of Big-Data Phylogenetics.” Systematic Entomology 45 (2): 225–47. 
https://doi.org/10.1111/syen.12406. 



 137 

Youssef, Muhammad, Arif Saeed Alhammadi, Jorge Humberto Ramírez-Prado, Lorenzo Felipe 
Sánchez-Teyer, and Rosa María Escobedo-GraciaMedrano. 2018. “Remarks on Genetic 
Diversity and Relationship of Punica Protopunica and P. Granatum Assessed by 
Molecular Analyses.” Genetic Resources and Crop Evolution 65 (2): 577–90. 
https://doi.org/10.1007/s10722-017-0556-7. 

Yuan, Zhaohe, Yanming Fang, Taikui Zhang, Zhangjun Fei, Fengming Han, Cuiyu Liu, Min Liu, 
et al. 2018. “The Pomegranate (Punica Granatum L.) Genome Provides Insights into Fruit 
Quality and Ovule Developmental Biology.” Plant Biotechnology Journal 16 (7): 1363–
74. https://doi.org/10.1111/pbi.12875. 

Zeynalova, Aydan. 2017. “ORIGIN, TAXONOMY AND SYSTEMATICS OF 
POMEGRANATE.” Journal of Botany of ANAS, January. 
https://www.academia.edu/40364877/ORIGIN_TAXONOMY_AND_SYSTEMATICS_
OF_POMEGRANATE. 

Zhang, Feng, Yinhuan Ding, Chao-Dong Zhu, Xin Zhou, Michael C. Orr, Stefan Scheu, and Yun-
Xia Luan. 2019. “Phylogenomics from Low-Coverage Whole-Genome Sequencing.” 
Methods in Ecology and Evolution 10 (4): 507–17. https://doi.org/10.1111/2041-
210X.13145. 

Zhou, Huijuan, Yiheng Hu, Aziz Ebrahimi, Peiliang Liu, Keith Woeste, Peng Zhao, and Shuoxin 
Zhang. 2021. “Whole Genome Based Insights into the Phylogeny and Evolution of the 
Juglandaceae.” BMC Ecology and Evolution 21 (1): 191. https://doi.org/10.1186/s12862-
021-01917-3. 

Bass, Joseph, and Mitchell A. Lazar. 2016. “Circadian Time Signatures of Fitness and Disease.” 
Science 354 (6315): 994–99. https://doi.org/10.1126/science.aah4965. 

Beytebiere, Joshua R., Alexandra J. Trott, Ben J. Greenwell, Collin A. Osborne, Helene Vitet, 
Jessica Spence, Seung-Hee Yoo, et al. 2019. “Tissue-Specific BMAL1 Cistromes Reveal 
That Rhythmic Transcription Is Associated with Rhythmic Enhancer–Enhancer 
Interactions.” Genes & Development 33 (5–6): 294–309. 
https://doi.org/10.1101/gad.322198.118. 

Boergesen, Michael, Thomas Åskov Pedersen, Barbara Gross, Simon J. van Heeringen, Dik 
Hagenbeek, Christian Bindesbøll, Sandrine Caron, et al. 2012. “Genome-Wide Profiling 
of Liver X Receptor, Retinoid X Receptor, and Peroxisome Proliferator-Activated 
Receptor α in Mouse Liver Reveals Extensive Sharing of Binding Sites.” Molecular and 
Cellular Biology 32 (4): 852–67. https://doi.org/10.1128/MCB.06175-11. 

Chen, Lei, Natalie H. Toke, Shirley Luo, Roshan P. Vasoya, Rohit Aita, Aditya Parthasarathy, 
Yu-Hwai Tsai, Jason R. Spence, and Michael P. Verzi. 2019. “HNF4 Factors Control 
Chromatin Accessibility and Are Redundantly Required for Maturation of the Fetal 
Intestine.” Development 146 (19). https://doi.org/10.1242/dev.179432. 

 



 138 

Chen, Lei, Natalie H. Toke, Shirley Luo, Roshan P. Vasoya, Robert L. Fullem, Aditya 
Parthasarathy, Ansu O. Perekatt, and Michael P. Verzi. 2019. “A Reinforcing HNF4–
SMAD4 Feed-Forward Module Stabilizes Enterocyte Identity.” Nature Genetics 51 (5): 
777–85. https://doi.org/10.1038/s41588-019-0384-0. 

Chen, W. S., K. Manova, D. C. Weinstein, S. A. Duncan, A. S. Plump, V. R. Prezioso, R. F. 
Bachvarova, and J. E. Darnell. 1994. “Disruption of the HNF-4 Gene, Expressed in 
Visceral Endoderm, Leads to Cell Death in Embryonic Ectoderm and Impaired 
Gastrulation of Mouse Embryos.” Genes & Development 8 (20): 2466–77. 
https://doi.org/10.1101/gad.8.20.2466. 

Clapier, Cedric R., and Bradley R. Cairns. 2009. “The Biology of Chromatin Remodeling 
Complexes.” Annual Review of Biochemistry 78 (1): 273–304. 
https://doi.org/10.1146/annurev.biochem.77.062706.153223. 

Clapier, Cedric R., Janet Iwasa, Bradley R. Cairns, and Craig L. Peterson. 2017. “Mechanisms of 
Action and Regulation of ATP-Dependent Chromatin-Remodelling Complexes.” Nature 
Reviews Molecular Cell Biology 18 (7): 407–22. https://doi.org/10.1038/nrm.2017.26. 

Colclough, Kevin, Christine Bellanne-Chantelot, Cecile Saint-Martin, Sarah E. Flanagan, and 
Sian Ellard. 2013. “Mutations in the Genes Encoding the Transcription Factors 
Hepatocyte Nuclear Factor 1 Alpha and 4 Alpha in Maturity-Onset Diabetes of the 
Young and Hyperinsulinemic Hypoglycemia.” Human Mutation 34 (5): 669–85. 
https://doi.org/10.1002/humu.22279. 

Corces, M. Ryan, Jeffrey M. Granja, Shadi Shams, Bryan H. Louie, Jose A. Seoane, Wanding 
Zhou, Tiago C. Silva, et al. 2018. “The Chromatin Accessibility Landscape of Primary 
Human Cancers.” Science 362 (6413). https://doi.org/10.1126/science.aav1898. 

Deans, Jonathan R., Poonamjot Deol, Nina Titova, Sarah H. Radi, Linh M. Vuong, Jane R. 
Evans, Songqin Pan, et al. 2021. “HNF4α Isoforms Regulate the Circadian Balance 
between Carbohydrate and Lipid Metabolism in the Liver.” BioRxiv, February, 
2021.02.28.433261. https://doi.org/10.1101/2021.02.28.433261. 

Dong, Zhen, Guoxin Zhang, Meng Qu, Ryan C. Gimple, Qiulian Wu, Zhixin Qiu, Briana C. 
Prager, et al. 2019. “Targeting Glioblastoma Stem Cells through Disruption of the 
Circadian Clock.” Cancer Discovery 9 (11): 1556–73. https://doi.org/10.1158/2159-
8290.CD-19-0215. 

Fang, Bin, Logan J. Everett, Jennifer Jager, Erika Briggs, Sean M. Armour, Dan Feng, Ankur 
Roy, Zachary Gerhart-Hines, Zheng Sun, and Mitchell A. Lazar. 2014. “Circadian 
Enhancers Coordinate Multiple Phases of Rhythmic Gene Transcription In Vivo.” Cell 
159 (5): 1140–52. https://doi.org/10.1016/j.cell.2014.10.022. 

Faure, Andre J., Dominic Schmidt, Stephen Watt, Petra C. Schwalie, Michael D. Wilson, Huiling 
Xu, Robert G. Ramsay, Duncan T. Odom, and Paul Flicek. 2012. “Cohesin Regulates 
Tissue-Specific Expression by Stabilizing Highly Occupied Cis-Regulatory Modules.” 
Genome Research 22 (11): 2163–75. https://doi.org/10.1101/gr.136507.111. 



 139 

Fekry, Baharan, Aleix Ribas-Latre, Corrine Baumgartner, Jonathan R. Deans, Christopher Kwok, 
Pooja Patel, Loning Fu, et al. 2018. “Incompatibility of the Circadian Protein BMAL1 
and HNF4α in Hepatocellular Carcinoma.” Nature Communications 9 (1). 
https://doi.org/10.1038/s41467-018-06648-6. 

Fekry, Baharan, Aleix Ribas-Latre, Corrine Baumgartner, Alaa M. T. Mohamed, Mikhail G. 
Kolonin, Frances M. Sladek, Mamoun Younes, and Kristin L. Eckel-Mahan. 2019. 
“HNF4α-Deficient Fatty Liver Provides a Permissive Environment for Sex-Independent 
Hepatocellular Carcinoma.” Cancer Research 79 (22): 5860–73. 

Flanagan, S. E., R. R. Kapoor, G. Mali, D. Cody, N. Murphy, B. Schwahn, T. Siahanidou, et al. 
2010. “Diazoxide-Responsive Hyperinsulinemic Hypoglycemia Caused by HNF4A Gene 
Mutations.” European Journal of Endocrinology 162 (5): 987–92. 
https://doi.org/10.1530/EJE-09-0861. 

Gupta, Rana K., Marko Z. Vatamaniuk, Catherine S. Lee, Reed C. Flaschen, James T. Fulmer, 
Franz M. Matschinsky, Stephen A. Duncan, and Klaus H. Kaestner. 2005. “The MODY1 
Gene HNF-4α Regulates Selected Genes Involved in Insulin Secretion.” Journal of 
Clinical Investigation 115 (4): 1006–15. https://doi.org/10.1172/JCI200522365. 

Hatziapostolou, Maria, Christos Polytarchou, Eleni Aggelidou, Alexandra Drakaki, George A. 
Poultsides, Savina A. Jaeger, Hisanobu Ogata, et al. 2011. “An HNF4α-MiRNA 
Inflammatory Feedback Circuit Regulates Hepatocellular Oncogenesis.” Cell 147 (6): 
1233–47. https://doi.org/10.1016/j.cell.2011.10.043. 

Hayhurst, Graham P., Ying-Hue Lee, Gilles Lambert, Jerrold M. Ward, and Frank J. Gonzalez. 
2001a. “Hepatocyte Nuclear Factor 4α (Nuclear Receptor 2A1) Is Essential for 
Maintenance of Hepatic Gene Expression and Lipid Homeostasis.” Molecular and 
Cellular Biology 21 (4): 1393–1403. https://doi.org/10.1128/MCB.21.4.1393-1403.2001. 

Hayhurst, G. P., Lee, Y.-H., Lambert, G., Ward, J. M. & Gonzalez, F. J. 2001b. “Hepatocyte 
Nuclear Factor 4α (Nuclear Receptor 2A1) Is Essential for Maintenance of Hepatic Gene 
Expression and Lipid Homeostasis.” Molecular and Cellular Biology 21 (4): 1393–1403. 
https://doi.org/10.1128/MCB.21.4.1393-1403.2001. 

Hirota, Tsuyoshi, Jae Wook Lee, Peter C. St John, Mariko Sawa, Keiko Iwaisako, Takako 
Noguchi, Pagkapol Y. Pongsawakul, et al. 2012. “Identification of Small Molecule 
Activators of Cryptochrome.” Science 337 (6098): 1094–97. 
https://doi.org/10.1126/science.1223710. 

Holloway, Minita G., Gregory D. Miles, Alan A. Dombkowski, and David J. Waxman. 2008. 
“Liver-Specific Hepatocyte Nuclear Factor-4α Deficiency: Greater Impact on Gene 
Expression in Male than in Female Mouse Liver.” Molecular Endocrinology 22 (5): 
1274–86. https://doi.org/10.1210/me.2007-0564.  

 



 140 

Hwang-Verslues, Wendy W, and Frances M Sladek. 2010. “HNF4α—Role in Drug Metabolism 
and Potential Drug Target?” Current Opinion in Pharmacology, Endocrine and metabolic 
diseases/New technologies - the importance of protein dynamics, 10 (6): 698–705. 
https://doi.org/10.1016/j.coph.2010.08.010. 

Improda, Nicola, Pratik Shah, Maria Güemes, Clare Gilbert, Kate Morgan, Neil Sebire, Detlef 
Bockenhauer, and Khalid Hussain. 2016. “Hepatocyte Nuclear Factor-4 Alfa Mutation 
Associated with Hyperinsulinaemic Hypoglycaemia and Atypical Renal Fanconi 
Syndrome: Expanding the Clinical Phenotype.” Hormone Research in Paediatrics 86 (5): 
337–41. https://doi.org/10.1159/000446396. 

Jozwik, Kamila M., Igor Chernukhin, Aurelien A. Serandour, Sankari Nagarajan, and Jason S. 
Carroll. 2016. “FOXA1 Directs H3K4 Monomethylation at Enhancers via Recruitment of 
the Methyltransferase MLL3.” Cell Reports 17 (10): 2715–23. 
https://doi.org/10.1016/j.celrep.2016.11.028. 

Koike, Nobuya, Seung-Hee Yoo, Hung-Chung Huang, Vivek Kumar, Choogon Lee, Tae-Kyung 
Kim, and Joseph S. Takahashi. 2012. “Transcriptional Architecture and Chromatin 
Landscape of the Core Circadian Clock in Mammals.” Science 338 (6105): 349–54. 
https://doi.org/10.1126/science.1226339. 

Kriebs, Anna, Sabine D. Jordan, Erin Soto, Emma Henriksson, Colby R. Sandate, Megan E. 
Vaughan, Alanna B. Chan, et al. 2017. “Circadian Repressors CRY1 and CRY2 Broadly 
Interact with Nuclear Receptors and Modulate Transcriptional Activity.” Proceedings of 
the National Academy of Sciences, July, 201704955. 
https://doi.org/10.1073/pnas.1704955114. 

Lambert, Élie, Jean-Philippe Babeu, Joël Simoneau, Jennifer Raisch, Laurie Lavergne, 
Dominique Lévesque, Émilie Jolibois, et al. 2020. “Human Hepatocyte Nuclear Factor 4-
α Encodes Isoforms with Distinct Transcriptional Functions*.” Molecular & Cellular 
Proteomics 19 (5): 808–27. https://doi.org/10.1074/mcp.RA119.001909. 

Li, Jixuan, Gang Ning, and Stephen A. Duncan. 2000. “Mammalian Hepatocyte Differentiation 
Requires the Transcription Factor HNF-4α.” Genes & Development 14 (4): 464–74. 
https://doi.org/10.1101/gad.14.4.464. 

Liu, Andrew C., Hien G. Tran, Eric E. Zhang, Aaron A. Priest, David K. Welsh, and Steve A. 
Kay. 2008. “Redundant Function of REV-ERBα and β and Non-Essential Role for Bmal1 
Cycling in Transcriptional Regulation of Intracellular Circadian Rhythms.” PLoS Genet 4 
(2): e1000023. https://doi.org/10.1371/journal.pgen.1000023. 

Liu, Chuanyu, Mingyue Wang, Xiaoyu Wei, Liang Wu, Jiangshan Xu, Xi Dai, Jun Xia, et al. 
2019. “An ATAC-Seq Atlas of Chromatin Accessibility in Mouse Tissues.” Scientific 
Data 6 (1): 65. https://doi.org/10.1038/s41597-019-0071-0. 

“The Human Protein Atlas.” n.d. Accessed March 28, 2021. https://www.proteinatlas.org/. 

 



 141 

Local, Andrea, Hui Huang, Claudio P. Albuquerque, Namit Singh, Ah Young Lee, Wei Wang, 
Chaochen Wang, et al. 2018. “Identification of H3K4me1-Associated Proteins at 
Mammalian Enhancers.” Nature Genetics 50 (1): 73–82. https://doi.org/10.1038/s41588-
017-0015-6. 

Lv, Duo-Duo, Ling-Yun Zhou, and Hong Tang. 2021. “Hepatocyte Nuclear Factor 4α and 
Cancer-Related Cell Signaling Pathways: A Promising Insight into Cancer Treatment.” 
Experimental & Molecular Medicine 53 (1): 8–18. https://doi.org/10.1038/s12276-020-
00551-1. 

Marcheva, Biliana, Kathryn Moynihan Ramsey, Ethan D. Buhr, Yumiko Kobayashi, Hong Su, 
Caroline H. Ko, Ganka Ivanova, et al. 2010. “Disruption of the Clock Components 
CLOCK and BMAL1 Leads to Hypoinsulinaemia and Diabetes.” Nature 466 (7306): 
627–31. https://doi.org/10.1038/nature09253. 

Marstrand, Troels T., and John D. Storey. 2014. “Identifying and Mapping Cell-Type-Specific 
Chromatin Programming of Gene Expression.” Proceedings of the National Academy of 
Sciences 111 (6): E645–54. https://doi.org/10.1073/pnas.1312523111. 

Mayran, Alexandre, and Jacques Drouin. 2018. “Pioneer Transcription Factors Shape the 
Epigenetic Landscape.” Journal of Biological Chemistry 293 (36): 13795–804. 
https://doi.org/10.1074/jbc.R117.001232. 

Menet, Jerome S., Stefan Pescatore, and Michael Rosbash. 2014. “CLOCK:BMAL1 Is a Pioneer-
like Transcription Factor.” Genes & Development 28 (1): 8–13. 
https://doi.org/10.1101/gad.228536.113. 

Mohawk, Jennifer A., Carla B. Green, and Joseph S. Takahashi. 2012. “Central and Peripheral 
Circadian Clocks in Mammals.” Annual Review of Neuroscience 35 (1): 445–62. 
https://doi.org/10.1146/annurev-neuro-060909-153128. 

Mure, Ludovic S., Hiep D. Le, Giorgia Benegiamo, Max W. Chang, Luis Rios, Ngalla Jillani, 
Maina Ngotho, et al. 2018. “Diurnal Transcriptome Atlas of a Primate across Major 
Neural and Peripheral Tissues.” Science 359 (6381). 
https://doi.org/10.1126/science.aao0318. 

Nagy, P, H C Bisgaard, and S S Thorgeirsson. 1994. “Expression of Hepatic Transcription 
Factors during Liver Development and Oval Cell Differentiation.” The Journal of Cell 
Biology 126 (1): 223–33. https://doi.org/10.1083/jcb.126.1.223. 

Nakamori, Daiki, Hiroki Akamine, Kazuo Takayama, Fuminori Sakurai, and Hiroyuki 
Mizuguchi. 2017. “Direct Conversion of Human Fibroblasts into Hepatocyte-like Cells 
by ATF5, PROX1, FOXA2, FOXA3, and HNF4A Transduction.” Scientific Reports 7 
(1): 1–9. https://doi.org/10.1038/s41598-017-16856-7. 

 



 142 

Ng, Natasha Hui Jin, Joanita Binte Jasmen, Chang Siang Lim, Hwee Hui Lau, Vidhya Gomathi 
Krishnan, Juned Kadiwala, Rohit N. Kulkarni, et al. 2019. “HNF4A Haploinsufficiency 
in MODY1 Abrogates Liver and Pancreas Differentiation from Patient-Derived Induced 
Pluripotent Stem Cells.” IScience 16 (June): 192–205. 
https://doi.org/10.1016/j.isci.2019.05.032. 

Panda, Satchidananda, Marina P. Antoch, Brooke H. Miller, Andrew I. Su, Andrew B. Schook, 
Marty Straume, Peter G. Schultz, Steve A. Kay, Joseph S. Takahashi, and John B. 
Hogenesch. 2002. “Coordinated Transcription of Key Pathways in the Mouse by the 
Circadian Clock.” Cell 109 (3): 307–20. https://doi.org/10.1016/S0092-8674(02)00722-5. 

Parviz, Fereshteh, Christine Matullo, Wendy D. Garrison, Laura Savatski, John W. Adamson, 
Gang Ning, Klaus H. Kaestner, Jennifer M. Rossi, Kenneth S. Zaret, and Stephen A. 
Duncan. 2003. “Hepatocyte Nuclear Factor 4α Controls the Development of a Hepatic 
Epithelium and Liver Morphogenesis.” Nature Genetics 34 (3): 292–96. 
https://doi.org/10.1038/ng1175. 

Pearson, E. R., S. Pruhova, C. J. Tack, A. Johansen, H. A. J. Castleden, P. J. Lumb, A. S. 
Wierzbicki, et al. 2005. “Molecular Genetics and Phenotypic Characteristics of MODY 
Caused by Hepatocyte Nuclear Factor 4α Mutations in a Large European Collection.” 
Diabetologia 48 (5): 878–85. https://doi.org/10.1007/s00125-005-1738-y. 

Perelis, Mark, Biliana Marcheva, Kathryn Moynihan Ramsey, Matthew J. Schipma, Alan L. 
Hutchison, Akihiko Taguchi, Clara Bien Peek, et al. 2015. “Pancreatic β Cell Enhancers 
Regulate Rhythmic Transcription of Genes Controlling Insulin Secretion.” Science 350 
(6261). https://doi.org/10.1126/science.aac4250. 

Pizarro, Angel, Katharina Hayer, Nicholas F. Lahens, and John B. Hogenesch. 2013. “CircaDB: 
A Database of Mammalian Circadian Gene Expression Profiles.” Nucleic Acids Research 
41 (D1): D1009–13. https://doi.org/10.1093/nar/gks1161. 

Qu, Meng, Tomas Duffy, Tsuyoshi Hirota, and Steve A. Kay. 2018. “Nuclear Receptor HNF4A 
Transrepresses CLOCK:BMAL1 and Modulates Tissue-Specific Circadian Networks.” 
Proceedings of the National Academy of Sciences 115 (52): E12305–12. 
https://doi.org/10.1073/pnas.1816411115. 

Ruben, Marc D, Gang Wu, David F Smith, Robert E Schmidt, Lauren J Francey, Yin Yeng Lee, 
Ron C Anafi, and John B Hogenesch. 2018. “A Database of Tissue-Specific 
Rhythmically Expressed Human Genes Has Potential Applications in Circadian 
Medicine.” SCIENCE TRANSLATIONAL MEDICINE, 8. 

Sekiya, Sayaka, and Atsushi Suzuki. 2011. “Direct Conversion of Mouse Fibroblasts to 
Hepatocyte-like Cells by Defined Factors.” Nature 475 (7356): 390–93. 
https://doi.org/10.1038/nature10263. 

Sladek, F. M., W. M. Zhong, E. Lai, and J. E. Darnell. 1990. “Liver-Enriched Transcription 
Factor HNF-4 Is a Novel Member of the Steroid Hormone Receptor Superfamily.” Genes 
& Development 4 (12b): 2353–65. https://doi.org/10.1101/gad.4.12b.2353. 



 143 

Storch, Kai-Florian, Ovidiu Lipan, Igor Leykin, N. Viswanathan, Fred C. Davis, Wing H. Wong, 
and Charles J. Weitz. 2002. “Extensive and Divergent Circadian Gene Expression in 
Liver and Heart.” Nature 417 (6884): 78–83. https://doi.org/10.1038/nature744. 

Storch, Kai-Florian, Carlos Paz, James Signorovitch, Elio Raviola, Basil Pawlyk, Tiansen Li, and 
Charles J. Weitz. 2007. “Intrinsic Circadian Clock of the Mammalian Retina: Importance 
for Retinal Processing of Visual Information.” Cell 130 (4): 730–41. 
https://doi.org/10.1016/j.cell.2007.06.045. 

Tahara, Yu, and Shigenobu Shibata. 2016. “Circadian Rhythms of Liver Physiology and Disease: 
Experimental and Clinical Evidence.” Nature Reviews Gastroenterology & Hepatology 
13 (4): 217–26. https://doi.org/10.1038/nrgastro.2016.8. 

Takahashi, Joseph S. 2017. “Transcriptional Architecture of the Mammalian Circadian Clock.” 
Nature Reviews Genetics 18 (3): 164–79. https://doi.org/10.1038/nrg.2016.150. 

Thakur, Avinash, Jasper C. H. Wong, Evan Y. Wang, Jeremy Lotto, Donghwan Kim, Jung-Chien 
Cheng, Matthew Mingay, et al. 2019. “Hepatocyte Nuclear Factor 4-Alpha Is Essential 
for the Active Epigenetic State at Enhancers in Mouse Liver.” Hepatology 70 (4): 1360–
76. https://doi.org/10.1002/hep.30631. 

Trott, Alexandra J., and Jerome S. Menet. 2018. “Regulation of Circadian Clock Transcriptional 
Output by CLOCK:BMAL1.” PLOS Genetics 14 (1): e1007156. 
https://doi.org/10.1371/journal.pgen.1007156. 

Vollmers, Christopher, Robert J. Schmitz, Jason Nathanson, Gene Yeo, Joseph R. Ecker, and 
Satchidananda Panda. 2012. “Circadian Oscillations of Protein-Coding and Regulatory 
RNAs in a Highly Dynamic Mammalian Liver Epigenome.” Cell Metabolism 16 (6): 
833–45. https://doi.org/10.1016/j.cmet.2012.11.004. 

Walesky, Chad, Genea Edwards, Prachi Borude, Sumedha Gunewardena, Maura O’Neil, 
Byunggil Yoo, and Udayan Apte. 2013. “Hepatocyte Nuclear Factor 4 Alpha Deletion 
Promotes Diethylnitrosamine-Induced Hepatocellular Carcinoma in Rodents.” 
Hepatology 57 (6): 2480–90. https://doi.org/10.1002/hep.26251. 

Yadon, Adam N, Badri Nath Singh, Michael Hampsey, and Toshio Tsukiyama. 2013. “DNA 
Looping Facilitates Targeting of a Chromatin Remodeling Enzyme.” Molecular Cell 50 
(1): 93–103. https://doi.org/10.1016/j.molcel.2013.02.005. 

Yang, Guangrui, Lihong Chen, Gregory R. Grant, Georgios Paschos, Wen-Liang Song, Erik S. 
Musiek, Vivian Lee, et al. 2016. “Timing of Expression of the Core Clock Gene Bmal1 
Influences Its Effects on Aging and Survival.” Science Translational Medicine 8 (324): 
324ra16-324ra16. https://doi.org/10.1126/scitranslmed.aad3305. 

Yin Liya, Ma Huiyan, Ge Xuemei, Edwards Peter A., and Zhang Yanqiao. 2011. “Hepatic 
Hepatocyte Nuclear Factor 4α Is Essential for Maintaining Triglyceride and Cholesterol 
Homeostasis.” Arteriosclerosis, Thrombosis, and Vascular Biology 31 (2): 328–36. 
https://doi.org/10.1161/ATVBAHA.110.217828. 



 144 

Zhang, Ray, Nicholas F. Lahens, Heather I. Ballance, Michael E. Hughes, and John B. 
Hogenesch. 2014. “A Circadian Gene Expression Atlas in Mammals: Implications for 
Biology and Medicine.” Proceedings of the National Academy of Sciences 111 (45): 
16219–24. https://doi.org/10.1073/pnas.1408886111. 

Zhang, Yuxiang, Bin Fang, Manashree Damle, Dongyin Guan, Zhenghui Li, Yong Hoon Kim, 
Maureen Gannon, and Mitchell A. Lazar. 2016. “HNF6 and Rev-Erbα Integrate Hepatic 
Lipid Metabolism by Overlapping and Distinct Transcriptional Mechanisms.” Genes & 
Development 30 (14): 1636–44. https://doi.org/10.1101/gad.281972.116. 

Zhang, Yuxiang, Bin Fang, Matthew J. Emmett, Manashree Damle, Zheng Sun, Dan Feng, Sean 
M. Armour, et al. 2015. “Discrete Functions of Nuclear Receptor Rev-Erbα Couple 
Metabolism to the Clock.” Science 348 (6242): 1488–92. 
https://doi.org/10.1126/science.aab3021. 




