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ABSTRACT OF THE DISSERTATION

Unifying Behavior Based Control Design and Hybrid Stability Theory for AUV
Application

by

Vladimir Djapic

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, March 2009

Professor Jay A. Farrell, Chairperson

Autonomous Underwater Vehicles (AUVs) are extensively being used by the scientific, oil

and gas, and military communities. Many of the missions require the vehicle to function in

complex, cluttered environments; to react to changing environmental parameters; and, to

find a collision-free path through a workspace containing a significant number of obstacles.

Many of the AUV missions currently involve high risk for human lives and excessive costs.

State-of-art vehicles are not maneuverable enough to successfully accomplish most of the

desired tasks. Desirable vehicle control capabilities include the ability to drive at very

low, controllable speeds, the ability to maintain a set distance and attitude (pitch and

roll) relative to some surface for optimal sensor (both sonar and video) effectiveness, and

the ability for the operator to intervene to change the mission activities. Moreover, a

vehicle capable of rotating in place or having a fraction of a meter turning radius is needed

to conduct desired missions. Novel controllers to implement these specific behaviors are

expected to be nonlinear due, for example, to the fact that the vehicle is maneuvering

vii



at nonzero attitude while translating parallel to the surface. A specific mission that this

research addresses is ship hull inspection. This dissertation works through the details of a

method to control the vehicle’s attitude and translation relative to a surface. The surface

of interest for example being a ship hull.

This dissertation describes the derivation, design, simulation, and implementation

of a Behavior Based control system. Each behavior is designed using a command filtered

backstepping (CFBS) approach. Each behavior and the switching among behaviors is prov-

ably stable in the sense of Lyapunov. We use the results from Hybrid System Control in

order to prove stability during behavior switching, and thus the overall control system sta-

bility. This dissertation presents the simulation and in-water testing results of our control

design applied to an AUV.
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Chapter 1

Introduction

The goal of this chapter is to introduce our concepts, relevant background through

previous research performed, and goals of this dissertation. The three main ideas and

concepts of this dissertation are:

1. Behavior Based Control;

2. Command-Filtered Backstepping controller design; and,

3. Behavior switching using results from Hybrid System Theory.

We use Behavior Based Control to show that missions performed by autonomous vehicles can

be defined by multiple behaviors and logic for switching among them, Command-Filtered

Backstepping technique to design stable behaviors in sense of Lyapunov, and proofs from

Hybrid Systems Theory to ensure that behavior switching does not lead to instability. We

conclude the introduction chapter presenting the overview of this dissertation.
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1.1 Behavior Based Control

One of the objectives of this research is to present a Behavior Based Control strat-

egy as means to control an autonomous vehicle. We argue that this strategy is an efficient

means to navigate an autonomous vehicle in complex and uncertain environment. The pur-

pose of this section is to give an overview of Behavior Based Control and to show why we

believe that this approach can be used for solving some complex missions the autonomous

vehicle are being considered for. Although our approach is theoretically applicable to land,

air, surface, and underwater vehicles, this dissertation focuses on AUV platforms and par-

ticular missions.

Advances in robotic sensor technology enable advances in vehicle maneuverability

and planning strategies to allow scientific and military operators to efficiently test and utilize

new sensors in missions of interest. For some searching applications it is a requirement for

a vehicle to accurately follow a specific trajectory, make accurate turns and continue to

follow the next specified trajectory. Many of these missions require the vehicle to function

in complex, cluttered environments, to react to changing environmental parameters, and

find a collision-free path through a workspace containing a significant number of obstacles.

For successful accomplishment of such a mission, at least two approaches are possible: a

single analytic controller or a number of controllers each accomplishing a specific behavior.

1.1.1 Single Controller Approach

The single controller approach works well for many applications; however, it might

be challenged when multiple control objectives are desired. In that case, a single controller
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must be optimized to achieve all objectives. There might be a performance trade-off among

multiple objectives using a single feedback function. If different controllers are designed

and optimized for different objectives, and the switching logic is designed properly, the

performance might be better. According to the argument in [47], the performance using

a hybrid controller should be no worse than what would be by using any single feedback

function without switching. In many cases, the performance using a hybrid controller is

substantially better.

1.1.2 Multi Controller Approach - Behavior Based Control

In traditional Mobile Robot Control, a complete task is broken into “horizontal”

components, such as perception, modeling, planning, task execution, motor control, and

each is executed in turn after the other. The right interfaces are defined between subcom-

ponents. Each subcomponent from perception to motor control must succeed.

Another solution is Behavior Based control, wherein each behavior has a single

well-defined task. One of the first to introduce this approach was Brooks [7]. According

to him, robots should be simple in nature but flexible in behavior, capable of acting au-

tonomously over long periods of time in uncertain, noisy, realistic, and changing worlds,

etc. Brooks argues that a better approach to traditional Mobile Robot Control is to divide

competence up into levels of abstractness (e.g. reason about object behaviors, plan changes

to world, identify objects, monitor changes, build maps, explore, avoid objects, etc.). The

behaviors are coordinated in a subsumption architecture. In the subsumption architecture,

vehicle functionality is accomplished incrementally via task-achieving behaviors. Each be-

3



havior is achieved separately and then all of them are tied together to form the robot’s

control system. Thus, control system is built in such a way that the layers of control sys-

tem are designed so the robot operates at increasing levels of competence. Higher levels

impose control over lower ones. Lower levels continue to function as higher levels are added.

As explained in [53] the design of a Behavior Based system includes two significant steps.

First, the designer must formulate each reactive behavior quantitatively and implement the

behavior as an algorithm. Second, the designer must define and implement a methodology

for coordinating the possibly conflicting commands from the different behaviors to achieve

good mission performance. As summarized in [6] the advantages of Behavior Based ap-

proach are: 1) concurrent execution of multiple behaviors; 2) multiple goals are achieved at

the same time; 3) extensibility: new behaviors can be added onto existing behaviors; and 4)

robustness: underlying behaviors maintain core competency beneath overlaying behaviors.

The Behavior Based Control approach has been used in a large variety of appli-

cations some of them being mobile robots and land vehicles [1, 55], and marine vehicles

[6, 56, 64]. Since this research focuses on control of underwater vehicle we will concentrate

on those applications.

Behavior Based Design for AUVs

State-of-the-art AUV systems are equipped with tools for generating and executing

a priori mission plans. Prior to placing the vehicle in the water, the user constructs a list

of mission activities. Once the vehicle is placed in the water and the mission is initiated,

the mission planner sequentially completes each activity on the mission list while recording
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the sensor data. With such systems, the acquired sensor data does not affect the execution

of the mission. After the mission is completed and the vehicle is recovered, the operator

analyzes the sensor data for items of interest. At this point, either a human or an AUV with

a fixed mission plan may be sent to investigate the areas that contained interesting data.

Not only is this approach slow, but when the environment is time-varying, the interesting

phenomenon may no longer be at the location that it was previously detected.

An alternative approach is to develop data reactive mission plans. In such an

approach, the mission plan is developed onboard the vehicle in response to the sensor data.

The mission plan is defined by behaviors and logic for switching between the behaviors.

An AUV with a data reactive mission planner can acquire data more quickly and reliably

than a fixed mission plan since the reactive planner can keep the AUV in the vicinity of,

or maneuver relative to, the interesting sensor data. For example, in the anti-swimmer

defense application, the AUV might start the mission in a search behavior that patrols a

region until the sonar detects a moving object meeting certain sonar characteristics. After

such a detection, the AUV might switch to a surface behavior to alert security personnel,

to a tracking behavior, or do both sequentially. In either case, the AUV mission trajectory

is directly determined based on sensor data.

The researchers at the Mobile Robotics Research Group at Oxford University, the

Computer Science and Artificial Intelligence Laboratory (CSAIL) and Department of Me-

chanical Engineering at MIT, and the Naval Undersea Warfare Center in Newport Rhode Is-

land (NUWC-NPT) have developed the MOOS-IvP Autonomy Architecture [52, 4]. MOOS

stands for “Mission Oriented Operating Suite”, and IvP stands for “Interval Programming”.
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This architecture consists of an open-source distributed autonomy architecture and an ap-

proach to behavior based control of autonomous vehicles using multiple objective functions

that allows reactive control in complex environments with multiple constraints. While low-

level control tasks such as navigation, depth keeping and vehicle safety are assigned to the

AUV main vehicle computer, all high-level control inputs are derived from a separate ve-

hicle payload computer running the MIT MOOS-IvP system. This autonomy architecture

was developed to support adaptive sampling using Unmanned Surface Craft for adaptive

and cooperative control of the autonomous sensor platforms in such a network [15] and to

control an AUV while towing a 100-meter vector sensor array [5]. There are other AUV

applications of Behavior Based Control such as for surveys of coral reefs keeping the vehicle

altitude from the bottom constant for optimal video and sonar coverage [56].

Another example where Behavior Based Control is successfully applied to an AUV

is presented in [29, 53]. A data reactive mission planner has been successfully demonstrated

in the chemical plume tracing application. This planner reacted to chemical and flow sensor

data to cause the AUV to track the chemical plume to its source, declare the source location,

and perform maneuvers relative to that declared source location. In the latter step, the AUV

acquired sidescan sonar data to verify the source and its location. A set of behaviors to

achieve a task and a switching logic coordinating the behaviors was utilized. The idea was to

decompose the mission into Plume Search Components. During this research, an Adaptive

Mission Planner (AMP) drove an AUV based on inputs from environmental sensors that

detected a target chemical and successfully located and tracked the chemical plume over

large distances to the chemical source. The following behaviors were used: Proceed from

6



a home location to a region of operation, Search for a chemical plume, Track a chemical

plume in a turbulent flow to its source, Re-acquire Plume, Declare the source location, and

Return home. The AMP successfully tracked chemical plumes over distances of 975 m and

declared source locations with 13 m accuracy relative to ground truth.

In our research effort we used a Behavior Based Control approach for the vehicle

that has five thrusters; three in the vertical direction and two directed horizontally, giving

it five independent degrees of freedom that enable the vehicle to maneuver in any direction

except for purely lateral motion. Thus, we attempt to control an underactuated AUV. The

primary mission that we targeted in this research was ship-hull inspection mission. One

of the ultimate goals for this mission is to control the vehicle’s attitude and translation

relative to a surface. We started by building a complete AUV control system that achieves

low level vehicle control, such as velocity, depth and angular rate control. This behavior was

debugged in simulation and in-water tested thoroughly. Next we built a another control

behavior: velocity, depth, and attitude. With this behavior AUV achieved higher level

of competence. At this stage we used the AUV and its control system to estimate vehicle

parameters (perform system identification) and characterize the sensors. Then we continued

with trajectory following with zero attitude, trajectory following with nonzero attitude,

and finally accomplished surface following behavior. With such a design scheme we had a

working control system for the AUV very early in the development with building the first

behavior. Additional behaviors were added later, and the initial working system need never

had to be changed. Behavior Based Control Design provided us a way to incrementally

build and test a complex AUV control system.
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1.1.3 Two simple behaviors example

As a specific and simple example for autonomous vehicle Behavior Based Control,

consider the objective to track a trajectory consisting of intersecting curves, see Figure 1.1.

A control challenge is the requirement to have an accurate transition between curves which

intersect at sharp angles. The goal is to track the trajectory γ1 until the point P1 is reached.

Next the vehicle is supposed to turn to match the direction (tangent) of the next curve, γ2,

at the point P1. Finally, the vehicle will track the curve γ2. The process can be repeated

for the subsequent curves, for i = 1, ..., n − 1 to transition from γi to γi+1. This objective

can be achieved with two controllers: track curve and turn. This is a very useful process for

robotic vehicles in security applications. For interior security, the vehicle may be required

to follow a hallway center line while for outdoor security, the vehicle may be required to

drive around a fence. In both cases collisions with either a wall or a fence must be avoided,

cutting corners are not acceptable since a wall or fence may be there and overshooting the

corners may also be unacceptable. We will use the methods from the hybrid systems control

literature in order to prove the stability of our Behavior Based Control approach.

1.1.4 Criticism of Behavior Based Approaches

Behavior Based Control algorithms are criticized due to the lack of rigorous stabil-

ity analysis [46]. However, when each behavior is implemented as a nonlinear controller with

a rigorous stability analysis the main remaining issue is the design of behavior switching.

This issue is addressed herein from a hybrid systems perspective. Our control architec-

ture combines the advantages of Behavior Based Control and Lyapunov stability since at
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Figure 1.1: Objective - Mission Scenario

the same time allows for a theoretical study of the stability conditions for the system as

used in hybrid control. Both the behavior definitions and the behavior switching scheme

are discussed. Section 1.2 discusses the approaches for control of autonomous vehicles and

presents the high level of Command Filtered Backstepping Design which we used to cre-

ated stable behaviors for AUV. Section 1.3 shows our approach to create stable behavior

switching logic.

1.2 Command Filtered Backstepping Design

The purpose of this section is to show that each behavior would be implemented

by a single controller, possibly via multiple backstepping [42] iterations and to show that

this can be done using a novel approach to backstepping nonlinear control technique called

Command Filtered Backstepping (CFBS). This controller design can be applied to control

AUV.

The most common configuration for marine vehicles allows it to move in the hor-

izontal plane having only the surge and yaw axis directly actuated. Current underwater

robotic platforms generally fall into one of two categories:
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1. Torpedo shaped, single propeller: vehicle hull is long and cylindrical with a single

thruster at one end that propels the vehicle forward. Vectored thrust and control

surfaces (fins, rudder) are used for control.

2. Rectangular (but smooth, hydrodynamically) shaped, multi thruster: vehicle hull is

shaped like a cube or rectangular box with several thrusters. There is at least one

thruster (differential thrust) per axis of control, with no active control surfaces. These

AUVs look like Remotely Operated Vehicles (ROVs).

These systems contain two major flaws. Torpedo systems lack maneuverability on any axis

not along the length of the vehicle and so are not practical in tasks requiring strafing and

fine motion control. Box shaped vehicles are generally fairly maneuverable but waste space

and power by having each motor manipulate only a single axis. Modern vehicle control

algorithms separate horizontal and vertical plane navigation. Our approach is to control

horizontal and vertical velocity jointly.

Different approaches for motion control of autonomous vehicles (land, air, surface,

and underwater robots) have been analyzed in recent past [9], pp. 121-156 and [59]. The

literature, generally, distinguishes among two different motion control problems:

1. path following - where the robot is required to converge to and follow a path where

only spatial convergence is necessary without any temporal requirement, and

2. trajectory tracking - where the robot is required to track a time parameterized refer-

ence trajectory with temporal requirement.

In this dissertation, we focus on the trajectory tracking problem for autonomous
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vehicles. This problem is solved for fully actuated systems and the solutions can be found

in the nonlinear control textbooks (pages 540-544 in [41]). The trajectory tracking control

for nonholonomic systems is an active area of research interest. An example of such vehi-

cles are wheeled mobile robots. In the earlier work [17] researchers solved the problem of

stabilization of a nonholonomic system by linearization around the desired trajectory. This

approach gives an explicit control law which locally exponentially stabilizes the system to

the desired trajectory assuming that the tracking error due to initial condition or distur-

bance is not too large. Another approach is to apply feedback linearization techniques.

Papers [8, 34] proposed tracking controllers for wheeled mobile robots based on a feedback

linearization method, where singular points during the control were avoided by suitably

defining the desired trajectory and properly choosing the control parameters. Noting that

the dynamics of a wheeled mobile robot is differentially flat [32], dynamic tracking con-

trollers were proposed in [31] with the aid of the differential flatness concept. Backstepping

techniques are considered in solving tracking control problem for wheeled mobile robots

[30, 38, 39]. Fierro and Lewis propose the dynamical extension which provides a rigorous

method of taking into account the specific vehicle dynamics to convert a steering system

(kinematic model) command into control inputs for the actual vehicle [30] with the aid of

backstepping. In [38], tracking controllers for a wheeled mobile robot were proposed with

the aid of backstepping techniques. While in [39], tracking controllers were proposed for

a general canonical form which includes the kinematics of wheeled mobile robots based on

the backstepping design. Encarnacao and Pascoal combine the trajectory tracking and path

following problems and develop a control scheme that can yield good tracking performance
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while keeping some of the desired properties of path following [18]. Godhavn considers a

full nonlinear model of both the dynamics and the kinematics, and allows large variation in

both forward and lateral velocities. He used splines in order to make smooth trajectories

and backstepping to stabilize them [36]. It is well known, by Brockett’s necessary condi-

tions for stability [63], pages 181-191, that nonholonomic systems cannot be stabilized to a

point using smooth-static state feedback. We are interested in trajectory tracking problems

where the objective is to force the system position output z(t) ∈ ℜm to track a desired

ideal output zd(t) ∈ ℜm where ‖żd‖ ≥ ǫ > 0; therefore, we are stabilizing such a system

about a trajectory, which is feasible as proven in [36] and [17]. In this dissertation, we focus

on trajectory tracking, so zd(t) represents a position moving along a desired user-defined

trajectory. Based on the vehicle kinematics and dynamics, new tracking controllers are pro-

posed with the aid of backstepping techniques. This research presents and analyzes a novel

CFBS feedback control implementation approach. In practical applications, implementation

of the backstepping approach becomes increasingly complex as the state order increases.

The main complicating factor is computation of the command derivatives. This research

presents a filtering approach that significantly simplifies the backstepping implementation,

analyzes the effect of the command filtering, and derives a compensated tracking error that

retains the standard stability properties of backstepping approaches. To reduce the effort

of calculating derivatives of signals, command filtered techniques are applied to the pro-

posed tracking controllers. We prove that a compensated tracking error is exponentially

decreasing to zero. The tracking controllers with command filters can make the tracking

errors converge to a small ball. The radius of the small ball can be reduced by increasing a
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parameter in the command filter.

Several places in this dissertation refer to filtering of a signal xoc to produce a signal

xc and its derivative ẋc. This will be referred to as command filtering. The motivation of

command filtering is to determine the signals xc(t) and ẋc(t) with the error |xoc(t) − xc(t)|

being small with magnitude determined by design parameters. Command filtering avoids

analytic or numeric differentiation of xoc. The filter design is shown in Appendix A. An

example for understanding the connection between BS and CFBS is shown in the following

section.

1.2.1 Example of CFBS: Yaw control of nonholonomic land vehicle

The objective of this section is to show an example of stabilizing the yaw and

yaw rate dynamics for nonholonomic land robot first using conventional BS and then using

CFBS. The goal is to use this simple dynamics to show clear transition from BS to CFBS.

The kinematic and dynamic equations for a land vehicle are described as

ẋ = u cos(ψ) (1.1)

ẏ = u sin(ψ) (1.2)

ψ̇ = r (1.3)

u̇ = g(u, r) + F (1.4)

ṙ = f(u, r) + τ (1.5)

where x and y are the earth relative position, ψ is the yaw, u is the speed in body frame,

r is the yaw rate in body frame, F is the body-frame control force, τ is the body-frame
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control moment, g(u, r) and f(u, r) are friction and other forces acting on the robot. We

also assume that the position and speed are measured at the center of the horizontal axle.

Therefore, in this model the lateral speed v is zero and has been dropped from the model.

The full control of a land vehicle requires stabilizing eqns. (1.1–1.5). The position

dynamics were discussed in [12, 14]. For this section we focus on stabilizing eqns. (1.3) and

(1.5) to show the relationship between BS and CFBS.

Conventional Backstepping

This section derives the BS trajectory tracking control law for yaw and yaw rate

states. In this section, we use ψoc , r
o
c and their derivatives ψ̇oc , ṙ

o
c in to derive a conventional

BS control law.

Given this notation, the tracking error variables are defined as

ψ̃ = ψ − ψoc

r̃ = r − roc . (1.6)

For ψ tracking control, the input is the yaw command ψoc (t) and its derivative ψ̇oc(t)

while for r tracking control, the input is the yaw rate command roc(t) and its derivative ṙoc(t).

The ideal desired value for ψ, ψoc , is computed by some external controller such as mission

planner.

For yaw control, based on eqn. (1.3), we define the signal

roc = −Kψψ̃ + ψ̇oc (1.7)

where Kψ is a positive constant. Using this definition, the closed-loop tracking error corre-
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sponding to eqn. (1.3) is

ψ̇ = roc + (r − roc)

= −Kψψ̃ + ψ̇oc + r̃

˙̃ψ = −Kψψ̃ + r̃. (1.8)

Choosing the Lyapunov function as

Vψ =
1

2
ψ̃2,

its derivative is

V̇ψ = −Kψψ̃
2 + ψ̃r̃. (1.9)

This equation will be used in the stability analysis at the end of this section.

For tracking control using eqn. (1.5) we select the control torque as

τ = −f(u, r) −Kr r̃ −Ki
rer + ṙoc − rbs, (1.10)

where Kr and Ki
r are positive constants. The backstepping term, rbs, will be defined in

the stability analysis at the end of this section. With this choice of the control signal and

because ėr = r̃ and ër = ˙̃r the dynamics of the r tracking errors

˙̃r = −Kr r̃ −Ki
rer − rbs (1.11)

can be rewritten as

ër +Krėr +Ki
rer = −rbs. (1.12)

We can then define the tracking error vector qr = [er, r̃]
⊤ and the tracking error
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vector dynamics as

q̇r =









0 1

−Ki
r −Kr









qr −









0

1









rbs, (1.13)

where Ar =









0 1

−Ki
r −Kr









, and B =









0

1









.

Choosing the Lyapunov function as

Vr =
1

2
(q⊤r Prqr),

where Pr is positive definite diagonal matrix defined as in Appendix C.

The appendix also analyzes the terms Qr =









0 0

0 2Krp2r









and PrB =









0

p2r









,

which are used in the following derivation.

Then the Lyapunov function derivative is

V̇r =
1

2
(q̇⊤r Prqr + q⊤r Pr q̇r)

=
1

2
[q⊤r (A⊤

r Pr + PrAr)qr] − q⊤r PrBrbs

= −Krp2r r̃
2 − rbsp2r r̃. (1.14)

Define the overall Lyapunov function

V = Vψ + Vr.

The time derivative of V along is

V̇ = V̇ψ + V̇r

= −Kψψ̃
2 −Krp2r r̃

2 + ψ̃r̃ − rbsp2r r̃
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which is the sum of eqns. (1.9) and (1.14). To remove the sign indefinite terms on line two

of the above result, we define the backstepping term as

rbs =
ψ̃

p2r
. (1.15)

With these definitions, the derivative of V (t) satisfies

V̇ ≤ −Kψψ̃
2 −Krp2r r̃

2. (1.16)

Since the error state is [ψ̃, r̃, er], the derivative of V (t) is negative semidefinite. This fact

proves that the error state is stable and, in particular, er is bounded for all t ≥ 0. LaSalle’s

invariance theorem (page 128 in [41]), proves that the error state subvector [ψ̃, r̃] converges

to zero asymptotically.

Remark 1 Using LaSalle’s invariance theorem, eqn. (4.51), as written, would result in er

converging to zero asymptotically. In reality, the nonlinear moments acting on the vehicle

will be distinct from their models f(u, r) and er would converge to nonzero values necessary

to compensate the model error.

CFBS

At the beginning of this Section 1.2.1 we defined the BS control law which solved

the trajectory tracking problem for the system defined by eqns. (1.3) and (1.5). The

conventional BS controller is expressed by eqns. (1.7) and (1.10). Implementation requires

that the signal ψoc and its first two derivatives, ψ̇oc and ψ̈oc , be available to the controller.

The second derivative appears in the control of r by selection of τ in eqn. (1.10). The
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command filtered backstepping approach avoids the analytic derivation of these expressions

by the use of filters. The filter implementation is discussed in detail in Appendix A.

In case of CFBS we define the tracking error variable as

ψ̄ = ψ − ψc

r̄ = r − rc. (1.17)

The methodology for determining the CFBS control law from the BS control law

is described in [26, 27]. The resulting CFBS control signals is expressed by eqns.

roc = −Kψψ̄ + ψ̇c (1.18)

τ = −f(u, r) −Kr r̄ −Ki
rēr + ṙc − r̄bs. (1.19)

These equations are derived from the BS control law of eqn. (1.7) and (1.10) by

1. command filtering the signals to generate ψc, rc, ψ̇c, and ṙc;

2. replacing (ψ̃, r̃, and er) with (ψ̄, r̄, and ēr);

3. replacing (ψ̇oc and ṙoc) with (ψ̇c and ṙc);

4. replacing rbs of eqns. (1.15) by r̄bs =
νψ
p2r

; and

5. replacing qr = [er, r̃]
⊤ with q̄r = [ēr, r̄]

⊤

where the compensated tracking errors are defined as

νψ = ψ̄ − ξψ (1.20)

νr = r̄ − ξr (1.21)
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and

ξ̇ψ = −Kψξψ + (rc − roc) + ξr (1.22)

ξ̇r = 0 (1.23)

with ξψ(0) = 0, and ξr(0) = 0.

Differentiating the tracking error ψ̄ and following a similar procedure to that de-

scribed above, but using roc as defined in eqn. (1.18), we obtain the ψ̄ tracking error

dynamics

˙̄ψ = ψ̇ − ψ̇c

= r − ψ̇c = roc + (r − roc) − ψ̇c

˙̄ψ = −Kψψ̄ + (rc − roc) + r̄. (1.24)

If we then subtract eqn. (1.22) from eqn. (1.24) we get the dynamics of the ψ compensated

tracking error

ν̇ψ = −Kψνψ + νr. (1.25)

Differentiating tracking error r̄ and following a similar procedure, now using τ

defined in eqn. (1.19), we obtain the r̄ tracking errors dynamics

˙̄r = ṙ − ṙc

= f(u, r) + τ − ṙc

˙̄r = −Kr r̄ −Ki
rer − r̄bs. (1.26)

Subtracting eqn. (1.23) from eqn. (1.26) the dynamics of compensated tracking errors for
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r is

ν̇r = −Krνr −Ki
rer −

νψ
p2r

, (1.27)

where we have also substituted in the definitions of r̄bs.

From the definitions of the tracking error signals, the definitions of the compen-

sated error signals and (1.22) and (1.23), it follows that ˙̄er = r̄ = νr and ˙̄qr = Ar q̄r−Br r̄bs.

Therefore, the approach from Appendix C can also be used in Lyapunov stability analysis

in case of CFBS.

If we define the overall Lyapunov function for CFBS approach as

V̄ = V̄ψ + V̄r

and

V̄r =
1

2
(q̄⊤r Pr q̄r),

then the Lyapunov function derivative is

˙̄V ≤ −Kψν
2
ψ −Krp2rν

2
r .

LaSalle’s theorem proves that that the compensated error state subvector [νψ, νr] converges

to zero asymptotically and ēr is bounded with values as explained by Remark 1.

For all the nonlinear controllers which implement behaviors that we designed dur-

ing this research the two theorems proven in [26], [27] apply. Theorem 1 proves that

compensated tracking errors converge to zero exponentially. Theorem 2 shows that by in-

creasing the command filter natural frequency ωn, the solution to the command filtered

backstepping closed-loop system can be made arbitrarily close to the backstepping solution

that relies on analytic derivatives.
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As illustrated above, our strategy will be to design a library of vehicle behaviors,

where each behavior uses CFBS control to specify implement a stabilizing controller to

enforce the behavior given a suitable trajectory as specificed by a user or mission planner.

The remaining issue is to use results from hybrid stability to ensure that the behavioral

switching does not destabilize the vehicle. Issues related to switching are discussed in

Section 1.3.

1.3 Behavior Switching Using Hybrid Control

The purpose of this section is to show that the results from the Hybrid Control

Theory can be used to prove the stability in switching when Behavior Based Control is used

to achieve the overall mission task.

Many researchers argue that the hybrid control approach using a set of controllers

stored in a bank and switching logic between them in order to acquire the desired perfor-

mance is preferable to a single controller design. Malmborg [45, 16] and McClamroch [47]

point out that hybrid control systems can outperform single controller systems and that

they can solve problems that can not be dealt with by conventional control, such as when

there are multiple design goals that cannot be met by a single controller and can be achieved

by using several controllers. There is a set of two or more controllers to choose from in a

hybrid control system. Examples in which this strategy is effective includes flight control,

air traffic control, missile guidance, process control, robotics etc. Malmborg [45, 16] argues

that, for instance, helicopters present dynamical systems with several behaviors of opera-

tion. One controller is needed for hovering, one for slow motions and one for fast motions
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due to major differences between the models appropriate for these two regimes.

There is a large published literature on advantages and stability analysis for Hy-

brid Systems [47, 35, 51, 50, 10]. Stability of hybrid systems was analyzed using multiple

Lyapunov function approach in [54, 51, 50, 10]. The stability of the overall system is en-

sured if the Lyapunov function is non-increasing for each behavior and if the stability is

maintained during switching instances. The stability of the overall system can by guaran-

teed if each behavior is designed to be stable in the Lyapunov sense - Lyapunov function is

nonincreasing, while it is in use, and if the following conditions are imposed on the switch-

ing: Lyapunov function at the initial occurrence of one behavior is equal or less than the

Lyapunov function at the initial time of the last occurrence of the same behavior. Fierro

[54], Davrazos [35], and Branicky [51, 50] use multiple Lyapunov functions to formulate a

theorem for proving asymptotic stability. According to this theorem, stability is guaranteed

if a Lyapunov function for each behavior is nonincreasing (meaning that each behavior is

stable) and by requiring that the Lyapunov function at the initial occurrence of one be-

havior is equal or less than the Lyapunov function at the initial time of the last occurrence

of the same behavior. This can be graphically shown as in Figure 1.2. In this Figure two

behaviors were shown but this can be extended to multiple behaviors. The requirement is

that:

Vi(xi(ti,k)) ≤ Vi(xi(ti,k−1)),

where i = 1, 2, ... represents the active behavior and k = 1, 2, ... represent the specific time

instances. The Figure shows that the value of the Lyapunov function V2 corresponding to

Behavior 2 at time t2,2 (second time Behavior 2 is active) is less or equal to its value at
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time t2,1 (first time Behavior 2 is active) which proves that Behavior 2 is stable in sense of

Lyapunov. On the other hand, the Figure shows that the value of the Lyapunov function

V1 corresponding to Behavior 1 at time t1,3 (third time Behavior 1 is active) is greater

or equal to its value at time t1,2 (second time Behavior 1 is active) and at time t1,1 (first

time Behavior 1 is active) which shows that Behavior 1 cannot be proved stable in sense of

Lyapunov.

CFBS method allows us to specify the initial value of the filtered command signals

for each state variable that we want to control and the initial values of ξ filter. Since the

yaw state compensated error is defined as, for example, in eqn. (4.76) we can set the initial

value of filtered yaw command to the value of current vehicle yaw. In addition we can set

ξψ = 0. Since the compensated tracking error is defined as in eqn. (4.76), by selecting those

values we ensure that the compensated tracking error is zero at the start of each behavior.

Since the compensated tracking error, νψ, asymptotically decreases to nonincreasing during

the time that the behavior is active, the Lyapunov function remains zero during the entire

mission duration.

Via proper design of trajectory generator portion of the Mission Planner we only

allow a finite number of switches of the behaviors in any finite amount of time. CFBS

design allows us to limit the rate of change of our command signals ensuring sufficiently

long duration of each behavior. This is discussed in [28] and will not be discussed further

herein. This way we prevent the Zeno effect, a situation where the solution of the system

makes an infinite number of discrete transitions between behaviors in a finite amount of

time.
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Figure 1.2: Lyapunov Functions of two behaviors vs. time

1.4 Dissertation Overview

This PhD dissertation describes the derivation, simulation, the implementation of

the advanced control algorithms onboard the SPAWAR Systems Center’s ship hull inspec-

tion unmanned underwater vehicle (AUV) platform (former CETUS AUV). This includes

the development of nonlinear controllers using Command Filtered Vector Backstepping

approach; defining behaviors described by nonlinear controllers; stability analysis of each

controller, behaviors, and overall control system; the development of control algorithms as

computer simulation; and the development and field test of the control strategy onboard of

AUV.

This Chapter 1 is the introduction of the dissertation. The three main ideas and

concepts of this dissertation are presented. Our goal is to use Behavior Based Control

design and apply it to design a control system for an AUV. Each behavior will be designed

using stable Command-Filtered Backstepping controller design. The stability of the overall
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control system will be maintained during behavior switching using results from Hybrid

System Theory. The AUV control problem is addressed and related literature is reviewed.

Then the proposed behavior based algorithms are given. Chapter 2 presents the specific

aspects of each behavior and the logic for switching between the behaviors are described

using a simple second order system as an example. This example is used for the analogy of its

equations with the kinematic and dynamic equations of motion of robotic vehicles. Chapter

3 presents the AUV dynamics, modeling, navigation, simulation, and related applications.

Chapter 4 follows the theoretical approach of Chapter 2 using AUV as a plant for which

the control system is designed. Chapter 5 provides the field test results and simulation

results. Chapter 6 provides the conclusions and contributions of the Ph.D. research work.

In addition, it provides the publications resulting from this PhD work by chapters. Open

questions and future research are also discussed in this chapter.
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Chapter 2

Theoretical Approach

This chapter describes a Behavior Based Command Filtered Backstepping (CFBS)

control design using a second order system as a simple example. The model of the second

order system is described by eqns. (2.1–2.2). The reason that we use the second order

system is the analogy of its equations with the kinematic and dynamic equations of motion

of robotic vehicles. The variable x1 is analogous to position while the x2 variable is analogous

to the velocity of robotic vehicles. In this chapter we consider two behaviors:

1. Behavior 1: a controller which controls both states, x1 and x2, that defines xo2c and u

to achieve tracking of x1c; and,

2. Behavior 2: a controller which controls the second system state, x2, through u to

achieve tracking of x2c.

Making the comparison with the mobile robot control, the Behavior 1 uses the velocity to

control position while the Behavior 2 controls the velocity without regard to the position.
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In this chapter, we derive and provide proofs for the two theorems that ensure the

stability of each behavior, as well as, the stability of the overall hybrid Behavior Based sys-

tem. The purpose of this chapter is to clearly demonstrate our methodology on a simple sys-

tem. Once demonstrated, this methodology is applied to a thruster controlled Autonomous

Underwater Vehicle (AUV) in subsequent chapters.

The chapter is organized as follows. Section 2.1 and Section 2.2 show the second

order system dynamics and derive the control law signals for Behavior 1 and Behavior 2,

respectively. Section 2.3 follows the method of [28, 26, 27]. It presents and proves the

theorems that guarantee the stability of each behavior designed. Section 2.4 describes

our method for stable switching among behaviors. Finally, the performance of the control

system proposed is illustrated in simulation in Section 2.5.

2.1 Control Signal Derivation: Behavior 1

The objective of Behavior 1 is to force x1 to track x1c where x1c and xo1c are known

exogenous signals, specified by an operator or Mission Planner. The x1 state is controlled

by using x2 as an auxiliary control signal. The state x2 is controlled by the control signal

u.

The dynamic equation for the second order system is described as

ẋ1 = f1(x1) + x2 (2.1)

ẋ2 = f2(x1, x2) + u (2.2)
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We define tracking and integral errors as

x̄1 = x1 − x1c (2.3)

x̄2 = x2 − x2c (2.4)

ē =

∫

x̄2dt. (2.5)

The signal x2c and its derivatives ẋ2c are generated from the signal xo2c using the command

filters as explained in Appendix A. Define xo2c as

xo2c = −f1(x1) −K1x̄1 + ẋ1c (2.6)

Differentiating the tracking error x̄1 defined in eqn. (2.3) we obtain the x̄1 tracking error

dynamics

˙̄x1 = ẋ1 − ẋ1c

= f1(x1) + x2 − ẋ1c = f1(x1) + xo2c + (x2 − xo2c) − ẋ1c

˙̄x1 = −K1x̄1 + (x2c − xo2c) + x̄2. (2.7)

We define the compensated tracking errors as

ν1 = x̄1 − ξ1 (2.8)

ν2 = x̄2 − ξ2 (2.9)

where

ξ̇1 = −K1ξ1 + (x2c − xo2c) + ξ2 (2.10)

ξ̇2 = 0 (2.11)
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with ξ1(0) = 0 and ξ2(0) = 0. If we then subtract eqn. (2.10) from eqn. (2.7) we get the

dynamics of the x1 compensated tracking error

ν̇1 = −K1ν1 + ν2. (2.12)

Differentiating tracking error x̄2 defined in eqn. (2.4) and following a similar procedure,

now using u defined as

u = −f2(x1, x2) −K2x̄2 −Kiē+ ẋ2c − x̄bs2 , (2.13)

where the backstepping term, x̄bs2 , will be defined in eqn. (2.23) of the stability analysis of

Section 2.3, we obtain the x̄2 tracking error dynamics

˙̄x2 = ẋ2 − ẋ2c

= f2(x1, x2) + u− ẋ2c

˙̄x2 = −K2x̄2 −Kiē− x̄bs2 . (2.14)

Subtracting eqn. (2.11) from eqn. (2.14) the dynamics of compensated tracking errors for

x2 are

ν̇2 = −K2ν2 −Kiē− x̄bs2 . (2.15)

The stability analysis in Section 2.3 will use eqns. (2.12) and (2.15).

2.2 Control Signal Derivation: Behavior 2

The objective of Behavior 2 is to control x2. This is implemented by design of the

control signal u. While Behavior 2 is active, the state x1 is not controlled.
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Consider only the second state dynamics

ẋ2 = f2(x2) + u. (2.16)

The control signal u can be defined as

u = −f2(x2) −K2x̄2 −Kiē+ ẋ2c, (2.17)

where x̄2 is the tracking error defined in eqn. (2.4). Since, the signal ξ2 = 0, thus x̄2 = ν2,

by substitution of eqn. (2.17) into the eqn. (2.16), the compensated tracking error dynamics

for this controller is

ν̇2 = −K2ν2 −Kiē. (2.18)

The stability analysis in Section 2.3 will use eqn. (2.18).

2.3 Stability Analysis of Behavior Based Control Design

This purpose of this section is to show that each of the behaviors implements a

stable controller. Two theorems stated and proved in [26] hold. They can be applied to

our control design to ensure that it creates closed loop behavior implementations in sense

of Lyapunov. For clarity, we will state the theorem for each of the behaviors separately.

Theorem 1 For the system described by eqns. (2.1–2.2):

B1. The feedback control law defined in eqns. (2.6), (2.10–2.11), and (4.2), and the x2c

command filter (using the design in Appendix A) provides asymptotic stability for ν1,

ν2 and boundedness of ξ1, ξ2, and ē.
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B2. The feedback control law defined by eqn. (2.17), with ξ2 = 0 provides asymptotic

stability for ν2 and boundedness of ē.

△

This theorem will be proved in this section.

It is possible to derive standard backstepping (BS) controllers for Behavior 1 and

Behavior 2. Such approach would require analytic computation of the derivative of each

pseudo control signal: xo1c, x
o
2c. This would be straight forward in this simple example,

but can be quite complicated for systems with higher state order. A motivation for the

CFBS approach is that analytic computation of pseudo-command derivatives is not required.

Theorem 2 in [26] shows that the difference between the BS tracking errors denoted by x̃

and CFBS tracking errors denoted by x̄ (i.e. |x̄1 − x̃1| and |x̄2 − x̃2|) are O
(

1
ωn

)

, which

shows that the solution of the BS and CFBS implementations can be made arbitrarily close

by choice of the command filter natural frequency ωn.

Proof: B1

Choose the Lyapunov function for ν1 as

Vx1
=

1

2
ν2
1 .

Its derivative along solutions of eqn. (2.12) is

V̇x1
= −K1ν

2
1 + ν1ν2. (2.19)

Combining eqns. (2.5) and (2.14) yields

¨̄e+K2 ˙̄e+Kiē = x̄bs2 .
(2.20)
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We define the tracking error vector as q̄ = [ē, ν2]
⊤. The tracking error vector dynamic

equation is

˙̄q =









0 1

−Ki −K2









q̄ −









0

1









x̄bs2 , (2.21)

where A =









0 1

−Ki −K2









, and B =









0

1









.

We choose the Lyapunov function for x2 as

Vx2
=

1

2
(q̄⊤Pq̄),

where P = diag([p1, p2]) is a positive definite diagonal matrix. By the analysis in Appendix

C

q̄⊤(A⊤P + PA)q̄ = −K2p2 < 0.

The derivative of Lyapunov function along solutions of eqn. (2.21) is

V̇x2
=

1

2
( ˙̄q⊤Pq̄ + q̄⊤P˙̄q)

=
1

2
[q̄⊤(A⊤P + PA)q̄] − q̄⊤PBx̄bs2

= −K2p2x̄
2
2 − x̄bs2 p2x̄2

= −K2p2ν
2
2 − x̄bs2 p2ν2. (2.22)

Define the overall Lyapunov function for Behavior 1 as

Vb1 = Vx1
+ Vx2

.

The time derivative of Vb1 along solutions of eqns. (2.12) and (2.21) is

V̇b1 = −K1ν
2
1 + ν1ν2 −K2p2ν

2
2 − x̄bs2 p2ν2.
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which is the sum of eqns. (2.19) and (2.22). To remove the sign indefinite terms of the

above result, we define the backstepping term as

x̄bs2 =
ν1

p2
. (2.23)

With these definitions, the derivative of Vb1(t) satisfies

V̇b1 ≤ −K1ν
2
1 −K2p2ν

2
2 . (2.24)

Since the error state is [ν1, ν2, ē], the derivative of Vb1(t) is negative semi-definite. This fact

proves that the error state is stable and, in particular, ē is bounded for all t ≥ 0. LaSalle’s

invariance theorem (page 128 in [41]), proves that the error state subvector [ν1, ν2] converges

to zero asymptotically.

Proof: B2

Similarly, choosing the Lyapunov function for Behavior 2 as

Vb2 = Vx2
=

1

2
(q̄⊤Pq̄),

by analysis similar to that above, the time derivative of Vb2 along solutions of eqn. (2.21),

with the backstepping terms x̄bs2 set to zero, satisfies

V̇b2 ≤ −K2p2ν
2
2 . (2.25)

Therefore, each element of q̄ is bounded and ν2 approaches zero asymptotically.

Remark 2 The purpose of the integrator is to compensate for model error in the dynamics

of the x2 state. If, for example, the actual system is ẋ2 = f2 + A + u where eqn. (2.16)

has been modified by a model error term A, then a straight forward analysis shows that
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ē(t) converges to (A/Ki). We do not discuss model error further herein. See for reference

Section 3.2.

2.4 Switching Analysis of Behavior Based Control Design

The purpose of this Section is to show that the switching among behaviors does

not lead to instability. The main idea is that for overall stability of our Behavior Based

Control design we much ensure three things:

1. Maintain stability during the time each behavior is active.

2. Prevent Zeno Phenomenon.

3. Maintain stability at switching times.

We will show that the CFBS approach allows us to ensure that the Lyapunov function,

defined in terms of compensated tracking errors, of the overall switched system is nonin-

creasing at all times by appropriate choice of the command filter’s initial conditions made

by a Mission Planner when perfect modeling of the plant is assumed.

2.4.1 Behavior Stability

In Section 2.3 we stated the stability properties for each behavior. Using CFBS

control design we ensure that during each time interval for which a behavior is active, its

compensated tracking errors converge to zero asymptotically. We use a simple notation

useful for two behaviors, but the idea generalizes to a larger number of behaviors. Using

Figure 1.2 in Chapter 1 we can visualize the notation for behavior switching. Let i =
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0, 1, 2, .... denote switching time. Note that i can be expressed as a function of j = 0, 1, 2, ....

For this Figure and the discussion that follows we assume that Behavior 1 is active initially

at i = 0, i.e. t = t0. Behavior 1 is active on t ∈ [t2j , t2j+1] while Behavior 2 is active on

t ∈ [t2j+1, t2j+2]. We have already shown that

1. V̇b1(t) ≤ 0 and discussed stability properties for the time interval t ∈ [t2j , t2j+1], and

2. V̇b2(t) ≤ 0 and discussed stability properties for the time interval t ∈ [t2j+1, t2j+2].

2.4.2 Zeno Phenomenon

We ensure that the Zeno effect, a situation where the solution of the system makes

an infinite number of discrete transitions between behaviors in a finite amount of time, is

precluded. We also preclude the occurrence of the Zeno effects by the design of the mission

planner. This means that we must only allow a finite number of switches of the behaviors

in any finite amount of time. This is accomplished at the mission planning level by ensuring

sufficiently long duration of each behavior, for instance, by limiting the rate of change of

our command signals. This is discussed in [28] and will not be discussed further herein.

2.4.3 Switching Stability

We use the results from hybrid systems theory [51, 50, 10] in order to prove the

stability during the time instances of switching among behaviors. As explained in [51,

50, 10], we can ensure stability of the switched system if we can show that the Lyapunov

functions for each behavior do not increase at subsequent switching instants.
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Given a second order system described by eqns. (2.1) and (2.2). We define the

following two behaviors:

B1. The control law for the first behavior is

xo2c = −f1 −K1x̄1 + ẋ1c,

ẍ2c = ζ2ωn2
ẋ2c − ωn2

(x2c − xo2c),

ξ̇1 = −K1ξ1 + (x2c − xo2c),

u = −f2 −K2x̄2 −Kiē+ ẋ2c − x̄bs2 .

Mission Planner or operator defines xo1c and x1c.

B2. The control law for the second behavior is

ẍ2c = ζ2ωn2
ẋ2c − ωn2

(x2c − xo2c),

u = −f2 −K2x̄2 −Kiē+ ẋ2c.

Mission Planner or operator defines xo2c and x2c.

The variables x̄1 = x1 − x1c and x̄2 = x2 − x2c are the state tracking errors, while ζ2, ωn2
,

K1, K2, Ki are positive design parameters.

The concern for proving stability of the switched system is to show that Vb1(t2j) ≥

Vb1(t2j+2) and Vb2(t2j+1) ≥ Vb2(t2j+3). We have now set the notation framework for stat-

ing and proving Theorem 2 which ensures that the stability properties are maintained at

behavior switching time instances.
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Theorem 2

B1. If, at each start of Behavior 1 (t = t2j), the Mission Planner selects the initial values of

the filtered command signals to be equal to the current state values, x1c(t2j) = x1(t2j)

and x2c(t2j) = x2(t2j), the signals ξ1(t2j) = ξ2(t2j) = 0, and the integral error to

maintain its value (i.e. ē(t+2j) = ē(t2j)), then the Lyapunov function, Vb1, at each

start of each Behavior 1 is a nonincreasing sequence, Vb1(t2j+2) ≤ Vb1(t2j).

B2. If, at each start of Behavior 2 (t = t2j+1), the Mission Planner selects the initial values

of the filtered command signal to be equal to the current state value, x2c(t2j+1) =

x2(t2j+1), and the integral error to maintain its value (i.e. ē(t+t2j+1
) = ē(tt2j+1

)),

then the Lyapunov function, Vb2 , at each start of each Behavior 2 is a nonincreasing

sequence, Vb2(t2j+3) ≤ Vb2(t2j+1).

△

Proof: Behavior Switching

The Lyapunov functions for each behavior are defined as

Vb1 =
1

2
ν2
1 +

1

2
(q̄⊤P q̄)

and

Vb2 =
1

2
(q̄⊤P q̄),

where ν1 = x1 − x1c − ξ1 and ν2 = x2 − x2c − ξ2 are the compensated tracking errors, and

the tracking error vector q̄ = [ē, x̄2]
⊤, with each element defined as ē =

∫

x̄2 and x̄2 = ν2.

37



B1. If Mission Planner selects the initial values of the filters at each start of Behavior 1

(t = t2j) as stated in Theorem 2, we have ν1(t2j) = ν2(t2j) = ξ1(t2j) = ξ2(t2j) = 0.

Thus, the Lyapunov function, Vb1(t2j) = ē2(t2j). Since V̇b1(t) ≤ 0 for t ∈ [t2j , t2j+1],

we have that ē2(t2j) ≥ ē2(t2j+1).

B2. If Mission Planner selects the initial values of filters at each start of Behavior 2 (t =

t2j+1) as stated in Theorem 2, we have ν2 = ξ2 = 0. Thus, the Lyapunov function,

Vb2(t2j+1) = ē2(t2j+1). Since V̇b2(t) ≤ 0 for t ∈ [t2j+1, t2j+2], we have that ē2(t2j+1) ≥

ē2(t2j+2).

The hybrid system stability requirement states that the Lyapunov function at the initial

occurrence of one subsystem is equal or less than the Lyapunov function at the initial time

of the last occurrence of the same subsystem [51, 50, 10]. Figure 1.2 in Chapter 1 shows

this requirement graphically. Following our notation for Behavior Based hybrid system, the

Lyapunov function at the time when one behavior is switched in is equal or greater than

the Lyapunov function at the time when the same behavior is switched in next. Since we

showed that

Vb1(t2j) = ē2(t2j) ≥ ē2(t2j+2) = Vb1(t2j+2)

for Behavior 1 and

Vb2(t2j+1) = ē2(t2j+1) ≥ ē2(t2j+3) = Vb2(t2j+3)

for Behavior 2 the hybrid stability requirement is met.
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2.5 Simulation Results

The purpose of this section is to show the simulation of our controller for the

second order plant. We simulated both behaviors and switching between them. Behavior 1

has the goal to cause x1 to track a signal defined by the Mission Planner to be xo1c = sin(t).

During Behavior 2, the goal is to cause x2 to track a signal defined by the Mission Planner

to be xo2c = 5. In Behavior 1, control of the x1 state generates a command for the x2 state

by eqn. (2.6), while the second state generates control signal u to achieve the xo2c command

according to eqn. (4.2).

Figures 2.1–2.3 present the results of an 60 second simulated mission, during which

five switching instances between behaviors occurred. The control law parameters are as

follows: f1 = f2 = 1, K1 = 1, K2 = 1, Ki = 0.1, ζ1 = ζ2 = 0.9, p2 = 1 for Behavior 1 and

f2 = 1, K2 = 0.1, Ki = 0.1, ζ2 = 0.9, p2 = 1 for Behavior 2.

The plot showing x1 and x2 versus time is shown in Figure 2.1. Each of these two

plots contains three curves, for example x, xoc, and xc. Note that during the time period

that Behavior 2 is active, x1 state plot in Figure 2.1 is not shown, actually zeroed out,

since during that behavior x1 state is not controlled and xo1c and x1c are undefined. The

same was done for the remaining plots in Figures 2.2–2.3. Note that for each state, xc

converges to xoc at the rate determined by ωn1
= 10rad

s
and ωn2

= 100rad
s

for Behavior 1,

and and ωn2
= 1rad

s
for Behavior 2. The signal x2 converges to and tracks x2c throughout

the simulation. The top graph of Figure 2.2 shows x̄1 and ν1. Due to the selection of the CF

initial condition, as discussed in Section 2.4, ν1(t) is zero. During the time interval following

behavior switching while x2c converges to xo2c, x̄1 increases and then converges back toward
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zero as predicted by the theory. During such time intervals a bounded transient is clearly

evident in ξ1 as seen in the bottom graph of Figure 2.2.

Figure 2.3 plots Vb1(t) versus time for Behavior 1 and
∣

∣

∣

∣

∣

∣
[x̄1, x̄2]

⊤

∣

∣

∣

∣

∣

∣
. Since the

tracking error for x1 state is not zero until the x2 state converges to its desired value, xo2c,

the
∣

∣

∣

∣

∣

∣[x̄1, x̄2]
⊤

∣

∣

∣

∣

∣

∣ will increase during that convergence time, as expected. The Lyapunov

function defined in terms of the compensated tracking error is nonincreasing at all times.

This result confirms our theoretical conclusion showing that the Lyapunov function of the

CFBS approach starts at the value which is a function of the integral error (ē) at the

beginning of each behavior, decreases during the duration of each behavior, and maintains

its value during the instances of switching between behaviors.
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Figure 2.1: States x1 and x2 vs. time: Blue (solid) line is the actual state, green (dashed)
line is the command, and the red (dotted) line is the filtered command.
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Chapter 3

AUV Dynamics, Modeling,

Navigation, Simulation, and

Applications

The objective of this chapter is to introduce various aspects of the AUV that was

used for proof of concept for the Behavior Based Control design. The goal of Section 3.1 is

to define the equations that characterize the geometrical aspect of vehicle motion through

vehicle kinematics equations and describe forces and moments causing the motion through

vehicle dynamics equations. The goal of Section 3.2 is to present the simplified model of the

vehicle dynamics which was used in our control implementation. In addition, this section

describes the methods that we used for system identification and AUV modeling. The goal

of Section 3.3 is to describe the vehicle’s navigation sensors and briefly describe the design

of the navigation system based on an Error state Kalman Filter. The goal of Section 3.4 is
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to describe a comprehensive vehicle simulation. The goal of Section 3.5 is to present some

of the related AUV applications, focusing on the main application of this research - Ship

Hull Inspection.

3.1 AUV kinematics and dynamics

The kinematic model, and forces and torques acting on an AUV are expressed as a

set of nonlinear equations as they were derived in Fossen’s book [33]. Vehicle motion is fully

modeled by six equations of motion that relate force inputs to motion in three translational

and three rotational degrees of freedom. The kinematic model relates platform accelerations,

velocities, and angular rates to changes in tangent plane position and attitude. The dynamic

model is used to study the effect of forces upon these movements.

A reference frame is the perspective from which the motion is described. The

Earth-center/Earth-fixed (ECEF) frame is the frame in which the solid Earth is fixed. At a

given point on the surface of the Earth a tangent frame might be defined, which is stationary

with the respect to the ECEF frame. A moving coordinate frame is fixed to the vehicle

and it is called body-fixed reference frame. The origin is usually (and in our case) chosen

to coincide with the vehicle’s center of gravity (CG). The roll, pitch and yaw angles are a

set of Euler angles commonly use in guidance and navigation. We use an Euler attitude

representation to describe vehicle orientation, where an Euler three consecutive rotation

sequence defines the relationship between tangent and body frames.
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The model for an underwater vehicle is described as

ṗ = Rt
bv (3.1)

Θ̇ = Ωω (3.2)

v̇ = M−1(F − Fn) (3.3)

ω̇ = J−1(τ − Mn), (3.4)

where p = [n, e, d]⊤ is the earth relative position in meters (m), Rt
b is the rotation matrix

from body to tangent frame, v = [u, v,w]⊤ is the velocity in body frame in m
s
, Θ = [φ, θ, ψ]⊤

is the attitude in rad, Ω is a nonlinear (nonsingular except at θ = ±π
2 ) matrix function of

Θ, ω = [p, q, r]⊤ is the inertial rotation rate vector represented in body frame in rad
s

, Fn

represents the body-frame nonlinear forces in Newtons (N), Mn represents the body-frame

nonlinear moments in Nm, F is the vector of control forces, τ is the vector of control

moments, M and J are mass and inertia matrices, respectively.

The control forces and moments are generated by a set of five thrusters mounted

to achieve full angular rate control (i.e., ω), surge control (i.e., u), and heave control (i.e.,

w). The vehicle is configured (see Fig. 3.1) such that two horizonal thrusters (T0 and T2)

enable control of u and r while three vertical thrusters enable control of w, p, and q (T1, T3

and T4).

The vector T = [T0, . . . , T4]
⊤ of five thrusts is related to the the control forces and

moments by a known thrust distribution matrix such that

F = LfT, (3.5)
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Figure 3.1: CETUS II AUV

and

τ = LmT, (3.6)

where Lf ∈ ℜ2×5 and Lm ∈ ℜ3×5, see eqns. (3.5) and (3.6). The AUV propels itself via

five thrusters, allowing for a variety of dynamic maneuvers. The vehicle is underactauted

since the lateral speed v is not directly affected by the thrusters, but is passively stable.

The navigation system and control design will account for v, which as a small effects, but

cannot control this variable directly. Effectively, v appears as zero dynamics. This vehicle

is available at SSC Pacitic and has been used for simulation implementation and in-water

testing of our control algorithms. This platform was the CETUS II vehicle originally built

at Lockheed Martin. During this research the complete vehicle hardware was rebuilt and

software was rewritten.
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The rotation matrix, Rt
b, is defined as

Rt
b =

















cθcψ cψsθsφ− cφsψ cφcψsθ + sφsψ

cθsψ cφcψ + sθsφsψ −cψsφ+ cφsθsψ

−sθ cθsφ cθcφ

















, (3.7)

and the angular rate transformation matrix, Ω, as

Ω =

















1 sφtθ cφtθ

0 cφ −sφ

0 sφ/cθ cφ/cθ

















, (3.8)

where the symbols cz, sz, and tz represent cos(z), sin(z), and tan(z).

Note that Ω approaches a singularity as θ → ±π
2 . It is assumed the vehicle will not

operate near this singularity. If operation near ±π
2 is desired, then an alternative attitude

representation, such as quaternions, would remove this singularity.

3.2 AUV modeling and system identification

The objective of this dissertation was not to derive exact equations needed for mod-

eling of an AUV motion, nor to calculate all the hydrodynamic forces acting on the AUV.

Both issues have been adequately addressed prior to this research and partially in the earlier

phase of this research. Earlier work of this research effort approximated the hydrodynamic

coefficients which are included in the control law, such as linear (Xu, Zw,Kp,Mq, Nr) and

quadratic (Xuu, Zww,Kpp,Mqq, Nrr) drag coefficients, buoyancy (B) and center of buoyancy

(CB = [xb, yb, zb]
⊤) terms, and vehicle’s moment of inertia (Ixx, Iyy, Izz) terms. The values

of these terms and other parameters that characterize the AUV, such as mass (m), weight
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(W ), and lever arm terms (Lrx, Lry, Lfx, Lby) are presented in Table 3.1. The mass and

inertia matrices are

M =









m 0

0 m









, (3.9)

and

J =

















Ixx 0 0

0 Iyy 0

0 0 Izz

















. (3.10)

Lrx is x-distance from the CG to the forward vertical thrusters (T1 and T3), Lry is y-

distance from CG to forward vertical thrusters (T1 and T3), Lfx is x-distance from CG to

rear vertical thruster (T4), and Lby is y-distance from CG to rear forward thrusters (T0 and

T2). See Fig. 3.2.

Lby

Lby

Lry

Lry

Lfx

Lrx

v

u

To

T2

T4

T1

T3

Figure 3.2: Thruster Distribution

Thus, specific to this AUV, lever arm force matrix is

Lf =









1 0 1 0 0

0 1 0 1 1









, (3.11)

48



while lever arm moment matrix is

Lm =

















0 −Lry 0 Lry 0

0 −Lrx 0 −Lrx Lfx

Lby 0 −Lby 0 0

















. (3.12)

Control thruster outputs T = [T0, T1, T2, T3, T4]
⊤ are expressed as percentage of the full

thrust in body frame. The horizontal thrusters are 1
2 HP while the vertical thrusters are

1
4 HP; therefore, thrust percent is converted to Newtons using the following conversion for

horizontal thrust: T (N) = T (%)∗23∗4.45
100 , and for vertical thrust: T (N) = T (%)∗12∗4.45

100 .

The AUV model is approximate, as only drag and buoyancy terms are included in

the model. A more detailed model and identification is presented in [33] and [37]. Integral

control is introduced within the nonlinear controller to compensate for modeling error.

The following are the reduced dynamic equations for our thruster-powered AUV

u̇ = −
Xu

m
u−

Xuu

m
u|u| −

W −B

m
sθ +

1

m
(T0 + T2) (3.13)

ẇ = −
Zw
m
w −

Zww
m

w|w| +
W −B

m
cθcφ+

1

m
(T1 + T3 + T4) (3.14)

ṗ = −
Kp

Ix
p−

Kpp

Ix
p|p| −

ybB

Ix
cθcφ+

zbB

Ix
cθsφ+

Lry
Ix

(T1 − T3) (3.15)

q̇ = −
Mq

Iy
q −

Mqq

Iy
q|q| +

zbB

Iy
sθ +

xbB

Iy
cθcφ+

Lfx
Iy

T4 −
Lrx
Iy

(T1 + T3) (3.16)

ṙ = −
Nr

Iz
r −

Nrr

Iz
r|r| −

xbB

Iz
cθsφ−

ybB

Iz
sθ +

Lby
Iz

(T0 − T2). (3.17)

The sixth dynamic eqn. is for v

v̇ = −
Xv

m
v −

Xvv

m
v|v| +

W −B

m
cθsφ. (3.18)

Note that v is not directly affected by T. Also, the coefficients Xv and Xvv are positive.
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Therefore, the v dynamics is passively stable. The nonlinear control law will not control v;

however, the effect of v on the position kinematics will be accounted for.

Preliminary work focused on estimation of vehicle parameters and characterization

of the sensors. The following was the strategy for estimation of unknown parameters.

1. Mass (m) and Weight (W ) were determined by direct means.

2. Strategy for Xu and Xuu.

First we used the steady-state horizontal velocity, u, condition to approximate Xu

and Xuu terms. With horizontal acceleration and pitch angle being zero, eqn. (3.18)

reduces to

T0 + T2 = Xuu+Xuuu|u|.

Different values of T0 +T2 were applied and u was measured. After performing Least-

Squares estimation for limited data sets we estimated Xu and Xuu are shown in Table

3.1.

3. Then we used the data set when the control action resulted in vehicle maintaining

depth. Therefore, w and ẇ were zero. Thus, eqn. (3.14) reduces to

T1 + T3 + T4 = (B −W ) cos(θ) cos(φ).

For A = cos(θ) cos(φ) and x = T1 + T3 + T4 we obtain the Least-Squares solution for

Θ = B −W . Since m and W are already known, we could then easily calculate the

buoyancy force.

4. Strategy for Zw and Zww.

We performed experiments such that vertical velocity, w, reached steady-state. We
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placed the vehicle in the center of 11.6 m deep TRANSDEC pool. With u, roll, pitch,

and yaw controllers on and commanded to zero desired value, we commanded the

vehicle to follow a triangular pattern between 3 and 9 meters. This pattern results in

intervals of time where T1 + T3 + T4 and w are constant. Different values of w were

effected by changing the period. With vertical acceleration and vehicle’s pitch and

roll angles being zero, eqn. (3.14) reduces to

T1 + T3 + T4 +W −B = Zww + Zwww|w|.

This allowed us to estimate Zw and Zww using Least-Squares as we approximated Xu

and Xuu in Step 1. We then turned off the depth control and let the vehicle float to

the surface. With thrust values and pitch and roll angles being zero, the eqn. (3.14)

reduces to

−Zww − Zwww|w| +W −B = mẇ.

This allowed us to estimate vehicle’s mass and compare it with the measured quantity.

5. Strategy for zb.

Assuming yb = 0, using data at fixed nonzero commanded roll angles (with u = θ = 0).

With p = ṗ = 0,

zbB cos(θ) sin(φ) = −Lry(T1 − T3),

we easily solved for zb.

6. Strategy for Kp and Kpp.

We performed experiments such that roll rate, p, reaches steady-state. We will com-

mand the vehicle to go to 2 m depth. With u, pitch, and yaw controllers on and
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commanded to zero, we commanded the vehicle to roll to 30 degrees while maintain-

ing 2 m depth. Immediately after that we commanded a roll of - 30 degrees. We will

repeat this experiment several times. This gave us data values in which roll rate was

constant. With roll acceleration, pitch, and yb being zero, eqn. (3.15) reduces to

Lry(T1 − T3) + zbB sin(φ) = Kpp+Kppp|p|.

Because Lry, zb, B, T1, T3, φ, andp are known this allowed us to estimate Kp and Kpp

using Least-Squares as we approximated Xu and Xuu in Step 1. We then turned off

the roll control and let the vehicle roll back from + 30 and - 30 degrees to zero degrees.

With thrust values, pitch, and yb being zero, eqn. (3.15) reduces to

−Kpp−Kppp|p| + zbB sin(φ) = Ixṗ.

Using parameters estimated in earlier steps, this allowed us to estimate Ix.

7. Strategy for xb.

Assuming zb is known from above, we used the data at fixed nonzero commanded

pitch angles (with u = φ = 0). With q = q̇ = 0,

zbB sin(θ) − Lrx(T1 + T3) + LfxT4 = −xbB cos(θ) cos(φ),

we easily solved for xb. This could easily be modified to estimate both xb and zb.

8. Strategy for Mq and Mqq.

We performed experiments such that pitch rate, q, reached steady-state. We com-

manded the vehicle to go to 2 m depth. With u, roll, and yaw controllers on and
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commanded to zero, we commanded the vehicle to pitch to + 30 degrees. Immedi-

ately after that we commanded a pitch of - 30 degrees. We repeated this experiment

several times. This gave us data values in which pitch rate was constant. With pitch

acceleration and roll being zero, eqn. (3.16) reduces to

LfxT4 − Lrx(T1 + T3) + zbB sin(θ) + xbB cos(θ) = Mqq +Mqqq|q|.

This allowed us to estimate Mq and Mqq using Least-Squares. We then turned off

the pitch control and let the vehicle pitch back from + 30 and - 30 degrees to zero

degrees. With thrust values and roll being zero, eqn. (3.16) reduces to

−Mqq −Mqqq|q| + zbB sin(θ) + xbB cos(θ) = Iy q̇.

Using parameters approximated in earlier steps, this allowed us to estimate Iy.

9. Strategy for Nr and Nrr.

With the roll, pitch, and u controllers all on and commanded to zero and with the

depth controller holding a fixed depth we performed the following. We enabled the yaw

controller so we forced the vehicle to spin in circles around its w axis. This resulted in

vehicle’s yaw rate reaching steady state which will allow us to approximate vehicle’s

yaw drag parameters, Nr and Nrr and inertia term Iz . With yaw acceleration, roll

and pitch being zero, the eqn. (3.15) reduces to

Lby(T0 − T2) = Nrr +Nrrr|r|.

This allowed us to estimate Nr and Nrr using Least-Squares. We then turned off the

yaw control and let the vehicle settle to some yaw value. With thrust values, pitch
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and roll being zero, the eqn. (3.15) reduces to

−Nrr −Nrrr|r| = Iz ṙ.

Using parameters approximated in earlier steps, this allowed us to estimate Iz.

The estimated parameters are shown in Table 3.1.

3.3 AUV Navigation

Navigation is one of the primary challenges in AUV research today. It is extremely

difficult for an autonomous vehicle to navigate through an unknown environment. Good

navigation information is essential for safe operation and recovery of an AUV. With the

emergence of inspection-class autonomous underwater vehicles, navigation is becoming in-

creasingly important. As explained in [49, 48], without an operator in the loop, the vehicle

itself must use sensors to determine its location, orientation, and motion. The problem is

how to effectively use all available sensor inputs to provide a continuous and robust esti-

mate of the vehicle’s navigational state. The navigation algorithm tries to estimate the true

trajectory given the noisy sensor readings. Navigation estimates the vehicle’s true state

(position, attitude, velocity, and angular rates).

Section 3.3.1 describes navigation sensors onboard of our AUV while Section pro-

vides brief explanation of error state Kalman filter algorithm implemented by navigation

software.
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Table 3.1: AUV Hydrodynamic Parameters

Parameter Value Units Brief Description

m 117.02 kg mass

W 1156 N weight

B 1152.4437 N bouyancy

W −B -4.4437 N weight - bouyancy

Xu 0 Nms
rad

linear drag in u

Xuu 105.16 Nms2

rad2
quadratic drag in u

Zw 190.0950 Nms
rad

linear drag in u

Zww 165.2648 Nms2

rad2
quadratic drag in u

xb 0.0073 m center of bouyancy in x

yb 0 m center of bouyancy in y

zb -0.0062 m center of bouyancy in z

Ixx 3.37 Nms2 moment of inertia in x

Kp 0.6598 Nms
rad

linear drag in p

Kpp 0 Nms2

rad2
quadratic drag in p

Iyy 45.4984 Nms2 moment of inertia in y

Mq 7.3250 Nms
rad

linear drag in q

Mqq 0 Nms2

rad2
quadratic drag in q

Izz 30.7391 Nms2 moment of inertia in z

Nr 0.9525 Nms
rad

linear drag in r

Nrr 0.0020 Nms2

rad2
quadratic drag in r

Lrx 0.39 m x-distance from the CG to T1 and T3

Lry 0.15 m y-distance from CG to T1 and T3

Lfx 0.565 m x-distance from CG to T4

Lby 0.17 m y-distance from CG to T0 and T2
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3.3.1 Sensors

The sensors onboard our AUV include an Inertial Measurement Unit (IMU),

Doppler Velocity Log (DVL) / Acoustic Doppler Current Profiler (ADCP), Long-Baseline

(LBL transponder), compass, pressure, and altimeters. Most underwater vehicles contain a

similar sensor suite. The IMU is the primary high-rate sensor. It measures linear acceler-

ations via accelerometers and angular rates via fiber-optic gyros. We expect this sensor to

provide continuous updates without interruption. This sensor is reliable, but due to noise

and unknown biases, it alone cannot provide sufficient navigational accuracy. Other sen-

sors provide additional feedback. A DVL provides velocities along four beam directions via

acoustic Doppler measurements. The DVL/ADCP measures velocity via the Doppler effect

by first emitting encoded acoustic pulses from each of its four transducer heads. These

pulses reflect off surfaces, such as the seafloor, and return back to each transducer. The in-

strument measures the change in frequency between the pulses emitted and those received,

which relates to velocities along each beam direction relative to the reflecting object. This

sensor can also be used in order to accurately measure the distance from the vehicle to the

reflecting surface. If the surface is assumed to be planar, then the vehicle relative attitude to

that surface can also be estimated. The three altimeters mounted on top of the vehicle are

used to determine the vehicle’s distance and attitude to the surface above it. The acoustic

LBL system measures round-trip travel time-of-flight of sound waves between a transceiver

on the vehicle and four transponder baseline stations at known locations. Because the global

position of the four transponders are known the global vehicle position can be determined.

An attitude and pressure sensor complete the navigation suite. The attitude sensor provides
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orientation measurements, while the pressure sensor provides a sense of vehicle depth. The

vehicle’s sensor suite is described in detail in [49, 48].

3.3.2 Error state Kalman Filter

One approach to navigation is to treat each sensor independently, each measuring

a specific state. A position sensor measures position, a velocity sensor measures velocity,

and so forth. This solution, however, is clearly not robust and does not take advantage of

the kinematic relationships between states and measurements. We approach this problem

using an error state formulation of the Kalman filter to the vehicle navigation problem. The

algorithm is explained in detail in [49, 48]. The navigation software is such that, the fast

rate sensor is aided with slower rate sensors. Integration of the vehicles high-rate IMUs

accelerometers and gyros allows time propagation while other sensors provide measurement

corrections. The low-rate aiding sensors include the DVL, acoustic LBL system, pressure

sensor, and attitude sensor. Our formulation revolves around the IMU. The augmented

system equations model the true system, while the mechanization equations provide the

navigation state vector. The difference between the actual and mechanized state is the

error state. The error state equations describe the time propagation of the error state. We

use the linearized dynamic model of the error state to design the Kalman filter [49, 48].

The Kalman filter time propagation equations propagate the navigation system, the error

state, and the error state covariance. The Kalman filter measurement correction equations

utilize aiding sensors. Each sensor runs independent of the next, with its own update rate

and performance characteristics. Thus, measurement corrections are asynchronous. As a
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measurement arrives, it is evaluated and then incorporated into the error state estimate.

If a measurement does not arrive, no calculations are necessary. The algorithm does not

wait for or expect measurements to arrive in an ordered fashion. The error state and navi-

gation state will propagate, respectively, via the IMU data, with or without measurement

corrections. If the measurement lies within three standard deviations of its estimate, the

measurement is considered to be valid and it is used correct the error state estimate. To

analyze our filter implementation, we examine the navigation state error, covariance, and

measurement residuals. The objective is to drive the navigation state error to zero. Estima-

tion of the unknown accelerometer and gyro bias parameters is a key aspect of our approach.

Poor estimation of these parameters leads to inaccuracies in the time propagation of the

navigation state vector, and thus poor measurement predictions for the aiding sensors. All

of the unknown bias parameters usually converged to reasonable values within the first 500

seconds.

3.4 AUV Simulator

The AUV control development and proof of concept for Behavior Based Control

greatly benefited from the comprehensive vehicle simulation. SSC-SD created a vehicle

simulation tool to accelerate the integration of vehicle navigation, control, and mission

spooling for the SSC-SD CETUS II vehicle. This endeavor proved to be extremely bene-

ficial as it drastically accelerated vehicle development and reduced costly in-water testing

requirements. All integration software issues were essentially eliminated prior to any in-

water testing. This simulator can simulate any mission from start to end allowing the
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operator the chance to check, review, and possibly change the mission plan prior to load-

ing the mission onto the AUV. If the simulation produced successful results, there was an

excellent chance that the actual system would obtain similar results. Developers were free

to experiment with new algorithms, environments, and situations in faster than real-time

simulations, without risk to assets. The graphical display tool allowed developers to visu-

alize performance characteristics quickly. Moreover, the simulator can be used as a great

operator training tool through basic operator teleoperation training. The screenshot of the

simulation presenting its benefits is shown in Figure 3.3. The Figure is from our team’s

poster at Autonomous Underwater Vehicle Festival (AUVFest), June 6-15 2007, held in

Panama City.

The simulation contains several key components: the vehicle model; sensor models;

(actual) vehicle navigation, control, and mission planning code; and the graphical display.

The vehicle model represents the true vehicle and attempts to approximate the true vehicle

dynamics. It accounts for vehicle dynamics, hydrodynamics, currents, and thruster forces.

Given the current vehicle state and thruster forces, the plant integrates one time step to

obtain a new true vehicle state. The sensor models take this true vehicle state and generate

sensor data. Each sensor model accounts for its update rate, noise and performance charac-

teristics, biases, and random dropouts. The long baseline sensor, for example, must enforce

line-of-sight requirements. The Doppler velocity log must verify angle-of-incidence require-

ments for each beam. All sensor models corrupt their true measurements with Gaussian

white noise, and then feed the corrupted measurements into the actual vehicle code. The

actual vehicle code is just that. It has no knowledge of the true system. It executes the same
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code that resides on the vehicle itself. Maintaining common code between the simulation

and vehicle eliminates unnecessary code management. The vehicle code executes the navi-

gation, control, and mission spooler algorithms, which in turn output new thruster forces to

the plant. The control simulator allows for behavior based controller implementation. We

can specify a mission plan by selecting behaviors from the library, and specifying logic for

switching between those behaviors. Each behavior module is implemented by a nonlinear

control algorithm. An Adaptive Mission Planner (AMP) manipulates the mission plan in

an attempt to obtain a mission goal. The Mission Spooler executes a series of behavioral

commands dictated by the AMP. The plant, sensor model, and vehicle code loop propagate

the simulation through time. For analysis and verification purposes, an OpenGL graphical

display illustrates the vehicle status.

To add geometry to the simulation, one must create a solid model of the object.

This process typically involves using a computer aided drawing package to create an object

and then exporting the object as a binary stereolithography (STL) file. The STL file format

is an industry standard rapid-prototyping format that most packages support. With such a

tool, it is easy to create operating scenarios. Consider the ship-hull inspection scenario. If

the vehicle has difficulty with certain hull features, such as a bilge keel or around prop shafts,

one can create this geometry and experiment. Developers can experiment with countless

scenarios without requiring physical access to assets, or risking their own assets. Operators

can check for potential hazards prior to executing a mission. Pier pilings, quay walls, and

sea floor terrain maps are all possible. The screenshot of the simulation with limpet mines

attached to the hull, pier pilings and forward looking sonar coverage is shown in Figure
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3.4. This Figure comes from Paul Miller’s presentation to our Program Management Office

for Explosive Ordinance Disposal (PMS EOD) and Explosive Ordnance Disposal Technical

Division (EODTECHDIV) sponsors in Spring 2008.

3.5 Relevant AUV applications

AUVs are becoming important field assets for difficult scientific, commercial, and

military missions. An increasing variety of sensors are becoming available for use onboard

autonomous vehicles. Given these enhanced sensing capabilities, scientific and military per-

sonnel are interested in exploiting autonomous vehicles for increasingly complex missions.

Most of these missions require the vehicle to function in complex, cluttered environments

and possibly react to changing environmental parameters in order to successfully navigate.

These missions currently involve high risk for human lives and high expenditure. For exam-

ple, unmanned underwater vehicles (AUV) are being considered for mine-countermeasures

(MCM) [3, 61, 40], swimmer/diver defense [40, 62], chemical plume tracing [21, 20, 22, 19]

and ship hull search [2, 40]. AUVs equipped with high-level control software have a variety

of potential applications for Anti-Terrorism/Force Protection (ATFP) objectives. Desirable

vehicle control capabilities include the ability to drive at very low, controllable speeds, the

ability to maintain a set distance and attitude (pitch and roll) relative to some surface

for optimal sensor (both sonar and video) effectiveness, ability to maneuver relative to an

object while maintaining that object within view of a specified onboard imaging sensor,

and the ability for the operator to intervene to change the mission activities. Moreover, a

vehicle capable of rotating in place or having a fraction of a meter turning radius is needed
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Figure 3.3: Comprehensive Vehicle Simulation - Value

to conduct certain mission. The present state-of-art vehicles are not maneuverable enough

to successfully accomplish most of these tasks. The novel controllers are expected to be non-

linear due to the fact that the vehicle is translating at nonzero attitude. In addition, such

complex missions require on-line adaptive mission planning and control capabilities beyond

those demonstrated for the current generation of autonomous vehicles. To be effective for

such missions, the AUV must be able to adapt the mission plan in response to sensor data,

without human intervention. Furthermore, the utility of new sensors on unmanned vehicles

is determined, in part, by the quality and the ease of construction of such data reactive

missions. AUVs equipped with this type of software can greatly enhance current under-
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Figure 3.4: Comprehensive Vehicle Simulation - Targets and Sonar

water security capabilities, relieving divers of time-consuming, dangerous tasks, therefore,

reducing manpower and mission timeline requirements.

3.5.1 Ship Hull Search

The ship-hull inspection task is such that a “device” must survey the underside

of a ship hull and surrounding areas while the ship is at port. At present time, this task is

performed by a team of divers. In the future, this inspection device could be a vehicle, either

remotely operated or autonomous. We considered select aspects of said inspection vehicle

that are essential to the ship-hull inspection task. The particular aspects of interest are
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intelligent in nature, and relate to the interaction between the vehicle and operator. This

section will step through the evolution of the ship hull search challenge, and ultimately

discuss the operational value of implementing Behavior Based Control onto a AUV system

to conduct conformal hull searches. Assuming the vehicle has perfect navigation and knows

the surrounding environment exactly, controlling the vehicle to avoid contact and explore

its environment is complex. By manipulating its control surfaces and/or thrusters on a

continuous basis the vehicle must reject ocean currents and surges as it is desirable to

maintain a constant standoff distance from the hull. It is difficult to describe “how” a

vehicle should survey a ship-hull, especially in complex areas. Typical vehicles exercise

predefined search patterns. These search patterns attempt to provide one hundred percent

coverage with overlap, but often do not account for complex geometry or the orientation

of the sonar. It is not sufficient to pass directly underneath a prop shaft, for example.

Crevasses above the shaft are not visible as the shaft obstructs the sonar. The vehicle

must attempt to acquire additional aspect angles. Coverage area is difficult to guarantee.

Position accuracy is a critical metric for inspection-class vehicles. This information allows

operators to localize objects of interest, reacquire contacts, and navigation through complex

environments.

Acoustic communications are typically slow, require line-of-sight, and can be unre-

liable due to the nature of the acoustic environment. It is not possible to transmit real-time

sonar data acoustically. For our experiments, the vehicle was equipped with a fiber optic

link. Data was sent through the link to ensure vehicle safety. In real a real mission, as the

progress is made in the field of acoustic communications, it is likely that the fiber optic
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link would be absent. When monitoring a sonar data stream as the vehicle executes its

mission, it is often desirable to stop and analyze potential contacts. If the vehicle passed

the contact, the operator must reacquire the contact. This task can be challenging. Objects

sometimes appear different as the aspect changes. To assist the operator, one possibility is

the ability to instruct the vehicle to “rewind” its mission. Here, the vehicle propels itself

in the reverse direction along its recent past trajectory. The sonar should continue to point

in its original direction. Once the contact comes into view, the operator then instructs

the vehicle to maintain station or “pause” while analyzing the contact. When complete,

the operator then instructs the vehicle to “play” or continue its original mission. In some

situations, however, it may be desirable to instruct the vehicle to navigate around a contact

to obtain various aspects. Given the contact location via sonar imagery, operator input, or

another data source, it is possible to constrain the vehicle’s movement such that it main-

tains a constant visual on the contact. This constraint takes partial control of the vehicle,

allowing the operator to manipulate the sonar aspect ratio without worrying about losing

the contact. The vehicle should also enforce safety standoff distances from its environment

at all times. One could automate this inspection process for simple scenarios. The idea of

constraining the vehicle’s movements extends beyond contact inspection tasks. At times,

it may be desirable for the vehicle to assume partial control while allowing the operator to

control other parameters. This ability alleviates the burden of full tele-operation. Consider

a station keeping behavior where the objective is to maintain position and attitude. It may

be useful to tweak these parameters. The vehicle could hold position as the operator manip-

ulates the desired attitude. Alternatively, the operator could fine-tune the desired position
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in any direction as the vehicle maintains its attitude. Consider waypoint navigation. It may

be desirable to tweak various parameters, such as desired vehicle speed, depth, standoff, or

the waypoints themselves without reloading an entire mission. It is important to note that

the objective is to relieve the burden of controlling all vehicle parameters at once, thereby

making the vehicle easier to operate.

Military personnel have commenced a series of tests to determine a mechanized

approach for conducting underwater searches in navigationally challenging environments

which is currently performed by Navy divers. These environments included harbors, ship’s

berthing areas, berthing piers, and actual ship’s hulls. The tools at the Navy team’s disposal

included preprogram capable AUVs, tow body sonars, and ROVs equipped with a basic

video camera. While none of these tools alone proved adequate to conduct such a mission,

the team gleaned a comprehensive understanding of the problem and several ideas for an

ideal mechanized solution. These concepts and lessons learned have been fed-back to our

research team and some have been addressed during our research effort and described in

this dissertation. The following sections list the levels of complexity of ship hull inspection

mission and basic navigation and control requirements.

Level of complexity

The hull search challenge can be divided into three levels increasing in order of

complexity.

1. Side hull search: Search the relatively flat portions of the hull forward of the running

gear and aft of the bow dome. Search from the water line to the keel. This effort
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is achieved primarily through a precise control system maintaining vehicle relative

attitude to and distance from the hull, and precise vehicle navigation (translation

along the hull).

2. Complex hull surfaces: bow including sonar domes, and stern areas.

3. Hull appendages: Running gear to include propeller shaft(s), propeller(s), struts,

rudder, and other ship’s appendages.

A general opinion is that a mechanized solution should focus initially on item one. The

second option poses more difficulty and the third option is multiple orders of magnitude

more difficult and may be ultimately accomplished more efficiently with the continued use of

divers, or with a combination of remotely operated vehicles, and divers. A mechanized solu-

tion to accomplish the first item would significantly decrease the dive time and subsequent

human-exposure to an extremely high-risk environment.

Navigation requirements

Operators must be certain, with very high level of confidence, that the vehicle has

achieved 100 % hull search coverage. This requires the following parameters.

1. Fraction of meter navigational accuracy on a 3 dimensional (x-y-z) coordinate system.

2. Ability for operators to know that the vehicle’s sensors have adequately “seen” 100 %

of the hull surface.

3. Ability to navigate on both sides of the ship’s hull and between the ship and the pier.

4. Ability to navigate in the vicinity of large ferrous objects.
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Control System requirements

Desirable vehicle control capabilities include:

1. The ability to drive at very low, controllable speeds (between 0-1 knots) to enable

identification of hull objects.

2. The ability to maintain a set distance and attitude (pitch, roll) relative to the ship’s

hull for optimal sensor (both sonar and video) effectiveness. This also includes not

allowing the vehicle to contact the hull surface.

3. The ability to maintain sensor/vehicle position and attitude in order to align the

sensors for optimal data capture.

4. The ability for the operator to intervene to change the mission activities or operating

parameters.

5. A vehicle capable of rotating in place or having a fraction of a meter turning radius

(maximum maneuverability) is needed to conduct the mission.

6. High-frequency sonar and video imagery are still considered the most effective means

for AUV/ROVs to identifying Limpet-type mines, and in many cases sonar offers

the only identification-quality imagery. The initial goal for an autonomous or semi-

autonomous AUV hull-search is to design a control system that can position static

sensors in close-proximity to the ship’s hull such that they can achieve effective im-

agery.
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Our AUV Ship Hull Search System

This section describes our AUV ship hull inspection system. Operators place one

LBL transponder at each corner of a ship and deploy an inspection vehicle. The vehicle

executes several passes around and underneath the hull, searching for objects of interest.

The AUV has the ability to drive at very low, controllable speeds, the ability to maintain

a set distance and attitude (pitch and roll) relative to some surface for optimal sensor

(both sonar and video) effectiveness, and the ability for the operator to intervene to change

the mission activities. Moreover, the vehicle is capable of rotating in place or having a

fraction of a meter turning radius which is needed to conduct the ship-hull inspection

mission. Behavior-based, switching, nonlinear controller was implemented. The structure of

a controller is hierarchical such that the low level vehicle controller is the same for all mission

scenarios while distinct behaviors (upper level controllers) are used based on what mission or

part of the mission is desired. The low level controller computes the desired thrust values to

achieve the commanded velocities and angular rates and sends the commands to thrusters

which create vehicle movement. Behavior controller computes the desired velocities and

angular rates to achieve a behavior. On top is the mission planner which selects which

behavior will be used. Prior to testing in the ship hull harbor environment we performed

testing at the 300 ft by 200 ft by 38 ft deep Transducer Evaluation Center (TRANSDEC)

pool at SSC-SD. The pool is bowl shaped so its depth is increasing toward the center of it.

It is shown in Figure 3.5. In this pool, the primary mission tested was a mission where the

vehicle was using the data from onboard sonar ADCP sensor in order to accurately follow

a curved surface below it, the bottom of the pool. The sonar outputs four beams which
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measure the distance from the vehicle to the bottom, as well as, the relative vehicle attitude

to the bottom. One of the vehicle’s behaviors was to maintain the desired stand-off distance

from and relative attitude to the curved bottom by adjusting its attitude (pitch and roll)

based on the information coming from the sonar sensor. Another task for the vehicle was

to track a desired path while maintaining the desired distance (altitude) from the bottom.

A similar behavior was utilized to follow a surface above the vehicle (hull of a ship) using

the altimeters and at the same time to translate along the hull for the ship hull inspection.
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Figure 3.5: TRANSDEC Pool
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Chapter 4

Behavior Based Controller for

AUV

The objective of this chapter is to describe a Behavior Based Command Filtered

Backstepping (CFBS) control design using a thruster powered AUV as an example. We

follow the method that we demonstrated on a simple second-order system in Chapter 2.

The model of the system is described by eqns. (3.1–3.4). In depth discussion of vehicle

kinematics and dynamics is presented in Chapter 3.

In this chapter we consider four behaviors:

1. Behavior 1: 3D Trajectory following controller;

2. Behavior 2: Depth, Attitude, and Speed controller; and,

3. Behavior 3: Surface following controller.

Behavior 1 has the goal to cause the vehicle to track a 3D position (north, east, and
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down) signal defined by the Mission Planner and at the same time regulate the attitude (roll

and pitch) signal. The inputs to the controller which is used to accomplish this behavior are

the arbitrary 3D trajectory and attitude, except Θ = π
2 . This behavior can be useful in the

ship-hull inspection mission as discussed in depth in Chapter 3 and [2, 40]. For example,

the vehicle can be commanded to navigate along a straight line alongside the ship and the

roll of the vehicle can be adjusted for optimal imaging of a side-scan sonar. Similarly, the

vehicle can be commanded to a nonzero value of pitch. This behavior can be useful in the

inspection of the complex areas of the ship’s hull (rudder, running gear). The forward-

looking imaging sonar can then be used to image the complex areas of the hull. Both B1

and B3 require vehicle’s nonzero velocity.

During Behavior 2, the goal is to cause the vehicle to track the desired depth,

attitude, and speed defined by the Mission Planner. North and east position are not con-

trolled. This behavior is a subset of the 3D trajectory following controller. B2 was designed

prior to B1 and served as a building block necessary for the successful design of B1. The

inputs to the controller which is used to accomplish this behavior are depth, attitude, except

φ = Θ = π
2 , and speed. This behavior is used to make accurate turns since this behavior

works for zero velocity.

Behavior 3 is a modification of Behavior 1. The roll and pitch commands are

externally generated such that the vehicle conforms to the surface above or below it while

tracking the desired altitude (distance) from the surface above or below it. The dynamic

changing attitude control is a major difference between B1 and B3. B1 served as great

exercise and validation of our approach, and preparation for design of B3. B3 is essential
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in the ship-hull inspection mission where it is desired that the vehicle attitude conforms to

the surface of the hull (above it) and at the same time maintains the desired distance from

the hull which places the mounted forward-looking imaging sonar at the optimal grazing

angle.

In this chapter, we show Theorems 3 and 4 that ensure the stability of each be-

havior, as well as, the stability of the overall hybrid Behavior Based system applied to our

AUV controller design as shown in Chapter 3. Theorem 3 ensures that each behavior is

stable when the appropriate backstepping terms are derived and Theorem 4 ensures that

switching among behaviors does not lead to instability by preventing the Zeno phenomenon

and by showing that the Lyapunov functions for each behavior do not increase at subse-

quent switching time instances. Theorem 3 shows that the compensated tracking errors of

the CFBS approach have the same properties as the tracking errors of the standard back-

stepping (BS) approach and it is proved for the AUV system. An additional theorem which

proves that the solution to the CFBS closed-loop system can be made arbitrarily close to

the BS solution that relies on analytic derivatives is presented and proved in [26, 27]. In

this chapter we state Theorem 4 which guarantees stable switching applies, the same it did

in the control example of the second-order system of Chapter 2 when certain conditions are

met.

Each behavior is designed using CFBS approach. There are two main motivations

for CFBS, which is an approximate backstepping approach that

1. eliminates the analytic computation of the derivatives needed in the control design;

and

74



2. retains the BS stability properties.

Various approximate BS approaches exist that do not satisfy the second condition [23, 24,

25, 43, 44, 57, 58, 60]. Our design retains the BS stability properties since for a properly

designed command filter (unity DC gain to the first output which is the integral of the

second output) the closed-loop CFBS will be stable and the compensated tracking error

will be O
(

1
ωn

)

where ωn is the bandwidth of the command filter. By increasing wn, the

solution to the CFBS closed-loop system can be made arbitrarily close to the backstepping

solution that relies on analytic derivatives. This holds for any ωn. Selection of a value for

ωn involves a tradeoff between decreasing the effects of measurement noise (small ωn) and

increasing trajectory tracking accuracy (large ωn). As wn is increased the command filtered

variables (e.g., nc) converge to the ideal desired variables (e.g., noc) more rapidly and track

these desired variables more accurately. This, in turn, decreases the magnitude of the signal

ζn.

To switch among behaviors to achieve complex missions, we build upon Behavior

Based control [7], wherein each behavior has a well-defined simple task. In [7], the behaviors

are coordinated in a subsumption architecture. An example is presented in [53]. A set of

behaviors to achieve a task and a switching logic coordinating the behaviors can be utilized.

Behavior Based methods have been criticized due to the lack of rigorous stability analysis

[46]. However, when each behavior is implemented as a nonlinear controller with a rigorous

stability analysis the main remaining issue is the design of behavior switching. This issue

is addressed herein from a hybrid systems perspective.

The chapter is organized as follows. Section 4.1 outlines the control law signals
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that need to be implemented for all four behaviors. Section 4.2 follows the method of

[28, 26, 27, 11, 13]. It states the theorems that guarantee the stability of each behavior

design and describes our method for stable switching among behaviors presented in Chapter

2 of this dissertation. Section 4.3 presents a detailed derivation of 3D trajectory tracking

control laws (Behaviors 1 and 3) to deal with vehicle kinematics and dynamics. Section 4.4

presents a derivation of the control laws for Behaviors 2.

4.1 Control Signal Implementation

This section summarizes the control law and the stability properties of the closed

loop system for AUV control design. The control law is derived in Section 4.3.

4.1.1 Behavior 1: 3D Trajectory following controller

The inputs to this control loop are: nc(t), ec(t), dc(t), and their derivatives: ṅc(t),

ėc(t), ḋc(t). These signals are generated by the command filtering of the ideal desired values,

noc(t), e
o
c(t), d

o
c(t), φ

o
c(t), θ

o
c(t) which come from the Mission Planner or the operator. As

outputs of command filter, nc, ec, and dc are continuous, bounded, and differentiable as

long as noc, e
o
c , and doc, are bounded. In addition, we assume that

Assumption 1
∥

∥

∥

∥

∥

∥

∥

∥

ṅc

ėc

∥

∥

∥

∥

∥

∥

∥

∥

≥ ǫ > 0.
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The following equations describe the control signals for the 3D trajectory following

behavior

ψoc = atan2(b, a) ± β (4.1)

uoc = v⊤

1









X









cψoc

sψoc









+ Y









(4.2)

woc = v⊤

2









X









cψoc

sψoc









+ Y









(4.3)

ωo
c = Ω−1

(

−KΘΘ̄ + Θ̇c − Θbs

)

(4.4)

F = M(Fn − Kvv̄ + v̇c − vbs) (4.5)

τ = J(Mn − Kωω̄ + ω̇c − ωbs), (4.6)

where a, b, β, v1, v2, X, Y are defined in Section 4.3.1 while Θ̄bs, ūbs, w̄bs, and ω̄bs are

defined in Section 4.3.5. The symbols Kne, Kd, KΘ, Ku, Kw, Kω, Ki
u, K

i
w, Ki

ω, p2u,

p2w, and p2ω represent positive design parameters. Since v is not directly affected by T as

explained in Section 3.2, for clarity, we use the modified notation for the velocity vector

v = [u,w]. As explained in 3.1 since Ω approaches a singularity as θ → ±π
2 , this controller

is only valid for θ 6= ±π
2 when Euler angles are used for attitude representation. The same

constraint is valid for B2 and B3. In addition, the control law implements the signals ξn,
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ξe, ξd, and ξΘ using eqns. (4.7) and (4.8)
















ξ̇n

ξ̇e

ξ̇d








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= −














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





+
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A B Cg(ψ̄)

]
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ξu

ξw

ξψ


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









+




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unc − uonc

uec − uoec

udc − uodc

















(4.7)

ξ̇Θ = −KΘξΘ + Ω(ωc − ωo
c) + Ωξω (4.8)

ξ̇u = 0 (4.9)

ξ̇v = 0 (4.10)

ξ̇ω = 0 (4.11)

with ξn(0) = 0, ξe(0) = 0, ξd(0) = 0, ξΘ(0) = 0, ξu(0) = 0, ξv(0) = 0, and ξω(0) = 0, which

are derived in Section 4.3.1.

The vehicle model has nine states. Including the six filters defined by eqns. (4.7–

4.8), the controller has twenty-seven states: ξn, ξe, ξd, ξΘ, Θc, Θ̇c, uc, u̇c, wc, ẇc, ωc, ω̇c,

ēu, ēw, and ēω. Of these,

1. ēu, ēw, and ēω are five integrator states that are augmented to attain accurate tracking

in the presence of model error;

2. Θc, Θ̇c, uc, u̇c, wc, ẇc, ωc, and ω̇c are the states of the command filters that eliminate

the need for analytic command derivatives;

3. ξn, ξe, ξd, and ξΘ are the signals defined to compensate the controller for the errors
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between the desired and filtered versions of the commands.

Eqns. (4.1–4.6) contain certain subscript and superscript notation. For example, in addition

to the variable u, we introduce the variables uoc and uc. The symbol uoc represents the ideal

desired value for u. The symbol uc represents a filtered version of uoc. The filter, with

bandwidth determined by a parameter ωn, is defined in Appendix A. This notation will

also be used similarly to define noc, nc, e
o
c, ec, d

o
c , dc, Θo

c , Θc, w
o
c , wc, ωo

c , and ωc.

Given this notation, the tracking error variables are defined as

n̄ = n− nc ē = e− ec d̄ = d− dc Θ̄ = Θ− Θc ū = u− uc
w̄ = w − wc ω̄ = ω − ωc,

and the compensated tracking error variables are

νn = n̄− ξn νe = ē− ξe νd = d̄− ξd νΘ = Θ̄ − ξΘ

νu = ū− ξu νw = w̄ − ξw νω = ω̄ − ξω.

The integral tracking error variables are

ēu =
∫

ūdt ēw =
∫

w̄dt ēω =
∫

ω̄dt.

If Θc = Θo
c , Θ̇c = Θ̇o

c, uc = uoc, u̇c = u̇oc, wc = woc , ẇc = ẇoc , ωc = ωo
c , and ω̇c = ω̇o

c ,

then eqns. (4.1–4.6) would implement a conventional backstepping control law. However,

the conventional backstepping approach would require analytic expressions for ṅoc, ė
o
c , ḋ

o
c ,

Θ̇o
c , u̇

o
c, ẇ

o
c , and ω̇o

c , which can be quite complicated. The command filtered backstepping

approach avoids the analytic derivation of these expressions by the use of filters. The

derivation of the CFBS terms (ψ̄bs, ūbs, w̄bs, and ω̄bs) and the terms that are used to

define them (A, B, and g) is explained in detail in Section 4.3.5 and the Appendix B. The

approach is designed to maintain the exponential stability properties of the backstepping
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approach for a set of the compensated tracking errors denoted by νn, νe,νΘ, νu, νw, and νω to

ensure that the control signals Θc, uc, wc, and ωc are the same as those of the conventional

BS approach within an error proportional to 1
ωn

.

4.1.2 Behavior 2: Depth, Attitude and Speed Controller

The inputs to this control loop are: dc(t), φc(t), θc(t), ψc(t), uc(t), and their

derivatives: ḋc(t), φ̇c(t), θ̇c(t), φ̇c(t), u̇c(t). These signals are generated by the command

filtering of the ideal desired values, doc(t), φ
o
c(t), θ

o
c(t), ψ

o
c(t), u

o
c(t), which come from the

Mission Planner or the operator.

Depth, attitude, and speed controller is a subset of the 3D trajectory following

controller. The control law eqns. (4.12–4.15) describe this controller. The main difference

between these two controllers is that the depth (dco), the yaw (ψco), and the speed (uco)

commands are not calculated within the controller, but they are commanded by the operator

or the Mission Planning Software. Since this is the case, the BS terms ubs and ψbs are

identically zero.

wo
c =

u sin(θ) − cos(θ) sin(φ)v −Kdd̃+ ḋc
cos(θ) cos(φ)

(4.12)

ωo
c = Ω−1

(

−KΘΘ̄ + Θ̇c

)

(4.13)

F = M(Fn − Kvv̄ + v̇c − vbs) (4.14)

τ = J(Mn −Kωω̄ + ω̇c − ωbs). (4.15)

In addition, the control law implements the signals ξd using eqns. (4.16)

ξ̇d = −Kdξd + (wc − woc) + ξw. (4.16)
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This controller is not valid for θ = ±π
2 which is the case in all behaviors and it is explained

in 4.1.1. In addition to this, this controller is only valid for φ 6= ±π
2 . It is assumed that

vehicle attitude will not approach ±π
2 during this behavior.

4.1.3 Behavior 3: Surface following controller

The inputs to this control loop are: nc(t), ec(t), ac(t), φc(t), θc(t), and their

derivatives: ṅc(t), ėc(t), ȧc(t), φ̇c(t), θ̇c(t). The ac(t) command is introduced as it is the

desired distance to the surface which is controlled instead of vehicle’s depth. These signals

are generated by the command filtering of the ideal desired values, noc(t), e
o
c(t), a

o
c(t), which

come from the Mission Planner or the operator, while φoc(t) and θoc(t) are generated such

that the relative roll and pitch angles between the vehicle and surface is zero.

Behavior 3, the surface following controller, has the goal to track vehicle’s desired

position as in B1 and at the same time track specific altitude, roll and pitch, commands

such that the vehicle conforms to the surface above or below it. In this mode, the altimeter

is measuring altitude: a, relative roll: φr, and relative pitch: θr. The mission planner

is specifying ac, φrc , and θrc where the last two mean commanded relative angles. At

present these were always zero (i.e., AUV attitude matches the hull attitude). The controller

constructs roll, φoc, and pitch, θoc , commands.

4.2 Stability of Each Behavior and Behavior Switching

This purpose of this section is to show that each of the behaviors implements a

stable controller and that the switching among behaviors which happens during an AUV
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mission does not cause instability in the control design.

4.2.1 Lyapunov Stability of Each Behavior

In this section we state a theorem which proves that each behavior is stable. For

clarity, we will state the theorem for each of the behaviors separately.

Theorem 3 For the system described by eqns. (4.1–4.6):

B1, B3, B4. The feedback control law defined in eqns. (4.1–4.6), and the ψc, uc, and ωc

command filters (using the design in Appendix A) provides asymptotic stability for

νn, νe, νd,νΘ, νu, νw, and νω and boundedness of ξn, ξe, ξd, ξΘ, ξu, ξw, ξω, ēu, ēw, and

ēω.

B2. The feedback control law defined by eqn. (4.12–4.15), with ξu = ξw = ξω = 0 provides

asymptotic stability for νd, νu, νw, and νω and boundedness of ξd, ēu, ēw, and ēω.

△

This theorem is proved in Sections 4.3.5 and 4.4.4. Two theorems stated and proved in

[26, 27] can be applied to our control design to ensure that it creates closed loop stable

behavior implementations in sense of Lyapunov.

4.2.2 Behavior Switching AUV

In this section we reiterate what we explained in Chapter 3 regarding the switching

among behaviors. The overall goal of Behavior Based control design is to maintain stability

during the time each behavior is active, to prevent Zeno Phenomenon, and maintain stability
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at switching times. The AUV control design follows the same approach as the control design

for simple second-order system. Again, the CFBS approach allows us to ensure that the

Lyapunov function, defined in terms of compensated tracking errors, of the overall switched

system is nonincreasing at all times by appropriate choice of the command filter’s initial

conditions made by a Mission Planner. The following Theorem 4 holds for switching between

any two AUV behaviors.

Theorem 4

B1. If, at each start of Behavior 1 (t = t2j), the Mission Planner selects the initial values

of the filtered command signals to be equal to the current state values, nc(t2j) = n(t2j),

ec(t2j) = e(t2j), dc(t2j) = d(t2j), Θc(t2j) = Θ(t2j), uc(t2j) = u(t2j), wc(t2j) = w(t2j),

and ωc(t2j) = ω(t2j), the signals ξn(t2j) = ξe(t2j) = ξd(t2j) = ξΘ(t2j) = ξu(t2j) =

ξw(t2j) = ξω(t2j) = 0, and the integral error to maintain its value (i.e. ēu(t
+
2j) =

ēu(t2j)), ēw(t+2j) = ēw(t2j)), and ēω(t+2j) = ēω(t2j)), then the Lyapunov function, Vb1 ,

at each start of each Behavior 1 is a nonincreasing sequence, Vb1(t2j+2) ≤ Vb1(t2j).

B2. If, at each start of Behavior 2 (t = t2j+1), the Mission Planner selects the initial values

of the filtered command signal to be equal to the current state value, dc(t2j) = d(t2j),

Θc(t2j) = Θ(t2j), uc(t2j) = u(t2j), wc(t2j) = w(t2j), and ωc(t2j) = ω(t2j), the signals

ξd(t2j) = ξΘ(t2j) = ξu(t2j) = ξw(t2j) = ξω(t2j) = 0, and the integral error to maintain

its value (i.e. ēu(t
+
2j) = ēu(t2j)), ēw(t+2j) = ēw(t2j)), and ēω(t+2j) = ēω(t2j)), then the

Lyapunov function, Vb2 , at each start of each Behavior 2 is a nonincreasing sequence,

Vb2(t2j+3) ≤ Vb2(t2j+1).
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△

The requirement is that:

Vi(xi(ti,k)) ≤ Vi(xi(ti,k−1)),

where i = 1, 2, ... represents the active behavior and k = 1, 2, ... represent the specific time

instances. The Figure shows that the value of the Lyapunov function V2 corresponding to

Behavior 2 at time t2,2 (second time Behavior 2 is active) is less or equal to its value at

time t2,1 (first time Behavior 2 is active) which proves that Behavior 2 is stable in sense of

Lyapunov. On the other hand, the Figure shows that the value of the Lyapunov function

V1 corresponding to Behavior 1 at time t1,3 (third time Behavior 1 is active) is greater or

equal to its value at time t1,2 (second time Behavior 1 is active) and at time t1,1 (first time

Behavior 1 is active) which proves that Behavior 1 is unstable in sense of Lyapunov.

4.3 Control Signal Derivation: Behavior 1

This section derives the CFBS 3D trajectory tracking control law for Behavior 1.

The same derivation applies to Behavior 3 where the φoc(t) and θoc(t) are generated such that

the relative roll and pitch angles between the vehicle and surface is zero. In this section,

we use nc, ec, dc, Θc, uc, wc, and ωc, and their derivatives to derive a CFBS control law.

4.3.1 3D Trajectory Following

The objective of this section is to stabilize the dynamic system of eqns. (3.1) using

CFBS. The inputs to this control loop are: nc(t), ec(t), dc(t), and their derivatives: ṅc(t),

84



ėc(t), ḋc(t). The control of [n, e, d] will be accomplished by specification of desired values

for [ψ, u,w].

Calculation of ψoc

We rewrite the vehicle kinematics of eqn. (3.1) as

v = Rb

t ṗ,

where v = [u, v,w] and ṗ = [un, ue, ud], our goal is to compute the body frame velocity

vector uoc , w
o
c , and yaw ψoc . To follow the desired trajectory [nc(t), ec(t), dc(t)] the desired

navigation frame velocity is

uonc = −Knen̄+ ṅc

uoec = −Kneē+ ėc

uodc = −Kdd̄+ ḋc.


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















(4.17)

From the vehicle kinematics

















uoc

v

woc

















=

















1 0 0

0 cφ sφ

0 −sφ cφ

































cθ 0 −sθ

0 1 0

sθ 0 cθ

































cψoc sψoc 0

−sψoc cψoc 0

0 0 1

































unc

uec

udc

















.

Pre-multiply both sides with the inverses of the first and second matrices to get

















cθ sφsθ cφsθ

0 cφ −sφ

−sθ sφcθ cφcθ

































uoc

v

woc

















=

















unc uec

uec −unc

0 0

























cψoc

sψoc









+

















0

0

udc

















. (4.18)
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If we define, v1 =

















cθ

0

−sθ

















, v2 =

















cφsθ

−sφ

cφcθ

















, X =

















unc uec

uec −unc

0 0

















, and Y = −

















sφsθ

cφ

sφcθ

















v+

















0

0

udc

















, we can rearrange eqn. (4.18) to get

v1u
o
c + v2w

o
c = X









cψoc

sψoc









+ Y. (4.19)

We define v3 = v1 × v2. Vectors v1, v2, and v3 are an orthonormal basis for ℜ3. In fact,

v3 =

















sψsθ

cφ

sφcθ

















. A solution [ψoc , u
o
c , w

o
c ] exists if and only if X









cψoc

sψoc









+Y is in the range

space of v1 and v2, therefore, we first attempt to select ψoc such that

v⊤

3 (X









cψoc

sψoc









+ Y) = 0.

If no solution exists, then the command trajectory is not feasible. In this case, we minimize
∣

∣

∣

∣

∣

∣

∣

∣

v⊤
3

(X









cψoc

sψoc









+ Y)

∣

∣

∣

∣

∣

∣

∣

∣

with respect to ψoc .

When it exists, the solution for ψoc is:

v⊤

3 X









cψoc

sψoc









= −v⊤

3 Y (4.20)

If we define the components of the product v⊤
3
X = [a, b] and −v⊤

3
Y = c, eqn.
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(4.20) becomes

[a, b]









cψoc

sψoc









= c.

From the definitions of v3, X, and Y:

a = sφsθunc + cφuec ,

b = sφsθuec − cφunc ,

and

c = v − sφcθudc .

The solution is possible only if and only if

|c| ≤

∥

∥

∥

∥

∥

∥

∥

∥









a

b









∥

∥

∥

∥

∥

∥

∥

∥

.

From Figure 4.1 we see that

β = arccos
c

∥

∥

∥

∥

∥

∥

∥

∥









a

b









∥

∥

∥

∥

∥

∥

∥

∥

and

ψoc = atan2(b, a) ± β. (4.21)

Therefore, we see that when a solution does exist, then, in fact, two solutions are

possible. For one the AUV has positive forward speed while for the other it has negative

forward speed. When a solution exists and a direction of the motion is selected, it is

straightforward to select ψoc .
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Figure 4.1: Yaw Command Selection

Calculation of uoc and woc

Given ψoc , from eqn. (4.21) we can solve eqn. (4.19) for

uoc = v⊤

1









X









cψoc

sψoc









+ Y









(4.22)

and

woc = v⊤

2









X









cψoc

sψoc









+ Y









. (4.23)

The objective of this section was to derive three control signals uoc , w
o
c , and ψoc
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such that the closed loop position dynamics are

















ṅ

ė

ḋ

















= −

















Knen̄

Kneē

Kdd̄

















+

















ṅc

ėc

ḋc

















. (4.24)

Our next step is to derive the backstepping terms, ubs, wbs, and ψbs, which are

necessary so the closed loop position dynamics can be written in a stable form as in eqn.

(4.24).

Notation Definition

For clarity, we rewrite the vehicle kinematics of eqn. (3.1)

ṗ =

















ṅ

ė

ḋ

















=

















un

ue

ud

















where

un = Tnv

ue = Tev

ud = Tdv,































(4.25)

where

Tn(φ, θ, ψ) =

[

cθcψ −cφsψ + sφsθcψ sφsψ + cφsθcψ

]

, (4.26)

Te(φ, θ, ψ) =

[

cθsψ cφcψ + sφsθsψ −sφcψ + cφsθsψ

]

, (4.27)

Td(φ, θ, ψ) =

[

−sθ sφcθ cφcθ

]

, (4.28)
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represent the velocity transformation functions from body to navigation frame. Simi-

larly, we can define the transformation functions To
nc

(φo
c , θ

o
c , ψ

o
c ), To

ec

(φo
c , θ

o
c , ψ

o
c ), and

To

dc

(φo
c , θ

o
c , ψ

o
c ); and Tnc

(φc, θc, ψc), Tec
(φc, θc, ψc), and Tdc

(φc, θc, ψc). Therefore, we

can define the similar function as in eqn. (4.25) for the commanded variables:

uonc = To
nc

vo
c

uoec = To
ec

vo
c

uodc = To

dc

vo
c ,































(4.29)

and command filtered variables:

unc = Tnc
vc

uec = Tec
vc

udc = Tdc
vc,































(4.30)

where vo
c = [uoc, v, w

o
c ]

⊤ and vc = [uc, v, wc]
⊤. The error signals

ūn = un − unc

ūe = ue − uec

ūd = ud − udc ,































(4.31)

will be important in the subsequent analysis.

Control Design and Error Analysis

The dynamic equation for n, e and d can be written as

















ṅ

ė

ḋ

















=

















un

ue

ud

















=

















uonc

uoec

uodc

















+

















ūn

ūe

ūd

















+

















unc − uonc

uec − uoec

udc − uodc

















. (4.32)
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In the Appendix B, the ūn, ūe and ūd terms on the right hand side of eqn. (4.32) are

manipulated into the form

















ūn

ūe

ūd

















=

[

A B Cg(ψ̄)

]

















ū

w̄

ψ̄

















. (4.33)

Thus, the using eqn. (4.17) position error dynamics can be expressed as

















˙̄n

˙̄e

˙̄d

















= −

















Knen̄

Kneē

Kdd̄

















+

[

A B Cg(ψ̄)

]

















ū

w̄

ψ̄

















+

















unc − uonc

uec − uoec

udc − uodc

















, (4.34)

where the terms A, B, C, and g(ψ̄) are derived in the Appendix B.

Command Filters

Define the compensated tracking error signals νn, νe and νd as

















νn

νe

νd

















=

















n̄− ξn

ē− ξe

d̄− ξd

















, (4.35)
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where ξn, ξe and ξd are defined as

















ξ̇n

ξ̇e

ξ̇d

















= −

















Kneξn

Kneξe

Kdξd

















+

[

A B Cg(ψ̄)

]

















ξu

ξw

ξψ

















+

















unc − uonc

uec − uoec

udc − uodc

















, (4.36)

with ξn(0) = 0, ξe(0) = 0, and ξd(0) = 0. With these definitions, the dynamics of the

compensated tracking errors are

















ν̇n

ν̇e

ν̇d

















= −Kned

















νn

νe

νd

















+

[

A B Cg(ψ̄)

]

















νu

νw

νψ

















(4.37)

where νu, νw and νψ are defined as

















νu

νw

νψ

















=

















ū− ξu

w̄ − ξw

ψ̄ − ξψ

















. (4.38)

Lyapunov Analysis

Consider the candidate Lyapunov function

Vned =
1

2

(

ν2
n + ν2

e + ν2
d

)

. (4.39)
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The derivative of Vned is

V̇ned = −Kne(ν
2
e + ν2

e ) −Kdν
2
d + νnūn + νeūe + νdūd

= −Kne(ν
2
n + ν2

e ) −Kdν
2
d

+

[

νn νe νd

] [

A B Cg(ψ̄)

]

















vu

vw

vψ

















= −Kne(ν
2
n + ν2

e ) −Kdν
2
d +

AT

















νn

νe

νd

















νu + BT

















νn

νe

νd

















νw + g(ψ̄)⊤CT

















νn

νe

νd

















νψ. (4.40)

Eqn. (4.40) will be used in the stability analysis of Section 4.3.5.

4.3.2 Attitude Control

The objective of Section 4.3 is to stabilize the dynamic system of eqns. (3.1–

3.4) using CFBS. Because the position dynamics were already discussed in Section 4.3.1,

this section focuses on selection of ωo
c to stabilize the Θ dynamics. The inputs to this

control loop are φc(t), θc(t), φ̇c(t), θ̇c(t) from the Mission Planner, and ψoc(t) defined by

the trajectory tracking as in eqn. (4.21), which is command filtered to generate ψc(t) and

ψ̇c(t).

For attitude control, based on eqn. (3.2), we define the signal

ωo
c = Ω−1

(

−KΘΘ̄ + Θ̇c − Θbs

)

, (4.41)
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where KΘ =

















Kφ 0 0

0 Kθ 0

0 0 Kψ

















is a positive definite matrix. The backstepping term, Θbs,

will be defined in the stability analysis of Section 4.3.5. The nonlinear matrix function Ω

is defined in eqn. (3.8). Note that Ω−1 exists for all values of φ, θ, and ψ except θ = π
2 .

Using this definition, the closed-loop tracking error corresponding to eqn. (3.2) is

Θ̇ = Ωωo
c + Ω(ω − ωc) + Ω(ωc − ωo

c ) (4.42)

= −KΘΘ̄ + Θ̇c − Θbs + Ωω̄ + Ω(ωc − ωo
c )

˙̄Θ = −KΘΘ̄− Θbs + Ωω̄ + Ω(ωc − ωo
c ). (4.43)

The compensated tracking error signal for the Θ dynamics is defined as

νΘ = Θ̄− ξΘ. (4.44)

The signal ξΘ is defined as

ξ̇Θ = −KΘξΘ + Ω(ωc − ωo
c ) + Ωξω (4.45)

with ξΘ(0) = 0. With these definitions, the dynamic equation of νΘ is

ν̇Θ = ˙̄Θ − ξ̇Θ

= −KΘνΘ − Θbs + Ωνω, (4.46)

where νω is defined in Section 4.1.1 with other compensated error variables.

Choosing the candidate Lyapunov function as

VΘ =
1

2
ν⊤

ΘνΘ, (4.47)
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its derivative is

V̇Θ = −ν⊤

ΘKΘνΘ + νΘΩνω − ΘbsνΘ. (4.48)

Equation (4.48) will be used in the stability analysis of Section 4.3.5.

4.3.3 Speed and Angular Rate Control

The objective of this section is to stabilize the dynamic system of eqns. (3.1–

3.4) using backstepping. This section focuses on selection of F and τ to stabilize the v

and ω tracking error dynamics. For v and ω tracking control, the inputs are the hori-

zontal and vertical speed and angular rate commands vc(t) = [uc(t), wc(t)]
⊤ and ωc(t) =

[pc(t), qc(t), rc(t)]
⊤ and their derivatives v̇c(t) = [u̇c(t), ẇc(t)]

⊤ and ω̇c(t) = [ṗc(t), q̇c(t), ṙc(t)]
⊤.

The ideal desired value for v, denoted as voc = [uoc, w
o
c ]
⊤, is computed by eqns. (4.22) and

(4.23), while the ideal desired value for ω, denoted as ωo
c = [poc, q

o
c , r

o
c ]

⊤, is computed by

eqn. (4.41).

For tracking control using eqns. (3.3-3.4) we select the control force and the control

torque as

F = M
(

Fn − Kvv̄ − Ki
vev + v̇oc − vbs

)

(4.49)

τ = J
(

τn − Kωω̄ −Ki
ωeω + ω̇o

c − ωbs
)

, (4.50)

with the thrust vector, F and τ defined as in Section 4.3.4.

The backstepping terms, vbs = [ubs, wbs]
⊤ and ωbs = [pbs, qbs, rbs]

⊤, will be defined

in the stability analysis of Section 4.3.5. With this choice of the control signal and because

ėu = ū, ėw = w̄, ėω = ω̄, we obtain ëu = ˙̄u, ëw = ˙̄w, ëω = ˙̄ω, and the dynamics of the u, w
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and ω tracking errors

˙̄u = −Kuū−Ki
ueu − ubs

˙̄w = −Kww̄ −Ki
wew − wbs

˙̄ω = −Kωω̄ − Ki
ωeω − ωbs,































(4.51)

can be rewritten as

ëu +Kuėu +Ki
ueu = −ubs

ëw +Kw ėw +Ki
wew = −wbs

ëω + Kωėω + Ki
ωeω = −ωbs.































(4.52)

We can then define the tracking error vectors qu = [eu, ū]⊤, qw = [ew, w̄]⊤ and qω =

[qp,qq,qr]
⊤ = [eω, ω̄]⊤ = [ep, p̄, eq, q̄, er, r̄]

⊤ and the tracking error vectors dynamics as

q̇u = Duqu − Eubs (4.53)

q̇w = Dwqw − Ewbs (4.54)

q̇ω =

















Dp 02x2 02x2

02x2 Dq 02x2

02x2 02x2 Dr

















qω − Fωbs (4.55)

where Du =









0 1

−Ki
u −Ku









, Dw =









0 1

−Ki
w −Kw









, Dp =









0 1

−Ki
p −Kp









, Dq =
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







0 1

−Ki
q −Kq









, Dr =









0 1

−Ki
r −Kr









, E =









0

1









, and F =











































0 0 0

1 0 0

0 0 0

0 1 0

0 0 0

0 0 1











































.

Choosing the candidate Lyapunov function as

Vi =
1

2
(q⊤

uPuqu + q⊤

wPwqw + q⊤

ωPωqω), (4.56)

where Pu, Pw and Pω are positive definite diagonal matrices defined in Appendix C. Pω

is a 6 × 6 block-symmetric matrix consisting of three matrices, Pp, Pq, and Pr. The

Appendix C also analyzes the terms Qu =









0 0

0 2Kup2u









, Qw =









0 0

0 2Kwp2w









, Qp =









0 0

0 2Kpp2p









, Qq =









0 0

0 2Kqp2q









, Qr =









0 0

0 2Krp2r









, PuE =









0

p2u









, PwE =









0

p2w









, and PωF =











































0

p2p

0

p2q

0

p2r











































, which are used in the following derivation.
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Then the Lyapunov function derivative is

V̇i =
1

2
(q̇⊤

uPuqu + q⊤

uPuq̇u + q̇⊤

wPwqw + q⊤

wPwq̇w

q̇⊤

ωPωqω + q⊤

ωPωq̇ω)

=
1

2
[q⊤

u (D⊤

uPu + PuDu)qu + q⊤

w(D⊤

wPw + PwDw)qw

+q⊤

ω (D⊤

ωPω + PωDω)qω]

−q⊤

uPuEubs − q⊤

wPwEwbs − q⊤

ωPωFωbs

= −Kup2uū
2 −Kwp2ww̄

2 − ω̄⊤Kωp2ωω̄

−p2uūubs − p2ww̄wbs − ω̄⊤p2ωωbs

= −Kup2uν
2
u −Kwp2wν

2
w − ν⊤

ω Kωp2ωνω

−p2uνuubs − p2wνwwbs − ν⊤ω p2ωωbs, (4.57)

where we used Dω =

















Dp 02x2 02x2

02x2 Dq 02x2

02x2 02x2 Dr

















and Kω =

















Kp 0 0

0 Kq 0

0 0 Kr

















. Equation (4.57)

will be used in the stability analysis of Section 4.3.5.

4.3.4 Thruster Command Selection

As introduced in Section 3.1 the vector T = [T0, . . . , T4]
⊤ of five thrusts is related

to the the control forces and moments by a known thrust distribution matrix such that

F = LfT and τ = LmT where Lf ∈ ℜ2×5 and Lm ∈ ℜ3×5.

Combining eqns. (3.5), (3.6), (4.49) and (4.50), we have five constraint equations
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for the five thrust commands. Therefore, the equation









Lf

Lm









T =









M
(

Fn − Kvv̄ − Ki
vev + v̇oc − vbs

)

J
(

τn − Kωω̄ − Ki
ωeω + ω̇o

c − ωbs
)









(4.58)

must be solved for T. Matrices M, J, Lf , and Lm are defined in eqns. (3.9), (3.10), (3.11),

and (3.12), respectively. Since the thrusters are placed such that the matrix B =









Lf

Lm









is invertible, a unique solution exists for T.

4.3.5 Stability Analysis of Behaviors 1

Given Assumption 1 related to the reference trajectory, this section proves that

the CFBS control law described by eqns. (4.1–4.6) yields exponential stability of the com-

pensated tracking errors defined in Section 4.1.1 for the system defined by eqns. (3.1–3.4).

In Sections 4.3.1, 4.3.2, and 4.3.3, we derived the position, attitude, and speed and angular

rate controllers, respectively, which are used to implement Behavior 1. In this section we

will use the definitions of candidate Lyapunov functions and theirs derivatives written in

eqns. (4.39), (4.47), (4.56), (4.40), (4.48), and (4.57).

Proof: Combining eqns. (4.39), (4.47), and (4.56) we define the overall candidate

Lyapunov function for Behavior 1 as

Vb1 = Vned + VΘ + Vi.
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Combining eqns. (4.40), (4.48), and (4.57) the time derivative of Vb1 is

V̇b1 = −Kne(ν
2
n + ν2

e ) −Kdν
2
d + AT

















νn

νe

νd

















νu + BT

















νn

νe

νd

















νw + g(ψ̄)⊤CT

















νn

νe

νd

















νψ

−ν⊤

ΘKΘνΘ + νΘΩνω − ψbsνψ

−Kup2uν
2
u −Kwp2wν

2
w − ν⊤

ω Kωp2ωνω − p2uνuubs − p2wνwwbs − ν⊤

ω p2ωωbs.

(4.59)

To remove the sign indefinite terms of the above result, we define the backstepping terms

as

ψbs = g(ψ̄)⊤CT

















νn

νe

νd

















(4.60)

ubs =

AT

















νn

νe

νd

















p2u
(4.61)

wbs =

BT

















νn

νe

νd

















p2w
(4.62)

ωbs =
Ω⊤νΘ

p2ω
. (4.63)
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With these definitions, the derivative of Vb1(t) satisfies

V̇b1 ≤ −Kne(ν
2
n + ν2

e ) −Kdν
2
d − ν⊤

ΘKΘνΘ −Kup2uν
2
u −Kwp2wν

2
w − ν⊤

ω Kωp2ωνω. (4.64)

Since the error state is e = [νn, νe, νd,νΘ, νu, eu, νw, ew,νω,eω ], the derivative of Vb1(t) is

negative semidefinite. This fact proves that the error state is stable and, in particular, eu, ew,

and eω are bounded for all t ≥ 0. LaSalle’s invariance theorem (page 128 in [41]), proves that

the error state subvector eν = [νn, νe, νd,νΘ, νu, νw,νω] converges to zero asymptotically.

As explained in Remark 2 in Section 2.3, using LaSalle’s invariance theorem, eqn. (4.51),

as written, would result in eu, ew and eω converging to zero asymptotically. In reality, the

nonlinear forces and moments acting on the vehicle will be distinct from their models Fn

and τn, and eu, ew and eω would converge to the nonzero values necessary to compensate

the model error.

In this section we proved the stability of Behavior 1. Behavior 3 differs from

Behavior 1 only in the fact of how the inputs to the controllers are generated. The attitude

commands in Behavior 3 are generated externally with the goal that AUV’s attitude matches

the attitude of the surface which is followed. Therefore, these two behaviors, B1 and B3,

only differ at the mission planning level, external to the controller and the stability analysis

for B1 holds for B3.

4.4 Control Signal Derivation: Behavior 2

This section derives the CFBS 3D trajectory tracking control law for Behavior 2.

The inputs to this control loop are: dc(t), φc(t), θc(t), ψc(t), uc(t), and their derivatives:
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ḋc(t), φ̇c(t), θ̇c(t), φ̇c(t), u̇c(t). These signals are generated by the command filtering of the

ideal desired values, doc(t), φ
o
c(t), θ

o
c(t), ψ

o
c(t), u

o
c(t), which come from the Mission Planner

or the operator.

4.4.1 Depth Controller

The objective of Section 4.4.1 is to stabilize the dynamic system described by eqns.

(3.2–3.4) and depth kinematics defined as in eqn. (4.65) using CFBS. This section focuses

on selection of dc(t) and ḋc(t) to stabilize the depth dynamics. For d(t) tracking control,

the input is the depth command dc(t) and its derivative ḋc(t).

The kinematics of d are

ḋ = −sθu+ cθsφv + cθcφw. (4.65)

Since desired values for u, φ, and θ are already specified and v is not controllable, assuming

that θ 6= 90◦ and φ 6= 90◦, for depth control, based on eqn. (4.65), we define the signal

woc =
sθu− cθsφv −Kdd̄+ ḋoc

cθcφ
(4.66)

for w to control d. This yields the closed loop depth error dynamic equation

ḋ = −sθu+ cθsφv + cθcφwoc + cθcφ(w − woc)

= −Kdd̄+ ḋc + cθcφw̄ + cθcφ(w − woc)

˙̄d = −Kdd̄+ cθcφw̄ + cθcφ(w − woc). (4.67)

The compensated tracking error signal for the d dynamics is defined as

νd = d̄− ξd. (4.68)
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The signal ξd is defined as

ξ̇d = −Kdξd + cθcφξw + cθcφ(w − woc) (4.69)

with ξd(0) = 0. With these definitions, the dynamic equation of νd is

ν̇d = ˙̄d− ξ̇d

= −Kdνd + cθcφνw, (4.70)

where νw is defined in Section 4.1.1 with other compensated error variables.

Choosing the candidate Lyapunov function as

Vd =
1

2
ν2
d , (4.71)

its derivative is

V̇d = −Kdν
2
d + cθcφνdνw. (4.72)

Equation (4.72) will be used in the stability analysis of Section 4.4.4.

4.4.2 Attitude Controller

This controller is very similar as for Behaviors 1, 3, and 4. The difference is

that all three attitude commands: φoc, θ
o
c , ψ

o
c commands are externally generated by the

Mission Planner or operator. That means that Θbs can be selected to be identically zero.

The objective of this section is to stabilize the dynamic system of eqns. (3.1–3.4) using

backstepping. Because the position dynamics were already discussed, this section focuses

on selection of ωo
c to stabilize the Θ dynamics. For Θ tracking control, the inputs are roll,
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pitch, and yaw commands, Θc = [φc(t), θc(t), ψc(t)] and the derivatives of these signals,

which are produced by a command filter with input Θo
c as discussed in Appendix A.

For attitude control, based on eqn. (3.2), we define the signal

ωo
c = Ω−1

(

−KΘΘ̄ + Θ̇c

)

, (4.73)

where KΘ =

















Kφ 0 0

0 Kθ 0

0 0 Kψ

















is a positive definite matrix. Using this definition, the

closed-loop tracking error corresponding to eqn. (3.2) is

Θ̇ = Ωωo

c + Ω(ω − ωc) + Ω(ωc − ωo

c ) (4.74)

= −KΘΘ̄ + Θ̇c + Ωω̄ + Ω(ωc − ωo

c )

˙̄Θ = −KΘΘ̄ + Ωω̄ + Ω(ωc − ωo

c ). (4.75)

The compensated tracking error signal for the Θ dynamics is defined as

νΘ = Θ̄ − ξΘ. (4.76)

The signal ξΘ is defined as

ξ̇Θ = −KΘξΘ + Ωξω + Ω(ωc − ωo

c ) (4.77)

with ξΘ(0) = 0. With these definitions, the dynamic equation of νΘ is

ν̇Θ = ˙̄Θ − ξ̇Θ

= −KΘνΘ + Ωνω, (4.78)

where νω is defined in Section 4.1.1 with other compensated error variables.
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Choosing the candidate Lyapunov function as

VΘ =
1

2
ν⊤

ΘνΘ, (4.79)

its derivative is

V̇Θ = −ν⊤

ΘKΘνΘ + νΘΩνω. (4.80)

Equation (4.80) will be used in the stability analysis of Section 4.4.4.

4.4.3 Speed and Angular Rate CFBS

This controller is the same as for Behaviors 1, 3, and 4 except for the controller

inputs. The vertical velocity command, woc , is generated by the depth controller with the

eqn. (4.66) and horizontal velocity, uoc, and yaw, ψoc , commands are externally generated not

calculated by the 3D trajectory tracking controller as in Behavior 1. Since uoc is externally

generated ubs = 0.

4.4.4 Stability Analysis of Behavior 2

This section proves that the CFBS control law described by eqns. (4.12–4.15)

yields exponential stability of the compensated tracking errors defined in Section 4.1.2 for

the system defined by eqns. (4.65) and (3.2–3.4). In Sections 4.4.1, 4.4.2, and 4.4.3, we

derived the depth, attitude, and speed and angular rate controllers, respectively, which

are used to implement Behavior 2. In this section we will use the definitions of candidate

Lyapunov functions and theirs derivatives written in eqns. (4.71), (4.79), (4.56), (4.72),

(4.80), and (4.57).
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Proof: Combining eqns. (4.71), (4.79), and (4.56) we define the overall candidate

Lyapunov function for Behavior 2 as

Vb2 = Vd + VΘ + Vi.

Combining eqns. (4.72), (4.80), and (4.57) the time derivative of Vb2 is

V̇b2 = −Kdν
2
d + cθcφνdνw − ν⊤

ΘKΘνΘ + νΘΩνω

−Kup2uν
2
u −Kwp2wν

2
w − ν⊤

ω Kωp2ωνω − p2wνwwbs − ν⊤

ω p2ωωbs. (4.81)

To remove the sign indefinite terms of the above result, we define the backstepping terms

as

wbs =
cθcφνd
p2w

(4.82)

ωbs =
Ω⊤νΘ

p2ω
. (4.83)

With these definitions, the derivative of Vb2(t) satisfies

V̇b2 ≤ −Kdν
2
d − ν⊤

ΘKΘνΘ −Kup2uν
2
u −Kwp2wν

2
w − ν⊤

ω Kωp2ωνω. (4.84)
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Chapter 5

Results

The purpose of this section is to illustrate the performance of our behavior based

method in simulation and in-water using the AUV. We simulated and tested all three

behaviors and switching among them.

Behavior 1 has the goal to cause vehicle’s position in 3D, p = [n, e, d], to track the

position command signals defined by the Mission Planner, [noc, e
o
c , d

o
c ]. These signals are first

filtered to generate command filtered signals, [nc, ec, dc], as explained in Appendix A. In

Behavior B1, control of the position state generates the yaw command, ψoc , by eqn. (4.21)

and a command for the velocity state v = [uoc , w
o
c ], by eqns. (4.22) and (4.23), while the

velocity control generates the thrust signals F to achieve the uoc and woc commands according

to eqn. (4.49). At the same time B1 regulates the attitude. The yaw and attitude controller

generates a command for the angular rate state, ω = [poc , q
o
c , r

o
c ], by eqn. (4.41). The angular

rate control generates control signal, τ , to achieve the [poc, q
o
c , r

o
c ] commands according to

eqn. (4.50).
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Behavior B2 does not control the 3D position. It has the goal is to cause d to

track a signal defined by the Mission Planner to be doc . The depth controller uses the

filtered depth command dc and its derivative ḋc to generate the vertical velocity command

woc by eqn. (4.66). The velocity control generates control signal, F , to achieve the uoc and woc

commands according to eqns. (4.49). The signal uoc is defined by the Mission Planner. The

attitude and angular rate controllers are the same as in B1 except that ψoc is also defined

by the Mission Planner.

Behavior 3 has the goal to track vehicle’s desired position as in B1 and at the same

time track specific altitude, roll and pitch, commands such that the vehicle conforms to the

surface above or below it. In this mode, the altimeter is measuring altitude: a, relative roll:

φr, and relative pitch: θr. The mission planner is specifying ac, φrc , and θrc where the last

two mean commanded relative angles. At present these were always zero (i.e., AUV attitude

matches the hull attitude). The controller constructs roll, φoc , and pitch, θoc , commands.

During all the missions tested the control law parameters were as follows: Kn =

Ke = 0.2, Kd = Ka = Kφ = Kθ = Kψ = 1, Ku = Kw = Kp = 4.8, Kq = 5, Kr = 4,

Kiu = Kiw = 9, Kip = Kiq = 1, Kir = 16, ζn = ζe = ζd = ζa = 0.8507, ζφ = ζθ = ζψ = ζu =

ζw = ζp = ζq = ζr = 0.85, ωnn = ωen = 0.6 rad
s

, ωdn = ωan = 1rad
s

, ωφn = ωθn = ωψn = 2π rad
s

,

ωun = ωwn = ωpn = ωqn = ωrn = 12rad
s

.

As indicated in Section 3.3.2, all of the unknown bias parameters in the navigation

system usually converged to reasonable values during the first 500 seconds of the mission.

To show our control performance for each behavior we allow some time for navigation

performance to become satisfactory by convergence of the unknown bias parameters.
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In Chapter 5 we present the relevant simulated and in-water missions to demon-

strate each behavior; its performance; and its relevance to desired AUV missions. We also

show the control performance during behavior switching. Section 5.1 focuses on the perfor-

mance of Behavior 2, Section 5.2 on performance of Behavior 1, Section 5.3 on performance

of Behavior 3, while Section 5.4 on performance during behavior switching.

5.1 Behavior 2 Simulation Results

The objective of this section is to show the performance of Behavior 2. This was

the first behavior that we designed and it served as a building-block for two other behaviors.

By designing B2, we were able to control the vehicle’s depth, the speed, and attitude, except

at φ = θ = π
2 .

5.1.1 Simulation Results

Figures 5.1–5.4 present the results of a portion (120 seconds) of a simulated mis-

sion, during which the vehicle goes to a desired depth of 2 m and then performs change of

attitude maneuvers, roll and pitch of ±45 ◦ and yaw of ±135 ◦. Throughout this mission

uoc = 0. The vehicle is initially at 1 m depth and zero attitude.

The plot showing d, φ, θ, and ψ versus time is shown in Figure 5.1. Each of these

plots contains three curves, for example d, doc, and dc. Note that for each state, xc converges

to xoc at the rate determined by ωdn = 1rad
s

and ωφn = ωθn = ωψn = 2π rad
s

. Rapid convergence

to and maintenance of the trajectory is exhibited in Figure 5.1. The signals u, w, p, q, and r

converge to and track uc, wc, pc, qc, and rc throughout the simulation, as shown in Figures
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5.2 and 5.3. As seen in the second graph of Figure 5.2, depth command filter maximum rate

is set to 0.3m
s

and wc is limited to this value. Figure 5.3 shows that pc and qc are limited

to 10rad
s

while rc are limited to 25rad
s

. This is explained in Remark 3 in Appendix A. Note

that the simulation does include sensor noise, which is evident in the u and w graphs of

Figure 5.2. Also we can see that the woc changes at around t = [875] and t = [895] in the

second graph of Figure 5.2 which can be explained since w is used to maintain depth while

tracking φ using the same vertical thrusters. The thrusters are not saturated as seen in

Figure 5.4.

Figure 5.5 presents selected signals during a magnified portion of the simulated

mission, t = [818, 830], where the depth command is achieved. The third graph of Figure 5.5

shows d̄ and νd. Due to the selection of the CF initial condition, see Theorem 4 in Section

4.2.2, νd = 0 to the extend reasonable given measurement noise and navigation error. During

the time interval following behavior switching, t = [818, 825], while wc converges to woc , as

seen in the second graph, d̄ increases and then converges back toward zero as predicted by

the theory. During such time intervals a bounded transient is clearly evident in ξd, see the

bottom graph of Figure 5.5. Similar analysis can be applied to other state variables and

this coincides with the analysis in Section 2.5.

Figure 5.6 plots Vb2(t) and ‖x̄‖ versus time, where x = [d̄, Θ̄, w̄, ω̄] is the error

state vector for the portion of the mission where AUV changes its pitch, t = [830, 870].

The Lyapunov function defined in terms of the compensated tracking error is nonincreasing

at all times. This result confirms our theoretical conclusion showing that the Lyapunov

function of the CFBS approach starts at the value which is a function of the integral error
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(ē) at the beginning of each behavior, decreases during the duration of each behavior, and

maintains its value during the instances of switching between behaviors. On the other hand,

at the start of each behavior, xc is equal to x, not equal to xoc . During the time interval

(influenced by ωn) during which xc converges toward xoc , the signal x̄ may increase. The

distinct nature of the tracking error and compensated tracking error is evident in Figure

5.6.

In Section 5.1 our goal was to demonstrate that AUV can control depth and

attitude at zero speed using B2 which is defined using the control law of Section 4.1.2. This

was demonstrated with the simulation performance.
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Figure 5.1: Depth and Attitude vs. Time: Blue (solid) line is the actual state, green
(dashed) line is the command, and the red (dotted) line is the filtered command.
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Figure 5.2: Velocities vs. Time: Blue (solid) line is the actual state, green (dashed) line is
the command, and the red (dotted) line is the filtered command.
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5.2 Behavior 1 Results

The objective of this section is to demonstrate the performance of Behavior 1. The

design of Behavior 1 was a major milestone of this research. By designing B1, we were able

to control the vehicle’s 3D position, speed, angular rate, and attitude, except at θ = π
2 .

5.2.1 Simulation Results

Trajectory tracking with zero attitude

Figures 5.7–5.12 present the results of an 300 second simulated mission, during

which the vehicle navigates around a triangular path inside of simulated TRANSDEC pool.

The vehicle is initially at the (0,0) corner and navigates clockwise with speed 0.5 or 0.3m
s
.

The vehicle starts in Behavior 2 and it is commanded to go to 1.5 m depth while

maintaining zero attitude. During this behavior north and east position is not being con-

trolled. Following that, Behavior 1 is initiated where the vehicle tracks the desired north

and east trajectory while maintaining the desired depth. When the vehicle reaches the

desired waypoint with the tolerance of 1 m, Behavior 2 is initiated for 20 sec. During each

instance of B2, the AUV depth and yaw are manipulated to the proper initial conditions for

the next trajectory segment. Therefore, the AUV navigates in a triangular path stopping

at each corner and executing B2. In the last segment shown in this simulated mission the

AUV navigates to the (20,0) corner while changing its depth to 4 m.

Figure 5.7 is a 2D position plot which shows the actual position converging to the

filtered desired position which converges to the actual desired position. The plot showing

n, e and d versus time is shown in Figure 5.8. Each of these two plots (and the following
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plots) contains three curves, for example x, xoc, and xc. Note that during the time period

that Behavior 2 is active, the n and e state plots in Figure 5.8 are set to be equal (value of

the current vehicle position), since during that behavior n and e states and not controlled

and noc, e
o
c , nc and ec are undefined. Again, wc and rc are limited as explained in Remark

3 in Appendix A.

Note that for each state, xc converges to xoc at the rate determined by ωnn, ωen,

ωdn, ω
φ
n, ωθn, ω

ψ
n , ωun, ω

w
n , ωpn, ω

q
n, and ωrn for Behavior 1 (values given in the introduction

of Chapter 5). The convergence is evident in plots in Figures 5.8, 5.9, 5.10, and 5.11. The

signals x representing the values of each state converge to and track the filtered desired

commands xc throughout the simulation. Figure 5.12 shows that there is not thruster

saturation.
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Trajectory tracking with nonzero attitude

The mission objective for this simulated mission is the same as for a mission

explained above; i.e. to follow a specified trajectory, except that the vehicle is commanded

to drive with a pitch of −60 ◦ and then to roll of 60 ◦.

Figures 5.13–5.14 present the results of 600 sec. of a simulated mission, during

which we tested B1 with nonzero attitude. The vehicle starts in Behavior 2. During

B2 north and east position is not being controlled. During this portion of the mission,

t = [1800, 1900], Behavior 1 is initiated where the vehicle tracks the desired north and east

trajectory and at the same time tracks a time varying depth command (from 4 to 3 m).

In addition, the vehicle is commanded a nonzero value of pitch (−60 ◦). When the vehicle

reaches the desired waypoint (a corner of a triangle) with the tolerance of 1 m, Behavior 2 is

initiated. During the portion of the mission, t = [2080, 2180], Behavior 1 is executed in the

same fashion, but the vehicle is commanded a nonzero value of roll (60 ◦). The AUV can

achieve 3D navigation while tracking nonzero roll or pitch as shown in Figures 5.13–5.14.

B1 with nonzero commanded roll can be useful in the ship-hull inspection of the side of the

ship. The vehicle can be commanded to in a straight line alongside the ship and the roll of

the vehicle can be adjusted for optimal imaging of a side-scan sonar

Figure 5.15 presents a portion of the simulated mission, t = [20762096], where roll

of 60 ◦ is achieved. The third graph of Figure 5.15 shows φ̄ and νφ. Due to the selection

of the CF initial condition, see Theorem 4 in Section 4.2.2, νφ = 0 to the extend possible

given measurement noise and navigation system estimation error. During the time interval

following behavior switching while pc converges to poc, shown by the second graph. During
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this convergence φ̄ increases in magnitude and then converges back toward zero as predicted

by the theory. During such time intervals a bounded transient is clearly evident in ξφ, see

the bottom graph of Figure 5.15. As seen in the second graph of Figure 5.15, pc is limited

to 10rad
s

as explained in Remark 3. Similar analysis can be applied to other state variables

and this coincides with the analysis in Sections 2.5 and 5.1.

Figure 5.16 plots Vb1(t) and ‖x̄‖ versus time, where x = [p̄, Θ̄, v̄, ω̄] is the error

state vector. The Lyapunov function defined in terms of the compensated tracking error

is nonincreasing at all times. This result confirms our theoretical conclusion showing that

the Lyapunov function of the CFBS approach starts at the value which is a function of the

integral error (ē) at the beginning of each behavior, decreases during the duration of each

behavior, and maintains its value during the instances of switching between behaviors. The

distinct nature of the tracking error and compensated tracking error is evident in Figure

5.16.
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green (dashed) line is the command, and the red (dotted) line is the filtered command.
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5.2.2 Field Test Results

The goal of this section is to present data from two AUV experiments. This

dissertation emphasizes the comparison between the simulated and actual in-water mission

performed by the AUV. The actual results closely resemble the simulation results.

AUV Fest June 2007 Test Results

The following experimental results are from a demonstration at the Autonomous

Underwater Vehicle Festival (AUVFest), June 6-15 2007, held in Panama City. The mission

plan was to submerge to 3 m in depth for 2 minutes, then execute two sets of three-

dimensional waypoints at 1 knot. The first series of waypoints consisted of vertically stacked

legs between two waypoints. During this phase, the navigational goal was to estimate the

unknown navigation parameters (yaw and biases) before proceeding to the second series of

waypoints underneath a barge. With the vehicle transiting along the side of the barge that

was supposed to be inspected, at specified distance from the barge and appropriate depths,

Marine Sonics Side Looking Sonar (MSTS) was imaging the side of the barge. The second

series of waypoints consisted of a lawnmower search pattern in an continuous loop under the

barge. Due to severe magnetic interference from the barge, we chose to operate the vehicle

without aiding the navigation system with the magnetic compass. During this phase Sound

Metrics DIDSON High Definition Imaging Sonar (DIDSON) sonar was used to image the

bottom of the hull of the barge while the vehicle was transiting at a predefined depth. The

acoustic baseline outlines a 36 × 9 m2 box around the second series of waypoints.

During AUV Fest, we accomplished 12 hours of in-water demonstration time.
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Hull search AUV behaviors were demonstrated with the following unique capabilities: au-

tonomous mission execution with intervention capability, hull search conducted using side

look sonar, sensors parameters optimized by the operator during the mission, real-time top-

side display of DIDSON and MSTS, vehicle position and status information embedded in

DIDSON sensor data and Joint Architecture for Unmanned Systems (JAUS) communica-

tion protocol implemented on AUV. Our team was invited to demonstrate for the Media

Day and for the Distinguished Visitors Day.

During AUV Fest Behavior 1 and Behavior 2 were tested. Behavior 1 was used to

transit along the side of the hull and to execute the legs of the lawnmower search pattern

under the hull, while Behavior 2 was used when the vehicle made turns in both phases of the

mission. The 2D position plot is shown Figure 5.17. Great trajectory tracking performance

can be noticed since the vehicle maintained its track-line even with the presence of side

currents as it should because of the term Y, which accounts for v direction motion, defined

below eqn. (4.18) in Section 4.3.1. This is a greatly desired capability for this type of

mission since 100 % ship-hull coverage is requirement and “holidays” in the sonar data

is not acceptable. The position plot showing north, east, down, and altitude position

versus time is shown in Figure 5.18, while the attitude (roll, pitch, yaw) plot is shown in

Figure 5.19. Excellent tracking performance can be observed, for instance, maximum depth

tracking errors were around 5 cm, maximum roll tracking errors were around 4 degrees,

while maximum tracking errors in pitch were around 2 degrees. Due to time limitations

Behavior 3 was not tested at AUV Fest.
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TRANSDEC August 2008 Test Results

The AUV trajectory tracking and surface following was tested in the 300 ft ×

200 × 38 × ft deep TRANSDEC pool at SSC-SD. The pool is bowl shaped so its depth is

increasing toward its center. It is shown in Figure 3.5. The missions tested were similar to

the missions trajectory shown in Figure 5.7. There were different missions, one utilizing B1

and B2 and switching between them and another utilizing B1, B2, and B3 and switching

among them. Again, the goal was for a vehicle to transit in 3D along the edges of the

triangular path while, first: maintaining zero attitude, second: maintaining commanded

nonzero attitudes, and finally transiting while following the surface below it - the bottom

of the curved pool.

Figures 5.20–5.22 present the results of a 80 s long actual in-water mission, during

which the vehicle navigates around a triangular path in the TRANSDEC pool. As seen in

Figure 5.20, north and east position tracking is not great but it should be noted that the

vehicle is at the same time changing depth (from 4 to 3 m) and swimming at 60 ◦ pitch.

This performance can be explained by the fact the vertical T4 thruster is saturated during

the majority of the transit as seen in Figures 5.21. During this testing we limited the

thrusters to 80% in order to avoid a catastrophic failure of a power board which occurred

at our previous testing. Still, the results very closely resemble the simulated results which

validates our approach. For instance, the third graph of Figure 5.22 shows θ̄ and νθ. Due

to the selection of the CF initial condition, see Theorem 4 in Section 4.2.2, νθ = 0 to the

extend possible given measurement noise and navigation system estimation error. During

the time interval following behavior switching while qc converges to qoc , as seen in the second
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graph, θ̄ increases and then converges back toward zero as predicted by the theory. During

such time intervals a bounded transient is clearly evident in ξθ, see the bottom graph of

Figure 5.22. The fact that θ does not track θc in the period around t = 120s and t = 175s

can also be explained by thruster saturation since T4 is used to control both depth, roll,

and pitch.

In Section 5.2 our goal was to show that AUV can control its 3D position and

attitude while driving at nonzero speed and this was shown with both the simulation and

in-water performance. The AUV using the control law of Section 4.1.1 can achieve 3D

navigation while tracking nonzero roll or pitch.
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green line is the command, and the red line is filtered command.
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Figure 5.21: Thruster signals (%) vs. time.
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5.3 Behavior 3 Results

The objective of this section is to show the performance of Behavior 3. The design

of Behavior 3 created a capability, surface following, necessary for an AUV to perform

inspection of the non-complex potions of the ship hull. By designing B3, we were able to

control vehicle’s 3D position, transit at varying attitude, except at θ = π
2 . B3 is needed to

follow a surface above or below the AUV.

5.3.1 Simulation Results

Figures 5.23 presents a portion of the simulated mission, t = [3500, 3670], where B3

is executed on two of the segments (t = [3510, 3580] and t = [3600, 3660]) while following a

triangular path. At each corner B2 is initiated to align the AUV state with the next trajec-

tory portion, as it was done in Section 5.2. The vehicle is maneuvering in three dimensions,

constantly adjusting its attitude to maintain a specific attitude and zero attitude relative to

surface below it. As seen in in Figure 5.23 there are two line segments to be tracked while

following surface below the AUV. Two segments require the vehicle to change the pitch

with maintaining roll of approximately 0 ◦ - going from the edge of the bowl shaped pool

to the middle and going from the middle to the edge (t = [3510, 3580] from the (0,20) to

the (0,0) corner, and t = [3600, 3660] from the (0,0) to the (20,0) corner). Great tracking of

both roll and pitch can be seen in Figure 5.23. As we can see from Figure 5.24, depth is not

controlled while B3 is active (third graph) but the altitude from the bottom is controlled

(fourth graph).

Figure 5.25 presents a portion of the simulated mission, t = [3125, 3300], where all
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three behaviors are tested. As it can be seen from Figure 5.25 the AUV is first in B2, than

in B1 (t = [3135, 3195]) navigating from the (0,20) to the (0,0) corner while maintaining

depth of 4 m, t = [3045, 3185]. Then, B2 is initiated for t = [3195, 3215], while the AUV

is at rest, maintaining 4 m depth. Finally, for t = [3220, 3280] B3 is initiated as the AUV

navigates to the (20,0) corner while following the surface below it. As seen from the third

and fourth graph of Figure 5.25, for t = [3135, 3195] B1 controls depth (graph 3) and

for t = [3220, 3280] B3 controls altitude from the bottom (i.e., a = −2m is maintained)

(graph 4). The smooth parabolic bottom shape is evident from the graph od d vs. t for

t = [3220, 3280].
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Figure 5.23: Attitude vs. Time: Blue line is the actual vehicle attitude, green line is the
command, and the red line is filtered command.
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Figure 5.24: North, East, Depth, and Altitude Position vs. Time: Blue line is the actual
vehicle trajectory, green line is the command, and the red line is filtered command.
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Figure 5.25: North, East, Depth, and Altitude Position vs. Time: Blue line is the actual
vehicle trajectory, green line is the command, and the red line is filtered command.
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5.3.2 Field Test Results

The vehicle’s task was to track a trajectory segment along the desired path while

maintaining a specified altitude and zero attitude relative to the bottom based on the

information coming from the sonar (ADCP) sensor.

TRANSDEC August 2008 Test Results

Figures 5.26–5.28 present the results of a 130 s actual in-water mission, during

which the vehicle navigates around a triangular path in the TRANSDEC pool while main-

taining a commanded altitude relative to the bottom. This behavior is essential in the

ship-hull inspection as it enables the AUV to conform to and maintains distance to the

surface of the hull for optimal imaging sonar positioning. As seen in Figure 5.26, north and

east position tracking is not great but it should be noted that the vehicle is at the same

time keeping the distance of 2 m away from the bottom. This performance can be explained

by the fact the vertical T4 thruster is saturated during the majority of the transit as seen

in Figures 5.28. As indicated above, the thrusters were limited to 80%. The results also

very closely resemble the simulated results which validates our approach.

In Section 5.3 our goal was to show that AUV can track a trajectory and adjust its

attitude while driving at nonzero speed in order to follow a curved surface above or below

it. This capability was demonstrated with both the simulation and in-water performance.
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Figure 5.26: North, East, Depth, and Altitude Position vs. Time: Blue line is the actual
vehicle trajectory, green line is the command, and the red line is filtered command.
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Figure 5.27: Attitude vs. Time: Blue line is the actual vehicle attitude, green line is the
command, and the red line is filtered command.
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5.4 Switching Performance

5.4.1 Simulation Results

Figures 5.29–5.30 present the results of an t = [1215, 1412], second simulated

mission, during which two switching instances occurred between behaviors 1 and 2. B2 was

active for t = [1215, 1235], then B1 t = [1235, 1327], and then B2 t = [1327, 1412], as seen

in Figure 5.30.

Figure 5.30 plots Vb1(t) and ‖x̄b1‖ versus time and Vb2(t) and ‖x̄b2‖, where where

xb1 = [p̄, Θ̄, v̄, ω̄] and xb2 = [d̄, Θ̄, w̄, ω̄] are the corresponding tracking error state vectors.

The Lyapunov function defined in terms of the compensated tracking error is nonincreasing

at all times. This result confirms our theoretical conclusion showing that the Lyapunov

function of the CFBS approach starts at the value which is a function of the integral error

(ē) at the beginning of each behavior, decreases during the duration of each behavior, and

maintains its value during the instances of switching between behaviors. On the other hand,

at the start of each behavior, xc is equal to x, not equal to xoc . During the time interval

(influenced by ωn) during which xc converges toward xoc , the signal x̄ may increase. The

distinct nature of the tracking error and compensated tracking error is evident in Figure

5.30.
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Figure 5.30: Lyapunov Function and ||[x̄]⊤|| vs. time.
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Chapter 6

Conclusion

In the introductory Chapter 1 we have indicated that:

1. The behaviors we implement using CFBS are stable in sense of Lyapunov;

2. CFBS method allows us to specify the value of the compensated tracking error at

behavior switching times, thus ensures that the Lyapunov function does not increase;

and

3. Zeno Phenomenon can be prevented with Mission Planner design.

The analysis in Section 2.3 showed that the Lyapunov function defined for each

behavior is nonincreasing during the time when each of the behaviors is active. The analysis

in Section showed that the Lyapunov function defined for each behavior is nonincreasing at

behavior switching time instances. Therefore, we can conclude that when perfect modeling

of the plant is assumed, the Lyapunov function of each behavior remains zero at all times.

Both of the results were verified by the simulation analysis in Chapter 2.

141



The purpose of Chapter 3 was achieved as follows. Section 3.1 clearly defined the

kinematics and dynamics equations for an AUV. Section 3.2 presented the model of the

vehicle dynamics which was used in our control implementation and described the methods

used to identify reasonable parameters for the vehicle model. Section 3.3 overviewed our

navigation algorithm, such that, the fast rate sensor is aided with slower rate sensors in

order to accurately navigate in the harsh environment, for example, under the hull of a ship

in the harbor. Section 3.4 described the comprehensive vehicle simulation, an essential tool

for idea evaluation, debugging, and implementation and testing of complete missions closely

resembling the in-water testing. Section 3.5 presented some of the related AUV applications,

focusing on the main application of this research - Ship Hull Inspection mission. In addition,

it overviews our control approach to the desired mission where we added functionality as

needed.

Chapter 4 presents the mathematical derivation for the required AUV nonlinear

controllers. The purpose of Chapter 4 was to clearly demonstrate our methodology, which

was explained on a simple system in Chapter 2 when applied to a thruster controlled AUV.

The purpose was to show that our method can be extended for higher order systems and

for vector backstepping. The main benefits of CFBS design are:

1. Decoupling of the design of the controllers for the backstepping iterations.

2. Avoiding the tedious algebra related to computing the command signal derivatives,

which becomes especially burdensome for scalar backstepping with n > 3 or for vector

backstepping.
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Even if the designer were to derive exact analytical expressions for the command derivatives

relative to the design model, these are still approximations because that model is an ap-

proximate representation of the plant. Therefore, the choice is not really between a correct

analytic expression for or a filtered estimate of the command derivatives; instead, the choice

is between two estimates of the command derivatives.

The main benefits of Behavior Based Control design are:

1. The controller design is defined by control behaviors and a logic for switching among

the behaviors.

2. Each behavior has a well-defined simple task.

3. A performance trade-off among multiple objectives using a single feedback function is

avoided.

4. This approach can be built on; more mission specific control behaviors can be pro-

grammed in order to improve control performance for more complex missions.

5. Stability properties are preserved during the switching among different behaviors.

6.1 Contribution

The main contributions of this research are:

1. Design of a behavior based control design;

2. Derivation of stable nonlinear control laws applied to AUVs; and

3. Design of stable strategy for switching among behaviors.
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Theorem 4 shows that behavior switching scheme is stable. The CFBS approach allows

us to ensure that the Lyapunov function, defined in terms of compensated tracking errors,

of the overall switched system is nonincreasing at all times by appropriate choice of the

command filter’s initial conditions made by a Mission Planner.

We created control algorithms for precise translational control while following a

surface of interest by adjusting attitude. Great accuracy in tracking of desired commanded

signal that was accomplished enables close to 100 % coverage of the desired area. We devel-

oped the simulation tool which can accelerate control development since we can experiment

with operational challenges without asset risk, reduces costly in-water testing requirements

as well as provides mission plan verification, and which can be used as a great operator

training tool through basic operator tele-operation training. We demonstrated capabilities

beyond those demonstrated for the current generation of COTS AUVs.

Our work has shown the ability of AUV to track targets in the field of view of a

DIDSON imaging sonar when performing a hull search. During this research project the

feedback from the altimeter sensor was used such that the AUV’s path conformed to the

surface above or below it while tracking the desired altitude (distance) from the surface, thus

enabling DIDSON to be positioned at optimal distance and grazing angle. This research led

to an AUV capability to inspect non-complex areas of the ship hull. The stable and slow

AUV was able to search sides of the hull and bottom of the hull while maintaining stand-off

distance and relative attitude from the hull. A mechanized solution to accomplish AUV

ship hull inspection significantly decreases the dive time and subsequent human-exposure

to an extremely high-risk environment.
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6.2 Future Work

An advanced control capability that can be designed in future is scanning an object

with the feedback from the imaging sonar such as DIDSON. In many situations it may be

desirable to instruct the vehicle to navigate around a contact to obtain various aspects.

Given the contact location via sonar imagery, operator input, or another data source, it is

possible to constrain the vehicle’s movement such that it maintains a constant visual on

the contact. This constraint takes partial control of the vehicle, allowing the operator to

manipulate the sonar aspect ratio without worrying about losing the contact.

The ship hull and surroundings create complex geometry for the vehicle to navi-

gate. It is not sufficient to pass directly underneath a prop shaft, for example. Crevasses

above the shaft are not visible as the shaft obstructs the sonar. The vehicle must attempt

to acquire additional aspect angles. Coverage area is difficult to guarantee. Complex hull

surfaces are bow including sonar domes, stern areas, hull appendages, running gear (pro-

peller shaft(s), propeller(s), struts, rudder, and other ship’s appendages). The AUV search

of these areas is multiple orders of magnitude more difficult but presents a challenging

objective for future.

This research has direct relevance to port protection (ability of response asset to

follow and respond to diver/swimmer or other slow-moving threat). The algorithms are

equally applicable to station-keeping relative to fixed contacts, as would be required with

MCM disposal systems. In a broader sense, the proposed technology is a key link which

will allow more rapid response and neutralization of a number of threats. The applicable

threats include bottom and moored mines, IEDs on the sea floor, mines or IEDs placed
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on piers, quays, or hulls of ships at anchor or in port, divers or AUVs carrying explosives

or other packages. This type of missions involve the AUV patrolling an area searching

for swimmers. Example behaviors for the swimmer defense mission would, at a minimum,

include search, track, and evade. Detection of a swimmer causes the vehicle to covertly

notify friendly security forces and switch to one of several possible other behaviors. For

example, the AUV could be designed to track the swimmer at a specified standoff distance,

so that the security forces could easily locate the swimmer upon their arrival. Successful

tracking might also require evasive maneuvering dependent on the swimmer behavior. Both

tracking and evasion could require agile, controlled maneuvering. The search, track, and

evade maneuvers would be defined on-board the vehicle based on the real-time sensor data.

For these mission, greatly improved onboard data processing is necessary. To process video

and sonar data onboard for presentation and analysis will require technological advances

and significant effort. The ability to compare this data to stored ordnance imagery for

real-time identification; or to compare current hull search imagery against a baseline to

identify and react to anomalies real-time will require a very high level of cognizance and

significantly improved data processing systems.

6.3 Publication from the Dissertation by Chapter

6.3.1 Journal Article

1. V. Djapic, J. A. Farrell, W. Dong, “Land Vehicle Control Using Command

Filtered Backstepping Approach,” Submitted to IEEE Transactions on Control Systems
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Technology Journal as short paper, Mar. 2009.

This article is based on the work explained in Chapters 1 and 2.

6.3.2 Conference Articles

1. V. Djapic, J. A. Farrell, W. Dong, “Unifying Behavior Based Control Design

and Hybrid Stability Theory,” Accepted The 2009 American Control Conference, June 2009,

St. Louis, Missouri

2. V. Djapic, J. A. Farrell, W. Dong, “Hybrid Control Design Applied in Land

Vehicle Behavior Based Switching Controller,” The 2008 IEEE Multi-conference on Systems

and Control, Sep. 2008, San Antonio, TX

3. V. Djapic, J. A. Farrell, W. Dong, “Land Vehicle Control Using Command

Filtered Backstepping Approach,” The 2008 American Control Conference, Seattle, WA.

4. Djapic, V., Farrell, J., Miller, P., and R. Arrieta, “AUV Controls in Hull Search

Environments,” The 8th Monterey International Symposium on Technology and the Mine

Problem, Monterey, CA, May 6-8, 2008.

5. Djapic, V., Farrell, J., Miller, P., and R. Arrieta, “New developments in control

and navigation of ship-hull inspection AUV,” 2008 NDIA Joint Undersea Warfare Technol-

ogy Spring Conference, San Diego, CA, Apr. 28 - May 1, 2008

6. Djapic, V., Farrell, J., Miller, P., and R. Arrieta, “Design and initial in-water

testing of advanced non-linear control algorithms onto an Unmanned Underwater Vehicle

(UUV),” MTS/IEEE OCEANS 2007, Vancouver, BC, Canada, Sept. 29 - Oct. 4, 2007.

7. Djapic, V., Farrell, J., Miller, P., and R. Arrieta, “Implementation and testing
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of advanced control and navigation onboard of ship-hull inspection AUV,” 2007 NDIA Joint

Undersea Warfare Technology Fall Conference, Groton, CN, Sept. 10-13, 2007

8. Djapic, V., Farrell, J., Miller, P., and R. Arrieta, “Advanced non-linear con-

trol algorithms applied to design highly maneuverable Autonomous Underwater Vehicles

(AUVs),” AUSI 15th Int. Symposium on Unmanned Untethered Submersible Technology

(UUST), Durham, NH, Aug. 19 - 22, 2007.

The first, second, and third article is based on the work explained in Chapters

1 and 2. The presentation of the third article was recognized with the Best presentation

award at the 2008 American Control Conference. The fourth, fifth, sixth, seventh, and

eighth article is based on the work explained in Chapters 3 and 4.

6.3.3 Technical Reports

1. Miller, P.A., Farrell, J., Zhao, Y., and V. Djapic, “Autonomous Underwater

Vehicle Navigation,” Technical Report 1968, Space and Naval Warfare Systems Center, San

Diego, February 2007.

This article is based on the work explained in Chapter 3.
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Appendix A

Command filter

The purpose of this appendix is to provide an example and discussion of a com-

mand filter. Advanced control approaches often assume the availability of a continuous and

bounded desired trajectory xc(t) and its first r derivatives x
(r)
c (t). The first time that this

assumption is encountered it may seen unreasonable, since a user will often only specify

a command signal xoc(t). However, this assumption can always be satisfied by passing the

commanded signal xoc(t) through a single-input, multi-output prefilter.

The motivation of command filtering is therefore to determine the signals xc(t)

and ẋc(t) with |xoc(t) − xc(t)| being small, without having to analytically or numerically

differentiate xoc. The effects of command filtering on the backstepping stability analysis

are analyzed in [28, 26, 27]. The summary of that analysis is that for a properly designed

command filter (unity DC gain to the first output which is the integral of the second

output) the closed-loop command filtered implementation of the backstepping controller

will be stable and the tracking error will be O
(

1
ωn

)

where ωn is the bandwidth of the
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command filter. Therefore, the effect of command filtering on tracking error can be made

arbitrarily small by increasing the parameter ωn. The choice of ωn is not dependent on the

actuator bandwidth.

The state space implementation of such a filter is

ẋ1 = x2

ẋ2 = −2ζwnx2 − w2
n (x1 − xoc)

where xc = x1 and ẋc = x2. Note that if xoc is bounded, then xc and ẋc are bounded and

continuous. The transfer function from xoc to xc is

Xc(s)

Xo
c (s)

= H(s) =
w2
n

s2 + 2ζwns+ w2
n

(A.1)

which has a unity gain at low frequencies, damping ratio ζ and undamped natural frequency

ωn. The error |xoc(t) − xc(t)| is small if the bandwidth of xoc(s) is less than the bandwidth

of H(s). If the bandwidth of xoc is known and the goal of the filter is to generate xc and its

derivative with |xoc − xc| small, then the designer simply chooses ωn sufficiently large.

Note that the signal ẋc is computed by integration, not differentiation. This helps

to decrease the effects of measurement noise; nonetheless, noise will impose a tradeoff in

how large of a value can be selected for ωn.

Remark 3 The command filtering can be used to to address the physical limitation of AUV

actuators. CFBS approach directly accommodates magnitude and rate constraints on the

robot states. Filter that generates the command and command derivative while enforcing

magnitude, bandwidth, and rate limit constraints is shown in Figure A.1.
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Appendix B

Derivation of CFBS Terms for

Mode 1 3D translation

B.1 Derivation of Eqn. (4.34)

The following equations will be used in the manipulation of the ūn, ūe and ūd

terms

1.

sin(x± y) = sinx cos y ± cos x sin y (B.1)

2.

cos(x± y) = cos x cos y ∓ sinx sin y (B.2)

3.

ψ = ψ̄ + ψc (B.3)
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B.1.1 ūn Error Analysis

We first express the ūn = u− unc term using the eqns. (4.25), (4.26), (4.30), and

(4.31).

ūn = Tnv − Tncvc = [cθcψu− cθcψcuc] + [(cφsψc − cφsψ + sφsθcψ − sφsθcψc)v]

+ [sφsψw − sφsψcwc + cφsθcψw − cφsθcψcwc] . (B.4)

The first term of eqn. (B.4) can be manipulated by applying the trigonometric identity,

eqn. (B.2) combined with eqn. (B.3) with x = ψ̄ and y = ψc, and adding and subtracting

the term cψcu. The result is

cθ(cψu− cψcuc) = cθ{cψu − cψcuc + cψcu− cψcu}

= cθ{cψcu− cψcuc + cψu− cψcu}

= cθ{cψcū+ u(cψ − cψc)}

= cθ{cψcū+ u(cψ̃cψc − sψ̃sψc − cψc)}

= cθ{cψcū+ u[cψc(cψ̃ − 1) − sψ̃sψc]}

= cθ















cψcū+ u

[

cψc −sψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄















. (B.5)
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The second term of eqn. (B.4) can be manipulated by applying both trigonometric identities,

eqns. (B.1), (B.2) combined with the eqn. (B.3) with x = ψ̄ and y = ψc. The result is

cφ(sψc − sψ)v + sφsθ(cψ − cψc)v = cφ(sψc − sψ̃cψc − cψ̃sψc)v + sφsθ(cψ̃cψc − sψ̃sψc − cψc)v

= cφ[−sψc(cψ̃ − 1) − sψ̃cψc]v + sφsθ[cψc(cψ̃ − 1) − sψ̃sψc]v

= cφv

[

−sψc −cψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄

+ sφsθv

[

cψc −sψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄. (B.6)

The third term of eqn. (B.4) can be first split into two terms for easier analysis. The first

out of the two terms can be manipulated by applying the trigonometric identity, eqn. (B.1)

combined with the eqn. (B.3) with x = ψ̄ and y = ψc, and adding and subtracting the term

sψcw. The result is

sφ(sψw − sψcwc) = sφ{sψw − sψcwc + sψcw − sψcw}

= sφ{sψcw − sψcwc + sψw − sψcw}

= sφ{sψcw̄ + w(sψ − sψc)}

= sφ{sψcw̄ + w(sψ̃cψc + cψ̃sψc − sψc)}

= sφ{sψcw̄ + w[sψc(cψ̃ − 1) + sψ̃cψc]}

= sφ















sψcw̄ + w

[

sψc cψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄















. (B.7)
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The second of the two terms is manipulated similarly to cθ(cψu− cψcuc) term above. The

result is

cφsθ(cψw − cψcwc) = cφsθ















cψcw̄ + w

[

cψc −sψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄















. (B.8)

Finally, we add the eqns. (B.5), (B.6), (B.7), (B.8) to get

ūn = cθcψcū+ (sφsψc + cφsθcψc)w̄ +

[

Cn1
Cn2

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄, (B.9)

where

Cn1
= (−cφv + sφw)sψc + (cθu+ sφsθv + cφsθw)cψc =

∂ė

∂ψ

∣

∣

∣

∣

ψc

(B.10)

Cn2
= (−cθu− sφsθv − cφsθw)sψc + (−cφv + sφw)cψc =

∂ṅ

∂ψ

∣

∣

∣

∣

ψc

(B.11)

which will be used in Sections 4.3.5 and 4.4.4 to derive the signals ubs, wbs and ψbs.

B.1.2 ūe Error Analysis

We first express the ūe = u − uec term using the eqns. (4.25), (4.27), (4.30), and

(4.31).

ūe = Tev − Tecvc = [cθsψu− cθsψcuc] + [(cφcψ − cφcψc + sφsθsψ − sφsθsψc)v]

+ [sφcψcwc − sφcψw + cφsθsψw − cφsθsψcwc] . (B.12)

The first term of eqn. (B.12) is manipulated similarly to sφ(sψw− sψcwc) term above. The

result is

cθ(sψu− sψcuc) = cθ















sψcū+ u

[

sψc cψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄















. (B.13)
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The second term of eqn. (B.12) is manipulated similarly to cφ(sψc− sψ)v+sθsφ(cψ− cψc)v

term above. The result is

cφ(cψ − cψc)v + sφsθ(sψ − sψc)v = cφv

[

cψc −sψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄

+ sφsθv

[

sψc cψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄. (B.14)

The third term of eqn. (B.12) is again split is manipulated similarly to cφsθ(cψw− cψcwc)

term above. The result is

sφ(cψcwc − cψw) = sφ















−cψcw̄ + w

[

−cψc sψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄















. (B.15)

The second of the two terms is manipulated similarly to sφ(sψw− sψcwc) term above. The

result is

cφsθ(sψw − sψcwc) = cφsθ















sψcw̄ + w

[

sψc cψc

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄















. (B.16)

Finally, we add the eqns. (B.13), (B.14), (B.15), (B.16) to get

ūe = cθsψcū+ (−sφcψc + cφsθsψc)w̄ +

[

Ce1 Ce2

]









cψ̃−1
ψ̄

sψ̃
ψ̄









ψ̄, (B.17)

where

Ce1 = (cθu+ sφsθv + cφsθw)sψc + (cφv − sφw)cψc = −
∂ṅ

∂ψ

∣

∣

∣

∣

ψc

(B.18)

Ce2 = (−cφv + sφw)sψc + (cθu+ sφsθv + cφsθw)cψc =
∂ė

∂ψ

∣

∣

∣

∣

ψc

(B.19)

which will be used in Sections 4.3.5 and 4.4.4 to derive the signals ubs, wbs and

ψbs.
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B.1.3 ūd Error Analysis

This term is expressed as

ūd = u− udc = Tdv − Tdcvc = (sθuc − sθu) + (cφcθw − cφcθwc) = −sθū+ cφcθw̄. (B.20)

B.1.4 A, B, C, and g(ψ̄) Definitions

Therefore,

A =

















cθcψc

cθsψc

−sθ

















, B =

















sφsψc + cφsθcψc

−sφcψc + cφsθsψc

cφcθ

















, C =

















Cn1
Cn2

Ce1 Ce2

0 0

















, and g(ψ̄) =









cψ̃−1
ψ̄

sψ̃
ψ̄









(B.21)

It is important to note that limψ→0 g(ψ̄) =









0

1









.
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Appendix C

Lyapunov Equation

The purpose of this appendix is to show that by choosing a specific symmetric and

positive definite matrix P we get a symmetric and positive semidefinite matrix Q that is

useful in the proof of eqn. (2.21).

We can write the Lyapunov Equation as

A⊤P + PA = −Q.

Since

A =









0 1

−K2 −K1









,

and

B =









0

1









,

if we choose

P =









p1 0

0 p2









,
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where K1 = Ku or Kr, K2 = Ki
u or Ki

r, p1, and p2 are positive constants, we have

−Q =









0 p1 −K2p2

p1 −K2p2 −2K1p2









.

We can choose p1 = K2p2, then p1 −K2p2 = 0. Therefore,

P =









K2p2 0

0 p2









,

Q =









0 0

0 2K1p2









,

and

PB =









0

p2









,

which will be used in the derivation of eqn. (2.22).
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