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Abstract

Fast-growing freight activities over the decades have become one of the major

contributors to air pollution, leading to many efforts in freight decarboniza-

tion and electrification. However, the development of freight electrification

is slow due to technological uncertainty, slow charging, high capital cost, etc.

This paper analyzes the potential impact and benefit of heavy-duty vehicle

(HDV) electrification and automation on fleet cost, infrastructure cost, the

electricity grid, and environmental outcomes. In this work, we extended the

vehicle electrification benefit analysis tool: Grid-Electrified Mobility (GEM)

model, which had primarily been used to study light-duty passenger vehicles

(LDVs), to analyze heavy-duty vehicle electrification. The extended model is

derived for freight transportation electrification, and different freight electri-

fication and automation adoption scenarios were analyzed. We find that the

increased penetration of automated electric freight fleets within other types

of electrified freight fleets from 1% to 99% will result in an overall cost reduc-

tion of 18.2%, fleet size reduction of 20.4%, and lower peak load reduction of

14.3%.
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1. Introduction

The transportation sector is undergoing a transformation through the

introduction of on-demand mobility and vehicle automation thanks to a va-

riety of emerging mobility technologies [1]. These advances, combined with

electrification, could create new synergies that would provide high-quality,

low-cost, and energy-efficient mobility at scale [2]. However, the adoption

of plug-in electric vehicles has been relatively slow for several reasons, in-

cluding technological uncertainty, slow charging, range anxiety, and higher

capital costs than other types of vehicles [3, 4]. This is especially true in

the freight industry, particularly around heavy-duty truck electrification and

operation. As major truck fleet operators and truck manufacturers have an-

nounced plans to accelerate truck electrification, filling these gaps in system

modeling capabilities will be crucial. For example, Walmart aims to elec-

trify its entire truck fleet within a decade [5]. The uptake in the adoption

of electric trucks is important in the context of rising freight demand, which

is projected to grow by 52% from 397 billion miles in 2018 to 601 billion

miles in 2050 projected by U.S. EIA [6]. While there is still a great deal of

uncertainty around the exact impact that automated vehicles will have on

the transportation system in the coming decades [7], many believe that they

could soon become a substantial part of the transportation system, dramat-

ically disrupting conventional modes of mobility.

Vehicle cost-benefit analysis has been widely studied in the past decades
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with the evolution of vehicle electrification/decarbonization technology. With

the wide application of hybrid electric vehicles (HEVs), many studies have

investigated the cost-benefit of HEVs. In [8, 9], the team in NREL conducted

a cost-benefit analysis to compare the costs (including vehicle purchase costs,

energy costs, and battery costs) and the benefit of petroleum consumption re-

ductions between plug-in hybrid electric vehicles (PHEVs) and conventional

vehicles. They found that while PHEVs can result in over 45% of petroleum

consumption reduction, the long-term projection cost of PHEVs can be over

$8000 higher than conventional vehicles. Due to the great fuel-saving poten-

tial, governmental support is needed to accelerate the PHEV deployment.

In [10], the authors presented a cost-benefit analysis of hybrid and electric

buses in fleet operation. They found that PHEV and electric buses have a

great potential to reduce energy consumption and emissions, and the cost

efficiency also depends on the routing and scheduling of the buses. In [11],

the authors introduced hybrid energy system modeling and conducted a cost-

benefit analysis of hybrid energy systems for locomotives. In several other

studies, researchers have also examined the vehicle-level cost-benefit analysis

for electric vehicles (EVs) compared to fuel-cell vehicles. In [12], the authors

investigated the economic validity of fuel cell vehicles (FCVs) and (EVs).

Their study found that the FCV diffusion is not economically beneficial until

2110, whereas EV diffusion might become beneficial by 2060, considering in-

creasing gasoline pricing and emissions abatement costs. In [13], the authors

studied the impact of EV energy storage with vehicle to grid (V2G), and

identify the potential benefit of EV deployment to future energy pricing. In

[14], the authors developed a case study to perform a cost-benefit analysis
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(including the energy sector, transportation sector, and household sector) to

support the decarbonization scenario for 2030 in Italy. In this study, they

found that public transport and electric mobility improvement have signifi-

cant environmental and economic benefits. These studies mainly focused on

the environmental and fuel consumption related cost-benefits for individual

vehicles. Moreover, the primary focus of the above studies is on passenger

vehicles, and freight vehicle electrification is seldom considered. In Hu et al.

[15], the authors reviewed the EV fleet management in the smart grid from

a control and optimization aspect. This review paper summarized state-

of-the-art studies on EV fleet management control/optimization approaches

taking into account the impact of the smart grids. However, the freight elec-

trification studies are also not included in this review. In Tong et al. [16],

the authors studied the GHG emissions for medium and heavy-duty vehi-

cles based on an analysis of different natural gas pathways for MD/HDVs.

This study identified the projection of natural gas usage to different freight

fuel types and analyzed fuel consumption based on fuel usage, as well as the

fuel consumption and GHG emissions originating from freight vehicles. They

found that electric trucks reduce emissions significantly (31-40%) compared

to diesel or gasoline trucks. In Gao et al. [17], the authors conducted vehicle-

level simulation and energy consumption analysis for plug-in hybrid electric

trucks and battery electric trucks. Their results showed that electric trucks

not only reduce energy consumption but also achieve significant energy cost

savings (by 29% to 44%) compared with diesel fuel trucks. In Klauenberg et

al. [18], the authors studied the potential users for vehicle electrification in

commercial transport. They analyzed the economic sectors and conduct sur-
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veys with fleet managers to analyze the vehicle electrification potential. The

above freight-related cost-benefit analysis considered the influence of freight

electrification from multiple avenues. However, there is still a lack of compre-

hensive benefits analysis that studies the influence of freight electrification

across environmental, economic, and grid impacts.

Overall, the urgent need to decarbonize the transportation sector com-

bined with falling battery prices has spurred industry and policy interest in

long-haul truck electrification. Understanding the charging behavior and re-

sulting loads from freight electrification will be critical for the smooth opera-

tion of the electric grid and will have far-reaching impacts on the environment

in the form of greenhouse gas (GHG) emissions and air pollution. As such,

this work has aimed to assess the benefits of heavy-duty truck electrification

and emerging vehicle electrification opportunities in micro-mobility markets

using the Grid-Integrated Electric Mobility Model (GEM) and Medium and

Heavy-Duty Electric Vehicle Infrastructure - Load Operations and Deploy-

ment (HEVI-LOAD) tool. This national model simultaneously optimizes the

provision and operation of heavy-duty autonomous electric vehicles (HAEVs)

to provide electrified goods mobility alongside an economic dispatch of power

generation.

Our work examines a dynamic future where increasing levels of renew-

able energy are being added to the electric grid while vehicle electrification

is simultaneously on the rise. The impacts of integrating these technologies

require new analytical approaches that couple capabilities across the trans-

portation and power sectors. This work has further developed the GEM

model to explore these dynamics and the impacts of an integrated intelligent
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transportation–grid system in which mobility is served by either human-

driven electrified trucks or autonomous electric trucks, charging is responsive

to costs on the grid, and power resources are dispatched in merit order to

serve electricity demand.

In previous works, the phase-one Grid-Integrated Electric Mobility model

(GEM v1.0) was developed for passenger vehicle benefit analysis. This model

can analyze the energy use, grid integration, and environmental and cost im-

pacts for electrified mobility sectors including private light-duty EVs and

shared automated light-duty EVs [19, 20]. In this work, we extend the previ-

ous study to a broader electrified mobility sector which includes heavy-duty

electrified vehicles. Moreover, we specify the electric fleets into more de-

tailed component groups to consider the impact of human-assigned charging

behavior versus smart-assigned behavior for human-driven trucks (HTs). The

primary objectives of this work include:

• Development of a new method that can simulate the future electri-

fied and automated freight transportation systems and quantify the

national impact of electrified mobility-grid interactions.

• Analyze the impact of truck electrification, automation, and charging

assignment on grid operation, charging infrastructure assignment, cost

of trucks, fleet size, environmental benefits, etc.

The rest of the paper is organized as follows: Section 2 introduces the

approaches used for this benefit analysis, Section 3 introduces the extended

GEM modeling, Section 4 presents and discusses the results of our study,

and finally, Section 5 provides a conclusion.
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2. Approach

This work expands on the development of an optimization model that

simultaneously solves the cost-minimizing dispatch of electrified heavy-duty

vehicle fleets for operation and charging as well as the operation of the elec-

tricity system in the United States. Specifically, this optimization model can

examine: 1) the allocation of heavy-duty autonomous and electric vehicles

(HAEVs) to serve goods -delivery; 2) the investment and construction of

a HAEV fleet and supporting charging infrastructure; and 3) the economic

dispatch of electric power plants for the US bulk electricity grid. The power

sector was included by coupling GEM to the Grid Operation Optimized Dis-

patch (GOOD) electricity model [21]. This combined model treats the size

of the HAEV fleet and the amount of charging infrastructure as continuous

decision variables (relaxing the problem from mixed-integer convex optimiza-

tion to quadratic programming), allowing for heterogeneous vehicle ranges

and charger levels. The model minimizes the total system costs (i.e., operat-

ing costs and capital costs) by choosing the timing of vehicle charging subject

to several constraints: mobility demand is always served, energy is always

conserved, and those generation assets on the grid are dispatched in merit

order. Heavy-duty autonomous and electric vehicles (HAEVs) fleet planning

costs are simultaneously minimized by amortizing the cost of the fleet and

charging infrastructure to a daily period.

2.1. GEM

The Grid-integrated Electric Mobility (GEM) model is an open-source

modeling platform developed by researchers at Lawrence Berkeley National
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Figure 1: Extended Grid-Integrated Electric Mobility (GEM) model processing workflow.

Laboratory, UC Davis, and UC Berkeley [20]. This modeling system simu-

lates mobility and electricity operations on a national scale. The framework

of GEM is unique in that it optimizes a fully autonomous, electric, and shared

mobility system while dynamically accounting for high-fidelity grid models.

The first version GEM model mainly focuses on the operation of light-duty

vehicles. In this work, we are extending this GEM model to a broader appli-

cation that considers freight behaviors. The overall workflow of the expanded

GEM model developed in this paper is summarized in Figure 1 and the ex-

panded GEM platform (GEM v2.0) can be found in [22]. This expanded

GEM model co-optimizes the complete electrified mobility system and the

grid operation. The model consists of three types of modules: 1) Simulation

assumption definition module, where we use the Routing and Infrastructure

for Shared Electric vehicles (RISE) model to generate correction factors over

a national scale and define the basic simulation assumptions for the GEM
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model based on data sources including StreetLight, Census, and other litera-

ture; 2) Grid optimization module, where we use the grid operation optimized

dispatch (GOOD) model to calculate the power grid operation and the gener-

ator capacity, fuel types, grid costs, and other grid-related parameters using

EPA NEEDs & EGRID data; 3) electrified mobility system, which is used for

mobility sector charging and travel behavior modeling. This module is then

divided into three mobility sectors: micro-mobility, passenger vehicles, and

freight vehicles. For the micro-mobility sector, we use the national household

travel survey (NHTS), the California household travel survey (CHTS), and

ride-share data to estimate the car to e-bike shifting trip demand and charg-

ing demand. For passenger vehicles, we use the EVI-Pro tool with NHTS,

CHTS, and ride share data to estimate the charging demand and trip de-

mand for different vehicle classes (shared automated, shared human-driven,

private automated, private human-driven). For freight vehicles, we use the

Medium and Heavy-Duty Electric Vehicle Infrastructure - Load Operations

and Deployment (HEVI-LOAD) tool with California Statewide Travel De-

mand Model (CSTDM/CSFFM) to estimate the charging demand and trip

demand for freight vehicle classes (automated, human-driven). Using these

three modules we can co-optimize the grid with the electrified mobility sys-

tem under national scale assumptions and obtain the optimal mobility system

and grid outputs including optimal fleet distribution, fleet mobility dispatch,

charger distribution/dispatch, generator dispatch, overall costs, etc. Then

these results are used for electrified mobility benefit analysis under different

vehicle electrification scenarios. The novelty of this work compared to GEM

v1.0 is that a more sophisticated mobility system is considered with multi-
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ple mobility sectors (including HDV, micro-mobility sector, human-driving

LDV/HDVs, and ride-sharing). This expanded model will better summarize

the electric mobility system operations and costs under a more comprehen-

sive mobility electrification scenario. In this work we analyze the cost-benefit

impact of HDVs under a joint operation/optimization scenario of all mobility

sectors, whereas GEM v1.0 focused on the LDV-related cost-benefit analysis

under a passenger vehicle only operation scenario.

2.2. HEVI-LOAD

HEVI-LOAD is a modeling tool developed by Lawrence Berkeley National

Laboratory to project the state-wide charging infrastructure needed to ac-

commodate the growing number of medium- and heavy-duty electric vehi-

cles. To accelerate the decarbonization of medium and heavy-duty (MD/HD)

vehicles in California and other states in the United States, HEVI-LOAD

projects the number, type, and location of chargers and the related elec-

tric grid supply requirements to support the new charging stations. HEVI-

LOAD consists of two analytical approaches to determine the load profiles

and charging infrastructure needs: 1) the top-down approach that assesses

the county-level charging load profile and infrastructure scenarios, and 2)

the bottom-up approach that incorporates more granular (temporal, spatial,

and duty-cycle-specific) behaviors of a variety of MDHD vehicles into the

agent-based activity simulations for optimal charging infrastructure siting

and sizing. Figure 2 shows the preliminary charging load profile analysis for

a variety of MDHDs in California, in 2030.
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Figure 2: Example Charging load profile of different types of electric trucks from HEVI-

LOAD for California, 2030

3. Problem Formulation

In the previous GEM model, the light-duty vehicles (LDVs) were modeled

and the optimization problem has been defined under an LDV framework

[19]. In this work, we have extended the LDV GEM modeling to a more

comprehensive optimization model that includes LDVs, and HDVs. The

dimensions of the model include time, t, mobility region r, grid region i,

LDV battery size b, HDV battery size bH , LDV charger level l, HDV charger

level lH , LDV trip distance d, HDV trip distance dH , and electricity generator

g. The model is a quadratically constrained program and can be efficiently

solved with a second-order cone programming solver (Cplex).

Note that the scale of the GEM framework is for the entire United States,

where we divided the US into 13 mobility regions: East-South-Central (ESC),

West-South-Central (WSC), Mountain (MTN), Pacific (PAC), New Eng-
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land (NE), Mid-Atlantic(MAT), South Atlantic (SAT), East-North-Central

(ENC), West-North-Central (WNC), California (CA), Florida (FL), New

York (NY), and Texas (TX). Each of these regions is divided into rural

and urban, making an overall 26 regions. The modeling of each mobility

sector and the grid sector are aggregated into these regions. On this scale of

modeling, some detailed components are ignored for simplicity.

3.1. Objective Function

As described in the main body of this article and previous work[19], the

objective function minimizes the amortized daily cost of the fleet and infras-

tructure, fleet operation, and electricity grid operation.

min Z =
∑
r

[∑
t

(
Cd

tr + Cm
tr

)
+ nCc

r + nCv
r

]
+
∑
g,t

(
GgC

g
g

)
+
∑
i,t,i′

(
Ti,t,i′C

t
i,t,i′

)
(1)

Where Cd
tr is the demand charge or capacity cost to use the grid and Cm

tr is

vehicle maintenance cost in hour t and mobility region r, Cc
r is the amortized

daily charging infrastructure cost, Cv
r is the amortized daily fleet cost, n is the

number of days in the simulation time horizon, Gg is the electricity produced

by generator g, Cg
g is the cost of producing a unit of energy by generator g,

Ti,t,i′ is the electricity transmitted from grid region i to grid region i′, and

Ct
i,t,i′ are transmission wheeling costs.

The objective is subject to several constraints as described in the following

section.
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3.2. Constraints

Vehicle Maintenance Cost: mileage-dependent vehicle maintenance.

Cm
tr =

∑
b,d

βvV
m
bdtrνdtr +

∑
bH ,dH

βH
v V

mH
bHdH trν

H
dH tr (2)

Where βv, β
H
v are the per-mile vehicle maintenance costs for LDVs and

HDVs, V m
bdtr, V

mH
bHdH tr are the number of vehicles of types b, bH serving mobil-

ity demand of trip length d, dH in hour t and region r, and νdtr, ν
H
dH tr are

the average speeds of the vehicles driving trips of length d, dH . Costs asso-

ciated with cleaning and service are included in maintenance. Note that all

the terms with a superscript H are associated with the HDV components

respectively in this section of the constraint expression.

Demand Charge Cost: cost of grid capacity.

Cd
tr = Pmax

r βr/30.5/24 (3)

Pmax
r is the maximum power demand over the time horizon, βr is the av-

erage demand charge for the region ($/kW/month), and 30.5 and 24 convert

the monthly demand charge into an hourly value which is summed over all

hours in the simulation in the objective function.

Infrastructure Cost:

Cc
r =

∑
l

Nlrγlθ
c
l +

∑
lH

NH
lr γ

H
lHθ

cH
l (4)
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Where Nlr, N
H
lr are the number of chargers of power rating l, lH in the

region r, γl is the power capacity of the charger (kW), and θcl , θ
cH
l are the

amortized daily charger cost ($/kW):

θcl =
ϕc
l r(1 + dr)

Lc

(1 + dr)L
c − 1

(5)

θcHl =
ϕcH
l r(1 + dr)

LcH

(1 + dr)L
cH − 1

(6)

Where ϕc
l , ϕ

cH
l are the capital costs of the charger of levels l, lH , Lc, LcH

are the lifetime of the charger in days, and dr is the daily discount rate.

Fleet Cost: in this constraint, battery costs are considered separately from

the rest of the vehicle.

Cv
r =

∑
b

V ∗
br(θ

v + θbBb) +
∑
bH

V ∗H
bHr(θ

vH + θbHBH
b ) (7)

Where V ∗
br, V

∗H
bHr are the fleet size for LDVs and HDVs, θv, θvH are the

amortized daily vehicle costs (without a battery), θb, θbH are the amortized

daily battery costs ($/kWh), Bb, B
H
b are the battery capacity (kWh), respec-

tively.

θv = ψf
r

[
ϕv
om +

ϕvr(1 + r)L
v

(1 + r)Lv − 1

]
(8)

θvH = ψfH
r

[
ϕvH
om +

ϕvHr(1 + r)L
vH

(1 + r)LvH − 1

]
(9)

θb = ψb
r

[
ϕbr(1 + r)L

b

(1 + r)Lb − 1

]
(10)
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θbH = ψbH
r

[
ϕbHr(1 + r)L

bH

(1 + r)LbH − 1

]
(11)

Where ψf
r , ψ

fH
r are the fleet spatial mismatch correction factors (see Bauer

et al.[23]), ϕv
om, ϕ

vH
om are the daily fixed O&M costs for the vehicle, ϕv, ϕvH

are the capital costs of the vehicles, and Lv, LvH are the lifetimes of the vehi-

cles in days. And where ψb
r, ψ

bH
r are the battery spatial mismatch correction

factors (see Bauer et al.[23]), ϕb, ϕbHr are the capital costs of the battery

($/kWh) and Lb, LbH are the lifetimes of the battery in days.

Demand Allocation: mobility demand must be served by some compo-

sition of vehicles.

∑
b

Dbdtr = DDdtr (12)

∑
bH

DH
bHdH tr = DDH

dH tr (13)

Where DDdtr, DD
H
dH tr are exogenous demands in hour t for passenger ve-

hicles (LDVs) and trucks (HDVs).

Energy to Meet Demand: the energy consumed by the fleet is a function

of the number of trips served, and the conversion efficiency of the vehicles.

Ebdtr =
Dbdtrψ

chdd
r ψcdd

r ηbρd
σd

(14)

EH
bHdH tr =

DH
bHdH trψ

chddH
r ηHbHρ

H
dH

σH
dH

(15)
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Where Ebdtr, E
H
bHdH tr are the energy consumed serving mobility of vehicle

types b, bH and trip length d, dH in hour t and region r, σd, σ
H
dH are the sharing

factor or the average number of passengers per vehicle trip, and the sharing

factor for automated trucks mapped to per vehicle trip from human-driven

trucks (HTs), ψchdd
r , ψchddH

r are the charge deadhead distance correction ra-

tios (see [23]), ψcdd
r is the customer deadhead distance correction ratios, and

ηb, η
H
bH is the conversion efficiency of the vehicle power trains of LDVs and

HDVs (kWh/mile). Note that the sharing factor for trucks refers to the

utilization of the truck under a multi-task scenario. Compared with human-

driven electrified HDVs, the HAEVs fleet considers fewer human behavior

constraints and is likely to take more tasks per vehicle per day.

Vehicles Moving: the number of vehicles actively serving trips is related

to trip demand and the sharing factor. The terms ρd
∆tνdt

,
ρH
dH

∆tνH
dHtr

correct for

the length of the time period, allowing, e.g. 1 vehicle to serve 2 trips in an

hour if the distance to speed ratio is 1/2.

V m
bdtr =

Dbdtrρdψ
cdt
r

σd∆tνdtr
(16)

V mH
bHdH tr =

DH
bHdH trρ

H
dH

σH
dH
∆tνH

dH tr

(17)

Where ψcdt
r is the customer deadhead time correction ratio, and ∆t is the

length of the time period in hours.

Vehicles Charging: we relate the number of vehicles charging to the power

consumed by the capacity of each charger type.
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V c
btlr =

Pbtlr

ψchdt
b,l,r γl

(18)

V cH
bH tlHr =

PH
bH tlHr

ψchdtH
bH ,lH ,r

γH
lH

(19)

Where V c
t are the number of vehicles charging in hour t, ψchdt

b,l,r , ψ
chdtH
bH ,lH ,r

are the charger deadhead time correction ratios, and γl, γ
H
lH are the charging

rates (kW / charger).

Charging Upper Bound: we assume the batteries in the fleet start full and

therefore can only be replenished up to the cumulative amount consumed by

the previous hour.

t∑
t̂=0

∑
l

Pbt̂lr ≤
t−1∑
t̂=0

∑
d

Ebdt̂r, ∀btr (20)

t∑
t̂=0

∑
lH

PH
bH t̂lHr ≤

t−1∑
t̂=0

∑
d

EH
bHdH t̂r, ∀bHtr (21)

Charging Lower Bound: charging must keep up with consumption as

limited by the capacity of the batteries. Energy must be supplied by charging

in the previous hour to be used in the next hour.

t−1∑
t̂=0

∑
l

Pbt̂lr ≥
t∑

t̂=0

∑
d

Ebdt̂r − V ∗
brBb, ∀btr (22)

t−1∑
t̂=0

∑
lH

PH
bH t̂lHr ≥

t∑
t̂=0

∑
dH

EH
bHdH t̂r − V ∗H

bHrB
H
bH , ∀bHtr (23)

No Charge At Start: the first hour of the day needs to have no charging

to allow for the convention that charging can only occur after some energy

is consumed by the fleet.
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Pbtlr = 0, t = 0, ∀blr (24)

PH
bH tlHr = 0, t = 0, ∀bH lHr (25)

Terminal State of Charge: the aggregate state of charge of batteries must

again be full at the end of the simulation.

∑
t

∑
l

Pbtlr =
∑
t

∑
d

Ebdtr, ∀br (26)

∑
t

∑
lH

PH
bH tlHr =

∑
t

∑
dH

EH
bHdH tr, ∀bHr (27)

Fleet Dispatch: together vehicles serving trips, charging, and idle cannot

exceed the fleet size.

∑
d

V m
bdtr + V i

btr +
∑
l

V c
btlr ≤ V ∗

br (28)

∑
dH

V mH
bHdH tr + V iH

bH tr +
∑
l

V cH
bH tlHr ≤ V ∗H

bHr (29)

Max Charging: vehicle charging cannot exceed the number of chargers.

∑
bd

V c
bdtl ≤ Nlr (30)

∑
bHdH

V cH
bHdH tlH ≤ NH

lHr (31)

Where Nlr is the number of chargers charging at power level l in the re-

gion r.
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Max Demand: this constraint relates the maximum power consumed for

each region to the power drawn in each time period. Because Pmax
r is in the

objective function, there will be no slack in the optimal solution, ensuring it

will be equal to the maximum power demanded by the fleet.

Pmax
r ≥

∑
bl Ptblr

∆t
+

∑
bH lH P

H
tbH lHr

∆t
− P private

t,r − PHs
t,r ,−PHhdr

t,r ∀tr (32)

Where P private
t,r is the power demanded by the personally owned light-duty

EV fleet, PHs
t,r , P

Hhdr
t,r are the power demanded by the human-driven electric

HDV fleet (smart/nonsmart charging)

Human-driven HDV Charging (smart assignment): The light-duty

vehicle personal vehicle charging constraints are derived in our previous work

[19]. The following four constraints represent the power and energy bounds

on human-driven HDV with smart charging assignments.

PHs
t,r ≥ PHs

t,r (33)

PHs
t,r ≤ P

Hs

t,r (34)
t∑

t′=1

PHs
t′,r ≥ EHs

t,r (35)

t∑
t′=1

PHs
t′,r ≤ E

Hs

t,r (36)

Where PHs
t,r and P

Hs

t,r are the min and max power constraints on EV charg-

ing, respectively; and EHs
t,r and E

Hs

t,r are the min and max cumulative energy
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constraints on EV charging, respectively.

Human-driven HDV Charging (come and charge): the following four

constraints represent the power and energy bounds for the HDV human-

driven charging behavior.

PHhdr
t,r ≥ PHhdr

t,r (37)

PHhdr
t,r ≤ P

Hhdr

t,r (38)
t∑

t′=1

PHhdr
t′,r ≥ EHhdr

t,r (39)

t∑
t′=1

PHhdr
t′,r ≤ E

Hhdr

t,r (40)

Where PHhdr
t,r and P

Hhdr

t,r are the min and max power constraints on the

human-driven HDV charging, respectively; and EHhdr
t,r and E

Hhdr

t,r are the min

and max cumulative energy constraints on the human-driven HDV charging,

respectively. Note that for these two human-driven fleet charging constraints,

the upper and lower bounds of the energy and charging power are generated

from the HEVI-LOAD tool introduced in Section 2.2.

Generation: The following three constraints represent power generation

on the grid.

∑
g,i

Gg,t + ηtrans
∑
i′

Ti′,t,i −
∑
i′

Ti,t,i′ ≥ P other
i,t +

∑
rϵi

P private
t,r +

∑
rϵi,b,l

Ptblr (41)

+
∑
rϵi

PHs
t,r +

∑
rϵi

PHhdr
t,r +

∑
rϵi,bH ,lH

PH
tbH lHr
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For all time steps t and grid regions i, where P other
t,r is electricity demand

from non-mobility sources, and ηtrans is the transmission loss factor associ-

ated with inter-regional transfers.

4. Results

In this section, the simulation results are presented and the benefit anal-

ysis is given based on the simulation study via the GEM model.

HDV charging load profile. Figure 3 shows the overall charging load

profile for a variety of scenarios of electrification and automation in the heavy-

duty sector (with/without automated charging assignment) with the use of

different charging levels. We assume for all the electrified trucks, S of them

are HAEVs (S = 1, 25, 50, 75, 99%), and 1 − S of them are human-driven

fleets (P = 1 − S). Among the human-driven fleets, 50% of the fleets use

smart charging assignments, and the rest 50% of the fleets simply charge

when arriving at their destination. From Figure 3, we observe that as the

penetration of the HAEVs fleet increases, the overall charging load profile

results in a smoother fluctuation. The peak daily charging load reduces

by 47% with the penetration of HAEVs increasing from 1% to 99%. This

reduction in fluctuation and peak load is due to the smart job assignment

and charging assignment assumptions for HAEVs. Moreover, we also observe

that for the human-driven electric HDV fleets, the smart charging assignment

fleet will result in a lower charging demand in peak energy usage hours (we

assumed the peak energy usage occurs from 5 pm to 10 pm). Whereas the

human charging assignment (come and charge) will have a higher charging

tendency during those times and a lower charging tendency during non-peak
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hours.

Figure 3: Electrified HDV daily charging load profile across scenarios of AV/EV penetra-

tion.

Number of chargers. Figure 4(a) shows the number of chargers needed.

As with fleet size, there are far more chargers when HAEVs are low (S =

1%) than in a counterfactual scenario of high penetration of HAEV fleet (S

= 99%), reflecting much higher utilization among HAEV chargers. With the

HAEV penetration increases from 1% to 99%, the overall number of chargers

reduced from 396 million to 242 million, resulting in a reduction of 38%. The

best number of HAEV chargers is decided from the GEM co-optimization

framework in equation (4) with a higher sharing tendency to reduce overall

operational cost, whereas the number of chargers of human-driven electric

trucks is obtained based on human-driven electric truck charging demand

and human charging behavior assumptions, indicating lower charging sharing

factor. The reduction of the charger is primarily due to the reduction of

human-driven electric HDV fleets-related chargers as those chargers have a

lower sharing factor compared with HAEVs-related chargers.

Peak load. Figure 4(b) shows the grid peak load, which also decreases
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(a) Numbers of chargers needed (b) Peak load

(c) Fleet size (d) Overall cost

Figure 4: GEM system level outputs across scenarios of automation and electrification for

HDVs

substantially as the fraction of mobility demand met by HAEVs increases:

Peak demand is 159 GW at S = 1% and is 135 GW when S = 99%. Based

on this result, one can observe that with the increment of HAEV fleet size,

the overall peak load will reduce. However, the peak load for individual fleet

components may vary with different HAEV penetration. This is a result of

the joint optimization of charging demand of all mobility sectors from eq.

(41). The relaxation of high truck charging demand during peak hours may
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encourage the charging for other fleet components in the electric mobility

system to result in an overall minimum operational cost.

Fleet size. Figure 4(c) shows the optimal fleet size of all types of ve-

hicles in GEM modeling. We are particularly investigating the HAEVs and

human-driven electrified HDVs in this study which decreases 47M total elec-

tric vehicles from the S = 1% case to the S = 99% case. This reduction in

fleet size is primarily due to the higher utilization in job assignments for the

HAEVs. The higher vehicle utilization is formulated as sharing factor σH
dH

in eq. 15. HAEVs are likely to complete more jobs per day compared with

human-driven electric HDVs with the relaxation of human-driven constraints.

Total costs. Figure 4(d) shows the overall cost changes with the fraction

of HAEVs increases. We can observe that the fleet cost and infrastructure

cost for the human-driven electrified HDVs are decreasing on a larger scale

compared to the increment of fleet cost and infrastructure cost related to

the increase of HAEV fleets. The overall mobility electrification related cost

decreased from $1085 billion to $889 billion with the penetration of HAEVs

increasing from 1% to 99%, resulting in a reduction of overall cost by 18%.

The reduction in overall costs is a joint result of charging infrastructure

reduction, peak load reduction, and fleet size reduction, which reduces the

infrastructure cost, fleet cost, and power system operation cost, respectively.

4.1. Discussion

With the growing trend of freight electrification, there is an urgent need

to understand the potential benefits of future electrified freight components.

In this study, we analyzed the impact of freight electrification and studied the

influence of different electrified freight fleet compositions. In our analysis, we
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gradually increased the percentage of HAEVs in electrified trucks and ana-

lyzed the potential impact on the grid, cost and fleet sizes, etc. Our findings

could serve as suggestions for freight electrification development. With the

simulation results, we find that: 1) The use of heavy-duty autonomous elec-

tric vehicles (HAEVs) with smart job assignment and charging assignment

to provide goods delivery has substantial benefits over using human-driven

electric trucks or gasoline trucks. The increased penetration of automated

electric freight fleets within other types of electrified freight fleets from 1%

to 99% will result in an overall cost reduction of 18.2%, fleet size reduction

of 20.4%, and lower peak load reduction of 14.3%.; 2) Without charging time

requirements, lower power charging stations and the use of smaller battery

size trucks provide the benefit in terms of infrastructure and fleet cost re-

duction, and lower grid operational cost. The benefit of HAEV adoption in

electrified truck fleets primarily comes from the following aspects: 1) a higher

sharing tendency of charging infrastructure with optimized charger assign-

ment; 2) optimal charging scheduling making the HAEV charging demand

shifting away from peak energy hours; and 3) optimized job assignment and

higher daily utilization of HAEVs.

5. Conclusion

The configuration of the freight system in which HAEVs serve goods

delivery has substantial benefits over one that relies on human-driven elec-

trified trucks or gasoline-powered vehicles. Overall, we demonstrate that

electrified freight automation increases operating efficiency by reducing total

costs and lowering emissions, which also increases goods delivery within the
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transportation system. From an economic standpoint, system costs are sub-

stantially reduced through higher vehicle utilization (smart job assignment)

and automation, while fuel and operational costs remain much lower than

those of gasoline/diesel vehicles today. From an electric power grid opera-

tor’s perspective, HAEVs can smooth out large amounts of the variability in

electricity generation, which substantially improves both the efficiency and

emissions rate of fossil generation while simultaneously better utilizing solar

and wind resources (thanks to the flexibility in charging times).
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