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Abstract: Whole-genome and exome sequencing have already proven to be essential and 
powerful methods to identify genes responsible for simple Mendelian inherited disorders. 
These methods can be applied to complex disorders as well, and have been adopted as one 
of the current mainstream approaches in population genetics. These achievements have 
been made possible by next generation sequencing (NGS) technologies, which require 
substantial bioinformatics resources to analyze the dense and complex sequence data. The 
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huge analytical burden of data from genome sequencing might be seen as a bottleneck 
slowing the publication of NGS papers at this time, especially in psychiatric genetics. We 
review the existing methods for processing NGS data, to place into context the rationale for 
the design of a computational resource. We describe our method, the Graphical Pipeline for 
Computational Genomics (GPCG), to perform the computational steps required to analyze 
NGS data. The GPCG implements flexible workflows for basic sequence alignment, 
sequence data quality control, single nucleotide polymorphism analysis, copy number 
variant identification, annotation, and visualization of results. These workflows cover all 
the analytical steps required for NGS data, from processing the raw reads to variant  
calling and annotation. The current version of the pipeline is freely available at 
http://pipeline.loni.ucla.edu. These applications of NGS analysis may gain clinical utility in 
the near future (e.g., identifying miRNA signatures in diseases) when the bioinformatics 
approach is made feasible. Taken together, the annotation tools and strategies that have 
been developed to retrieve information and test hypotheses about the functional role of 
variants present in the human genome will help to pinpoint the genetic risk factors for 
psychiatric disorders. 

Keywords: Next Generation Sequencing (NGS); LONI pipeline; SNPs; CNVs; workflow; 
bioinformatics 

 

1. Review of the Current Methodologies and Tools for NGS DNA-Sequencing Data Analysis 

The power and widespread availability of next-generation sequencing (NGS) platforms, has 
significantly broadened the scale of many DNA-sequencing (DNA-Seq) applications, from detecting 
single nucleotide polymorphisms (SNPs) [1] or copy number variations (CNVs) [2], to assembling 
(new) genomes or transcriptomes [3], developing quantitative RNA-sequencing (RNA-Seq) analysis [4], or 
detecting epigenetic changes [5]. Among many various NGS applications, we focus this review on the 
existing methods for processing NGS DNA-Seq data. 

NGS technology allows sequencing short fragments of DNA across the whole genome, producing 
single end (SE) or paired end (PE) reads of 50 700 base-pairs (bp). The reads might need some  
pre-processing conversion step (e.g., conversion between solexa and fastq format for data produced 
with version of the Illumina Pipeline previous than 1.8). The resulting raw DNA-Seq read data must 
then be analyzed following two computational macro-processes: (1) mapping and assembling, quality 
control, quality score re-calibra  regions of the genome; and (2) 
advanced steps focused on variant calling (SNPs, insertions-deletions (Indels) and CNVs) and 
annotation. These macro-processes are briefly reviewed to provide a background for the software 
algorithms embedded in NGS analysis. The main software involved in NGS DNA-Seq are reviewed in 
Table 1 and briefly described below. 
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Table 1. Review of the most used software in next-generation sequencing (NGS) data 
analysis. Which includes two major computational macro-processes: (1) a primary step 
related to mapping and assembling, with alignment quality control, quality score  
re-  regions of the genome; and (2) secondary, advanced 
steps focused on variant (single nucleotide polymorphisms (SNPs), insertions-deletions 
(Indels) and copy number variations (CNVs)) calling and annotation. These macro-processes 
are briefly reviewed to provide a background for the software algorithms embedded in  
DNA-Seq analysis. 

Process Software & Algorithms Website 
Preprocessing step homemade script (N/A) 

(1.1) Alignment 

MAQ http://maq.sourceforge.net  
BWA http://bio-bwa.sourceforge.net/bwa.shtml  
BWA-SW (SE only) http://bio-bwa.sourceforge.net/bwa.shtml  
PERM http://code.google.com/p/perm/  
BOWTIE http://bowtie-bio.sourceforge.net  
SOAPv2 http://soap.genomics.org.cn  
MOSAIK http://bioinformatics.bc.edu/marthlab/Mosaik  
NOVOALIGN http://www.novocraft.com/  

(1.2) De novo Assembly 
VELVET http://www.ebi.ac.uk/%7Ezerbino/velvet  
SOAPdenovo http://soap.genomics.org.cn  
ABYSS http://www.bcgsc.ca/platform/bioinfo/software/abyss  

(1.3) Basic QC 
SAMTOOLS http://sourceforge.net/projects/SAMtools/files/  
PICARD http://picard.sourceforge.net/command-line-overview.shtml  

(1.4) Advanced QC 

GATK http://www.broadinstitute.org/gsa/wiki/index.php/ 
The_Genome_Analysis_Toolkit  

PICARD http://picard.sourceforge.net/  
SAMTOOLS http://sourceforge.net/projects/SAMtools/files/  
IGVtools http://www.broadinstitute.org/igv/igvtools 

(2.1a) Variant Calling 
and annotation 

 
 

Sequence Variant Analyzer 
v1.0, for hg18 annotations 

SVA http://www.svaproject.org/  
SAMTOOLS http://sourceforge.net/projects/SAMtools/files/  
ERDS http://www.duke.edu/~mz34/erds.htm  

SAMTOOLS and 
ANNOVAR for annotation 

SAMTOOLS http://sourceforge.net/projects/SAMtools/files/  
ANNOVAR http://www.openbioinformatics.org/annovar/  

UnifiedGenotyper and 
ANNOVAR for annotation 

GATK http://www.broadinstitute.org/gsa/wiki/index.php/ 
The_Genome_Analysis_Toolkit  

ANNOVAR http://www.openbioinformatics.org/annovar/  
(2.1b) CNVs   
CNVseq CNVseq http://tiger.dbs.nus.edu.sg/cnv-seq/  

R http://www.r-project.org/  
SAMTOOLS/ERDS/Sequen
ce variant analyzer v1.0 
ERDS 

SVA http://www.svaproject.org/  
SAMTOOLS http://sourceforge.net/projects/SAMtools/files/  
ERDS http://www.duke.edu/~mz34/erds.htm  

CNVer 
CNVer http://compbio.cs.toronto.edu/CNVer/  
BOWTIE http://bowtie-bio.sourceforge.net  
SAVANT http://compbio.cs.toronto.edu/savant/  

Simulated data 
generation tool dwgsim http://sourceforge.net/projects/dnaa/ 
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1.1. Alignment 

The first process in DNA-Seq data analysis involves alignment and assembly. Alignment is the process 
of mapping DNA-Seq reads to a reference genome. Many sequence alignment software tools that are 
available today use two main algorithms: the hash-based and the Burrows-Wheeler Transform methods.  

Some hash-based algorithms build their hash table on the set of input reads (MAQ [6]
ELAND unpublished algorithm, SHRiMP [7], ZOOM [8]). Another set of tools build their hash  
table on the reference genome (SOAPv2 [9], BFAST, http://genome.ucla.edu/bfast/, MOSAIK 
http://bioinformatics.bc.edu/marthlab/Mosaik/, Novoalign http://www.novocraft.com/main/index.php, 
PERM [10]). After building the hash-table these methods can either use the reference genome to  
scan the hash table of input reads, or use the set of input reads to scan the hash table of the  
reference genome. 

Many recent algorithms rely on the theory of string matching using Burrows-Wheeler Transform 
(BWT). BWT algorithms (BOWTIE [11], BWA [12], SOAPv2 [9]) typically create a suffix array from 
the BWT transformed sequence, rather than from the original sequence. In the first step, the sequence 
order of the reference genome is modified using the BWT, a reversible process (i.e., the original 
genome sequence can be reconstructed backwards) that reorders the genome grouping together in the 
data structure the sequences that appear multiple times. Next, the final index is created and is used for 
rapid read placement on the genome. The main advantage of BWT algorithms is their speed, as they 
are much faster than hash-based algorithms at the same sensitivity level [3].  

1.2. Assembly 

Assembly starts from aligned DNA-Seq reads to reconstruct the original DNA sequence 
computationally, which generates large, continuous regions of DNA sequence [3]. Many alignment 
software provide tools to perform the assembly after the read alignment (e.g., MAQ), or standalone 
resources can be used (SAMTOOLS [13], Emboss [14]) or commercial packages like Geneious 
(http://www.geneious.com) and CLC-Bio (http://www.clcbio.com). For organisms without a 
sequenced reference genome, it is not possible to perform any reference genome guided assembly of 
the reads, thus de novo assembly is always an essential step for data analysis. The majority of de novo 
assemblers that have been released follow two basic approaches: overlap graphs [15] and de Bruijn 
graphs [16]. The overlap graph method calculates all the pair-wise overlaps between the reads and 
report this information in a graph. The manipulation of the same overlap graph leads to a layout of 
reads and then to a consensus sequence of contigs using Celera Assembler [17] or Arachne [18] among 
others. This traditional approach is computationally intensive as the overlap graph is extremely large 
even for simple organisms. De Bruijn graphs algorithm is used by most assemblers (Velvet [19], 
SOAPdeNOVO [20], ABySS [21]) and reduces the computational charge by breaking reads into smaller 
sub-sequences of DNA, called k-mers, where the k parameter describes the length in bases of these 
sequences [22]. The de novo assembly can be used also to resolve complex genomic region (e.g., rapidly 
evolving or rich in repetitive elements) of organisms with a reference genome. In this case the contigs 
are aligned back to the reference genome and can undergo all the next analytical steps here described. 
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1.3. Quality Control Improvement of Reads 

There are many issues that must be considered when dealing with NGS data, beginning with the 
alignment of short reads. As an example, since each read is aligned independently, many reads 
spanning Indels may be misaligned. The per-base quality scores (i.e., the probability that the called 
base in the read is the true base [23]) may also be inaccurate due to systematic errors in sequencing 
technology, machine cycle, and sequence context [24 26]. Thus, following the alignment and/or 
assembly of reads, quality control steps are implemented before continuing in the downstream analyses 
(in Section 2.1). 

1.3.1. Basic Quality Control and File Formatting 

A first basic quality control (QC) check involves formatting the aligned reads in a conventional 
format (e.g., Sequence Alignment/Map (SAM) or Binary Sequence Alignment/Map (BAM)). The 
output of this process is a clean, sorted, indexed file in BAM format that can be subjected to more 
advanced QC procedures, or be used directly in the downstream analyses.  

1.3.2. Advanced QC 

Additional advanced QC steps are strongly recommended since misaligned reads and inaccurate 
quality scores affect the reliability of the subsequent SNP discovery and genotyping steps, without 
correcting for such stochastic and systemic errors, the rate of false positive calls can be really high [27]. 
Even though we lack a gold standard for these procedures, there are computational tools to perform 
advanced QC on the data, in addition to some basic descriptive statistics and quality metrics 
visualization (SAMTOOLS [13], PICARD, http://picard.sourceforge.net/, Genome Analysis Toolkit 
(GATK) [27]). GATK supports locally realigning reads across regions enriched in Indels, recalibrating 
base quality scores of sequencing reads to correct for variation in quality with machine cycle and 
sequence context. This advanced QC of NGS data is probably the most important process to guarantee 
an accurate variant call, which is the immediate downstream analytical step. 

1.4. Variant Calling and Annotation 

Once the reads have been aligned and calibrated, SNPs, Indels and CNVs can be called. This step 
requires sensitive and specific statistical models and tools [6,9,12,13,28 48], named in Table 1. 

1.4.1. SNPs and Indels Calling and Annotation 

There are many algorithms that may be used to call SNPs from NGS data (SAMTOOLS [13], 
GATK, MAQ, SOAPv2, UnifiedGenotyperV2 within the GATK suite) and some recommended 
analytical and statistical frameworks [49], even if a gold standard for variant calling is still lacking as 
statistical methods for analyzing the data are constantly being released [49]. The SNPs and Indels are 
exported from these tools in variant call format (VCF), with much information related to each variant 
(i.e., quality score, coverage, estimated genotype). Once the variants have been called they need to be 
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annotated, and this is a step that, until recently, only a few computational tools were able to 
accomplish like ANNOVAR [50], Sequence Variant Analyzer (SVA) [51], and GATK [27]. 

1.4.2. CNVs Calling 

Furthermore, the field of computational methods for discovering structural variation on NGS data is 
still an open computational and bioinformatics challenge [2]. The CNVs discovery methods operate 
following a framework that allows detecting s  then calls the related 
variants using mainly four different approaches [2]: (1) read pair methods; (2) read-depth methods;  
(3) split read approaches; (4) de novo assembly.  

1.5. Statistical and Variant Prioritization Analysis 

Additional software such as PLINKseq (http://atgu.mgh.harvard.edu/plinkseq/) implement 
statistical models to analyze variants called from NGS experiments, testing for association with 
continuous or dichotomous traits and assessing an unusual distribution for rare variation across 
different functional categories [52]. Some other tools like PolyPhen2 [53] and VAAST [54] can be 
used afterwards for functional variant annotation and prioritization providing hints on the biology and 
pathophysiology of psychiatric disorders. Also, alternative annotation tools and strategies have been 
proposed [55] to retrieve information and test hypotheses about the functional role of variants present 
by chance in any single human genome or enriched in the genome of people affected by a psychiatric 
disease [56,57]. 

1.6. Graphical Workflows 

The development and release of algorithms and software for analysis of NGS data has seen 
exponential growth in the last two years, requiring a huge investment in terms of time, expertise and 
computer infrastructure.  

From this brief review of tools (Table 1), it is evident that analyzing NGS data is a challenging and 
time consuming operation for scientists. Ideally, these tools must be up to date and easy to use, and 
their sequential combination should optimize performance and accuracy, with each program producing 
output files compatible with the input requirements of the software performing the following 
operation. Such processes sequentially linked together build what is generally called a workflow. An 
increasingly large number of workflows are available today to manage high-throughput genomics 
sequencing data, from basic data processing to high-quality visualization of results. Examples  
include shell-scripts [58,59], tool-specific graphical interfaces [60,61], and graphical workflow 
environments [62 65]. The graphical workflow environment are emerging as useful for constructing, 
modifying, interconnecting and executing computational genomics protocols using data processing 
workflows, also described as pipelines  once the processes have been connected (Table 2).  
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Table 2. Comparison of several Graphical Workflow Environments to manage pipelines. 
Most workflow environments provide graphical solutions (infrastructures) for the 
interactive handling of data, with several advantageous features compared to the 
management of the same processes via command line or scripting interfaces. When adding 
new software tools, some of these architectures require software recompilation and some 
do not. Yet, there is significant variation of the status reports generated during or after 
workflow execution. Data storage, internal or external, operating system and local 
hardware dependencies and utilization of available grid managers also vary between the 
different workflow environments. There are many synergies between the Pipeline and 
various alternative environments for software tool integration and interoperability, with 
also some valuable differences. The Laboratory of Neuro Imaging (LONI) pipeline 
infrastructure provides computational workflow execution capability with or without the 
use of local hardware or administrative support. Adding new software tools to the pipeline 
library of tools is efficient, does not require recompiling the programs, and requires only a 

Thus, the LONI pipeline offers a flexibility and simplicity in design of novel workflow 
solutions that is not available in the other two most used systems for NGS data analysis, 
Taverna and Galaxy. Similarly, the LONI pipeline allows workflow pausing and resuming, 
and provides explicit controls ensuring that processes are only instantiated when the 
complete upstream activities have successfully completed execution. Additionally, the 
available Taverna and Galaxy services have restrictive upper limits on storage (100 GB) 
and per-process RAM (64 GB), when they are deployed on Amazon Web-Services/Cloud 
creating bottlenecks with data staging to/from the servers and computational runs. The 
Pipeline service provides a pair of dedicated open-access servers (http://genomics. 
loni.ucla.edu) each with 40-cores and 1.4 TB of shared RAM. 

Workflow 

Management 

System 

Module 

concatenation and 

interoperability 

Asynchronous 

Task 

Management 

Requires 

Tool 

Recompiling 

Data 

Storage 

Platform 

Independent 

Client-

Server 

Model 

Grid 

Enabled 

LONI Pipeline [57] 

pipeline.loni.ucla.edu 
Y Y N External Y Y Y 

Taverna [61] 

taverna.sourceforge.net 
Y N Y 

Internal 

(MIR) 
Y N Y 

Kepler [54] 

kepler-project.org  
Y N Y 

Internal 

(actors) 
Y N Y 

Triana [66]  

trianacode.org 
Y N Y 

Internal 

data 

structure 

Y N Y 

Workflow Navigation 

System [67]  

wns.nig.ac.jp 

N N N/A External Y N N 

Galaxy [55] 

usegalaxy.org 
N N Y External N Y N 

VisTrails [55] 

www.vistrails.org 
Y N Y Internal N N N 
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Table 2. Cont. 

Workflow Management System: list of the compared graphical workflow environments. Module concatenation and interoperability: 

Asynchronous Task Management: ability to submit new workflows and report the status of executing or completed workflows 

asynchronously, e.g., constant interruptions of network connectivity. Requires Tool Recompiling: requirement to recompile new 

computational libraries or software tools against the graphical environment libraries, and to restart the environment when provisioning 

these new services. Data Storage: ability of environment to store data (raw, processed and derived) internally (RAM/DB) or externally 

(NFS/Services). Platform Independent: dependency of the environment on the local hardware and operating system. Platform 

independence refers to the workflow environment itself, not the computational library of tools that are accessible via that environment. 

For environments with Client-Server architecture, this is irrelevant, as the platform-independent clients can always connect to, submit 

data, process protocols and monitor the status of executing pipeline workflows by connecting to (possibly platform dependent)  back-end 

pipeline servers where specific operating systems (most commonly Linux) may be required by many informatics and genomics computing 

libraries. Client-Server Model: independent server and clients that can be broadly interconnected provided. Grid Enabled: use of a Grid 

Engine/Grid Job Manager. Legend: Y = yes, N = no.  

There are several additional features in graphical workflow environments that simplify the data 
management. Table 2 lists some of the commonly used workflow environments and compares their 
core features. Each of the graphical environments described in Table 2 allows design and submission 
of new workflows.  

The most commonly used systems in NGS analysis are Taverna [68] and Galaxy [64]. The latest 
beta-version of the Galaxy (http://galaxy.psu.edu/) platform offers a NGS computational framework 
that embeds single processing units to be invoked as web-services but it still lacks the functionality of 
interlinking the outputs of one process into a subsequent module. The available Taverna and Galaxy 
services have restrictive upper limits on storage and per-process RAM, when they are deployed on 
web-services, creating bottlenecks with data staging to/from the servers and computational runs. Also, 
the library of available Galaxy routines adding new tools and is limited to a few 
alignment software tools (e.g., BWA and Bowtie), or on the quality control side, an incomplete  
beta-version of the PICARD suite.  

The LONI (Laboratory of Neuro Imaging) pipeline displays unique features for the implementation 
of new interactive and robust NGS analysis workflow protocols using a graphical environment. The 
design of novel workflow solutions within the LONI pipeline environment is simple and flexible [69], 
and allows embedding and connecting heterogeneous software within the same computational protocol 
without the need of advanced bioinformatics skills (Table 2). 

The LONI pipeline architecture [70,71] is a distributed environment utilizing a client-server 
interface for design, validation, execution and dissemination of computational protocols as graphical 
workflows. Individual applications are represented as modules and may be linked to form complex 
network implementation of the desired analytical processes. Using a flexible, user friendly and 
customizable data processing and visualization system, the LONI pipeline environment provides 
access to distributed datasets, heterogeneous software tools and diverse web-services. Additional 
details about the LONI pipeline environment are available in [65]. 

Based upon the review of the NGS software (Table 1) and the graphical workflow environments to 
manage workflow (Table 2), we chose to develop within the LONI environment a graphical 
environment for genomics, called the Graphical Pipeline for Computational Genomics (GPCG) that 
covers many informatics analytical steps on NGS data. This effort was a joint collaboration between 
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LONI at UCLA, BIRN (Biomedical Informatics Research Network) at UCI, Information Sciences 
Institute (ISI) at USC. 

The GPCG is a set of workflows that may simplify and speed-up approaches for sequencing 
projects performed on Illumina/Solexa Genome Analyzer-HiSeq platform [72 74]. We have 
implemented workflows in GPCG that: (1.1) aligns reads (both in single and paired end) and (1.2) 
performs de novo assembly with multiple algorithms; (1.3a) performs basic formatting and quality 
control, followed by a (1.3b) more advanced and complex quality control to correct for sequencing 
biases; (2.1a) performs SNP-Indels calling and annotation, and (2.1b) CNVs calling. The 
Supplementary Materials S1 provides detailed information about our experiments and results.  

2. Description of the GPCG 

 workflows covering a broad spectrum of DNA-Seq data 
analysis steps.  process into a module definition, and 
then connected those modules involved in the same process logically to form a workflow (Figure 1). 
We have generated a comprehensive Supplementary Materials Chapter S2 that includes all details to 
deploy the GPCG infrastructure, reproduce the workflow designs, and validate the results reported in 
this paper. The full description of all the workflows is reported in Supplementary Materials S1. In the 
data source section user can specify the location of input data, a process section where modules can be 
linked to perform complex analysis steps, and an output section where the name and location of the 
output files can be specified (Figure 1). 

A single workflow (Figure 1) can be run independently from others, or can be connected as 
illustrated by the analytical workflow protocols (Figure 2 and Table 3). For example, the user can 
reconnect workflows by dragging and dropping within the GPCG creating a new pipeline. Modularity, 
reuse and interconnectivity are key features within the LONI environment, which make the system 
flexible for the analytical needs of the researcher. 

The current implementation of DNA-Seq workflows is summarized in Table 3. Together with its 
flexible connections, the GPCG incorporates alternative algorithms for the vast majority of the processes. 
The choice of the algorithm is critical, as different approaches might produce different results.  

Users may choose in fact the most suitable analytical model for their data or develop additional 
module descriptions interfacing other computational tools. Additional tools, workflows and updates are 
available on the LONI pipeline Navigator website: http://pipeline.loni.ucla.edu/services/library-navigator. 
As a large number of different file formats are involved in these workflows, we provide a glossary and 
examples of all the formats encountered in Supplementary Table S1. 

We have implemented a preprocessing module that allows extracting a subset of reads to perform a 
validation and initial testing of pipeline modules before running an entire dataset. Embedded within 
this module are routines to convert read quality scores from Solexa FASTQ files to the Sanger scale 
(for data produced with Illumina pipeline versions previous than 1.8), and to binary FASTQ as 
requested by some aligners like MAQ [40,75]. Once the read subset is ready, it is possible to proceed 
to the two main computational processes previously described. We also embedded another module in 

, that allows the user to generate simulated read datasets according to their 
analytical needs (see Supplementary Materials S1, Figure A1b, and Supplementary Materials S2). 
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Figure 1. A snapshot of the general organization of a workflow within the LONI pipeline 
environment. This is an example of embedded modules into an alignment workflow based 
on BWA software. The user can simply set up the location of the input files in the data 
sources, manage the programs involved in the core modules, and indicate the location of 
the output files in the output data sink section. Every section can be interactively edited or 
modified through a menu of options accessed by right-clicking the mouse on the respective 
portion of the workflow. 

 

Figure 2. An example of the workflow approach to analyze DNA-Seq data in GPCG. 
Several alternative workflows can be run independently or connected in a logical flow. 
Once the reads have been pre-processed, they can be aligned (1.1), undergo (1.3) Basic and 
(1.4) Advanced QC, (2.1a) SNP/Indels and (2.1b) CNVs calling and annotation. The reads 
can also undergo (1.2) de novo assembly, and if a reference genome is available the contigs 
can be realigned back to the reference genome and then undergo the following 
computational processes.  
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Table 3. Review of the processes and related workflows currently implemented in the NGS Pipeline. All processes and workflows have been 
tested and validated and are available for use by interested scientists. A single pipeline can be run independently from others, or can be 
connected as illustrated by the analytical workflow protocols described in this Table. 

Process Process Description Software & Algorithms Input * Output (Files) Upstream Module 
Dependencies 

Downstream Module 
Dependencies 

Preprocessing 
step 

Test the NGS raw data and 
functionality homemade script reads (original solexa format) subset of reads (fastq 

format) none  (1.1) Alignment,  
(1.2) De novo assembly 

(1.1) Alignment 

Mapping the reads to the reference 
genome MAQ reads (binary fastq format) SAM Preprocessing (1.2) Basic QC 

BWA reads (fastq format) SAM 
BWA-SW (SE only) reads (solexa format) SAM 
PERM reads (fastq format) SAM 
BOWTIE reads (solexa format) SAM 
SOAPv2 reads (fastq format) SAM 
MOSAIK reads (solexa format) SAM 
NOVOALIGN reads (solexa format) SAM 

(1.2) De novo 
assembly 

Build a de novo genome sequence VELVET reads (fastq format) contigs file Preprocessing (1.1) Alignment or none $  
SOAPdenovo reads (fastq format) contigs file 
ABYSS reads (fastq format) contigs file 

(1.3) Basic QC Basic Data formatting and quality 
control PICARD, SAMTOOLS SAM BAM (1.1) Alignment (1.4) Advanced QC 

(1.4) Advanced 
QC QC for advanced issues PICARD, SAMTOOLS, 

GATK BAM BAM clean (1.3) Basic QC (2.1a) Variant calling 
(2.1b) CNV analysis 

(2.1a) Variant 
calling and 
annotation 

Identify and visualize SNPs and 
Indels from the whole genome 

Sequence Variant Analyzer 
v1.0 BAM clean csv files with variants and 

annotation  (1.4) Advanced QC Statistical analysis and 
visualization software # 

 
SAMTOOLS and ANNOVAR 
for annotation BAM clean txt files with variants   

 Unified genotyper and 
ANNOVAR for annotation BAM clean txt files with variants   

(2.1b) CNVs 
calling 

Analysis of CNVs (ins & del > 1 Kb) BOWTIE CNVer SAVANT  reads (solexa format) txt file with the CNVs calls (1.4) Advanced QC Statistical analysis and 
visualization software # 

CNVseq SAM txt file with the CNVs calls R (stat software) 

 
SAMTOOLS ERDS Sequence 
variant analyzer ERDS v1.0 BAM clean csv file with the CNVs calls  

Statistical analysis and 
visualization software # 

Simulated data 
generation tool 

Generate simulated reads according to 
the needs of the user dwgsim - SE or PE .fastq files  - (1.1) Alignment,  

(1.2) De novo assembly 
* With solexa format we refer to the Phred quality score code used by the Illumina Pipeline version prior than 1.8 (Phred +64). The newer versions of the Illumina Pipeline produce reads file directly in Sanger 
format (Phred +33). To guarantee backwards compatibility with data produced by version of the Illumina Pipeline previous than 1.8 we have embedded a conversion step from Solexa FASTQ to Sanger FASTQ for 

. The user can remove this step in case the conversion is not needed; # External software like PLINQseq for the statistical analysis or IGV for visualization 
are not embedded in the workflow; $ If a reference genome is not available the contigs can be used like they are for further analysis. If a reference genome is available the contigs can be aligned back to the reference 
genome with BWA-SW. 
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The GPCG pipeline environment allows users to change execution parameters for each software 
tool represented as a module in the pipeline workflow. This architecture allows changing parameters, 
adding new parameters or execution controls (e.g., flags, options), modifying values of existent 
parameters, removing parameters, as well as inserting new processing modules or connections to/from 
data objects (data-sources/inputs or data-sinks/outputs). These workflow modifications are accomplished 
directly in the pipeline graphical interface by using mouse-selection and keyboard entries. 

2.1. Alignment 

We incorporated into the LONI pipeline some of the most used alignment software tools (Figure 3). 
Through the edit module  functionality of the graphical user interface (GUI) it is possible to visually 
manage all the parameters of the alignment software (e.g., number of allowed mismatches, read 
trimming, gap extension) encapsulated by the module itself. Each algorithm in a workflow (other than 
BWA-SW that runs only in single end) has a switch that allows the user to perform an alignment on 
either single end (SE) or paired end (PE) reads. The input reads are generally in FASTQ format. BWA 
accepts input read sequences also in BAM format. For paired-end data the pair reads need to be 
grouped together in one single BAM file. The final output is an alignment file is in SAM format (see 
Supplementary Materials S1, Figure A2). This file is ready to undergo quality control procedures. The 
choice of the alignment software is critical as different software might lead to different results in term 
of mapping and downstream variants calling. It is strongly suggested to perform the alignment using 
more than one software and identify strategies that may provide better fit for BWA and 
BOWTIE, for example, are among the fastest alignment algorithms for both single and paired end 
reads, and are particularly suitable for whole genome alignments. They generally report by only one 
alignment hit, and in the default mode do not guarantee finding the best hit nor if the found hit is 
unique. In particular, for users dealing with highly repetitive genomic regions, it is possible to force 
these algorithms to output all the possible hits with a high cost in terms of speed, or to use a 
probabilistic software like PERM that outputs all the found hits. The user could perform a de novo 
assembly (see next paragraph) for a better resolution in such regions. If the main interest is the 
detection of CNVs with paired-end reads, Novoalign is strongly recommended because of the  
high mapping accuracy, even if slower than the previously mentioned Burrows-Wheeler (BW)  
based software. 

For selecting parameters settings, users can find hints about the meaning and possible values of 
each single parameters by double-clicking on a parameter icon or via the execution info  
menu-accessible as a right-click on the module of interest. For the parameters tuning the users have to 
refer to the software documentation as all the algorithms works differently. The LONI Pipeline 

each tool by allowing specification of a list containing a range of parameters spanning the support of 
each parameter of interest. This parameter-optimization strategy is exactly the basis of the 
development of meta-algorithms as workflow protocols [76 78]. 

The quality control process we used to determine the tools to be incorporated is based on an up to 
date and detailed investigation of the available NGS tools, including research papers with technical 
and analytical details, and the online discussions panel/forums if available to better follow the 
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analytical trends and open issues. The testing with simulated and real data provided us further hints 
into the software reliability. Some information and guidelines to help in identifying the best set of 
software to analyze different type of data can be found in some about reference with comparisons 
among tools we provided [22,79]. 

Figure 3. Schematic representation of alignment modules available for both single and 
paired-end data (2.1). 

 

2.2. Assembly 

When a reference genome is not available for the species under investigation it is necessary to 
perform de novo assembly of the reads. De novo assembly is also the suggested approach for reads 
mapping in regions prone to rearrangements, rapidly evolving, or where the reference genome might 
not be informative. We have developed three workflows embedding the most common de novo 
assembly software based on de Bruijn graphs (Figure 4), which works both with single and paired end 
data. One of the most important parameters to be tuned in de novo assembly is the fixed-length of the 
subsequences used to build the graphs length, which is abbreviated as k-mer. The most efficient k-mer 
size for a particular assembly is determined by the read length as well as the error rate, and it may be 
estimated a priori  tools provided by the software developer or by evaluating the results 
obtained through varying the k-mer size across different runs. Some assemblers are also able to output 
scaffolds (i.e., a set of contigs with known relative orientation and distance) or supercontigs (i.e., 
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contigs in which gaps are allowed). When de novo assembly is used in complex region of organisms 
with a known reference genome, the contigs can be aligned back to it with the BWA-SW workflow, 
and then undergo the subsequent analytical steps. 

Figure 4. Schematic representation of the de novo assembly workflows available (2.2). 

 

2.3. Quality Control Improvement of Reads 

2.3.1. Basic Quality Control and File Formatting 

After the alignment the reads undergo first basic formatting and quality controls steps. We have 
developed a Basic QC  workflow in line with the consolidated and updated procedures for DNA-Seq 
analyses (Figure 5). 

The output of this module is a clean, sorted, indexed BAM file that can undergo advanced QC 
procedures, or used as it is for downstream analyses. 

2.3.2. Advanced QC 

Additional advanced QC issues can be addressed and fixed using the GATK toolkit 
(http://www.broadinstitute.org/gsa/wiki) [27,80]. The GATK developers suggested a core analytical 
framework that includes local realignment around Indels and base quality score recalibration [27,80]. 
We have e  workflows, adding other modules to 
produce quality control plots, statistics, and tracks useful for the visualization of the data (Figure 6). 
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Figure 5. A snapshot of the general organization of the Basic QC workflow (2.1.3). After 
an initial file cleaning that performs various fix ups, the alignment file in Sequence 
Alignment/Map (SAM) format is converted in Binary Sequence Alignment/Map (BAM) 
file and sorted. The workflow takes care of the duplicated reads removing or marking the 
potential PCR duplicates. If multiple read pairs have identical external coordinates, it only 
retains the pair with highest mapping quality. This step is particularly suited for paired end 
data and the user can switch between the two options simply changing the 
REMOVE_DUPLICATES argument in the GUI related to this module. The removal step 
can be excluded from a workflow run depending on the interest in studying repetitive 
elements. In case of paired end reads, the pipeline then ensures that all mate-pair information 
is in sync between each read and its mate pair, fixing any incoherent information. The 
BAM file undergoes MD tagging that adds string, labeling the mismatching positions. The 
BAM is finally indexed using the index of the reference genome. 
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Figure 6. A snapshot of the general organization of the Advanced QC workflow (2.1.4). 
(A) After the basic QC, 
compared to the reference genome are locally realigned, as they may lead to alignment 
artifacts that can easily be misinterpreted as SNPs. The next step is the base quality score 
recalibration to recalibrate base quality scores of reads, by the analysis of the covariation 
among several features of a base (e.g., reported quality scores, the position within the read). 
The workflow produces plots and tables with the most important metrics for a DNA-Seq 
experiment (i.e., mean quality by cycle, insert size metrics, quality score distribution,  
GC-bias metrics, main alignment metrics) with the PICARD software; (B) The users can 
then produce useful tracks for the visualization of the data in Integrative Genome Viewer 
(IGV). Examples are the (a) callability track (i.e., evaluates how much a region can be 
trusted in term of coverage, accuracy and quality by GATK and can be visualized as a bar 
chart in IGV); (b) the sliding window coverage (i.e., a computation of average alignment 
over a specified window size across the genome with igvtools). The main outputs of this 
step are: (1) a cleaned BAM file ready to be used for variant calling, (2) a set of plots and 
text files that can help the user to have a general picture about the general quality of the 
experiment and (3) a set of track files to visualize the dataset and its features. The user can 
upload the indexed BAM files and these tracks in IGV to visualize and annotate the reads 
across the whole genome with user-produced or online tracks (RefSeq, RepeatMasker, 
Database of Genomic Variants). 
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Figure 6. Cont. 

 

2.4. Variant Calling and Annotation 

2.4.1. SNPs and Indels Calling and Annotation 

We explored and embedded in workflow at least three different frameworks to call SNPs and Indels 
from whole genome alignment data and produce a comprehensive mutation/functional analysis report 
(Figure 7). 

For the Sequence Variant Analyzer (SVA, http://www.svaproject.org [51]) v1.0 workflow, after 
SNPs and Indels have been called with SAMTOOLS [13] (http://samtools.sourceforge.net/) and CNVs 

v1.02 (http://web.duke.edu/~mz34/erds.htm), they undergo annotation and visualization through SVA 
(Figure 7). SVA is a visualization platform for performing statistical analysis and filtering procedures 
as well. The workflow we have developed allows users to produce a .gsap file, which can be loaded 
into SVA to create a project with single or multiple annotated genomes. This version of SVA is linked 
to ENSEMBL hg18 annotations. 

Variants detected with SAMTOOLS [13] can be also exported as a VCF file (Table S1) and 
comprehensively annotated through ANNOVAR [50] (Figure 7). This software allows functional 
annotation of genetic variants detected from diverse genomes (human genome hg18, hg19, as well as 
mouse, worm, fly, yeast and many others). In particular the last release of ANNOVAR retrieves 
variant calls and frequency information from the 1000 Genomes Project [81] or from the sixty 
genomes released by Complete Genomics [30]. ANNOVAR offers three different annotation options: 
gene-based, region-based or filter-based annotation, and all the three options are implemented. 
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Figure 7. A snapshot of the three independent workflow for variant calling, and annotation 
workflows available. Sequence Variant Analyzer (SVA) displays a graphical user interface 
(GUI) to visualize, annotate, filter and analyze the called variants. 

 

In the GPCG we also embedded the UnifiedGenotyperV2 from the GATK suite, which is a popular 
software to simultaneously call SNPs and Indels and produce a VCF output file [13] (Figure 7).  
We connected this module with ANNOVAR to perform the complete annotation of variants, as 
previously described. 

2.4.2. CNVs Calling  

While general agreement on the best analytical strategy is still lacking [2], we have implemented 
some workflows, as a first wave of a more comprehensive set of tools. Among the many different 
approaches to call CNVs, we have chosen the three approaches described in Figure 8. 

CNVer relies both on read depth and read pair information [48] in a computational framework 
called the donor graph, that reduces the sequencing biases causing uneven local coverage (Figure 8). 
The most interesting feature of CNVer is the ability to compute the absolute copy counts of segments 
of the donor genome, and work with low coverage datasets. Moreover CNVer allows detecting CNVs 
without the need of a reference genome. The CNVs called by CNVer may be imported and visualized 
in the SAVANT genome browser [82] (Supplementary Materials S1, Figure A18). 
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Figure 8. A snapshot of the general organization of the CNVs modules. ERDS, CNVer and 
CNVseq have been implemented as a first wave of tools to call CNVs in DNA-Seq data. 

 

CNVseq is a read depth method that detects CNVs with a robust statistical model conceptually 
derived from the aCGH (array Comparative genomic hybridization) analytical framework. [47]. 
CNVseq uses a sequence as a template and two sets of reads, one set from a reference individual (e.g., 
the individual expected to show a normal ploidy) and one from the test individual we want to screen 
for CNVs. The two sets of reads are aligned to a template genome, and then with a sliding window 
approach, CNVs are detected by computing the number of reads for each individual in each sliding 
window, yielding ratios and copy number estimations. Additional steps with this approach are 
performed in R (http://www.r-project.org/), with the possibility to get a full visualization of the log2 
allelic ratio profiles and statistics on the detected CNVs (Supplementary Materials S1, Figure A20). 

The final CNV workflow method is ERDS, which is a Hidden Markov Model (HMM) based 
approach that relies on read depth to infer the copy number state. It represents an extension of the 
method described in Bentley et al. (2008) [31], and described more in detail by Pelak et al. (2010) [45]. 
Expected read depth is calculated using the expectation maximization (EM) approach and corrected by 
GC bias. The ERDS functionality can be found embedded into the already described SVA 1.0 
workflow for SNPs and Indels calling (Section 2.4.1) can then be used to visually inspect and annotate 
the CNVs (Supplementary Materials S1, Figure A21).

2.5. Evaluation with Simulated Data 

We evaluated all the previously described GPCG workflows (Table 2 and Supplementary Materials S2) 
with 30 million simulated reads (both SE and PE) generated with dwgsim simulation tool, a publically 
available utility for simulating whole-genome Illumina reads [83]. Runtimes and information about the 
performances of the workflow with simulated data are summarized in Supplementary Table S2. We 
ran all the workflows with default parameters.  
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We reported for all the modules a better time performance of the GPCG compared to Galaxy, 
together with the absence for GPCG of the time required for the data upload. 

Using the same simulated data files, we tested the common modules embedded both in our GPCG 
and on the Galaxy webserver interface. Due to the structure of Galaxy and the reduced number of 

ances on a workflow scale. The module shared by 
GPCG and Galaxy were: conversion of solexa into sanger format, BWA and Bowtie paired end 
alignment, the PICARD utilities to fix the mate information, mark the duplicates, collect the alignment, 
GC bias, and insert size metrics. We reported the GPCG and Galaxy time performances in Table 4.  

Table 4. Runtimes and performances on simulated data for modules in common across 
Graphical Pipeline for Computational Genomics (GPCG) and Galaxy. The performances of 
GPCG in terms of run time were better than Galaxy for all the tested modules. 

Analytical 
category 

Input file 
(file size) 

Job description 
GPCG workflow 

name 
Time 

Galaxy 
module name 

Time 

Data upload 
2.4 Gb × 2 

(PE) 
Upload of the data 
into the webserver 

(N/A) (N/A) 
Upload of the 

data 
180 min 

Preprocessing 
2.4 Gb fastq 

file 
Conversion of solexa 

into sanger format 
Preprocessing 

pipeline: sol2sanger 
6 min 

FASTQ 
Groomer 

45 min 

Alignment 

2.4 Gb × 2 
fastq files 

(PE) 

BWA paired end 
alignment with 

default parameters 
BWA PE (1.1) 132 min 

Map with BWA 
for Illumina 

240 min 

2.4 G × 2 
fastq files 

(PE) 

Bowtie paired end 
alignment with 

default parameters 
BOWTIE PE (1.1) 205 min 

Map with 
Bowtie for 
Illumina 

270 min 

Quality control 
(metrics and 
cleaning) 

1.6 Gb SAM 
file 

Synchronization of 
mate-pair information 

Fix Mate Information 
(Basic QC, 1.3) 

6 min 
Paired Read 

Mate Fixer for 
paired data 

30 min 

1.6 Gb SAM 
file 

Marks duplicate reads 
Mark Duplicates 
(Basic QC, 1.3) 

2 min 
Marks 

duplicate reads 
20 min 

1.6 Gb SAM 
file 

Reports the alignment 
metric of a 

SAM/BAM file 

Collect Alignment 
Summary Metrics 

(Advanced QC, 1.4) 
2 min 

SAM/BAM 
Alignment 
Summary 
Metrics 

6 min 

1.6 Gb SAM 
file 

Reports the 
SAM/BAM GCbias 

metrics 

Collect GC Bias 
Metrics 

(Advanced QC, 1.4) 
3 min 

SAM/BAM GC 
Bias Metrics 

7 min 

1.6 Gb SAM 
file 

Reports the insert size 
metrics 

Collect Insert Size 
Metrics 

(Advanced QC, 1.4) 
2 min 

Insertion size 
metrics for 

PAIRED data 
6 min 

All of the performances of the GPCG platform were better compared to the run time of Galaxy. 
Furthermore, a bottleneck in the timing of analysis is the upload of to the Galaxy webserver, together 
with the not predictable waiting in queue time for the processes (Table 4). As the status of the process 
cannot be checked during the execution, the user must wait the end of the run of a process to input the 
results in to the next step without any hint about the elapsed time, and without the possibility to 
automatically keep track of the run times. 
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2.6. Evaluation with Real Data 

We also evaluated the performance of our GPCG workflows in a real life scenario . 
Supplementary Table S2 reports the performances of the whole-genome alignment with BWA of an 
entire Illumina flowcell with an average of 130 million Illumina PE reads per lane. The average time 
required for the alignment of one lane was 6 hours, and for the whole flowcell was roughly 48 hours 
using GPCG. The output of the alignment was one SAM alignment file for each lane. In all large scale 
NGS data analysis it is important to manage the flow of both data and input/output files as they 
traverse complex workflows. The GPCG provides a simple way to set up the input file section (see 
magnified data source panel on the right, Figure 9), manage the naming of output files from individual 
modules using the transformation tool within a module definition (Figure 9).  

Figure 9. Snapshot from the module we used to run the alignment of an entire flowcell 
with BWA-PE. This workflow includes the indexing of the reference genome (BWA: 
Index), the alignment of the two reads separately (BWA-aln) and their final combination 
(BWA: samse/sampe). The sixteen input files (i.e., one forward and one reverse read for each 
one of the eight lanes of the flowcell) are shown in the data source panel magnified on the 
right. The pipeline allows managing all the options of the BWA alignment software through 
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3. Discussion 

The GPCG was developed with a flexible graphical interface for efficient biomedical computing 
and distributed informatics research [65], and is intended to satisfy the needs of geneticists and 
computational scientists who are interested in whole genome, exome and targeted sequencing. The 
graphical workflows we have developed save researchers the time needed to implement and test the 
command lines of individual analytical steps, logically group complex operations into re-usable units, 
and allow these units to be aggregated into larger analytical workflows (e.g., QC following alignment). 

The GPCG offers several advantages if compared to the available workflow environments for 
DNA-Seq data analysis. The GPCG includes a set of pipelines ready-to-go with modules logically 
interconnected between each other on the basis of the current analytical trends, while others offer a set 
of single modular routines that the user cannot connect in workflows. Moreover the LONI environment 

display any restrictive upper space limits on storage and on the available per-process RAM, 
 any data upload, thus eliminating bottlenecks with data 

staging to/from the servers. The limit of 100 GB of storage and 64 GB of RAM in Galaxy, together 

genome sequencing data, as the overall size of the original forward and reverse fastq files for a single 
whole 30× genome sequenced in paired end is already ~100 GB. We tested the single modules 
embedded both in Galaxy and GPCG with the same input files and analytical parameters (Table 4). 
The performance of the GPCG in term of run time was better compared to Galaxy for all the modules, 
with the additional time saved in GPCG (~3 hours) as no data upload on the system is required. The 
user of the GPCG has also the ability to disconnect and reconnect to running workflows, and to 
monitor at any time the progress and to check the status of a previously initiated process, with a 
detailed and interactive report of time performances and job execution info (e.g., output and  
error streams). 

Since GPCG is an open source, the user can access the current version of the GPCG pipeline online 
at http://pipeline.loni.ucla.edu. The entire newly developed computational-genomics infrastructure 
LONI pipeline includes the pipeline server (http://pipeline.loni.ucla.edu/DPS), the pipeline web-start 
server (http://pipeline.loni.ucla.edu/PWS), the genomics workflows (http://pipeline.loni.ucla.edu/ 
services/library-navigator/), collaborative wiki documentation for these protocols (http://ucla.in/ 
pbMgUm), and community support (http://informatics.googlecode.com/). All these resources have 
been developed and are currently supported via an open and collaborative infrastructure. Constructive 
utilization of diverse tools and computational expertise may be shared as pipeline workflows between 
professionals, novice users and trainees [65,70]. 

In this first release of the GPCG we embedded only some popular tools for managing and analyzing 
DNA-Seq data from the initial raw reads to variant calling and annotation. However, to overcome this 
limitation, we are regularly testing and adding tools to be shared in the future releases of the genomics 
pipeline. Also the users can integrate new processes and implement new workflows promoting  
a community-based protocol validation and openly share and disseminate knowledge, tools  
and resources. 
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4. Methods 

4.1. The LONI Environment and Workflow Creation  

To translate DNA-Seq data analysis into a graphical pipeline solution within the LONI  
environment [65] we initially described all global processes in the protocol design or skeletonization 
step, using a top-down approach. We outlined the general classes of sequence data analysis, then the 
appropriate sub-classes of analyses, specific tools, test-data, invocation of concrete tools, and a 
detailed example of executable syntax for each step (http://pipeline.loni.ucla.edu/support/user-
guide/building-a-workflow, [65]). The previously mentioned analytical steps are constructed from a 
series of command line executable processes, referred to as modules or nodes, which are connected to 
each other to form a visual workflow analysis protocol. All the logically concatenated modules/nodes 
involved in the same analytical step (e.g., alignment) comprise a workflow.  

After all necessary modules that make up a workflow are independently defined and validated 
through the LONI pipeline GUI interface (http://pipeline.loni.ucla.edu/support/user-guide/creating-
modules/), they are integrated into a coherent workflow. 

4.2. Accessibility of the GPCG 

The user can access the current version of the GPCG online at http://pipeline.loni.ucla.edu.  
The local Client can be set up by the users following the instructions reported at 
http://pipeline.loni.ucla.edu/support/user-guide/installation/. The GPCG can also be deployed on a 
server base downloading the distributed pipeline server installer (DPS) (http://pipeline.loni.ucla.edu/ 
support/server-guide/installation/), and following the instructions available at http://pipeline.loni. 
ucla.edu/DPS). The GPCG workflows can also be directly launched via the pipeline web-start server 
(PWS) (http://pipeline.loni.ucla.edu/PWS). To search across the entire set of workflows the user can 
rely on an interactive graphical navigator (http://pipeline.loni.ucla.edu/services/library-navigator/), 
which enables not only the discovery, but also web-based utilization of this new computational-genomics 
infrastructure through the web, Figure 10. 

4.3. Evaluation of the GPCG Workflows with Simulated and Real Data 

Table 1 presents the software we have embedded in the workflows released with GPCG. We 
evaluated the workflows with both real and simulated data (Supplementary Table S2). 

Evaluation with simulated data We used dwgsim [84], a utility for whole-genome Illumina reads 
simulation, contained in DNAA v0.1.2 (http://sourceforge.net/projects/dnaa/), to generate Illumina-like 

-Genome 
Simulation web-site (http://dnaa.sf.net). In total we generated 30 million reads with 100 bp length, 
using the complete human genome (hg18) as a reference and with default parameters. We developed 
also a module that allows the users to generate simulation datasets according to their needs (see  
Table 2 and Supplementary Materials S2).  

Evaluation with real data To further compare the behavior of our workflows on real applications, 
we used an entire flow cell (8 lanes) with an average of 130 million Illumina PE reads per lane with 
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length of 100 bp (fastq produced with the Illumina Pipeline v1.8) to be aligned by BWA-PE against 
the whole human genome sequences (assembly: NCBI36.1/hg18).  

Figure 10. The LONI pipeline computational library Navigator allows the interactive 
traversal, inspection, downloading and utilization of specific NGS analyses. Nested insert 
images illustrate the most common steps of search, selection, comparison, modification 
and execution of available end-to-end computational genomics workflows. 

 

These experiments were produced on an Illumina HiSeq200 DNA sequencer using v5 kits. 
All the testing runs were performed on a Linux server Dual Intel Xeon X5650 2.67 Ghz 6 core 

processors 96 GB s of RAM 2 × 10 k RPM 150 GB WD VelociRaptor RAID 0 RHEL 5 64-bit.  

5. Conclusions 

The availability of workflows to manage and analyze NGS data in a straightforward way may play 
a role in triggering genomic advances in human health related translational research in psychiatry 
genetics. Currently, NGS technology is emerging as a fundamental basis on which to understand 
disease complexity and heterogeneity both for common and rare diseases, with benefits to clinical 
diagnostics and care once research findings are translated into clinical tests. Sequencing clinical 
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subjects is becoming a method of choice in translational studies of diseases, and genetic defects 
underlying several genetic disorders have been identified through whole exome or whole genome 
sequencing [85,86]. Nevertheless, an understanding of how genome variability leads to disease 
pathogenesis is still far from complete for the vast majority of genetic diseases [56], at least as to the 
meaning of many variants present in the genome of healthy individuals. The computational challenge 
for DNA-Seq data analysis is often a bottleneck, as many different tools are constantly emerging, and 
often requiring bioinformatics skills. We are proposing the GPCG as a handy and helpful graphical 
analysis platform to improve the efficiency of high-throughput data analysis in diverse applications of 
DNA-Seq analysis projects. There are two tiers of validations for the proposed pipeline GPCG pipeline 
infrastructure. The first tier is validation of the technical protocols (as we compared the results of the 
GPCG pipeline protocol against Galaxy). This evaluation confirms the programmatic reliability and 
reproducibility of the results using identical computational libraries. However, the second tier of 
validation is more important as it provides scientific evidence of the value added by the new GPCG 
pipeline infrastructure. This scientific validation includes for example the comparison of results 
obtained with different algorithms in term of read mapping, variant calling and quality control 
procedures to find the process that best fits the data, together with improvements in speed and  
high-throughput volume processing. For example, the GPCG framework may be used to construct a 
new genomics computing protocol that explicitly utilizes specific sequence analysis tools. The entire 
pipeline protocol may be shared with other users who can easily plug-in new data and/or swap 
alternative modules for analogous processing steps (employing different software tools). Such  
multi-investigator experimental studies would provide cues about how to select appropriate software 
tools and how different libraries compare in processing different type data sets (e.g., varying read 
length, fragments or paired ends, highly repetitive genome, etc.) 
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