UC Santa Cruz
UC Santa Cruz Previously Published Works

Title
Semi-preemptible locks for a distributed file system

Permalink
https://escholarship.org/uc/item/9p86t174

Authors

Burns, RC
Rees, RM
Long, DDE

Publication Date
2000

DOI
10.1109/pccc.2000.830343

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License,
availalbe at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Diqital Library

University of California

https://escholarship.org/uc/item/9p86t176
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/3841571
Semi-preemptible locks for a distributed file system

Conference Paper - March 2000

DOI: 10.1109/PCCC.2000.830343 - Source: IEEE Xplore

CITATIONS READS
11 38

3authors, including:

Randal C. Burns - - . Darrell D. E. Long
&)
Johns Hopkins University | University of California, Santa Cruz
255 PUBLICATIONS 10,082 CITATIONS 307 PUBLICATIONS 8,712 CITATIONS
SEE PROFILE SEE PROFILE

Some of the authors of this publication are also working on these related projects:

poject File system usability View project

roject TOward millions of file system iops on low-cost, commodity hardware View project

All content following this page was uploaded by Darrell D. E. Long on 12 May 2014.

The user has requested enhancement of the downloaded file.

ResearchGate

https://www.researchgate.net/publication/3841571_Semi-preemptible_locks_for_a_distributed_file_system?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/3841571_Semi-preemptible_locks_for_a_distributed_file_system?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/File-system-usability?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Toward-millions-of-file-system-iops-on-low-cost-commodity-hardware?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Randal-Burns?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Randal-Burns?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Johns-Hopkins-University?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Randal-Burns?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/University_of_California_Santa_Cruz?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Darrell-Long?enrichId=rgreq-78fd8be422f27dd9ef0a2e7c5376cf7b-XXX&enrichSource=Y292ZXJQYWdlOzM4NDE1NzE7QVM6MTAzNjQ5NDMwNzM2ODk5QDE0MDE3MjMzNTgzMDY%3D&el=1_x_10&_esc=publicationCoverPdf

0-7803-5979-8/00 $10.00 © 2000 IEEE

Semi-Preemptible Locks for a Distributed File System

Randal C. Burns, Robert M. Rees

Department of Computer Science
IBM Almaden Research Center
{randal,rees} @almaden.ibm.com

Abstract

Many applications require the ability to obtain exclu-
sive access to data, where an application is granted privi-
leges to an object that cannot be preempted and limits the
actions of other processes. Local file systems support ex-
clusive access to files by maintaining information about
the access rights of current open file instances, and check-
ing subsequent opens for compatibility. Implementing ex-
clusive access in this manner for distributed file systems
degrades performance by requiring every open file to be
registered with a server that maintains global open state.

We introduce a distributed lock for managing file ac-
cess, called a semi-preemptible lock, that avoids this
performance limitation. Clients locally grant open re-
quests for files that are consistent with a distributed semi-
preemptible lock that they hold. File system clients retain
or cache distributed locks, even in the absence of open
file instances. When a file access lock is already cached,
a client services open requests without a server message,
improving performance by exploiting locality, the affinity
of files to clients.

1 Introduction

A distributed client-server file system presents a local
file system interface to remote and shared data. The file
system client takes responsibility for implementing the se-
mantics of the local file system and translating the local in-
terface onto a client/server network protocol. For hetero-
geneous distributed file systems (concurrently running on
many client operating systems), the system may be trans-
lating the semantics of several different local file systems
onto a single network protocol.

Distributed file systems have become the principal
method for sharing data in distributed applications. Pro-
grammers understand local file system semantics well,
and use them to easily gain access to shared data. For ex-
actly the same reason that distributed file systems are easy
to use, they are difficult to implement. The distributed file
system takes responsibility for providing synchronized ac-
cess and consistent views of shared data, shielding the ap-

397

Darrell D. E. Long

Department of Computer Science
University of California, Santa Cruz
darrell@cse.ucsc.edu

plication and programmer from these tasks, but moving
the complexity into the file system.

In this work, we present a locking construct, file ac-
cess locks, that are used to implement the semantics of file
open, e.g. if one client opens a file for exclusive writing,
permitting no shared readers, concurrent opens for read on
other clients must be forbidden. These locks are not de-
signed to provide data consistency or cache coherency —a
suitable cache coherency protocol is required in addition
to file access locking. Instead, the locks allow clients to
choose from among the many exclusive access and shar-
ing options available in its native file system interface, and
have the semantics of the local open enforced throughout
a distributed system.

Traditionally, distributed file systems have relaxed lo-
cal semantics for ease of implementation and performance
reasons. For example, the Andrew file system (AFS) [13]
chooses a considerably simpler model for synchronizing
file access than the POSIX local file system interface of its
clients. AFS does not have a distributed mechanism to en-
force exclusive open modes between clients. By relaxing
semantics, AFS has the ability to aggressively cache data
after a file has closed. This provides high performance,
low latency access to data on subsequent opens.

Some file systems, like the CIFS network file system
[17], are willing to suffer network message overhead in
order to correctly enforce local semantics. These file sys-
tems send all open and all close operations to a server.
The server maintains a globally consistent view of file
system open state, and checks every open request against
all outstanding open instances. We view this as an unac-
ceptable solution due to the limitations that it places on
clients. Registering open and close requests means that
a client conducts connection or session oriented transac-
tions with servers. For CIFS, this prevents clients from
caching file data when the file is not currently open. CIFS
has subsequently improved performance for opens by pro-
viding what they call an opportunistic lock, allowing a
single client to cache data and access privileges past close.
However, opportunistic locks apply to limited and specific

cases of data sharing, and are less general than our locking
system.

Our contribution to synchronized file access in the dis-
tributed environment is the semi-preemptible lock. A
client holding a semi-preemptible lock on a file has the
right to access a file in any of the modes specified by
its held lock. Clients maintain their own file open state
locally, and do not need to transact with the file system
server when opening or closing file data. Clients may con-
tinue to hold such a lock even when they have no open in-
stances. In this way, a client can cache access privileges,
the right to open a file, and service subsequent open re-
quests without a message to the server. This mechanism
reduces server traffic by eliminating open and close mes-
sages, and consequently reduces latency by avoiding mes-
sage round trip time. Clients cache access privileges to
a file on the belief that the file will be used again locally
before being used by another client. The same temporal
locality that makes data caching effective in the distributed
environment [19, 14] is used to improve performance for
file open.

Semi-preemptible locks also reduce distributed lock
state. Clients often hold multiple open instances of a sin-
gle file concurrently. All of these open instances can be
granted under a single semi-preemptible lock, rather than
holding a separate lock for every open. A single semi-
preemptible lock summarizes all of the client’s open state
to the distributed system.

The semi-preemptible lock avoids client-server inter-
actions when compared to existing protocols for synchro-
nization of file open and close requests in a distributed
system. Through the caching of locks, subsequent opens
of a file on the same client can be served locally.

2 A Storage Area Network File System

A brief digression into the file system architecture in
which we implement semi-preemptible locking helps to
motivate the performance advantages.

In the Storage Tank project at IBM research, we are
building a distributed file system on a storage area net-
work (SAN) (Figure 1). A SAN is a high speed network
that gives computers shared access to storage devices.
Currently, SANs are being constructed on Fibre Channel
(FC) networks [3]. In the future, we expect network at-
tached storage devices to be available for general purpose
data networks, so that SANs can be constructed for net-
works such as Gigabit Ethernet [7]. A distributed file sys-
tem built on a SAN removes the server bottleneck for /O
requests by giving clients a direct data path to disks.

When building a distributed file system on a SAN, file
system clients can access data directly over the storage
area network. Most traditional client-server file systems

398

Control Network
Client Client Client :

Storage Area Network

Figure 1: Schematic of the Storage Tank distributed file
system on a storage area network (SAN).

[24, 13, 15, 6] store data on the server’s private disks.
Clients function ship all data requests to a server that per-
forms I/O on their behalf. Unlike traditional file systems,
Storage Tank clients perform 1/0 directly to shared stor-
age devices. This direct data access model is similar to the
file system for network attached secure disks (NASD) [9],
using shared disks on an IP network, and the Global file
system [20], for SAN attached storage devices.

Clients communicate with Storage Tank servers over a
general purpose network to obtain file metadata. In addi-
tion to serving file system metadata, the servers manage
cache coherency protocols, authentication, and the alloca-
tion of file data (managing data placement and free space).

Unlike most file systems, metadata and data are stored
separately. Metadata, including the location of the
blocks of each file on shared storage, are kept on high-
performance storage at the server. The SAN storage de-
vices contain only the blocks of data for the files. In this
way, the shared devices on the SAN can be optimized for
data traffic, block transfer of data, and the server private
storage can be optimized for metadata workload, frequent
small reads and writes.

The SAN environment simplifies the distributed file
system server by removing its data tasks, and radically
changes the server’s performance characteristics. Pre-
viously, server performance was measured by data rate.
Performance was occasionally limited by network band-
width, but more often limited by the server’s ability to
read data from storage and write it to the network. In the
SAN environment, without any storage or network I/O, a
server’s performance is more properly measured in trans-
actions per second, analogous to a database server. With-
out data to read and write, the Storage Tank file server per-
forms many more transactions than a traditional file server
with equal processing power. By using computational re-
sources more efficiently, Storage Tank should present a

Semi-Preemptible Demand Messages
Server Client A Client B

L DemandLock(L)

ReleaseLock(L)

Open State at Clients

Locks Held
ClientA L

ClientB L —<— Open Instance

Open Files

Figure 2: Demands for the semi-preemptible lock are ac-
cepted or denied depending upon client file system open
state.

higher data rate to the file system client, and allow a dis-
tributed file system to fully utilize its network infrastruc-
ture with less investment in server hardware.

Without the relatively slow process of shipping data
from the client to the server to hide protocol overhead,
minimizing the message traffic for file system operations
becomes important. Protocol overhead is the added la-
tency, and network and server resources used for client-
server messages. In traditional client-server file systems,
clients go to the server to obtain data. Because shipping
data to the client takes significantly longer and uses many
more resources than a single server message, the overhead
associated with the messages for opening and closing a
file are hidden by the cost of shipping data. In Storage
Tank, protocol overhead limits performance. When the
semi-preemptible lock allows a client to open a file with-
out contacting the server, a message is avoided and time
is saved on the server’s critical path.

3 Semi-Preemptible File Locks

For distributed files systems, little data sharing oc-
curs in practice [2, 16], where data sharing indicates two
clients concurrently accessing the same file. Addition-
ally, clients often access data that they have recently used.
These claims are supported by the effectiveness of data
caching in this environment [19, 14]. More mature dis-
tributed file systems [13, 6, 22, 15, 1, 12, 19, 21] take ad-
vantage of this observation and cache file data at clients
even when no process actively uses the data. The de-
sign decision to cache file data after a file has been closed
improves performance when a subsequent open from the

399

same system is more likely than a request from another
client to access the same data. For subsequent accesses
from the same system, caching avoids a server message
and data read from disk, and performance improves. How-
ever, if another client attempts to access the same data, it
sees additional latency while the file system server invali-
dates the cache of the client that holds data before granting
access to the new client.

For the same reasons that caching improves perfor-
mance on data access, the semi-preemptible lock im-
proves performance on file open. When a local process
requests an open for a file, if no current lock is held,
the client obtains a semi-preemptible file access lock be-
fore granting the open. When the local process closes
the file, the client records that there are no open file in-
stances currently using the lock, but holds onto the lock
awaiting future opens of the same file. Analogous to data
caching, holding access locks past close decreases latency
by avoiding a server message when the same client at-
tempts to open the file. But, caching locks hinders opens
from other clients, because the server must demand the
lock before granting access to the other client.

By recording the open instances associated with each
access lock, a client differentiates locks that are held to
protect open files, and therefore cannot be released, from
locks that are held to improve performance on subsequent
opens. Consider that a second client wishes to obtain ex-
clusive access to a file that is already locked by a first
client. The server processes the second client’s request by
demanding ! the lock from the first client, sending a mes-
sage that requests the release of the held lock. If the first
client has a process that holds an open instance of that file,
it requires the held lock to protect that open instance and
denies demand requests from the server (Figure 2). How-
ever, if no process holds an open instance of the file, the
client no longer utilizes the held lock and releases it safely.
These access locks are called semi-preemptible, because
the server must demand them, as if they were preemptible
locks. However, a client can refuse a demand request.

The semi-preemptible locking system is particularly
appropriate for our SAN-based distributed file system, be-
cause data are not obtained through the server. When a file
access lock is held, a client can directly access the data
from shared storage, and need not interact with the server
at all. This claim is also true for other direct access storage
environments, like network attached secure disks (NASD)
[8]. Without direct access storage, clients must interact

IWe use the term “demand” for consistency with existing lock ter-
minology despite the fact that clients can refuse a demand. A term like
“request” would more appropriately describe the server’s action, but re-
quest is often used to describe the client’s process for acquiring locks
from the server.

Lock | Name Access Sharing
M Metadata M M, R, W
R Read M, R M, R, W
S Shared M, R M, R
w Write M,RW | MR, W
U Update M, R, W M, R
X Exclusive | M, R, W M

Table 1: The MRSWUX locks are combinations of pro-
tected access modes and allowed sharing modes selected
from a metadata (M), read (R), and write (W) access.

with servers for data, and these file systems cannot save a
message from semi-preemptible locking.

4 Managing File Access

To enforce open semantics in a distributed system, we
define a suitable set of file access locks and a mapping of
local file system open modes to these access locks. In
certain cases, the local file system open modes for our
client platforms cannot be paired to a distributed file ac-
cess lock with the same semantics. For these exceptions,
we map unsupported open modes to more restrictive file
access locks. This mapping always guarantees that the
lock holder has the requested privileges, but reduces the
ability of other clients to hold locks concurrently. While
the chosen locks do not exactly implement open mode se-
mantics for all client file systems, they do guarantee to
keep consistent views of distributed open state across all
clients. Deviations from strict local semantics in Storage
Tank are minor, and an improvement over the file access
synchronization provided in all known distributed file sys-
tems [6, 14, 15, 4]. The designers of Storage Tank believe
that these locks describe an intuitive and descriptive data
sharing model.

4.1 The MRSWUX Locking Scheme

Table 1 describes the semantics of the defined locks.
Distributed file system clients select from this table the
lock that describes their intended access, and the access
modes of other open instances with which they are willing
to share. Our system defines three access modes: read
access, allowing the holder to open files for read and data
caching; write access, permitting the holder to open files
for write and write caching; and metadata access, the right
to cache and read metadata.

Client file systems enforce that local processes do not
open a file in a mode that exceeds the privileges granted
in the intended access field or restricts sharing more than
the granted lock.

In our distributed access model, we have decided that
any lock that can write data may also read data, and that
any lock mode that shares access with writers also shares

400

[Held Lock]

RequestedLock | M R S W U X
M + + + + + +
R + + + + + -
S + + + - - -
W + + - + - -
U + + - - - -
X + - - - - -

Table 2: Lock compatibility table.

access with readers. This read/write hierarchy appears
in most protocols for implementing consistency in a dis-
tributed system [5].

Unlike distributed data systems, local file systems of-
ten separate read and write access, choosing a flexible in-
terface, rather than one congruent with the semantics of
data sharing. Local file systems find it useful to differenti-
ate between read/write and write-only to improve the per-
formance of local data cache management strategies and
to differentiate special device files, such as pipes, with
limited access. While reasonable for local file systems,
these concepts do not apply to distributed file sharing and
are left out of MRSWUX locking.

From these locking modes, the associated compatibil-
ity table [11] (Table 2) describes the pairwise combina-
tions of locks that are compatible. A distributed file sys-
tem server uses this data structure to resolve what action
to take when a client requests a semi-preemptible lock.
The server evaluates the requested lock (row) against all
outstanding held locks (column). The + marks in the ta-
ble indicate that two lock modes are compatible. The —
marks denote incompatibility. When evaluating a lock re-
quest against held locks, the server either grants it when
compatible, or when incompatible attempts to acquire the
requested lock on behalf of the client by demanding all in-
compatible locks. If a lock demand is denied by a client,
indicating that a held lock protects a current open instance,
the server denies the requested lock.

When using semi-preemptible file access locks, the
server has no knowledge of the global open state of a
given file. Clients maintain this state individually. The
server must therefore forward lock requests to be resolved
at clients through the semi-preemptible mechanism. Dis-
tributed file access locks indicate to the system the set of
clients that potentially hold a file open. The server queries
these clients to resolve conflicts. Our system does not con-
tain a centrally located global record of open files, but lock
demands provide an equally descriptive method of deter-
mining the global open state of a file.

;

(a) Hierarchy

N
4

(b) Downgrades

(c) Upgrades

i

Figure 3: Graphs for the MRSWUX locking scheme.

4.2 ‘ Summarizing Local Open State

In Storage Tank, we restrict each client’s lock holdings
to a single distributed file access lock for each file. Clients
may have many local open instances of that given file pro-
tected by a single lock. This further reduces the number of
held locks in a distributed system and decreases network
traffic associated with file locking. To make this restric-
tion possible, the set of locks we define must form a com-
patible hierarchy and we must provide a facility for clients
to change their lock holdings without releasing locks.

To ensure that a single distributed file access lock al-
ways suffices to describe multiple local open instances,
the set of defined locks must form a compatible hierarchy
(Figure 3(a)). A suitable hierarchy meets the condition
that all compatible lock are strength related. Strength in-
dicates that the stronger lock protects all access modes al-
lowed by the weaker lock, and the stronger lock does not
allow any locks to be concurrently held that conflict with
the weaker lock. In other words, a stronger lock allows
the lock holder more file access modes and shares fewer.
Note that the only locks that are not strength related (S
and W) are not compatible.

Locks that form a compatible hierarchy allow file
opens to be granted under any lock of equal or greater
strength than the minimum strength lock to which the file
open can be mapped. Also, it permits multiple compatible
opens to be protected by a single lock, of equal or greater
strength than lock required to protect the strongest open.

Clients using the MRSWUX locking scheme must be
able to modify their currently held lock — change the pro-
tected access and sharing without releasing the lock. This
need arises in two instances: 1) when the client holds a
semi-preemptible lock protecting local open instances and
another client requests a lock for that file that does not
conflict with the open instances, but is incompatible with
the held semi-preemptible lock; and 2) when a client hold-

401

ing a semi-preemptible lock that protects open instances
has a local process request another open instance, compat-
ible with current open instances, that has access and shar-
ing requirements the semi-preemptible lock cannot pro-
vide.

In the first case, the held lock is too strong and the
client must convert it to a weaker and compatible lock
that still protects the open instances. This process is a lock
downgrade. The client cannot release its lock outright and
obtain a weaker lock because it has current open instances
to protect. For downgrades, the lock demands received
from a server must contain the type of file access lock re-
quested so that clients can resolve compatibility and the
appropriate downgrade.

The legal downgrade graph (Figure 3(b)) is constructed
by taking the transitive closure of the hierarchy graph, and
shows all transitions from a stronger to a weaker lock. A
downgrade can always be performed; for any held lock,
all locks weaker than the held lock are compatible with
the system’s other outstanding locks.

In the second case, the held lock cannot provide the
access and sharing requirements of the new request. The
held lock is too weak and the client attempts to obtain a
stronger lock that can protect all of the current open in-
stances and the new request. Obtaining the stronger lock
while continuing to hold the old lock is called a lock up-
grade.

The legal upgrade graph (Figure 3(c)) shows all transi-
tions from held locks to compatible stronger locks. Lim-
iting upgrades to compatible locks prevents the locking
system from falsely refusing legal lock transitions. We
discuss this topic in depth in Section 4.3.

Unlike compatibility, which determines whether pairs
of locks can be held concurrently, the concepts of strength
and weakness help the system determine what action to
take, i.e. how to change lock state to service local open

Server Client A Local Opens
Lock Table Lock Table Held Locks
Client A: U Instance 1:R =<+ R
}'\n Instance 2:W << w
Instance 3:R <z R
" Held Locks
. ————U

Figure 4: Distributed and local file access locks.

requests or server demand messages.
4.3 Lock Management

The client uses the concept of compatibility and lock
strength to grant local opens under the protection of one
distributed lock. Each local open instance can be repre-
sented by the minimum strength lock from MRSWUX
that provides the requested access modes and limits con-
currently held locks. For each local open instance, the
client assigns it a local lock (Figure 4). The local lock
is used only to evaluate compatibility, and upgrades and
downgrades. The client manages these local locks so that
1) for any file all local locks are compatible with each
other, and 2) the client holds a distributed lock stronger
than or of equal strength to all local locks. For a client
that enforces these conditions, the held distributed lock
encapsulates its open state.

The client might not be using all of the strength of its
held file access lock, but if a server acts in accordance with
the held lock, the server makes no illegal actions. Recall
that the server demands the held lock to try and reduce its
strength if an incompatible request arrives from another
client. Therefore, holding a stronger lock does not impact
correctness.

As previously stated, a client never needs to upgrade
from a held lock to a stronger incompatible lock. Up-
grade requests occur when a local file open requires a
stronger lock than the held lock. If the client needed
the full strength of the current lock, it would have an
open instance incompatible with its new open request. In
cases where the client needs an upgraded lock incompat-
ible with the currently held lock, it is not using the full
strength of the held lock. Clients address this situation
by downgrading their current holding to the minimum
strength lock that protects current local locks before up-
grading to the needed lock. An example in our MRSWUX
locks clarifies this point. Suppose that a client holds an W
or S lock that protects a local open using a local R lock. If
the client receives another open request that requires a lo-
cal U lock. The request is compatible with the local lock,
but incompatible with the held distributed file access lock.
The client downgrades its current holding to R and then

402

dwDesiredAccess | Intended Access
0 | Metadata access only
GENERIC_READ | Read
GENERIC_WRITE | Write
DELETE | Deletion

(a) Intended access mode

dwSharingMode | Compatibility
0 | None
SHARE READ | Any reader
SHARE_WRITE | Any writer
SHARE_DELETE | Deletion
(b) Sharing mode

Table 3: Sharing modes in Windows-NT.

upgrades to U. In limiting upgrades to compatible locks
only, we avoid subtle race conditions that lead to unnec-
essary demands.

5 Windows-NT - A Case Study

The presented locking scheme intends to support local
file system semantics with a simplest design and as few
locking states as possible. MRSWUX locking allows a
distributed file system to exactly implement POSIX se-
mantics. However, due to the small number of locks for
MRSWUX, the locks do not cover all Windows-NT open
modes correctly, and violations of the Windows-NT se-
mantics are possible.

Table 3 presents the options to the Windows-NT func-
tion call CreateFile used to open a file. The dwDe-
siredAccess argument describes the access mode that the
open protects. Similarly, the dwSharingMode describes
the access modes that can be legally held by concurrent
open instances. All combinations of these arguments are
legal. Based on the arguments to CreateFile, we outline
the key shortcomings of MRSWUX when used to imple-
ment a Windows-NT file system client for Storage Tank.

When mapping the CreateFile arguments to a
lock from MRSWUX, we ignore the DELETE and
SHARE_DELETE option as it applies to file deletion
and not to file sharing. For file access options, we select
the minimum strength lock that has the desired access
and sharing modes. This mapping is exact except when
the SHARE_WRITE appears without SHARE_READ
or GENERIC_WRITE without GENERIC_READ. In
these cases, we include a read privilege even though it
was not requested, e.g. arguments GENERIC_WRITE,
SHARE_WRITE obtains a W lock which includes an
unrequested read privilege and read sharing.

MRSWUX does not differentiate between open with

intent to write and open with intent to both read and
write. While we justified this decision by citing that
it is not significant for file sharing, the distinction is
part of Windows-NT semantics. The chosen locks fail
to adequately describe these options and may fail to
grant concurrent opens on separate clients that file sys-
tem semantics allow. For example, Windows-NT seman-
tics permits two clients to concurrently open files for
GENERIC_WRITE,SHARE_WRITE, whereas our sys-
tem would prohibit this open to occur.

To mitigate the effects of inexact mappings, our sys-
tem does allow two clients to both open a file for
GENERIC_WRITE,SHARE_WRITE as long as they are
on the same system. For concurrent opens, existing local
synchronization semantics override distributed locking.
Consequently, semantic violations only occur between
distinct clients. Local correctness for single clients miti-
gates the shortcomings of the MRSWUX locking scheme
by taking care of the most common occurrences of file
sharing.

By not implementing Windows-NT open semantics ex-
actly, MRSWUX can prevent multiple clients from open-
ing a file concurrently that local semantics would allow
on a single client. This can only occur when clients re-
quest write access without a read. MRSWUX never al-
lows opens that a local semantics forbid.

Despite the shortcomings, we feel that MRSWUX
locks effectively manage exclusive file access in the
Windows-NT environment. We choose to implement
these locks for their simplicity. Implementing exact se-
mantics locally addresses the most common cases of shar-
ing, and the semantic violations influence concurrency,
not correctness. The key feature of MRSWUX is the re-
duction of complexity, supporting many local file system
open modes with few locks and small locking data struc-
tures.

6 Related Research

Many distributed file systems clients transact with a
server on every open and close of a file for synchroniza-
tion [23, 4, 24]. This is the simplest technique to imple-
ment local file system open semantics in the distributed
environment. However, all file open and file close requests
require a network operation.

The Andrew file system [14] interacts with a server at
every open and close and uses open and close as points to
synchronize cached data. Andrew does implement a data
cache that can hold data past close and a general callback
(demand) mechanism. However, callbacks apply only to
preemptible data locks.

Like Storage Tank, the Calypso file system [6] uses
open mode synchronization locks, called tokens, to im-

403

plement local file system semantics. In Calypso, tokens
are fully preemptible at the client and cannot be held past
close. Every file system open and close generates a token
request or release. File system open state and token re-
quest conflicts are managed completely at the server. Ca-
lypso uses a simple lock hierarchy for its data locks, but
the hierarchy does not apply to open mode synchroniza-
tion tokens.

The DFS file system [15] describes a token mechanism
similar to semi-preemptible locks for the management of
data, metadata, and open state. Like semi-preemptible
locks, a client can refuse or permit revocation of a to-
ken, depending upon local state. Token management in
DFS differs in that all elements of system locking, in-
cluding file access locks, data locks, and byte-range locks
are managed with the single token mechanism. The DFS
treatment of token management is less concrete than our
discussion of locking, and does not address mapping local
file system semantics to a distributed locking system.

7 Comments and Future Directions

Our argument that semi-preemptibility and client lock
summarization improve performance relies on temporal
locality and limited data sharing between clients. Nearly
identical arguments were made for caching in the Andrew
file system [14] and hoarding for Coda’s disconnected op-
eration [16]. While these arguments are well accepted in
file system research, we feel that simulation and measure-
ment of modern file system workloads are required to ex-
perimentally verify our design. A next step in our research
is to validate our locking design on a Storage Tank proto-
type and quantify performance improvements.

For space reasons, this work omits a discussion of syn-
chronization in the presence of failure. A distributed file
system that presents a local file system interface to remote
and shared storage must continue to do so when compo-
nents fail. As do many modern file systems [22, 20, 18],
Storage Tank uses a lease-based [10] protocol to ensure
operational safety and high availability in the presence of
client and server failures, and network partitions.

8 Conclusions

Distributed file systems need to manage open state for
referential integrity and synchronized access to files. Ex-
isting distributed systems address this problem by either
relaxing local file system semantics, or by sending every
file open request to a server. We have introduced a locking
construct, the semi-preemptible lock, that permits file sys-
tem clients to grant most file open requests locally, with-
out a server transaction. By avoiding server messages on
open, our client improves performance by exploiting lo-
cality of access to files.

At the file system client, semi-preemptible locks are
used to summarize open state, so that many open files
may be granted under the protection of a single semi-
preemptible lock. This reduces global lock state and fur-
ther reduces client-server messages.

Distributed file systems play a central role in dis-
tributed computing because they mask the complexity of
distributed data management, and users understand the file
system interface. With semi-preemptible locking, we con-
tinue to approach the goal of providing high performance
file access in a distributed system.

References

{11 T.E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patterson,
D. S. Roselli, and R. Y. Wang. Serverless network file sys-
tems. ACM Transactions on Computer Systems, 14(1):41-
79, February 1996.

[2] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W. Shirriff,
and J. K. Ousterhout. Measurements of a distributed file
system. In Proceedings of the 13th Annual Symposium on
Operating Systems, October 1991.

[3]1 A.F Benner. Fibre Channel: Gigabit Communication and
I/0 for Computer Networks. McGraw-Hill Series on Com-
puter Communications, 1996,

[4] A. D. Birrell and R. M. Needham. A universal file
server. IEEE Transactions on Software Engineering, SE-
6(3), September 1980.

D. E. Culler, J. P. Singh, and A. Gupta. Parallel Com-
puter Architecture: A Hardware/Software Approach. Mor-
gan Kaufmann Publishers, Inc., San Francisco, California,
USA., 1999.

M. Devarakonda, D. Kish, and A. Mohindra. Recovery in
the Calypso file system. ACM Transactions on Computer
Systems, 14(3), August 1996.

H. Frazier and H. Johnson. Gigabit ethernet: From 100 to
1,000 Mbps. IEEE Internet Computing, 3(1), 1999.

G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang,
E. M. Feinberg, H. Gobioff, C. Lee, B. Ozceri, E. Riedel,
D. Rochberg, and J. Zelenka. File server scaling with
network-attached secure disks. In Performance Evaluation
Review, volume 25, 1997.

G. A. Gibson, D. F. Nagle, K. Amiri, F. W. Chang, H. Go-
bioff, E. Riedel, D. Rochberg, and J. Zelenka. Filesystems
for network-attach secure disks. Technical Report CMU-
CS-97-118, School of Computer Science, Carnegie Mellon
University, July 1997.

[10] C.G. Gray and D. R. Cheriton. Leases: An efficient fault-
tolerant mechanism for distributed file cache consistency.
In Proceedings of the 12th ACM Symposium on Operating
Systems Principles, December 1989.

(5

—

[6

—

[7

—

[8

_—

[9

[hest

[11] J. Gray and A. Reuter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann Publishers, Inc., San
Mateo, California, USA., 1993.

404

(12]

[13]

[14]

(15]

[16

[ty

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

B. Gronvall, A. Westerlund, and S. Pink. The design of
a multicast-based distributed file system. In Proceedings
of the 3rd Symposium on Operating Systems Design and
Implementation, 1999.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-81, February
1988.

M. L. Kazar. Synchronization and caching issues in the
Andrew file system. In Proceedings of the USENIX Winter
Technical Conference, February 1988.

M. L. Kazar, B. W. Leverett, O. T. Anderson, V. Apos-
tolides, B. A. Bottos, S. Chutani, C. F. Everhart, W. A.
Mason, S. Tu, and R. Zayas. DEcorum file system archi-
tectural overview. In Proceedings of the Summer USENIX
Conference, June 1990.

J. J. Kistler and M. Satyanarayanan. Disconnected opera-
tion in the Coda file system. ACM Transactions on Com-
puter Systems, 10(1), 1992,

P. J. Leach. A common Internet file system (CIFS/1.0) pro-
tocol. Technical report, Network Working Group, Internet
Engineering Task Force, December 1997.

T. Mann, A. Birrell, A. Hisgen, C. Jerian, and G. Swart.
A coherent distributed file cache with directory write-
behind. ACM Transactions on Computer Systems, 12(2),
May 1994.

M. N. Nelson, B. B. Welch, and J. K. Ousterhout. Caching
in the sprite network file system. ACM Transactions on
Computer Systems, 6(1):137-152, February 1988.

K. W. Preslan, A. P. Barry, J. E. Brassow, G. M. Erick-
son, E. Nygaard, C. J. Sabol, S. R. Soltis, D. C. Teigland,
and M. T. O’Keefe. A 64-bit, shared disk file system for
Linux. In Proceedings of the 16th IEEE Mass Storage Sys-
tems Symposium, 1999.

M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly avail-
able file system for a distributed workstation environment.
IEEE Transactions on Computers, 39(4), April 1990.

C. A. Thekkath, T. Mann, and E. K. Lee. Frangipani: A
scalable distributed file system. In Proceedings of the 16th
ACM Symposium on Operating System Principles, 1997.

B. Walker, G. Popek, R. English, C. Kline, and G. Thiel.
The LOCUS distributed operating system. In Proceedings
of the 9th ACM Symposium on Operating Systems Princi-
ples, 1983.

D. Walsh, B. Lyon, G. Sager, J. Chang, D. Goldberh,
S. Kleiman, T. Lyon, R. Sandberg, and P. Weiss. Overview
of the Sun network file system. In Proceedings of the 1985
Winter Usenix Technical Conference, January 1985,

https://www.researchgate.net/publication/3841571

