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ABSTRACT OF THE DISSERTATION

Electric Field, Strain, Magnetic Proximity Effect in Two-Dimensional Heterostructures: A
Theoretical Study

by

Shanshan Su

Doctor of Philosophy, Graduate Program in Electrical Engineering
University of California, Riverside, June 2017

Dr. Roger K. Lake, Chairperson

Due to the self-passivated and dangling bond free surfaces of two-dimensional (2D),

a variety of vertical heterostructures are designed with a wide range of bandgap and material

properties. We use first-principles simulations to investigate the electric field, strain and

magnetic proximity effect in 2D heterostructures.

Both monolayer WSe2/monolayer MoSe2 and bilayer WSe2/monolayer MoSe2 form

intrinsic type II heterojunction. As the electric field is ramped from negative to positive,

the band structure of both structures shows a transition from indirect to direct bandgap.

The bilayer WSe2/monolayer MoSe2 even shows a transition from type I heterojunction to

type II heterojunction under negative electric field.

HfSe2/SnS2 is indirect bandgap heterostructure and shows a coherent superpo-

sition of the conduction band wavefunctions of the individual layers at conduction band

minimum (CBM). The CBM without electric field is weighted towards SnS2 layer, a ver-

tical electric field of 0.2 V/Å, pointing from HfSe2 to SnS2 layer, reverses the weights of

the conduction band wavefunction. Placing graphene on HfSe2/SnS2 results in significant

vii



charge transfer from graphene to the heterostructure, and the trilayer system forms a neg-

ative Schottky barrier contact for electron injection from graphene into HfSe2/SnS2. The

contact resistance of graphene on HfSe2/SnS2 calculated from a tunneling Hamiltonian

indicates an excellent low-resistance contact.

PtSe2/SnS2 forms a Mexican hat in the valence bands around Γ. The in-plane

biaxial strain can significantly tune the band structures of PtSe2/SnS2. Under tensile

strain the height of Mexican hat is more than six times of the value without strain; while

under compressive strain, a semiconducting to metallic transition is observed. Graphene in

contact with SnS2 layer of PtSe2/SnS2 heterostructure forms negative Schottky barrier.

Recent experiments demonstrating proximity induced ferromagnetism in graphene

motivate this study of commensurate EuO/graphene/EuO heterostructures. Using insights

from lattice symmetries of EuO/graphene/EuO heterostructures, we develop a model Hamil-

tonian that includes proximity induced exchange splitting, spin-orbit coupling, and interval-

ley interactions with parameters fitted to ab initio calculations. The intervalley interaction

opens up a trivial gap preventing the system from crossing into a non-trivial state. The

model Hamiltonian is analyzed to determine the conditions under which the heterostruc-

tures can exhibit topologically non-trivial bands.
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(c) Isosurfaces of band resolved wave-functions of the CBM andof the AB
stacked heterostructure under applied electric fields of -0.4, 0, and 0.4 V/Å. 36

xii



4.5 (a) Evolution of the two lowest conduction band edges as a function of electric
field for the (a) AA and (b) AB heterostructures. E = 0 corresponds to the
middle of the PBE calculated bandgap. The colors of the lines and the
datapoints indicate the layer corresponding to the majority weight of the
wavefunction, blue for SnS2 and red for HfSe2. The shape and size of the
datapoints indicate the relative weight of the wavefunction on the majority
layer, blue squares for SnS2 and red circles for HfSe2. The numerical weights
of the wavefunction on the HfSe2 and SnS2 layers for each band are given
above (red) and below (blue) each datapoint, respectively. The two weights
add up to be 1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.6 BN on HfSe2/SnS2. (a) Brillouin zone folding resulting from the 2 × 2 unit
cell of the HfSe2/SnS2 and the 3 × 3 unit cell of the BN or graphene. The
outer Brillouin zone (BZ) in red is the BZ of the graphene or BN. The BZ
in blue is the BZ of the HfSe2/SnS2. The innermost BZ in green is the
commensurate BZ (CBZ) of the supercell. The CBZ is tiled over the entire
k-space region to show that the M point of the blue BZ lies at the Γ point
of the first repeated CBZ, and the K point of the red BZ lies at the Γ point
of the second repeated CBZ. (b) Atomistic structures for BN on AA and
AB stacked HfSe2/SnS2. (c) Electronic bandstructure for AA stacking. (d)
Electronic bandstructure for AB stacking. In (c) and (d), the color indicates
on which layer the wavefunction is most heavily weighted. . . . . . . . . . 40

4.7 Trilayer of graphene and AA stacked HfSe2/SnS2. (a) Atomic structure of
graphene on the HfSe2 layer. (c) and (e) are the corresponding electronic
structure plots. (e) focuses on the small energy range near the Fermi level. (g)
shows the charge transfer at the interface. (b) Atomic structure of graphene
on the SnS2 layer. (d) and (f) are the corresponding electronic structure
plots. (f) focuses on the small energy range near the Fermi level. (h) shows
the charge transfer at the interface. In (g) and (h), the charge accumulation
and depletion is denoted by the yellow and blue color, respectively. The Fermi
level is at E = 0. The purple circles in (e) and (f) indicate the anti-crossing
of the graphene hole band and the HfSe2/SnS2 conduction band. . . . . . . 47

4.8 Trilayer of graphene and AB stacked HfSe2/SnS2. (a) Atomic structure of
graphene on the HfSe2 layer. (c) and (e) are the corresponding electronic
structure plots. (e) focuses on the small energy range near the Fermi level. (g)
shows the charge transfer at the interface. (b) Atomic structure of graphene
on the SnS2 layer. (d) and (f) are the corresponding electronic structure
plots. (f) focuses on the small energy range near the Fermi level. (h) shows
the charge transfer at the interface. In (g) and (h), the charge accumulation
and depletion is denoted by the yellow and blue color, respectively. The Fermi
level is at E = 0. The purple circles in (e) and (f) indicate the anti-crossing
of the graphene hole band and the HfSe2/SnS2 conduction band. . . . . . . 48

xiii



5.1 Schematic views of AA and AB stacked heterostructures. The top layer is
PtSe2 and the bottom layer is SnS2. The positive direction of the applied
electric field is shown as an arrow. . . . . . . . . . . . . . . . . . . . . . . . 53

5.2 Band structure of heterostructure composed of monolayer SnS2 and mono-
layer PtSe2 with SOC. (a) AA stacked heterostructure with CBM and VBM
marked with red; (b) AB stacked heterostructure with CBM and VBM
marked with red; (c) ionic composition of AA stacked band structure; (d)
ionic composition of AB stacked band structure. . . . . . . . . . . . . . . . 54

5.3 Band structure of AA stacked heterostructure under vdW strain. (a)0.4 Å;
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Chapter 1

Introduction and Goals

The down-scaling of metal oxide semiconductor field effect transistors (MOSFETs)

has followed the Moore’s law, making possible the development of modern electronic de-

vices, such as smart-phones and laptops with more functions. After years of development,

we are approaching the limit of Moore’s law. Many projections have suggested that the

ultimate limit of silicon MOSFETs is the 5 nm channel length. [3, 4] There is world-wide

effort to identify materials that could compliment Si and extend Moore’s law. This dis-

sertation investigates the properties of some of the two-dimensional (2D) materials, their

heterostructures, and contacts.

1.1 Zoo of 2D Materials

Since the discovery of graphene [2, 5], the family of 2D materials has grown to

include hexagon-boron nitride (hBN) [6], black-phosphorous [7], transition-metal dichalco-

genides (TMDCs) [8], III-VI materials [9], transition-metal carbides (MXenes) [10], bismuth
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and antimony selenides and tellurides (topological insulators) [11, 12] and non-transition-

element chalcogenides, such as SnS2 [1], etc. All schematic structures for different 2D

materials are shown in Fig. 1.1. 2D materials have covalent bonds in-plane to connect

the atoms, while van der Waals (vdW) forces connect layers in the direction perpendicular

to material plane. Due to the weak bonding between layers, individual layers can be me-

chanically exfoliated. Furthermore, the surfaces of each layer are self-passivated, since the

in-plane bonds account for all of the valence electrons. The chemically inert surfaces free

of dangling bonds make the fabrication of atomiclly thin devices possible.

Both graphene and hBN [6] are single-layer materials with hexagonal in-plane

atomic arrangement. Graphene is composed of carbon atoms only, while hBN is composed

of boron and nitrogen atoms as shown in Fig. 1.1. TMDCs consist of hexagonal-layers of

transition-metal atoms (M) sandwiched between two layers of chalcogen atoms (X). The

chemical formula can be expressed as MX2. The chalcogen atoms are typically S, Se, and

Te. The transition metal atom can be chosen from Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re,

Pd, Pt and etc. The stacking arrangement of the TMDC crystals can be further categorized

as 1T, 2H, 3R phases. Non-transition-element chalcogenides with formula AX2 crystallize in

hexagonal closed packed structure with P 3̄m1 symmetry. The X, similar to TMDCs, refers

to the chalcogen atoms, while A refers to non-transition-element, such as Sn, Pb. Each

unit cell contains three atoms, and extends over only one sandwich layer. [13] The stacking

arrangement of this type of materials is 1T which has the same shape of the 1T phase

of TMDCs. All listed 2D materials have different electronic properties, such as metallic,

semiconducting, or wide bandgap insulators.
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(a)

Graphene

(b)

hBN

(e)

Black Phosphorus

(d)

SnS
2

(c)

MoSe
2

(f )

(g)

Bi
2
Se

3

GaS

Figure 1.1: The schematic structure of typical 2D materials. (a) Graphene; (b) hBN; (c) MoSe2

(2H phase); (d) SnS2 (1T phase); (e) black phosphorus; (f) GaS; (g) Bi2Se3.
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1.2 2D Heterostructures

Due to the excellent surface properties of 2D materials, different types of 2D

materials can be easily stacked together. Different properties from different 2D materials

can be induced by proximity if they are stacked together. Research has focused on 2D

heterostructures experimentally and theoretically, such as MoS2/SnS2 [14], MoS2/black

phosphorus [15], and HfSe2/SnS2 [1]. The types of heterostructures can be categorized in

the way they are stacked as vertical or lateral heterostructures. Examples of vertical and

lateral heterostructures are shown in Fig. 1.2. This dissertation focuses on the study of

different vertical heterostructures.

There have been some interesting observations made on vertical heterostructure.

Graphene on hBN leads to the formation of the secondary Dirac points [16–21]; TMDCs

can induce a proximity spin-orbit coupling in graphene [16,22,23]; graphene on HfSe2/SnS2

forms a negative Schottky barrier [1], etc.

(a)

(b)

Se W

Mo

Figure 1.2: The structures of (a) vertical (MoSe2/WSe2) and (b) lateral (MoSe2/WSe2)
heterostructures.
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In this dissertation, I primarily focus on the study of the electrical field, strain

and magnetic proximity effect in the 2D heterostructures. The rest of this dissertation is

organized as follows. Chapter 2 presents a background of density functional theory (DFT),

the LDA+U method and the hybrid functional (HSE) used in this study. Chapter 3 dis-

cusses the electric field effect on the electronic structure of a MoSe2/WSe2 heterostructure.

Chapter 4 discusses the electronic properties of HfSe2/SnS2 under an electric field, as well

as the negative Schottky barrier of graphene/HfSe2/SnS2. More band structures related

to this heterostructure are shown in Appendix A. Chapter 5 focuses on the analysis of

PtSe2/SnS2 heterostructures, and studies the strain effect and the electric field effect in

the heterostructures, we also discuss the electronic structures of PtSe2/SnS2 with graphene

contacts. Chapter 6 extends our 2D heterostructure study to the field of magnetic proximity

effect. By sandwiching graphene with magnetic layers, the spin-orbit splitting is induced

into graphene. In the last, Chapter 7 summarizes key findings of this dissertation.
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Chapter 2

Theoretical Methods

In this chapter, we focus on the introduction of the methods used for the calcu-

lations. The first section is the general introduction to density functional theory (DFT)

and van der Waals correction of DFT. The second section of this chapter focuses on the

introduction of LDA+U method. The hybrid functional is introduced in the last section.

The differences among the regular DFT, LDA+U and the hybrid functional are mentioned

along with the introductions.

DFT is one of the widely used computational quantum mechanical modelling meth-

ods in condensed matter physics, chemistry and materials science. DFT has been applied

to study electronic, mechanical and magnetic properties of complex material systems. The

DFT computation method is based on the quantum mechanical modelling of many-electron

systems. For a system of electrons and nuclei, the Hamiltonian is written as:

H = T + Vext + Vint + Enn (2.1)
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where T is the electronic kinetic energy, Vext is the potential due to the electron-nuclei

interactions, Vint is the potential due to electron-electron interactions, and Enn refers to

the interaction between nuclei.

The basis of DFT is the Hohenberg-Kohn (HK) theorems. [24] From the first HK

theorem, the ground-state of many-electron systems can be determined by the electron

density of the system. The second HK theory gives the total ground-state energy. The

total energy functional can be written as:

E[n] = T [n] +

∫
d3rVext(r)n(r) + Eint[n] + Enn (2.2)

T[n] is the kinetic energy, Eint is the energy between electrons, Vext is the external potential

acting on the electrons from nuclei.

From the HK theorem, an approximation method is developed for treating an inho-

mogeneous system of interaction electrons. This method is called Kohn-Sham method. [25]

Within the framework of Kohn-Sham DFT, the problem transfers from an intractable many-

body problem to a tractable problem of non-interacting electrons moving in an effective

potential. The effective Kohn-Sham Hamiltonian of the non-interacting particles is:

VKS(r) = Vext(r) + VH(r) + VXC(r) (2.3)

VH is the Hartree potential. VXC is the exchange-correlation potential which includes the

electron-electron interaction beyond the Hartree potential.
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The exact functional for the exchange-correlation term is unknown. Two common

approaches to approximate exchange-correlation potential are the local density approxima-

tion (LDA) and the generalized gradient approximation (GGA). Both LDA and GGA can

give accurate description the properties of materials which resemble a homogeneous elec-

tron gas. At the same time, both approximations are unable to describe van der Waals

interactions resulting from dynamical correlations between fluctuating charge distributions

correctly. A practical way to solve this problem is to add a correction term to the conven-

tional Kohn-Sham DFT energy. The new expression of the energy can be written as [26]:

EDFT−vdW = EKS + EvdW , (2.4)

where EKS is the original energy from Kohn-Sham equation; EvdW is the correction term

which is computed by using DFT-D2 approximation method [26] as:

EvdW = −s6

Nat−1∑
i=1

Nat∑
j=i+1

Cij6
R6
ij

fdmp(Rij), (2.5)

Nat is the number of atoms in the system, Cij6 denotes the dispersion coefficient for atom pair

i, j, s6 is a global scaling factor which is 0.25 in our calculations, and Rij is an interatomic

distance. fdmp is the damping function whose role is to scale the force field such that the

contributions from interactions within typical bonding distances are minimized.

There are two types of problems of LDA and GGA calculations. The first problem

is the LDA and GGA calculations fail to describe the electronic structure of the material

where some the ions contain partly filled valence d or f shells. As shown in Ref. [27], many
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transition metal oxides, such as MnO and NiO, have been predicted by LDA and GGA

calculations to have metallic ground state instead of experimentally observed insulating

state. The origin of this failure is associated with an inadequante description of the strong

Coulomb repulsion between 3d or 4f electrons in the metal ions. [28] To fix the problem,

the effective Hubbard U is introduced to characterize on-site Coulomb repulsion, and this

method is called LDA+U. [29] The U correction to the energy can be expressed as [29]:

ELDA/GGA+U = ELDA/GGA +
U − J

2

∑
σ

(nm,σ − n2
m,σ). (2.6)

nm,σ is the occupation number of the mth d or f state. m in the equation represents the

projections of the orbital momentum; σ is the spin. The total number of electron can

be expressed as
∑

m nm,σ. U and J are the spherically averaged matrix elements of the

screened Coulomb electron-electron interaction. The LDA+U method can be understood

as adding a penalty functional to the original LDA and GGA energy expression. In Chapter

6, we used this LDA+U functional to describe the electronic structure of EuO.

The second problem of LDA and GGA calculations is that the bandgap of semi-

conductor or insulator is always underestimated. For example, the bandgap of bilayer

MoS2 is 1.64 eV [30] from experimental studies. The GGA calculations predict the bilayer

bandgap of MoS2 to be 1.25 eV [30]. To solve this problem, the hybrid functional named

the Heyd-Scuseria-Ernzerhof (HSE) functional is used. [31] The basic idea for HSE is to mix

the GGA implemented by a Perdew-Burke and Ernzerhof (PBE) [32–34] with an orbital

dependent Hartree-Fock calculation. The Hartree-Fock calculation provides the short range

Fock exchange; while the GGA calculation preserves the accuracy while avoiding the cost
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and pathologies [35] of long-range Fock exchange. The method used to perform this mix is

called the error function screened Coulomb potential, which can be expressed as:

EPBEhxc = aEHF,SRx (µ) + (1− a)EPBE,SRx (µ) + EPBE,LRx (µ) + EPBEc , (2.7)

where a is the mixing parameter and each of the terms above is related to an adjustable

parameter, a common value used for a is 0.25. µ is the range-separation at which the

short-range interactions become negligible. When we adjust µ to 0, it reduces to the PBE

functional. SR and LR are the labels representing short-ranged and long-ranged part of the

electron-electron interaction. EHF,SRx is the short range Hartree-Fock exact exchange func-

tional, EPBE,SRx and EPBE,LRx are the short and long range components of PBE exchange

functional, EPBEc is the PBE correlation functional. The calculated bandgap for bilayer

MoS2 using the HSE functional mentioned above is 1.64 eV which is in very good agree-

ment with the experimental result. [30] Although the HSE functional provides more reliable

electronic band structures, it is also more expensive in terms of computation. We take

the trade-off between accuracy and computational resources by using PBE-DFT method to

show the influence of both electric field and mechanical strain, while using HSE give the

accurate prediction of electronic structure.
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Chapter 3

Electric Field Effect in Transition

Metal Dichalcogenides

3.1 Introduction

Layered TMDCs have a chemical formula, MX2, where M is transition metal (e.g.

Ti, Hf, Mo), and X is the chalcogen atom (e.g. S, Se, and Te). Each layer of TMDCs

is composed of one layer of transition metal atoms sandwiched by two layers of chalcogen

atoms. TMDCs offer a broad range of electronic properties. [16] Most of TiX2, ZrX2, MoX2,

WX2 combinations show either insulating or semiconducting electronic properties; while

VX2, NbX2 and TaX2 are most likely metallic or semi-metallic. The difference in electronic

structure is due to the progressive filling of the non-bonding d bands of the transition metal

atoms. [16]
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TMDCs are usually found in three polytypes: 1T, 2H and 3R. The numbers in the

polytype names indicate the number of layers in the unit cell, and the capital letters refer

to the symmetry (e.g. T: trigonal; H: hexagonal; R: rhombohedral). [36] The schematic

view of these polytypes are shown in Fig. 3.1. TiX2, ZrX2, HfX2, and VX2 all belong to

1T phase TMDCs. As shown in Fig. 3.1(a), metal atoms in the 1T structure are sitting

right on top of the metal atoms, and are sandwiched by chalcogen atoms in an octahedral

coordination. This 1T polytype belongs to the P 3̄m1 symmorphic space group. [36] The

MoX2 family and WS2, WSe2 all fall into 2H polytype. 2H polytypes can have different

stacking symmetries: 2Ha (M atoms sit right on top of each other, the X atoms from the

two layers sit on the opposite side of M atoms), 2Hb (there is a sliding of the in-plane

distance between X and M atoms between the two layers) and 2Hc (as shown in Fig. 3.1).

Among three phases under category of 2H, we focus on 2Hc since this is the polytype of

MoX2 family. 2Hc belongs to nonsymmorphic hexagonal space group P63/mmc. [36] The

primitive unit cell is as shown in Fig. 3.1 with 6 atoms. Unlike 1T, the symmetry of 2H

phase material depends on the number of layers, e.g. odd or even. MoS2 naturally is 2H

phase, however, under high pressure and temperature, MoS2 becomes 3R phase. [36] 3R

phase, as shown in Fig. 3.1, is found only in bulk compounds and relaxed to the 2H phase

upon mild heating. [37]

In this section, We will focus only on semiconducting TMDCs. Semiconducting

TMDCs have shown promising electronic, [38–43] optical, [43] mechanical [44] and spintronic

[45] properties. Due to the weak interlayer coupling, it is very easy to mechanically exfoliate

monolayer and few-layer crystals.
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(a) (b) (c)

Figure 3.1: The schematic structures of three polytypes of TMDCs. (a) Side and top views of 1T
structure; (b) Side and top views of 2H structure; (c) 3R structure.

Monolayer TMDCs like MoS2, MoSe2 and WSe2 have direct bandgaps, while the

multilayers have indirect bandgaps. Unlike graphene, semiconducting TMDCs with finite

bandgaps are promising for the applications in electronic and photonic devices with an on/off

ratio exceeding 108. [46] Devices built from TMDCs can extend Si electronics into the area

of flexible electronics, optoelectronics, and spintronics. The TMDCs can also be integrated

onto a conventional Si CMOS chip to provide added functionality and performance.

In this chapter, we studied WSe2/MoSe2 heterostructures from two different as-

pects, the thickness dependence and the influence of electric field. Section 3.3.1 discusses

the changes of the electronic structures of monolayer MoSe2 with monolayer WSe2 under

different electric fields. A different thickness of the WSe2/MoSe2 heterostructure (bilayer

WSe2 with monolayer MoSe2) is studied in Section 3.3.2.
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3.2 Methods

The band dispersions of TMDCs heterostructures are calculated using the Vienna

ab initio simulation package (VASP) [47–49] in the projected-augmented-wave method [50].

The generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) form

[32–34] is used for the exchange correlation energy. The van der Waals interaction between

the layers is taken into consideration by using DFT-D2 method of Grimme [51]. The energy

cutoff of the plane wave basis is 500 eV for all calculations. All the calculations in this

chapter are considered with spin-orbit coupling (SOC) due to the heavy metal element in

WSe2/MoSe2. We also used Heyd-Scuseria-Ernzerhof (HSE) functional [31] to give a more

accurate prediction of the bandgaps and electronic structure of WSe2/MoSe2. The HSE

calculations incorporate 25% short-range Hartree-Fock exchange. The screening parameter

µ is set to 0.2 Å−1. During all structural relaxations, the convergence tolerance on the

Hellmann-Feynman forces is less than 0.01 eV/Å. An 8 × 8 × 1 Monkhorst-Pack k-point

mesh is used for the 2D films. A vacuum buffer spacing 20 Å is used for all heterostructures

calculations.

3.3 Electric Field Effect in WSe2/MoSe2

The lattice constant of MoSe2 is 3.3247 Å, and the lattice constant of WSe2 is

3.326 Å. The lattice mismatch between the two materials is less than 1%. The lattice

constant of WSe2/MoSe2 heterostructure is 3.325 Å. Though there are several possible

stacking structures, previous studies suggest the most energy-stable structure is the 2H

structure [52].
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3.3.1 Monolayer WSe2 with Monolayer MoSe2

The 2H stacking of two monolayers is shown in Fig. 3.2. The top layer is MoSe2

and the bottom layer is WSe2 The electric field is applied perpendicular to the bilayer plane,

and the positive direction of the field is pointing from WSe2 layer to MoSe2 layer as shown

in Fig. 3.2.

The band structure of MoSe2/WSe2 calculated with SOC by using PBE functional

is shown in Fig. 3.3. The heterostructure has direct bandgap which is 1.0173 eV. The

conduction band minimum (CBM) is localized on MoSe2 layer with an orbital composition

from the d orbital of Mo, while the valence band maximum (VBM) is localized on WSe2 layer

with an orbital composition from the d orbital of W. Therefore, the monolayer/monolayer

heterostructure forms intrinsic type II heterojunction. Both CBM and VBM are at K.

The SOC splitting of WSe2 of valence band at K is 485.1 meV, while the splitting for

the conduction band at K is 37.9 meV. The splitting gap of MoSe2 of valence band at

K is 204.7 meV, and the conduction band splitting is 20.4 meV. The SOC splitting and

MoSe2

WSe2

Positive 

E-field

Figure 3.2: The structure of heterostructure. The top figure is the superlattice of the
heterostructure. The bottom figure shows the side view of the monolayer WSe2/ monolayer MoSe2

heterostructure. The top layer is MoSe2 and bottom layer is WSe2. The arrow on the left side
refers the positive direction of the electric field. The vacuum space is not shown in the figure.
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bandgap for each layer as shown in Table. 3.1 remain the same as the one for the monolayer

TMDCs. [53, 54] Therefore, we know that the SOC splitting gaps are not affected by the

interlayer coupling between WSe2 and MoSe2. The conduction offset between the two layers

is 218.0 meV, while the valence offset between the two layers is 299.7 meV. The bandgap

of MoSe2 in the heterostructure is obtained as 1.317 eV, while the bandgap of WSe2 is

obtained as 1.235 eV. Our calculated bandgaps are consistent with the previous calculated

results [55] for the monolayer TMDCs with SOC .

The bandgap and band offsets of WSe2/MoSe2 under different electric fields are

listed in the Table 3.1. A plot of the resulting bandgap versus the electric field is shown in

Fig. 3.4 in blue. The trend of bandgaps shows a clear asymmetric shape. Under a positive

electric field, the bandgap of the heterostructure decreases monotonically. The bandgap

stays direct at K point, which can be found from Table 3.1. The band offsets in conduction

and valence bands between WSe2 and MoSe2 increase with each increment of the positive

electric field. Together with Fig. 3.5, it is clear that the closing of the gap is the result of

the comparative band shift of WSe2 and MoSe2. Due to the shift of the bands, the Γ and

Λ points share the same composition as K point for valence and conduction bands under

a positive electric field. From Table 3.1, it is also clear that the SOC splitting at K remain

the same throughout all applied electric fields.

A direct bandgap to indirect bandgap transition can be observed as shown in

Table 3.1. Until −0.1 eV/Å, the bandgap stays direct; when the electric field reaches −0.2

eV/Å, the bandgap becomes indirect. Table 3.1 shows the band offsets between MoSe2 and

WSe2 in both conduction bands and valence bands with a negative sign when the electric
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Figure 3.3: SOC band structure of MoSe2/WSe2 with ionic composition.

field reaches −0.2 eV/Å. Therefore, together with the direct bandgap to indirect bandgap

transition, there is a band edge switching between MoSe2 and WSe2. After passing −0.2

eV/Å, the CBM is localized on WSe2, and VBM is localized on MoSe2. From both the Table

3.1 and Fig. 3.4, a saturation of the bandgap can be found at −0.2 eV/Å. Similar to the

positive electric field, the SOC splitting gaps for both MoSe2 and WSe2 remain unchanged

throughout the negative electric field. The gap between Λ and K first increases, before

decreasing to a very low value. The ∆EΛ−K is about the same level of the conduction band

SOC gap level. The same trend also happens to the gap between Γ and K.

The effective masses of the heterostructure under different electric fields are listed

in Table 3.2. The masses remain almost the same from 0 eV/Å to 0.4 eV/Å. Under −0.2

eV/Å, the effective masses at K remain the same as the values under 0 electric field. This

is due to the constant of the band compositions of the heterostructure as shown in Fig.

3.5. As expected, under −0.4 eV/Å, the effective masses change a lot at K, the conduction
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Table 3.1: The gaps of heterostructure under positive electric field. E refers to the electric field
applied to the heterostructure, the unit is eV/Å. EG is the bandgap of the heterostructure.
∆Econd

Λ−K shows the gap between Λ and K valley at conduction band when CBM is not at K.

∆Eval
Γ−K shows the gap between Γ and K valley at valence band when VBM is not at K. Kcond

Mo is

the SOC splitting gap of MoSe2 conduction band at K valley, Kval
Mo is the SOC splitting gap of

MoSe2 valence band at K valley. Kcond
W is the SOC splitting gap of WSe2 conduction band at K

valley, Kval
W is the SOC splitting gap of WSe2 valence band at K valley. ∆Econd is the band offset

between WSe2 and MoSe2 in the conduction bands, ∆Eval is the band offset between WSe2 and
MoSe2 in the valence bands. ∆Econd and ∆Eval are positive when CBM and VBM of WSe2 are
above CBM and VBM of MoSe2 in energy; otherwise, the sign of the two gaps turns to negative.
The values are all in units of meV.

E EG ∆EcondΛ−K ∆EvalΓ−K Kcond
Mo Kval

Mo Kcond
W Kval

W ∆Econd ∆Eval

0.0 1017.3 43.4 65.3 20.4 204.7 37.9 485.1 218 299.7
(K−K)

0.1 933.0 73.0 94.9 20.5 215.6 38.2 495.7 302.9 372.2
(K−K)

0.2 848.8 94.8 120.7 20.5 144.1 38.6 424.1 387.5 515.5
(K−K)

0.3 765.0 110.1 142.9 20.5 165.9 39.2 445.8 471.5 588.9
(K−K)

0.4 686.0 120.0 161.0 20.5 173.5 39.8 453.2 550.6 660.1
(K−K)

0.5 599.6 127.7 178.3 20.6 177.2 40.8 456.6 636.6 742.5
(K−K)

-0.1 1102 5.2 31.5 20.4 201 37.7 481.4 132.1 219.7
(K−K)

-0.2 1138.2 41.3 6.4 20.6 200.2 37.7 480.8 -41.3 -6.4
(Γ−Λ)

-0.3 1125.0 57.2 47.5 14.6 201.6 31.5 482.3 -99.8 -47.5
(Γ−Λ)

-0.4 1098.6 31.8 67.6 19.5 206.7 36.3 487.5 -127.2 -93.1
(Γ−Λ)

-0.5 1065.2 14.7 38.1 19.7 218.9 36.4 499.7 -225.1 -131.0
(Γ−Λ)

-0.6 1022.0 1 11.3 19.6 142.3 36.3 423.1 -294.8 -264.2
(Γ−Λ)
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Table 3.2: The effective masses of heterostructure under different electric field. mT represents the
transverse effective mass, and mL represents the longitudinal effective mass.

Electric field mLconK mT conK mLvalK mT valK mLconΛ mT conΛ mLvalΓ mT valΓ

(eV/Å) (m0) (m0) (m0) (m0) (m0) (m0) (m0) (m0)

-0.4 0.399 0.399 0.588 0.588 0.502 0.614 1.324 1.335

-0.2 0.503 0.503 0.356 0.356 0.525 0.639 1.139 1.138

0.0 0.498 0.498 0.373 0.373 0.561 0.695 1.208 1.204

0.2 0.497 0.498 0.353 0.354 0.611 0.782 1.326 1.318

0.4 0.497 0.497 0.354 0.354 0.623 0.829 1.357 1.349

band at K changes to WSe2, and the valence band edge changes to MoSe2. The electron

effective mass at Λ is increasing as a function of electric field.

To have a more accurate prediction of the bandgaps, HSE functional calculations

are performed for the heterostructure. The HSE bandgaps under five different electric fields

are listed in Table 3.3. The trend of HSE bandgap is shown in Fig. 3.6 in red. The HSE

bandgap shows similar trend as the PBE results. The main difference between the two

lines is the value of the gap. The HSE bandgap remains as direct until −0.2 eV/Å. The

gap between K and Λ, K and Γ decreases as a function of the electric field monotonically.

Fig.3.6 shows the comparison between the PBE band structure and the HSE band structure.

Table 3.3: The gaps of heterostructure under negative electric field. ∆Econd
Λ−K shows the gap

between Λ and K valley at conduction band when CBM is not at K. ∆Eval
Γ−K shows the gap

between Γ and K valley at valence band when VBM is not at K.

Electric field (eV/Å) EG KG ∆EcondΛ−K ∆EvalΓ−K
-0.4 1581.619 (K−Λ) 1587.4 5.7 8.3

-0.2 1519.289 (K−K) 1519.289 15.0 105.4

0.0 1327.550 (K−K) 1327.550 121.5 182.5

0.2 1135.322 (K−K) 1135.322 180.7 240.4

0.4 944.5 (K−K) 944.5 202.8 282.8
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Figure 3.4: The bandgap changing as a function of the applied electric field. Blue line and red line
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The shape of the band structures for the two different calculation methods shows similar

features.

3.3.2 Monolayer MoSe2 with Bilayer WSe2

In this part, we will study the monolayer MoSe2/bilayer WSe2 under electric fields.

Given the results of monolayer/monolayer heterostructure, it is clear that the PBE results

can show almost the same trend and band structure shape as HSE, therefore, in this section,

we will calculate all results based on PBE only since we only care for the trend of band

edges. The schematic view of the trilayer system is shown in Fig. 3.7. The stacking order

of the trilayer system follows the 2H stacking.

The direction of the applied field is shown as an arrow in the Fig. 3.7. The

bandgap as a function of the electric field is shown in Fig. 3.8. The corresponding band

alignment under different electric fields is shown in Fig. 3.9. From Fig. 3.8, we can know

that the trilayer system has indirect bandgap which is 0.94 eV. As show in Fig. 3.9(b), the

CBM is localized on MoSe2 at K, while the VBM is localized on WSe2 at Γ. Therefore,

similar to the monolayer/monolayer heterostructure, the bilayer/monolayer forms intrinsic

type II heterojunction.

Throughout negative electric fields, there is a clear difference between the bandgap

and the gap at K in Fig. 3.8, which means that the bandgap of the trilayer system stays

indirect. The band alignment of the trilayer heterostructure under -0.2 eV/Å is shown in

Fig. 3.9(c). The CBM switches to WSe2 layer under this configuration which means it
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HSE functional with SOC.
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Figure 3.7: Schematic structure of heterostructure composed of monolayer MoSe2 and bilayer
WSe2. The arrow on the left refers to the positive direction of applied electric field.

becomes type I heterojunction. This change of heterojunction type is different from the

behavior of the monolayer/monolayer heterostructure.

The transition from indirect bandgap to direct bandgap of the trilayer system

happens under 0.2 eV/Å. With a positive electric field larger than 0.2 eV/Å, the bandgap

switches to direct with both CBM and VBM at K valley. The CBM and VBM remain

localize on MoSe2 and WSe2 layer as the behavior of heterostructure under zero electric

field. The bandgap decreases to be 0.73 eV under 0.2 eV/Å, and it will further decrease

with larger positive electric field to 0.35 eV. In the same time, due to the comparative

movement of band edges of the two materials, the band offsets between MoSe2 and WSe2

increase.

3.4 Conclusion

We have studied two different thicknesses of WSe2/MoSe2 heterostructure, mono-

layer WSe2 with monolayer MoSe2 and bilayer WSe2 with monolayer MoSe2, with spin-orbit
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give the value of gap at K valley.

coupling by using fist principle calculations. Both heterostructures show intrinsic type-II

band alignment with CBM at MoSe2 and VBM at WSe2 under zero electric field. The

monolayer/monolayer heterostructure has direct bandgap, and remains as direct bandgap

throughout all positive electric fields. A direct bandgap to indirect bandgap switching oc-

curs under -0.2 eV/Å. Together with the bandgap transition, a band edge shift for both

CBM and VBM also happens. Through out all applied electric fields, the heterostructure

remains as type II heterojunction. The PBE functional results give the similar features as

the HSE functional results.

The monolayer/bilayer heterostructure has indirect bandgap. The bandgap re-

mains indirect through out all negative electric fields. A transition from indirect bandgap

to direct bandgap happens at 0.2 eV/Å. Unlike monolayer/monolayer heterostructure, un-

der -0.2 eV/Å, the heterostructure becomes type I heterojunction.
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Figure 3.9: Band alignment of WSe2 and MoSe2 in trilayer system under (a) 0.2 eV/Å, (b) zero
electric field and (c) -0.2 eV/Å. The layers with colors can be found as the small figure in (a).
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Chapter 4

Graphene Contacts to A

HfSe2/SnS2 Heterostructure

4.1 Introduction

Heterostructures of two-dimensional (2D) van der Waals (vdW) materials are be-

ing extensively investigated. [56–62] Recent studies of vdW heterostructures have shown

that it is possible to build type II heterojunctions and nearly broken gap heterojunc-

tions. [15, 63–66, 66, 67] In type II heterojunctions, the electron-hole pair is separated both

spatially and energetically enabling efficient photovoltaics and photodetection. [64,65] A few

heterostructures composed of 2H transition metal dichalcogenides, such as WSe2/MoSe2,

remain direct gap with the conduction and valence bands at K. The majority of het-

erostructures, such as, for example, black phosphorus/MoS2 [15,63] are indirect gap, with,

in this particular case, the valence band at Γ and the conduction band at K. For elec-
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tronic applications, multi-layer stacks of 2D materials such as black phosphorus/SnSe2, [68]

WSe2/SnSe2, [66, 67] graphene/BN/graphene [69] and graphene/WS2 [70] are being ex-

ploited for tunnel devices and tunneling field-effect transistors (TFETs). There is also

interest in using graphene to create direct bandgaps in multilayer heterostructures, [71–73]

using graphene to contact or tune other 2D materials, [74–82] and to tune the workfunction

to enhance cold cathode emission [83].

In the last application, [83] placing graphene on SnS2 significantly reduced the

workfunction from that of SnS2 alone, and the charge transfer between the two materials

resulted in p-type graphene and n-type SnS2. The Fermi level of the composite aligned

above the conduction band minimum of the SnS2. From an electrical contact point of view,

such an energetic alignment is a negative Schottky barrier contact, and it is highly desirable,

since it gives a low contact resistance. [84]

Although there is no energetic barrier, the inter-layer current flow is limited by

the inter-layer coupling between the two layers. This coupling will depend on the orbital

composition of the bands and their positions in k-space. [85] This coupling is relatively

weak between graphene and SnS2 near the Fermi level. To increase the coupling while

maintaining a negative Schottky barrier, we investigate the use of a third material, HfSe2,

that serves as a ‘matrix element matching’ layer between the SnS2 and the graphene, since

it has strong coupling to both the SnS2 and the graphene.

In this paper, we analyze a multi-layer structure composed of monolayer HfSe2,

SnS2, graphene, and BN. HfSe2 and SnS2 are both hexagonal, 2D materials with indirect

band gaps of 1.1 eV [86] and 2.4 eV, [87] respectively, and the 1T polytype is energetically
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stable for both materials. [56, 87–89] In monolayer form, their conduction bands are at

M.Stacking the two layers together creates an indirect-gap heterojunction that has type

II qualities, but it does not fall cleanly into any one of the categories used to classify

heterostructures of three-dimensional semiconductors, i.e. type I, type II, or type III, since

the conduction bands strongly couple, and the wavefunction is distributed across both layers.

An electric field applied to the heterostructure causes a shift in weight of the conduction

band wavefunction from the HfSe2 layer to the SnS2 layer such that the band alignment

takes on a type I quality. A commensurate stacking on graphene or BN using a 2×2 supercell

of the HfSe2 / SnS2 and a 3× 3 supercell of the graphene or BN zone-folds the M point of

the HfSe2 / SnS2 back to Γ, and it zone-folds the K point of the graphene or BN back to Γ

resulting in a direct-bandgap heterostructure. The strain between the two systems is low,

1.7% for the BN and 0.1% for the graphene. The charge transfer from the graphene to the

HfSe2 / SnS2 results in a negative Schottky barrier contact to the conduction band.

This paper is organized as follows. Sec. 4.2 describes the methods based on density

functional theory. In Sec. 4.3, AA and AB stacked heterostructures of HfSe2 / SnS2 are first

analyzed, and the effect of an applied vertical electric field is described. Then a third layer

of either graphene or BN is added, and the tri-layer structures are analyzed and discussed.

Conclusions are presented in Sec. 4.4.

4.2 Method

Density functional theory calculations are performed with the Vienna ab initio

simulation package (VASP) [47–49] in the projected-augmented-wave method [50]. The
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generalized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof form [32–34]

(PBE) is used for the exchange correlation energy. The vdW interactions are included with

the DFT-D2 method of Grimme [51]. The kinetic energy cutoff is 500 eV for all calculations.

The first Brillouin zone is sampled with a 8× 8× 1 Γ-centered Monkhorst-Pack grid. During

all structural relaxations, the convergence tolerance on the Hellmann-Feynman forces is less

than 0.01 eV/ Å. A vacuum layer larger than 25 Å is used for heterostructures to eliminate

the interaction between adjacent images in the vertical direction.

The optimized lattice constant of SnS2 is 3.69 Å, and the optimized lattice constant

of HfSe2 is 3.72 Å. The lattice mismatch between SnS2 and HfSe2 is less than 1%. The

lattice constant of the heterostructure is set to the average value of 3.70 Å. The interlayer

separation distances ∆d, illustrated in Fig. 4.1(a), for the relaxed heterostructures are 2.89

Å for AA stacking and 2.99 Å for AB stacking. As a check of the sensitivity of the electronic

bandstructure to the lattice constant, we considered the two extreme cases resulting from

exchanging the lattice constants of HfSe2 and SnS2 and re-calculating the bandstructures of

the individual layers. We found that the bandstructures of the individual material remained

almost the same.

To determine more accurate values for bandgaps, electronic structure calculations

are also performed with the hybrid Heyd-Scuseria-Ernzerhof (HSE) functional. [31] The HSE

calculations incorporate 25% short-range Hartree-Fock exchange. The screening parameter

µ is set to 0.2 Å−1.
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4.3 Results and Discussion

As shown in Fig. 4.1(a) and (b), we consider AA and AB stacking of HfSe2

on SnS2. Both 1T bulk HfSe2 and SnS2 stack in AA order in which the metal atoms of

one layer align with the metal atoms of the other. Sliding one layer with respect to the

other such that the metal atoms of one layer align with the chalcogenide atoms of the

other gives AB stacking. AA and AB stacking correspond to the two most stable stacking

geometries. The binding energy, Eb, is negative for both stacking arrangements. It is defined

as Eb = Ebilayer−(EHfSe2 +ESnS2), where Ebilayer is the total energy of the AA or AB stacked

heterostructure, and EHfSe2 and ESnS2 are the total energies of the isolated HfSe2 and SnS2

layers, respectively. For the AA stacked heterostructure Eb = −0.244 eV/UC, and for the

AB stacked heterostructure Eb = −0.226 eV/UC, where UC is the unit cell consisting of 6

atoms (one metal and two chalcogens from each layer). The binding energy for AA stacking

is 18 meV/UC more negative than for AB stacking indicating that AA stacking is the most

stable structure. Charge transfers from the HfSe2 to the SnS2 as the two layers are brought

together, and the calculated Bader charge [90] transfer is 0.0075/UC (6.3× 1012 cm−2) for

AA stacking and 0.0080/UC (6.7× 1012 cm−2) for AB stacking.

In k-space, both stacking arrangements have an indirect band gap with the con-

duction band minimum (CBM) at the M point and the valence band maximum (VBM) at

Γ. In real-space, the CBM is more heavily weighted on the SnS2 layer, and the VBM is

localized on the HfSe2 layer. The colors of the electronic bands in Fig. 4.1(c,d) indicate

the layer on which the wavefunction is most heavily weighted as indicated in the legend.

The PBE indirect bandgaps are 237 meV and 224 meV for the AA and AB structures,
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respectively. There are two conduction bands close to each other in energy at the M point,

and they originate from the conduction bands of the two individual layers. The energy gap

between the two lowest conduction bands is 316.5 meV and 285.3 meV for AA and AB

stacking, respectively.

A more accurate determination of the energy spacings is obtained by calculating

the electronic structure shown in Fig. 4.2 using the HSE hybrid functional. Qualitatively,

the orbital composition and the order of the bands remain the same and the primary

difference is that the conduction-valence bandgaps increase. The bandgaps increase to

0.88 eV and 0.89 eV for the AA and AB structures, respectively. However, the energy

separation between the two conduction bands at M remains essentially unchanged with

energies of 317.6 meV and 281.4 meV for AA and AB structures, respectively. This energy

spacing between the two conduction bands is the critical energy that governs the crossing

of the two conduction bands under an applied electric field. Since both the HSE and PBE

calculations predict the same energy separation, we use the computationally less expensive

PBE functional to predict the behavior of the heterostructure under applied cross-plane

(vertical) electric fields. Furthermore, since the VBM remains strongly localized in the

HfSe2 for all electric fields and multi-layer structures, the focus of the rest of the paper will

be on the two lowest conduction bands and their evolution with electric field and in contact

with graphene or BN.

When the two monolayers are brought together, the orbitals of the CBM in each

layer will couple and push apart in energy. To understand the evolution of the bands as

the two materials are brought together, we perform a DFT calculation of the AA structure
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Figure 4.1: Atomic structure of (a) AA stacking and (b) AB stacking. (c) AA electronic structure
and (d) AB electronic structure under zero electric field calculated by PBE. Bandstructure of the
AA heterostructure under (e) positive electric field (E = 0.2 V/Å) and (f) negative electric field
(E = −0.2 V/Å). The arrows in (a) and (b) showing the direction of the applied electric field (E)
for the energy wavevector plots in (e) and (f). ∆d refers to the interlayer separation between Se
atom in HfSe2 and S atom in SnS2.
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Figure 4.2: Electronic structure calculated with the HSE hybrid functional under zero electric
field for (a) AA and (b) AB stacking.
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with the two layers separated by 2 nm. This is sufficiently far apart that the bands do

not interact, but a common Fermi level is enforced giving the band lineup of the well-

separated, equilibrated, but non-interacting layers. The conduction band alignment of the

separated system is shown in Fig. 4.3. When the layers are well-separated spatially, the

energy separation of the two conduction bands is 0.25 eV. When the two layers are brought

together to form the heterostructure, the two conduction bands push further apart by 40

meV for AB stacking and 70 meV for AA stacking. This increase in energy separation is

related to the coupling between the two bands, and the larger splitting in the AA structure

indicates stronger coupling between the two conduction bands in that stacking arrangement.

For the spatially separated structure, the two conduction bands are 100% localized

on the individual layers. The lower conduction band is localized on the SnS2, and the upper

conduction band is localized on the HfSe2. In the SnS2, the conduction band wavefunction

is weighted 54% on the Sn, with 89% of that contribution from the s orbital, and 45% on

the S, with 83% of that contribution from the px and py orbitals. In HfSe2, the conduction

band wavefunction is weighted 79% on the Hf. 96% of that comes from the d orbitals with

the heaviest weight of 35% coming from dz2 . The 21% contribution from Se is 61% from

the pz orbital, 22% from the d orbitals, and 9% from the s orbital.

When the two layers are brought together to form the AA heterostructure, the

magnitude squared of the CBM wavefunction no longer remains localized on the SnS2, but

becomes distributed across both layers. It is weighted approximately 60% on the SnS2 and

40% on the HfSe2. For the AB heterostructure, the wavefunction is weighted slightly more

heavily on the SnS2, with a weight of 67% on the SnS2 and 33% on the HfSe2. The fact that
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the CBM wavefunction is weighted more heavily on the SnS2 layer is consistent with the

weaker coupling inferred from the smaller splitting of the bands in the AB structure. The

orbital compositions of the individual layers remain qualitatively the same as those of the

isolated layers. The VBM always remains localized in the HfSe2 with an orbital composition

from the px and py orbitals of the Se.

For both stacking arrangements, there is strong hybridization of the conduction

band wavefunctions of the two individual layers, and the conventional spatially resolved

band picture illustrated in Fig. 4.4(a) does not provide a good representation of the physics,

at least for the conduction band. Instead, for the conduction band, the picture of bonding

and anti-bonding molecular orbitals is more faithful to the underlying physics. In this

picture the lower and upper conduction band at the M point are the bonding and anti-

bonding combination of the isolated conduction bands of the individual layers. As the two

layers are brought together, the bands couple and push apart resulting in two levels with

the bonding orbital more heavily weighted on the SnS2. However, there is no energy barrier

for an electron to move between the two layers, since the CBM wavefunction is a coherent

superposition of the orbitals on both layers, and the probability of finding an electron on

the SnS2 layer is at most a factor of 2 larger than on the HfSe2 layer.

By applying an electric field, the relative weights on each layer of the first con-

duction band can be altered and even reversed. As illustrated in Fig. 4.1(a) and (b), a

positive electric field corresponds to a positive voltage applied to the HfSe2 layer, which

means that the energy levels of the HfSe2 layer are lowered with respect to those in the SnS2

layer. Figs. 4.1(e) and (f) show the AA electronic structure under forward and reverse bias,
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Figure 4.3: The two lowest conduction band edges of the spatially separated HfSe2/SnS2 system
(center), the AA stacked heterostructure (left), and AB stacked heterostructure (right). Evac is the
energy level of vacuum. In the well-separated case, the blue line is the conduction band edge of
SnS2, and the red line is the conduction band edge of HfSe2. For the AA and AB heterostructures,
the red and blue lines indicate on which layer the conduction band edge wavefunction is most
heavily weighted.

respectively. Under forward bias, the majority of the spectral weight of the CBM switches

from the SnS2 to the HfSe2. The bandstructures with band compositions under ±0.4 V/Å,

±0.3 V/Å, and ±0.1 V/Åelectric field for both heterostructures can be found in Appendix

A.

The orbital compositions of the CBMs are illustrated in Fig. 4.4 for three different

electric fields, -0.4 V/Å, 0 V/Å, and 0.4 V/Å, corresponding to the left, middle, and right

columns, respectively. Fig. 4.4(a) illustrates the band alignments with the usual band

picture used for bulk semiconductor heterojunctions for the 3 different electric fields. The

left side of each band diagram represents the HfSe2 layer and the right side represents the

SnS2 layer. The energy level of the CBM only indicates on which layer it is more heavily

weighted.

As the electric field is ramped from negative to positive, the spectral weight of the

conduction band minimum gradually shifts from the SnS2 layer to the HfSe2 layer. This

shift of the wavefunction is illustrated in Fig. 4.5 for the AA and AB heterostructures. Fig.

4.5 shows the energies of the two lowest CBMs with the energy reference taken as the middle

35



(a)  E = 0 E = -0.4 V/Å  E = 0.4 V/Å

C
B

M

AA Stacked Heterostructure(b)

AB Stacked Heterostructure
(c)

C
B

M

EC_HfSe2

EC_SnS2

Figure 4.4: (a) Schematic view of band alignments under -0.4 V/Å, 0 V/Å, and 0.4 V/Å. (b)
Isosurfaces of the orbital resolved wave-functions of the CBM of the AA stacked heterostructure
under applied electric fields of -0.4, 0, and 0.4 V/Å. (c) Isosurfaces of band resolved wave-functions
of the CBM andof the AB stacked heterostructure under applied electric fields of -0.4, 0, and 0.4
V/Å.

of the PBE bandgap. The spectral weight of the wavefunction on the HfSe2 layer (red) and

the SnS2 layer (blue) are shown for each CBM and each electric field. Since the wavefunction

is normalized, for each band and each electric field, the sum of the two weights is 1.0. The

color of the lines and datapoints indicate the layer corresponding to the majority weight

of the wavefunction. The trends and quantitative values for the AA and the AB stacked

heterostructures are very similar. At zero field, the CBM is weighted towards the SnS2 as

previously discussed. At negative fields, the CBM wavefunction becomes more localized on

the SnS2 layer. A shift in the CBM weight from the SnS2 to the HfSe2 layer occurs between

positive fields of 0.1 and 0.2 V/Å. As the field becomes more positive the CBM wavefunction

becomes more localized on the HfSe2. As the field is swept from negative to positive, the

electronic structure transitions from a type II heterostructure to type I heterostructure as

indicated in Fig. 4.5.

Two dimensional materials will be in contact with other materials as contacts,

substrate, or encapsulation to prevent oxidation. All-2D systems are very attractive since
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Figure 4.5: (a) Evolution of the two lowest conduction band edges as a function of electric field for
the (a) AA and (b) AB heterostructures. E = 0 corresponds to the middle of the PBE calculated
bandgap. The colors of the lines and the datapoints indicate the layer corresponding to the
majority weight of the wavefunction, blue for SnS2 and red for HfSe2. The shape and size of the
datapoints indicate the relative weight of the wavefunction on the majority layer, blue squares for
SnS2 and red circles for HfSe2. The numerical weights of the wavefunction on the HfSe2 and SnS2

layers for each band are given above (red) and below (blue) each datapoint, respectively. The two
weights add up to be 1.0.

37



the interfaces are self-passivated and devoid of dangling bonds. BN is a good insulator, and

has recently been demonstrated to protect highly reactive black phosphorous from oxidation

[91]. Graphene, a good conductor, is closely lattice matched to BN. A 3 × 3 supercell of

graphene or BN is also very closely lattice matched to a 2 × 2 supercell of HfSe2/SnS2.

The lattice constants of BN and graphene are 2.51 Å, and 2.47 Å, respectively. The lattice

mismatches between the BN or graphene 3×3 supercells and the HfSe2/SnS2 2×2 supercell

are 1.7% and 0.1%, respectively. The lattice constant of the supercell is fixed to be the lattice

constant of the HfSe2/SnS2 heterostructure, so that the the HfSe2/SnS2 heterostructure

remains unstrained. The average interlayer distances between BN and the HfSe2 layer

of the HfSe2/SnS2 AA or AB heterostructures are 3.26 Å and 3.25 Å, respectively. For

graphene on either side of the HfSe2/SnS2 AA stacked structure, the average interlayer

distances of graphene/HfSe2 and graphene/SnS2 are 3.34 Å and 3.36 Å, respectively. For

graphene on either side of the AB stacked structure, the average interlayer distances of

graphene/HfSe2 and graphene/SnS2 are 3.35 Å and 3.36 Å, respectively.

The tri-layer systems are stable. The binding energy between graphene or BN on

the HfSe2/SnS2 heterostructure is defined as Eb = [Etrilayer − (EAA/AB + Egraphene/BN)]/N

where Etrilayer is the total energy of the trilayer system, EAA/AB is the total energy of AA or

AB heterostructure, Egraphene/BN is the total energy of the isolated graphene or BN system,

and N is the number of atoms (18) in the graphene or BN unit cell. The binding energies

are negative, and they are listed below in units of meV per atom of the BN or graphene.

For BN on HfSe2/SnS2 as shown in Fig. 4.6, the binding energy is -44 meV. The binding

energies for graphene on the HfSe2 side or the SnS2 side of the AA stacked heterostructure
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shown in Fig. 4.7 are −116 meV and −93 meV, respectively. The binding energies for

graphene on the HfSe2 side or the SnS2 side of the AB stacked heterostructure are very

similar, and they are −120 meV and −97 meV, respectively. Therefore, the trilayer systems

are stable, and the graphene tri-layer structure with graphene on the HfSe2 is most stable.

Fig. 4.6(a) shows the structure and supercell of a BN monolayer on the HfSe2

layer of the HfSe2/SnS2 heterostructure. The electronic bandstructures for the AA and AB

heterostructures with BN on the HfSe2 layer are shown in Figs. 4.6(b) and (c), respectively.

The bands of the HfSe2/SnS2 layers show no noticable change due to the proximity of the

BN. The BN bands are far from the Fermi energy and are buried deep in the valence and

conduction bands of the HfSe2/SnS2 as one would expect for a wide bandgap insulator.

Only the BN valence band can be seen on this energy scale. What is most notable about

this energy-momentum plot is that all of the band edges now occur at Γ. This is a result of

zone-folding. The 2× 2 supercell of the HfSe2/SnS2 folds the M points back to Γ, and the

3 × 3 supercell of the BN folds the K points back to Γ. Thus, the system becomes direct

gap. The zone-folding of the different Brillouin zones is illustrated in Fig. 4.6(a).

Placing graphene on either the HfSe2 layer or the SnS2 layer of the AA or AB

stacked heterostructures results in charge transfer from the graphene to the HfSe2/SnS2

heterostructure such that the graphene becomes p-type, the HfSe2/SnS2 becomes n-type,

and the Fermi level aligns above the CBM of the HfSe2/SnS2. The structures and energy-

momentum relations are shown in Figs. 4.7(a-d) and 4.8(a-d) for graphene on the top or

bottom of the AA or AB heterostructures, respectively. The charge transfer ns can be

estimated by integrating the low-energy graphene density of states [92], N(E) = 2
π(~v)2

|E−
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Figure 4.6: BN on HfSe2/SnS2. (a) Brillouin zone folding resulting from the 2× 2 unit cell of the
HfSe2/SnS2 and the 3× 3 unit cell of the BN or graphene. The outer Brillouin zone (BZ) in red is
the BZ of the graphene or BN. The BZ in blue is the BZ of the HfSe2/SnS2. The innermost BZ in
green is the commensurate BZ (CBZ) of the supercell. The CBZ is tiled over the entire k-space
region to show that the M point of the blue BZ lies at the Γ point of the first repeated CBZ, and
the K point of the red BZ lies at the Γ point of the second repeated CBZ. (b) Atomistic structures
for BN on AA and AB stacked HfSe2/SnS2. (c) Electronic bandstructure for AA stacking. (d)
Electronic bandstructure for AB stacking. In (c) and (d), the color indicates on which layer the
wavefunction is most heavily weighted.

ED|, from the Fermi level EF to the Dirac point ED giving ns = 1
π(~v)2

(ED − EF )2 with

v = 0.81 × 106 m/s. For the AA stacked HfSe2/SnS2 heterostructure shown in Fig. 4.7(a-

d), with graphene on the HfSe2, ED − EF = 0.335 eV, and ns = 1.26 × 1013 cm−2. With

graphene on SnS2, ED − EF = 0.430 eV, and ns = 2.07× 1013 cm−2. By electronic device

standards, this sheet charge density transferred from the graphene into the HfSe2/SnS2 is

large. These estimates are close to the Bader charge transfer [90] calculated from VASP.

With graphene on the HfSe2 layer of the AA heterostructure, the Bader charge calculation

gives a charge transfer from the graphene into the HfSe2/SnS2 bilayer of ns = 1.13 × 1013

cm−2, which is distributed between the HfSe2 and the SnS2 layers as 7.35 × 1012 cm−2

on the HfSe2 and 3.93 × 1012 cm−2 on the SnS2. With graphene on the SnS2 layer, the

Bader charge calculation gives a charge transfer from the graphene into the HfSe2/SnS2 of
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ns = 1.33×1013 cm−2, which is distributed between the HfSe2 and SnS2 layers as 3.31×1012

cm−2 on the HfSe2 and 1.00× 1013 cm−2 on the SnS2.

For the AB stacked heterostructure shown in Fig. 4.8(a-d), with graphene on

HfSe2, ED − EF = 0.319 eV gives the estimate ns = 1.14× 1013 cm−2. With graphene on

SnS2, ED −EF = 0.452 eV corresponds to ns = 2.29× 1013 cm−2. For graphene on HfSe2,

the Bader charge calculation gives a charge transfer from the graphene into the HfSe2/SnS2

bilayer of ns = 1.07 × 1013 cm−2, which is distributed between the HfSe2 and the SnS2

layers as 5.71× 1012 cm−2 on the HfSe2 and 5.00× 1012 cm−2 on the SnS2. With graphene

on SnS2 the Bader charge calculation gives a charge transfer from the graphene into the

HfSe2/SnS2 bilayer of ns = 1.24 × 1013 cm−2, which is distributed between the HfSe2 and

the SnS2 layers as 2.44× 1012 cm−2 on the HfSe2 and 1.00× 1013 cm−2 on the SnS2.

The electron transfer from the graphene to the HfSe2/SnS2 is accompanied by

a lowering of the potential of the layer in contact with the graphene. The region of the

electronic bands around the Fermi level near Γ is shown in Figs. 4.7(e-f) and 4.8(e-f). In

all cases, the lowest conduction band wavefunction is weighted more heavily towards the

layer in contact with the graphene. This results in a negative Schottky barrier between

the graphene and the conduction band of HfSe2/SnS2 for contact to either side of the

heterostructure.

For a good contact, energy level alignment is critical, but there should also be

coupling between the graphene and the HfSe2/SnS2 layers for electrons to transfer easily

between the two layers. This coupling or interaction appears in the energy-momentum

plots as an anti-crossing of the graphene and HfSe2/SnS2 bands. The anti-crossing of
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the graphene band and the HfSe2/SnS2 conduction band is shown in Figs. 4.7(e,f) and

4.8(e,f). The color coding of the bands is the same as in Figs. 4.7(c,d) and 4.8(c,d). In this

commensurate Brillouin zone, the conduction band of the HfSe2/SnS2 is 3-fold degenerate

(excluding spin), since the 6 M points of the original HfSe2/SnS2 Brillouin zone are folded to

Γ. The Dirac cone of the graphene is two-fold degenerate, since the K and K′ points of the

original graphene Brillouin zone are folded to Γ. Where the bands anti-cross shown in the

region of the vertical ellipses, the interaction between the graphene and the HfSe2 breaks

the degeneracy, so that the 2 Dirac cones and 3 conduction bands from the HfSe2/SnS2

can be clearly seen in Figs. 4.7(e) and 4.8(e). In Figs. 4.7(e) and 4.8(e), the Dirac cone

of the graphene anti-crosses with the conduction bands of the HfSe2/SnS2 with an energy

splitting ∆ on the order of 100 meV. A value for the coupling t can be estimated from

the energy splitting ∆ of the splitting of bands at the crossing points. Setting ∆ = 2t,

gives t ≈ 50 meV. In the energy-momentum region where the bands anti-cross indicated by

the vertical ellipses, the wavefunction composition is a mix of orbitals from the graphene

and the HfSe2/SnS2. The composition of the three bands circled by the left ellipse in Fig.

4.7(e) are, from lowest energy to highest energy: (1) 26% SnS2, 44% HfSe2, and 29% of

graphene; (2) 22% SnS2, 38% HfSe2, and 40% graphene; and (3) 48% SnS2, 47% HfSe2,

and 4% graphene. The orbital composition of the bands circled by the right ellipse along

the line from Γ to M are very similar. Thus, both the energetic splitting and the orbital

mixing indicate that there is significant coupling between the graphene and the HfSe2 layer

that should allow easy charge transfer between the layers under applied bias.
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The interaction of graphene with HfSe2 is larger than with SnS2, and this is con-

sistent with the orbital composition of the conduction bands of HfSe2 and SnS2. The

conduction band of HfSe2 has large Hf dz2 and Se pz components, and the conduction band

of SnS2 has large Sn s and S px, py components. In comparison to the SnS2 s and px,y

orbitals, the out-of-plane dz2 and pz orbitals of the HfSe2 would be expected to couple more

stongly across the van der Waals gap to the C pz orbitals of the graphene due to their

increased spatial overlap. When the graphene is placed on the SnS2 layer, the bands near

the Fermi level shown in Fig. 4.7(f) look qualitatively different compared to the bands

with graphene on the HfSe2 layer. At Γ, the 3 conduction bands of the HfSe2/SnS2 remain

degenerate. All 3 of the conduction bands now lie 0.03 eV below the Fermi level, so that

the Schottky barrier becomes more negative. This is consistent with the fact that, as shown

in Fig. 4.3, the conduction band of the SnS2 is energetically lower than that of HfSe2,

and the conduction band wavefunction of the isolated HfSe2/SnS2 heterostructure is more

heavily weighted towards the SnS2 layer as shown in Fig. 4.1. The energy alignment is

more favorable for electrical contact, however the coupling between the graphene and the

SnS2 is considerably weaker. Now, the maximum energy splitting is ≈ 10 meV giving an

estimate for the coupling of t ≈ 5 meV.

The difference in coupling can also be seen in the composition of the conduction

band wavefunctions at the Γ point. For graphene on HfSe2, at the Γ point, the compositions

of the three conduction bands nearest the Fermi energy, from lowest to highest energy are:

(1) 40% SnS2, 54% HfSe2, and 5% graphene; (2) 40% SnS2, 55% HfSe2, and 5% of graphene;

and (3) 48% of SnS2, 52% of HfSe2, and 0% graphene. The highest split-off conduction band
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has its weight shifted more towards the SnS2 layer compared to the lower two conduction

bands, and it has no graphene contribution. With graphene on the SnS2, the compositions

of the three conduction bands nearest the Fermi energy at the Γ point, are all the same,

and they are 65% SnS2, 35% HfSe2, and 0% graphene.

The trends for graphene on the AB stacked structure are qualitatively the same

as for graphene on the AA structure. As discussed with respect to Fig. 4.3, the interlayer

coupling between the SnS2 and HfSe2 is weaker in the AB stacking arrangement compared

to that with AA stacking. Therefore, the wavefunction of the conduction band edge is more

heavily weighted towards the SnS2 in the isolated heterostructure. In the AB structure,

placing the graphene on the HfSe2, reverses the weight of the bottom two conduction bands

in Fig. 4.8, so that their compositions become (1) 43% SnS2, 51% HfSe2, and 5% graphene;

and (2) 43% SnS2, 52% HfSe2, and 5% graphene. The spectral weight of the highest band

is 52% SnS2, 48% HfSe2, and 0% graphene. The only qualitative difference between this

structure and the AA structure is the slight shift in orbital weight of the conduction band

wavefunction towards the SnS2.

The values of the interlayer couplings t can be used in a tunneling Hamiltonian

expression to estimate the interlayer conductance between the graphene and the HfSe2/SnS2

heterostructure when graphene is placed on either the SnS2 layer or the HfSe2 layer. The

interlayer conductivity can be written as,

σc =
gsgGgHe

2

Ah
∑
k

∫
dEAG(k;E)AH(k;E)|t|2

−∂f(E − Ef )

∂E
, (4.1)
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where AG(k;E) and AH(k;E) are spectral functions of the graphene layer and the semicon-

ductor heterostructure, respectively, gs = 2 is the spin degeneracy, gG = 2 is the graphene

band degeneracy, gH = 3 is the HfSe2/SnS2 band degeneracy, A is the cross-sectional area,

f(E −Ef ) is the Fermi-Dirac factor, Ef is the Fermi level, and t is the interlayer coupling.

The spectral functions are AG(k;E) = γ
(E+~vF k−εD)2+γ2/4

, AH(k;E) = γ

(E− ~2k2
2m∗ −εH)2+γ2/4

,

where γ is the lifetime broadening, m∗ = 0.4m0 is the effective mass obtained from the

DFT bandstructures in Fig. 4.7(c)-(d), vF = 0.81 × 106 m/s is the Fermi velocity of

graphene, εD is the energy of the Dirac point, and εH is the energy of the conduction

band minimum of the HfSe2/SnS2 heterostructure. For a given transverse k, the quantity

T (E,k) = AG(k;E)AH(k;E)|t|2 is the transmission coefficient, and, as such, its value must

lie between 0 and 1. [85] The values of εD and εH are chosen such that the lower Dirac

cone of the graphene and the parabolic conduction band of the HfSe2/SnS2 intersect at the

Fermi wavevector kF , (EF +~vFkF −εD) = (EF −
~2k2F
2m∗ −εH) = 0, giving a maximum value

for T (E,k) of 16|t|2/γ2 ≤ 1. This, sets a lower limit on on the value for γ of γ ≥ 4|t|. For

graphene on HfSe2, t is large, ≈ 50 meV, which pushes the limit of validity of the tunneling

Hamiltonian expression (4.1), and it requires a large value for γ of 200 meV. The contact

resistance is RC = 1/σc, and the resulting value for the contact resistance of graphene on

HfSe2 as shown in Fig. 4.7(a) is 1 mΩ · µm2. With graphene on SnS2, t ≈ 5 meV, and

the contact resistance is 100 mΩ · µm2. The resistances scale as |t|2, which accounts for

the factor of 100 difference in the contact resistances. Decreasing the value of γ monoton-

ically decreases RC by approximately a factor of 5 as γ is decreased from 200 meV to 20

meV. These resistance values should be viewed as order-of-magnitude estimates. Both of
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these values are excellent in terms of the state-of-the art contact resistance to 2D materi-

als [93], and the lowest value is competitive with the best that has been achieved in the

well-developed semiconductors such as InGaAs [94].

4.4 Summary and Conclusions

Monolayer HfSe2 and SnS2 are closely lattice matched with a strain of less than

1%. When the two materials are well-separated, but with a common Fermi level, the HfSe2

conduction band is 0.25 eV above the SnS2 conduction band, and the valence band of

the HfSe2 is more than 1 eV above the valence band of the SnS2. Such a band lineup in

traditional three dimensional semiconductors leads to a type II heterostructure in which

the conduction band is on one layer and the valence band is on the other. However, when

the HfSe2 and the SnS2 are brought together to form a heterostructure, the conduction

band minimum at M becomes a coherent superposition of the of the conduction band

wavefunctions of the individual layers. The conduction band wavefunction is weighted 60%

on the SnS2 and 40% on the HfSe2 for AA stacking and 67% on the SnS2 and 33% on the

HfSe2 for AB stacking. There is no energy barrier for an electron to move between the two

layers, since the conduction band wavefunction is a coherent superposition of the orbitals

of both layers. A vertical electric field of 0.2 V/Å pointing from the HfSe2 layer to the SnS2

layer reverses the weights of the conduction band wavefunction to approximately 70% HfSe2

and 30% SnS2. In the SnS2, the primary orbital contributions to the conduction band come

from the s-orbital of the Sn and the px,y orbitals of the S. In the HfSe2, the primary orbital
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Figure 4.7: Trilayer of graphene and AA stacked HfSe2/SnS2. (a) Atomic structure of graphene
on the HfSe2 layer. (c) and (e) are the corresponding electronic structure plots. (e) focuses on the
small energy range near the Fermi level. (g) shows the charge transfer at the interface. (b) Atomic
structure of graphene on the SnS2 layer. (d) and (f) are the corresponding electronic structure
plots. (f) focuses on the small energy range near the Fermi level. (h) shows the charge transfer at
the interface. In (g) and (h), the charge accumulation and depletion is denoted by the yellow and
blue color, respectively. The Fermi level is at E = 0. The purple circles in (e) and (f) indicate the
anti-crossing of the graphene hole band and the HfSe2/SnS2 conduction band.
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Figure 4.8: Trilayer of graphene and AB stacked HfSe2/SnS2. (a) Atomic structure of graphene on
the HfSe2 layer. (c) and (e) are the corresponding electronic structure plots. (e) focuses on the
small energy range near the Fermi level. (g) shows the charge transfer at the interface. (b) Atomic
structure of graphene on the SnS2 layer. (d) and (f) are the corresponding electronic structure
plots. (f) focuses on the small energy range near the Fermi level. (h) shows the charge transfer at
the interface. In (g) and (h), the charge accumulation and depletion is denoted by the yellow and
blue color, respectively. The Fermi level is at E = 0. The purple circles in (e) and (f) indicate the
anti-crossing of the graphene hole band and the HfSe2/SnS2 conduction band.
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contributions come from the dz2 orbital of the Hf and the pz orbital of the Se. The valence

band maximum at Γ is localized on the HfSe2 layer, and its dominant orbital contributions

come from the px and py orbitals of the Se. The calculated HSE bandgap of the AA and

AB heterostructures are 0.88 eV and 0.89 eV, respectively.

A 3×3 supercell of graphene is almost perfectly lattice matched to a 2×2 supercell

of HfSe2/SnS2 with a lattice mismatch of 0.1%. The trilayer heterostructure is stable

with negative binding energies, and the binding energy with graphene on the HfSe2 is

approximately 23 meV / C atom more negative than with graphene on the SnS2. This

indicates a stronger interaction of the graphene with the HfSe2, which is consistent with the

results from the electronic structure calculations. A charge density on the order of 1013/cm2

transfers from the graphene to the HfSe2/SnS2 resulting in a Fermi level that aligns within

the conduction band of the the HfSe2/SnS2 and a negative Schottky barrier contact for

electron injection into the conduction band. The coupling of the graphene to the HfSe2 is

approximately 10 times larger than the coupling of the graphene to the SnS2, and this is

consistent with the dz2 and pz orbital composition of the HfSe2 conduction band compared

to the s and px,y composition of the SnS2 conduction band. A tunneling Hamiltonian

estimate for the contact resistance of graphene on the HfSe2 layer versus graphene on the

SnS2 layer gives contact resistances of 1 mΩ · µm2 and 100 mΩ · µm2, respectively. Both

values would be considered exceptional for 2D materials, and the lowest value is competitive

with lowest contact resistances measured in 3D semiconductors such as InGaAs.
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Chapter 5

Strain Effect and Electric Field

Effect in PtSe2/SnS2

5.1 Introduction

Layered two-dimensional (2D) materials have been studied extensively. They have

unique dangling bond free surfaces, due to interlayer van der Waals (vdW) interaction. Ver-

tical heterostructure composed of 2D materials can integrate interesting properties of each

individual material into one structure. Due to the variety of numerous layered 2D materials,

it is possible to design vertical heterostructures with a wide range of bandgap and mate-

rial properties. For example, vertical heterostructures composed of black-phosphorene and

graphene can be used for making contacts. [95] SnSe2/black phosphorene has nearly broken-

gap band alignment, and can be used as a channel for tunneling Field Effect Transistors

(TFETs). [96]
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In this draft, ab-initio density functional theory calculations are used to simulate

the electronic structures of a vertical heterostructure composed of monolayer SnS2 and

monolayer PtSe2. The band alignment of the heterostructure is studied under three applied

conditions, strain, electric field, and with graphene contact. Our study indicates that

PtSe2/SnS2 forms an intrinsic type II heterojunction with a Mexican hat at Γ point. Under

in-plane biaxial compressive strains, a semiconducting to metal transition can be observed;

while under in-plane tensile strains, the height of Mexican hat increases to over six times

of the value under 0 % of strain. As vertical electric field is ramped from negative to

positive, the bandgap of the heterostructures increases monotonically. Putting graphene

contact on PtSe2/SnS2 heterostructures forms p-type graphene with n-type PtSe2/SnS2

heterostructures. The heterostructure with graphene on contact with SnS2 forms negative

Schottky barrier which is the desired case for building field effect transistors.

5.2 Method

The Vienna ab initio simulation package (VASP) [47–49] in the projected-augmented-

wave method [50] is implemented to calculate the band structures in Fig. 5.1. The gener-

alized gradient approximation (GGA) of the Perdew-Burke-Ernzerhof (PBE) form [32–34]

is used for the exchange-correlation energy. The vdW interactions in SnS2 and PtSe2 are

accounted for by using the DFT-D2 method of Grimme [51] for both the bulk and the

heterostructure. The kinetic energy cutoff is set to a converged value of 500 eV for all

calculations. During all structural relaxations, the convergence tolerance on the Hellmann-

Feynman forces is less than 1 × 10−3 eV/Å. A converged 8× 8× 1 Monkhorst-Pack k-point
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mesh is used for the calculation of 2D films. A vacuum layer larger than 25 Å is used for

all heterostructures. All electronic structures of the heterostructures in this chapter are

calculated using PBE functional.

5.3 Results and Discussion

Both PtSe2 and SnS2 are stable under 1T polytype. [56,87–89,97] The calculated

lattice constant of SnS2 is 3.69 Å, and the lattice constant of PtSe2 is 3.73 Å. The lattice

mismatch between these two materials is less than 1%. A vertical heterostructure composed

of the SnS2 and PtSe2 is built with a lattice constant of 3.707 Å. Different stacking orders for

PtSe2/SnS2 heterostructures are considered as shown in Fig. 5.1. From our study it shows

that AA and AB stacking orders shown in Fig. 5.1 are the most favorable, energy-wise.

The in-plane positions of the two layers in AA stacked heterostructure are the same. The

chalcogen atom is on top of the chalcogen atom, while the metal atom is on top of metal

atom. AB stacked heterostructure is shown in Fig. 5.1 (b). Compared to the bottom layer,

the top layer slides about 2.14 Å such that the chalcogen atom is right on top of the metal

atom.

The spin-orbit coupling (SOC) is crucial for PtSe2/SnS2 as there is significant

band splitting in the valence bands due to Se element. Hence the SOC is considered in the

calculations analyzing the PtSe2/SnS2 heterostructure under influence of strain and electric

field.

The band structures of AA and AB stacked heterostructures under zero external

fields are shown in Fig. 5.2. AA and AB stacked heterostructures have indirect bandgap
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of 234 meV and 311 meV, respectively. As shown in Fig. 5.2, the lowest conduction band

and highest valence band have been marked in red. The conduction band minimum (CBM)

for both structures is at M point of Brillouin zone (BZ) and the valence band maximum

(VBM) is at the point between the Γ-K of BZ which has been marked in Fig. 5.2 with the

cross sign. Fig. 5.2(c-d) show that the CBM is more heavily weighted on Sn and the VBM is

more heavily weighted on Se. Around Γ the VBM is composed of in-plane σ-bonds whereas

the bands far from Γ are composed of out-of-plane π-bonds. The heterostructure forms an

intrinsic type II heterojunction. Band splitting due to SOC at CBM for both AA and AB

stacked heterostructures is negligible, each is less than 1 meV. The SOC splitting at VBM

is very large, and the value is 170 meV for Fig. 5.1(a) and 141.8 meV for Fig. 5.1(b). The

feature around Γ forms a Mexican hat in the valence bands for both AA and AB stacked

heterostructures. The height of Mexican hat for AA heterostructure is 95.8 meV, and for

AB heterostructure is 33.7 meV which is about 1
3 of the value of the AA heterostructure.

The remaining parts are arranged as follows: in the first section, we will dis-

cuss the strain effect in the heterostructure; the second section will focus on the influence

AA Stacking AB Stacking

Positive 
E-field

PtSe2

SnS2

Figure 5.1: Schematic views of AA and AB stacked heterostructures. The top layer is PtSe2 and
the bottom layer is SnS2. The positive direction of the applied electric field is shown as an arrow.
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Figure 5.2: Band structure of heterostructure composed of monolayer SnS2 and monolayer PtSe2

with SOC. (a) AA stacked heterostructure with CBM and VBM marked with red; (b) AB stacked
heterostructure with CBM and VBM marked with red; (c) ionic composition of AA stacked band
structure; (d) ionic composition of AB stacked band structure.
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from the electric field; the last section investigates the graphene contacts to PtSe2/SnS2

heterostructure.

5.4 Strain Effect

Due to the unique features of the van der Waals (vdW) materials, there are two

different types of strains to be considered, an in-plane biaxial strain along each monolayer

plane, and a vertical strain with changing the value of vdW gap between the two monolayer

planes. Fig. 5.3 shows the band structures of AA stacked heterostructures under different

vertical strains. The strain under this category is considered as the vdW gap deviation

from the equilibrium state (zero strain configuration). Negative and positive signs refer to

the vdW gap as less or more than the vdW gap at the equilibrium state. The unit of the

changing of vdW gap is Å. These results in Fig. 5.3 show that changes to the vdW gaps

have almost no influence on the electronic structures of heterostructure. The compositions

of CBM and VBM remain the same as the one shown in Fig. 5.2. The results of AB stacked

heterostructure are also similar to the one in Fig. 5.2.

On the contrary, the in-plane strain can significantly tune the band structures

of PtSe2/SnS2. A transition from semiconducting to metallic is observed under the in-

plane strain. The band structures for AA and AB stacked heterostructures under in-plane

strains are shown in Fig. 5.5 and Fig. 5.6 respectively. For both AA and AB stacked

heterostructures, large compressive strain can result in metallic configurations, as shown

in Fig. 5.5(c) and Fig. 5.6(c). The other significant change of band structures under
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Figure 5.3: Band structure of AA stacked heterostructure under vdW strain. (a)0.4 Å; (b) 0.8 Å;
(c) -0.4 Å; (d) -0.8 Å. The values represents the difference between the current vdW gap and the
one in equilibrium state.
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Figure 5.4: Band structure of AB stacked heterostructure under vdW strain. (a)0.4 Å; (b) 0.8 Å;
(c) -0.4 Å; (d) -0.8 Å. The values represents the difference between the current vdW gap and the
one in equilibrium state.
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compressive strain is that the VBM is moved to Γ as shown in the figures; the CBM

gradually moves from M to the point between K and Γ. The compositions of VBM for

band structure shown in Fig. 5.5 and Fig. 5.6 remain localized on Se atoms which is the

same as those without strain. In the conduction bands, the band composition gradually

changes from Sn to Pt as a result of the movement of CBM. Under tensile strains, the height

of Mexican hat in the valence bands increases to 590 meV for AA stacked heterostructure

shown in Fig. 5.5 (d), and 331 meV for AB stacked heterostructure shown in Fig. 5.6 (d).

Both values are over six times of the values without strain. The VBM of band structures for

both heterostructures under tensile strain remains at the position of VBM under 0 strain;

the change of CBM in AA stacked heterostructure is different from the one in AB stacked

heterostructure. As shown in Fig. 5.5, the conduction band at Γ is no longer parabolic,

but shows some small peaks. With the increment of tensile strain, the CBM moves from M

to the point along Γ-M; the band composition also changes from Sn to S. The conduction

band of AB stacked heterostructure remains as parabolic at Γ, and with the increment of

tensile strain, the CBM moves from M to Γ. Similar to AA stacked structure under tensile

strain, the band composition of AB stacked structure at CBM also changes from Sn to S.

From our study, it is evident that the bandgap can be significantly tuned by the

in-plane biaxial strain. A semiconducting to metallic transition can be observed under

large compressive strains in both AA and AB stacked structures; the compressive strain

can move the VBM to Γ point. The tensile strain results in a more prominent Mexican hat

at Γ point and moves CBM for M to either Γ or the point along Γ-M. On the contrary,
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Figure 5.5: Band structure of AA stacked heterostructure resulted from in-plane compression and
tensile strains. (a) Compressive 4 % strain; (b) compressive 8 % strain; (c) compressive 10 %
strain; (d) tensile 4 % strain; (e) tensile 8 % strain; (f) tensile 10 % strain.
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Figure 5.6: Band structure of AB stacked heterostructure resulted from in-plane compression and
tensile strains. (a) Compressive 4 % strain; (b) compressive 8 % strain; (c) compressive 10 %
strain; (d) tensile 4 % strain; (e) tensile 8 % strain; (f) tensile 10 % strain.
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the change of vdW gap for both AA and AB stacked heterostructures will not change the

band composition and the shape of the band structures.

5.5 Electric Field Effect

This section discusses the influence of the applied electric field on PtSe2/SnS2

heterostructures. The change of bandgap as a function of the electric field is shown in Fig.

5.7. For both AA and AB stackings, the change is asymmetric to the applied field. As

the electric field is ramped from negative to positive, bandgap of heterostructure increases

monotonically. For both heterostructures, under negative applied electric field, bandgap

closes, in the meantime, the band offsets increases. From the band structures of AA and AB

stacked heterostructures shown in Fig. 5.8 and Fig. 5.9, we can see that the compositions at

CBM and VBM remain the same as they would under zero electric field. For AA stacking,

it shows that the positive electric field can lead to a larger valley between VBM and Γ,

while the negative electric field can finally result in a flat band at Γ point. Under positive

electric field, the height of Mexican hat shown in Fig. 5.8 is about 142.2 meV under

0.5 eV/Å which is about twice of the one without electric field. For the SOC splitting,

comparing the band structure with electric field to the band structure without electric field,

the SOC induced splitting gap remains about the same value of about 160 meV. For AB

stacked heterostructure, 106.7 meV and 584.4 meV are the bandgap values under −0.5

eV/Å and 0.5 eV/Å respectively. The changing of height of Mexican hat for AB stacked

heterostructure is quite similar to the AA stacked heterostructure. From −0.1 eV/Å to
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Figure 5.8: Band structures of AA stacked heterostructure under different electric field. (a) -0.1
eV/Å, (b) -0.2 eV/Å, (c) -0.3 eV/Å, (d) -0.4 eV/Å, (e) 0.1 eV/Å, (f) 0.2 eV/Å, (g) 0.3 eV/Å, (h)
0.4 eV/Å. The Fermi level is set as the middle of the gap.
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Figure 5.9: Band structures of AB stacked heterostructure under different electric field. (a) -0.1
eV/Å, (b) -0.2 eV/Å, (c) -0.3 eV/Å, (d) -0.4 eV/Å, (e) 0.1 eV/Å, (f) 0.2 eV/Å, (g) 0.3 eV/Å, (h)
0.4 eV/Å. The Fermi level is set as the middle of the gap.
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−0.4 eV/Å, the VBM is gradually switching from the point between K and Γ to Γ point

as shown in Fig. 5.9. By applying an electric field, we not only change the bandgap but

the position of VBM as well.

5.6 Graphene Contacts

In this section, the electronic structures of the heterostructure with graphene con-

tact are studied. Graphene has exceptional electrical properties. [98] A 3 × 3 supercell of

graphene is closely lattice matched with the 2 × 2 supercell of PtSe2/SnS2. The lattice

constant of PtSe2/SnS2 heterostructure is 3.707 Å, while the lattice constant of graphene is

2.47 Å. The lattice mismatch between graphene supercell and heterostructure supercell is

less than 1%. The lattice constant of the trilayer system is fixed to the lattice constant of

PtSe2/SnS2 supercell which makes the heterostructures unstrained. To apply graphene con-

tact, there are two different stackings for each of the PtSe2/SnS2 heterostructures, graphene

in contact with PtSe2 or graphene in contact with SnS2. All calculations in this part are

performed with PBE without SOC since we will focus on the analyze of the conduction

bands, while the SOC contributes to conduction bands are negligible.

In Fig. 5.10, it is clear that for both different stackings, the Dirac cone of graphene

goes inside the conduction bands of PtSe2/SnS2. Both Dirac cone and CBM are folded to

Γ point. This zone folding is similar to the one shown in Fig. 4.6(a). In Fig. 5.8, the Dirac

cone is 159.9 meV above the Fermi level for graphene in contact with PtSe2, and 363.0 meV

for graphene in contact with SnS2. The CBM is 0.2 meV above the Fermi level for graphene
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in contact with PtSe2, and 19.4 meV below the Fermi level for graphene in contact with

SnS2.

The results of trilayer systems with graphene as contacts for AB stacked het-

erostructure are shown in Fig. 5.9. It has similar band structures, the Dirac cone is 103.4

meV above the Fermi level of the heterostructure with graphene contact on PtSe2; while the

energy difference between Dirac cone and Fermi level in the heterostructure with graphene

on SnS2 is 390.9 meV which is over four times of 103.4 meV. The energy difference between

the CBM and the Fermi level is 12.3 meV for graphene on contact with PtSe2 configuration,

and -24.2 meV (negative sign refers to the CBM below the Fermi level) for graphene on

contact with SnS2.

Both AA and AB stacked heterostructure with graphene on either the PtSe2 layer

or the SnS2 layer result in charge transfer from graphene to the PtSe2/SnS2 heterostructure

such that the graphene becomes p-type, the PtSe2/SnS2 becomes n-type. The Fermi level

aligns above the CBM of the graphene on contact with SnS2 configuration for both AA and

AB stacked heterostructures, which forms negative Schottky barrier. The charge transfer

ns can be estimated by integrating the low-energy graphene density of states [92], N(E) =

2
π(~v)2

|E−ED|, from the Fermi level EF to the Dirac point ED giving ns = 1
π(~v)2

(ED−EF )2

with v = 0.81×106 m/s. ED−EF refers to the value of the energy difference between Dirac

cone and the Fermi level. Therefore, for the AA stacked PtSe2/SnS2 heterostructure shown

in Fig. 5.10(a) with graphene on the PtSe2 layer, ns = 2.87 × 1012 cm−2. With graphene

on the SnS2 layer (Fig. 5.10(b)), ns = 1.48× 1013 cm−2.
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Figure 5.10: Band structures of AA stacked heterostructure with graphene as contact. (a)
Graphene in contact with PtSe2; (b) graphene in contact with SnS2.

For the AB stacked heterostructure shown in Fig. 5.6, with graphene on the PtSe2

layer, ns = 1.20× 1012 cm−2. With graphene on the SnS2 layer, ns = 1.72× 1013 cm−2.

5.7 Conclusion

From our study of PtSe2/SnS2 heterostructures, we know that AA and AB stack-

ings are the two preferred stacking orders, energy-wise. The in-plane strain can significantly

change the band structures; under compressive strains, there is a semiconducting to metal

transition, the VBM move to Γ, and the CBM shifts to localize on Pt element along Γ-

K; under tensile strain, the height of Mexican hat increases to over six times of the value

without strain. The bandgaps of PtSe2/SnS2 heterostructures can be changed with applied

electric fields, but the band edge compositions remain the same as the composition without

applied electric field. Putting graphene on PtSe2/SnS2 results in n-type PtSe2/SnS2 and

p-type graphene. The Fermi level aligns above the CBM for the configuration of graphene

on contact with SnS2, which forms negative Schottky barrier. Due to the large energy dif-
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Figure 5.11: Band structures of AB stacked heterostructure with graphene as contact. (a)
Graphene in contact with PtSe2; (b) graphene in contact with SnS2.

ference between Dirac cone and the Fermi level for the configuration of graphene on contact

with SnS2, its charge transfer is one magnitude larger than the configuration of graphene

on contact with PtSe2.
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Chapter 6

The Effect of Intervalley

Interaction on the Band Topology

of Commensurate Graphene/EuO

Heterostructures

6.1 Introduction

Ever since the classification of the integer quantum Hall effect (IQHE) in terms

of topological invariants, [99] significant theoretical effort has gone towards realizing IQHE

phenomenology at vanishing external magnetic fields. Haldane [100] proposed that in the

presence of an intrinsic spin-orbit coupling, spinless electrons hopping on a two-dimensional

honeycomb lattice are topologically non-trivial, and this can result in one-dimensional chi-
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ral gapless excitations along the edges of a gapped graphene system. Owing to the chiral

nature of these edge modes, the gapless edge states are dissipationless and exhibit a Hall

conductance σxy = e2/h. This Hall conductance is a consequence of the Berry curvature

associated with the Bloch bands in momentum space, and it is quantized only when the

Fermi energy lies in the bulk bandgap of the material. A number of other proposals have

been made for realizing the quantum anomalous Hall (QAH) effect in mercury-based quan-

tum wells, [101] optical lattices, [102] disorder induced Anderson insulators, [103] magnetic

topological insulators, [104,105] and ferromagnetic graphene. [106,107] The robust nature of

charge transport which identifies the QAH effect at vanishing magnetic fields might enable

design of novel quantum devices for low-power electronics applications.

To realize the QAH state in realistic materials two conditions are necessary, (i)

broken time reversal symmetry and (ii) topologically non-trivial bands. Since topologi-

cal insulators (TIs) possess a large spin-orbit coupling, [108] a route towards realizing the

QAH effect is to introduce ferromagnetic ordering in TIs. Immediately following recent

successes in synthesizing magnetic TIs (MTIs), transport measurements in MTIs verified

the predicted e2/h Hall conductance. [104, 109] Another approach is to engineer the QAH

state in ferromagnetic graphene in the presence of Rashba spin-orbit coupling. [106,107] Re-

cently, graphene was successfully deposited on an atomically thin-film insulating ferrimag-

net, yttrium iron garnet (YIG), and the transport measurements revealed an unquantized

anomalous Hall effect due to proximity induced ferromagnetism. [110] Several other mag-

netic material/van der Waals (vdW) materials combinations (for example graphene/EuO,

graphene/BiFeO3 and MoTe2/EuO [106,111–113]) have been proposed for possible spintron-
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Figure 6.1: (Color online) (a) Schematic view of a heterostructure with graphene between two EuO
layers. The O layers are terminated with H atoms, and the surfaces abutting the graphene are the
Eu (111) planes. (b) The reciprocal lattice corresponding to the unit cells shown in (c) and (d)
maps the K and K′ points of the hexagonal graphene Brillouin Zone (BZ) indicated by the outer
red hexagon to the Γ point of the commensurate BZ of the graphene/EuO unit cell indicated by the
central green hexagon. The gi’s are the reciprocal lattice vectors of the heterostructure unit cells
in (c) and (d). Elevation and plan views of the unit cells corresponding to the two graphene/EuO
geometries are shown in (c) for the Eu-misaligned structure and (d) for the Eu-aligned structure.
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ics [111, 112] and valleytronics [113] applications. In these systems, ferromagnetic ordering

is induced by a proximity effect. Additionally, proximity induced magnetism by a mag-

netic insulator allows for control of the electron and hole densities by gating. Previous

theoretical studies have reported an exchange splitting gap of 36 meV in graphene/EuO

heterostructures. [112]

In this paper, we construct a model Hamiltonian to analyze the effect of com-

mensurability and the resulting zone-folding and inter-valley interaction on the topological

properties of commensurate graphene/EuO heterostructures. Such heterostructures can be

constructed by placing graphene on the (111) surface of EuO, and our model Hamilto-

nian is applicable to any commensurate graphene/EuO heterostructure. For commensurate

graphene/EuO heterostructures the low-energy graphene bands at the K and K′ are folded

to the Γ point, which is due to the 3N×3N super-lattice of the commensurate graphene-EuO

stacking. This zone-folding is accompanied by two distinct types of inter-valley interactions,

determined by the position of the Eu atoms that can sit on either the bridge site or the

hollow site of the graphene lattice (see Fig. 6.1). Our model Hamiltonian is constructed

to account for the inter-valley interactions induced by the Eu atoms, along with the mag-

netic exchange interactions and Rashba spin-orbit coupling. The parameters for the model

Hamiltonian such as the strength of the inter-valley interactions, exchange splitting and

spin-orbit coupling are determined by fitting to ab initio calculations. The low-energy band

dispersion of the graphene/EuO heterostructure depends on the strength of the inter-valley

interaction terms. The position of the bridge Eu atom reduces the graphene lattice sym-

metry from C3v → C2v and results in shifting the Dirac cones from Γ to new points in the
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super-lattice Brilloun zone (BZ), whereas the Eu atoms on the hollow site open an energy

gap at Γ. This is a topologically trivial gap that is detrimental to achieving a QAH state.

We analyze the band dispersion and the topological properties of the model graphene/EuO

Hamiltonian and determine conditions under which the graphene-EuO heterostructure can

acquire a non-zero Chern number.

The rest of the paper is organized as follows. In section 6.2, we describe the two

types of commensurate graphene/EuO heterostructures and their super-lattice symmetries,

and we discuss how these symmetries influence the band structure. In section 6.3, we develop

the model Hamiltonian that captures the low-energy band dispersion of the graphene/EuO

heterostructures with and without spin-orbit coupling. In section 6.4, calculations of the

Chern numbers identify the conditions which yield topologically non-trivial bands and the

QAH effect. Section 6.5 describes ab initio calculations from which we extract parameters

for the model Hamiltonian such as exchange splitting, spin-orbit coupling, and the val-

ues of inter-valley scattering and mass terms. Section 6.6, concludes with a discussion of

the possibility of proximity induced exchange and the observation of QAH effect in other

graphene/ferromagnetic heterostructures.

6.2 Graphene/EuO Heterostructures

EuO is a ferromagnetic insulator with a Curie temperature of Tc 69K with a

saturation magnetization of 7µB. It has a rock salt structure with the space group Fm3̄m.

Graphene is a honeycomb lattice of carbon atoms with a lattice constant 2.47 Å with the

space group P63mc. In the graphene-EuO heterostructure, the graphene lies on the Eu
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terminated (111) EuO surface. Each (111) layer of EuO contains 4 Eu atoms and 4 O

atoms, and the Eu-layer and O-layers are stacked alternatively along the (111) direction.

Each EuO layer is displaced 1.22Å with respect to the adjacent layers. Twice of the lattice

constant of EuO along the (111) surface is about 7.27Å, and it is commensurate with a 3×3

unit cell of graphene. In the combined hetero-structre the Eu atom sits either in a hollow

site at the center of a graphene hexagon or at a bridge site above the center of a C-C bond.

Figs. 6.1(c,d) show the two different heterostructures studied in the paper. They

differ by the alignment of the EuO-monolayer on opposite sides of the graphene layer. In

both cases, graphene is placed on the (111) surface of EuO. This gives a commensurate

heterostructure with a lattice constant 2 times the lattice constant of a EuO unit cell and 3

times that of the graphene unit cell. In the aligned structure, shown in Fig. 6.1(d), the top

EuO-monolayer is directly above the bottom EuO-monolayer, whereas in the misaligned

structure shown in Fig 6.1(c), the top Eu-monolayer has an in-plane displacement of 1.22

Å with respect to the bottom EuO layer. In both structures the Eu atoms either sit at the

center of the hexagonal graphene unit cell or at the bridges of the C-C bonds coinciding with

the inversion symmetric points of graphene’s honeycomb lattice. Therefore, in-plane inver-

sion symmetry is preserved for both cases. However, as a result of the lateral displacement

of the EuO layer in the misaligned heterostructure, inversion symmetry perpendicular to

the graphene sheet is broken in contrast to the aligned heterostructure where this symmetry

is preserved. These symmetries play an important role in determining the band dispersion

and the model Hamiltonian of the graphene/EuO heterostructure.
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The lattice constants of the graphene-EuO unit cell are three times those of the

graphene unit cell. Hence, the reciprocal lattice constant of the commensurate BZ is 1
3

that of graphene’s BZ as shown Fig. 6.1(b). The outer hexagon (red - online) is the BZ

of the graphene primitive cell, and the central hexagon (green - online) is the BZ of the

heterostructure unit cell. Fig. 6.1(b) shows that the K and K’ points of the graphene BZ

lie at equivalent Γ points in the extended zone of the heterostructure BZ. This results in

zone folding of graphene’s K and K′ points to Γ. This band folding leads to important

changes in the band dispersion of the graphene-EuO heterostructure, when compared to the

graphene band structure (see Section VI). We address this next as we construct the model

Hamiltonian to describe the band dispersions of the two graphene/EuO heterostructures.

6.3 Low-Energy Effective Hamiltonian

In graphene, the gapless Dirac cones at K and K’ are protected by time-reversal

and inversion symmetry. Since these Dirac points are separated in the BZ, small pertur-

bations cannot lift this valley degeneracy. Therefore, the valley index is a good quantum

number. In the 3N × 3N unit cell, due to zone folding of graphene’s BZ, both valleys K

and K’ get mapped to Γ. Hence, valley symmetry is no longer preserved and inter-valley

interactions can gap the Dirac bands at Γ without breaking inversion or time-reversal sym-

metry. In the graphene/EuO heterostructures, Eu adatoms positioned at the bridge and

hollow sites contribute two distinct inter-valley interaction terms that are responsible for

the non-linear dispersions obtained from the ab initio calculations. In this section, we con-
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Figure 6.2: (Color online) Band dispersions in the absence of spin-orbit coupling for different
values of m, ∆ex, and ∆v. (a) m > ∆v and ∆ex < |∆v −m|, (b) m > ∆v and ∆ex > |∆v −m|, (c)
m < ∆v and ∆ex < |∆v −m|, and (d) m < ∆v and ∆ex > |∆v −m|.

Relation between value for ∆ex band dispersion band dispersion
m and ∆v along px along py

m > ∆v ∆ex < m−∆v parabolic, spin parabolic, spin
in Fig. 6.2(a) splitting splitting
m−∆v < ∆ex parabolic with an parabolic with an
in Fig. 6.2(b) overlap between spin-up overlap between spin-up

and spin-down bands and spin-down bands

m < ∆v ∆ex < |m−∆v| parabolic with two Dirac cones
in Fig. 6.2(c) spin splitting with spin splitting

∆ex > |m−∆v| parabolic with a larger overlap
in Fig. 6.2(d) an overlap between between the spin-up

spin-up and and spin-down
spin-down bands double Dirac cones

Table 6.1: Description of band dispersions in the absence of spin-orbit coupling for different
parameters of Eq. (6.1). Plots of the dispersions corresponding to different relative strengths of the
model parameters are shown in Fig. 6.2
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struct a model Hamiltonian that captures the effect of these inter-valley interaction terms,

and we analyze their effect on the band dispersion.

6.3.1 Inter-Valley Interactions

The following model Hamiltonian that acts on an 8 component spinor is consistent

with the lattice symmetries, and it describes the salient features of the band dispersion near

the Γ point in the absence of spin-orbit coupling.

H0 = ~vF (σ̂xτ̂zpx + σ̂ypy) + ∆exŝz + ∆v τ̂x +mσ̂xτ̂x (6.1)

In Eq. (6.1), τ̂i, σ̂i and ŝi are the standard Pauli matrices acting on the valley, sublattice, and

spin degree of freedom, respectively. The first term is the standard low-energy Hamiltonian

describing the linear dispersion of the Dirac bands in graphene at the two valleys τz = ±1

that are now folded to Γ. The second term is the exchange coupling term induced by the

magnetic moment of the Eu atom resulting in proximity induced exchange splitting ∆ex

between the spins. The last two terms of Eq. (6.1) capture the influence of the Eu atoms

on the graphene layer. In both the heterostructures of Fig. 6.1(c,d), Eu atoms can sit on

a C-C bond, referred as the bridge site, and in the middle of the hexagon, referred as the

hollow site. The position of the bridge Eu atom reduces the graphene lattice symmetry

from C3v → C2v resulting in the term ∆vτx in Eq. (6.1). This term corresponds to a valley

pseudospin Zeeman term in x-direction [114] and shifts the Dirac cones from Γ = (0, 0) to

(0,±∆v/m). The last term, mσ̂xτ̂x results from the Eu atom sitting at the hollow site of

a graphene hexagon; we refer to it as an inter-valley scattering term. This term opens up
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a trivial gap at Γ and works against the topological transition to a non-trivial state. The

combined result of these terms, along with the relative strengths of ∆ex,∆v, and m, give a

rich band dispersion and also account for the differences in the band dispersions of the two

heterostructures that we explore next.

The difference in the band dispersions of the two heterostructures is related to the

relative magnitudes of ∆ex, ∆v, and m. The energy dispersion of the model Hamiltonian

H0 is

E± = ±∆ex ±
√
m2 + v2

F |p|2 + ∆2
v ± 2∆v

√
m2 + v2

F p
2
y, (6.2)

where |p| =
√
p2
x + p2

y. For ∆ex = 0 the band dispersion has two important features, if m ≥

∆v the dispersion is elliptical and gapped at Γ (px = py = 0), with an energy gap 2|∆v−m|.

In contrast when ∆v > m the Dirac points shift from Γ to (0,±
√

∆2
v −m2/vF ) and graphene

retains its semi-metallic structure with two Dirac cones at (0,±
√

∆2
v −m2/vF ). For ∆ex 6=

0 and m ≥ ∆v, there are three possibilities determined by the relative magnitudes of ∆ex

and |∆v−m|. When (a) ∆ex < |m−∆v|, there is a clear gap between the spin resolved states

in Fig. 6.2(a). For (b) ∆ex > |m − ∆v|, the band dispersion exhibits an overlap between

spin-up and spin-down bands shown in Fig. 6.2(b). Finally, at the transition point between

scenarios (a) and (b) when ∆ex = |m−∆v|, the elliptical bands touch. This indicates that

when m ≥ ∆v there a is critical value of ∆ex > |m−∆v| at which the spin resolved states

intersect. On the other hand, if ∆ex 6= 0 and ∆v > m, the shifted Dirac points which

now appear at (0,±
√

∆2
v −m2/vF ) exhibit crossing of spin-resolved bands indicating that

spin-resolved bands cross for any value of ∆ex 6= 0. The gap at Γ also depends on the

relation between ∆ex and |∆v −m|. When ∆ex < |∆v −m|, the band structure is shown
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in Fig. 6.2(c), and the case of ∆ex > |∆v −m| is shown in Fig. 6.2(d). Now that we have

established the conditions for the intersection of spin resolved bands, we explore the results

of spin-orbit coupling on the graphene/EuO heterostructures.

6.3.2 Spin-Orbit Coupling

Spin-orbit coupling introduces two additional terms consistent with the lattice

symmetries,

HSOC =
λR
2

(σ̂xŝy τ̂z − σ̂y ŝx) + λI σ̂z τ̂z. (6.3)

The first term is the Rashba spin-orbit coupling which breaks inversion symmetry in the

plane perpendicular to the graphene sheet. Hence, λR = 0 in the aligned structure. The

second term is the intrinsic spin-orbit term that breaks time reversal symmetry. Therefore

λI 6= 0 for both structures. Since in-plane inversion symmetry is preserved in both struc-

tures, we neglect the Dresselhaus spin-orbit coupling. Our calculations indicate that the

strength of the spin-orbit coupling represented by λR and λI is always smaller than m, ∆V

and ∆ex, so we restrict our discussions to this case. For λR, λI < m,∆V ,∆ex, the spin-orbit

coupling introduces gaps between spin-resolved bands whenever they intersect (for example

see Fig. 6.2 (b),(c) and (d)). With the addition of spin-orbit coupling the band dispersion

becomes gapped, and the bands are a linear combination of spin-up and spin-down states.

By fitting the band dispersion with spin-orbit coupling obtained from the ab initio

calculations shown in Fig. 6.7, we determine the best fit parameters for our model Hamil-

tonian. This gives ~vF = 3.5 eV· Å, ∆ex = 80 meV, m = 48 meV, ∆v = 17 meV, λR = 5

meV, and λI = 1 meV. The band dispersion along the path Γ−K calculated from the model
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Figure 6.3: Band dispersion with spin-orbit coupling of Eu-misaligned structure calculated from
model Hamiltonian H along the path Γ to K using parameters obtained from ab initio calculations.
~vF = 3.5 eV· Å, ∆ex = 80 meV, m = 48 meV, ∆v = 17 meV, λR = 5 meV, and λI = 1 meV.

Hamiltonian H = H0 + HSOC is shown in Fig. 6.3. The model Hamiltonian captures all

four anti-crossing gaps at about the same position in momentum space. Next, we study the

topological properties of these bands obtained from H and calculate the Hall conductance

for a range of band parameters.

6.4 Quantized Anomalous Hall Effect in Graphene/EuO Het-

erostructures

In Ref. [106], Qiao et. al. found that ferromagnetic graphene in the presence

of Rashba spin-orbit coupling shows the QAH effect with σxy = 2e2/h. First principle

calculations also demonstrated that this QAH phase can be engineered by doping with

3d or 5d transition-metal atoms or the proximity of a layered antiferromagentic insulator.

In all cases studies thus far, the low energy bands are at the K and K′ points of the

hexagonal BZ, and the Hall conductance in the gap is quantized σxy = 2e2/h as long as

λR 6= 0 and ∆ex 6= 0. In the graphene/EuO heterostructure, as shown in sections II and

III, the low-energy bands are no longer at K and K′ but at Γ, and inter-valley interactions
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significantly modify the band dispersion and hence the topological properties of the bands.

Therefore, we now analyze the effect of inter-valley interactions on the topological properties

of graphene/EuO structures in the presence of in-plane inversion symmetry.

The Hall conductance is calculated from the integral of the Berry curvature over

the BZ of the occupied bands and can be expressed as

σxy =
e2

~
∑
α

∫
BZ

d2p

(2π)2
Θ(EF − εα(p))Ωα(p), (6.4)

where α corresponds to the band index, EF denotes the Fermi energy, εα(p) is the energy

eigenstate, and Ωα(p) is the Berry curvature of the αth band. The Berry curvature in terms

of the band eigenstates can be expressed as

Ωα(p) = Im
∑
β 6=α

[
εij
〈uα|∂H(p)/∂pi|uβ〉〈uβ|∂H(p)/∂pj |uα〉

(εβ(p)− εα(p))2

]
, (6.5)

where the Einstein summation convention is used for the Roman indices i and j, εij is

the anti-symmetric tensor, and uα(p) is the αth band eigenstate. It is instructive to note

that in-plane inversion symmetry dictates Ωα(p) = Ωα(−p) and time reversal symmetry

imposes Ωα(p) = −Ωα(−p). For graphene/EuO heterostructures time reversal symmetry

is broken due to exchange splitting caused by the ferromagnetic substrate, however in-plane

inversion symmetry is preserved. We take advantage of the in-plane inversion symmetry by

calculating the Berry curvature in the upper half-plane py > 0 and multiplying by a factor of

2 to account for the lower half-plane py < 0. The Berry curvature is calculated numerically.
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Figure 6.4: (Color online) The Chern number calculated as a function of ∆ex for 4 different cases
of ∆v and m. The red open circles show the Chern number of the occupied bands, the blue ‘x’
symbols show the Chern number of the unoccupied bands, and the black triangles show the Chern
number of the summation of all bands. The Chern number of the occupied bands is 2 for all values
satisfying (a) ∆v 6= 0, m = 0 and (b) ∆v > m, m 6= 0. For condition (c), ∆v = 0, m 6= 0, the Chern
number of the occupied bands becomes 2 for ∆ex ≥ m. For this example, m is chosen to be 0.04
eV. (d) For ∆v 6= 0 and m > ∆v, (in this example ∆v = 0.01 eV and m = 0.04 eV) the topological
transition is pushed to a higher value of ∆ex = 0.165 eV.
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Our calculations satisfy that the sum of the Berry curvatures over all the bands is zero at

every p point in the BZ, as expected from Eq. (6.5).

The model Hamiltonian H only captures the low-energy bands near Γ and may

not be valid over the full BZ of the graphene/EuO heterostructure. The Berry curvature

calculated using (6.5) falls rapidly away from the Γ point. This allows us to restrict our

calculations of the Hall conductance to a neighborhood of Γ. It is well known that when the

Fermi energy lies in the gap σxy is quantized and the Hall conductance at zero temperature

can be expressed as

σxy =
e2

h

′∑
α

Cα, (6.6)

where the prime indicates summation over the occupied bands, and Cα is the Chern number

of the αth band that we calculate for different parameters of our model Hamiltonian H. We

next discuss the Chern numbers at EF = 0 for the occupied and unoccupied bands.

The calculations for the Chern numbers were performed for 4 different cases with

fixed values for λR, m, and ∆v (with λR < m, ∆v) as a function of ∆ex. For this case, λI

is not considered. The four different cases are depicted in Fig. 6.4(a)-(d). Figs. 6.4(a) and

(b) show the results when ∆v > m. In this case the Chern number is quantized and gives a

Hall conductance σxy = 2e2/h for any value of λR 6= 0. However, when ∆v < m and m 6= 0,

there is a topological transition as a function of ∆ex and the Chern number changes from 0

to 2 as shown in Figs. 6.4(c,d). For ∆v = 0, the transition occurs when ∆ex ≥ m as shown

in Fig. 6.4(c). For ∆v 6= 0 and m > ∆v, the transition is pushed to a higher value of ∆ex

as shown in Fig. 6.4(d). For both (c) and (d), m = 0.04 eV. In (d), ∆v = 0.01 eV, and

the transition occurs at ∆ex = 0.165 eV. Unfortunately, we have been unable to find an
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analytical expression for the topological transition for ∆v < m. From the calculations, we

conclude that the Chern number is 2 for the case of ∆v > m and that the system undergoes

a topological transition for ∆v < m as a function of ∆ex.

The results can be summarized in terms of the phase diagram shown in Fig. 6.5.

In this calculation, λR = 5 meV, ∆ex = 80 meV and λI = 1 meV are constant, and the

behavior of Chern number is calculated as a function of both the magnitude of the valley

pseudospin Zeeman term ∆v and the inter-valley scattering term m. As shown in Fig. 6.5,

when ∆v > m, the Chern number is always 2 giving a Hall conductance σxy = 2e2/h. At

small values of ∆v, a more complicated situation occurs in the region m > ∆v of the phase

diagram, however, for sufficiently large values of ∆v, the phase transition occurs at m > ∆v

for a fixed value of ∆ex. The red triangle shows the values for the band structure from Fig.

6.3 fitted to the ab initio calculation shown in Fig. 6.7. Even with EuO placed on both

sides of the graphene providing a large proximity exchange coupling of 80 meV, the trivial

gapping from the inter-valley scattering term, m = 48 meV, prevents the band structure

from crossing over to a topologically non-trivial state.

6.5 First Principle Calculations

The band dispersions of the EuO/graphene/EuO heterostructures are calculated

using the Vienna ab initio simulation package (VASP) [47–49] in the projected-augmented-

wave method [50]. The generalized gradient approximation (GGA) of the Perdew-Burke-

Ernzerhof form [32–34] is used for the exchange correlation energy, and a Hubbard-U correc-

tion is used for the magnetic insulator, EuO. The on-site Coulomb repulsion and exchange
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and ∆ex = 80 meV. The red triangle in the figure represents the fitted band structure shown in
Fig. 6.3. The curve indicates the phase boundary between a Chern number of 2 on the left side of
the curve and 0 on the right side of the curve.

interactions on the Eu atom 4f orbital are 8.3 eV and 0.77 eV, respectively, and on the O

atom 2p orbital, they are 4.6 eV and 1.2 eV, respectively. [115] The kinetic energy cutoff is

520 eV for all calculations. During all structural relaxations, the convergence tolerance on

the Hellmann-Feynman forces is less than 0.03 eV Å. An 8× 8× 8 Monkhorst-Pack k-point

mesh is used for bulk EuO. The calculated bulk lattice constant is 5.186 Å which is very

close to the previously published first principle calculations [112] and consistent with the

experimental results. The lattice constant a0 of graphene is 2.46 Å. This results in a lattice

mismatch of less than 1% in the 3a0 × 3a0 unit cells shown in Figs. 6.1(c,d).

The EuO/graphene/EuO structures consist of graphene between the (111) Eu

planes of EuO. The heterostructure with graphene on the Eu-terminated surface is more

stable than graphene on the O-terminated surface. [112] The relaxation of the 2D het-

erostructures uses the same level of theory, cutoffs, and tolerances as described in the pre-

vious paragraph with a Monkhorst-Pack k-point grid of 4 × 4 × 1. A vacuum buffer space

over 25 Å is included to prevent interaction between adjacent slabs and hydrogen atoms
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Figure 6.6: (Color online) Band structure of the Eu-misaligned structure without spin-orbit
coupling. Left inset: close-up of the low-energy band structure of the misaligned structure near Γ.
Right inset: Band structure of the Eu-aligned structure.

passivate the outer oxygen layers of the EuO films. The relaxed vertical spacing between

the Eu and C layers is 2.517 Å for the misaligned structure of Fig. 6.1(c) and 2.555 Å for

the aligned structure of Fig. 6.1(d). These distances are close the value of 2.57 Å found

previously for a single-sided heterostructure of graphene on EuO. [112]

6.5.1 Band Dispersion without Spin-Orbit Coupling

Fig. 6.6 shows the calculated band dispersion in the absence of spin-orbit cou-

pling for the misaligned structure of Fig. 6.1(c), and the right inset shows the band

dispersion for the aligned structure of Fig 6.1(d). Both band dispersions are calculated
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Figure 6.7: (Color online) Band structure with spin-orbit coupling of Eu-misaligned structure
calculated along the path Γ to K where K is 0.57 Å−1 away from Γ.
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along the path M − Γ − K of the commensurate BZ of the 3N × 3N graphene lattice.

K = (2π/3a, 2
√

3π/3a, 0), M = (0, 2π√
3a
, 0), and a = 7.38 Å is the lattice constant of the

heterostructure unit cell. The most striking difference in the two band dispersions is the

presence of a gap between the spin-resolved bands of the aligned heterostructure, whereas in

the misaligned heterostructure the spin-up and spin-down bands intersect. The calculated

values of gaps for both heterostructures are tabulated in Table 6.2. The energy bandgap

is denoted by EG. The gap between the spin-up electron band and spin-up hole band is

∆↑, and the gap between spin-down bands is ∆↓. The spin-splitting of the electron and

hole bands are δe and δh, respectively. In Table 6.2 and Fig. 6.6, the positive value of

EG = 127 meV indicates a bandgap between conduction and valence band, whereas the

negative value of EG = −38 meV indicates a spin resolved band overlap. The values of

∆↑ and ∆↓ in the misaligned structure are half of their values in the aligned structure.

Another striking feature of the calculated band dispersion is that the low-energy bands of

the combined heterostructures appear at Γ and have curvature. In contrast, to the ab initio

studies of a graphene/BiFeO3 heterostructure, [111] the Dirac cones are no longer at the

K and K’ points, but at Γ, consistent with earlier first principle studies of graphene/EuO

heterostructures. [112] This is due to band folding.

Structure EG (meV ) ∆↑ (meV ) ∆↓ (meV ) δe (meV ) δh (meV )

Eu aligned 127 309 344 182 217

Eu misaligned -38 173 182 211 220

Table 6.2: Energy gaps of the EuO-graphene-EuO structures at the Dirac point. EG is the
bandgap of the gapped Dirac cone. ∆↑ is the spin-up gap, and ∆↓ is the spin-down gap. The
spin-splitting of the electron and hole bands at Γ are δe and δh, respectively.
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6.5.2 Band Dispersion with Spin-Orbit Coupling

Our ab initio calculations that include spin-orbit coupling show very different

behaviors of the spin resolved bands in the two heterostructures. Since the spin-resolved

bands intersect in the misaligned heterostructure, the addition of spin-orbit coupling in

this system will be more pronounced than in the aligned heterostructure. In the aligned

heterostructure spin-orbit coupling leads to a small splitting of the spin resolved bands and

the dispersion remains gapped, therefore, we focus on the effect of spin-orbit coupling in

the misaligned heterostructure.

In Fig. 6.7, we plot the band dispersion of the Eu-misaligned heterostructure along

path Γ −K. Fig. 6.7 shows that spin-orbit coupling breaks the degeneracy of the bands

shown in the left inset of Fig. 6.6 and gaps the bands. The conduction bands and the

valence bands split by 8 meV and 26 meV at the Γ point, respectively. There are two local

minimum gaps between the conduction band and valence band in the band dispersion near

Γ with values of 0.1 and 0.3 meV, respectively. The gap between the two conduction bands

is 0.2 meV; while the gap between the two valance bands is 1.2 meV.

6.6 Conclusions and Outlook

Using insights from first principle calculations and lattice symmetries, we con-

structed a model Hamiltonian to describe commensurate graphene/EuO heterostructures.

In commensurate graphene/EuO structures band folding maps the Dirac cones to the Γ

point of the hexagonal super-lattice BZ of the combined heterostructures. Apart from in-

ducing proximity exchange splitting in the graphene bands, the Eu atoms also introduce
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two distinct types of inter-valley interactions, a valley pseudospin Zeeman term and an

inter-valley scattering term, whose strengths are captured by two model parameters ∆v

and m. The combined effect of exchange and inter-valley interactions results in a non-linear

dispersion at the Γ point which is captured by the model Hamiltonian. The parameters of

the model Hamiltonian are determined by fitting to the band dispersion obtained from the

ab initio calculations.

Using the model Hamiltonian with Rashba spin-orbit coupling, exchange, and

inter-valley interactions we calculate the band dispersion and the topological properties

of the commensurate graphene/EuO heterostructures. The inter-valley interactions can

significantly influence the topological properties of the bands for non-zero Rashba (λR 6= 0)

and exchange splitting (∆ex 6= 0). For ∆v > m with λR, ∆ex 6= 0, the commensurate

graphene/EuO heterostructure is a Chern insulator with a Hall conductance σxy = 2e2/h,

whereas for small ∆v with m > ∆v, the phase diagram becomes more complicated and

one needs a large exchange splitting or Rashba spin-orbit coupling to realize the Chern

insulating phase. Our calculations indicate that even in the presence of in-plane inversion

symmetry, inter-valley interactions can significantly influence the topological properties of

graphene/EuO heterostructures.

For a random incommensurate crystallographic stacking of graphene on EuO, the

inter-valley coupling will be negligible since the Dirac cones will remain at K and K′.

However, since any incommensurate stacking will break the in-plane inversion symmetry

of the graphene layer, the model Hamiltonian H would acquire an additional term Mσ̂z

. [114] In this case the topological properties will depend on the relative strength of M and
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∆gap < min(λR,∆ex). The system will exhibit a QAH effect with a Chern number 2 only

if M < ∆gap.

To observe the QAH effect in graphene/ferromagnet heterostructures, it is impor-

tant that the disorder induced broadening Σ of the bands be smaller than the topological

bandgap ∆gap. The critical temperature required to observe the QAH effect is proportional

to the mobility gap defined as ∆gap − Σ, which must be positive. In order to increase the

topological gap ∆gap, it is important to have a large Rashba spin-orbit coupling λR, which

is small ∼ 7 meV in our calculations. The Rashba spin-orbit coupling can in principle be en-

hanced by hydrogenation or deposition of heavy adatoms on the graphene surface. [116] Even

for negative values of the mobility gap (∆gap − Σ < 0), the graphene/ferromagnetic struc-

tures will exhibit an unquantized anomalous Hall effect. However, in this case the anoma-

lous hall effect will be additionally influenced by disorder induced extrinsic effects [117] like

side-jump and skew scattering mechanisms which are beyond the scope of this study.
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Chapter 7

Conclusions

There is growing interest in the fabrication and characterization of different van

der Waals (vdW) materials and vdW heterostructures composed of two-dimensional (2D)

materials. The heterostructure composed of 2D materials are very attractive since the in-

terfaces are self-passivated and devoid of dangling bonds. In this dissertation, we studied

the electric field, strain and magnetic proximity effect in four different 2D heterostructures,

WSe2/MoSe2, HfSe2/SnS2, PtSe2/SnS2 and EuO/graphene/EuO. Chapter 3 discusses the

electronic structures of WSe2/MoSe2 with two different thicknesses, monolayer MoSe2 with

monolayer WSe2, and monolayer MoSe2 with bilayer WSe2. Both heterostructures are in-

trinsic type II heterojunctions; the monolayer/monolayer is direct bandgap, and the mono-

layer/bilayer heterostructure is indirect bandgap. Electric field can be used to tune the elec-

tronic structures of both WSe2/MoSe2 heterostructures from indirect to direct bandgap. It

can also tune the monolayer/bilayer heterostructure from type II to type I heterojunction.
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Chapter 4 focuses on the study of electronic structures of HfSe2/SnS2. Mono-

layer HfSe2 and SnS2 are closely lattice matched; the heterostructure composed by the two

materials shows a coherent superposition of the conduction band wavefunctions of the in-

dividual layers at CBM. As the applied electric field is ramped from negative to positive,

the heterojunction formed in the heterostructure can be tuned from type II to type I, and

the CBM would change from mainly localize on SnS2 to HfSe2. Graphene on HfSe2/SnS2

results in n-type HfSe2/SnS2 and p-type graphene. The Fermi level aligns below the CBM

of HfSe2/SnS2, therefore, graphene on HfSe2/SnS2 forms negative Schottky barrier and has

very low contact resistance.

The electronic structures of PtSe2/SnS2 are studied in Chapter 5. Monolayer PtSe2

and SnS2 are closely lattice matched and can form AA and AB stacked heterostructures.

The heterostructures formed by the two materials are indirect band gap with CBM at M

and valence bands showing a Mexican hat. The bands tructures of PtSe2/SnS2 can be

tuned significantly by in-plane biaxial strain. A transition from semiconducting to metallic

has been observed under compressive strain, while the VBM moves to Γ. The tensile

strain enhances the Mexican hat and the height of hat increases to over six times of the

value without strain. Graphene on PtSe2/SnS2 also results in n-type PtSe2/SnS2 and p-

type graphene. Only the configurations of graphene on contact with SnS2 form negative

Schottky barrier.

The magnetic proximity effect in heterostructure composed of graphene is in Chap-

ter 6. Using insights from first principle calculations and lattice symmetries, a model Hamil-

tonian is created to describe the behavior of graphene sandwiched by two EuO monolayers.
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we found that two distinct types of inter-valley interactions, pseudo valley Zeeman term and

inter-valley scattering term, can significantly change the topological feature of the system.
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Appendix A

Band Structures of HfSe2/SnS2

under Electric Fields

A.1 Band Structures of AA Stacked Heterostructure under

Different Electric Fields

The AA stacked heterostructure can be tuned by applied electric field as shown in

Fig. A.1. From Fig. A.1, we can see that from negative electric field to positive electric field,

the conduction band minimum (CBM) switching from SnS2 to HfSe2. In the meantime, the

second lowest conduction band, the composition switches from HfSe2 to SnS2. The weights

of the main contributed layer at CBM and the second lowest conduction band are all listed

in Fig. A.1.
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Figure A.1: Band structures of AA stacked heterostructure under different electric fields. (a) -0.4
V/Å, (b) -0.3 V/Å, (c) -0.2 V/Å, (d) -0.1 V/Å, (e) 0.1 V/Å, (f) 0.2 V/Å, (g) 0.3 V/Å, and (h) 0.4
V/Å.
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A.2 Band Structures of AB Stacked Heterostructure under

Different Electric Fields

Similar to AA stacked heterostructure, AB stacked heterostructure is also sensitive

to electric field. The switch of CBM and second lowest conduction band can also be found

in AB stacked heterostructure.
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Figure A.2: Band structures of AB stacked heterostructure under different electric fields. (a) -0.4
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