
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Topics in Approximation Algorithms

Permalink
https://escholarship.org/uc/item/9p68z49s

Author
Khare, Monik

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9p68z49s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Topics in Approximation Algorithms

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Monik Khare

March 2013

Dissertation Committee:

Dr. Neal E Young, Chairperson
Dr. Marek Chrobak
Dr. Stefano Lonardi

Copyright by
Monik Khare

2013

The Dissertation of Monik Khare is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am sincerely grateful to my very supportive and understanding advisor, Prof. Neal E.

Young, without whose help I would not have been able to write this thesis. He patiently

helped me with my research and showed all great qualities one expects in a mentor.

He let me work independently, but when needed, he sat with me for long discussions

stretching over multiple hours trying to solve problems. His immense knowledge of

the research topics was certainly helpful to me in making progress in my research. I

was really fortunate to have him as my PhD advisor. I would also like to thank the

other members of my dissertation committee, Prof. Marek Chrobak and Prof. Stefano

Lonardi, for insightful feedback about my work and guiding me in the right directions.

I would like to thank my colleagues and friends Steve Cole and Li Yan. I

worked with Steve on some research projects during the early days of my PhD. He often

motivated me with his hard work and discipline, and it was really a pleasure to work

with him. He is also a good friend and an amazing ex-roommate. I have talked to Li

about many interesting problems, related to our research and otherwise, throughout my

stay at UCR. I would also like to thank him for helping me improve my programming

skills.

I am grateful to Prof. C. Ravishankar and Jonathan Dautrich, who gave me the

opportunity to work on the BCOE Interactive Course Plan System. I enjoyed working on

this project, which not only was a great learning experience, but also provided financial

support. I also enjoyed puzzling over interesting problems, both in and out of the

project, with Jonathan.

I would like to thank all my friends for their love and support. Coffee breaks

with Akshay Morye and tennis sessions with Vijay Nagarajan significantly contributed

iv

to the rise in my happiness levels during my stay in Riverside. Special thanks to my

friends Sudheer Sahu (my career advisor), Dushyant Mukkamala, Peter Lonjers, Casey

Czechowski, Nathan Diep, Arman Yousefi, Pradyumna Goli, Jessica Ricci, Amarjeet

Singh and Vikrant Verma.

Finally, and most importantly, I would like to thank my entire family. I would

have not been able to accomplish this without their love and support. My wife, Gargi

Kulkarni, has been a constant source of love, support, and encouragement, and a huge

amount of credit for the completion of this thesis goes to her. Special thanks to my

in-laws for their unwavering love and support.

v

To my parents, Mrs. Rita Khare and Mr. S. P. Khare,

my wife, Gargi Kulkarni,

and

my daughter, Myra

vi

ABSTRACT OF THE DISSERTATION

Topics in Approximation Algorithms

by

Monik Khare

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2013

Dr. Neal E Young, Chairperson

This thesis focuses on approximation and online algorithms for a few different

problems.

1. There have been continued improvements in the approximation algorithms for

packing and covering problems. Some recent algorithms, including Fastpc [45],

have provable good worst-case running times, but it is not known how they per-

form in practice compared to the simplex and interior-point algorithms that are

widely used to solve these problems. We present an empirical comparison of these

algorithms, using our own implementation of Fastpc [2] and CPLEX implemen-

tations of simplex and interior-point methods. We use a variety of inputs for this

experimental study. We find that Fastpc is slower for small problem instances,

but its performance, relative to CPLEX algorithms, improves as the instances get

bigger. Our experiments show that for reasonably large inputs Fastpc performs

better than the CPLEX algorithms.

2. We give deterministic algorithms for some variants of online file caching by reduc-

ing the problems to online covering. The variants considered in this study include

one or both of the following features: (i) a rental cost for each slot occupied in

vii

the cache, and (ii) zapping a file by paying a cost so that the zapped file does not

occupy any space in the cache and does not incur any retrieval cost. The rental

cost is motivated by the idea of energy efficient caching where caching systems can

save power by turning off slots not being used to store files [15]. Our approach

is based on the online covering algorithm by Koufogiannakis and Young [46]. We

give deterministic lower bounds for these variants, which are tight within con-

stant factors of the upper bounds for most of the cases. We also give randomized

algorithms and lower bounds for the variants with rental cost.

3. We introduce online Huffman coding. In Huffman coding, the symbols are drawn

from a probability distribution and revealed one by one, and the goal is to find a

minimum cost prefix-code for the symbols. In the online version, the algorithm

has to assign a codeword to a symbol when it is revealed for the first time. We

propose an online greedy algorithm and show that it is constant-competitive for

online Huffman coding. We also show a lower bound of 10/9 on the competitive

ratio of any deterministic online algorithm.

viii

Contents

List of Figures xi

List of Tables xii

1 Introduction 1
1.1 Empirical study of algorithms for packing and covering 3
1.2 File caching with rental cost and zapping 4
1.3 Online Huffman Coding . 6

2 Empirical study of algorithms for packing and covering 8
2.1 Introduction . 8

2.1.1 Traditional algorithms for solving linear programs 9
2.1.2 Approximation algorithms for packing and covering 10

2.2 Experimental setup . 12
2.2.1 Machine specifications . 12
2.2.2 Fastpc . 12
2.2.3 CPLEX . 13
2.2.4 Inputs . 13
2.2.5 Value of ε . 14

2.3 Results . 14
2.3.1 CPLEX algorithms . 15

2.3.1.1 Set packing and DIMACS inputs 16
2.3.1.2 Random and tomography inputs 23

2.3.2 Fastpc . 25
2.3.3 CPLEX vs Fastpc . 25
2.3.4 Hybrid Algorithm . 27

2.4 Conclusions and future directions . 28

3 File caching with rental cost and zapping 47
3.1 Introduction . 47

3.1.1 Background . 47
3.1.2 Previous work . 49

3.1.2.1 Methodology . 50
3.1.3 Our contributions . 51
3.1.4 Other work on rental paging . 53

3.2 Online covering approach . 54

ix

3.3 File caching with rental cost and zapping 57
3.3.1 Deterministic algorithms via online covering 57
3.3.2 Rental caching with infinite cache 59
3.3.3 Improvements for high rental cost 62
3.3.4 Deterministic and randomized meta algorithms 65

3.4 Lower bounds . 67
3.4.1 Rental paging . 67
3.4.2 Paging with zapping . 69

3.5 Conclusions and further directions . 71

4 Online Huffman Coding 72
4.1 Introduction . 72
4.2 Lower Bound (non-asymptotic) . 74
4.3 Greedy-Huffman Algorithm . 75
4.4 Greedy-Coding is optimal for slot assignment 77
4.5 Conclusions and further directions . 85

A Packing and covering run times 93

x

List of Figures

2.1 Iterations for primal-simplex on set packing and DIMACS inputs 17
2.2 Time per iteration for primal-simplex on set packing and DIMACS inputs 18
2.3 Iterations for dual-simplex on set packing and DIMACS inputs 19
2.4 Time per iteration for dual-simplex on set packing and DIMACS inputs 20
2.5 Iterations for barrier-simplex on set packing and DIMACS inputs 21
2.6 Time per iteration for barrier-simplex on set packing and DIMACS inputs 22
2.7 Comparison of CPLEX algorithms to compute (1±ε)-solution for ε = 0.01

on set packing and DIMACS inputs . 23
2.8 Iterations for primal-simplex on random and tomography inputs to com-

pute (1± ε)-solution . 30
2.9 Iterations for primal-simplex on random and tomography inputs for exact

solution . 31
2.10 Time per iteration for primal-simplex on random and tomography inputs

to compute (1± ε)-solution . 32
2.11 Time per iteration for primal-simplex on random and tomography inputs

to compute exact solution . 33
2.12 Iterations for dual-simplex on random and tomography inputs to compute

(1± ε)-solution . 34
2.13 Iterations for dual-simplex on random and tomography inputs for exact

solution . 35
2.14 Time per iteration for dual-simplex on random and tomography inputs

to compute (1± ε)-solution . 36
2.15 Time per iteration for dual-simplex on random and tomography inputs

to compute exact solution . 37
2.16 Iterations for barrier-simplex on set packing and DIMACS inputs 38
2.17 Time per iteration for barrier-simplex on set packing and DIMACS inputs 39
2.18 Comparison of CPLEX algorithms to compute (1±ε)-solution for ε = 0.01

on random and tomography inputs . 40
2.19 Running time for Fastpc for ε = 0.01 41
2.20 Time / predicted time for Fastpc for ε = 0.01 42
2.21 Fastpc vs dual-simplex on set packing and DIMACS inputs 43
2.22 Fastpc vs barrier on random and tomography inputs 45
2.23 Value of ε at crossover (log-log scale) . 46

4.1 Optimal Huffman code for distributions (a) and (b), respectively 74

xi

List of Tables

2.1 Observed lower bounds for CPLEX algorithms on set packing and DI-
MACS inputs . 16

2.2 Observed lower bounds for the primal-simplex and the dual-simplex al-
gorithms on random and tomography inputs 24

3.1 Competitive ratios for the variants with rental cost and zapping. In col-
umn 2, “Det” represents Deterministic and “Rand” represents Randomized. 52

A.1 Running times for CPLEX algorithms on set packing and DIMACS inputs 98
A.2 Running times for CPLEX algorithms on random and tomography inputs 100

xii

Chapter 1

Introduction

Approximation algorithms are algorithms that compute approximate solutions

to optimization problems. These algorithms usually run in polynomial time and provide

a guarantee on the quality of the solution (i.e. cost of the solution respect to the optimal

cost). The approximation ratio for an algorithm is defined as follows. Let ALG(I) be

the cost of the algorithm ALG on input I and let OPT(I) be the cost of the optimal

solution. ALG is an α-approximation algorithm for a maximization (or, minimization)

problem if, for each input I, ALG(I) ≥ OPT(I)/α (or, ALG(I) ≤ α · OPT(I)). The

approximation ratio is a measure of the quality of the solution in the worst case scenario.

There has been a lot of research on designing and analyzing approximation

algorithms for various optimization problems [28, 32, 33, 34, 45, 53]. Approximation

algorithms are sometimes used even for problems where polynomial time algorithms

exist but are too slow for large instances. In some cases, approximation algorithms

are used to quickly compute a near-optimal solution which can be used by an exact

algorithm as a starting point to compute the optimal solution. For instance, the barrier

algorithm in CPLEX, a commercial tool for solving linear programs, uses the interior-

1

point method to compute an approximate solution, and then uses primal-simplex to

start with the approximate solution and compute the optimal solution.

We also study some problems in the online setting where the input is revealed

step-by-step. An online algorithm has to make a decision at each step without any

knowledge of the input revealed at any future steps. Online algorithms are analyzed

using the competitive-analysis framework [55] where the cost of the solution computed

by the algorithm is compared to the optimal offline solution (the entire input is known

in advance). Analogous to the approximation ratio for approximation algorithms, the

competitive ratio for online algorithms is defined as follows. The input is defined as

a sequence σ, where σ(t) denotes the input revealed at time t. Let ALG(σ) be the

cost of algorithm ALG on input sequence σ, and let OPT(σ) be the corresponding

optimal offline cost. ALG is an α-competitive online algorithm for a maximization (or,

minimization) problem if, for every input sequence σ, ALG(σ) ≥ OPT(σ)/α + c (or,

ALG(σ) ≤ α ·OPT(σ) + c), where c is a constant independent of the request sequence.

There has been substantial amount of growth in the research on online algo-

rithms in the last two decades [5, 7, 25, 38, 55, 62, 65]. They are of great interest

also because of their many practical applications, including resource management in

operating systems, online advertising, and network routing.

Many techniques that are used to design and analyze approximation algorithms

can be used to design and analyze online algorithms. Such approaches include greedy,

primal-dual, and randomized rounding.

This thesis focuses on approximation and online algorithms for a few problems.

This chapter presents a brief overview of these problems and summarizes some key

results. We describe these problems, the related literature, and our work in more detail

in the respective chapters.

2

1.1 Empirical study of algorithms for packing and covering

Explicitly given packing and covering linear programs are of the form max{a·x :

Mx ≤ b, x ≥ 0} and min{a · x : Mx ≥ b, x ≥ 0}, respectively, where all entries in the

vectors a and b and in the matrix M are non-negative.

Various algorithms for solving linear programs, including the well known sim-

plex algorithm [21], can be used to solve these packing and covering linear programs

as well. These algorithms don’t have good worst-case running times, but are still used

widely as they are believed to work well in practice. There has been a lot of research

on approximation algorithms for these problems. The fast asymptotic running times of

some recent approximation algorithms, including Fastpc [45], motivate this empirical

study. We evaluate Fastpc to determine if these approximation algorithms have come

closer to matching or improving the performance of the traditional algorithms, such as

simplex and interior-point algorithms[39], in practice. Fastpc [45] computes an (1± ε)-

solution for any ε > 0 and runs in [n + (r + c) log n/ε2] time with a high probability,

where r is the number of rows (constraints), c is the number of columns (variables), and

n is the number of non-zeros in the constraint matrix M . For dense inputs, where r and

c are O(
√
n), the running time of Fastpc is linear in the number of non-zeros.

We evaluate the performance of a these algorithms for solving pure packing or

covering linear programs on a variety of inputs. We use CPLEX for the implementations

of primal-simplex, dual-simplex, and interior-point (barrier) algorithms. We refer to

these algorithms as the CPLEX algorithms. We use our own implementation of Fastpc

[2].

Koufogiannakis and Young [45] present empirical results comparing Fastpc

to primal-simplex, but their work has certain limitations. These limitations include

3

(a) only random and relatively small input instances and (b) using a simpler and faster

implementation of Fastpc that handles only 0/1 coefficients. We address these as well as

a few other limitations (refer to Section 2.1.2) in our study. We use set cover benchmark

inputs [3, 61], DIMACS inputs [1], random inputs, and finally, inputs generated by

simulating X-Ray tomography on 2-dimensional images. We report various new findings.

We observe that Fastpc is faster than CPLEX algorithms on some input types, when

the inputs are reasonably large. For random and tomography inputs, Fastpc catches

up with CPLEX algorithms at around r + c > 17000 when density > 0.15, and around

r + c > 32000 when 0.01 ≤ density ≤ 0.15, and around r + c > 77000 when density

< 0.01.

The barrier algorithm (CPLEX implementation) runs in two phases. (a) In

the pre-crossover phase, it runs an interior-point algorithm to compute a near-optimal

solution, and (b) in the post-crossover step, it runs simplex to start with the near-optimal

solution and compute the optimal solution. We propose and analyze the hypothetical

hybrid algorithm that uses Fastpc instead of the interior-point algorithm in the first

phase of the barrier method.

We present this work in Chapter 2 of this thesis.

1.2 File caching with rental cost and zapping

The file caching problem is defined as follows. Given a cache of size k (a

positive integer), the goal is to minimize the total retrieval cost for the given sequence

of requests to files. A file f has size size(f) (a positive integer) and retrieval cost cost(f)

(a non-negative number) for bringing the file into the cache. A miss or fault occurs when

the requested file is not in the cache and the file has to be retrieved into the cache by

4

paying the retrieval cost, and some other files may have to be removed (evicted) from

the cache so that the total size of the files in the cache does not exceed k. Paging is

the special case when each file has size 1 and the retrieval cost for each file is 1. Bit

model and fault model are special cases of the file caching problem where, for each file

f , cost(f) = size(f) and cost(f) = 1, respectively.

We study the following variants of the online file caching problem. Caching

with Rental Cost (or Rental Caching): There is a rental cost λ (a positive number)

for each file in the cache at each time unit. The goal is to minimize the sum of the

retrieval costs and the rental costs. Caching with Zapping : A file can be zapped by

paying a zapping cost N . Once a file is zapped, it does not use any space in the cache

and all future requests to it don’t incur any cost. The goal is to minimize the sum of the

retrieval costs and the zapping costs. We study these two variants and also the variant

which combines these two (rental caching with zapping). We present deterministic and

randomized lower and upper bounds in the competitive-analysis framework.

Koufogiannakis and Young [46] give a ∆-approximation algorithm for covering

with submodular cost, where ∆ is the maximum number of variables in any constraint.

Their algorithm is ∆-competitive for the online case, where the constraints are revealed

one at a time. Many online problems, including the ones we study in this work, can

be reduced to online covering and the online covering algorithm in [65] can be applied.

We study and explore this approach for caching with rental cost and zapping and its

variants. We find that this approach can be extended to these problems, but in some

cases the algorithms thus derived are sub-optimal. We are able to apply modifications

to the online covering algorithm to yield improved competitive ratios in some cases. We

discuss these scenarios and the modifications. We also present randomized lower and

upper bounds for these problems. For most cases, the deterministic and randomized

5

bounds shown in this work are tight within constant factors. Table 3.1 summarizes our

results.

In our work, we give deterministic online algorithms for variants of file caching

with rental cost and zapping by reducing them to online covering programs. There

has been some research on the online primal-dual approach to give deterministic and

randomized algorithms for the file caching problems and its variants [5, 7, 8, 13, 23]. The

Fastpc algorithm also uses a primal-dual analysis, thought it is not an online algorithm.

We present this work in detail in Chapter 3.

1.3 Online Huffman Coding

We introduce Online Huffman Coding. The online Huffman coding problem is

an online version of the Huffman coding problem. Huffman coding is defined as follows.

Given a probability distribution P = { p1, p2, · · · , pn } on [n] and an encoding alphabet

Σ, find a minimum cost prefix-free code (or prefix code) over Σ. The cost of a prefix code

χ is given by
∑n

i=1 pi|χi|, where χi is the codeword assigned to i and |χi| is the length of

χi. We assume that 0 < pi ≤ 1 for each i. Huffman [35] gives optimal algorithm for this

problem. In the online version, the symbols are drawn from a probability distribution

P and are revealed one by one. The algorithm does not have any knowledge of the

probability distribution or the future sequence of symbols, and has to assign codewords

online.

The online Huffman coding problem is different from the adaptive Huffman

coding problem. In adaptive Huffman coding, the code is built dynamically as the

symbols are revealed one by one. As the symbols are revealed, the algorithm maintains

the weights and the corresponding Huffman code. Unlike Online Huffman Coding, the

6

codeword assignment maybe updated at any step when a symbol is revealed [24, 27, 43,

59, 60].

We study the online Huffman coding problem for binary codes in the compet-

itive analysis framework. We show a lower bound of 10/9 on the competitive ratio of

any deterministic algorithm. We present a greedy algorithm for online Huffman coding

and analyze it. We show that the algorithm is 7-competitive. We also show that the

algorithm is (1 + o(1))-competitive asymptotically.

We present this work in Chapter 4 of this thesis.

7

Chapter 2

Empirical study of algorithms for

packing and covering

2.1 Introduction

In this study we focus on algorithms for solving explicitly given packing and

covering linear programs. Explicitly given packing and covering linear programs are of

the form max{a · x : Mx ≤ b, x ≥ 0} and min{a · x : Mx ≥ b, x ≥ 0}, respectively,

where all entries in the vectors a and b and in the matrix M are non-negative. Various

important problems can be specified as explicitly given packing and covering linear

programs, for instance, variants of multicommodity flow problems and the fractional set

cover problem.

We use the following notation throughout this chapter:

• r : number of rows (constraints)

• c : number of columns (variables)

• n : number of non-zeros in the constraint matrix

8

2.1.1 Traditional algorithms for solving linear programs

Traditional algorithms for solving linear programs, like simplex algorithm and

ellipsoid method, can be used to solve packing and covering linear programs as well.

There are many algorithms for solving linear programs. We briefly discuss some of these

well known algorithms in this section.

The Simplex method was proposed by Dantzig [21]. The simplex algorithm

doesn’t have a good worst-case bound, but is considered to work well in practice. In 1982

Smale [56] showed that for fixed number of constraints the number of pivots required

to solve a linear program grows linearly in number of variables on the average. In

2004 Kelner and Spielman [40] proposed a randomized implementation of the simplex

algorithm that runs in polynomial time.

The ellipsoid method by Kozlov et al. [47] has a polynomial running time

for solving convex optimizations, but in practice is slower than the interior-point and

simplex algorithms. The worst case running time of ellipsoid method is O(c6L), where

L is a measure of the bit complexity of the input that is known to be polynomial in the

input size.

In 1984 Karmarkar [39] published a polynomial time interior-point algorithm

for general linear programs. The running time of this algorithm is O(c3.5L), where L is

the measure of the bit complexity of the input. This running time is an improvement by

a factor of O(c2.5) over the ellipsoid algorithm and, more importantly, the performance in

practice is competitive with the simplex algorithm. Karmarkar’s algorithm also inspired

more research on the interior-point algorithms.

In 1989 Vaidya [58] presented an algorithm to solve linear programming prob-

lems. The algorithm performs a total of O(rc2L+ cM(r)L) operations, where L is the

9

measure of the bit complexity of the input and M(r) is the time to invert an r×r matrix.

Since the current fastest algorithm for computing the inverse of an m×m matrix runs

in O(r2.376) time [20], Vaidya’s algorithm is faster than Karmarkar’s algorithm when

r ∈ O(c1.05).

The simplex algorithm is used very extensively for solving linear programs, but

there is very limited literature available on how it performs in practice. Interior point

methods are also used widely, but again, not much information is available on their

performance in practice.

2.1.2 Approximation algorithms for packing and covering

There has also been a long line of research focused on developing fast approx-

imation algorithms for solving packing and covering problems [28, 32, 33, 34, 45, 53].

These approximation algorithms, unlike the traditional algorithms listed above, are de-

veloped using techniques like Lagrangian relaxation. Lagrangian relaxation is a very

general and powerful technique and has been used for developing algorithms in many

different areas [6, 10, 57].

Over the years, there have been continued improvements in approximation al-

gorithms for packing and covering problems. Some of the recent algorithms, including

Fastpc [45], have provable worst-case running times that are superior to the worst-case

running times bounds for the traditional algorithms for linear programming, but it is

not known if these approximation algorithms work as well in practice. There isn’t much

information available in the literature on how these approximation algorithms com-

pare to the traditional algorithms like simplex and interior-point algorithms in practical

scenarios. In this work, we do an empirical study of the Fastpc approximation al-

gorithm, proposed by Koufogiannakis and Young [45], and compare its performance

10

primal-simplex, dual-simplex, and interior-point algorithms. Our experiments include

various types of inputs (refer to Section 2.2.4) to explore if Fastpc can match or improve

the performance of these traditional algorithms for any particular classes of inputs.

Fastpc computes a (1 + ε) approximate solution (or, (1± ε)-solution) for any

ε > 0, and with a high probability runs in O(n+(r+ c) log n/ε2), where n is the number

of non-zeros, r is the number of rows, and c is the number of columns in the input

matrix. Koufogiannakis and Young [45] also present some experimental results where

they evaluate the primal-simplex algorithm (GLPK) and a preliminary implementation

of Fastpc. They observed that Fastpc was significantly faster than the primal-simplex

algorithm even for moderately large inputs (about 2000x2000). Their work had certain

limitations that we address in our study.

• They evaluated only the primal-simplex algorithm. Their study didn’t include

dual-simplex and interior-point algorithms.

• Inputs used were relatively small (up to 4000x4000, 8000x2000). We include much

larger inputs (e.g. 23000x23000, 100,000x5000).

• Only a few inputs were sparse. The smallest density used was 0.008 and only a

small number of inputs had such small densities. Our study includes many inputs

that are sparse (d < 0.005).

• Their implementation handled inputs with 0/1 coefficients only. The implementa-

tion we use in our study is more complex and handles all pure packing and covering

inputs with non-negative real coefficients. Their simplified implementation is faster

as compared to our implementation by constant factors.

• All the inputs used in their study were random. It is believed that CPLEX runs

11

faster on structured problems. Our study includes various types of inputs (refer

to Section 2.2.4).

• They used GLPK for their experiments. We use CPLEX, which we found to be

faster than GLPK by constant factors, for the implementations of primal-simplex,

dual-simplex, and interior-point algorithms.

The rest of the chapter is structured as follows. In the next section we talk

about the experimental setup for this study. Then we present the results of these

experiments and our conclusions.

2.2 Experimental setup

2.2.1 Machine specifications

All experiments were performed using Lenovo ThinkStation E30 series with

Intel Xeon E3-1220 Processor (3.10GHz 8MB) and 8 GB RAM [4 × 2GB ECC DDR3

PC3-10600 SDRAM (1333MHz uDIMM)].

2.2.2 Fastpc

We implemented the Fastpc algorithm using C++ [2]. As opposed to the

preliminary implementation that handles inputs with only 0/1 coefficients, our Fastpc

implementation works for all pure packing and covering inputs with non-negative real

coefficients.

Cole et al. [19] provide key details related to the implementation of Fastpc we

use for our experiments. The algorithm maintains a pseudo-distribution (a distribution

that isn’t normalized) and samples from it. The two key issues that come up with

this random sampling scheme are efficiency and precision. Cole et al. [19] propose an

12

efficient data structure for this random sampling scheme. This data structure maintains

the values approximately. This requires some modifications in the algorithm so that the

approximation guarantee still holds. They also present the modified Fastpc algorithm

and the modified analysis of the approximation ratio.

2.2.3 CPLEX

We used ILOG CPLEX Optimization Studio Academic Research Edition (ver-

sion 12.3.0, with academic license from IBM) for implementations of the primal-simplex,

dual-simplex, and barrier methods. We refer to these three as the CPLEX algorithms.

2.2.4 Inputs

We compare the algorithms on variety of inputs. The following are the classes

of inputs that we used for our experiments.

• Random: The coefficients were chosen uniformly from a range.

• DIMACS: DIMACS [1] graphs were used to create vertex cover instances on

bipartite graphs. For a given graph, a bipartite graph can be constructed as

follows. For every vertex u in the original graph, create two vertices u1 & u2. For

every edge (u, v) in the original graph, create edges (u1, v2) and (u2, v1). The linear

program used for experiments corresponds to the vertex cover in this bipartite

graph.

• Set packing: The benchmark instances from [3] were used to generate packing

linear programs. We also generated larger instances using the generator described

in Xu et al. [61].

13

• Tomography: X-Ray tomography image reconstruction can be formulated as a

mixed packing covering linear program. We simulated X-Ray tomography on 2-

dimensional images and used the data to generate instances of pure packing linear

program.

All the DIMACS and set packing inputs are highly asymmetric (e.g. r = 100000

and c = 1000). For all these instances, the number of variables is much smaller than the

number of constraints. Tomography inputs are also asymmetric. The random inputs we

generated have some asymmetric instances and some symmetric ones.

The density of an input is d = n
rc . For sparse inputs, r + c is Ω(n) and for

dense inputs r + c is O(
√
n). All the DIMACS and set packing inputs are very sparse.

Random inputs used in this study are a mix of sparse, medium dense, and dense inputs.

The tomography inputs are medium dense.

2.2.5 Value of ε

The value of ε used for our experiments is 0.01.

2.3 Results

In this section we present our findings. First, we present the observed lower

bounds for the CPLEX algorithms (primal-simplex, dual-simplex, and barrier) for vari-

ous input types. We give these bounds for computing an (1± ε)-solution as well as for

computing the optimal solution and we compare the performance of these algorithms.

Next, we compare Fastpc to the CPLEX algorithms to compute (1 ± ε)-solution for

these inputs.

All the plots in this chapter are semi-log (log-lin) plots, unless stated otherwise.

14

2.3.1 CPLEX algorithms

For any Gaussian-elimination based method to solve system of linear equations,

the best known bound is Õ(min(r, c)3(||M ||+ ||b||)) [22], where Õ hides polylogarithmic

factors and ||D|| represents the highest absolute value in matrix D. The simplex algo-

rithm, in each iteration, uses Gaussian elimination to transform the linear program from

one configuration to the other. The CPLEX implementation of the barrier method runs

in two phases. In the first phase the interior-point algorithm computes an approximate

solution O(c3.5L) (L is the bit complexity of the input) and in the second phase primal-

simplex starts with the approximate solution computed in the first phase and finishes

with the optimal solution. In general, these algorithms, due to their dependence on the

Gaussian elimination, should take at least Ω(min(r, c)3) for dense matrices. For sparse

matrices, these algorithms should take at least Ω(min(r, c)2δ), where δ is the maximum

number of non-zeros in any row. We study the experimental running times for each

algorithm on different types of inputs to see how these algorithms perform in practice

with respect to these bounds. We are also interested in finding out if there are particular

types of inputs where these algorithms perform much worse than these lower bounds.

We study these running times to compute (1 ± ε)-solutions as well as for computing

exact solutions.

In this section, the approximate solutions correspond to ε = 0.01. The primal

and dual simplex algorithms do not have the knowledge of the approximation ratio

of the solution at any stage of the execution. The time taken to reach a particular

approximation ratio can be computed only with the knowledge of the optimal solution.

We determined the time for these algorithms to compute the approximate solution for

a given ε by using the logs.

15

2.3.1.1 Set packing and DIMACS inputs

Table 2.1 summarizes the observed lower bounds on the number of iterations,

time per iteration, and total time for CPLEX algorithms for set packing and DIMACS

inputs. We show the plots supporting these observed lower bounds in Figure 2.1 and

Figure 2.2 for primal-simplex, Figure 2.3 and Figure 2.4 for dual-simplex, and Figure

2.5 and Figure 2.6 for the barrier method.

For almost all of these instances, dual-simplex was found to be faster than

primal-simplex and barrier methods by constant factors (Figure 2.7). For these inputs,

all three algorithms took Ω((r+c)1.5) time to compute an (1±ε)-solution. For computing

exact solutions, dual-simplex was found to be faster than primal-simplex and barrier

algorithms by a factor of O((r + c)0.5).

Algorithm (1± ε)-solution Exact solution

primal-simplex
Iterations O(1) (r + c)0.5

Time/Iteration (r + c)1.5 (r + c)1.5

Time (r + c)1.5 (r + c)2

dual-simplex
Iterations (r + c)0.5 (r + c)0.5

Time/Iteration (r + c) (r + c)
Time (r + c)1.5 (r + c)1.5

barrier
Iterations 3− 6 5− 10
Time/Iteration (r + c)1.5 (r + c)2

Time (r + c)1.5 (r + c)2

Table 2.1: Observed lower bounds for CPLEX algorithms on set packing and DIMACS

inputs

16

(a) (1± ε)-solution

(b) Exact solution

Figure 2.1: Iterations for primal-simplex on set packing and DIMACS inputs

17

(a) (1± ε)-solution

(b) Exact solution

Figure 2.2: Time per iteration for primal-simplex on set packing and DIMACS inputs

18

(a) (1± ε)-solution

(b) Exact solution

Figure 2.3: Iterations for dual-simplex on set packing and DIMACS inputs

19

(a) (1± ε)-solution

(b) Exact solution

Figure 2.4: Time per iteration for dual-simplex on set packing and DIMACS inputs

20

(a) (1± ε)-solution

(b) Exact solution

Figure 2.5: Iterations for barrier-simplex on set packing and DIMACS inputs

21

(a) (1± ε)-solution

(b) Exact solution

Figure 2.6: Time per iteration for barrier-simplex on set packing and DIMACS inputs

22

Figure 2.7: Comparison of CPLEX algorithms to compute (1± ε)-solution for ε = 0.01

on set packing and DIMACS inputs

2.3.1.2 Random and tomography inputs

Table 2.2 summarizes the observed lower bounds on the number of iterations,

time per iteration, and total time for CPLEX algorithms for set packing and DIMACS

inputs. We show the plots supporting these observed lower bounds in Figures 2.8, 2.9,

2.10, and 2.11 for primal-simplex, Figures 2.12, 2.13, 2.14, and 2.15 for dual-simplex,

and Figures 2.16 and 2.17 for the barrier method.

We observe that the algorithms, including Fastpc, are slower on these inputs

than on set packing and DIMACS inputs. We don’t know the reason behind this behav-

ior. One possible explanation is that even though the set packing and DIMACS inputs

are considered to be hard instances for computing integer solutions, they may not be

hard for computing fractional solutions.

23

Unlike the set packing and DIMACS instances, the random and tomography

inputs had varied densities. Experiments show that all three algorithms perform better

for sparse inputs than dense inputs of the same size. For sparse inputs, all three algo-

rithms took Ω((r + c)3) time to compute (1± ε)-solution, but primal and dual simplex

were found to be slower than barrier on dense instances. Barrier performed better than

primal and dual simplex algorithms for computing approximate solutions. For comput-

ing exact solutions, dual-simplex performed better than the other two algorithms by a

factor of (r + c)0.5 on dense inputs. On sparse inputs, primal and dual simplex were

much faster than barrier.

Algorithm (1± ε)-solution Exact solution

d < 0.01 d ≥ 0.01 d < 0.01 d ≥ 0.01

primal-simplex
Iterations (r + c)1.5 (r + c)2.5 (r + c)1.5 (r + c)2.5

Time/Iteration (r + c)1.5 (r + c)2.5 (r + c)1.5 (r + c)2.5

Time (r + c)3 (r + c)5 (r + c)3 (r + c)5

dual-simplex
Iterations (r + c)1.5 (r + c)2 (r + c)1.5 (r + c)2

Time/Iteration (r + c)1.5 (r + c)2.5 (r + c)1.5 (r + c)2.5

Time (r + c)3 (r + c)4.5 (r + c)3 (r + c)4.5

barrier
Iterations 5− 9 5− 9 (r + c)3 (r + c)3

Time/Iteration (r + c)3 (r + c)3 (r + c)2 (r + c)2

Time (r + c)3 (r + c)3 (r + c)5 (r + c)5

Table 2.2: Observed lower bounds for the primal-simplex and the dual-simplex algo-

rithms on random and tomography inputs

24

2.3.2 Fastpc

The experimental runs show that our implementation of Fastpc is slower (by

constant factor of around 4) than the simpler implementation (only 0/1 coefficients) used

in [45]. The running time of Fastpc is well predicted by the expression [1.2n + 5(r +

c) log n/ε2] (appropriately scaled) for the random and tomography instances (Figure

2.19b). For set packing and DIMACS instances, the behavior isn’t well predicted for

small instances, but as the instances grow bigger, the running time starts to match

this expression (Figure 2.19a). [45] report that the average time per operation was not

constant and it grew with large instances by up to a factor of two. We also observe

the same phenomenon in our experimental runs, but we do not understand why this

happens.

For dense problems where r and c are O(
√
n), the running time is O(n +

√
n log(n)/ε2) which is linear in the size of the input even for very small ε. In our

experiments, the running times for dense matrices were dominated by the second term

in the expression above.

2.3.3 CPLEX vs Fastpc

We give the running times of all algorithms for set packing and DIMACS

inputs in Table A.1 and random and tomography inputs in Table A.2. If an algorithm

did not finish computing the solution (approximate or optimal), the time is indicated

by a “-”. In some cases if an algorithm had been running for a long time and was not

making enough progress, the execution was stopped. For large random and tomography

instances primal and dual simplex performed very poorly and were not included in some

of the final runs with very large inputs.

25

Note that our results are significantly different from the empirical results in

[45]. As pointed out in Section 2.1.2, the implementation used in their study is simpler

and faster by constant factors. We find that for the sizes considered in their study,

our implementation of Fastpc does not perform better than CPLEX algorithms. This

is also because our implementation is compared to the CPLEX implementations of

simplex and interior-point algorithms, while their experiments used GLPK, which is

considerably slower than CPLEX. Moreover, our experiments included inputs which

were very sparse. We find that the CPLEX algorithms perform better on sparse inputs

and the gap between Fastpc and CPLEX algorithms is higher. A large number of

sparse instances contribute to a bigger gap between the performance of Fastpc and

that of CPLEX algorithms as compared to the previous study.

We observe that all CPLEX algorithms are faster than Fastpc on set packing

and DIMACS inputs. All three CPLEX algorithms compute the (1±ε)-solution within at

most 6 minutes and the optimal solution in under an hour on each input. The set packing

and DIMACS instances were designed to make the computation of the integer optimal

solution hard. It is possible that computing fractional solutions for these instances is

easy for the algorithms considered in this study. In such cases, where CPLEX algorithms

compute the solutions quickly, it is unlikely that Fastpc will perform better. We used

the generator for set packing inputs to create larger instances, but CPLEX algorithms

were still fast on those inputs. We were not able to generate inputs large enough where

CPLEX algorithms are slow (take more than a few hours for computing approximate

solutions). We can’t conclude based on this data if Fastpc will eventually perform

better than CPLEX algorithms for larger instances of these input types.

There is a different trend for random and tomography instances. We see that

Fastpc competes better with the CPLEX algorithms for these instances compared to

26

the DIMACS and set packing inputs. Fastpc catches up with CPLEX algorithms at

around r + c > 17000 when density > 0.15, and around r + c > 32000 when 0.01 ≤

density ≤ 0.15, and around r + c > 77000 when density < 0.01 (Figure 2.22).

2.3.4 Hybrid Algorithm

The barrier algorithm runs in two phases. In the first phase (pre-crossover)

the interior-point algorithm computes an approximate solution and in the second phase

(post-crossover) primal-simplex starts with the approximate solution computed in the

first phase and finishes with the optimal solution. Since Fastpc is faster than barrier

for reasonably large instances, this motivates the possibility of a faster hybrid algorithm

that uses Fastpc instead of interior-point algorithm for the pre-crossover phase. It first

runs Fastpc to compute a (1− ε)-approximate solution for small ε then finishes (as in

the barrier algorithm) by crossing over and running iterations of primal-simplex until

an optimal solution is found.

Is it possible that by an appropriate choice of ε this hypothetical hybrid algo-

rithm could be faster than the existing barrier algorithm?

In the existing barrier algorithm the time is spent roughly equally in the pre-

crossover and post-crossover phases. To substantially reduce the running time, the

proposed hybrid algorithm would have to find, in the first phase, a (1 + ε)-approximate

solution with ε substantially smaller than is found by the current barrier algorithm at

crossover.

In all of our current trials the crossover occurs when ε is somewhere between

10−6 and 10−9 (Figure 2.23). This is substantially smaller than 1/(r + c). But, even

27

running Fastpc to get a 1+1/(r+c)-approximate solution requires more than Ω((r+c)3)

time. Thus, at least for these instances the proposed hybrid algorithm would be much

slower than barrier.

There seem to be two possible scenarios concerning much larger instances:

• The value of ε required at crossover in order to substantially reduce the running

time of the second stage is less than 1/(r+ c) even for large instances. In this case

the proposed hybrid algorithm will not be faster even for much larger inputs.

• Alternatively, the required value of ε remains constant in the range 10−6 − 10−9

even for much larger inputs. In this case, the proposed hybrid algorithm could

eventually be faster than the barrier algorithm for sufficiently large inputs.

Both of these scenarios are consistent with our experimental data. In short,

the proposed hybrid algorithm would not be faster for inputs up to the size about

r + c = 106 to 109. For larger inputs we can not conclude from our data whether the

hybrid algorithm could be faster.

2.4 Conclusions and future directions

The observed lower bounds for the CPLEX and Fastpc algorithms suggest

that for reasonably large instances Fastpc will outperform the CPLEX algorithms for

random and tomography inputs. We were able to see the crossover point for dense inputs

in our experiments and we also predict the crossover points for sparse inputs using the

models for Fastpc and barrier algorithms.

For set packing and DIMACS inputs, we can not conclude from this data that

Fastpc will perform better than CPLEX algorithms for large instances. If CPLEX

28

algorithms are slow (asymptotically) on larger instances of these input types, we may

see Fastpc catching up with them. We find that all CPLEX algorithms compute

the fractional solutions on DIMACS and set packing inputs very quickly, compared to

random and tomography inputs. This is true even for the larger instances we created

using the generator described in [61]. It may also be possible to tweak this model or use

a different model to generate instances where these algorithms are relatively slower in

computing fractional solutions.

We don’t study the memory usage of these algorithms in this study. It would

be an interesting follow-up to this work.

In some recent work, Bienstock and Iyengar [11] and Chudak and Eleutério

[18] give algorithms where the dependence on ε is proportional to O(1/ε). The running

time of the algorithm in [18] is [c1.5(r + c)/ε + c2r]. For a fixed or moderately small ε,

this algorithm is slower than Fastpc but, for smaller values of ε it may be faster. It

may be interesting to investigate if this approach used in [11, 18] can be modified to

achieve better running times with the same dependence on ε. It would also be interesting

to study how it compares to the algorithms studied in this work. If it is faster than

the interior-point algorithm for very small values of ε, the hybrid algorithm where the

pre-crossover step uses this algorithm may be faster than the barrier algorithm.

29

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.8: Iterations for primal-simplex on random and tomography inputs to compute

(1± ε)-solution

30

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.9: Iterations for primal-simplex on random and tomography inputs for exact

solution

31

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.10: Time per iteration for primal-simplex on random and tomography inputs

to compute (1± ε)-solution

32

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.11: Time per iteration for primal-simplex on random and tomography inputs

to compute exact solution

33

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.12: Iterations for dual-simplex on random and tomography inputs to compute

(1± ε)-solution

34

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.13: Iterations for dual-simplex on random and tomography inputs for exact

solution

35

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.14: Time per iteration for dual-simplex on random and tomography inputs to

compute (1± ε)-solution

36

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.15: Time per iteration for dual-simplex on random and tomography inputs to

compute exact solution

37

(a) (1± ε)-solution

(b) Exact solution

Figure 2.16: Iterations for barrier-simplex on set packing and DIMACS inputs

38

(a) (1± ε)-solution

(b) Exact solution

Figure 2.17: Time per iteration for barrier-simplex on set packing and DIMACS inputs

39

(a) d < 0.01

(b) d ≥ 0.01

Figure 2.18: Comparison of CPLEX algorithms to compute (1± ε)-solution for ε = 0.01

on random and tomography inputs

40

(a) Set packing and DIMACS inputs

(b) Random and tomography inputs

Figure 2.19: Running time for Fastpc for ε = 0.01

41

(a) Set packing and DIMACS inputs

(b) Random and tomography inputs

Figure 2.20: Time / predicted time for Fastpc for ε = 0.01

42

Figure 2.21: Fastpc vs dual-simplex on set packing and DIMACS inputs

43

(a) Actual data and models for density < 0.01

(b) Prediction using models for density < 0.01

44

(c) 0.01 ≤ Density < 0.15

(d) Density ≥ 0.15

Figure 2.22: Fastpc vs barrier on random and tomography inputs

45

Figure 2.23: Value of ε at crossover (log-log scale)

46

Chapter 3

File caching with rental cost and

zapping

3.1 Introduction

3.1.1 Background

The file caching (or generalized caching) problem is defined as follows. Given

a cache of size k (a positive integer), the goal is to minimize the total retrieval cost for

the given sequence of requests to files. A file f has size size(f) (a positive integer) and

retrieval cost cost(f) (a non-negative number) for bringing the file into the cache. A

miss or fault occurs when the requested file is not in the cache and the file has to be

brought into the cache by paying the retrieval cost. When a file is retrieved into the

cache, some other files may have to be removed (evicted) from the cache so that the

total size of the files in the cache does not exceed k. Weighted caching (or weighted

paging) is the special case when each file has size 1. Paging is the special case when

each file has size 1 and the retrieval cost for each file is 1.

47

An algorithm is online if its response for each request is independent of all

future requests. Let ALG(σ) be the cost of algorithm ALG on request sequence σ, and

let OPT(σ) be the corresponding optimal offline cost. ALG is α-competitive if, for every

request sequence σ, ALG(σ) ≤ α ·OPT(σ) + c, where c is a constant independent of the

request sequence.

In this work, we study the following variants of the file caching problem in the

online setting using the competitive-analysis framework [41].

Caching with Rental Cost (or Rental Caching): There is a rental cost

λ (a positive number) for each slot used by a file in the cache at each time step. The

goal is to minimize the sum of the retrieval costs and the rental costs.

The rental cost for file f that is in the cache for d time is size(f)·d. Chrobak [15]

proposes the rental caching problem and also presents some preliminary results. The

rental caching problem is motivated by the idea of energy efficient caching. Caching

systems can save power by turning off the memory blocks that are not being used to

store any files. Rental caching models this by charging a rental cost for keeping each

file in the cache. See [49] for specific applications.

In Section 3.3.2 we show that the variant of rental caching where the cache has

infinite size is closely related to the ski-rental problem. The ski-rental problem is the

following. A pair of skis can be rented by paying $λ per day, or can be bought for the

remainder of the ski season by paying $B. It is not known in advance when the season

is going to end and the goal is to minimize the total money spent for the entire season

[38].

Weighted rental caching (or, weighted rental paging) is a special case of the

rental caching where each file has size 1 and rental paging is a special case where each

file has size 1 and the retrieval cost for each file is 1. Similarly, rental caching for the

48

cases of bit and fault models have cost(f) = 1 and cost(f) = size(f), respectively, for

each file f .

Caching with Zapping : Any file can be zapped by paying the zapping cost

N (a positive number) at any time step. Once a file is zapped, it doesn’t take up any

space in the cache and any future requests to it do not incur any retrieval or rental cost.

The goal is to minimize the sum of the retrieval costs and the zapping costs.

We study file caching, as well as the special cases of weighted caching, paging,

bit model, and fault model, where we have at least one of rental cost and zapping.

Weighted caching with zapping (or, weighted paging with zapping) is a special

case of the rental caching where each file has size 1. paging with zapping is a special

case where each file has size 1 and the retrieval cost for each file is 1. Caching with

zapping for the cases of bit and fault models have cost(f) = 1 and cost(f) = size(f),

respectively, for each file f .

These variants generalize the file caching problem. File caching is a special

case of rental caching where the rental cost is 0. Similarly, caching is a special case of

caching with zapping where the cost of zapping is arbitrarily large. We also study the

variant which combines these two variants: rental caching with zapping . In all these

variants, we allow time steps with no requests.

3.1.2 Previous work

In 1985 Sleator and Tarjan [55] introduce the competitive-analysis framework.

In [55] they show that well-known paging rules like LRU, FIFO, and FWF are k-

competitive and that k is the best ratio any deterministic online algorithm can achieve

for the paging problem.

49

Fiat et al. [25] initiate the competitive analysis of paging algorithms in the ran-

domized setting. They show a lower bound of Hk, where Hk is the kth harmonic number,

for any randomized algorithm. They give a 2Hk-competitive randomized marking al-

gorithm. Achlioptas et al. [4] show that the tight competitive ratio of the randomized

marking algorithm is 2Hk − 1. McGeoch and Sleator [52] and Achlioptas et al. [4] give

optimal Hk-competitive randomized algorithms for paging.

For weighted caching, Chrobak et al. [17] give a tight k-competitive determinis-

tic algorithm. For the randomized case, Bansal et al. [7] give a tight O(log k)-competitive

primal-dual algorithm.

For file caching, Irani [37] shows that the offline problem is NP-hard. For the

online case, Irani [37] gives results for the bit model (cost(f) = size(f) for each file f)

and fault model (cost(f) = 1 for each file f). She shows that LRU is (k+1)-competitive

for both models. Cao and Irani [14] extend the result to file caching. Young [65] inde-

pendently gives the Landlord algorithm and shows that it is (k
k−h+1)-competitive for

the file caching problem. Irani [37] gives an O(log2 k)-competitive randomized algorithm

for bit and fault models. Bansal et al. [7] give an O(log k)-competitive randomized algo-

rithm for both the models, and an O(log2 k)-competitive randomized algorithm for the

general case.

3.1.2.1 Methodology

Young [62] uses a primal-dual analysis to give a
(

k
k−h+1

)
-competitive determin-

istic online algorithm for weighted caching. Bansal et al. [7, 8], Buchbinder and Naor

[13] use a primal-dual approach to give randomized algorithms for paging, weighted

caching, and file caching. In a recent work, Adamaszek et al. [5] build on their online

primal-dual approach to give an O(log k)-competitive for file caching. In another recent

50

work Epstein et al. [23] show that this online primal-dual approach can be extended

to Caching with Rejection. Caching with rejection is a variant of file caching where a

request to a file that is not in the cache can be declined by paying a rejection penalty. In

this variant, each request is specified as a pair (f, r), where f is the file requested and r

is the rejection penalty. Note that caching with rejection is different from caching with

zapping. In caching with zapping, a file can be zapped at any time, while in caching

with rejection a file can be rejected only when it is requested. Moreover, a rejected file

can incur a retrieval cost or a rejection penalty again in the future, while the zapped

file does not incur any cost after it is zapped.

Koufogiannakis and Young [46] give a deterministic greedy ∆-approximation

algorithm for any covering problem with a submodular and non-decreasing objective

function, and with arbitrary constraints that are closed upwards, such that each con-

straint has at most ∆ variables. They show that their algorithm is ∆-competitive for

the online version of the problem where the constraints are revealed one at a time. Many

online caching and paging problems reduce to this online covering problem, and con-

sequently, their algorithm generalizes many classical deterministic algorithms for these

problems. These include LRU and FWF for paging, Balance and Greedy Dual

for weighted caching, Landlord (a.k.a. Greedy Dual Size) for file caching, and

algorithms for Connection Caching [46]. We study this approach and extend it to

give deterministic online algorithms for the variants of online file caching studied in this

work.

3.1.3 Our contributions

We study rental caching, caching with zapping, and rental caching with zap-

ping. We present deterministic and randomized lower and upper bounds for these new

51

variants of paging, weighted caching, and file caching in the online setting. We use the

approach in [46] to give deterministic algorithms for these online problems. While this

approach is general, it doesn’t necessarily give optimal online algorithms. The direct

application of this approach yields sub-optimal algorithms in some of the cases we study

in this paper. We describe these scenarios and also the appropriate modifications to the

algorithm to achieve better competitive ratios. Table 3.1 summarizes our results.

Problem Lower Bound Upper Bound Gap

Rental paging,

Det
λ ≥ 1

k 2− λ 2
O(1)Rental caching: 1

k2
≤ λ < 1

k k+kλ
1+k2λ

1 + 1
kλ

bit model, λ < 1
k2

k
Rental caching:

Rand
λ ≥ 1

k
e
e−1 O(1)

fault model λ < 1
k

Hk+k2Hkλ
1+k2Hkλ

Hk + e
e−1 O(Hk)

Weighted rental
Det

λ ≥ 1
k 2− λ

k
O(k)

caching, λ < 1
k

k+kλ
1+k2λ

O(1)

Rental caching:
Rand

λ ≥ 1
k

e
e−1 O(1)

λ < 1
k

Hk+k2Hkλ
1+k2Hkλ

O(log k) O(log k)

Paging with zap-
ping,

Det

min(N − 1,

min(N, 2k + 1) O(1)
Weighted caching
with zapping, 2Nk+N−(k+1)

N+2k)
Caching with zap-
ping

Rental paging with
zapping,

Det

λ ≥ 1
k 2− λ 3

O(1)

Rental caching
with zapping: bit
model,

1
k2
≤ λ < 1

k

k+kλ
1+k2λ

1 + 2
kλ

Rental caching
with zapping:
fault model

λ < 1
k2

2k + 1

Weighted rental
caching with
zapping, Det

λ ≥ 1
k 2− λ

2k + 1
O(k)

Rental caching
with zapping

λ < 1
k

k+kλ
1+k2λ O(1)

Table 3.1: Competitive ratios for the variants with rental cost and zapping. In column

2, “Det” represents Deterministic and “Rand” represents Randomized.

For rental paging and for rental caching for bit and fault models, the deter-

52

ministic upper and lower bounds in this paper are tight within constant factors. For the

randomized case, the lower and upper bounds are tight within constant factors when λ is

O(1
k2Hk

) and when λ ≥ 1
k . For weighted rental paging and for rental caching, the upper

and lower bounds are tight within constant factors when λ < 1
k for the deterministic

case, and when λ is O(1
k2Hk

) or when λ ≥ 1
k for the randomized case. The bounds for

the variants with rental cost are within constant factors of the bounds for the variants

without rental cost when λ ≤ 1
k2

for the deterministic case and when λ is O(1
k2Hk

) for

the randomized case. For higher values of λ ≥ 1
k we show constant lower bounds and

matching upper bounds.

For rental paging with zapping and for rental caching with zapping for bit

and fault models, the deterministic upper and lower bounds in this paper are tight

within constant factors. Weighted caching with zapping and caching with zapping, the

deterministic lower and upper bounds in this paper are tight within constant factors

when λ ≤ 1
k .

3.1.4 Other work on rental paging

Lopez-Ortiz and Salinger [49], in an independent work, study the rental paging

problem. They give a deterministic polynomial time algorithm for the offline problem by

reducing it to interval weighted interval scheduling. They show that any conservative

or marking algorithm is k-competitive and that the bound is tight. An algorithm is

conservative if it incurs at most k faults on any consecutive subsequence of requests

that contains at most k distinct pages. A marking algorithm marks each page when it is

requested, and when it is required to evict a page, it evicts an unmarked page. If there

are no unmarked pages, it first unmarks all the pages.

For any online algorithm A for paging, define the algorithm Ad for rental paging

53

as follows. Ad behaves like A with the modification that any page in the cache that has

not been requested for d steps is evicted. They define a class of online algorithms Md,

where M is any conservative or marking algorithm. They show an upper bound of 2 on

the competitive ratio of M 1
λ

when λ > 1
k , which matches the presented in upper bound

in this work. They show an upper bound of max (k, (k+1)
1+λ(k−1)) on the competitive ratio

of M 1
λ

when λ ≤ 1
k . Their bound is at least k when λ < 1

k and is weaker than the upper

bound we present in this work when 1
k2
< λ < 1

k . In particular, when λ is Ω(1
k), there

is a gap of Ω(k) between their bound and the bounds shown in this work.

Their deterministic lower bound on the competitive ratio for rental paging

matches the lower bound in this work.

They also present experimental results for the performance of various LRU,

LRU 1
λ

, FWF, FWF 1
λ

, FIFO, FIFO 1
λ

, and the optimal offline algorithm.

They present results only for rental paging and not for weighted rental paging

or rental caching. They do not study the rental paging problem in the randomized

setting.

3.2 Online covering approach

In this section, we give an example of the online covering approach from [46].

We use this approach, with modifications in some cases, to give deterministic algorithms

for the variants of paging and caching problems in this work.

Koufogiannakis and Young [46] give a ∆-approximation algorithm for Submod-

ular Cost Covering.

Definition 1. Submodular Cost Covering: An instance is a triple (c, C, U), where

• The cost function c : R̄n≥0 → R̄≥0 is submodular, continuous, and non-decreasing.

54

• The constraint set C ⊆ 2R̄
n
≥0 is a collection of covering constraints, where constraint

S ∈ C is a subset of R̄n≥0 that is closed upwards and under limit.

• For each j ∈ [n], the domain Uj (for variable xj) is any subset of R̄≥0 that is

closed under limit.

Here R̄≥0 denotes R≥0∪{∞}. c is submodular if, c(x)+c(y) ≥ c(x∧y)+c(x∨y),

where c(x ∧ y) and c(x ∨ y) are component-wise minimum and maximum, respectively,

of x and y.

In online version of this problem, the constraints are revealed one at a time in

any order. Whenever the algorithm, Online-Covering, gets a constraint that is not yet

satisfied, it raises all variables in the constraint at the rates inversely proportional to

their coefficients in the cost function, until the constraint is satisfied. This algorithm is

∆-competitive, where ∆ is the maximum number of variables in any constraint. We use

the following result from [46].

Theorem 2. Online-Covering is ∆-competitive for online submodular cost covering.

We omit the proof of this theorem, but we illustrate this approach and give a

proof for the competitive ratio for this algorithm for the case of paging. We define the

following notation.

• ft : file requested at time t

• t′ : time of next request to the file requested at time t

• xt : indicator variable for the event that the file requested at time t was evicted

before t′

• R(t) : set of times of the most recent request to each file until and including time

t

55

• Q(t) : represents every minimal set of files, which were requested before time t,

such that for any Q ∈ Q(t), Q ∪ {t} violates the cache-size constraint. Thus, for

paging, we define Q(t) as {Q ⊆ R(t)− {t} : |Q| = k}.

• T : time of last request

We formulate paging as the following covering problem (Paging-CP):

min

T∑
t=1

xt

s.t. ∀t,∀Q ∈ Q(t) :
∑
s∈Q
bxsc ≥ 1

Each constraint represents the following. At time t, when ft is requested, for

any subset Q of Q(t), it must be true that at least one of the files in Q is evicted to

make space for ft. Clearly, any feasible solution to the paging problem, is a feasible

solution to Paging-CP. In particular, any optimal solution to the paging problem is a

feasible solution to Paging-CP.

Now we describe the algorithm for paging. At each time step the algorithm

may get multiple constraints. The algorithm considers the constraints in arbitrary order.

When it gets a constraint that is not yet satisfied, it raises each variable in the constraint

at unit rate until the constraint is satisfied. Whenever a variable reaches 1, the algorithm

evicts the corresponding file from the cache. If the algorithm gets a constraint that is

already satisfied, the algorithm does not do anything. We say the algorithm uses a

constraint, if it isn’t already satisfied when the algorithm considers it and raises the

variables in the constraint, as described above, to satisfy it.

Each constraint in Paging-CP has exactly k variables. Now we show that this

algorithm is k-competitive using the following potential function.

56

φ =
∑
t

max(x∗t − xt, 0)

Here x∗ denotes the value of x in the optimal solution. Initially, φ = OPT

and ALG = 0. When the algorithm gets a constraint that is not satisfied, it raises each

variable in the constraint at rate 1. So, the cost of the algorithm increases at the rate k.

Also, φ decreases at unit rate because there is at least one variable xs in the constraint

such that xs < x∗s (otherwise the constraint would already be satisfied). Thus, the

algorithm maintains the invariant ALG/k + φ ≤ OPT. Since φ ≥ 0, it must be true

that ALG ≤ k ·OPT.

For the variants studied in this work, we use the approach outlined above, but

with modifications in some cases. When we use the algorithm without any modifications,

we omit the proofs for the competitive ratio. For these cases, the competitive ratio is

the maximum number of variables in any constraint the algorithm uses. If we apply any

modifications, we present complete proofs.

3.3 File caching with rental cost and zapping

3.3.1 Deterministic algorithms via online covering

We first consider rental caching with zapping. We present the deterministic

algorithm, Rent-Zap-Caching-CP, for this problem by reducing it to online covering.

Our algorithm is based on the greedy online covering algorithm outlined in Section 3.2.

We use the notation defined in Section 3.2. In addition, we define the following indicator

variable to account for renting and zapping files.

• yt,s : indicator variable for the event that the file requested at time t pays the

rental cost at time s < t′

57

• zf : indicator variable for the event that the file f has been zapped

The following is the formulation of rental caching with zapping as a covering

program:

min

T∑
t=1

(
cost(ft) · xt + λ

∑
t≤s<t′

size(ft) · yt,s
)

+N
∑
f∈F

zf

s.t. ∀t,∀Q ∈ Q(t) :
(∑
s∈Q

min(bxsc+ bzfsc, 1)
)

+ bzftc ≥ 1 (I)

∀t, t ≤ s < t′ : byt,sc+ bxtc+ bzfsc ≥ 1 (II)

The first set of constraints (I) enforces the cache size at time t (similar to the

constraints in Paging-CP), and the second set of constraints (II) says that at time s

the file is being rented, has been evicted, or has been zapped. We call them cache-size

constraints and rent-evict-zap constraints, respectively.

For each request, Rent-Zap-Caching-CP gets some cache-size constraints and

some rent-evict-zap constraints. It considers the rent-evict constraints before the cache-

size constraints. When there are multiple constraints of the same type (cache-size or

rent-evict-zap), the algorithm considers them in arbitrary order. Whenever it gets a

constraint that is not satisfied, it raises all variables in the constraint at rates inversely

proportional to their coefficients, until the constraint is satisfied. When Rent-Zap-

Caching-CP gets a rent-evict-zap constraint that is not yet satisfied, it raises xt at rate

1
cost(ft)

, raises yt,s at rate 1
size(ft)λ

, and raises zft at rate 1
N for each xt, yt,s, and zft in

the constraint. When it gets a cache-size constraint, it raises each xs in the constraint

at rate 1
cost(fs)

.

Theorem 3. Rent-Zap-Caching-CP is (2k+ 1)-competitive for rental caching with zap-

ping.

58

Proof. Each file has size at least 1, and hence, |Q| ≤ k. Thus, each cache-size constraint

has at most 2k + 1 variables. Each rent-evict-zap constraint has exactly 3 variables.

Theorem 2 implies that Rent-Zap-Caching-CP is (2k + 1)-competitive.

Corollary 4. Rent-Zap-Caching-CP is (2k + 1)-competitive for caching with zapping.

Theorem 5. Rent-Zap-Caching-CP is max(2, k)-competitive for rental caching.

Proof. For rental caching, there are no variables for zapping. Following the argument

in the proof of Theorem 3, each cache-size constraint has at most k variables. Each

rent-evict constraint has exactly 2 variables. Thus, Rent-Zap-Caching-CP is max(2, k)-

competitive for rental caching.

3.3.2 Rental caching with infinite cache

We observe that for paging and for bit and fault models, when there is rental

cost (with or without zapping), this algorithm achieves a better competitive ratio when

λ ≥ 1
k . The key idea is that the rental cost forces eviction of files in way that the cache-

size constraints are never violated. We present our analysis in this section and in Section

3.3.3. We present an algorithm for 1
k2
< λ < 1

k that achieves a better competitive ratio

than the algorithms in Section 3.3.1.

Consider the special case of rental caching where the cache has infinite size (i.e.

k =∞). This is equivalent to the rental caching problem without any size constraints.

Even though there is no size constraint, this problem is still interesting because there is

a rental cost for keeping files in the cache. However, if a file is evicted to save the rental

cost, it will incur the retrieval cost on its next request.

Theorem 6. If there is an α-competitive algorithm ALGSR for ski-rental, there is an

α-competitive algorithm for rental caching with infinite cache.

59

Proof. Fix any file f . We define phases as follows. A phase starts with a request to the

file f and ends at the time step just before the next request to f . When a phase starts,

the file f must be present in the cache and the earliest it can be evicted from the cache

is at the next time step. Each phase is similar to the ski-rental problem, but there is

one difference. In this problem, unlike ski-rental, the algorithm cannot evict (buy) the

file at the very first step. It has to wait for at least one step before it can evict the file.

For each phase, excluding the first step, we define the rent-or-evict problem as

follows. There is a file f in the cache. The cost of keeping a file in the cache is λsize(f)

per time step and the cost of evicting it is cost(f). The algorithm doesn’t know when

the phase ends and at each step has to decide if it rents the file or if it evicts it.

Rent-or-evict is equivalent to ski-rental, where the cost of renting skis for a

day is λsize(f) and the cost of buying skis for the season is cost(f). At each step,

the algorithm either buys the skis (evicts the file) or rents the skis (rents the file).

The algorithm does not know when the season (phase) ends. Given an α-competitive

algorithm for ski-rental, the algorithm ALG∞ for rental caching with infinite cache does

the following. For a request to file ft at time t, ALG∞ brings the file into the cache.

Starting at the next time step, it simulates ALGSR on ft to decide how long to keep the

file in the current phase. If ALGSR buys f at any time step during the phase, ALG∞

evicts it from the cache at the beginning of that step. The total rental cost of ALG∞ is

same as the total rental cost of ALGSR and the total eviction cost of ALG∞ is equal to

the total cost of buying for ALGSR.

Let OPTSR be the optimal cost of the ski-rental instance. In a phase, ALG∞

cost is at most λsize(f)+α·OPTSR and the optimal cost is OPT∞ = λsize(f)+OPTSR.

The the competitive ratio of this algorithm is at most λsize(f)+α·OPTSR

λsize(f)+OPTSR
. Since α > 1,

the competitive ratio is at most α.

60

Corollary 7. There is a 2-competitive deterministic algorithm for rental caching with

infinite cache.

Proof. The 2-competitive deterministic algorithm for ski-rental [38] and Theorem 6 to-

gether imply that ALG∞ is 2-competitive.

Corollary 8. There is a (e
e−1)-competitive randomized algorithm for rental caching with

infinite cache.

Proof. The (e
e−1)-competitive randomized algorithm for ski-rental [38] and Theorem 6

together imply that ALG∞ is (e
e−1)-competitive.

Theorem 9. If ALGSR is an α-competitive optimal algorithm for ski-rental, then there

is an α-competitive algorithm for rental paging when λ ≥ 1
k .

Proof. Any optimal algorithm for ski-rental buys the skis in at most 1
λ days. Thus, by

simulating ALGSR on each phase, ALG∞ keeps each file in the cache for 1 + 1−λ
λ = 1

λ

steps from its latest request. So, ALG∞ uses a cache size of at most 1
λ . When λ ≥ 1

k ,

ALG∞ uses a cache of size at most k. Thus, the cache-size constraints are never violated

and ALG∞ is α-competitive for rental paging.

Theorem 9 implies the following two corollaries.

Corollary 10. When λ ≥ 1
k , there is a 2-competitive deterministic algorithm for rental

paging.

Corollary 11. When λ ≥ 1
k , there is a (e

e−1)-competitive randomized algorithm for

rental paging.

61

3.3.3 Improvements for high rental cost

For any γ > 0, we define Rent-Zap-Caching-CPγ as the algorithm that be-

haves like Rent-Zap-Caching-CP with the following modification. Whenever Rent-Zap-

Caching-CPγ gets a rent-evict-zap constraint, it raises yt,s in the constraint at rate

γ
size(ft)λ

. Note that Rent-Zap-Caching-CP1 and Rent-Zap-Caching-CP are the same

algorithm.

We define η = mint
λsize(ft)
γcost(ft)

k. We show that when this quantity is at least 1,

the cache-size constraints are not used by the algorithm.

Claim 12. When Rent-Zap-Caching-CPγ considers a rent-evict-zap constraint for the

file requested at time t, either ft is evicted or zapped, or xt increases by size(ft)λ
cost(ft)γ

.

Proof. Whenever Rent-Zap-Caching-CPγ considers a rent-evict-zap constraint, it raises

xt at rate 1
cost(ft)

and yt,s at rate γ
size(ft)λ

. Thus, when yt,s goes from 0 to 1, xt increases

by size(ft)λ
cost(ft)γ

. It is possible that xt or zt reach 1 before yt,s reaches 1, implying the file is

evicted or zapped, respectively.

Claim 13. When η ≥ 1, Rent-Zap-Caching-CPγ does not use any cache-size constraints.

Proof. We claim that, at any given time, if all the rent-evict constraints are satisfied,

the cache-size constraints are satisfied too. We prove this by showing that each file is

evicted within k steps from its latest request, by using just the rent-evict-zap constraints

corresponding to the file in the cache.

For each file f , size(f) ≥ 1. Therefore, size(f)λ ≥ 1
k .

Fix a file in the cache and let t be the time of the latest request to this file. If

ft is zapped by time s, we are done. Lets assume it is not zapped. Let d = s− t. Claim

12 implies that at time s the value of xt is size(ft)λ
cost(ft)γ

d. This value is 1 in at most d = k

62

steps. Thus, the file is evicted in at most k steps. Note that if zft is 1 before xt is 1, the

file still does not use any slots in the cache. Thus, the cache-size constraints are never

violated and the algorithm uses only the rent-evict-zap constraints.

Claim 14. η is at least 1, when λ ≥ 1
k and γ = 1 for (a) rental paging with zapping and

for rental caching with zapping for the cases of (b) bit model and (c) fault model.

Proof. Plugging in γ = 1 in the expression for η gives η = mint(
λsize(ft)
cost(ft)

k). Now consider

the following cases.

(a) For paging, cost(ft) = size(ft) = 1. Thus, η = kλ ≥ 1.

(b) For bit model, cost(ft) = size(ft). Thus, η = kλ ≥ 1.

(c) For fault model, cost(ft) = 1. Thus, η = size(ft)kλ ≥ kλ ≥ 1.

This proves the claim.

Theorem 15. When λ ≥ 1
k , Rent-Zap-Caching-CP is 3-competitive for (a) rental paging

with zapping and for rental caching with zapping for the cases of (b) bit model and (c)

fault model.

Proof. Claims 13 and 14 together imply Rent-Zap-Caching-CP uses only the rent-evict-

zap constraints. Each of these constraints has exactly 3 variables. Thus, using Theorem

2, RentalZappingPagingCILP is 3-competitive.

Theorem 16. When λ ≥ 1
k , Rent-Zap-Caching-CP is 2-competitive for (a) rental paging

and for rental caching for the cases of (b) bit model and (c) fault model.

Proof. Claims 13 and 14 together imply Rent-Zap-Caching-CP uses only the rent-evict-

zap constraints. Each rent-evict-zap constraint has exactly 2 variables. Thus, by Theo-

rem 2, the algorithm is 2-competitive for paging and for bit and fault models.

63

Claim 17. η is at least 1, when 1
k2

< λ < 1
k and γ = kλ for (a) rental paging with

zapping and for rental caching with zapping for the cases of (b) bit model and (c) fault

model.

Proof. η = mint(
size(ft)
cost(ft)

) when γ = kλ. Now consider the following cases.

(a) For paging, cost(ft) = size(ft) = 1. Thus, η = 1.

(b) For bit model, cost(ft) = size(ft). Thus, η = 1.

(c) For fault model, cost(ft) = 1. Thus, η = size(ft) ≥ 1.

Thus, η is at least 1 in all three cases.

Theorem 18. When 1
k2
< λ < 1

k , Rent-Zap-Caching-CPkλ is (1 + 2
kλ)-competitive for

(a) rental paging with zapping and for rental caching with zapping for the cases of (b)

bit model and (c) fault model.

Proof. Claims 13 and 17 together imply that the algorithm uses only the rent-evict-zap

constraints.

Now we show that this modified algorithm is (1 + 1
kλ)-competitive. We use the

following potential function for our proof:

φ =

T∑
t=1

(
cost(ft) max (x∗t − xt, 0) +

∑
t≤s<t′

λsize(ft) max (y∗t,s − yt,s, 0)
)

+
∑
f∈F

N max (z∗f − zf , 0)

Consider the rent-evict-zap constraint at time s for the file whose most recent request

was at time t. When the algorithm raises the variables in this constraint, the cost of

the algorithm increases at the rate (2 + γ). Also, φ decreases at the rate min(1, γ).

Thus, the algorithm maintains the invariant ALG/(2 + γ) + φ/(min(1, γ)) ≤ OPT. (It

is true initially, because ALG = 0 and φ = OPT.) Since, φ ≥ 0, this implies that

ALG ≤ 2+γ
min(1,γ)OPT. Also, γ = kλ ≤ 1. So, ALG ≤ (1 + 2

kλ)OPT.

64

Theorem 19. When 1
k2
< λ < 1

k , Rent-Zap-Caching-CPkλ is (1 + 1
kλ)-competitive for

(a) rental paging and for rental caching for the cases of (b) bit model and (c) fault model.

Proof. Claims 13 and 17 together imply that the algorithm uses only the rent-evict-zap

constraints. The proof for the competitive ratio of the modified algorithm is similar

to the proof for Theorem 18. There is no variables for zapping. In this case, ALG

increases at rate (1 + γ) and φ decreases at rate at least min(1, γ). This implies that

the invariant ALG/(1 + γ) + φ/(min(1, γ)) ≤ OPT holds. Since γ = kλ ≤ 1 and φ ≥ 0,

ALG ≤ (1 + 1
kλ)OPT.

3.3.4 Deterministic and randomized meta algorithms

In this section we present deterministic and randomized online algorithms for

rental caching with or without zapping.

Theorem 20. If there is an α-competitive algorithm ALGSR for ski-rental, and a β-

competitive algorithm ALGC for file caching with (or without) zapping, then there is an

(α+ β)-competitive algorithm for rental caching with (or, respectively without) zapping.

If ALGC and ALGSR are both deterministic, ALGRM is a deterministic online algorithm,

otherwise it is a randomized online algorithm.

We present the algorithm ALGRM. If ALGC is an algorithm for file caching,

ALGRM is an algorithm for rental caching. If ALGC is an algorithm for caching with

zapping, then ALGRM is an algorithm for rental caching with zapping.

ALGRM uses ALGSR and ALGC to generate a solution for rental caching. On

an input sequence σ and cache size k, ALGRM does the following. It simulates ALGC

on the input sequence σ and cache C1 of size k. In parallel, it simulates ALG∞ on the

request sequence σ and cache C2 of infinite size. ALG∞ in turn simulates ALGSR on

65

each request, as described in Section 3.3.2. At any time, the cache of ALGRM contains

the intersection of the files present in caches C1 and C2. When ALGC zaps a file, ALGRM

zaps it.

Claim 21. The total size of the items in the cache of ALGRM never exceeds k.

Proof. Total size of all items in the cache of ALGC is at least the total size of all items

in the cache of ALGRM. This proves our claim, because ALGC maintains the invariant

that the total size of items in the cache is at most k.

We use E[A] to denote the expected cost of algorithm A.

Claim 22. E[ALGRM] ≤ E[ALGSR] + E[ALGC]

Proof. ALGRM evicts a file, when at least one of ALGSR and ALGC evicted the file. For

each eviction, we charge the cost of eviction for ALGRM to the algorithm that evicted

the file, breaking ties arbitrarily. We charge the rental cost of ALGRM to the rental cost

of ALGSR. If ALGC is an algorithm for file caching with zapping, we charge the zapping

cost of ALGRM to the zapping cost of ALGC. This proves our claim.

Also, E[ALGSR] ≤ α ·OPTSR ≤ α ·OPT, and E[ALGC] ≤ β ·OPTC ≤ β ·OPT,

where OPTSR denotes the optimal cost for rental caching with infinite cache, OPTC

denotes the optimal cost for caching (rental caching with zapping), and OPT denotes

the optimal cost for rental caching (rental caching with zapping). So, E[ALGRM] ≤

(α + β)OPT, and hence, ALGRM is (α + β)-competitive algorithm for rental caching

(rental caching with zapping).

Theorem 20 implies the following corollaries.

Corollary 23. The 2-competitive deterministic online algorithm for ski-rental [38] and

66

the k-competitive deterministic online algorithm for file caching [55], give a (k + 2)-

competitive deterministic online algorithm for rental caching.

Corollary 24. The (e
e−1)-competitive randomized online algorithm for ski-rental [38]

and the O(log k)-competitive randomized online algorithm for file caching [4, 52], give

an O(log k)-competitive randomized online algorithm for rental caching.

Corollary 25. The 2-competitive deterministic online algorithm for ski-rental [38] and

the (2k+ 1)-competitive deterministic online algorithm for caching with zapping (Corol-

lary 4), give a (2k+3)-competitive deterministic online algorithm for rental caching with

zapping.

3.4 Lower bounds

3.4.1 Rental paging

Theorem 26. The competitive ratio of any deterministic algorithm for rental paging is

at least (a) 2− λ when λ > 1
k , and (b) k+kλ

1+k2λ
for any λ.

Proof. (a) λ > 1
k : The adversary uses one file and does the following. It requests the file

at the first time step, forcing the algorithm to bring the file into the cache, and waits

for the algorithm to evict the file. When the algorithm evicts the file, the adversary

requests it again at the next step. We split the entire sequence into phases such that

each request is the beginning of a phase. Fix a phase p. Let the length of the phase

be Lp. Note that, Lp > 1 as the algorithm cannot evict it at the time of request. The

total cost of the algorithm is Lpλ+ 1. The optimal cost is min(1, (Lp + 1)λ). The ratio

is minimized when Lp = 1
λ − 1, and this ratio is (1

λ − 1)λ+ 1 = 2− λ.

(b) The adversary requests files from the set {1, 2, 3, · · · , k+ 1}. At each step,

67

the adversary requests a file that is not present in the cache of the algorithm. The

algorithm faults at each time step and pays at least λ at each step. OPT pays the rental

cost to keep k items in the cache at each time step and faults once in k steps. So, the

ratio is at least k+kλ
1+k2λ

.

Theorem 27. The competitive ratio of any randomized algorithm for rental paging is

at least Hk+k2Hkλ
1+k2Hkλ

when λ < 1
k .

Proof. The adversary requests files from a set of k+ 1 files. At each step, the adversary

requests a file with uniform probability over all files except the file requested at the

previous step. We split the request sequence into phases as follows. The first phase starts

with the first request in the input sequence. Each phase is the maximal subsequence

with containing at most k distinct requests, and starts immediately after the previous

phase ends.

We now show that the expected length of each phase is kHk. When i distinct

files have been requested in a phase, the probability of requesting some file that has not

been requested in the phase is k−i
k . Thus the expected length of a phase is

(∑k−1
i=0

k
k−i

)
=

kHk.

Assume that i distinct files have been requested in the phase and the algorithm

has p ≤ k files in the cache. At the next time step, the algorithm faults with a probability

k−p+1
k and pays a rental cost pλ. So, the expected cost of the algorithm is 1+ 1

k−p(
1
k−λ).

When 1
k > λ, the cost is minimized when p = k. So, it pays 1

k eviction cost and kλ

rental cost at each step. OPT pays the same rental cost, but faults once in each phase.

So, for each phase, the ratio is at least Hk+k2Hkλ
1+k2Hkλ

.

68

3.4.2 Paging with zapping

Theorem 28. For paging with zapping, the competitive ratio of any deterministic algo-

rithm is at least min(N − 1, 2Nk+N−(k+1)
N+2k).

Proof. The adversary maintains a set of k+ 1 active files at all times. Every time a file

is zapped by the algorithm, it is replaced in the active set by a new file that has never

been requested before. At each time step, the adversary requests a file from the active

set that is not present in the cache of the algorithm. We define a zap-phase as follows.

A zap-phase ends every time the algorithm zaps a file and the following request marks

the beginning of the next zap-phase. The first zap-phase starts with the first request

of the input sequence. We define a round as follows. The first round starts with the

first request of the input sequence. A round ends when the algorithm has zapped all of

those k + 1 files that were requested in the first k + 1 time steps in that round (some

other files may have been zapped too). The adversary discards all files from the active

set at the end of a round and never requests a file that has been requested in any of

the previous rounds. The total number of files zapped in a round is at least k + 1. The

adversary repeats the process for a large number of rounds.

Now we show the lower bound on the competitive ratio in each round. Consider

any round. Let T ≥ k + 1 be the total number of files zapped by the algorithm in the

round. Let Zj be the length of zap-phase j, 1 ≤ j ≤ T .

Any deterministic algorithm faults at each time step and zaps a total of T files.

So, the cost of any deterministic algorithm is at least, ALG = NT +
∑T

j=1 (Zj − 1) =

(N − 1)T +
∑T

j=1 Zj . Note that
∑T

j=1 Zj ≥ T .

Consider the offline algorithms (a) F1 that does not zap any files, and (b) F2

chooses one file from the set of the first k + 1 files requested and zaps it at the t = 1.

69

Since F1 doesn’t zap any files, in the first zap-phase it pays k to bring the first

k files into the cache and then pays at most dZ1−k
k e in the remainder of the first phase.

For any zap-phase j > 1, F1 pays at most dZjk e.

F1 = (k + dZ1 − k
k
e) +

(T∑
j=2

dZj
k
e
)

≤ (k +
Z1

k
) +

(T∑
j=2

Zj
k

+ 1
)

= k + T − 1 +
T∑
j=1

Zj
k

F2 incurs k faults in the first phase and 1 fault in each phase after that. It also

pays N for zapping 1 file. The total cost of F2 is k + (T − 1) +N .

Since min(F1,F2) ≥ OPT , the competitive ratio is at least∑T
j=1 Zj + (N − 1)T

min (k + T − 1 +
∑T

j=1
Zj
k , k + T +N − 1)

The ratio is minimized for fixed k, N and T , when k+T −1+
∑T

j=1
Zj
k = k+T +N −1.

Simplifying gives,
∑T

j=1 Zj = Nk. So, the ratio is at least

Nk + (N − 1)T

N + k + T − 1

Differentiating w.r.t. T gives,

(N − 1)(N + k + T − 1)− (Nk + (N − 1)T)

(N + k + T − 1)2

The numerator is non-negative when (N − 1)2 ≥ k and is negative otherwise.

Thus, for (N − 1)2 ≥ k, the ratio is minimized when T = k + 1. Otherwise, the ratio is

minimized when T is large and this ratio is at least N − 1. So, the competitive ratio is

at least

min
(
N − 1,

2Nk +N − (k + 1)

N + 2k

)

70

3.5 Conclusions and further directions

The gaps in the bounds shown in this paper are given in 3.1. For the deter-

ministic case, there is a gap of O(k) for the variants of caching and weighted caching

with rental cost, when λ ≥ 1
k . For the randomized case, there is a gap of O(log k) for

all variants with rental cost and no zapping, when 1
k2Hk

≤ λ < 1
k .

We do no give any randomized lower or upper bounds for variants with zapping

but no rental cost. It would be interesting to explore these lower bounds and algorithms.

The models in this work assume uniform rental cost and uniform zapping cost in

this study. Note that, in our model for rental caching, the total rental cost depends only

on the size of a file. A natural extension would be to consider models with (arbitrary)

non-uniform rental and zapping costs.

The online covering algorithm by Koufogiannakis and Young [46] generalizes

many deterministic algorithms for online paging and caching problems. We use this

approach for all the new variants studied in this work. The algorithms thus derived

may not be optimal, as we show for the case of rental paging (or caching) and also for

rental paging (or caching) with zapping. For the problems in this work, we were able to

apply simple modifications to achieve upper bounds within constant factors of the lower

bounds.

The primal-dual approach in [5, 7, 8, 13, 23] is a powerful framework for de-

riving randomized algorithms for online caching problems. It would be interesting to

investigate if the approach can be used to give randomized algorithms for the variants

studied in this work.

71

Chapter 4

Online Huffman Coding

4.1 Introduction

Huffman Coding was introduced by Huffman [35] in 1952. The Huffman Coding

problem is the following. Given a probability distribution P = { p1, p2, ·, pn } on [n]

and an encoding alphabet Σ, find a minimum cost prefix-free code (or prefix code) over

Σ. A prefix code is one where no codeword is a prefix of any other codeword. The cost

of a prefix code χ is given by
∑n

i=1 pi|χi|, where χi is the codeword assigned to i and

|χi| is the length of χi. We assume that 0 < pi ≤ 1 for each i. Huffman [35] give optimal

algorithm for this problem.

In this work, we introduce the Online Huffman Coding problem. In online

Huffman coding the symbols are sampled from a probability distribution P with re-

placement and are revealed one by one. The algorithm does not have any knowledge of

the probability distribution or the future sequence of symbols, and has to assign code-

words online. That is, whenever a symbol is seen for the first time, the algorithm must

assign a codeword to it. The goal is to minimize the cost of the code.

Online Huffman coding is different from the Adaptive Huffman Coding problem.

72

In Adaptive Huffman Coding, the code is built dynamically as the symbols are revealed

one by one. As the symbols are revealed, the algorithm maintains the weights and the

corresponding Huffman code. Unlike online Huffman coding, the codeword assignment

maybe updated as the process continues. Faller [24] and Gallager [27] independently

introduce Adaptive Huffman Coding and give algorithms for it. Knuth [43] extend this

work and make significant improvements to the algorithm. Vitter [59, 60] gives a new

algorithm for Adaptive Huffman Coding.

We study online Huffman coding, for binary codes, in the competitive analysis

framework. In this work, we consider the following forms of competitiveness. We say an

algorithm ALG is α-competitive if, for every input σ, ALG(σ) ≤ α ·OPT(σ). We say an

algorithm ALG is α-competitive asymptotically, if there exists a constant c such that,

for every input σ, ALG(σ) ≤ α ·OPT(σ) + c, or if ALG(σ) ≤ α ·OPT (σ) + o(OPT (σ)).

In Section 4.2 we present a lower bound of 10/9 on the competitive ratio of any

deterministic algorithm. In Section 4.3 we present the Greedy-Huffman algorithm

for online Huffman coding and analyze it. We show that the algorithm is 7-competitive.

We also show that the algorithm is (1 + o(1))-competitive asymptotically.

We define the Online Coding problem as the variant of online Huffman coding

where the prefix-free constraint is dropped.

We define Slot Assignment as follows. Given a probability distribution P =

{p1, p2, p3, · · · , pn} on [n] and n slots (named 1 through n) with costs {c1, c2, c3, · · · , cn}

(the cost of jth slot is cj), find a minimum cost one-to-one assignment of slots to items.

The cost of assigning slot j to item i is picj , and the cost of the assignment is the sum

of the costs. In the online version of the problem, a slot must be assigned to an item

when it is revealed for the first time.

Online coding is a special case of online slot assignment, where each slot cor-

73

responds to a node in the code tree, and the cost of the slot is equal to the length of

the codeword (i.e. the length of the path from the root to the node). We present the

algorithm Greedy-Coding for slot assignment and show that it is optimal among all

online algorithms for slot assignment.

4.2 Lower Bound (non-asymptotic)

In this section, we show a lower bound for the case when n = 4. Consider the

following two distributions with four symbols: (a) p1 = p2 = p3 = p4 = 0.25, and (b)

p1 = 1− 3ε, p2 = p3 = p4 = ε. Figure 4.1 shows corresponding optimal Huffman codes,

with optimal costs 2 and 1(1− 3ε) + 2ε+ 3ε+ 3ε = 1 + 5ε, respectively.

(a) (b)

Figure 4.1: Optimal Huffman code for distributions (a) and (b), respectively

Theorem 29. For any online algorithm, the competitive ratio is at least 10/9.

Proof. The adversary chooses distributions (a) and (b) with probabilities pa and 1− pa,

respectively. When the adversary chooses the distribution (b), it chooses the symbol with

the highest weight with uniform probability over the four symbols. Thus, irrespective of

the distribution used, the first symbol revealed to the algorithm is uniformly distributed

74

all four symbols. Thus, when the first symbol is revealed, the algorithm does not know

which distribution is being used. So, the algorithm assigns the first symbol a codeword

probabilistically independent of the distribution used by the algorithm.

Let p be the probability that algorithm assigns a codeword of length 1 to the

first symbol. With probability (1− p) it assigns a codeword of length more than 1.

If distribution (a) is used, the cost of the algorithm is at least 2.25 with proba-

bility p and 2 with probability (1−p). Thus, expected ratio is at least 1.125p+(1−p) =

1 + 0.125p.

If distribution (b) is used, the cost of the algorithm is at least 1 + 5ε with

probability p and is at least 2(1− 3ε) with probability (p− 1). Thus, the expected ratio

is at least p+ (1− p)(2−O(ε)) = 2− p−O(ε). This ratio tends to 2− p as ε tends to 0.

Thus, the expected ratio for the algorithm is maxpa{pa(0.125p+1)+(1−pa)(2−

p)}.

This is the value of a 2-player zero-sum game with payoff matrix1.125 1

1 2

The value of this game is 10/9. Thus, any algorithm has a competitive ratio

at least 10/9.

4.3 Greedy-Huffman Algorithm

Now we present the algorithm Greedy-Huffman for online Huffman coding.

Our algorithm is based on the approach given by Golin et al. [31] for a PTAS for

the Huffman Coding with Letter Costs (HULC) problem. To understand this greedy

assignment, we first explain the assignment without the prefix-free constraint and then

75

translate it to the assignment with the prefix-free constraint.

We refer to online Huffman coding without the prefix-free constraint as the

Online Coding problem. Here is the algorithm Greedy-Coding for online coding:

when a symbol is revealed for the first time, assign the shortest unassigned word of

{0, 1}∗ as a codeword, breaking ties by using the lexicographic order among codewords

of equal length.

To construct a prefix-free code, Greedy-Huffman applies the following modi-

fication. When a symbol is revealed for the first time, if Greedy-Coding were to assign

a word χi, then Greedy-Huffman instead assigns the word χi′ = pair(enc(|χi|))01χi,

where |χi| is the length of χi, enc(l) is the binary encoding of the integer l, and pair(x)

replaces each 0 and each 1 in x by 00 and 11 respectively. The resulting code is prefix

free [31].

Let GC be the expected cost of the Greedy-Coding algorithm, and GH be

the expected cost of the Greedy-Huffman algorithm. Let OPT be the optimal offline

cost of online Huffman coding. Any prefix code has cost greater than or equal to the

entropy of the distribution, H = −
∑

i pi log2 pi [54]. That is, OPT ≥ H.

Claim 30. GC ≤ OPT

Proof. Let the r.v. ni be the number of distinct symbols sampled including symbol i

when i is seen for the first time. Greedy-Coding assigns to i a codeword of length

blog2 nic, for an expected cost of

GC = E
[∑

i

piblog2 nic
]
≤ E

[∑
i

pi log2 ni

]
≤
∑
i

pi log2E[ni]

by concavity of the logarithm function.

For j 6= i, the probability that the jth symbol appears before the ith symbol is

76

pj/(pj + pi) < pj/pi, so E[ni] ≤ 1 +
∑

j 6=i
pj
pi

= 1 + (1− pi)/pi = 1/pi. Thus

GC ≤
∑
i

pi log2

1

pi
= H.

Theorem 31. GH ≤ OPT + 4 + 2 log2(OPT + 1). Thus, Greedy-Huffman is asymp-

totically (1 + o(1))-competitive.

Proof. Let `i denote the length of the codeword in GC for symbol i, so that GC =∑
i pi`i. The corresponding codeword in GH has length `i + 2 + 2dlog2(`i + 1)e ≤

`i + 4 + 2 log2(`i + 1). This, the concavity of the logarithm, and log(z + 1) ≤ 1 + log z

for z ≥ 1 imply that

GH ≤
∑
i

pi
[
`i + 4 + 2 log2(`i + 1)

]
=
∑
i

pi`i + 4 + 2 log2

∑
i

pi(`i + 1)

= GC + 4 + 2 log2(GC + 1)

≤ OPT + 4 + log2(OPT + 1).

Theorem 32. Greedy-Huffman is 7-competitive.

Proof. Follows from Theorem 31 and z + 4 + 2 log2(z + 1) < 7z for z ≥ 1.

4.4 Greedy-Coding is optimal for slot assignment

In this section, we show that Greedy-Coding is optimal for slot assignment,

in the sense that its competitive ratio is minimum among all algorithms for slot assign-

ment. If the probabilities and costs are sorted, the optimal cost is OPT =
∑

i∈[n] picn−i.

77

Online coding is a special case of online slot assignment, where each slot corresponds to

a node in the code tree, and the cost of the slot is equal to the length of the codeword

(i.e. the length of the path from the root to the node).

Given P , consider the following random experiment. Sample items repeatedly

and independently from P until each item has been sampled at least once. A strategy

is a function that assigns a slot to an item when it is sampled for the first time. Note

that Greedy-Coding is the strategy that assigns the minimum cost available slot.

We show that Greedy-Coding is optimal among all strategies. For our proof,

we use the following explicit game in the extensive form to define all strategies. We first

describe the explicit game, and then describe the underlying rooted tree.

The game has two players: {Nature, Algorithm}. Nature starts the game and

then the players alternate turns. Nature, on its turn, plays an item from S according to

the probability distribution P . If the item played by Nature has already been played,

we say the move is a redundant move and the item is a redundant item. In this case,

Algorithm has only one option, that is to do nothing (not assign any slots) and pass the

turn back to Nature. Otherwise, the item played has not been played earlier. Algorithm

assigns any one of the available slots. A slot is said to be available if it has not been

assigned by Algorithm yet. The game ends when all slots have been assigned. The

payoff at a leaf is equal to the total cost of the slot assignments along the path from the

root to that leaf.

Now we describe the tree for the game. Let V be the set of all nodes in the

tree and let L be the set of leaves. V \L can be partitioned into disjoint sets V1 and V2

such that, for any node in V1, Nature moves, and for any node in V2, Algorithm moves.

We define the level of any node in this tree as its distance from the root. Thus, root is

at level 0, its children at level 1, and so on. For any node x at level k, if k is odd, x ∈ V1,

78

otherwise, x ∈ V2. When Algorithm assigns the final slot (no more slots are available),

the corresponding child is a leaf node.

Each node in V1 has n edges (to its children), one for each item Nature can

play. Nodes in V2 can be of two types.

• If the last move by Nature was redundant, the Algorithm node has just one edge,

which corresponds to not assigning any slot.

• If the last move by Nature was not redundant, the Algorithm node has an edge

for each available slot.

Each node in the tree corresponds to a partial sequence of items played and

slots assigned. For any node x, Ix denotes the set of (distinct) items played by Nature

to reach node x, and Jx denotes the set of slots assigned by Algorithm thus far.

Two distinct nodes x, y ∈ V2 are equivalent iff Ix = Iy. In other words, the set

of items sampled to reach x or y is the same, but the sequence to reach x is different

from the sequence to reach y. Note that the equivalence of nodes is independent of the

slot assignment.

A strategy is the specification of how player 2 moves on its turns. Note that,

there is a one to one correspondence between the strategies in the game and the strategies

for slot assignment. Any strategy for the game is a valid strategy for slot assignment.

Definition 33. A deterministic strategy specifies one move for each node in V2.

Definition 34. A behavioral strategy is unbiased if it specifies the same probability

distribution for all children of each node V1.

Definition 35. A behavioral strategy is stateless if, for any two equivalent nodes, the

strategy specifies the same probability distribution.

79

Note that Greedy-Coding is stateless and unbiased.

Claim 36. If there is a randomized c-competitive strategy A, then there is a randomized

c-competitive strategy A′ that is behaviorally unbiased.

Proof. We obtain A′ from A as follows. Given any input sequence, A′ first renames the

n items according to a random permutation Π, then applies A to the renamed sequence.

Running A′ on any distribution P ′ is the same as running A on a distribution P obtained

by randomly permuting P ′. Clearly OPT(P) = OPT(P ′). Thus, A′ is c-competitive:

A′(P ′) = EP [A(P)]

≤ EP [c ·OPT(P)]

= EP [c ·OPT(P ′)]

= c ·OPT(P ′)

We claim that A′ is a behaviorally unbiased. We can implement A′ as follows.

Whenever A′ receives an item si, A
′ feeds Π(i) to A (in its simulation of A). If si is

non-redundant, then A responds by assigning Π(i) a slot j, making A′ assign si slot j.

Instead of choosing Π at the beginning, A′ can choose Π(i) only when si is seen for the

first time. A′ chooses Π(i) uniformly at random from the remaining unassigned names

in S.

A random node v is said to be in state M , if Iv = M . If a node is in state

M and the next non-redundant request si is received, A′ assigns a slot to si randomly

from a distribution that depends only on M , but not on si (since the input Π(i) to A is

distributed from a distribution that is independent of si).

For any given node v ∈ V1, let x, y ∈ V2 be any two of its non-redundant

80

children. Clearly, Jx = Jy, and by the reasoning above, the strategy A′ specifies the

same strategy for x and y.

Thus, A′ is behaviorally unbiased.

Claim 37. Let A be a c-competitive behaviorally unbiased strategy. Then there is a

c-competitive strategy that is behaviorally stateless and unbiased.

Proof. We modify A to make it stateless without increasing its cost. We focus on the

nodes in V2.

Any M ⊆ S induces an equivalence class of nodes EM . Formally, a node v ∈ V2

belongs to the equivalence class EM , if Iv = M .

We fix a subset M . Consider all nodes in the equivalence class, EM . For each

node v in EM , let T (v) denote the subtree rooted at v. Note that, for any two equivalent

nodes v and v′, the two trees T (v) and T (v′) are the same tree (call it T ′), although the

strategies for T (v) and T (v′) may differ. We would like to replace, for each node v in

EM , the strategy for T (v) by the minimum cost strategy for T ′.

Some of the nodes are descendants of others, but only along paths with re-

dundant moves. Note that each redundant move by Nature is followed by a move by

Algorithm to pass the turn back to Nature (without assigning any slots). So, the redun-

dant moves do not change the state of the game or the cost of a strategy. We do the

following modification. For each node in EM , define the non-redundant subtree N(v)

to be the subtree obtained from T (v) by deleting the subtrees rooted at the redundant

children of v. That is, remove any children w such that (v, w) is a redundant edge.

The non-redundant subtrees of N(v) and N(v′), for any two distinct nodes v,

v′ ∈ EM , are disjoint. Our goal is to select a single strategy Q′ for a subtree N(v′) for

some v′, and replace all strategies for every tree N(v) for every v ∈ E by that Q′.

81

Define the cost(N(v)) to be the expected cost of a random leaf, for the given

behaviorally unbiased strategy, conditioned on ending in one of the leaves of N(v). Let

P (v) denote the probability of ending in some leaf of N(v). Then, conditioned on ending

in some leaf of some N(v), the expected cost of A is C =
∑

v∈EM P (v)cost(N(v)). There

are infinitely many nodes in EM , so there might not be one with minimum cost(N(v)),

but there must still be at least one v′ in E such that N(v′) ≤ C∑
v∈EM

P (v) . Take the

strategy for this N(v′) and replace the strategy of N(v) for every v in EM . This leads

to a valid overall strategy, and also does not increase the cost.

The modification described above ensures that, for any two nodes x and y

in EM , the modified strategy specifies the same probability distribution for x and y.

Also, if the strategy is behaviorally unbiased before the above modification, it remains

behaviorally unbiased after the modification.

We repeat the above operation for each of the 2n subsets M of S. Note that

when we do the operation for a subset Mi and then later for Mj , the operation for

Mj preserves the property that, for any two nodes in the equivalence class for Mi, the

probability distribution on the children is the same. Thus, after repeating the operation

for all subsets Mj , the resulting strategy is stateless.

This proves that, for every behaviorally unbiased strategy, there is a behav-

iorally unbiased and stateless strategy that is at least as good. Since there are only

finitely many stateless strategies, this proves the theorem.

Claim 38. Greedy-Coding algorithm has the minimum cost among all behaviorally

unbiased and stateless strategies.

Proof. A behaviorally unbiased and stateless strategy is a function g mapping each

subset M of S to a probability distribution over the slots not yet assigned, where g(M)

82

is the probability distribution that the strategy uses to choose a slot that is assigned to

the first non-redundant item sampled when in state M . A node x is said to be in state

M , if Ix = M . If the move by Nature was redundant, Algorithm just passes the turn

back to Nature. If the latest move is not redundant, let the item played by Nature be si.

Algorithm specifies the probability distribution g(M) = {g1(M), g2(M), · · · , gn(M)},

where gj(M) is the probability of choosing slot j. If slot j has already been assigned

(in an earlier step), gj(M) = 0, otherwise 0 ≤ gj(M) ≤ 1, and the cost of choosing

slot j is pigj(M)cj . The total expected cost given Nature played si in the previous

move, therefore, is pi
∑

j gj(M)cj . Note that the strategy does not know pi. If h is the

slot minimizing ch for available slots, then the probability distribution for greedy choice

(used by Greedy-Coding) is defined as follows: gh(M) = 1 and gj(M) = 0 for j 6= h.

We use the notation g(M) = h to denote such a probability distribution.

To show that Greedy-Coding is optimal, we give a proof by induction on n.

The base case n = 1 is trivial (one item and one slot to be assigned).

For the induction step (n ≥ 2), fix any optimal behaviorally unbiased and

stateless strategy g. Note that, once the first item i is sampled and assigned a slot k,

the remaining problem is equivalent to an instance with items S i (with normalized

probabilities p/(1 − pi)) and all slots except k (with costs inherited from the original

problem). By induction, for each of these subproblems, greedy is optimal. We denote

the empty set with φ. Let us assume that, in g, the only non-greedy choice is the first.

Let h be the slot minimizing ch, that is ch ≤ ck 6=h. If g(φ) = h, we are done. So, we

assume g(φ) 6= h, and for all subsequent steps, the strategy matches the greedy choice

(for the subproblems as defined above).

Let k be the slot minimizing ck for k 6= h. That is, k is the slot with the

minimum cost among all slots except h.

83

There must be a slot m 6= h such that g(φ) > 0. The strategy chooses this slot

with probability gm(φ). After choosing m as the first slot, by the induction reasoning

outlined above, g(i) = h for each 1 ≤ i ≤ n. We convert g as follows: gh(φ) =

gh(φ) + gm(φ) and set gm(φ) = 0.

This modification decreases the expected cost by

∑
i

p2
i (cm − ch)gm(φ)

because the probability of choosing item i first is pi, and if i is chosen, the savings is

pi(cm − ch)gm(φ). Here, gm(φ) is the probability before the modification is applied to

the strategy.

This modification increases the expected cost by

∑
i

∑
j 6=i

pipjpj(ck − ch)gm(φ)

because the probability of choosing item i first, then item j 6= i, is pipj , and the increase

in cost when that happens is pj(ck − ch) (k is the slot assigned by the greedy choice in

the second step). The increase can be simplified to

∑
j

p2
j (1− pj)(ck − ch)gm(φ)

Since ck ≤ cm and pj > 0 (otherwise, sj will not be chosen), the increase is

strictly smaller than the decrease, contradicting the optimality of g.

Theorem 39. Greedy-Coding is optimal for slot assignment.

Proof. Claims 36, 37, and 38 together imply that Greedy-Coding is optimal for online

slot assignment.

84

4.5 Conclusions and further directions

We give lower bound and upper bounds for online Huffman coding. The bounds

we show for online Huffman coding are tight within constant factors.

We show that Greedy-Coding is optimal among all online algorithms for

slot assignment. We show the optimality, but don’t give any lower or upper bounds

on the competitive ratio of Greedy-Coding for greedy coding and slot assignment in

this work. In an unpublished follow-up to this work, Young and Mathieu show that

Greedy-Coding is O(log2 n)-competitive for slot assignment.

85

Bibliography

[1] http://mat.gsia.cmu.edu/color/instances.html.

[2] https://code.google.com/p/fastpc/.

[3] http://www.nlsde.buaa.edu.cn/∼kexu/benchmarks/set-benchmarks.htm.

[4] D. Achlioptas, M. Chrobak, and J. Noga. Competitive analysis of randomized

paging algorithms. Theoretical Computer Science, 234(1-2):203–218, 2000.

[5] A. Adamaszek, A. Czumaj, M. Englert, and H. Räcke. An o(logk)-competitive al-

gorithm for generalized caching. In Proceedings of the Twenty-Third Annual ACM-

SIAM Symposium on Discrete Algorithms, pages 1681–1689. SIAM, 2012.

[6] S. Arora, E. Hazan, and S. Kale. The multiplicative weights update method: A

meta-algorithm and applications. Theory OF Computing, 8:121–164, 2012.

[7] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual randomized algorithm for

weighted paging. In Foundations of Computer Science, 2007. FOCS’07. 48th An-

nual IEEE Symposium on, pages 507–517. IEEE, 2007.

[8] N. Bansal, N. Buchbinder, and J.S. Naor. Randomized competitive algorithms for

generalized caching. In Proceedings of the 40th annual ACM symposium on Theory

of computing, pages 235–244. ACM, 2008.

86

[9] J.L. Bentley, D.D. Sleator, R.E. Tarjan, and V.K. Wei. A locally adaptive data

compression scheme. Communications of the ACM, 29(4):320–330, 1986.

[10] D. Bienstock. Potential function methods for approximately solving linear program-

ming problems: theory and practice, volume 53. Kluwer Academic Pub, 2002.

[11] D. Bienstock and G. Iyengar. Approximating fractional packings and coverings in

O(1/ε) iterations. SIAM Journal on Computing, 35(4):825–854, 2006.

[12] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. 1998.

Cambridge University Ptess.

[13] N. Buchbinder and J.S. Naor. Online primal-dual algorithms for covering and

packing. Mathematics of Operations Research, 34(2):270–286, 2009.

[14] P. Cao and S. Irani. Cost-aware www proxy caching algorithms. In Proceedings of

the 1997 USENIX Symposium on Internet Technology and Systems, volume 193,

1997.

[15] M. Chrobak. Sigact news online algorithms column 17. ACM SIGACT News, 41

(4):114–121, 2010.

[16] M. Chrobak and J. Noga. Competitive algorithms for multilevel caching and relaxed

list update. In Proceedings of the ninth annual ACM-SIAM symposium on Discrete

algorithms, pages 87–96. Society for Industrial and Applied Mathematics, 1998.

[17] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server

problems. In Proceedings of the first annual ACM-SIAM symposium on Discrete

algorithms, pages 291–300. Society for Industrial and Applied Mathematics, 1990.

87

[18] F. Chudak and V. Eleutério. Improved approximation schemes for linear program-

ming relaxations of combinatorial optimization problems. Integer Programming and

Combinatorial Optimization, pages 191–219, 2005.

[19] S.V. Cole, M. Khare, and N.E. Young. Implementation of the fastpc algorithm:

data structures and distributions. 2011.

[20] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic program-

ming. Journal of Symbolic Computation, 9(3):251–280, 1990.

[21] G.B. Dantzig. Linear programming and its extensions. University of California and

the Rand Corporation, 1963.

[22] W. Eberly, M. Giesbrecht, P. Giorgi, A. Storjohann, and G. Villard. Solving sparse

rational linear systems. In Proceedings of the 2006 international symposium on

Symbolic and algebraic computation, pages 63–70. ACM, 2006.

[23] L. Epstein, C. Imreh, A. Levin, and J. Nagy-György. On variants of file caching.

Automata, Languages and Programming, pages 195–206, 2011.

[24] N. Faller. An adaptive system for data compression. In Record of the 7th Asilomar

Conference on Circuits, Systems, and Computers, pages 593–597, 1973.

[25] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, and N.E. Young.

Competitive paging algorithms. Journal of Algorithms, 12(4):685–699, 1991.

[26] L.K. Fleischer. Approximating fractional multicommodity flow independent of the

number of commodities. SIAM Journal on Discrete Mathematics, 13(4):505–520,

2000.

88

[27] R. Gallager. Variations on a theme by huffman. Information Theory, IEEE Trans-

actions on, 24(6):668–674, 1978.

[28] N. Garg and J. Koenemann. Faster and simpler algorithms for multicommodity

flow and other fractional packing problems. SIAM Journal on Computing, 37(2):

630–652, 2007.

[29] CR Glassey and RM Karp. On the optimality of huffman trees. SIAM Journal on

Applied Mathematics, pages 368–378, 1976.

[30] A.V. Goldberg. A natural randomization strategy for multicommodity flow and

related algorithms. Information Processing Letters, 42(5):249–256, 1992.

[31] M.J. Golin, C. Mathieu, and N.E. Young. Huffman coding with letter costs: A

linear-time approximation scheme. SIAM Journal on Computing, 41(3):684–713,

2012.

[32] M.D. Grigoriadis and L.G. Khachiyan. Fast approximation schemes for convex pro-

grams with many blocks and coupling constraints. SIAM Journal on Optimization,

4(1):86–107, 1994.

[33] M.D. Grigoriadis and L.G. Khachiyan. A sublinear-time randomized approximation

algorithm for matrix games. Operations Research Letters, 18(2):53–58, 1995.

[34] M.D. Grigoriadis and L.G. Khachiyan. Approximate minimum-cost multicommod-

ity flows in (ε2KNM) time. Mathematical Programming, 75(3):477–482, 1996.

[35] D.A. Huffman. A method for the construction of minimum-redundancy codes.

Proceedings of the IRE, 40(9):1098–1101, 1952.

89

[36] FK Hwang. Generalized huffman trees. SIAM Journal on Applied Mathematics,

pages 124–127, 1979.

[37] S. Irani. Page replacement with multi-size pages and applications to web caching.

Algorithmica, 33(3):384–409, 2002.

[38] A.R. Karlin, M.S. Manasse, L. Rudolph, and D.D. Sleator. Competitive snoopy

caching. Algorithmica, 3(1):79–119, 1988.

[39] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-

ceedings of the sixteenth annual ACM symposium on Theory of computing, pages

302–311. ACM, 1984.

[40] J.A. Kelner and D.A. Spielman. A randomized polynomial-time simplex algorithm

for linear programming. In Proceedings of the thirty-eighth annual ACM symposium

on Theory of computing, pages 51–60. ACM, 2006.

[41] M. Khare and N.E. Young. Caching with rental cost and nuking. Arxiv preprint

arXiv:1208.2724, 2012.

[42] P. Klein and N. Young. On the number of iterations for Dantzig-Wolfe optimiza-

tion and packing-covering approximation algorithms. Lecture Notes in Computer

Science, 1610:320–327, 1999.

[43] D.E. Knuth. Dynamic huffman coding. Journal of algorithms, 6(2):163–180, 1985.

[44] S.G. Kolliopoulos and N.E. Young. Approximation algorithms for covering/packing

integer programs. Journal of Computer and System Sciences, 71(4):495–505, 2005.

[45] C. Koufogiannakis and N.E. Young. Beating simplex for fractional packing and

90

covering linear programs. In 48th Annual IEEE Symposium on Foundations of

Computer Science (FOCS), pages 494–504, 2007.

[46] Christos Koufogiannakis and Neal E. Young. Greedy ∆-approximation algorithm

for covering with arbitrary constraints and submodular cost. Algorithmica, 2012.

[47] MK Kozlov, SP Tarasov, and LG Khachiyan. The polynomial solvability of convex

quadratic programming. USSR Comput. Math. Math. Phys., 20(5):223–228, 1980.

[48] L.L. Larmore and D.S. Hirschberg. A fast algorithm for optimal length-limited

huffman codes. Journal of the ACM (JACM), 37(3):464–473, 1990.

[49] A. Lopez-Ortiz and A. Salinger. Minimizing cache usage in paging. 2012.

[50] Z. Lotker, B. Patt-Shamir, and D. Rawitz. Rent, lease or buy: Randomized algo-

rithms for multislope ski rental. arXiv preprint arXiv:0802.2832, 2008.

[51] W.W. Lu and MP Gough. A fast-adaptive huffman coding algorithm. Communi-

cations, IEEE Transactions on, 41(4):535–538, 1993.

[52] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging algo-

rithm. Algorithmica, 6(1):816–825, 1991.

[53] S.A. Plotkin, D.B. Shmoys, and É. Tardos. Fast approximation algorithms for

fractional packing and covering problems. Mathematics of Operations Research, 20

(2):257–301, 1995.

[54] C.E. Shannon. A mathematical theory of communication. ACM SIGMOBILE

Mobile Computing and Communications Review, 5(1):3–55, 2001.

[55] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging rules.

Communications of the ACM, 28(2):202–208, 1985.

91

[56] S. Smale. On the average number of steps of the simplex method of linear program-

ming. Mathematical Programming, 27(3):241–262, 1983.

[57] M.J. Todd. The many facets of linear programming. Mathematical Programming,

91(3):417–436, 2002.

[58] P.M. Vaidya. A new algorithm for minimizing convex functions over convex sets.

Mathematical Programming, 73(3):291–341, 1996.

[59] J.S. Vitter. Design and analysis of dynamic huffman codes. Journal of the ACM

(JACM), 34(4):825–845, 1987.

[60] J.S. Vitter. Algorithm 673: dynamic huffman coding. ACM Transactions on Math-

ematical Software (TOMS), 15(2):158–167, 1989.

[61] K. Xu, F. Boussemart, F. Hemery, and C. Lecoutre. A simple model to generate

hard satisfiable instances. arXiv preprint cs/0509032, 2005.

[62] N. Young. The k-server dual and loose competitiveness for paging. Algorithmica,

11(6):525–541, 1994.

[63] N.E. Young. Randomized rounding without solving the linear program. In Pro-

ceedings of the sixth annual ACM-SIAM symposium on Discrete algorithms, pages

170–178. Society for Industrial and Applied Mathematics, 1995.

[64] N.E. Young. Sequential and parallel algorithms for mixed packing and covering.

IEEE Symposium on Foundations of Computer Science, 2001.

[65] Neal E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

92

Appendix A

Packing and covering run times

In Table A.1 and Table A.2, Pε and POPT are the times taken by primal-simplex

for computing approximate and optimal solutions, respectively. Similar, Dε and DOPT

are the times for dual-simplex, and Bε and BOPT are the times for barrier. Fε is the time

then by Fastpc. We use “−” to indicate that the algorithm didn’t finish computing

the solution. The first column in tables represents the input type. DIMACS inputs are

denoted by D, set packing inputs by S, random inputs by R, and tomography inputs by

T.

r c d Pε POPT Dε DOPT Bε BOPT Fε

D 1548 256 0.0078 - - - - - - 569

D 37414 1728 0.0012 - - - - - - 118

D 1972 276 0.0072 0 0 0 0 0 0 87

D 7082 422 0.0047 - - - - - - 277

D 17376 850 0.0024 - - - - - - 57

D 1624 174 0.0115 0 0 0 0 0 0 9

D 7850 394 0.0051 - - - - - - 709

93

Table A.1 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

D 7832 368 0.0054 - - - - - - 52

D 23308 992 0.0020 - - - - - - 48

D 27938 1242 0.0016 - - - - - - 270

D 1016 160 0.0125 - - - - - - 34

D 142 46 0.0435 0 0 0 0 0 0 3481

D 8200 422 0.0047 - - - - - - 275

D 1160 72 0.0278 0 0 0 0 0 0 5

D 7892 370 0.0054 - - - - - - 277

D 640 50 0.0400 0 0 0 0 0 0 214

D 7946 372 0.0054 - - - - - - 97

D 472 94 0.0213 0 0 0 0 0 0 201

D 1204 148 0.0135 0 0 0 0 0 0 4

S 3688 4000 0.0005 0 0 0 0 0 0 827

D 40 22 0.0909 0 0 0 0 0 0 311

S 61476 40000 0.0001 4 20 6 7 97 160 0

S 78025 40000 0.0001 0 0 1 1 1 4 0

D 490000 2000 0.0010 129 1684 18 28 176 921 35

D 1472 250 0.0160 0 0 0 0 0 0 1

D 38190 770 0.0026 1 4 0 0 10 19 541

D 55794 500 0.0080 2 5 0 0 2 10 29

D 2912 128 0.0156 0 0 0 0 0 0 24

S 27843 595 0.0034 0 0 0 0 5 14 253

94

Table A.1 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

S 320069 108000 0.0000 1 1 4 7 - - 18479

D 2552 240 0.0083 0 0 0 0 0 0 215

D 19606 900 0.0022 1 2 0 0 142 238 22

D 43266 600 0.0033 1 3 0 0 12 25 3812

D 16744 392 0.0051 0 0 0 0 12 20 8745

S 126164 1534 0.0013 2 6 1 2 13 86 1915

S 126083 1534 0.0013 2 5 1 2 17 82 1903

D 42750 600 0.0033 1 2 0 0 19 36 32970

S 127012 1534 0.0013 7 8 1 2 12 77 1928

S 126556 1534 0.0013 23 24 1 2 10 77 1934

S 110039 1400 0.0014 4 5 1 2 12 73 1598

S 109677 1400 0.0014 1 3 1 2 9 68 1604

S 109602 1400 0.0014 16 18 1 2 9 61 1606

S 125983 1534 0.0013 22 23 1 2 19 85 1908

S 109380 1400 0.0014 1 2 1 2 11 70 1593

S 109402 1400 0.0014 4 4 1 2 24 72 1600

S 17832 450 0.0044 0 0 0 0 5 14 147

S 17828 450 0.0044 0 0 0 0 4 12 147

S 17810 450 0.0044 0 0 0 0 5 13 147

D 16338 900 0.0022 1 1 0 0 33 55 29

S 94290 1272 0.0016 3 3 1 2 7 51 1323

S 27932 595 0.0034 0 0 0 0 7 14 255

95

Table A.1 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

D 10384 288 0.0069 0 0 0 0 4 6 88

S 80036 1150 0.0017 8 8 1 1 8 33 1064

S 94227 1272 0.0016 4 5 1 1 12 49 1326

D 242550 1000 0.0040 88 244 2 2 6 126 366

S 94128 1272 0.0016 1 3 1 1 9 52 1309

S 80073 1150 0.0017 9 9 1 1 6 45 1065

S 94309 1272 0.0016 7 7 1 1 8 54 1316

S 94228 1272 0.0016 3 3 1 1 7 47 1314

S 81069 1150 0.0017 3 3 1 1 57 134 1085

S 80259 1150 0.0017 1 2 1 1 11 40 1070

S 80852 1150 0.0017 1 1 1 1 10 39 1083

S 41096 760 0.0026 0 0 0 0 8 24 426

S 41264 760 0.0026 0 0 0 0 15 35 428

S 41315 760 0.0026 0 0 0 0 15 35 431

S 58580 945 0.0021 0 0 1 1 17 61 704

S 58625 945 0.0021 0 0 0 1 23 80 707

S 59187 945 0.0021 0 0 0 1 31 62 709

S 58246 945 0.0021 0 0 0 1 24 69 693

D 5472 192 0.0104 0 0 0 0 1 1 46

S 58550 945 0.0021 0 0 0 1 22 64 704

D 499652 2000 0.0020 111 1664 13 18 21 535 26146

S 41606 760 0.0026 0 0 0 0 10 34 429

96

Table A.1 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

S 41620 760 0.0026 0 0 0 0 10 30 429

D 11468 900 0.0022 0 1 0 0 26 45 156

S 27848 595 0.0034 0 0 0 0 14 37 250

D 24916 1000 0.0040 1 4 0 0 456 763 570

S 28144 595 0.0034 0 0 0 0 4 13 254

S 27857 595 0.0034 0 0 0 0 5 14 258

D 4680 256 0.0078 0 0 0 0 0 0 607

D 25280 512 0.0039 1 1 0 0 36 61 306

S 17795 450 0.0044 0 0 0 0 9 17 146

S 17875 450 0.0044 0 0 0 0 7 13 147

D 117724 1000 0.0040 8 16 1 1 7 38 283

D 8452 256 0.0078 0 0 0 0 0 1 75

D 20720 450 0.0044 1 1 0 0 21 36 32471

D 898898 2000 0.0020 398 3555 12 12 45 1695 391

S 371848 96000 0.0000 114 135 7 15 2405 4833 26809

D 13922 250 0.0160 0 0 0 0 3 4 109

D 16336 900 0.0022 0 1 0 0 33 56 66

D 491660 2000 0.0010 114 1509 25 43 565 1887 107

D 31336 500 0.0080 1 2 0 0 12 19 409

S 19147 12000 0.0002 0 0 0 0 2 3 2492

D 33500 900 0.0022 1 2 0 0 89 152 190

D 16520 900 0.0022 1 2 0 0 10 17 9673

97

Table A.1 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

D 224874 1000 0.0040 42 121 2 2 6 94 946

D 493416 2000 0.0010 135 1585 14 19 740 2324 734

D 125248 1000 0.0040 9 21 2 3 9 47 10

D 34686 900 0.0022 2 2 0 0 25 45 32383

D 7110 1000 0.0040 0 0 0 0 0 1 527

D 6436 500 0.0080 0 0 0 0 7 12 31

D 5880 200 0.0100 0 0 0 0 1 2 177

D 1510 190 0.0105 0 0 0 0 0 0 737

D 16526 900 0.0022 1 2 0 0 8 11 16

D 4224 162 0.0123 0 0 0 0 0 1 3238

D 13312 338 0.0059 0 0 0 0 7 12 65

Table A.1: Running times for CPLEX algorithms on set packing and DIMACS inputs

r c d Pε POPT Dε DOPT Bε BOPT Fε

R 13270 14287 0.4000 3173 - 7352 - 2563 - 1384

R 13270 14287 0.1000 1544 - 1782 - 933 - 1168

R 12270 12687 0.0009 1021 - 6322 - 427 - 1992

R 11270 11087 0.4000 - - - - 1118 - 1078

R 12270 12687 0.4000 - - - - 1742 - 1226

R 9270 7887 0.1000 - - - - - - 603

T 178030 9025 0.0086 - - - - - - 16627

98

Table A.2 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

T 353079 9300 0.0088 - - - - - - 12

T 320779 7600 0.0098 - - - - - - 9

T 490076 16800 0.0065 - - - - 1130 30902 24

R 10270 9487 0.4000 - - - - 1122 589251 919

R 9270 7887 0.4002 5024 29137 4748 26971 779 58843 769

R 12270 12687 0.1000 - - - - 641 68751 1024

R 6325 7145 0.4000 71810 71816 50370 57475 314 15661 508

R 5725 6245 0.4001 37989 37992 28238 31722 227 11990 433

R 3925 3545 0.1001 547 1346 4737 5082 13 124 155

T 178030 9025 0.0086 5 9 0 9 1 9 16348

T 347404 9025 0.0090 8 18 0 18 0 18 12

R 11270 11087 0.1000 965205 965250 476371 1424136 428 428138 875

R 5125 5345 0.4001 32185 32186 24773 76996 157 5251 355

R 10270 9487 0.1000 219499 219511 324895 527417 315 29010 735

R 4525 4445 0.4001 1450 11589 1854 2902 116 1830 279

R 6325 7145 0.0017 335 488 497 636 43 100 884

R 3325 2645 0.0999 227 493 2530 3752 5 39 105

R 5725 6245 0.0019 303 420 338 434 32 77 744

R 5125 5345 0.0022 285 374 282 346 23 56 620

T 254099 6230 0.0120 6 34 95 181 3 24 8716

R 4525 4445 0.0027 183 239 178 216 14 33 490

R 3925 3545 0.0034 119 155 169 194 9 25 366

99

Table A.2 – continued from previous page

r c d Pε POPT Dε DOPT Bε BOPT Fε

R 6325 7145 0.1000 15952 21942 43499 90139 84 3524 394

R 3925 3545 0.4000 758 4020 4715 4717 40 1818 213

R 5725 6245 0.0999 9708 12749 39532 71508 61 2355 327

R 5125 5345 0.1000 16096 45224 9616 33145 44 782 268

R 3325 2645 0.3999 313 1040 1520 2877 23 119 154

R 10270 9487 0.0013 2229 4023 11852 15646 187 465 1297

R 13270 14287 0.0008 10142 17912 8539 11256 341 998 2375

R 4525 4445 0.1000 3084 3084 12325 22087 30 174 209

R 9270 7887 0.0015 1717 2977 2631 3412 139 351 1035

R 11270 11087 0.0011 3182 5992 4748 6253 210 619 1650

T 52409 210 0.0567 1 1 2 2 1 5 958

R 3325 2645 0.0045 55 70 60 73 3 8 256

Table A.2: Running times for CPLEX algorithms on random and tomography inputs

100

