UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Topics in Approximation Algorithms

Permalink
https://escholarship.org/uc/item/9p68z495

Author
Khare, Monik

Publication Date
2012

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/9p68z49s
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Topics in Approximation Algorithms

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy
in
Computer Science
by
Monik Khare

March 2013

Dissertation Committee:

Dr. Neal E Young, Chairperson

Dr. Marek Chrobak
Dr. Stefano Lonardi



Copyright by
Monik Khare
2013



The Dissertation of Monik Khare is approved:

Committee Chairperson

University of California, Riverside



Acknowledgments

I am sincerely grateful to my very supportive and understanding advisor, Prof. Neal E.
Young, without whose help I would not have been able to write this thesis. He patiently
helped me with my research and showed all great qualities one expects in a mentor.
He let me work independently, but when needed, he sat with me for long discussions
stretching over multiple hours trying to solve problems. His immense knowledge of
the research topics was certainly helpful to me in making progress in my research. I
was really fortunate to have him as my PhD advisor. I would also like to thank the
other members of my dissertation committee, Prof. Marek Chrobak and Prof. Stefano
Lonardi, for insightful feedback about my work and guiding me in the right directions.

I would like to thank my colleagues and friends Steve Cole and Li Yan. 1
worked with Steve on some research projects during the early days of my PhD. He often
motivated me with his hard work and discipline, and it was really a pleasure to work
with him. He is also a good friend and an amazing ex-roommate. I have talked to Li
about many interesting problems, related to our research and otherwise, throughout my
stay at UCR. I would also like to thank him for helping me improve my programming
skills.

I am grateful to Prof. C. Ravishankar and Jonathan Dautrich, who gave me the
opportunity to work on the BCOE Interactive Course Plan System. I enjoyed working on
this project, which not only was a great learning experience, but also provided financial
support. I also enjoyed puzzling over interesting problems, both in and out of the
project, with Jonathan.

I would like to thank all my friends for their love and support. Coffee breaks

with Akshay Morye and tennis sessions with Vijay Nagarajan significantly contributed

v



to the rise in my happiness levels during my stay in Riverside. Special thanks to my
friends Sudheer Sahu (my career advisor), Dushyant Mukkamala, Peter Lonjers, Casey
Czechowski, Nathan Diep, Arman Yousefi, Pradyumna Goli, Jessica Ricci, Amarjeet
Singh and Vikrant Verma.

Finally, and most importantly, I would like to thank my entire family. I would
have not been able to accomplish this without their love and support. My wife, Gargi
Kulkarni, has been a constant source of love, support, and encouragement, and a huge
amount of credit for the completion of this thesis goes to her. Special thanks to my

in-laws for their unwavering love and support.



To my parents, Mrs. Rita Khare and Mr. S. P. Khare,
my wife, Gargi Kulkarni,
and

my daughter, Myra

vi



ABSTRACT OF THE DISSERTATION

Topics in Approximation Algorithms
by
Monik Khare

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, March 2013
Dr. Neal E Young, Chairperson

This thesis focuses on approximation and online algorithms for a few different

problems.

1. There have been continued improvements in the approximation algorithms for
packing and covering problems. Some recent algorithms, including FAsTpcC [45],
have provable good worst-case running times, but it is not known how they per-
form in practice compared to the simplex and interior-point algorithms that are
widely used to solve these problems. We present an empirical comparison of these
algorithms, using our own implementation of FASTPC [2] and CPLEX implemen-
tations of simplex and interior-point methods. We use a variety of inputs for this
experimental study. We find that FASTPC is slower for small problem instances,
but its performance, relative to CPLEX algorithms, improves as the instances get
bigger. Our experiments show that for reasonably large inputs FASTPC performs

better than the CPLEX algorithms.

2. We give deterministic algorithms for some variants of online file caching by reduc-
ing the problems to online covering. The variants considered in this study include

one or both of the following features: (i) a rental cost for each slot occupied in

vii



the cache, and (ii) zapping a file by paying a cost so that the zapped file does not
occupy any space in the cache and does not incur any retrieval cost. The rental
cost is motivated by the idea of energy efficient caching where caching systems can
save power by turning off slots not being used to store files [15]. Our approach
is based on the online covering algorithm by Koufogiannakis and Young [46]. We
give deterministic lower bounds for these variants, which are tight within con-
stant factors of the upper bounds for most of the cases. We also give randomized

algorithms and lower bounds for the variants with rental cost.

. We introduce online Huffman coding. In Huffman coding, the symbols are drawn
from a probability distribution and revealed one by one, and the goal is to find a
minimum cost prefix-code for the symbols. In the online version, the algorithm
has to assign a codeword to a symbol when it is revealed for the first time. We
propose an online greedy algorithm and show that it is constant-competitive for
online Huffman coding. We also show a lower bound of 10/9 on the competitive

ratio of any deterministic online algorithm.

viii



Contents

List of Figures
List of Tables

1 Introduction

1.1 Empirical study of algorithms for packing and covering . . . . . .. ...
1.2 File caching with rental cost and zapping . . . ... .. ... ... ...
1.3 Online Huffman Coding . . . . . . ... ... ... ... ... ......
2 Empirical study of algorithms for packing and covering

2.1 Introduction . . . . . . . . .. L
2.1.1 Traditional algorithms for solving linear programs . . . ... ..
2.1.2  Approximation algorithms for packing and covering . ... . ..

2.2 Experimental setup . . . . . .. ... Lo
2.2.1 Machine specifications . . . . . . . ... ... ... ...
222 FASTPC . . . . . . .
2.2.3 CPLEX . . . . . e
224 Inputs . . . .. . L
225 Valueofe ... .. ... .. ...

2.3 Results. . . . . o
2.3.1 CPLEX algorithms . . . . . . ... ... ... ... ........
2.3.1.1  Set packing and DIMACS inputs . . . . .. ... ....

2.3.1.2 Random and tomography inputs . . . . . ... ... ..

232 FASTPC . . . . . .. e
233 CPLEXvsFASTPC . . . . .. ... ... ... ... ... ...,
2.3.4 Hybrid Algorithm . . . . . ... ... ...

2.4 Conclusions and future directions . . . . . . . ... ... ... ...

3 File caching with rental cost and zapping

3.1 Introduction. . . . . . . . . . . . . ..
3.1.1 Background . . . . ...
3.1.2 Previouswork. . . . . ...

3.1.2.1 Methodology . . . . .. .. ... ...

3.1.3  Our contributions . . . . . . ... ... L
3.1.4 Other work on rental paging . . .. ... ... ... .......

3.2 Online covering approach . . . . . . .. .. ... ... 0.

X

xi

xii

S = W

© oo Qo

10

12
12
13
13
14
14
15
16
23
25
25
27
28



3.3

3.4

3.5

File caching with rental cost and zapping . . . ... ... ... ... ..
3.3.1 Deterministic algorithms via online covering . . . . . . . ... ..
3.3.2 Rental caching with infinite cache . . . . . ... ... ... ...
3.3.3 Improvements for high rental cost . . . .. ... ... ... ...
3.3.4 Deterministic and randomized meta algorithms . . . . . . . . ..
Lower bounds . . . . . . . ..
341 Rentalpaging . . . . . .. .. ..o
3.4.2 Paging with zapping . . . . . . . .. ... oL
Conclusions and further directions . . . . . . .. ... ... ... ....

4 Online Huffman Coding

4.1
4.2
4.3
4.4
4.5

Introduction . . . . . . .. Lo
Lower Bound (non-asymptotic) . . . . . . ... .. ... ... .. ....
GREEDY-HUFFMAN Algorithm . . . .. ... ... ... ... ......
GREEDY-CODING is optimal for slot assignment . . . . . ... ... ...
Conclusions and further directions . . . . . .. .. ... ... ......

A Packing and covering run times

72
72
74
75
7
85

93



List of Figures

2.1
2.2
2.3
2.4
2.5
2.6
2.7

2.8

2.9

2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21

2.22
2.23

4.1

Iterations for primal-simplex on set packing and DIMACS inputs . . . . 17
Time per iteration for primal-simplex on set packing and DIMACS inputs 18
Iterations for dual-simplex on set packing and DIMACS inputs . . . . . 19
Time per iteration for dual-simplex on set packing and DIMACS inputs 20
Iterations for barrier-simplex on set packing and DIMACS inputs . . . . 21

Time per iteration for barrier-simplex on set packing and DIMACS inputs 22
Comparison of CPLEX algorithms to compute (14¢)-solution for e = 0.01

on set packing and DIMACS inputs . . . .. ... .. ... ....... 23
Iterations for primal-simplex on random and tomography inputs to com-
pute (L+e)-solution . . . . ... ... Lo 30
Iterations for primal-simplex on random and tomography inputs for exact
solution . . . . . . . e e 31
Time per iteration for primal-simplex on random and tomography inputs
to compute (1 £e€)-solution . . . . .. ... 32
Time per iteration for primal-simplex on random and tomography inputs
to compute exact solution . . . . . . ... ... oL, 33
Iterations for dual-simplex on random and tomography inputs to compute
(Ite)-solution . . . . . . . ..o 34
Iterations for dual-simplex on random and tomography inputs for exact
solution . . . . . . .. e 35
Time per iteration for dual-simplex on random and tomography inputs
to compute (1 +e¢)-solution . . . . ... .. ... L. 36
Time per iteration for dual-simplex on random and tomography inputs
to compute exact solution . . . . .. ..o 37
Iterations for barrier-simplex on set packing and DIMACS inputs . . . . 38

Time per iteration for barrier-simplex on set packing and DIMACS inputs 39
Comparison of CPLEX algorithms to compute (14¢)-solution for e = 0.01

on random and tomography inputs . . . .. ... ..o 40
Running time for FaAstpC for e =0.01 . . . .. .. .. ... ... .... 41
Time / predicted time for FASTPC for e =0.01 . . ... ... ... ... 42
FASTPC vs dual-simplex on set packing and DIMACS inputs. . . . . . . 43
FASTPC vs barrier on random and tomography inputs . . . . ... ... 45
Value of € at crossover (log-logscale) . . . . ... ... ... ... .... 46
Optimal Huffman code for distributions (a) and (b), respectively . . .. 74

X1



List of Tables

2.1

2.2

3.1

Al
A2

Observed lower bounds for CPLEX algorithms on set packing and DI-

MACS inputs . . . . . . . . . 16
Observed lower bounds for the primal-simplex and the dual-simplex al-
gorithms on random and tomography inputs . . . . . ... ... ... .. 24

Competitive ratios for the variants with rental cost and zapping. In col-
umn 2, “Det” represents Deterministic and “Rand” represents Randomized. 52

Running times for CPLEX algorithms on set packing and DIMACS inputs 98
Running times for CPLEX algorithms on random and tomography inputs 100

xii



Chapter 1

Introduction

Approximation algorithms are algorithms that compute approximate solutions
to optimization problems. These algorithms usually run in polynomial time and provide
a guarantee on the quality of the solution (i.e. cost of the solution respect to the optimal
cost). The approzimation ratio for an algorithm is defined as follows. Let ALG(I) be
the cost of the algorithm ALG on input I and let OPT(I) be the cost of the optimal
solution. ALG is an a-approximation algorithm for a maximization (or, minimization)
problem if, for each input I, ALG(I) > OPT(I)/a (or, ALG(I) < a- OPT(I)). The
approximation ratio is a measure of the quality of the solution in the worst case scenario.

There has been a lot of research on designing and analyzing approximation
algorithms for various optimization problems [28, 32, 33, 34, 45, 53]. Approximation
algorithms are sometimes used even for problems where polynomial time algorithms
exist but are too slow for large instances. In some cases, approximation algorithms
are used to quickly compute a near-optimal solution which can be used by an exact
algorithm as a starting point to compute the optimal solution. For instance, the barrier

algorithm in CPLEX, a commercial tool for solving linear programs, uses the interior-



point method to compute an approximate solution, and then uses primal-simplex to
start with the approximate solution and compute the optimal solution.

We also study some problems in the online setting where the input is revealed
step-by-step. An online algorithm has to make a decision at each step without any
knowledge of the input revealed at any future steps. Online algorithms are analyzed
using the competitive-analysis framework [55] where the cost of the solution computed
by the algorithm is compared to the optimal offline solution (the entire input is known
in advance). Analogous to the approximation ratio for approximation algorithms, the
competitive ratio for online algorithms is defined as follows. The input is defined as
a sequence o, where o(t) denotes the input revealed at time t. Let ALG(o) be the
cost of algorithm ALG on input sequence o, and let OPT(o) be the corresponding
optimal offline cost. ALG is an a-competitive online algorithm for a maximization (or,
minimization) problem if, for every input sequence o, ALG(0) > OPT(o)/a + ¢ (or,
ALG(0) < a- OPT(0) + ¢), where ¢ is a constant independent of the request sequence.

There has been substantial amount of growth in the research on online algo-
rithms in the last two decades [5, 7, 25, 38, 55, 62, 65]. They are of great interest
also because of their many practical applications, including resource management in
operating systems, online advertising, and network routing.

Many techniques that are used to design and analyze approximation algorithms
can be used to design and analyze online algorithms. Such approaches include greedy,
primal-dual, and randomized rounding.

This thesis focuses on approximation and online algorithms for a few problems.
This chapter presents a brief overview of these problems and summarizes some key
results. We describe these problems, the related literature, and our work in more detail

in the respective chapters.



1.1 Empirical study of algorithms for packing and covering

Explicitly given packing and covering linear programs are of the form max{a-z :
Mz < b,z > 0} and min{a -z : Mz > b,x > 0}, respectively, where all entries in the
vectors a and b and in the matrix M are non-negative.

Various algorithms for solving linear programs, including the well known sim-
plex algorithm [21], can be used to solve these packing and covering linear programs
as well. These algorithms don’t have good worst-case running times, but are still used
widely as they are believed to work well in practice. There has been a lot of research
on approximation algorithms for these problems. The fast asymptotic running times of
some recent approximation algorithms, including FASTPC [45], motivate this empirical
study. We evaluate FASTPC to determine if these approximation algorithms have come
closer to matching or improving the performance of the traditional algorithms, such as
simplex and interior-point algorithms[39], in practice. FASTPC [45] computes an (1 +¢€)-
solution for any € > 0 and runs in [n + (7 + ¢)logn/€?] time with a high probability,
where 7 is the number of rows (constraints), ¢ is the number of columns (variables), and
n is the number of non-zeros in the constraint matrix M. For dense inputs, where r and
c are O(y/n), the running time of FASTPC is linear in the number of non-zeros.

We evaluate the performance of a these algorithms for solving pure packing or
covering linear programs on a variety of inputs. We use CPLEX for the implementations
of primal-simplex, dual-simplex, and interior-point (barrier) algorithms. We refer to
these algorithms as the CPLEX algorithms. We use our own implementation of FASTPC
[2].

Koufogiannakis and Young [45] present empirical results comparing FASTPC

to primal-simplex, but their work has certain limitations. These limitations include



(a) only random and relatively small input instances and (b) using a simpler and faster
implementation of FASTPC that handles only 0/1 coefficients. We address these as well as
a few other limitations (refer to Section 2.1.2) in our study. We use set cover benchmark
inputs [3, 61], DIMACS inputs [1], random inputs, and finally, inputs generated by
simulating X-Ray tomography on 2-dimensional images. We report various new findings.
We observe that FASTPC is faster than CPLEX algorithms on some input types, when
the inputs are reasonably large. For random and tomography inputs, FASTPC catches
up with CPLEX algorithms at around r 4+ ¢ > 17000 when density > 0.15, and around
r + ¢ > 32000 when 0.01 < density < 0.15, and around r + ¢ > 77000 when density
< 0.01.

The barrier algorithm (CPLEX implementation) runs in two phases. (a) In
the pre-crossover phase, it runs an interior-point algorithm to compute a near-optimal
solution, and (b) in the post-crossover step, it runs simplex to start with the near-optimal
solution and compute the optimal solution. We propose and analyze the hypothetical
hybrid algorithm that uses FASTPC instead of the interior-point algorithm in the first
phase of the barrier method.

We present this work in Chapter 2 of this thesis.

1.2 File caching with rental cost and zapping

The file caching problem is defined as follows. Given a cache of size k (a
positive integer), the goal is to minimize the total retrieval cost for the given sequence
of requests to files. A file f has size size(f) (a positive integer) and retrieval cost cost(f)
(a non-negative number) for bringing the file into the cache. A miss or fault occurs when

the requested file is not in the cache and the file has to be retrieved into the cache by



paying the retrieval cost, and some other files may have to be removed (evicted) from
the cache so that the total size of the files in the cache does not exceed k. Paging is
the special case when each file has size 1 and the retrieval cost for each file is 1. Bit
model and fault model are special cases of the file caching problem where, for each file
f, cost(f) = size(f) and cost(f) = 1, respectively.

We study the following variants of the online file caching problem. Caching
with Rental Cost (or Rental Caching): There is a rental cost A (a positive number)
for each file in the cache at each time unit. The goal is to minimize the sum of the
retrieval costs and the rental costs. Caching with Zapping: A file can be zapped by
paying a zapping cost IN. Once a file is zapped, it does not use any space in the cache
and all future requests to it don’t incur any cost. The goal is to minimize the sum of the
retrieval costs and the zapping costs. We study these two variants and also the variant
which combines these two (rental caching with zapping). We present deterministic and
randomized lower and upper bounds in the competitive-analysis framework.

Koufogiannakis and Young [46] give a A-approximation algorithm for covering
with submodular cost, where A is the maximum number of variables in any constraint.
Their algorithm is A-competitive for the online case, where the constraints are revealed
one at a time. Many online problems, including the ones we study in this work, can
be reduced to online covering and the online covering algorithm in [65] can be applied.
We study and explore this approach for caching with rental cost and zapping and its
variants. We find that this approach can be extended to these problems, but in some
cases the algorithms thus derived are sub-optimal. We are able to apply modifications
to the online covering algorithm to yield improved competitive ratios in some cases. We
discuss these scenarios and the modifications. We also present randomized lower and

upper bounds for these problems. For most cases, the deterministic and randomized



bounds shown in this work are tight within constant factors. Table 3.1 summarizes our
results.

In our work, we give deterministic online algorithms for variants of file caching
with rental cost and zapping by reducing them to online covering programs. There
has been some research on the online primal-dual approach to give deterministic and
randomized algorithms for the file caching problems and its variants [5, 7, 8, 13, 23]. The
FasTpc algorithm also uses a primal-dual analysis, thought it is not an online algorithm.

We present this work in detail in Chapter 3.

1.3 Online Huffman Coding

We introduce Online Huffman Coding. The online Huffman coding problem is
an online version of the Huffman coding problem. Huffman coding is defined as follows.
Given a probability distribution P = { p1, pa2, -+, pr } on [n] and an encoding alphabet
¥, find a minimum cost prefix-free code (or prefix code) over 3. The cost of a prefix code
X is given by >~ | pi|xi|, where x; is the codeword assigned to ¢ and |x;| is the length of
Xi- We assume that 0 < p; <1 for each 7. Huffman [35] gives optimal algorithm for this
problem. In the online version, the symbols are drawn from a probability distribution
P and are revealed one by one. The algorithm does not have any knowledge of the
probability distribution or the future sequence of symbols, and has to assign codewords
online.

The online Huffman coding problem is different from the adaptive Huffman
coding problem. In adaptive Huffman coding, the code is built dynamically as the
symbols are revealed one by one. As the symbols are revealed, the algorithm maintains

the weights and the corresponding Huffman code. Unlike Online Huffman Coding, the



codeword assignment maybe updated at any step when a symbol is revealed [24, 27, 43,
59, 60].

We study the online Huffman coding problem for binary codes in the compet-
itive analysis framework. We show a lower bound of 10/9 on the competitive ratio of
any deterministic algorithm. We present a greedy algorithm for online Huffman coding
and analyze it. We show that the algorithm is 7-competitive. We also show that the
algorithm is (1 + o(1))-competitive asymptotically.

We present this work in Chapter 4 of this thesis.



Chapter 2

Empirical study of algorithms for

packing and covering

2.1 Introduction

In this study we focus on algorithms for solving explicitly given packing and
covering linear programs. Explicitly given packing and covering linear programs are of
the form max{a -z : Mz < b,z > 0} and min{a - : Mz > b,z > 0}, respectively,
where all entries in the vectors a and b and in the matrix M are non-negative. Various
important problems can be specified as explicitly given packing and covering linear
programs, for instance, variants of multicommodity flow problems and the fractional set
cover problem.

We use the following notation throughout this chapter:

e 1 : number of rows (constraints)
e ¢ : number of columns (variables)

e 1 : number of non-zeros in the constraint matrix



2.1.1 Traditional algorithms for solving linear programs

Traditional algorithms for solving linear programs, like simplex algorithm and
ellipsoid method, can be used to solve packing and covering linear programs as well.
There are many algorithms for solving linear programs. We briefly discuss some of these
well known algorithms in this section.

The Simplex method was proposed by Dantzig [21]. The simplex algorithm
doesn’t have a good worst-case bound, but is considered to work well in practice. In 1982
Smale [56] showed that for fixed number of constraints the number of pivots required
to solve a linear program grows linearly in number of variables on the average. In
2004 Kelner and Spielman [40] proposed a randomized implementation of the simplex
algorithm that runs in polynomial time.

The ellipsoid method by Kozlov et al. [47] has a polynomial running time
for solving convex optimizations, but in practice is slower than the interior-point and
simplex algorithms. The worst case running time of ellipsoid method is O(cSL), where
L is a measure of the bit complexity of the input that is known to be polynomial in the
input size.

In 1984 Karmarkar [39] published a polynomial time interior-point algorithm
for general linear programs. The running time of this algorithm is O(c*5L), where L is
the measure of the bit complexity of the input. This running time is an improvement by
a factor of O(c?%) over the ellipsoid algorithm and, more importantly, the performance in
practice is competitive with the simplex algorithm. Karmarkar’s algorithm also inspired
more research on the interior-point algorithms.

In 1989 Vaidya [58] presented an algorithm to solve linear programming prob-

lems. The algorithm performs a total of O(rc?L + c¢M (r)L) operations, where L is the



measure of the bit complexity of the input and M (r) is the time to invert an r X r matrix.
Since the current fastest algorithm for computing the inverse of an m x m matrix runs
in O(r%37) time [20], Vaidya’s algorithm is faster than Karmarkar’s algorithm when
r € O(c).

The simplex algorithm is used very extensively for solving linear programs, but
there is very limited literature available on how it performs in practice. Interior point
methods are also used widely, but again, not much information is available on their

performance in practice.

2.1.2 Approximation algorithms for packing and covering

There has also been a long line of research focused on developing fast approx-
imation algorithms for solving packing and covering problems [28, 32, 33, 34, 45, 53|.
These approximation algorithms, unlike the traditional algorithms listed above, are de-
veloped using techniques like Lagrangian relaxation. Lagrangian relaxation is a very
general and powerful technique and has been used for developing algorithms in many
different areas [6, 10, 57].

Over the years, there have been continued improvements in approximation al-
gorithms for packing and covering problems. Some of the recent algorithms, including
FAsTPC [45], have provable worst-case running times that are superior to the worst-case
running times bounds for the traditional algorithms for linear programming, but it is
not known if these approximation algorithms work as well in practice. There isn’t much
information available in the literature on how these approximation algorithms com-
pare to the traditional algorithms like simplex and interior-point algorithms in practical
scenarios. In this work, we do an empirical study of the FASTPC approximation al-

gorithm, proposed by Koufogiannakis and Young [45], and compare its performance

10



primal-simplex, dual-simplex, and interior-point algorithms. Our experiments include
various types of inputs (refer to Section 2.2.4) to explore if FASTPC can match or improve
the performance of these traditional algorithms for any particular classes of inputs.
FASTPC computes a (1 + €) approximate solution (or, (1 & €)-solution) for any
€ > 0, and with a high probability runs in O(n+ (r +c¢)logn/e?), where n is the number
of non-zeros, r is the number of rows, and ¢ is the number of columns in the input
matrix. Koufogiannakis and Young [45] also present some experimental results where
they evaluate the primal-simplex algorithm (GLPK) and a preliminary implementation
of FaAsTPC. They observed that FASTPC was significantly faster than the primal-simplex
algorithm even for moderately large inputs (about 2000x2000). Their work had certain

limitations that we address in our study.

They evaluated only the primal-simplex algorithm. Their study didn’t include

dual-simplex and interior-point algorithms.

e Inputs used were relatively small (up to 4000x4000, 8000x2000). We include much

larger inputs (e.g. 23000x23000, 100,000x5000).

e Only a few inputs were sparse. The smallest density used was 0.008 and only a
small number of inputs had such small densities. Our study includes many inputs

that are sparse (d < 0.005).

e Their implementation handled inputs with 0/1 coefficients only. The implementa-
tion we use in our study is more complex and handles all pure packing and covering
inputs with non-negative real coefficients. Their simplified implementation is faster

as compared to our implementation by constant factors.

e All the inputs used in their study were random. It is believed that CPLEX runs

11



faster on structured problems. Our study includes various types of inputs (refer

to Section 2.2.4).

e They used GLPK for their experiments. We use CPLEX, which we found to be
faster than GLPK by constant factors, for the implementations of primal-simplex,

dual-simplex, and interior-point algorithms.

The rest of the chapter is structured as follows. In the next section we talk
about the experimental setup for this study. Then we present the results of these

experiments and our conclusions.

2.2 Experimental setup

2.2.1 Machine specifications

All experiments were performed using Lenovo ThinkStation E30 series with
Intel Xeon E3-1220 Processor (3.10GHz 8MB) and 8 GB RAM [4 x 2GB ECC DDR3

PC3-10600 SDRAM (1333MHz uDIMM)].

2.2.2 Fastpc

We implemented the FASTPC algorithm using C++ [2]. As opposed to the
preliminary implementation that handles inputs with only 0/1 coefficients, our FASTPC
implementation works for all pure packing and covering inputs with non-negative real
coefficients.

Cole et al. [19] provide key details related to the implementation of FASTPC we
use for our experiments. The algorithm maintains a pseudo-distribution (a distribution
that isn’t normalized) and samples from it. The two key issues that come up with

this random sampling scheme are efficiency and precision. Cole et al. [19] propose an

12



efficient data structure for this random sampling scheme. This data structure maintains
the values approximately. This requires some modifications in the algorithm so that the
approximation guarantee still holds. They also present the modified FASTPC algorithm

and the modified analysis of the approximation ratio.

2.2.3 CPLEX

We used ILOG CPLEX Optimization Studio Academic Research Edition (ver-
sion 12.3.0, with academic license from IBM) for implementations of the primal-simplex,

dual-simplex, and barrier methods. We refer to these three as the CPLEX algorithms.

2.2.4 Inputs

We compare the algorithms on variety of inputs. The following are the classes

of inputs that we used for our experiments.

e Random: The coefficients were chosen uniformly from a range.

e DIMACS: DIMACS [1] graphs were used to create vertex cover instances on
bipartite graphs. For a given graph, a bipartite graph can be constructed as
follows. For every vertex u in the original graph, create two vertices uy & us. For
every edge (u,v) in the original graph, create edges (u1,v2) and (ug,v1). The linear
program used for experiments corresponds to the vertex cover in this bipartite

graph.

e Set packing: The benchmark instances from [3] were used to generate packing
linear programs. We also generated larger instances using the generator described

in Xu et al. [61].

13



e Tomography: X-Ray tomography image reconstruction can be formulated as a
mixed packing covering linear program. We simulated X-Ray tomography on 2-
dimensional images and used the data to generate instances of pure packing linear

program.

All the DIMACS and set packing inputs are highly asymmetric (e.g. » = 100000
and ¢ = 1000). For all these instances, the number of variables is much smaller than the
number of constraints. Tomography inputs are also asymmetric. The random inputs we
generated have some asymmetric instances and some symmetric ones.

The density of an input is d = %. For sparse inputs, r + ¢ is (n) and for
dense inputs r + ¢ is O(y/n). All the DIMACS and set packing inputs are very sparse.

Random inputs used in this study are a mix of sparse, medium dense, and dense inputs.

The tomography inputs are medium dense.

2.2.5 Value of €

The value of € used for our experiments is 0.01.

2.3 Results

In this section we present our findings. First, we present the observed lower
bounds for the CPLEX algorithms (primal-simplex, dual-simplex, and barrier) for vari-
ous input types. We give these bounds for computing an (1 =+ €)-solution as well as for
computing the optimal solution and we compare the performance of these algorithms.
Next, we compare FASTPC to the CPLEX algorithms to compute (1 + €)-solution for
these inputs.

All the plots in this chapter are semi-log (log-lin) plots, unless stated otherwise.

14



2.3.1 CPLEX algorithms

For any Gaussian-elimination based method to solve system of linear equations,
the best known bound is O(min(r, ¢)>(||M|| +||b]])) [22], where O hides polylogarithmic
factors and ||D|| represents the highest absolute value in matrix D. The simplex algo-
rithm, in each iteration, uses Gaussian elimination to transform the linear program from
one configuration to the other. The CPLEX implementation of the barrier method runs
in two phases. In the first phase the interior-point algorithm computes an approximate
solution O(c*5L) (L is the bit complexity of the input) and in the second phase primal-
simplex starts with the approximate solution computed in the first phase and finishes
with the optimal solution. In general, these algorithms, due to their dependence on the
Gaussian elimination, should take at least Q(min(r,c)3) for dense matrices. For sparse
matrices, these algorithms should take at least Q(min(r, ¢)2), where ¢ is the maximum
number of non-zeros in any row. We study the experimental running times for each
algorithm on different types of inputs to see how these algorithms perform in practice
with respect to these bounds. We are also interested in finding out if there are particular
types of inputs where these algorithms perform much worse than these lower bounds.
We study these running times to compute (1 £ €)-solutions as well as for computing
exact solutions.

In this section, the approximate solutions correspond to € = 0.01. The primal
and dual simplex algorithms do not have the knowledge of the approximation ratio
of the solution at any stage of the execution. The time taken to reach a particular
approximation ratio can be computed only with the knowledge of the optimal solution.
We determined the time for these algorithms to compute the approximate solution for

a given € by using the logs.

15



2.3.1.1 Set packing and DIMACS inputs

Table 2.1 summarizes the observed lower bounds on the number of iterations,
time per iteration, and total time for CPLEX algorithms for set packing and DIMACS
inputs. We show the plots supporting these observed lower bounds in Figure 2.1 and
Figure 2.2 for primal-simplex, Figure 2.3 and Figure 2.4 for dual-simplex, and Figure
2.5 and Figure 2.6 for the barrier method.

For almost all of these instances, dual-simplex was found to be faster than
primal-simplex and barrier methods by constant factors (Figure 2.7). For these inputs,
all three algorithms took Q((r+c)'.5) time to compute an (1=4¢)-solution. For computing
exact solutions, dual-simplex was found to be faster than primal-simplex and barrier

algorithms by a factor of O((r + ¢)".5).

Table 2.1: Observed lower bounds for CPLEX algorithms on set packing and DIMACS

inputs

Algorithm (1 £ €)-solution | Exact solution
Iterations 0O(1) (r+c)%>
primal-simplex | Time/Tteration | (r + c)® (r+c)t?®
Time (r+cot? (r+c)?
Iterations (r+¢)%5 (r 4 ¢)%
dual-simplex Time/Iteration | (r + c) (r+c)
Time (r+cot? (r+c)t®
Iterations 3—6 5—10
barrier Time/Tteration | (r + c)™° (r+c)?
Time (r+cot?® (r+c)?

16




100000 .

10000 ¢ . + 1
.
.
u +
5 1000 ﬁ*ﬁﬁ . +
o + 1
o+
100 t -
¥
10 .
0.0e+00 50e+05 1.0e+06
r+c
(a) (1 £ €)-solution
100 :
+
+
n
¢ ; v,
=) i b
N E .
= 10 3 + + T
= g F
o F'+"':l'+
= B+ ¢+++
. e
= b +
i
1 |
0.0e+00 5.0e+05 1.0e+086

r+c

(b) Exact solution

Figure 2.1: Iterations for primal-simplex on set packing and DIMACS inputs

17



le-08

0 le-10 . + ¥ + 1
— g +
< F o+
ﬁ + ++++
= o e
5 le-11 tI T4 1
= 4: +
© +
E +
5}
E
= le-12 + &
+
le-13 :
0.0e+00 50e+05 1.0e+06
r+c
(a) (1 £ €)-solution

1e-09 .
0 le-10 . ¥ + + 1
— -“1_,_* +4 +
N ¥ o+4
$ + ++++
= A
& le-11 Fi T4 4
= :F +
Jis] *
@ +
3
£
= le-12 ¢ + E

+
le-13 :
0.0e+00 5.0e+05 1.0e+06
r+c

Figure 2.2: Time per iteration for primal-simplex on

(b) Exact solution

18

set packing and DIMACS inputs



lterations/(r+c)~0.5

lterations/(r+c)~0.5

1000 .

100 | -

10

%++-I+++
§++ + +
1 3 + ++ + 4
Ol 1 1 1 1
0.0e+00 2.0e+05 4.0e+05 5.0e+05 8.0e+05 1.0e+06
r+c
(a) (1 £ €)-solution
1000 T T T T
100 b7 ]
"
++ + +
10 i i
B
E '*.1:+++++
Tt
B 5
1 -E'++++ ++ + J
Ol 1 1 1 1
0.0e+00 2.0e+05 4.0e+05 65.0e+05 8.0e+05 1.0e+086
r+c

(b) Exact solution

Figure 2.3: Iterations for dual-simplex on set packing and DIMACS inputs

19



le-07

e -
¢ le-08 N ]
S . +
+ §+ + 4
= +
© +
et
T le-09 | 1
£
'_
e+ +
+ Lt
1e-10
0.0e+00 1.0e+06
r+c
(a) (1 £ €)-solution

1e-07 .
e -
¢ le-08 N
S i +
+ §I+ + %
= +
-~ g ++
5 T
© +
et
T 1e-09 .
£
'_

e+t
+ Lt
1e-10
0.0e+00 50e+05 1.0e+086
r+c

Figure 2.4: Time per iteration for dual-simplex on set packing and DIMACS inputs

(b) Exact solution

20



10 . . . .

lterations

- ++ + +

l 1 1 1
0.0e+00 2.0e+05 4.0e+05 6.0e+05 8.0e+05 1.0e+06

r+c

(a) (1 £ €)-solution

10 . r . .

H H+ HHE +

++ +

lterations

l 1 1 1 1
0.0e+00 2.0e+05 4.0e+05 65.0e+05 8.0e+05 1.0e+086

r+c

(b) Exact solution

Figure 2.5: Iterations for barrier-simplex on set packing and DIMACS inputs

21



0.0001 .

le-05 ¥ .
[Ta] + +
—
. A
Q 1e-06 L ]
[ +
= +
: 3
= Fut ‘
E le-07 Et ]
= it +
@
E i
= Foo+ +
1le-08 + 4
++ + +
o
+
1le-09 .
0.0e+00 50e+05 1.0e+06
r+c
(a) (1 £ €)-solution
le-07 :
+
+
e+
.
.
1e-08 #* .
o
2 £
5 ¢
¥ le-09 %, . 1
= E;-I-+ .
€ ¥
b5 ++§¢$ +
@ le-10 o + W + . |
5}
E
'_
le-11 + 1
le-12 .
0.0e+00 50e+05 1.0e+086
r+c

(b) Exact solution

Figure 2.6: Time per iteration for barrier-simplex on set packing and DIMACS inputs

22



0.0001 .

Primal ®
- Dual u]
Barrier -
1e-05 1
Lf'! ko
<~—| 1e-06 1
o 3
= X
Lh)
£ 1e-07 2 x%{ ® 1
'_
v &
1e-08 B ¥ 1
[m]
oo o 5
1e-09 = .
0.0e+00 50e+05 1.0e+06
r+c

Figure 2.7: Comparison of CPLEX algorithms to compute (1 + €)-solution for ¢ = 0.01

on set packing and DIMACS inputs

2.3.1.2 Random and tomography inputs

Table 2.2 summarizes the observed lower bounds on the number of iterations,
time per iteration, and total time for CPLEX algorithms for set packing and DIMACS
inputs. We show the plots supporting these observed lower bounds in Figures 2.8, 2.9,
2.10, and 2.11 for primal-simplex, Figures 2.12, 2.13, 2.14, and 2.15 for dual-simplex,
and Figures 2.16 and 2.17 for the barrier method.

We observe that the algorithms, including FASTPC, are slower on these inputs
than on set packing and DIMACS inputs. We don’t know the reason behind this behav-
ior. One possible explanation is that even though the set packing and DIMACS inputs
are considered to be hard instances for computing integer solutions, they may not be

hard for computing fractional solutions.

23



Unlike the set packing and DIMACS instances, the random and tomography
inputs had varied densities. Experiments show that all three algorithms perform better
for sparse inputs than dense inputs of the same size. For sparse inputs, all three algo-
rithms took Q((r + ¢)?) time to compute (1 + €)-solution, but primal and dual simplex
were found to be slower than barrier on dense instances. Barrier performed better than
primal and dual simplex algorithms for computing approximate solutions. For comput-
ing exact solutions, dual-simplex performed better than the other two algorithms by a
factor of (r + ¢)°® on dense inputs. On sparse inputs, primal and dual simplex were

much faster than barrier.

Algorithm (1 £ €)-solution Exact solution
d<0.01 | d>001 | d<0.01 | d>0.01
Iterations r4+o) | r+)? | (r+o) | (r+0)*°
primal-simplex | Time/Iteration | (r +¢)1° | (r+¢)*® | (r + o) | (r +¢)*°
Time (r+e) | (r+c¢)® | r+e)? | (r+c¢)P°
Iterations (r+e)t | (r+e)? | (r+e)t° | (r+e)?
dual-simplex Time/Tteration | (r +¢)° | (r +¢)2° | (r+¢)1° | (r +¢)*°
Time (r+e) [ (r+o)?® | (r+e)? | (r+o)*°
Iterations 5-9 5-9 (r+c? | (r+e)?
barrier Time/Tteration | (r+c¢)® | (r+¢)® | (r+c¢)? | (r+¢)?
Time r+c)® | (r+eP | (r+e¢® |