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Abstract Dietary resistant starch impact on intestinal
microbiome and improving healthspan is the topic of
this review. In the elderly population, dietary fiber intake
is lower than recommended. Dietary resistant starch as a
source of fiber produces a profound change in gut
microbiota and fermentation in animal models of aging.
Dietary resistant starch has the potential for improving
healthspan in the elderly through multiple mechanisms
as follows: (1) enhancing gut microbiota profile and
production of short-chain fatty acids, (2) improving
gut barrier function, (3) increasing gut peptides that are
important in glucose homeostasis and lipid metabolism,
and (4) mimicking many of the effects of caloric restric-
tion including upregulation of genes involved in xeno-
biotic metabolism.

Keywords Resistant starch . Gut microbiota . Gut
peptides . Healthspan . Prebiotic . Gut health . Short-

chain fatty acids . Butyrate . Age-related anorexia .

Caloric restrictionmimetic

Gut health and aging

After many years of disrepute, research into connections
between the intestinal microbiome and general health of
elderly persons has re-emerged robustly (Britton and
McLaughlin 2013) based on solid preclinical and clini-
cal investigations (Claesson et al. 2012; Biagi et al.
2010; Rampelli et al. 2013). Perturbations of intestinal
microbiota have now been strongly linked to immune,
metabolic, and neurological diseases (Blumberg and
Powrie 2012; Sekirov et al. 2010; Qin et al. 2012).

Intestinal microorganisms include approximately
100 trillion cells, which is 10 times greater than the
number of human cells (Steinhoff 2005; Sears 2005),
and these have 100 times as many genes on aggregate as
the human genome (O'Hara and Shanahan 2006),
representing over 1000 different species that perform
numerous beneficial functions in healthy individuals
(Sekirov et al. 2010). In effect, the diverse and highly
populated microbiota in the gut functions as a metabolic
organ modulating nutrition, metabolism, and immunity
(Dethlefsen et al. 2007).

The distal gut of young healthy adults is typically
dominated by bacteria in the phyla Firmicutes (60–80%
of total bacteria) and Bacteroidetes (20–40 % of total
bacteria) (Dethlefsen et al. 2007). End-products of bac-
terial metabolism include the short-chain fatty acids
(SCFA) acetate, butyrate, and propionate, which are
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important for energy metabolism and signaling in the
gut (Cuervo et al. 2013), as well as immune homeostasis
(Claesson et al. 2012; Biagi et al. 2010; Rampelli et al.
2013; Smith et al. 2013). Among the elderly, however,
proportions of these phyla differ comparedwith younger
individuals (Cuervo et al. 2013). At the genus level,
depletion of specific beneficial gut bacteria, such as
Bifidobacterium and Akkermansia spp., has been ob-
served in elderly individuals (Cuervo et al. 2013;
Dethlefsen et al. 2007). Enrichment in Proteobacteria
has been associated with poor health outcomes in elder-
ly persons, related to low-grade inflammation as evi-
denced by bacteria-induced cytokine responses resulting
from age-related increases in the permeability of the gut
(Biagi et al. 2010). Even in animal models such as
Drosophila melanogaster, this “leaky gut syndrome”
has been linked to metabolic and inflammatory markers
of aging and mortality (Rera et al. 2012). Indeed, a
recent study (Rera et al. 2012) indicated that the lifespan
of individual flies could be predicted by intestinal barrier
failure as indicated by measurement of antimicrobial
peptides (AMPs). A summary of studies of gut micro-
biota in the elderly is given in Table 1.

Fermentable carbohydrate and gut health

Diet composition is a critical factor in regulating the
chemostatic culture in the gut (David et al. 2014).
Dramatic changes in the processing of foods during
the modern era have led to an altered microbiome that
could have negative health consequences especially for
older persons (Claesson et al. 2011; Cotillard et al. 2013;
van Tongeren et al. 2005). As one prime example, the
levels of fermentable carbohydrate (FC) in human diets

have been progressively decreased due to modern mill-
ing and food preparation methods. Calculations of FC
intake in medieval Europe were as high as 50–100 g/day
(Birkett et al. 1997). FC intake in developing countries
today is estimated to be 30–40 g/day (Birkett et al.
1997). However, measurements of FC intake in devel-
oped countries are only 3–8 g daily from commonly
consumed foods (Birkett et al. 1997; Baghurst and
Baghurst 1994). Recent literature reviews have docu-
mented significant relationships between the amount of
FC in the diet and health indicators including blood lipid
levels, glucose intolerance in diabetes, and cancer risks
(Slavin 2013; Flint 2012). Our preclinical studies in
rodent models have shown health benefits when FC is
added to the diet including improved metabolic syn-
drome, glucose tolerance, and lower blood lipid levels
(Keenan et al. 2013, 2006; Zhou et al. 2008; Keenan
et al. 2012; Shen et al. 2011).

High-amylose starch

It is unlikely that Western societies will ever return to a
diet of coarsely ground grains and legumes high in FC.
To counter this trend, FC is now available as a relatively
inexpensive ingredient that can be incorporated into
foods that are acceptable to modern tastes. HAS has a
range of 40–60 % FC and can be used in breads, cereal
products, and other baked goods (Goldring 2004).

Most starches are ~80 % amylopectin and 20 %
amylose. Amylose molecules are able to fold tightly
into a starch granule and resist amylase action in the
gut by not allowing as many sites for digestion (Brown
2004). Since amylose is only partially digested in the
small intestine, it is available for fermentation in the

Table 1 Summary of gut microbiota studies of the elderly

Gut microbiota in elderly Health implication References

Reduction in abundance of Ruminococcus
and Prevotella

Correlated to frailty and calf circumference Claesson et al. 2012

Enriched in Proteobacteria Increased inflammation Biagi et al. 2010

Function analyses of gut microbiota Loss of genes for short-chain fatty acid production
and a decrease in the saccharolytic potential

Rampelli et al. 2013;
McLaughlin et al. 2015

Lower Clostridium cluster IV and Bifidobacteria,
while higher levels of Bacteroides

Linked to reduced formation of short-chain fatty acids
and higher inflammation

Zwielehner et al. 2009

Reduced proportion of cultivable Bacteroides Correlated to elevated blood glucose levels Sepp et al. 2014

Lower levels of Faecalibacterium spp. Fecal lipopolysaccharides (LPS) was significantly
higher, greater inflammatory burden

Park et al. 2015
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large intestine. Thus, it has been proposed that plant
foods with high-amylose content are potential prebiotics
(Ao et al. 2007). Genetic selection of plants has gener-
ated a high-amylose low-cost cornstarch. In addition to
selection for this trait, some laboratories are using mod-
ern biotechnology to increase amylose content of rice
(Kumar and Khush 1986) and wheat (Sestili et al. 2010;
Regina et al. 2006). This form of prebiotic is now being
incorporated into many food types, a process which
should expand in the future. Thus, we have proposed
that increased use of HAS might be a viable dietary
strategy for improving the health of frail elderly.

HAS enhances the gut microbial profile

Technology for analyzing bacterial DNA has only re-
cently been applied to the field of nutrition and aging.
We have shown in aged C57BL/6Nia (B6) mice that
HAS diets increase the proportion of Bacteroidetes in a
dose-dependent manner (0 % control and 18 and 36 %
HAS by diet weight) (Tachon et al. 2012). The relative
amounts of Actinobacteria (Bifidobacterium) and
Verrucomicrobia (Akkermansia) were also significantly
increased in the guts of aged B6 mice fed HAS.
Proportions of Bifidobacterium and Akkermansia were
positively correlated with mouse-feeding responses, gut
weight, and expression levels of the proglucagon gene
(Tachon et al. 2012). Proportions of the Firmicute
Lactobacillus were also significantly increased in a
d o s e - d e p e n d e n t m a n n e r . L a c t o b a c i l l u s ,
Bifidobacterium, and Akkermansia are target organisms
for enrichment in the intestine because their amounts
decline in the elderly (Steinbaugh et al. 2012; Sekirov
et al. 2010; Shamliyan et al. 2013; Smith et al. 2013;
Berg et al. 1996; Zwielehner et al. 2009) and known
associations with good health and immune function
have been established (Drago et al. 2012; Everard and
Cani 2013; Ventura et al. 2009; Bron et al. 2012; Kimura
et al. 2011). Overall, changes in the gut microbiota in
response to HAS indicate an intricate food-web network
by which beneficial bacteria are enhanced and HAS is
metabolized to SCFA.

Improved motor coordination in aged mice fed HAS

A major feature of frailty is severely reduced motor and
postural control (Morley 2009; Fairhall et al. 2011). In

further support of the potential health benefits of HAS in
elderly and frail individuals, we have reported that mo-
tor function is improved in male B6 mice (24 months)
fed HAS diets (18 or 36 % FC) for 9 weeks (Zhou et al.
2013). Specifically, the mice were evaluated on an ac-
celerating rotarod with latency to fall across three trials
as the primary measure of motor coordination. This task
is highly age-sensitive in mice (Graber et al. 2013;
Ingram 1985). Rotarod performance was significantly
improved in mice fed the HAS diet compared to age-
matched control fed mice. Further tests are needed that
can assess function in elderly and frail mice to reflect
HAS diet effects on healthspan.

HAS attenuates age-related anorexia

Frailty is also marked by major changes in appetite
(Wurtman 1988). An extensive literature describes as-
pects of the age-related decline in appetite and energy
intake even in healthy people (Hays and Roberts 2006).
Elderly persons are less hungry and feel full before a
meal, and then becomemore rapidly satiated after eating
a meal than younger subjects (Morley 1997). This age-
related reduction in energy intake and nutrient sensing
has been termed the anorexia of aging (Morley 2009).
Older people fail to respond to over- or underfeeding
with the compensatory changes in eating that are ob-
served in younger people. For example, after being
underfed for 21 days, young men overate and quickly
returned to normal weight; whereas, the older men did
not compensate, returned only to their baseline intake,
and did not regain the weight that they had lost (Roberts
1994). This failure of response to acute undernutrition
means that the elderly have impaired homeostatic regu-
lation of energy balance. This apparent insensitivity to
metabolic cues can lead to inappropriate weight loss in
response to acute or chronic illness or other stressors,
resulting in greater morbidity and mortality in geriatric
populations. Compared with young counterparts, aged
male rats fail to increase food intake after a fast and are
slow to regain lost body weight on re-feeding
(Gruenewald et al. 1996). In rhesus monkeys, an age-
related decrease in food intake begins shortly after ma-
turity and is accompanied by a reduced motivation to
work for food (Mattison et al. 2005; Kaneda et al. 2001).
The reduced ability to defend body weight in rats is
associated with a blunted fasting-induced increase in
neuropeptide Y (NPY) gene expression (Wolden-

AGE (2015) 37: 98 Page 3 of 10 98



Hanson et al. 2004) and agouti-related protein (AgRP)
gene expression. We have shown that gene expressions
of these two neuropeptides are controlled by the energy
status of the cell and specifically via AMPK signaling
(Lee et al. 2005). In addition, we have conducted exten-
sive studies of the metabolic/neuronal mechanisms as-
sociated with food intake control and weight regain after
caloric restriction (Lee et al. 2005; Harris and Martin
1984; Kasser et al. 1989; Beverly and Martin 1991; He
et al. 1998; Clegg et al. 2003). However, there is a lack
of knowledge of how diet impacts age-associated de-
cline in nutrient sensing. Initial studies indicate that
HAS feeding can enhance the response to fasting in
elderly mice (Zhou et al. 2013). Following HAS feeding
for 9 weeks, the same male B6 mice used for motor
coordination testing were fasted from 9:00 p.m. to
10:00 a.m., and their food intake was measured for 4 h
after re-feeding. As noted in comparison to the control
fed group, the mice fed HAS (18 and 36 %) exhibited
significantly greater food intake following the fast.
These findings provide support for the hypothesis that
consumption of HAS enhances brain signaling of ener-
gy status in aged mice.

Chronic kidney disease and HAS

Nearly 50 % of individuals 70 years or older meet the
definition of chronic kidney disease, and 38 % of this
age group has stage 3 or stage 4 chronic kidney disease
(Johansen 2010). It is known that foods with added fiber
lower serum creatinine levels in patients with chronic
kidney disease (Salmean et al. 2013). In addition, the
intake of a pre- and probiotic mixture composed of
resistant starch significantly lowered the colonic gener-
ation and the renal excretion of toxic [(15)] ureide and
functions as an ammonia shift from urinary to fecal (15)
N excretion (Wutzke and Scholübbers 2010) . Recently,
it has been shown that feeding HAS to hemodialysis
patients may reduce the plasma levels of the colon-
derived solutes indoxyl sulfate and possibly p-cresol
sulfate (Sirich et al. 2014). The HAS improvement of
kidney function may also be related to the higher levels
of butyrate production by the large intestine microbes
(Keenan et al. 2006) since butyrate attenuates
gentamicin- induced nephrotoxicity (Sun et al. 2013).
The utility of HAS in reducing the burden of chronic
kidney disease in the elderly is worthy of further
investigation.

Possible mechanisms of action

Based on the studies cited, we propose that a HAS
diet acts to improve functional outcomes through four
primary mechanisms: (1) stimulate gut microbial fer-
mentation to upregulate genes involved in xenobiotic
metabolism. (2) restore Lactobacillus levels to im-
prove markers of gut barrier function, (3) increase
levels and actions of butyrate to improve markers of
healthspan, and (4) increase GLP-1 secretion from the
gut leading to multiple actions on tissues to improve
metabolic status. A schema of these mechanisms is
presented in Fig. 1.

HAS-induced changes in beneficial microbiota

The primary consequences of increased HAS intake are
modifications to the composition and functionality of
the intestinal microbiota which use the carbohydrates as
fermentable substrates for growth (Salonen et al. 2014).
We have shown that dietary alterations result in signif-
icantly different adaptive responses by probiotic
lactobacilli in the human and mouse intestine
(Baghurst and Baghurst 1994; Marco et al. 2007,
2009, 2010). Dietary supplementation of HAS has pro-
duced numerous health benefits directly linked to in-
creases in certain members of the native intestinal mi-
crobiota, particularly Bifidobacteria, Lactobacillus,
Akkermansia, and butyrate-producing bacteria, such as
Allobaculum and certain Clostridium species (Tachon
et al. 2012; Everard et al. 2014; Schwiertz et al. 2002).
The prebiotic action of HAS can possibly restore micro-
biota to physiologically beneficial levels in aging
individuals.

HAS upregulates genes involved in xenobiotic
metabolism

A transcriptional gene array analysis of cecal tissue from
rats fed a HAS-enhanced diet was recently published by
our group (Keenan et al. 2012). The following genes
were found to be significantly upregulated in cecal
mucosa: (1) cytochrome P450 family 2; (2) cytochrome
P450 family 3; (3) cytochrome P450 family 4, flavin-
containing monooxygenase 2; and (4) epoxide hydro-
lase 1. Elevation of these phase I xenobiotic-
metabolizing enzymes has been called “a hallmark of
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long-lived mice,” characterizing a shared signature of
mouse models with extended lifespan (Steinbaugh et al.
2012).

HAS increases butyrate

Enhancing gut microbial production of butyrate could
also lead to improved healthspan (Canani et al. 2011).
We have established that diets containing HAS increase
gut microbial production of butyrate (Zhou et al. 2008;
Keenan et al. 2012; Charrier et al. 2014; Vidrine et al.
2013). The following points underscore the potential
health benefits of this action:

& Quantification of butyryl CoA:acetate CoA-
transferase genes reveals different butyrate produc-
tion capacity in individuals; the elderly had signifi-
cantly fewer copies of the butyryl CoA:acetate CoA-
transferase gene than young (Hippe et al. 2011).

& Sodium butyrate improves memory function in a
mouse model of Alzheimer’s disease when admin-
istered at an advanced stage of disease progression
(Govindarajan et al. 2011).

& Post-training systemic administration of sodium bu-
tyrate ameliorates age-related memory decline in
rats (Reolon et al. 2011).

& Sodium butyrate alters the mortality rate of the
senescent span of Drosophila melanogaster by de-
creasing its vulnerability or short-term risk of death,
in a manner similar to that of dietary restriction
(Vaĭserman et al. 2012).

& Tributyrin (source of butyrate) attenuates the pro-
duction of TNFα and IL-1 by peritoneal macro-
phages and their expression in adipose tissue and
also reduces the expression of MCP-1 and infiltra-
tion by leukocytes (Vinolo et al. 2012).

& Feeding butyrylated starch increases the levels of
cecal and portal blood butyrate several fold and
leads to improved gut health (Clarke et al. 2011;
Bajka et al. 2010).

In summary, enhanced butyrate production by gut
microbiota should lead to marked improvements in
healthspan.

HAS increases GLP-1

GLP-1 is a gut-secreted hormone shown to have
multiple biological functions. The primary clinical
functions of GLP-1 and its analogs are to stimulate
pancreatic insulin secretion and improve peripheral
tissue insulin sensitivity (Yu and Wang 2008).
However, the role of GLP-1 on brain function
has recently attracted more attention (Hölscher
2012, 2014). GLP-1 has been shown to prevent
the degenerative process and to ameliorate neuro-
degenerative changes in cellular and animal
models of Alzheimer’s disease (Ghosal et al.
2013; McIntyre et al. 2013; Ma et al. 2012).
Also, GLP-1 is known to increase GK expression
in pancreatic beta-cells (Burcelin et al. 2006), ev-
idence that it improves pancreatic glucose sensing.

GLP-1

Ingestion of 
resistant 

starch 

Beneficial
Bacteria 

Butyrate

•Improved appe�te 
• Enhanced cogni�ve and 
motor performance
•Improve gut barrier func�on
•Reduce markers of oxida�ve 
stress and inflamma�on 
• Increase xenobio�c pathways 

Fig. 1 Proposed mechanisms of
HAS and Improved healthspan.
Ingestion of high-amylose
starches increases beneficial mi-
crobiota and stimulates the pro-
duction of butyrate and increases
GLP-1 release from the gut
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More importantly, GLP-1 has been shown to de-
crease intracerebral glucose content by activating
hexokinase and changing glucose clearance during
hyperglycemia (Burcelin et al. 2006). In addition,
GLP-1 enhances GK activity in neurons in a
glucose-dependent manner via GLP-1 receptor
(GLP-1R) (Gejl et al. 2013). Thus, we speculate
that GLP-1 might be important in the cascade of
signaling events affecting brain aging and that
HAS enhancement of GLP-1 levels and signaling
should attenuate brain aging and consequently, im-
prove cognition, motor behavior, and anorexia of
aging.

Regarding support for a role of GLP-1 in re-
sponses to HAS, several important lines of evi-
dence can be cited. First, we reported that aged
male B6 mice (18–20 month) fed HAS showed
increased levels of active GLP-1 in sera collected
after 9 weeks on HAS diet compared to controls
(Zhou et al. 2012). The proglucagon gene is re-
sponsible for GLP-1 expression in the gut (Holst
2007). We showed increased expression of
proglucagon mRNA measured by quantitative RT-
PCR in cecal epithelia cells obtained from aged
B6 mice on the HAS diet in a dose-responsive
manner as well as in young mice (3 months)
(Zhou et al. 2012). HAS feeding has been reported
to increase insulin sensitivity even in pre-diabetic
subjects and also increases GLP-1 in serum
(Bodinham et al. 2014). Thus, beneficial effects
of HAS feeding in rodents appear to translate well
to humans.

HAS as a caloric restriction mimetic

There has been increasing interest in the development of
calorie restriction mimetics, or treatments that can mim-
ic the life-lengthening and health-promoting effects of
calorie restriction (CR) by activating the same cellular
pathways that are activated by low-calorie diets (Lane
et al. 2007; Ingram and Roth 2011). The exact mecha-
nism linking calorie restriction and longevity is still a
matter of debate. HAS diets mimic many of the short-
term effects of CR. Table 2 provides a comparison of
known effects of caloric restriction and HAS feeding
(Higgins 2004; Higgins et al. 2004; Keenan et al. 2006;
Shen et al. 2011; Zhou et al. 2008). HAS feedingmimics
caloric restriction by reducing body fat, increasing fatty
acid oxidation, reducing oxidative stress and inflamma-
tion, improving glucose clearance and insulin sensitivi-
ty, and preventing cancer.

Summary

HAS has the potential for improving healthspan in the
elderly through multiple mechanisms as follows: (1)
enhancing gut microbiota profile and production of
short-chain fatty acids, (2) improving gut barrier func-
tion, (3) increasing gut peptides that are important in
glucose homeostasis and lipid metabolism; and (4)
mimicking many of the effects of caloric restriction
including upregulation of genes involved in xenobiotic
metabolism.

Table 2 Summary of the effects of diet restriction and high-amylose starch

Diet restriction High-amylose starch HAS references

Longevity ↑ ?

Inflammation ↓ ↓ Zhou et al. 2012; Le Leu et al. 2013

Glucose clearance Improved Improved Zhou et al. 2008; Shen et al. 2011

Insulin sensitivity Improved Improved Robertson et al. 2005; Johnston et al. 2010;
Robertson 2012

Blood lipids ↓ ↓ Keenan et al. 2006, 2013; DeJonge et al. 2009

Oxidation of fatty acids ↑ ↑ Higgins et al. 2004; Zhou et al. 2009

Lipogenesis ↓ ↓ Higgins et al. 2006; Higgins and Brown 2013

Body fat Reduced Reduced Keenan et al. 2006, 2013; Charrier et al. 2014

Cancer risk ↓ ↓ Toden et al. 2007; Clarke et al. 2008

Oxidative Stress ↓ ↓ Kwak et al. 2012
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