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νν |. . . . . . . . . . . . . . . . . . . . . . 95

xv



Figure 5.4: Fractional contribution of inward directed neutrinos (dashed
line) and outward directed neutrinos (solid line) to the magni-
tude of the halo neutrino potential |Hhalo

νν | at fixed radius, using
the density profile and neutrino emission spectra of Ref. [8]. . . 102

Figure 5.5: (Color Online) The isosurfaces for κr ≥ 1 using the density pro-
file (shown in black) and neutrino emission spectra of Ref. [8].
The halo neutrinos originating inside the current radial coor-
dinate are considered to be co-evolving with neutrinos from
the core. Red: 〈A〉 = 56, Blood Orange: 〈A〉 = 28, Orange:
〈A〉 = 12, Tangerine: 〈A〉 = 4, Yellow: 〈A〉 = 1, Green: 〈A〉 = 1
with no halo neutrinos propagating backwards in radial coordi-
nate, Blue: no halo potential. . . . . . . . . . . . . . . . . . . . 106

xvi



LIST OF TABLES

Table 5.1: The conditions under which dispersion from the neutrino halo
and dispersion from the bulb neutrinos will interfere construc-
tively or destructively. Note that the neutrino emission spectra
of Ref. [8] lies in the upper right box. . . . . . . . . . . . . . . . 105

Table 5.2: The conditions under which dispersion from the neutrino halo
and dispersion from the matter potential will interfere construc-
tively or destructively. Note that the neutrino emission spectra
and matter potential of Ref. [8] lies in the upper right box. . . . 105

xvii



ACKNOWLEDGEMENTS

It has been a long (occasionally bumpy) road to the completion of my

Ph.D. thesis, and there are a great many people who have touched my life and my

career who deserve my thanks for their support. Chief among them is my advisor,

Professor George Fuller, whose careful guidance and wisdom has taught me the

difference between solving physics problems, and thinking physically about the

universe. It was George’s guidance that taught me everything from how to search

for interesting problems, conduct my basic research, how to craft my papers and

communicate my ideas, to navigating the politically and socially thorny landscape

of modern science. Thank you, George, it is the legacy of your teachings that I

will carry with me throughout my career, and I hope that I make you proud.

I would like to thank my collaborators and co-authors at Los Alamos Na-

tional Laboratory, Joe Carlson and Alex Friedland. Joe, in particular, is the

original author of the neutrino flavor transformation code that I have spent so

much time working with. Without his help and insight, I never would have gotten

my flavor transformation project off of the ground. Alex’s input on the Neutrino

Halo papers has been crucial, and his brilliance and attention to detail has made

diamonds out of the lumps of coal that I initially wrote.

A great deal of thanks is also owed to several more of my co-authors: Huaiyu

Duan, of the University of New Mexico, Albuquerque; Yong-Zhong Qian, of the

University of Minnesota, Minneapolis; and Meng-Ru Wu, also of the University of

Minnesota, Minneapolis. They have each contributed mightily to supporting and

guiding my research, and now with the publication of this thesis, to our under-

standing of the O-Ne-Mg core-collapse neutronization neutrino burst signal.

Much thanks also goes to my fellow graduate students Chad Kishimoto,

Wendel Misch, Rick Wagner, and Alexey Vlasenko, who is also a co-author of

mine. They have all been an indispensable help answering my questions, playing

foil to my crazy ideas, challenging my notions of physics with their own crazy ideas,

and the quite serious business of drinking beer.

I am grateful to my parents, who have supported me through thick and

thin my entire life. I love you both. This Ph.D. thesis is dedicated to you.

xviii



Chapter 4, in part, is a reprint of material has appeared in Physical Review

D, 2010-2012. Cherry, J. F., Wu, M.-R., Carlson, J., Duan, H., Fuller, G. M., and

Qian, Y.-Z., the American Physical Society, 2010-2012. The dissertation author

was the primary investigator and author of these papers.

Chapter 5, in part, is a reprint of material has appeared in Physical Review

Letters, 2012 and material that will be shortly submitted to Physical Review D,

2012. Cherry, J. F.; Carlson, J.; Friedland, A.; Fuller, G. M.; Vlasenko, A.,

the American Physical Society, 2012. The dissertation author was the primary

investigator and author of these papers.

xix



VITA

2003 B. S. in Physics, University of California, San Diego

2003-2005 Product Engineer, Quantum Design, San Diego

2005-2006 Graduate Teaching Assistant, University of California, San
Diego

2006-2012 Graduate Student Researcher, University of California, San
Diego

2005-2012 Ph. D. in Physics, University of California, San Diego

PUBLICATIONS

Cherry, J. F., Fuller, G. M., Carlson, J., Duan, H., and Qian, Y.-Z.,
“Multi-Angle Simulation of Flavor Evolution in the Neutronization Neutrino Burst
from an O-Ne-Mg Core-Collapse Supernova,”
Phys. Rev. D 82, 085025 (2010).
[arXiv:astro-ph.HE/1006.2175]

Cherry, J. F., Wu, M.-R., Carlson, J., Duan, H., Fuller, G. M., and Qian, Y.-Z.,
“Density Fluctuation Effects on Collective Neutrino Oscillations in O-Ne-Mg Core-
Collapse Supernovae, ”
Phys. Rev. D 84, 105034 (2011).
[arXiv:astro-ph.HE/1108.4064]

Cherry, J. F., Wu, M.-R., Carlson, J., Duan, H., Fuller, G. M., and Qian, Y.-Z.,
“Neutrino Luminosity and Matter-Induced Modification of Collective Neutrino
Flavor Oscillations in Supernovae, ”
Phys. Rev. D In press (2012).
[arXiv:astro-ph.HE/1109.5195]

Cherry, J. F., Carlson, J., Friedland, A., Fuller, G. M., Vlasenko, A.,
“Neutrino scattering and flavor transformation in supernovae, ”
Phys. Rev. Let. In press (2012).
[arXiv:astro-ph.HE/1203.1607]

Cherry, J. F., Carlson, J., Friedland, A., Fuller, G. M., Vlasenko, A.,
“On the efficacy of the linearized stability analysis, ”
Phys. Rev. D Pre-print (2012).

xx



ABSTRACT OF THE DISSERTATION

Neutrino Flavor Transformation in Core-Collapse Supernovae

by

John F. Cherry Jr.

Doctor of Philosophy in Physics

University of California, San Diego, 2012

Professor George M. Fuller, Chair

Ever since a collection of 19 flickers of Cherenkov radiation in neutrino de-

tectors around the world have been linked to SN 1987a, the physics community

has been certain that neutrinos are the pivotal actors in core-collapse supernovae.

SN1987a confirmed Jim Wilson and Sterling Colgate’s basic picture of the col-

lapsed core of a massive star shining with neutrinos of all kinds, radiating with a

luminosity of 1053 erg s−1. At a stroke neutrinos provided a mechanism by which

nature could explode an object as massive as a star and produce the heavy ele-

ments that we find all around us. Like all great discoveries, however, the neutrino

burst of SN 1987a raised more questions than it answered. Neutrinos are known to

change their lepton flavor as a purely quantum mechanical process in vacuum and

in the sun and the earth, and our experimental knowledge of this process leads us

xxi



to an inexorable conclusion: neutrinos will change their flavor states in supernovae,

as well.

One of the most deucedly difficult problems in neutrino astrophysics for the

last few decades has been the question of how neutrino flavor transforms in the

supernova environment. The intense flux of neutrinos from the core of a supernova

is so numerous that the interactions of neutrinos with one another is strong enough

to create a quantum mechanical coupling of their flavor evolution histories, so that

the flavor states of all neutrinos are non-linearly related to one another. This

non-linear coupling of neutrino flavor states can have fascinating consequences,

leading to collective flavor transformation phenomena, where all neutrinos emerg-

ing from the core begin to change flavor simultaneously. The dynamics of these

non-linear effects can provide great insight into as yet unconstrained sectors of

neutrino physics. Likewise, should the details of neutrino flavor mixing be worked

out before the next galactic supernova, the understanding of neutrino flavor trans-

formation might act as a neutrino telescope, allowing an observer to probe the

depths of an exploding star.

However, supernovae are environments that test the limits of our physical

understanding. A cherished paradigm within the supernova neutrino community,

the “neutrino bulb” model, has been found to be critically flawed early in the

explosion. The collapsed core is not the only source of neutrinos which are impor-

tant for flavor transformation. The early epochs of supernovae posses a “halo” of

neutrinos, which have scattered inwards from the outer reaches of the explosion

envelope. These halo neutrinos carry with them quantum information about the

flavor transformation that has transpired elsewhere in the star, and can dominate

the flavor evolution of neutrinos emerging from the core. This alters the funda-

mental nature of the problem of neutrino flavor transformation in supernovae, and

will require all new approaches to address.

xxii



Chapter 1

Neutrinos in Supernovae

1.1 The Engine of the Explosion

For more than thirty years it has been strongly suspected that neutrinos are

the engine that drives the explosion of core-collapse supernovae [9, 10, 11]. Direct

observation of neutrinos from Supernova 1987a validated the general features of this

picture of the supernova explosion mechanism. Due to the tremendous complexity

of the supernova environment it has only been within the last decade that a clear

picture has emerged of how the explosion is ultimately achieved [12]. While the

details of the decades of research that have lead to the current understanding of

the core-collapse supernova explosion could scarcely be fit into this introduction,

there is a brief back-of-the-envelope style calculation which will swiftly reveal why

neutrinos, which interact so very weakly with matter, are the power house of the

explosion and why it is so important that one understands their behavior in this

environment.

When the core of a massive star burns its nuclear fuel to iron, it has ex-

hausted its ability to generate more thermal energy to provide pressure support

against gravitational collapse. The core is initially supported by degenerate elec-

tron pressure, which would be unstable to gravitational collapse except for a small

fraction of electrons which are thermally excited above the top of the Fermi sea,

which can provide slightly more pressure support [13]. As the core isothermally

contracts, the Fermi energy of the degenerate electrons increases and fraction of

1
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electrons that can be excited above the top of the Fermi sea shrinks [13]. The

core of the star again becomes gravitationally unstable, having reached a mass of

∼ 1.4M� and a radius of ∼ R⊕, and collapses in free fall for about ∼ 1 s to an

proto-neutrino star (PNS) which is (a few) ×10 km in radius [13].

The inner (∼ 0.8M�) portion of the core stops suddenly when the density

reaches slightly more than nuclear density, ρ ≈ 2.5 × 1014 g cm−3, and neutron

degeneracy pressure swiftly overwhelms the kinetic energy of infall, which triggers

a brief compression and rebound [9]. This sudden halt and rebounding of the inner

core acts like a piston, launching a bounce shock that propagates outward [9].

Core-collapse supernovae are, first and foremost, the explosion of massive

stars, and in order to achieve an explosion one must identify a source of energy

which can gravitationally unbind the star. The characteristic unit of energy for

this problem is called the “Bethe”, 1 B = 1051 erg = 6.24 × 1056 MeV, which is

roughly the energy required to unbind a 15M� gravitationally bound star. The

initial bounce shock has (a few)×1 B energy (which can vary depending on the

prescription used for the neutron star equation of state), and was initially thought

to drive the explosion, but there is a complication. The initial bounce shock, like all

shocks, creates a discontinuous entropy profile where the entropy spikes suddenly

on the inside of the shock. This spike in entropy, from ∼ 1 kB/baryon pre-shock,

to ∼ 10 kB/baryon post-shock, shifts nuclear statistical equilibrium (NSE) to favor

free nucleons and alpha particles over heavy nuclei [11]. This forces the bounce

shock to devote energy to dissociating heavy nuclei, and some 0.6M� of iron, layers

of silicon, neon and magnesium, and carbon and oxygen must be photo-dissociated.

The binding energy of a single nucleon within a nucleus is ∼ 8 MeV per nucleon,

yielding the figure that photo-dissociation of iron requires 1 B per 0.1M�, which

quickly saps the energy of the bounce shock, causing it to stall at r ∼ 150 km [11].

This is, both literally and figuratively, the time for neutrinos to shine. There

is a tremendous amount of gravitational binding energy that has been converted

to thermal energy by the collapse of the core,

∆U = GM2
core

(
1

rPNS

− 1

R⊕

)
(1.1)

in the Newtonian limit (general relativistic corrections to this are O (10%)). Taking
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the radius of the PNS to be rPNS ≈ 10 km gives the result that ∆U ≈ 900 B, which

is a tremendous pool of thermal energy. Neutrinos became trapped within the core

once the density during the collapse exceeded ρ ∼ 1012 g cm−3 [9], and have since

been in thermal equilibrium with the matter of the newly formed PNS, now at

a temperature of T ∼ 10 MeV [9]. Because the core is at such a high tempera-

ture, neutrino pairs are produced in equilibrium via a number of weak interaction

channels, such as nuclear de-excitation and positron-electron annihilation.

The newly collapsed core is an extremely hot ball of matter, and as such will

begin to undergo Kelvin-Helmholtz contraction. The timescale for this contraction

is set by the shortest diffusion timescale of particles trapped within the core, e.g.

the core contracts at the same rate as whichever particles can diffuse out of the

core the fastest, and the energy of the core is radiated at that rate. The Kelvin-

Helmholtz timescale is then,

tKH =
∆U

L
, (1.2)

where L is the luminosity of the core as it contracts.

Neutrinos in the core have relatively long mean free paths, owing to their

low cross section to scatter with matter, σ ≈ G2
FE

2
ν [14], where GF = 1.166 ×

10−11 MeV−2 is the weak coupling constant. With neutrinos in thermal equilibrium

〈Eν〉 ∼ 10 MeV, and matter in the core as stated previously ρ ≈ 2.5× 1014 g cm−3,

one finds that the neutrino mean free path is,

l =
1

ρσ
≈ 10 cm . (1.3)

This macroscopic mean free path (c.f. the mean free path of photons and phonons

∼ 1 fm) means that neutrinos can diffuse out of the core on relatively short

timescales. For a random walk out of the proto-neutron star, rPNS =
√
Nl, where

N is the number of scatterings along the path. Again with rPNS ≈ 10 km, this

gives N = 1010. Taking neutrinos to travel at the speed of light, c, the diffusion

time for escaping the core will be,

tdiff =
Nl

c
≈ 10 s . (1.4)

The neutrino diffusion timescale is much, much shorter than any other

energy transport mechanism inside the PNS. As a result, tdiff = tKH, and the
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PNS cools primarily by radiating tremendous quantities of neutrinos. Solving

Equation 1.2 for the luminosity reveals that the core shines with neutrinos at a

truly titanic luminosity of Lν ≈ 100 B s−1 = 1× 1053 erg s−1.

It is not enough to explode the star that the PNS is intensely luminous

in neutrinos, those neutrinos must interact with matter on their way out and

deposit enough of their energy to revive the bounce shock and power the explosion.

With the advent of multi-dimensional hydrodynamics, it was discovered that the

neutrinos do, indeed, couple ∼ 1% of their energy back into the supernova envelope

as stream outward [15]. There are a number of processes which contribute to this

energy deposition, but there are two main channels that contain the bulk of the

energy deposition rate [11],

νe + n→ p+ + e− (1.5)

ν̄e + p+ → n+ e+ . (1.6)

However, neutrinos are famous for their ability to change their lepton “flavor” in

flight. As can be seen above, the lepton flavor of the neutrinos participating in

those processes is definite. Any changes in neutrino flavor states can alter the

number and spectral energy distribution of the neutrinos which can participate

in those two interactions. In this sense, the entire picture of the neutrino driven

supernova explosion is dependent on a concrete knowledge of the neutrino flavor

states within the supernova. Furthermore, the final nucleosynthesis products of

the explosion depend on the neutron to proton ratio in the ejecta. These two main

energy deposition channels also have the byproduct of altering the p+/n ratio.

The entire explosion mechanism depends on diverting a small fraction of this

neutrino energy into heating to drive revival of the stalled core bounce shock [16,

17, 18, 12, 19, 20, 21] creating a supernova explosion and setting the conditions for

the synthesis of heavy elements [12, 22, 20, 23, 21]. However, the way neutrinos

interact in this environment depends on their flavors, necessitating calculations

of neutrino flavor transformation. These calculations show that neutrino flavor

transformation has a rich phenomenology, including collective oscillations [24, 25,

26, 27, 28, 6, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45,

46, 47, 48, 49, 50, 51], which can affect important aspects of supernova physics
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[52, 6, 29, 32, 33, 34, 35, 36, 4, 40, 41, 42, 53, 54, 44, 45, 55]. For example, neutrino-

heated heavy element r-process nucleosynthesis [56, 57, 58, 59, 60] and potentially

supernova energy transport above the core and the explosion itself [25, 61, 50]

could be affected.



Chapter 2

Neutrino Flavor Transformation

2.1 Neutrino Masses and Mixing

Neutrino flavor oscillations in vacuum arise because the weak interaction

(flavor) eigenstates for these particles |να〉 are not coincident with their energy

(mass) eigenstates |νi〉. Here α = e, µ, τ and i = 1, 2, 3 refer to the flavor states

and mass eigenvalues mi, respectively. In vacuum the energy eigenstates are related

to the flavor eigenstates by the Maki-Nakagawa-Sakata (MNS) matrix U : |να〉 =
∑

i U
∗
αi|νi〉; where Uαi are the elements of the unitary transformation matrix. This

transformation has four free parameters: three mixing angles, θ12, θ13, θ23, and

a CP -violating phase δ. Each of the mixing angles defines a unitary matrix for

mixing of states by that angle, Uij, with the definition cij and sij are the cosine

and sine of the appropriate mixing angle θij. These matrices are individually given

by,

U12 =




c12 s12 0

−s12 c12 0

0 0 1


 , (2.1)

U13 =




c13 0 s13e
−iδ

0 1 0

−s13e
iδ 1 c13


 , (2.2)

6
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and U23 =




1 0 0

0 c23 s23

0 −s23 c23


 . (2.3)

These individual matrices can be used to describe mixing between the neutrino

flavors sharing two particular mass states, or they can be used to form the full

MNS matrix is,

U = U23U13U12 =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s13s13e
iδ c12c23 − s12s13s13e

iδ c13s12

s12s23 − c12s13c13e
iδ c12s23 − s12s13c13e

iδ c13c23


 . (2.4)

Solar, atmospheric, reactor, and accelerator neutrino experiments have mea-

sured two of these parameters: sin2 θ12 ≈ 0.32, sin2 θ23 ≈ 0.50 [62]. The best cur-

rent experimental constraints suggest that sin2 2θ13 = 0.091±0.021 (2σ error) [63].

The CP -violating phase δ remains unconstrained.

Neutrino flavor oscillation in vacuum arises because a neutrino is created

in a pure flavor state by the weak interaction, and thus it is in a superposition of

mass eigenstates. As the neutrino propagates through space, the different mass

eigenstates build up quantum mechanical phase at different rates owing to the

distinct momenta associated with each mass eigenstate for a single neutrino. For

a relativistic neutrino, or any relativistic particle for that matter, the difference

in momentum between two distinct mass states (setting ~ = c = 1) is simply

∆m2/2E, where E is the energy of the particle and ∆m2 is the difference in the

mass squared values of the two mass eigenstates.

The neutrino mass-squared differences are defined as ∆m2
ij = m2

i − m2
j ,

and as dictated by the requirement for unitarity, there are three neutrinos mass

states for the three active flavors of neutrinos. So long as no two mass states are

degenerate, this mandates two mass squared splittings, which have been measured.

For historical reasons they are named the “solar” and “atmospheric” mass squared

splittings, ∆m2
� and ∆m2

atm, respectively. However, the ordering (hierarchy) of the

neutrino mass-squared differences remains undetermined. There are two possible

configurations for a set of three mass states with two mass-squared splittings.

The “normal” mass hierarchy has the solar neutrino mass-squared split below the
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atmospheric split. In this case the vacuum mass states are ordered from lowest to

highest as m1, m2, and m3, with ∆m2
� = m2

2 − m2
1 and ∆m2

atm = m2
3 − m2

2. By

contrast, the “inverted” mass hierarchy is where the solar neutrino mass-squared

split lies above the atmospheric split. In this scheme the vacuum mass states are

ordered from lowest to highest as m3, m1, and m2, with ∆m2
� = m2

2 − m2
1 and

∆m2
atm = m2

1 −m2
3.

In what follows I refer to neutrino mixing at a particular point as being

on the “∆m2
� scale” or “∆m2

atm scale”. By this it is meant that the neutrino fla-

vor transformation at this point is taking place mostly through νe 
 νµ,τ mixing

in that part of the unitary transformation corresponding to ∆m2
� or ∆m2

atm, re-

spectively. This terminology is a holdover from the standard adiabatic MSW case,

where ∆m2
�/2Eν and ∆m2

atm/2Eν essentially pick out density regions and neutrino

energies Eν where mixing is large (i.e., MSW resonance at ∆m2/2Eν ≈
√

2GFne,

where ne is the net electron number density).

2.2 Neutrinos in Vacuum

To set the stage for things to come, let’s examine the evolution in a vacuum

of a single neutrino with a simplified, two mass state and two lepton flavor system,

say ν1/ν2 and νe/ντ . The association of the neutrino flavor states with the mass

eigenstates will then be,

|νe〉 = cos θ|ν1〉+ sin θ|ν2〉 , (2.5)

|ντ 〉 = − sin θ|ν1〉+ cos θ|ν2〉 , (2.6)

where θ is the mixing angle in vacuum. A neutrino in state |Ψ〉 which is some super-

position of the above states will propagate in vacuum according to the Schrödinger

equation for a free particle,

i
∂|Ψ〉
∂t

= Ĥ|Ψ〉 . (2.7)

The Hamiltonian operator in Equation 2.7 is the usual Hamiltonian operator for

a free, relativistic particle,

Ĥ =
(
p̂2 + m̂2

)(1/2)
, (2.8)
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where p̂ and m̂ are the momentum and mass eigenvalue operators, respectively,

defined as p̂|ν1〉 = p|ν1〉 and m̂|ν1〉 = m1|ν1〉. In the limit that the rest masses of

the neutrino states are much less than the momentum, Equation 2.8 becomes,

Ĥ ≈ p̂+ m̂2/2p̂ . (2.9)

The eigenvalues of this Hamiltonian are defined as Ĥ|ν1〉 = E1|ν1〉.
Examining the mass eigenbasis representation of our composite neutrino

state, |Ψm〉 = a|ν1〉+ b|ν2〉, one finds that Equation 2.7 is,

i
∂|Ψm〉
∂t

=

[(
p+

m2
1 +m2

2

4p

)
Î +

∆m2
21

4p

(
−1 0

0 1

)]
|Ψm〉 , (2.10)

where Î is the identity matrix, and the separation between diagonal and traceless

portions of Ĥ has been made explicit. Solutions to Equation 2.10 are plane wave

solutions of the form,

|Ψ (t)〉 = cos θ|ν1〉e−
i
~E1t + sin θ|ν2〉e−

i
~E2t , (2.11)

for a neutrino that was created in an initial state of |Ψ (t = 0)〉 = |νe〉. The

traceless portion of the Hamiltonian is crucial, as it creates a relative phase build

up between the components of |Ψ (t)〉. Any source of phase which adds equally to

the evolution of the components of |Ψ (t)〉 will not change the relative amplitudes

of the separate pieces of the state, and thus not affect any observables. This is the

reason the traceless portion of the Hamiltonian is the source of all neutrino flavor

transformation.

Calculating the probability that a neutrino in state |Ψ (t)〉 will be measured

in a given flavor state is now a simple matter of taking an inner product. The

probability of finding our electron neutrino at some time later in a τ flavor state

is,

Pνeντ = |〈ντ |Ψ (t)〉|2 = sin2 2θ sin2

(
∆m2

21

4p
t

)
. (2.12)

Similarly, the probability of finding the neutrino in its initial electron flavor state

is,

Pνeνe = |〈νe|Ψ (t)〉|2 = 1− sin2 2θ sin2

(
∆m2

21

4p
t

)
. (2.13)
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2.3 Schrödinger-like Formalism

Neutrinos can undergo flavor state oscillations in medium as well as in vac-

uum. The principle equations of motion which describe this flavor evolution are

fundamentally similar to the example just shown for neutrino propagating in vac-

uum. Principally, only the traceless portions of the neutrino propagation Hamil-

tonians will contribute to neutrino flavor conversion. As a result, this is referred

to as the Schrödinger-like formalism, because the equations of motion resemble

the Schrödinger equation, with the exception that they are formally traceless, so

that they do not describe the proper motion of neutrino quantum states, only the

disposition of neutrino flavor state content.

For the supernova environment above a proto-neutron star, the neutrinos

are nearly all free streaming, owing to the sharp decrease in neutrino optical depth

just above the surface of the proto-neutron star (details of how this comes about

will be provided in the relevant chapters). In this regime one can therefore neglect

the contribution of inelastic neutrino scattering processes to the forward scattering

of supernova neutrinos. Consequently one follows only coherent, elastic neutrino

interactions. In this limit one can make the mean-field, coherent forward-scattering

approximation, where neutrino flavor evolution is governed by a Schrödinger-like

equation of motion [64, 24]. For example, one can represent the flavor state of

neutrino i by |ψν,i〉. As in the last section, the evolution of this flavor state in the

mean field coherent limit is then

i
∂|ψν,i〉
∂t

= Ĥ|ψν,i〉 (2.14)

where t is an affine parameter along neutrino i’s world line and Ĥ is the appropriate

flavor-changing Hamiltonian along this trajectory: Ĥ = Ĥvac + Ĥmat + Ĥνν . Here

Ĥvac, Ĥmat, and Ĥνν are the vacuum, neutrino-electron/positron charged current

forward exchange scattering, and neutrino-neutrino neutral current forward ex-

change scattering (neutrino self-coupling) contributions, respectively, to the overall

Hamiltonian. In the neutrino flavor state basis, the vacuum Hamiltonian can be
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expressed as,

Ĥvac =
1

2Eν
× U




−∆m2
21+∆m2

31

3
0 0

0
2∆m2

21−∆m2
31

3
0

0 0
2∆m2

31−∆m2
21

3


U † , (2.15)

for a neutrino of energy Eν . Likewise, the neutrino-matter coherent forward scat-

tering Hamiltonian is written in the neutrino flavor basis as,

Ĥmat =




−2
√

2GFne

3
0 0

0
√

2GFne

3
0

0 0
√

2GFne

3


 , (2.16)

where GF = 1.16637×10−11 MeV−2 is Fermi’s coupling constant and ne is the local

number density of electrons.

The coherent neutrino-neutrino forward exchange scattering Hamiltonian

Ĥνν produces vexing nonlinear coupling of flavor histories for neutrinos on inter-

secting trajectories. This is the pivotal complication encountered when attempting

to calculate the evolution of the supernova neutrino flavor field. Note that Ĥνν

gives rise to both flavor-diagonal and off-diagonal potentials. In turn, each of these

potentials is neutrino intersection angle-dependent, reflecting the V −A structure

of the underlying current-current weak interaction Hamiltonian in the low momen-

tum transfer limit. For neutrinos in state l on a trajectory with unit tangent vector

kl, the neutrino self-coupling Hamiltonian is given by a sum over neutrinos and

antineutrinos m:

Ĥνν,l =
√

2GF

∑

m

(
1− k̂l · k̂m

)
nν,m |ψν,m〉 〈ψν,m|

−
√

2GF

∑

m

(
1− k̂l · k̂m

)
nν̄,m |ψν̄,m〉 〈ψν̄,m| (2.17)

where k̂m is the unit trajectory tangent vector for neutrino or antineutrino m. Here

nν,m is the local number density of neutrinos in state m.
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2.4 Isospin Formalism

Another convenient formalism for treating the flavor transformation of neu-

trinos is found by employing a geometric object known as the “Neutrino Flavor

Isospin” , or NFIS (pronounced Noo-Fiss). Using a technique that dates back to

Pauli, it is possible to map a two flavor neutrino state |ψν〉 from the SU(2) column

vector representation into a spin 1/2, SO(3) spinor object, the NFIS.

Explicitly the flavor state of neutrino i is:

|ψν,i〉 ≡
(
aνe

aνµ

)
, (2.18)

where aνe is the complex amplitude for a neutrino to be in the electron flavor state,

and aνµ is the amplitude for the neutrino to be in the muon flavor state, with the

standard normalization convention that |aνe |2 + |aνµ |2 = 1. For anti-neutrinos, it

is conventional to define the flavor state column vector for anti-neutrino i as,

|ψν̄,i〉 ≡
(
−aν̄µ
aν̄e

)
, (2.19)

where again aν̄e and aν̄µ are the amplitudes for the anti-neutrino to be in the

electron and muon flavor states, respectively.

With these two definitions, one can map the individual neutrino flavor states

into a NFIS spinor, sν(ν̄) for neutrinos (anti-neutrinos), which formally represents

the expectation value of the Pauli spin operator. For neutrino i, this is defined as,

sν,i ≡ 〈ψν,i|
σ

2
|ψν,i〉 =

1

2




2Re
(
a∗νeaνµ

)

2Im
(
a∗νeaνµ

)

|aνe |2 − |aνµ|2


 , (2.20)

and for anti-neutrino i,

sν̄,i ≡ 〈ψν̄,i|
σ

2
|ψν̄,i〉 = −1

2




2Re
(
aν̄ea

∗
ν̄µ

)

2Im
(
aν̄ea

∗
ν̄µ

)

|aν̄e |2 − |aν̄µ |2


 , (2.21)

where σ are the Pauli spin matrices.
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Using the NFIS formalism, the neutrino flavor states are now a part of an

SO(3) flavor basis where the projection of the NFIS vector onto the z axis, denoted

by the unit vector êf
z, gives a direct measure of the probability for the neutrino to

occupy either flavor state. The x-y plane in the NFIS flavor basis, defined by êf
x

and êf
y, preserve completely the complex phase information in the original state

|ψν〉. The particular choice of convention for constructing sν(ν̄) was made so the

the equation of motion for the evolution of these NFISs can be written in a unified

fashion.

Analogs for the neutrino coherent forward scattering Hamiltonians can be

constructed for the SO(3) symmetry group by applying the same transformation

used on the neutrino flavor states to the Hamiltonian matrices. The vacuum Hamil-

tonian for neutrino i becomes the vector,

HV,i ≡ ωn
(
−êf

x sin 2θV + êf
z cos 2θV

)
, (2.22)

where ωn = ±∆m2/2En is the neutrino flavor state vacuum oscillation frequency,

with + chosen for neutrinos and − chosen for anti-neutrinos. The neutrino-matter

forward scattering Hamiltonian becomes the matter potential vector He,

He ≡ −
√

2GFneê
f
z. (2.23)

Finally, the neutrino-neutrino neutral current forward scattering Hamiltonian for

neutrino l on trajectory k̂l becomes the neutrino self-coupling vector,

Hνν,l ≡= µν
∑

m

(
1− k̂l · k̂m

)
nν,m sm , (2.24)

where µν ≡ −2
√

2GF and the sum on m runs over all neutrino and anti-neutrino

NFISs, sm.

Formulating the coherent forward scattering potentials in this fashion allows

us to write the equation of motion for the flavor evolution of individual neutrinos

and anti-neutrinos as the precession a single NFIS si around an effective external

field:
d

dt
si = si ×Hi , (2.25)
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where the effective external field Hi = HV,i + He + Hνν,i. As si precesses around

Hi, shown in Fig. 2.1, the projection of the NFIS along the êf
z axis will oscillate,

following the changing flavor content of the neutrino or anti-neutrino flavor state.

êzf

êxf

êyf

Hi
si

Figure 2.1: The precession of NFIS si about the effective external field Hi.



Chapter 3

Simulation Methodology

The supernova environment is a physical system that is characterized by it’s

dynamic nature (it is an explosion, after all). From the point of view of a neutrino,

however, the supernova itself is a static environment. Neutrinos emerging from

the core have energies in the ∼ 10 MeV range. Comparing that energy to the

neutrino rest mass energies, the sum of which are constrained to be something

less than ∼ 1 eV, it is readily apparent that these particles are ultra-relativistic.

Thus the lapse of proper time experienced by a neutrino as it streams outward

through the supernova envelope is miniscule compared to the timescale on which

the supernova explosion evolves, which is O (10 ms). Therefore, as one follows the

forward scattering evolution of neutrino flavor states along their world lines, the

supernova environment appears fixed as one increments along the affine coordinate.

Thus, at a particular epoch of the supernova explosion, and with a speci-

fied matter density profile and specified initial neutrino fluxes and energy spectra,

numerical calculation of the neutrino flavor field above the proto-neutron star can

be accomplished with a self-consistent solution of Eq. 2.14, taking the supernova

environment to be a static backdrop. This must include a prescription for treating

Hνν in Eq. 2.17, which couples flavor evolution on intersecting neutrino trajec-

tories. In the past, this has been done by adopting the so-called “single-angle”

approximation [56], where the flavor evolution along a specified neutrino trajec-

tory (e.g., the radial trajectory) is taken to apply along all other trajectories at

corresponding values of the affine coordinate on those world lines. This work

15
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employs a “multi-angle” treatment, where neutrino flavor evolution histories are

allowed to vary freely between different neutrino trajectories in the self-consistent

evaluation of the Hamiltonian in Eq. 2.17. Though this approach is especially

difficult to carry out computationally in a full, three active neutrino flavor mixing

scheme, some supernova scenarios require such a treatment. To this end, numerical

techniques have been developed to implement this approach, and the end result

of this effort has been the BULB code, originally developed by Joe Carlson at

LANL, which employs fine grained parallel computation to provide the necessary

processing capacity to implement the multi-angle treatment.

3.1 Physical Setup

The primary difficulty in calculating the evolution of neutrino flavor states is

the complicated structure of the neutrino-neutrino contributions to the overall for-

ward scattering Hamiltonian. This portion of the Hamiltonian renders the problem

nonlinear and geometry dependent, as the interactions which dictate flavor trans-

formation amplitudes are themselves dependent on the local neutrino flavor states

and intersection angles. This can potentially couple the flavor evolution histories

of neutrinos moving along different trajectories, as shown in Figure 3.1. Following

the flavor evolution of neutrino i, emitted from the neutrinosphere at an angle ϑi

(measured from the outward unit normal), will entail knowing the flavor evolution

histories and intersection angles of all of the other neutrinos j, each emitted at an

angle ϑj, which cross its world line.

To make the geometric representation simple enough to be modeled with

the current generation of supercomputers, the standard approach is to adopt a

spherically symmetric “bulb” model (hence the name of the code). In this model,

neutrinos are emitted semi-isotropically (isotropic in the outward radial direction

of the surface) from a sharp spherical shell, which is referred to as the neutri-

nosphere. In three dimensions, it can be shown with a bit of algebra that the

angle of intersection between two neutrino emission trajectories, θij, in Figure 3.1
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Rν
r θij

νi

νj

ϑi

ϑj

θi

θj

Figure 3.1: A cartoon illustration of the neutrino emission from the surface of
a protoneutron star. Neutrinos emerge from the neutrinosphere, a hard spherical
shell with radius Rν . The neutrino emission trajectories are characterized by ϑ,
the angle relative to the normal of the neutrinosphere surface at the location where
they are emitted. Both neutrinos i and j stream outward until their trajectories
intersect at a distance r from the center of the protoneutron star, with intersection
angle θij. This intersection angle sets the strength of the neutrino-neutrino neutral
current forward scattering interaction that these neutrinos both experience at this
location.

is,

cos θij = cosϑi cosϑj + sinϑi sinϑj cos (φi − φj) , (3.1)

where φi and φj are the azimuthal angles about the radial direction that describe

the emission locations of neutrinos i and j. These angles are not included in

Figure 3.1 because it is easy to show that integral over (φi − φj) causes the second

term in Equation 3.1 to vanish, leaving the much more useful expression

cos θij = cosϑi cosϑj . (3.2)

With a large number of neutrinos, following flavor evolution independently

can rapidly expand to a dauntingly large problem, especially when considered as
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a ray-by-ray cartoon such as Figure 3.1. However, by solving the for the evolution

of all neutrinos simultaneously at fixed radial coordinate, the flavor evolution of

the neutrinos can indeed be found in a self consistent manner.

One more element remains to be included in the initial description of neu-

trino emission at the neutrinosphere, which is the spectral energy distribution of

the neutrinos along each trajectory. Equation 2.17 shows that in addition to the

relative neutrinos trajectories, one must know the local number density of neutri-

nos in each flavor state in order to full compute Ĥνν,i. The neutrinos within the

core have scattered many times with the matter of the PNS, bringing all flavors

of neutrinos into thermal equilibrium. Near the surface of the PNS, the neutri-

nos decouple at slightly different radii due to differences in the opacity of PNS

material for different flavors of neutrinos [65]. This leaves the individual flavors

of neutrinos with initial energy spectra that can be fit with either a black body

or “pinched” spectral type [65], the latter being slightly more peaked around the

average neutrino energy.

Therefore, one begins with a set of initial spectral energy distributions

fν (Eν) for neutrinos of each flavor ν, and energy Eν ,

fν (Eν) ≡
1

F2 (ην)T 3
ν

E2
ν

exp (Eν/Tν − ην) + 1
, (3.3)

where

Fn (η) ≡
∫ ∞

0

xndx

exp (x− η) + 1
(3.4)

is the Fermi integral of order n, ην is the degeneracy parameter, Tν is the neutrino

temperature for each individual species of neutrino. In order to compute the num-

ber density of neutrinos, we will also need the total neutrino luminosity emerging

form the core for each flavor state, Lν . The BULB code itself does not specify the

equation of state for matter in the PNS, and neither does it treat the transport

of neutrinos within the core. By necessity, the parameters which characterize the

initial neutrino emission: ην , Tν , and Lν , are taken as external input.

The BULB code takes emission form the surface of the neutrinosphere to be

isotropic, which is a reasonable treatment for thermal emission of neutrinos. This

makes the number flux of neutrinos with a given energy and flavor passing through
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a surface of fixed radius, jν (Eν), simple to compute by dimensional analysis. At

the neutrinosphere the rate of neutrino emission for a single flavor and energy will

be,
Lν
〈Eν〉

fν (Eν) = 4πR2
ν

∫ 1

0

2πjν (Eν) cosϑ d (cosϑ) , (3.5)

which gives the expression for the number flux,

jν (Eν) =
Lν

4π2R2
ν〈Eν〉

fν (Eν) . (3.6)

Because it is the neutrino number density at the point of intersection which

enters into the expression for Ĥνν , we must make a brief change of coordinates to

the space of intersection angles θ. The expression for the partial number density of

neutrinos, at fixed energy and flavor, along a pencil of directions passing through

the point of intersection is,

dnν (Eν) = jν (Eν) d (cosθ) dφ . (3.7)

With some laborious basic geometry, this can be transformed back into the emission

coordinates from the surface of the neutrinosphere, and has the form

dnν (Eν) =
jν (Eν) cosϑd (cosϑ)R2

ν

r2

(√
1− (sinϑRν/r)

2 − cosϑRν/r

)dφ . (3.8)

Now we have all of the tools needed to specify the the state of Ĥνν as the flavor

states of neutrinos evolve outward in radius.

The last piece of the total forward scattering Hamiltonian which must be

computed dynamically as the calculation moves outward in radius is the matter

component, Ĥe. Using an input data file generated from hydrodynamic simulations

of supernova, the BULB code interpolates a smooth density profile ρ which is a

function of the radial coordinate r. The matter potential itself is dependent on the

local number density of electrons, which must be specified in units of ln (km−3).

Because of the assumed spherical symmetry, neutrinos with different emission an-

gles from the surface of the neutrinosphere will see the same matter potential. The

matter potential does not affect all emission angles equally, due to difference in

the instantaneous integration step size for different trajectories, and that will be

discussed in the next section.
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3.2 Theory of Calculation

Fundamentally, the problem that one is solving when working out the flavor

evolution of neutrinos using the BULB code is an initial value problem along

the radial coordinate. Starting at the neutrinosphere, this problem consists of

9 × 2 possible neutrino states (3 × 3 flavor mixing with ν and ν̄), and numerical

convergence requires each of those states be divided into ∼ 400 energy bins along

with ∼ 1000 angle bins [41]. Altogether, BULB is simultaneously solving ∼ 7.2×
106 non-linearly coupled ordinary differential equations.

A minor distinction must be made before we continue. There are in fact two

distinct position coordinates of which we must keep track: ∆r, which is the step

size of the calculation along radial coordinate, and ∆t, which is the step size of the

calculation along an individual neutrino emission trajectory. The end goal of the

calculation is to compute the flavor evolution by stepping outward in steps of size

∆r, but the individual evolution of neutrino flavor states must be performed along

the world lines of neutrinos using the ∆t step. The spherical symmetry of the

calculation makes the relation between the two steps a simple geometric relation

based on the emission geometry of the neutrino trajectory and the present radial

coordinate,

∆t =
∆r

cos θ
≈ ∆r√

1− (sinϑRν/r)
2
, (3.9)

which reflects the difference in path length between different neutrino emission

trajectories between r and r + ∆r.

The prescription for solving Equation 2.14 in this context is to apply the

Magnus method. We will insist that there is some oscillatory solution that describes

the evolution of the neutrino flavor states as they move through the supernova

envelope,

ψ′ν,i (t) = A (t)ψν,i (t) , (3.10)

where t labels the affine parameter along the neutrino’s world line. This is a

sound approximation outside the neutrinosphere, where we are performing the

calculation, because the processes which violate total neutrino number (such as ν

capture or emission) are rare due to the relatively low matter density.
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The Magnus method allows us to select a step size which is small enough

such that,

ψν,i (t+ ∆t) ' exp
(
−iĤν,i∆t

)
ψν,i (t) . (3.11)

In principle, this reduces the problem to a matter of exponentiating the Hamilto-

nian matrix, and selecting a step size ∆r such that all of the neutrino trajectories

have a sufficiently small ∆t.

Sketching the prescription for exponentiating the Hamiltonian matrix, one

solves the eigenvalue equations,

∑

b

ĤabVbc = ζcVac, a, b, c = 1, 2, 3 , (3.12)

where a, b are the row and column indices of Ĥν,i and Vbc is the bth component

of the cth eigenvector of Ĥν,i, with associated eigenvalue ζc. Once that is accom-

plished, the exponential is then,

exp
(
−iĤν,i∆t

)
= V




e−iζ1∆t 0 0

0 e−iζ2∆t 0

0 0 e−iζ3∆t


V † . (3.13)

The difficulty arrises, in this case, from the dynamical behavior of Ĥν,i.

It is entirely possible for the eigenvalues of Ĥν,i to be degenerate, or nearly so.

When this occurs, solution algorithms for Equation 3.12 which rely on the linear

independence of the eigenvectors Vc have numerical difficulty. When the neutrino

self coupling terms are included in Ĥν,i, the system of neutrinos can enter this state

unexpectedly due to non-linear effects.

To resolve this issue, the BULB code uses a free FORTRAN 77 package

called “zheevh3”, which is c©Joachim Kopp (2006). The zheevh3 package employs

a two step approach to solving for the eigenvalues and eigenvectors of Ĥν,i.

First, zheevh3 computes the characteristic polynomial of Ĥν,i,

det
(

Ĥν,i − ζI
)

= 0 , (3.14)

where I is the identity matrix. The Cardano method is then used to solve the

resulting cubic equation for the eigenvalues, ζ. From Equation 3.12 it can be
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seen that the eigenvector Vc is orthogonal to the complex conjugates of of the row

vectors of the matrix Ĥν,i− ηcI. Selecting two linearly independent row vectors of

Ĥν,i − ηcI, which I shall call Z(1) and Z(2), the zheevh3 package computes two of

the eigenvectors by taking

Vc =
Z(1) × Z(2)

|Z(1) × Z(2)| . (3.15)

The last eigenvector is computed simply by taking the cross product of the complex

conjugates of the two previous eigenvectors.

This method has manifest issues if any of the eigenvalues happen to be

degenerate, and so the zheevh3 package checks for this problem after computing

each of the first two eigenvectors. If a problem is found, the second, computa-

tionally slower method of solving for the remaining eigenvectors is implemented.

First the matrix Ĥν,i is converted to a real, tridiagonal form using Householder

rotations (because they are unitary). Then the QL method with implicit shifts

is then applied to Ĥν,i. This is useful because if Ĥν,i has eigenvalues of different

absolute value then the QL transformation converges to a lower triangular form,

with eigenvalues of Ĥν,i appearing on the diagonal in increasing order of their ab-

solute magnitude. If Ĥν,i has an eigenvalues ηc which are degenerate, then the QL

method still converges to a lower triangular form with the exception for a diagonal

block matrix whose eigenvalues are ηc.

3.3 Integration Algorithm

Once the difficulties of computing the eigenvalues and eigenvectors of the

neutrino forward scattering hamiltonian have been addressed, the actual work of

solving our system of 7 million ordinary differential equations can begin. The

BULB code parallelizes the work load of computing solutions by splitting the

neutrino flavor states among different processes according to emission angle bin.

Typically one or two bins per process, and one process per core. Because so much

work must be done diagonalizing the Hamiltonian matrices, the full calculation

itself tends to be CPU speed limited. The amount of neutrino flavor state data

that is present on a single core is 110 kB per angle bin, which keeps the total
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amount of time spent transferring data relatively low, despite the fact that every

node on the network must talk to every other node.

The BULB code employs a variation of Heun’s method for solving ordinary

differential equations. Neutrinos begin in the previously stored final state (or in

pure flavor states at initialization), ψinit = ψ(0), for each energy and angle bin at

the starting point r.

Step 1 The assumed final state of the first step of Heun’s method is initialized

as the initial state of the neutrinos, ψ(0) = ψ(1), where ψ(1) will eventually

become the state of neutrinos at r + ∆r.

Step 2 All of the neutrino flavor states are gathered on process 0. The first

neutrino self coupling potential is calculated, Ĥ
(0)
νν using the neutrino density

matrix elements ρ
(0)
νν = 1/2

[
ψ(0)dnν (r, ϑ) + ψ(1)dnν (r + ∆r, ϑ)

]
.

Step 3 The resulting list of elements of Ĥ
(0)
νν are then broadcast to all nodes. In

this way, each node can now use the neutrino trajectory data that is unique

to its own batch of neutrino emission angle bins to finish computing Ĥνν ,

ĤV, Ĥe, and ∆t.

Step 4 Each node now computes the result of Equation 3.11 to obtain the actual

ψ(1), at the radius r + ∆r.

Step 5 The step size is now reduced to ∆r/2.

Step 6 All of the neutrino flavor states are again gathered on process 0. The

second neutrino self coupling potential is calculated, Ĥ
(1)
νν using the neutrino

density matrix elements ρ
(1)
νν = 1/2

[
ψ(0)dnν (r, ϑ) + ψ(1)dnν (r + ∆r/2, ϑ)

]
.

Step 7 Steps 3 and 4 are now repeated with Ĥ
(1)
νν and ∆r/2 to obtain an interim

set of neutrino flavor states, ψ(2), at radius r + ∆r/2.

Step 8 Steps 2 and 3 are repeated again, using ψ(2) as the initial flavor state and

r + ∆r/2 as the starting location. A third neutrino self coupling Hamilto-

nian, Ĥ
(2)
νν is computed using the neutrino density matrix elements ρ

(2)
νν =

1/2
[
ψ(2)dnν (r + ∆r/2, ϑ) + ψ(0)dnν (r + ∆r, ϑ)

]
.
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Step 9 Each node now computes the result of Equation 3.11 to obtain the final

state after taking two half steps, ψ(3), at the radius r + ∆r.

Step 10 Each node now checks the relative error between ψ(1) and ψ(3). To do

so, the absolute difference between the electron flavor state components is

compared for each energy bin on the node, Err = |〈νe|ψ(1)〉|2−|〈νe|ψ(3)〉|2. If

Err in any bin on any process is larger than the specified tolerance, typically

1× 10−7, the step size ∆r is halved and the algorithm begins at the original

starting point. If the Err is within tolerance, the new radius and flavor states

are accepted and the algorithm starts again at the new radius.

This algorithm is iterated upon 105 to 106 times for each process in a typical

calculation. As a result the state of the system of neutrino flavor states is not

saved to disk after every iteration. The BULB code can be configured via input

commands to save the present state after a specified number of iteration steps, or

to save the present state after the code has progressed a specified distance along

the radial coordinate. Typically, the fixed radial interval is used to specify disk

writes, with a specified step size of 1−10 km. This choice of step size is convenient

for studying collective flavor oscillations of the neutrinos, which usually occur on

length scales of (a few)×10 km.

When saving state, the BULB code appends data to three files:

he.sav Stores the present radius along with the ĤV+Ĥe Hamiltonian matrix. This

matrix is neither complex nor emission angle dependent, but it is neutrino

energy dependent, and as a result holds two (ν/ν̄) 3 × 3 double precision

float arrays of values for each neutrino energy.

hvv.sav Stores the present radius along with the Ĥνν Hamiltonian matrix. This

matrix is the same for all neutrino energies, but is complex and emission

angle dependent. This means that each emission angle bin has two (ν/ν̄)

3 × 3 arrays where every element is specified by two double precision floats

(the real and complex pieces of each array element).

wvdat.sav Stores the present radius along with the full flavor state of all neutrinos

in the calculation. Each unique combination of energy and angle bins has two
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(ν/ν̄) 3 × 3 arrays of wave function data. Each row of the array represents

the complex amplitude of a neutrino initially in one of the three active flavor

states, and as such each element is composed of two double precision floats.

The BULB code also generates (and overwrites if it is pre-existing) a single data

file that holds only the current wave function data for all neutrinos, wvdat.out,

which is formatted in precisely the same fashion as wvdat.sav, but holds only data

for the most recently saved state. This file can be renamed wvdat.in, and used as

a restart point if the program is not completed within the wall clock time limit (or

in the event of a crash).

The size of these data files on disk does require some care with respect to

data handling. The size of a single snapshot of the wave function for all individual

neutrino states is ∼ 110 MB with the typical number of energy and emission angle

bins. This means that saving the state of the neutrinos every 1 km will produce a

wvdat.sav file which is ∼ 0.5 − 1 TB for a typical calculation (the hvv.sav file is

the next largest, and is a factor of a few hundred smaller).



Chapter 4

Core-Collapse Supernovae

4.1 Introduction

Presented here are the results of the first multi-angle, self-consistent, 3-

flavor simulation of neutrino flavor evolution in the core collapse supernova envi-

ronment. With an expected ultimate energy release of ∼ 0.1 M� as neutrinos of all

kinds, these supernovae have long been studied as potential sources of neutrinos

which could provide probes of physics beyond the reach or scope of conventional ter-

restrial experiments, and neutrino flavor oscillations are the case in point. Though

we already know a great deal about neutrino mass-squared differences and flavor

mixing properties from experiments, there are still fundamental neutrino mixing

physics unknowns, e.g., the neutrino mass hierarchy, mixing angle θ13, and CP

violating phase δ. Assessing how the known and unknown neutrino flavor oscilla-

tion physics affects the core-collapse neutrino burst signature is a necessary step in

understanding supernovae, as well as in gleaning insight into fundamental neutrino

physics.

We have chosen to examine the neutrino emission from supernovae origi-

nating from stars in the mass range ∼ 8 − 12 M�. These supernova progenitors

in this mass range are expected to be relatively common, comprising 25% or more

of core collapse supernova events (taking the number of stars per unit mass to be

∝ m−2.35, using the Salpeter initial mass function). These relatively light super-

nova progenitors develop O-Ne-Mg cores, which do not achieve sufficient internal

26
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temperature to ignite oxygen burning. Due to the low mass (below ∼ 12M�), the

inner core burns carbon and oxygen an order of magnitude more slowly than the

cores of more massive progenitors, over ∼ 105 years [2, 3]. As a result, there is a

lull in nuclear burning at the center of the star, and the O-Ne-Mg core undergoes

Kelvin-Helmholtz contraction, cooling efficiently via neutrino emission for ∼ 104

years [2, 3].

Because the core is cooling and contracting for such a length of time, the

degenerate electrons in the core transition to relativistic-degenerate electrons as

the electron Fermi energy creeps above the electron rest mass. This causes the

core to undergo gravitational collapse, triggered by depletion of electrons at the

top of the Fermi sea (which are providing all of the pressure support) via electron

capture on Ne and Mg isotopes. This collapse leaves a thin envelope above the

proto-neutron star remnant, in contrast to the envelopes of more massive stars

that have undergone the gravitational collapse of an Fe core.

The early collapse of the O-Ne-Mg core will have little impact on the initial

phases of neutrino emission from the PNS. The entropy per baryon in the collapse

of the O-Ne-Mg core is slightly lower than that of an Fe core, owing to the efficient

pre-collapse cooling. This lower entropy per baryon provides more efficient electron

capture as the core collapses [9], which shifts the slightly higher electron fraction,

Ye, of the O-Ne-Mg core to roughly the same value as that of an Fe core which is in

the same stage of collapse, resulting in the cores of both cases possesing Ye ≈ 0.3.

When the collapsing core passes neutrino trapping density at ρ ∼ 1012 g cm−3, the

net lepton number in the core is frozen in place, even though neutronization of

the core proceeds. Production of νe by electron capture cannot lower the lepton

number of the core because the νe can no longer escape.

After the core of the O-Ne-Mg progenitor reaches bottom and launches

a bounce shock, the neutrinosphere will only begin to shine once the shock has

propagated out to the region where neutrinos decouple from the PNS matter.

Bear in mind, the neutrino emission from the core is thermal radiation, so for a

core with a neutrinosphere at temperature Tneutrinosphere, Lν ∝ T 4
neutrinosphere. This

means that the neutrinosphere will only begin to shine with its full luminosity
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after the shock front has propagated through and raised the local temperature to

Tneutrinosphere ∼ 10 MeV. Once this transpires, the vast preponderance of lepton

number that was trapped in the core is radiated away as an intense burst of νe.

The collapse of the core, with Ye ≈ 0.3, has trapped ∼ 356 units of electron

lepton flavor in the PNS, which are in the form of a sea of νe. It is these νe

which are the first neutrinos to escape the core. If each of these neutrinos carry

away the typical thermal energy of 10 MeV at the neutrinosphere surface, and the

core radiates with the luminosity calculated in chapter 1, Lν ∼ 1053 erg s−1, this

initial burst of pure νe, termed the “Neutronization Burst” will last ∼ 30− 50 ms.

This timescale is a result that is confirmed by much more detailed calculations of

neutrino emission during the early stages the explosion [4, 5].

Progenitors of O-Ne-Mg core-collapse supernovae are characterized by a

steep matter density gradient above the core, which may have shed most of the hy-

drogen envelope prior to core collapse due to pulsation and winds. These character-

istics lead to two salient features of O-Ne-Mg core-collapse events. First, in contrast

to the Fe core-collapse case, the bounce shock in models of these supernovae is not

severely hindered by the pressure of material falling onto the core. Consequently,

explosion by direct neutrino driven shock re-heateing is obtained [66, 67, 68].

Second, the steep matter gradient above the core allows neutrino self-coupling

(neutral-current neutrino-neutrino forward exchange scattering) to engineer collec-

tive neutrino flavor transformation [24, 69, 70, 25, 71, 72, 56, 73, 74, 75, 27, 76, 77]

during the early phase of neutrino emission, including shock break-out and the

attendant neutronization neutrino burst [40, 78].

However, there is another consequence of the steep matter density gradi-

ent. A steep matter gradient necessitates accounting for the physics of the in-

terference between neutrino flavor mixing scales. Essentially, Mikheyev-Smirnov-

Wolfenstein (MSW) resonances can occur very near to each other in physical and

energy space when the matter density profile drops off rapidly with radius. The

near overlapping of resonances for the solar and atmospheric vacuum neutrino

mass-squared differences, ∆m2
� = 7.6 × 10−5 eV2 and ∆m2

atm = 2.4 × 10−3 eV2,

respectively, dictates that a full 3×3 flavor treatment must be employed. Because
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these resonances occur close to the core, and because in this case the number

density of neutrinos emitted from the core will fall much more slowly than the

local matter density, the anisotropic nature of the supernova environment neces-

sitates a multi-angle simulation that includes trajectory-dependent neutrino self-

coupling [6, 29, 32, 33, 34, 35, 40, 41, 46].

After the neutronization burst, the dynamics of Fe core-collapse supernova

begin to diverge from that of the explosion of O-Ne-Mg progenitors. Unlike O-

Ne-Mg cores, Fe cores are jacketed in layers of heavy elements that are the end

products of burning shells further out in the envelope of the progenitor star. As

was mentioned in Chapter 1, the photodissociation of these heavy elements as they

stream inward saps the energy of the bounce shock at the rate of ∼ 8 MeV per

baryon passed through the shock.

Neutrino heating of the shocked material is hampered by the naturally low

cross section for Weak interactions. Further complicating the issue, the number

of scattering processes which deposit neutrino energy into matter are also few in

number. The largest number of targets exist for neutrino neutral current scattering

off of free nucleons and heavy nuclei,

ν + A (Z,N)→ ν + A (Z,N) , (4.1)

but because of the large differences between neutrino energies, ∼ 10 MeV, and the

target rest masses ≥ 1 GeV, there is little to no momentum transfer to the target,

and hence little heating.

The channel used to detect neutrinos in water Cherenkov detectors, which

does deposit appreciable amounts of neutrino energy, involves charged current

scattering of νe/ν̄e on electrons. However, the extreme matter densities just above

the surface of the PNS are electron degenerate, and as a result the neutrino-

electron charged current scattering processes which change electron energy are

strongly suppressed by Pauli blocking. This leaves two dominant neutrino heating

processes,

νe + n→ p+ + e− (4.2)

ν̄e + p+ → n+ e+ , (4.3)
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which proceed via charged current neutrino/antineutrino capture on neutrons and

protons, respectively.

The cross sections, σ, for the processes in Equations 4.3 and 4.3 scale as

σ ∝ E2
ν , where Eν is the neutrino energy in each interaction [14]. Because these are

capture processes, the energy deposited will be equal to the energy of the neutrino

on the right hand side of both interactions, leading to the relation that the direct

neutrino capture heating rate, H, at the point r outside the neutrinosphere will be

H ∝ ρXnLνe〈E2
νe〉

r2
+
ρXpLν̄e〈E2

ν̄e〉
r2

, (4.4)

where ρ is the local matter density, and the number fractions of neutrons and

protons are Xn and Xp, respectively. The 1/r2 dependence of the heating rate is

simply due to the geometric flux dilution of neutrinos after they emerge from the

core.

The dependence of H on the radius means that location of the most effective

neutrino heating will be close to the PNS, but there is a catch. The thermal

creation of positron electron pairs can proceed when the temperature of matter

reaches roughly Ef , the fermi energy for electrons. Most positron electron pairs

will annihilate into photon pairs, which does not detract from the thermal energy

in the shocked matter, but occasionally they will annihilate into ν/ν̄ pairs which

directly stream out of the star and steal away thermal energy. The rate for the

cooling of the core, C, by this mechanism is

C ∼ 1.4× 1020

(
T

2 MeV

)6

erg g−1 s−1 , (4.5)

where T is the local matter temperature [14]. Initially, the temperature within the

shock front is near the point where the cooling computed from Equation 4.5 is only

marginally lower than the heating rate computed from Equation 4.4. This leads

to a situation where the different dependencies for the heating and cooling rates

cause the formation of what has come to be called the “gain radius” , below which

the rate of cooling by neutrino pair emission exceeds the heating rate by neutrino

capture from the core. There is no net heating of the shock below the gain radius,

which reduces the effective volume which can contribute additional thermal energy

to revitalizing the shock front.
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In 1D calculations, the gain radius grows outward steadily, which reduces

the volume of the shock which is heated by neutrinos and means that as more

matter is accreted onto the shock front, the neutrino heating is growing less and less

efficient. As a result, 1D models of Fe core collapse supernovae do not successfully

explode.

With the advent of computer models using multi-dimension hydrodynamics

and radiation transport the neutrino explosion mechanism gained new life. A

hydrodynamic phenomenon known as the Standing Accretion Shock Instability,

“SASI”, was discovered [12, 19]. The SASI is a dynamical phenomenon that arrises

because shocks, such as the core-collapse supernova bounce shock, are perfect

absorbers of sound waves. Once the bounce shock has stalled, random locations

on the inner surface absorb more slightly more energy, causing different polar and

azimuthal locations along surfaces of the stalled shock front to oscillate violently

in radial coordinate. This oscillation drives turbulent mixing behind the shock,

positively reinforcing the inhomogeneous heating which powers it, leading to the

aptly named instability. This process of turbulent mixing behind the shock front

also rapidly transports cold, unshocked matter down to the region above the PNS,

while simultaneously ejecting neutrino heated matter in convective plumes out

to the shock front where the hot matter deposits it’s thermal energy. Critically,

the cold matter transported close to the PNS is much more efficient at absorbing

energy from the neutrino flux than hot matter. The un-shocked material is too

cold to re-radiate thermal neutrinos at a rate above the rate at which it absorbs

energy from the outward neutrino flux. This increases the overall volume of the

“gain region”, where the rate of energy deposition by the PNS neutrino flux is

larger than the rate of energy loss due to cooling by thermal emission of ν − ν̄

pairs.

The combination of these effects; rapid turbulent transport of hot/cold mat-

ter, more efficient neutrino heating, and expansion of the gain region, has lead to

the discovery that 12 − 30M� stars can obtain a delayed explosion through neu-

trino heating. However, these supernova models have largely omitted the physics

of neutrino flavor transformation. The intense flux of neutrinos from the PNS
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produces an environment where neutrinos are so numerous that they contribute

in a significant way to their own coherent forward scattering. This produces a

non-linear coupling of neutrino flavor evolution histories that can produce large,

collective neutrino flavor oscillations in matter density regimes that have previously

been thought to suppress neutrino flavor evolution.

4.2 Neutronization Burst Signal

Nonlinear neutrino flavor transformation in supernovae is a subject in its

infancy and, by necessity, much of the discussion in the supernova community is

focused on technical issues on how to calculate it. To that end this section raises

an important point, that a “standard” simplifying treatment of the problem, the

widely used “single-angle” approximation, may not reproduce the results of more

sophisticated “multi-angle” calculations.

Reference [40], which employs the single-angle approximation, found two

flavor swaps in the normal mass hierarchy for the O-Ne-Mg core collapse neutron-

ization burst, one for each mass-squared splitting, but only one flavor swap in

the inverted mass hierarchy. The general features found in the results of Ref. [40]

seem to agree with the semi-analytical analysis in Ref. [78]. Reference [43] has

pointed out that in single-angle calculations, under some circumstances, a single

mass-squared splitting can give rise to two spectral swaps. However, Ref. [79]

demonstrated recently that full 3×3 simulations, as opposed to a sequence of 2×2

level crossings, may be necessary to understand the formation or suppression of

these multiple flavor swaps.

As in Ref. [40], to better understand multi-angle effects in 3 × 3 neutrino

flavor oscillation scenarios and to enable direct comparison between single-angle

and multi-angle calculations, I have chosen to simulate the epoch of the neutron-

ization neutrino burst. This corresponds to an epoch only some ∼ 10 ms after core

bounce, when the shock wave propagates through the neutrino sphere. The total

neutrino luminosity at this epoch is comprised predominantly, but not exclusively,

of electron type neutrinos (νe) left over from core collapse-driven neutronization.
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4.2.1 Overview

The results of our multi-angle, 3 × 3 simulations in a particular case are

shown in Fig. 4.1 for the inverted neutrino mass hierarchy. I have used the val-

ues θ13 = 0.1, θ12 = 0.6, θ23 = π/4, ∆m2
21 = 8.0 × 10−5 eV2, and ∆m2

32 =

−3.0 × 10−3 eV2 for this particular calculation to facilitate comparison with the

choice of mixing parameters in Refs. [40, 78]. Furthermore, I have taken the elec-

tron neutrino luminosity and spectral energy distribution to match what was used

in [40], giving Lνe = 1053 erg s−1 and a Fermi-Dirac energy distribution fit to

〈Eνe〉 = 10 MeV and η = 3.

All of our simulations of the neutronization neutrino burst from an ONeMg

core-collapse supernova begin at an initial radius of r = 900 km, where the matter

density is still large enough that no flavor transformation has yet taken place. In

order to compare our results directly with the results of Ref. [40], I use the density

profile from the pre-collapse calculations in Refs. [2, 3] in a post-bounce epoch.

However, the epoch in which I performed the calculations is ∼ 10 ms post-bounce,

while the free-fall timescale at the radius (900 km) at which I begin the calculations

is τ ∼ 100 ms, so there is not much time for non-homologous modifications to

the density profile. Moreover, the material at this radius is likely falling more

slowly than the free fall rate. In any case, the objective of our calculations is

to compare single and multi-angle treatments of neutrino flavor transformation.

Ultimately, neutrino flavor transformation simulations must be performed in a

consistent supernova model.

We model the neutrino emission as originating from a uniform sphere at a

radius of Rν = 60 km above the core of the proto-neutron star. Rν is the calculated

radius of the “neutrinosphere”, where the electron neutrino optical depth is equal to

unity. It has been observed that the neutrinosphere radius is not a sharp surface,

but instead is partially smeared out depending on neutrino energy as discussed

in Ref. [80]. In the case of ONeMg core-collapse supernovae the matter density

profile falls so swiftly with radius that this effect is small compared to the radius

of the neutrinosphere itself and also the distance above the neutrino-sphere where

significant flavor transformation takes place.
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In subsection 4.2.2, results of calculations with more recent and accurate

values for neutrino mass-squared differences presented. Figure 4.1 presents the

electron flavor neutrino survival probability Pνeνe , as a function of the cosine of the

emission angle ϑR. It also shows the vacuum mass basis angle-averaged neutrino

energy spectra. All of these results are at a radius r = 5000 km. In the simulations

used to generate this figure I have followed Ref. [40], and I have approximated the

flavor content of the neutronization burst for the O-Ne-Mg core-collapse as pure

νe.

Our simulations show that neutrino flavor evolution in the inverted mass

hierarchy agrees with what was found in Ref. [40] in broad brush and also seems

to agree with the explanation offered in Ref. [78]. A clear step-wise swap occurs

between the ν2/ν1 mass states at Eν ≈ 11 MeV. As with the single-angle results,

there is no large-scale neutrino flavor transformation generated by mixing at the

∆m2
atm scale.

It has been noted that in the inverted neutrino mass hierarchy the neutrino

flavor field is unstable, in analogy to the way a pendulum balanced in the inverted

position would be [81, 33]. Flavor transformation in the other neutrino and anti-

neutrino species is non-linearly coupled to mixing at the ∆m2
atm scale through

the neutrino self-coupling potentials. This coupling provides the impetus that

drives the ∆m2
atm flavor isospins away from their unstable equilibrium. However,

the lack of any neutrino species besides νe in the calculation shown in Fig. 4.1

prevents any perturbation of the “inverted flavor pendulum,” leaving it essentially

balanced. The inclusion of other neutrino and anti-neutrino species, which have

energy luminosities L ∼ 0.1Lνe at this epoch, does not significantly affect these

results and conclusions. Figure 4.2 shows that relatively small numbers (∼ 10%

admixture) of these neutrinos are not capable of destabilizing the ∆m2
atm neutrino

flavor mixing.

Figure 4.3 shows the results of the multi-angle simulations in the normal

mass hierarchy. I have used the same mixing parameters and initial conditions

employed in the inverted neutrino mass hierarchy calculation, except that the sign

of the atmospheric mass-squared difference has been reversed, ∆m2
32 = +3.0 ×
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Figure 4.1: Left panel: electron neutrino survival probability Pνeνe (color/shading
key at top left) for the inverted mass hierarchy is shown as a function of cosine
of emission angle, cosϑR, and neutrino energy, E in MeV, plotted at a radius of
r = 5000 km. Right: mass basis (key top right, inset) emission angle-averaged
neutrino energy distribution functions versus neutrino energy, E. The dashed
curve gives the initial νe emission angle-averaged energy spectrum. Movies of this
simulation can be found at the URL in Ref. [1]. Each frame of the movie shows
a representation of the neutrino survival probability in various different bases at
a fixed radius above the core. Each successive frame is 1 km further out from the
initial radius of rinit = 900 km out to the final radius r = 5000 km.
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Figure 4.2: Emission angle-averaged neutrino energy distribution functions ver-
sus neutrino energy plotted in the neutrino mass basis for the 3 × 3 multi-angle
calculation of neutrino flavor evolution. Results shown at a radius of r = 5000km.
In this simulation, a small (10%) admixture of all other species of neutrinos and
anti-neutrinos are included.



37

0.0 0.2 0.4 0.6 0.8 1.0

Pνν

0 5 10 15 20 25 30 35 40

E (MeV)
0.0

0.2

0.4

0.6

0.8

1.0

co
s

ϑ
R

0 5 10 15 20 25 30 35 40

E (MeV)

Spectra

νe initial
ν1ν2ν3

Figure 4.3: Left panel: electron neutrino survival probability Pνeνe (color/shading
key at top left) for the normal mass hierarchy is shown as a function of cosine of
emission angle, cosϑR, and neutrino energy, E in MeV, plotted at a radius of
r = 5000 km. Right: mass basis (key top right, inset) emission angle-averaged
neutrino energy distribution functions versus neutrino energy, E. The dashed
curve gives the initial νe emission angle-averaged energy spectrum. Movies of this
simulation can be found at the URL in Ref. [1]. Each frame of the movie shows
a representation of the neutrino survival probability in various different bases at
a fixed radius above the core. Each successive frame is 1 km further out from the
initial radius of rinit = 900 km out to the final radius r = 5000 km.
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10−3 eV2. Again, these calculations agree in broad brush with the results obtained

for the single-angle simulations reported in Ref. [40]. In our multi-angle simulations

the ν3/ν2 swap occurs at an energy of Eν ≈ 10 MeV. This swap arises from

the ∆m2
atm splitting. Our simulations show that the second swap, corresponding

to ν2/ν1, is at an energy of Eν ≈ 13.5 MeV. This swap arises from collective

oscillations generated by mixing at the ∆m2
� scale.

In the case of the multi-angle calculation, both of the flavor swaps observed

in the normal neutrino mass hierarchy occur at lower energies than their counter-

parts in the single-angle calculations. Comparing the different simulations I find

that for the ν3/ν2 swap Emulti−angle
swap ≈ 10.0 MeV and Esingle−angle

swap ≈ 12.5 MeV, and

for the ν2/ν1 swap Emulti−angle
swap ≈ 13.5 MeV and Esingle−angle

swap ≈ 15.0 MeV.

Interestingly, the inverted neutrino mass hierarchy does not exhibit any

change in the observed ν2/ν1 swap energy between the multi-angle and the single-

angle calculations. The spectra I observe for the multi-angle calculations in the

inverted neutrino mass hierarchy agree with the framework developed by Ref. [78].

In that work, a single-angle toy model calculation showed that the resultant spec-

tra of the neutronization neutrino burst for an O-Ne-Mg core-collapse supernova

was formed by an initial phase of non-adiabatic, synchronous MSW flavor transfor-

mation, followed by collective neutrino oscillations that form the swaps observed

in the simulations.

The normal neutrino mass hierarchy case is quite different. The final spectra

in Fig. 4.3 show that there are ∼ 10% fewer neutrinos that remain in mass state

3. This implies that the flavor evolution in the multi-angle calculation was less

adiabatic than that in the single-angle calculation.

To illustrate the importance of using full 3 × 3 flavor mixing in the case

of an O-Ne-Mg core-collapse supernova, I have performed a 2 × 2 multi-angle

calculation for each mixing scale in the normal neutrino mass hierarchy. Briefly,

the swap energy of the ∆m2
atm mixing scale is Eswap ≈ 10.0 MeV in our 2 × 2

multi-angle calculation, which corresponds closely with the swap energy found in

the 3 × 3 multi-angle flavor mixing case. However, the swap energy of the ∆m2
�

mixing scale is found to be Eswap ≈ 11.0 MeV for the 2×2 multi-angle calculation,
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Figure 4.4: This calculation of the flavor evolution of neutrinos in the in-
verted mass hierarchy was conducted with values of ∆m2

� = 7.6 × 10−5 eV2 and
∆m2

atm = −2.4× 10−3 eV2. Left panel: electron neutrino survival probability Pνeνe
(color/shading key at top left) for the inverted mass hierarchy is shown as a func-
tion of cosine of emission angle, cosϑR, and neutrino energy, E in MeV, plotted
at a radius of r = 5000 km. Right: mass basis (key top right, inset) emission
angle-averaged neutrino energy distribution functions versus neutrino energy, E.
The dashed curve gives the initial νe emission angle-averaged energy spectrum.

which is lower than the corresponding ν2/ν1 swap Eswap ≈ 13.5 MeV of the 3 × 3

multi-angle calculation.

4.2.2 Sensitivity to Neutrino Mass-Squared Differences

Since the publication of the original set of papers on the neutronization

neutrino burst of an O-Ne-Mg core-collapse supernova [40, 78], the experimental

limits on ∆m2
� and ∆m2

atm have been refined, resting currently at the values of

∆m2
� = 7.6 × 10−5 eV2 and ∆m2

atm = 2.4 × 10−3 eV2 [62]. I have conducted a

set of 3 × 3 multi-angle calculations to ascertain the effect the new experimental

constraints would have on the flavor evolution history of the neutrinos released

in the neutronization burst. Figure 4.4 shows the results of our calculations for

neutrino flavor transformation in the inverted neutrino mass hierarchy. There is no

significant change observed in the final state of neutrinos at a radius of r = 5000 km

relative to our earlier calculations with ∆m2
21 = 8.0× 10−5 eV2.
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Figure 4.5: This calculation of the flavor evolution of neutrinos in the normal mass
hierarchy was conducted with values of ∆m2

� = 7.6×10−5 eV2 and ∆m2
atm = 2.4×

10−3 eV2. Left panel: electron neutrino survival probability Pνeνe (color/shading
key at top left) for the normal mass hierarchy is shown as a function of cosine
of emission angle, cosϑR, and neutrino energy, E in MeV, plotted at a radius of
r = 5000 km. Right: mass basis (key top right, inset) emission angle-averaged
neutrino energy distribution functions versus neutrino energy, E. The dashed
curve gives the initial νe emission angle-averaged energy spectrum.
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Figure 4.5 shows the results of our calculations for neutrino flavor transfor-

mation in the normal neutrino mass hierarchy with the latest mass-squared values.

With the new neutrino mixing parameters there is an increase in the observed swap

energies for mixing at both the ∆m2
� and ∆m2

atm scales over the cases with the

original mixing parameters adopted in [40]. The ν3/ν2 swap occurs at an energy

of Eν ≈ 16.5 MeV, while the ν2/ν1 swap is pushed even higher to an energy of

Eν ≈ 19.0 MeV, as opposed to Eν ≈ 10.0 MeV and Eν ≈ 13.5 MeV respectively.

Because detection and characterization of supernova neutrinos is the ulti-

mate aim of research in this field, I have included Fig. 4.6 and Fig. 4.7 to show

predictions for the flux of electron neutrinos emitted by the neutronization neutrino

burst of an O-Ne-Mg core collapse supernova. Figure 4.6 shows the predictions of

both the single-angle and multi-angle calculations for the normal neutrino mass

hierarchy, while Fig. 4.7 shows the same for the inverted neutrino mass hierarchy.

4.2.3 Variation of θ13

Of particular interest is the effect produced by a significantly decreased θ13

mixing angle. As has been found in previous work, reducing the value of θ13 can

affect sensitively the energy of the flavor swap at the ∆m2
atm scale for the normal

neutrino mass hierarchy [35]. I performed a new calculation that matched the

initial conditions of the primary, νe only, simulation of the neutronization burst,

but this time with a value of θ13 = 1.0×10−3, two orders of magnitude smaller than

the θ13 value in the original calculation. This new value of θ13 drives the neutrino

background-enhanced flavor evolution at the ∆m2
atm scale entirely non-adiabatic,

and Fig. 4.8 shows that this produces a resultant neutrino energy spectrum that is

essentially indistinguishable from the spectrum produced in our calculations for the

inverted neutrino mass hierarchy. This may present complications in the future

determination of the neutrino mass hierarchy and θ13 using the neutronization

pulse of an O-Ne-Mg core-collapse supernova. Planned earth-based experiments

should be able to set an upper limit on the value of sin2 2θ13 ∼ 1.0 × 10−2 [82].

The neutronization neutrino burst signal from an O-Ne-Mg core-collapse supernova

may have limited ability to discern a value of θ13 much below this threshold. On
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Figure 4.6: Emission angle-averaged electron neutrino flux Φν (key top right,
inset) for the normal neutrino mass hierarchy is shown as a function of neutrino
energy E in MeV. The dashed curve gives the initial νe emission angle-averaged
neutrino flux. The shaded region gives the predicted flux in a single-angle calcu-
lation, and the thick line shows the flux predicted by the multi-angle calculation.
These calculations of electron neutrino flux are done using ∆m2

� = 7.6× 10−5 eV2

and ∆m2
atm = −2.4× 10−3 eV2 and θ13 = 0.1.
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Figure 4.7: Emission angle-averaged electron neutrino flux Φν (key top right,
inset) for the inverted neutrino mass hierarchy is shown as a function of neutrino
energy E in MeV. The dashed curve gives the initial νe emission angle-averaged
neutrino flux. The shaded region gives the predicted flux in a single-angle calcu-
lation, and the thick line shows the flux predicted by the multi-angle calculation.
These calculations of electron neutrino flux are done using ∆m2

� = 7.6× 10−5 eV2

and ∆m2
atm = −2.4× 10−3 eV2 and θ13 = 0.1.
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Figure 4.8: Emission angle-averaged neutrino energy distribution functions ver-
sus neutrino energy plotted in the neutrino mass basis for the 3 × 3 multi-angle
calculation of neutrino flavor evolution. This calculation employs a significantly
reduced value of θ13 = 1.0 × 10−3. This mixing angle is associated with flavor
transformation at the ∆m2

atm scale. Results shown at a radius of r = 5000km.
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the other hand, the late-time supernova neutrino signal, which should be more or

less generic for all core-collapse supernovae, has no such limitations. Detection of

the sense of the swap in this case should provide an unambiguous determination

of the neutrino mass hierarchy. Measurements like these could be complementary

to laboratory based neutrino mass probes. For example, experiments such as

the MAJORANA project may be able to determine the neutrino mass hierarchy

directly [83].

4.3 Density Fluctuation Effects

To study why theoretical predictions of the neutrino mass state hopping

rate differ from what is observed in our simulations I chose to vary only a single

parameter in our model of the O-Ne-Mg supernova, the matter density profile. This

affords us an opportunity to conduct an interesting side investigation. I explore

the possibility that the neutrino signal from this model could be used to detect

features in the matter density profile of the supernova, assuming a knowledge of

neutrino mixing parameters.

Terrestrial experiments, like the proposed long baseline neutrino experi-

ments, hold great promise for revealing key neutrino flavor mixing parameters,

such as the value of θ13 and the neutrino mass hierarchy. These as yet unmea-

sured quantities influence how neutrinos change their flavors in the core collapse

supernova environment.

If experiments can reveal neutrino mixing parameters, it stands to reason

that the signal from a supernova could be used as a probe of supernova physics.

There is a rich physical interplay between the hydrodynamic motion and nuclear

abundances in a supernova and the neutrino flux streaming out from the proto-

neutron star at it’s heart. Armed with a refined understanding of neutrino flavor

transformation physics, it is reasonable to ask whether the supernova neutrino

signal could be used as a probe of the matter density profile in a supernova at

times and depths that are impossible to measure with optical observations.

For the purposes of this study I have chosen the following neutrino mixing
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parameters: neutrino mass squared differences ∆m2
� = 7.6 × 10−5 eV2, ∆m2

atm =

2.4 × 10−3 eV2; vacuum mixing angles θ12 = 0.59, θ23 = π/4, θ13 = 0.1; and

CP-violating phase δ = 0. Here I will concentrate on the normal neutrino mass

hierarchy. Along with this I model the neutronization neutrino burst to be of

pure electron flavor and have a Fermi-Dirac spectrum with average energy 〈Eν〉 =

11 MeV, a degeneracy parameter η = 3, and luminosity L = 1.0 × 1053 erg s−1.

Previous simulations [44] and semi-analytic work [40, 78] agree broadly on the

theoretical framework that should describe the flavor evolution of neutrinos in this

case.

4.3.1 Neutrino Flavor Transformation With and Without

Matter Fluctuations

For our particular model, neutrinos emerging from the neutrinosphere ini-

tially are in pure electron flavor states. As these neutrinos stream outward through

the envelope, a collective effect known as the “Neutrino Enhanced MSW” effect

(not to be confused with the MSW, Mikheyev-Smirnov-Wolfenstein effect) can

produce mass state hopping of neutrinos out of the heaviest mass eigenstate (for

both neutrino mass hierarchies) when matter densities are large. Nominally, the

hopping rate is set by a comparison of the scale height of the matter density and

a characteristic neutrino oscillation length in the resonance region. When mat-

ter densities fall further, a second collective effect called the “Regular Precession

Mode” begins. All neutrinos in this mode begin to rotate around an effective field

in flavor space at the same frequency, regardless of their energy. Because of the νe

only emission of the neutronization neutrino burst, this process conserves the total

number of neutrinos occupying each mass eigenstate and produces the distinctive

“Flavor Swaps” or “Spectral Swaps” seen in the final neutrino spectra.

This last point is extremely important. By conserving the number of neu-

trinos in each mass state, the flavor swaps freeze the flavor evolution history of the

neutrinos into the final spectrum with a signature that stands out dramatically

to an observer here on Earth. This suggests that such an observer might be able

to simply measure the swap energies in a detected supernova neutrino signal and
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work backward to construct an in-situ measurement of the matter density profile

at high densities.

Because the neutronization neutrino burst of an O-Ne-Mg supernova has

been well studied and is a relatively simple case of flavor swap formation, it serves

as a good test case to study our ability to extract information about the supernova

envelope from a detected neutrino burst signal. For the inverted neutrino mass

hierarchy, the sequence of events of neutrino flavor transformation produce only a

single swap because only one mass state level crossing is present [40, 78, 44]. For

the normal neutrino mass hierarchy, two swaps are produced because two separate

level crossing populate all three mass eigenstates with neutrinos (for small θ13

this can be reduced to a single swap via the complete depopulation of mass state

3) [40, 78, 44].

The density profile used for this study comes from a set of simulations by

Nomoto [2, 3]. This profile is typical of what a mid-collapse O-Ne-Mg supernova

might produce at the epoch of the neutronization neutrino burst, ∼ 10 ms post

bounce. A feature that this profile possesses is a small bump in the matter density

which is created by the star’s helium burning shell in a range of radius bounded by

r w 1080 km− 1100 km . This feature is known to cause neutrinos at low energies

to pass through multiple MSW resonances at the ∆m2
atm mass scale, and has been

discussed in [40, 78, 44].

To test our ability to detect a simple feature such as this, I conducted a

pair of simulations. The first with the original density profile, called “Bump”,

and the second with a synthetic density profile where the He burning shell feature

has been removed, called “No Bump”. Figure 4.9 shows the electron number

densities with these two profiles plotted side by side. For the neutrino-electron

forward scattering potential He (hereafter the “matter” potential) the associated

scale height at resonance is,

H =

∣∣∣∣
1

He

dHe

dr

∣∣∣∣
−1

res

. (4.6)

Figure 4.10 shows the matter potential scale height for both profiles, evaluated at

the MSW resonance location for each neutrino energy bin.
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Figure 4.9: The electron number density for two matter profiles plotted as func-
tions of radius in the resonance region for the ∆m2

atm mass state splitting. The solid
line indicates the original matter density profile of Refs. [2, 3], called Bump. The
dashed-dotted line indicates the artificial density profile with the bump artificially
removed, called No Bump.

Figures 4.11 and 4.12 show the results of our calculations for the flavor

transformation of electron neutrinos emitted during the neutronization neutrino

burst. Figure 4.11 shows the results of the original, Bump, density profile. Fig-

ure 4.12 shows the results of a simulation using the No Bump density profile.

The aim of the second simulation, with the No Bump density profile, was

to study whether one could detect a signature from features of the matter density

profile using the neutrino flavor transformation signal. Post processing of this data

led to a surprise. The total number of neutrinos that remain in the heavy mass

eigenstate decreases when the bump in the density profile is removed. Explicitly,

the heavy mass eigenstate (mass state 3) survival probability, PH, for the two
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Figure 4.11: Bump. Left panel: electron neutrino survival probability Pνeνe
(color/shading key at top left) for the normal mass hierarchy is shown as a function
of cosine of emission angle, cosϑR, and neutrino energy, E in MeV, plotted at a
radius of r = 5000 km. Right: mass basis (key top right, inset) emission angle-
averaged neutrino energy distribution functions versus neutrino energy, E. The
dashed curve gives the initial νe emission angle-averaged energy spectrum. A
kink in the density profile used, taken from Refs. [2, 3], leads to multiple MSW
resonances for low energy neutrinos.

cases are PBump
H = 0.852 and PNo Bump

H = 0.759. This is a counterintuitive result. I

expected that the removal of the bump from the original density profile would have

produced flavor evolution that was more adiabatic, leading to a greater survival

probability for the No Bump profile.

The effect that the removal of the helium burning shell has on the νe survival

probability is shown in Figure 4.13. Note in this figure that there is an enhanced

survival probability for νe’s at low energy for the Bump profile, and that the flavor

swap energy is lowered for neutrinos in the No Bump profile.

Collective flavor evolution prior to the onset of the regular precession mode

was thought to be described by the Synchronous MSW effect, as opposed to the

Neutrino Enhanced MSW effect [40, 78, 44]. While there is a technical difference

between these two modes of neutrino flavor transformation, the neutrino flavor

transformation survival probabilities (and consequently the Swap energies) are

quite similar for both cases, which led to the initial confusion. In both cases the

resultant value of PH is determined by the evolution of a single representative
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Figure 4.12: No Bump. Left panel: electron neutrino survival probability Pνeνe
(color/shading key at top left) for the normal mass hierarchy is shown as a function
of cosine of emission angle, cosϑR, and neutrino energy, E in MeV, plotted at a
radius of r = 5000 km. Right: mass basis (key top right, inset) emission angle-
averaged neutrino energy distribution functions versus neutrino energy, E. The
dashed curve gives the initial νe emission angle-averaged energy spectrum. The
kink in the density profile taken from Refs. [2, 3], has been artificially removed
from the density profile used in this simulation.

neutrino flavor state, which is the flavor state of the collective ensemble of neu-

trinos. Ideally, neutrinos remain so closely aligned with this collective flavor state

that they do not “feel” the neutrino self coupling potential and, as a result, they

behave as a single neutrino experiencing the matter-driven MSW effect.

We have mentioned previously that this paper considers only flavor trans-

formation using the normal neutrino mass hierarchy. This choice was motivated

by the Bump density feature I consider in this paper, which is significant for flavor

transformation at the ∆m2
atm neutrino mass splitting for neutrinos with typical

neutronization burst energies, ∼ 10 MeV. Previously, it has been found that in

the neutronization burst of an O-Ne-Mg core-collapse supernova, the atmospheric

mass squared splitting experiences no neutrino flavor transformation in the in-

verted neutrino mass hierarchy [44]. Because of this, the presence or absence of

the Bump density feature has no effect on the flavor transformation for neutrinos

in the inverted mass hierarchy, leaving the final emission spectra identical to those

already presented in [44]
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Figure 4.13: The electron neutrino survival probability as a function of neutrino
energy shown at the final radius r = 5000 km. The solid line indicates the survival
probability for neutrinos after moving through the Bump profile, while the dashed
line indicates the survival probability for neutrinos after moving through the No
Bump profile.

4.3.2 Theory

For our simulations I assume a pure νe burst emitted from the neutrino

sphere ar Rν = 60 km with a total luminosity of Lν = 1053 erg s−1 and a normalized

spectrum

fν (E) =
1

F2 (ην)T 3
ν

E2

exp (E/Tν − ην) + 1
, (4.7)

where ην = 3 and Tν = 2.75 MeV. This corresponds to an average νe energy

〈Eν〉 = F3 (ην)Tν/F2 (ην) = 11 MeV. Here

Fn (ην) =

∫ ∞

0

xn

exp (x− ην) + 1
dx . (4.8)
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In the single-angle approximation, the effective total neutrino number density at

r > Rν is

nν (r) =
Lν

4πR2
ν〈Eν〉

[
1−

√
1− (Rν/r)

2

]2

≈ LνR
2
ν

16π〈Eν〉r4
, (4.9)

where the approximate equality holds for r � Rν , and where I set ~ = c = 1.

Because the salient features of our results are confined to the δm2
atm mass

squared mixing scale, I will confine the following discussion to a two neutrino flavor

mixing scheme. Following the convention of [32], one takes each neutrino flavor

state with energy Eν and represent it as a three dimensional neutrino flavor isospin

(NFIS),

sω =

{
êf

z/2, for νe,

−êf
z/2, for νx,

(4.10)

where êf
z is the unit vector in the z-direction for the neutrino flavor basis and

ω is the vacuum oscillation frequency ω = δm2
atm/2Eν . I focus on the normal

mass hierarchy and I take the effective vacuum mixing angle θv ≈ θ13 = 0.1. The

evolution of a NFIS sω is governed by

d

dr
sω = sω ×

[
ωHv + He − µ (r)

∫ ∞

0

sω′fν (Eω′) dEω′

]
, (4.11)

where Hv = cos 2θvê
f
z − sin 2θvê

f
x, He = −

√
2GFne (r) êf

z, µ (r) = 2
√

2GFnν (r),

and Eω′ = δm2
atm/2ω

′.

In what follows, I leave out radiative vertex corrections to He. These cor-

rections are discussed in Refs. [84, 85, 24, 86]. I have done numerical calculations

that show these corrections do not change the qualitative nature of the effects

discussed below.

For convenience, I define

g (ω) ≡ δm2
atm

2ω
fν (Eω) (4.12)

and

S ≡
∫ ∞

0

sωfν (Eω) dEω =

∫ ∞

0

sωg (ω) dω . (4.13)

It follows from Eqns. (4.11)-(4.13) that

d

dr
S =

∫ ∞

0

ωg (ω) sωdω ×Hv + S×He . (4.14)
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As g (ω) is concentrated in a finite range of ω, to zeroth order one approxi-

mates g (ω) ≈ δ (ω − 〈ω〉), where 〈ω〉 =
∫∞

0
ωg (ω) dω. This is a fair approximation

for the particular case we are treating, namely, low energy νe’s in the neutroniza-

tion burst (〈Eν〉 = 11 MeV). With this approximation, the zeroth-order mean field

S(0) is defined through

d

dr
S(0) = S(0) × [〈ω〉Hv + He] ≡ S(0) ×HMSW . (4.15)

The evolution of S(0) is the behavior of the system in the high luminosity,

“Synchronized”, limit. (In the Synchronous MSW effect, all sω are aligned with S,

and orbit around it. Note, this idealized situation does not occur in the presence of

matter [33].) For the neutronization neutrino burst luminosity and matter density

profile I use, our calculations take place below this luminosity regime. I do not

observe individual sω orbiting S [87], but I do observe that individual sω remain

closely aligned to S and S(0).

The evolution of S(0) is the same as that of an idealized νe with Eν =

δm2
atm/2〈ω〉 = 8.53 MeV undergoing the usual MSW effect. This is the collective

NFIS that all the the neutrinos will follow during the Neutrino Enhanced MSW

effect. Now we can approximately solve for the evolution of sω from

d

dr
sω ≈ sω ×

[
ωHv + He − µ (r) S(0)

]
. (4.16)

We can use the solution of Equation 4.15 to obtain the first-order mean field S(1)

from the definition of S in the first expression in Equation 4.13, and then re-

calculate the evolution of sω from the above Equation 4.15 but with S(1) replacing

S(0). This procedure can be repeated until the results converge.

Of course, the procedure outlined above is not recommended as a nu-

merical method, but instead points to an analytic approach to understand col-

lective oscillations. Based on the MSW effect, S(0) goes through resonance at

ne ≈ 1.09 × 1027 cm−3 corresponding to r ≈ 1100 km in both simulations. For

simplicity, let us consider a smooth distribution for ne (r). Before the resonance,
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scattering potentials experienced by radially emitted neutrinos as a function of
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the evolution of S(0) is somewhat adiabatic and we can take

S(0) ≈ − HMSW

2|HMSW|
(4.17)

≈ −1

2

(
cos 2θmêf

z − sin 2θmêf
x

)
, (4.18)

where

cos 2θm =
〈ω〉 cos 2θv −

√
2GFne√(

〈ω〉 cos 2θv −
√

2GFne

)2
+ (〈ω〉 sin 2θv)2

, (4.19)

sin 2θm =
〈ω〉 sin 2θv√(

〈ω〉 cos 2θv −
√

2GFne

)2
+ (〈ω〉 sin 2θv)2

. (4.20)

The evolution of sω at densities higher than the resonance density for S(0) is then

governed by

d

dr
sω ≈ sω ×

[(
ω cos 2θv −

√
2GFne +

µ

2
cos 2θm

)
êf

z −
(
ω sin 2θv +

µ

2
sin 2θm

)
êf

x

]

(4.21)

≡ sω ×Hω . (4.22)

This equation also defines Hω. Note that the NFIS evolution described by this

equation is similar to the usual MSW effect but with modified diagonal and off-

diagonal terms. Note especially that the off-diagonal term (µ/2) sin 2θm = µ/2 is

large at the resonance location for S(0). If sω evolves adiabatically, then

sω ≈ −
Hω

2|Hω|
(4.23)

≈ −1

2

(
cos 2θωê

f
z − sin 2θωê

f
x

)
, (4.24)

where

cos 2θω =
〈ω〉 cos 2θv −

√
2GFne + (µ/2) cos 2θm√(

〈ω〉 cos 2θv −
√

2GFne + (µ/2) cos 2θm

)2
+ (〈ω〉 sin 2θv + (µ/2) sin 2θm)2

,

(4.25)
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sin 2θω =
〈ω〉 sin 2θv + (µ/2) sin 2θm√(

〈ω〉 cos 2θv −
√

2GFne + (µ/2) cos 2θm

)2
+ (〈ω〉 sin 2θv + (µ/2) sin 2θm)2

.

(4.26)

If sω goes through resonance non-adiabatically at densities above the resonance

density for S(0), then subsequently sω will no longer stay anti-aligned with Hω.

This change in alignment corresponds to neutrinos jumping between mass states.

Confirmation of this simple picture is borne out by our numerical simulations as

can be seen in Figures 4.11 and 4.12, where the Bump profile exhibits a population

of low energy mass state 2 (ν2) neutrinos. In the Bump density profile, Figure 4.11,

the helium burning shell produces multiple MSW-like resonances for low energy

neutrinos. These multiple resonances,illustrated in Figure 4.14, are non-adiabatic,

engendering further loss of alignment. This leads to a population of low energy

neutrinos occupying mass state 2, which do not recover their alignment with Hω.

By way of contrast, in Figure 4.12 there is no population of low energy

neutrinos in mass state 2 because the absence of the helium burning shell in the No

Bump profile makes the evolution of these neutrinos adiabatic, hence they remain

aligned with Hω. In both cases, NIFS’s sω over a wide range of ω experience

significant evolution at densities higher than the resonance density of S(0).

If S(0) goes through resonance adiabatically, the above description of NFIS

evolution can be extended to lower densities. Note that cos 2θm changes from ≈ −1

at high density to 0 at resonance and to ≈ cos 2θv at low density, consistent with a

simple MSW picture. The term
√

2GFne− (µ/2) cos 2θm becomes 0 at some radius

and all sω go through resonance before this radius.

However, if S(0) goes through resonance non-adiabatically, the situation

becomes more complicated. For illustration consider the regime of low ne, lower

than the S(0) resonance density. The non-adiabatic evolution of S(0) means that it

no longer stays anti-aligned with HMSW ≈ 〈ω〉Hv in this regime. Instead, one has

S(0) · Ĥv =
1

2
cosα = Phop −

1

2
, (4.27)

where α is the angle between S(0) and the external field

Hv, and Phop is the probability for S(0) to hop from being anti-aligned before
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resonance to being aligned with HMSW after resonance. One can take

S(0) ≈
(
Phop −

1

2

)
Ĥv + S

(0)
⊥ , (4.28)

where S
(0)
⊥ is the component perpendicular to Hv with a magnitude

S
(0)
⊥ ≈

√
(1/2)2 − [Phop − (1/2)]2 . (4.29)

Note that S
(0)
⊥ precesses around Hv with an angular velocity −〈ω〉Hv.

In a frame co-precessing with S(0), the evolution of sω is governed by

d

dr
sω ≈ sω ×

[
(ω − 〈ω〉) Hv − µ (r) S(0)

]
(4.30)

≈ sω × {
[
ω − 〈ω〉 − µ (r)

(
Phop −

1

2

)]
Hv − µ (r) S

(0)
⊥ } (4.31)

≡ sω ×Hco−pre
ω . (4.32)

The evolution of sω is expected to be adiabatic and, as a result, the angle between

sω and Hco−pre
ω stays fixed. This angle depends on the relative directions of sω

and Hco−pre
ω right after the resonance of S(0). The latter direction depends on the

exact direction of S
(0)
⊥ coming out of the resonance. At large radii, Hco−pre

ω simply

becomes (ω − 〈ω〉) Hv. Those sω with ω < 〈ω〉 that are approximately aligned

with Hco−pre
ω right after the resonance of S(0) are nearly fully converted into νx.

Neutrinos participating in the Neutrino Enhanced MSW effect have NIFS’s

which are closely aligned with the collective field S, so their flavor evolution will be

a close match to that of S(0) [33]. Specifically, they will co-precess with the effective

field, even when the flavor evolution of S(0) and S are non-adiabatic. Examples of

this co-precession can be viewed in movies which are on our website [87].

In this co-precession picture the probability to remain in the heavy mass

eigenstate, PH, should depend on the three quantities relevant to the MSW evo-

lution of S(0): vacuum mixing angle θv; collective oscillation frequency 〈ω〉; and

the matter potential scale height RH at the location where S(0) is at resonance,

〈ωH〉 cos 2θv = 2
√

2GFne (r). The first and second quantities are identical for both

of these simulations. Only RH changes when the burning shell feature is removed,

with RBump
H = 25.3 km and RNo Bump

H = 28.5 km.
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Following the evolution of S(0) through the envelope of matter around the

proto-neutron star, the probability of a neutrino with ω = 〈ω〉 to hop out of

the heavy mass eigenstate will be given by the double exponential Landau-Zener

hopping probability, Phop = (1− PH), with:

Phop =
exp (2πRH〈ω〉 cos2 θv) − 1

exp (2πRH〈ω〉)− 1
. (4.33)

Given that the critical scale height of the matter profile is slightly smaller for the

Bump profile, the above equation implies that there should be a larger probability

to hop out of mass state 3 in the presence of the helium burning shell. This is

why the total number of neutrinos remaining in mass state 3 naively is expected

to increase for the No Bump simulation. Equation 4.33 yields a prediction that for

the Bump density profile PPredicted
H = 0.68, and for the No Bump density profile

PPredicted
H = 0.71.

Using the final emission spectra from Figures 4.11 and 4.12 to calculate

PH for both simulations, as one would in analyzing an actual supernova neu-

trino signal, produces somewhat different results. For the No Bump calculation,

PObserved
H = 0.76. This indicates a slightly more adiabatic than I had calculated

above, and would lead an observer to deduce a larger matter scale height in the

collapsing core of the supernova than was actually present. More strikingly, the

Bump profile exhibits PObserved
H = 0.85, implying fully 17% more neutrinos remain

in mass state 3 than predicted. This would lead an observer interested in the

envelope to grossly miss-calculate the electron density scale height, arriving at a

number nearly twice the actual value. I will endeavor to understand why it is that

our model of neutrino flavor transformation seems to have led us astray when at-

tempting to work backward from our observed signal to the matter density profile

of the collapsing star.

4.3.3 Analysis

Though the simple neutrino transformation model presented above is suc-

cessful in many respects, I do not attempt to provide an exhaustive proof of the

model, only to point out that it offers a straightforward explanation of the puzzling
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aspects of our result. Furthermore, our numerical calculations show that one must

be careful in applying the theory of the Neutrino Enhanced MSW effect to infer

information about the envelope of the proto-neutron star.

First, even in early (e.g. Ref. [56]) treatments of neutrino flavor evolution

it was evident that flavor diagonal neutrino-neutrino forward scattering potential,

B (r), would alter the position of the MSW resonance position for a given neutrino

energy Eν and mass splitting ∆m2 because the resonance condition is

∆m2

2E
cos 2θv = A (r) +B (r) , (4.34)

where A (r) =
√

2GFne (r) is the matter potential at radius r. Neutrino propaga-

tion through the MSW resonance at the shifted position in general will result in an

altered survival probability because the scale height of the combined potential will

be different. However, this simplistic analysis is completely inadequate because

it is the neutrino-neutrino flavor off-diagonal potential which in part determines

adiabaticity [56, 31]. This potential, in turn, is sensitive to the relative x−y plane

phase angles of the individual neutrino NFIS’s, necessitating a self-consistent col-

lective oscillation treatment.

Shown in Figures 4.15 and 4.16 is the evolution of the Neutrino Enhanced

MSW effect collective NFIS S and evolution of the zeroth order approximation S(0).

Each of these are given for the Bump and No Bump profiles. These figures show

the opening angle between the collective NFIS and HMSW. To lowest order, the

collective NFIS S from Equation 4.13 follows the alignment of S(0), starting anti-

aligned with HMSW and undergoing a mild change of alignment as the system passes

through resonance, with the hopping probability given by Phop = 1/2 (1 + cosα).

However, there is a small difference between the final alignment of S(0) and S for all

of the calculations. The full numerical calculations reveal that mass state hopping

is more adiabatic than our zeroth order approximation would lead us to believe,

differing by ≈ 5−10 % from the hopping probability associated with the evolution

of S(0).

The reason that the full calculations exhibit less mass state hopping can be

found in the imperfect alignment of individual sω with S. The Neutrino Enhanced

MSW model predicts that individual sω tend to stay aligned with S as the collec-
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Figure 4.15: Bump: The opening angle α between the collective NFIS and HMSW

for the Bump profile, plotted as a function of |HMSW| / |Hv| as the system moves
through resonance. The idealized NFIS (dotted-dashed line) shows the evolution
of S(0) in the absence of any neutrino self-coupling. The solid line and dashed line
show the evolution of S as calculated in multi-angle and single-angle simulations
respectively, including the neutrino self-coupling potentials. The dotted line shows
the evolution of S as calculated for a neutronization burst with Lν ≈ 0.1Lνe for
all neutrino species other than νe. Note that the qualitative behavior of S for the
mutli-angle, single-angle, and mixed flux treatments are quite similar.



62

10−1 100 101 102 103 104

|HMSW|/|Hv|
1.6

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

α
(r

ad
ia

n
s)

Opening Angle α Relative to ĤMSW
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Figure 4.16: No Bump: The opening angle α between the collective NFIS and
HMSW for the No Bump profile, plotted as a function of |HMSW| / |Hv| as the
system moves through resonance. The idealized NFIS (dotted-dashed line) shows
the evolution of S(0) in the absence of any neutrino self-coupling. The solid line
and dashed line show the evolution of S(0) as calculated in multi-angle and single-
angle simulations respectively, including the neutrino self-coupling potentials. The
dotted line shows the evolution of S as calculated for a neutronization burst with
Lν ≈ 0.1Lνe for all neutrino species other than νe. Note that the qualitative
behavior of S for the mutli-angle, single-angle, and mixed flux treatments are
quite similar.
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tive mode passes through resonance and subsequently begin to orbit around Hv as

the system transitions to the regular precession mode. In Figure 4.17 I show the

average opening angle between individual sω and S, taken to be cos θ =
(
ŝω · Ŝ

)
,

for the Bump and No Bump profiles. On average individual sω and S remain

aligned to within a few percent throughout the resonance region in both the Bump

and No Bump simulations, which shows that this is indeed the correct physical

picture. However, as I have mentioned previously, the individual sω pass through

resonance at slightly higher densities than S(0). The individual sω are slightly mis-

aligned and this means that when the individual neutrino states are at resonance,

i.e. cos 2θω = 0, the collective mean field S is not yet at resonance itself, i.e.

cos 2θm 6= 0.

From Equation 4.25 we see that for an individual neutrino state at reso-

nance the adiabaticity of the mass state hopping will not be determined entirely

by the matter potential if cos 2θm 6= 0, which is precisely the result I recover from

Equation 4.34 when A > B with B 6= 0. (By contrast, the flavor evolution through

resonance for S(0) is determined entirely by the matter potential.) Individual sω

experience some fraction of the neutrino self-coupling potential µ. This comes from

the fact that our approximation g (ω) ≈ δ (ω − 〈ω〉) is a rather gross approxima-

tion. In reality, the function g (ω) has a finite width. However, one finds that this

approximation produces results that match well with our calculations and individ-

ual sω track the evolution of S(0) more closely than one might expect given the

width of our initial νe distribution.

A serious source of potential error in interpreting the swap signal for the

neutronization neutrino burst comes from rapid fluctuations in the matter poten-

tial. I have shown the evolution of the system follows S(0) closely. In turn, S(0)

experiences only the ordinary MSW effect in it’s flavor evolution. This is illus-

trated clearly by the similarities in the observed mass state 3 survival probabilities

and the trajectories of S and S(0) in Figures 4.15 and 4.16. For the No Bump

profile PObserved
H = 0.76, and PS(0)

H = 0.68. For the Bump profile PObserved
H = 0.85,

and PS(0)

H = 0.80. However, as I have mentioned in the previous section, this result

for the Bump profile is in stark disagreement with the prediction of the double
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Figure 4.17: The average alignment of individual neutrino polarization vectors,
sω, with the collective polarization vector, S. The solid black line shows the
“Bump” profile from Refs. [2, 3] and the dotted red line shows the modified “No
Bump” profile. The shaded region indicates the physical position of the Helium
burning shell density feature present in the Bump profile.
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Figure 4.18: No Bump: The precession of the collective polarization vector,
S, and the zeroth order effective field S(0), about the êf

z axis as neutrinos move
through resonance in the No Bump profile. The solid line shows the azimuthal
angle, φS, for the collective polarization vector S. The dashed-dotted line shows
the azimuthal angle, φS(0) , for the zeroth order effective field S(0). The dotted line
shows the value of θm for S and S(0) for reference, with a diamond symbol located
at θm = π/4 where the system is at resonance.

exponential Landau-Zener hopping probability of Equation 4.33.

As has been know for some time, turbulent matter density fluctuations can

produce flavor “depolarization” for MSW neutrino flavor transformation [88, 89,

90, 91, 36, 53, 54, 92, 55]. Broadly, these turbulent fluctuations can produce mass

state hopping that does not agree with what one would deduce from Equation 4.33

using the gross scale height of the matter potential.

By considering the derivative of Eqn. 4.15 it can be seen that there is a

restoring force that causes S(0) to orbit HMSW as the system evolves. Another

term in the derivative of Eqn. 4.15 drives precession of S(0) about the êf
z axis any
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Figure 4.19: Bump: The precession of the collective polarization vector, S, and
the zeroth order effective field S(0), about the êf

z axis as neutrinos move through
resonance in the Bump profile. The solid line shows the azimuthal angle, φS, for
the collective polarization vector S. The dashed-dotted line shows the azimuthal
angle, φS(0) , for the zeroth order effective field S(0). The dotted line shows the value
of θm for S and S(0) for reference, with a diamond symbol located at θm = π/4
where the system is at resonance. The shaded region indicates the physical position
of the Helium burning shell density feature present in the Bump profile.
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time the matter potential is changing non-adiabatically.

In the traditional MSW framework, this precession is dependent on the

energy of each neutrino, as the neutrino energy sets the relative size of the terms

in Eqn. 4.15’s derivative. As a result, if the matter density profile is turbulent, the

alignments of individual neutrino NFIS’s can be scattered throughout the flavor

space, hence the term “depolarization”.

The matter driven precession figures into the hopping probability given

by Eqn. 4.33 because the double exponential hopping probability is derived from

the Landau-Zener two level hopping problem using the boundary condition that

the precession of S(0) originating from this term can be taken to be zero before

the system approaches resonance [93, 94]. If there is significant matter driven

precession for S and S(0) prior to resonance, Eqn. 4.33 will not be the appropriate

analytic solution for the Landau-Zener hopping probability.

These issues can be explored by examining the projection of the collective

field S (or S(0)) in the êf
x− êf

y plane. Define the angle made by this projection and

êf
x to be φ. Figure 4.18 shows the value of φ in the No Bump profile for S and

S(0) through the resonance region. Prior to resonance, when θm w π/2, there is no

appreciable precession of either S or S(0). This is not particularly surprising, as

the observed hopping probability of S(0) matches exactly with Eqn. 4.33, with S

exhibiting slightly less hopping as I have discussed above.

Figure 4.19, where I show the evolution of φ for S and S(0) in the Bump

profile, exhibits very different phenomenology. The system starts out identically to

the configuration of the neutrinos in the No Bump profile, with no matter driven

precession before the bump is reached. However, the sudden increase in the local

matter density at r ∼ 1086 km brought on by the helium burning shell drives rapid

precession of S and S(0) in a counter clock-wise direction. At the same time, the

value of θm is brought back up to the pre-resonance value of θm w π/2. This resets

the clock, so to speak, on HMSW and the boundary conditions for S and S(0).

The collective NFIS is clearly precessing rapidly at the boundary of the MSW

resonance region, meaning that our use of the double exponential hopping formula

is not appropriate.
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This phenomenon is a simplistic example of the turbulence driven flavor

depolarization discussed in Ref. [90, 36, 92, 55], where we are following the evolu-

tion of a single NFIS, S(0), as it is scattered to a random position in flavor space.

What is surprising about this calculation is that I have observed that the collective

Neutrino Enhanced MSW effect persists and maintains coherence in multi-angle

calculations, in spite of rough handling by the matter potential. The collective

NFIS, S (and consequently the individual neutrino sω’s), tracks the evolution of

S(0) and achieves a final alignment in flavor space that is not relatable to the

simplistic prediction of Eqn. 4.33. Our calculations suggest that the Neutrino En-

hanced MSW effect is susceptible to the same turbulence driven precession as the

ordinary MSW effect.

This is unfortunate from the perspective of attempts to use the swap signal

to probe the matter density profile. In the particular case of the neutronization

neutrino burst, the resultant swap energy may or may not be relatable to the

matter density profile, depending on the “smoothness” of the actual matter density

profile of the collapsing star. In the case of the Bump profile, our observed survival

probability of PBump
H = 0.852 would lead an observer to infer a matter density scale

height of RBump, inferred
H = 45.9 km, compared to the actual scale height of RBump

H =

25.3 km, an 85% error. In principle, this fluctuation driven precession might alter

the survival probability PH and, consequently, push the swap energy up or down

depending on the particular realization of the density fluctuations [90, 36, 92, 55].

In the example I study here, the low energy neutrinos experiencing multiple

MSW resonances would be almost invisible to neutrino detectors designed to collect

supernova neutrinos, since these detectors might have low energy thresholds of

∼ 5−10 MeV. However these neutrinos provide our only clue about matter density

fluctuations. While I have been able to use our detailed knowledge of the neutrino

flavor states as they evolved through the resonance region to correctly deduce what

has transpired, an observer on the Earth would not have access to such privileged

information.
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4.4 Luminosity Variation Effects

The results from multi-angle simulations shown in Figures 4.20 and 4.21

demonstrate that the ne profile with the bump gives rise to a very clear flavor

transformation signature. Depending on the luminosity, a population of νe below

8 MeV have large probabilities to transform between neutrino mass states (have

large hopping probabilities). For example, the medium range luminosity case,

Lν = 8.0× 1052 erg s−1, exhibits a peak hopping probability for the bump-affected

neutrinos of ∼ 80% at Eν = 4.5 MeV, shown in Figure 4.21. In the extreme case

of Lν = 1054 erg s−1, the hopping probability is ∼ 15% for Eν = 0.5 MeV, although

this is hard to see in Figure 4.20 (but see Figure 4.21).

4.4.1 Analysis of Flavor Evolution of the νe
′s

As discussed in Refs. [40, 78, 44, 45] the flavor evolution of the νe flux in

this case is governed by δm2
atm and θ13. Although the numerical calculations I have

conducted employ full 3 × 3 flavor mixing, in the following analysis, we focus on

the 2-flavor mixing for these νe with δm2 = δm2
atm and θv = θ13. Further, I adopt

the single-angle approximation, as this has been shown to be surprisingly effective

in providing qualitative understanding of the results from multiangle simulations.

Using the notation introduced in Ref. [32], we can represent a νe of energy

E by a neutrino flavor isospin (NFIS) sω with ω = δm2/2E. The evolution of sω

is governed by

d

dr
sω = sω ×

[
ωHv + He − µ(r)

∫ ∞

0

sω′fν(Eω′)dEω′

]
, (4.35)

where Hv = cos 2θvê
f
z− sin 2θvê

f
x, He = −

√
2GFne(r)ê

f
z, µ(r) = 2

√
2GFnν(r), and

Eω′ = δm2/2ω′. Here êf
x and êf

z are the unit vectors in the x and z directions,

respectively, of the neutrino flavor space. For convenience, I define

g(ω) ≡ δm2

2ω2
fν(Eω) (4.36)

and

S ≡
∫ ∞

0

sωfν(Eω)dEω =

∫ ∞

0

sωg(ω)dω. (4.37)
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It follows that
d

dr
S =

∫ ∞

0

ωg(ω)sωdω ×Hv + S×He. (4.38)

As g(ω) is concentrated in a finite range of ω, to zeroth order we approximate

g(ω) ≈ δ(ω− 〈ω〉), where 〈ω〉 =
∫∞

0
ωg(ω)dω is calculated from the actual g(ω) in

Eq. (5). Then the zeroth-order mean field S(0) can be obtained from

d

dr
S(0) = S(0) × [〈ω〉Hv + He] ≡ S(0) ×HMSW. (4.39)

The evolution of S(0) is the same as that of a νe with EMSW = δm2/2〈ω〉 =

8.53 MeV undergoing the usual MSW effect. With this, we can approximately

solve the evolution of sω by employing

d

dr
sω ≈ sω ×

[
ωHv + He − µ(r)S(0)

]
. (4.40)

As the heavy mass eigenstate essentially coincides with νe at high densities,

but the light mass eigenstate is predominantly νe at low densities, the survival

probability of an initial νe is approximately 1 − PH, where PH is the probability

for remaining in the heavy mass eigenstate.

4.4.2 Dependence on Lν

We can go further by using the zeroth-order mean field S(0) to understand

how the flavor evolution of the low-energy νe depends on Lν . As discussed below,

Equations 4.39 and 4.40 imply that neutrinos with ω � 〈ω〉 will experience an

MSW resonance before the resonance of S(0). These higher frequency neutrinos

may pass through multiple resonances created by the matter potential bump.

Based on the MSW effect, S(0) corresponding to EMSW = 8.53 MeV goes

through the resonance after the low-energy νe. Assuming adiabatic evolution of

S(0) before the resonance, we can take

S(0) ≈ − HMSW

2|HMSW|
≈ −1

2
(cos 2θmêfz − sin 2θmêfx), (4.41)
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where

cos 2θm =
〈ω〉 cos 2θv −

√
2GFne√

(〈ω〉 cos 2θv −
√

2GFne)2 + (〈ω〉 sin 2θv)2

, (4.42)

sin 2θm =
〈ω〉 sin 2θv√

(〈ω〉 cos 2θv −
√

2GFne)2 + (〈ω〉 sin 2θv)2

. (4.43)

The evolution of sω before the resonance of S(0) is then governed by

d

dr
sω ≈ sω ×

[
(ω cos 2θv −

√
2GFne +

µ

2
cos 2θm)êfz − (ω sin 2θv +

µ

2
sin 2θm)êfx

]

(4.44)

≡ sω ×Hω . (4.45)

The above equation shows that sω goes through the resonance when

ω cos 2θv =
√

2GFne −
µ

2
cos 2θm ≡ |He|+B. (4.46)

Note that cos 2θm < 0 before the resonance of S(0) [see Eq. (11)] and therefore

B > 0. Consequently, the energy of those νe (Eω = δm2/2ω) that go through the

resonance at the bump in the ne profile decreases as Lν , and hence B, increases.

This trend can be seen in every frame in Figures 4.20 and 4.21. As the neutrino

luminosity is increased, the peak energy of the population of low energy neutri-

nos that hop out of the heavy neutrino mass eigenstate as a result of the bump

decreases.

We can also qualitatively understand why increasing Lν produces a decreas-

ing survival probability of the bump-affected νe. The Landau-Zener probability for

hopping from the heavy to the light mass eigenstate after the resonance is

Phop = exp

[
−π

4

δm2 sin2 2θv

E cos 2θv

Hres

]
, (4.47)

where

Hres ≡
∣∣∣∣
d ln(|He|+B)

dr

∣∣∣∣
−1

res

(4.48)

is the scale height of the total flavor-evolution potential at the resonance position.

Crudely we have 1 − PH ∼ Phop. As increasing Lν shifts the resonance energy

window to lower Eν at the bump in the ne profile, Phop decreases because flavor
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evolution through the resonance tends to be more adiabatic for lower-energy neu-

trinos [see Eq. (16)]. In addition, as B decreases much more slowly than |He| with

radius, Hres becomes larger when the contribution from B increases with Lν . This

also reduces Phop [see Eq. (16)].

Furthermore, equations 4.39 and 4.40 also imply that a sufficiently large

neutrino-neutrino scattering potential will cause neutrinos with oscillation frequen-

cies roughly equal to or less than 〈ω〉 to follow the evolution of S(0) as this vector

moves through resonance. To illustrate this, I choose to define the angle α as the

angle between HMSW and either S(0) or S. The heavy mass eigenstate survival

probability PH of the collective ensemble of neutrinos that follow the evolution of

S(0) is related to α by

PH = 1− 1

2
(1 + cosα) . (4.49)

Figure 4.22 shows the evolution of α for the simulations with relatively high lumi-

nosities. From the figure it can be seen that the evolution of S for these luminosities

is qualitatively similar to that of S(0).

Interestingly, the final alignment angle, α, for the collective neutrino isospin

vectors is slightly larger than it is for S(0). This means that the collective NFIS’s

are more closely aligned with −Ĥv than S(0) is. The highest luminosity simulation,

with Lν = 1054 erg s−1, has the collective NFIS that is most closely aligned with

S(0), and the reason for this can be found in Eq. 4.40. In the limit of µ (r) �
|He| � ω the individual sω will orbit exclusively around S(0) and follow it through

resonance. However, it can be seen from Eqs. 4.42 and 4.45 that only neutrinos

with ω = 〈ω〉 go through resonance at the exact position where cos 2θm = 0.

Neutrinos following the evolution of S(0) will still experience some fraction of the

neutrino self-coupling potential, although at resonance |He| � B for neutrinos

that track S(0). This results in a small increase in Hres, which slightly lowers the

overall hopping probability and slightly increases α.

When the neutrino luminosity is moderately lower, the same basic phe-

nomenology is observed. Figure 4.23 shows the evolution of α for the simulations

with moderate luminosities, 0.6−1.0×1053 erg s−1. The collective NFIS S for these

simulations still tracks roughly the evolution of S(0), although deviations become
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more pronounced as the neutrino luminosity decreases. Counter-intuitively, the

final alignment of the lower luminosity S’s is closer to that of S(0) than in the cal-

culations with Lν = 1053 erg s−1. This effect originates in the contribution of the

bump-affected neutrinos to the integrals in Eqs. 4.37 and 4.38. From Figure 4.20

one can see that the population of bump-affected neutrinos has grown appreciably

in this luminosity range, comprising 7−10 % of all neutrinos. These bump affected

neutrinos are not connected in a coherent fashion to the flavor evolution of S, but

they are predominantly aligned with the +Ĥv axis (they are predominantly ν2).

This means that they will tend to drag the alignment of S closer to the +Ĥv axis,

which systematically moves the final value of α lower.

For luminosities below Lν = 6.0×1052 erg s−1, the magnitude of the neutrino

self-coupling potential drops below 〈ω〉 = 1.4 × 10−16 MeV prior to reaching the

resonance region of S(0). This means that many neutrino states will undergo an

MSW-like flavor transformation prior to reaching this region of the supernova

envelope. As a result, these neutrinos, including those with ω = 〈ω〉, will not

participate in the collective flavor oscillations I have described. In turn, this means

that the approximation g (ω) ≈ δ (ω − 〈ω〉) is not justified in this case. Ultimately

this approximation breaks down because the evolution of the the neutrino state

with ω = 〈ω〉 is not coherently related to the evolution of other neutrino flavor

states.

The progressive breakdown of this approximation with decreasing neutrino

luminosity can be seen in Figure 4.24. The motion of the vector S for each calcu-

lation deviates widely from the motion of S(0). Furthermore, the final alignment

angle α for each S is no longer related to the actual hopping probability for neutri-

nos in those calculations. The hopping probability inferred from Figure 4.24 and

Equation 4.49 differs dramatically from the actual hopping probability observed in

the calculations shown in Figures 4.20 and 4.21 for low Lν . The discrepancies are

∆Phop = 0.16, 0.35, 0.48 for the calculations with Lν = 4.0,
√

10, 1.0×1052 erg s−1

respectively.
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4.4.3 Spectral Swap Formation

If the luminosity is large enough, it can be seen that after the neutrinos

in these calculations have passed the resonance region, the neutrino self-coupling

potential becomes the dominant term in the neutrino forward scattering potential.

Neutrinos which have ω < µ (r) fall into a form of collective flavor oscillations

known as the Regular Precession mode. The Regular Precession mode is typified

by the collective ensemble of neutrinos rotating with a common frequency, ωpr

about the axis of the vacuum mass basis,

d

dr
sω = ωpr (sω ×Hv) . (4.50)

This collective oscillation has the feature that it conserves an effective lepton num-

ber (or “energy”) of the ensemble of neutrinos. While this lepton number has a

more complicated general expression, in the particular case of the neutronization

neutrino burst where the initial flux of neutrinos is nearly pure νe, the conserved

lepton number is simply ∝ nνPH for neutrino mixing at the atmospheric mass

scale.

In the initial stages of neutrino flavor transformation, this lepton number

is not conserved. However, thereafter the Regular Precession mode fixes the total

number of neutrinos in mass state 3. This gives the criterion for the precession

frequency, ωpr, for the system,

∫ ∞

ωpr

PH (ω) g (ω) dω =

∫ ∞

0

g (ω) {PH (ω)− [P2 (ω) + P1 (ω)]}dω, (4.51)

where P1 (ω) , P2 (ω) are the probabilities of a neutrino with oscillation frequency

ω to be in the instantaneous mass eigenstate 1, or 2 respectively.

It is this precession frequency that sets the energy of the spectral swap (in

this case between mass state 3 and mass state 2). As the magnitude of the self

coupling drops, neutrinos with oscillation frequencies in the range µ (r) > ω > ωpr

will participate in the the Regular Precession mode and will align with mass state

3, while neutrinos with ω < ωpr will be aligned with mass state 2. The final results

of this process can be seen in Figure 4.20. For all but the least luminous calculation

a spectral swap forms, with Eswap = δm2/2ωpr, close to Eν ∼ 15 MeV. The precise
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location of Eswap depends on the details of flavor transformation due to the motion

of S(0) and the bump affected neutrinos. Broadly speaking, a smaller PH found

from Eq. 4.49 will lower the swap energy of the final neutrino energy spectra by

reducing the value of the integral on the right side of Eq. 4.51. However, a larger

population of bump affected neutrinos will move the swap energy to higher values

(smaller ωpr) by reducing PH (ω) g (ω) for large ω.

It is important to note that the spectral swap between mass states 3 and

2 can sometimes form even when the coherent flavor evolution of neutrinos has

broken down deeper in the envelope. As discussed in the previous section, for

the calculations with Lν < 6.0 × 1052 erg s−1 collective neutrino flavor transfor-

mation breaks down in the resonance region because µ (r) < 〈ω〉. However, from

Figure 4.20 it can be seen that a mass state 3/2 swap still forms successfully for

Lν = 4.0× 1052 erg s−1 and Lν =
√

10× 1052 erg s−1. Swaps between mass state 3

and 2 form for these two models where the luminosity is low because the neutrino

self-coupling is still large compared to ω for high energy neutrinos, specifically

µ (r) > ωpr after the resonance region. This allows the high energy neutrinos to

briefly form a Regular Precession mode before µ (r) decreases further with radius

and flavor transformation in the δm2
atm mixing sector stops.

For the lowest neutrino luminosity, Lν = 1.0 × 1052 erg s−1, there is no

spectral swap observed in Figure 4.20 between mass states 3 and 2. In this case,

µ (r) < ωpr even before the system finishes MSW-like flavor transformation. No

collective oscillation can proceed in the δm2
atm mixing sector for this case.

While I have focused entirely on the δm2
atm mixing sector in the sections

above, it should be pointed out that the δm2
� mixing sector is completely indiffer-

ent to the range of luminosities that I have explored. The neutrino flavor mixing

energy scale for the δm2
� mass state splitting is ∼ 30 times smaller than that of

the atmospheric mass state splitting. The model of neutrino flavor transformation

outlined above is quite robust for the solar mixing sector, with µ (r) > 〈ω〉� and

µ (r) > (ωpr)� for all of the neutrino luminosities that I consider. The spectral

swap between mass states 2 and 1 is created by the Regular Precession mode in

this mixing sector. While Eswap� varies greatly for the different calculations in Fig-
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ure 4.20, this swap energy is only changed by variations in flavor transformation

in the δm2
atm sector. The ratio of ν2/ν1 neutrinos is identical for all of the calcula-

tions shown in Figure 4.20. A curious consequence of this is that the spectral swap

energies move closer and closer together as the luminosity of the neutronization

burst decreases, until ultimately the swap between mass state 3 and 2 disappears

altogether. This behavior is evident in Figure 4.20.

4.4.4 Expected Signal

So far I have examined the behavior of neutrino flavor transformation in

the O-Ne-Mg neutronization burst environment in discreet segments in time, where

the neutrino luminosities and spectral energy distributions are fixed. The reality

of the neutronization burst is one in which the neutrino emission from the pro-

toneutron star is evolving constantly on time scales which are short compared to

the overall length of the burst. The results shown in Figures 4.20 and 4.21 are

instantaneous snapshots of the end results of neutrino flavor transformation dur-

ing the neutonization burst, and therefore do not necessarily represent the entirety

of the expected signal. The luminosities, average energies, and relative fluxes of

different flavors of neutrinos emitted during the burst change over the course of

the neutronization epoch. Based on this analysis, I conclude that it is possible

that these changes could induce significant variation in the flavor swap structure

of the neutrino emission over the length of the burst.

Further complicating the issue of what one might expect to see of the neu-

trino flavor states as they arrive at Earth is that any detected neutronization burst

signal will be constructed by stacking together all of the neutrino events in a detec-

tor within some finite window of time. The final result is a time integrated signal

where the measured flavor states of individual neutrino energy bins are weighted

by their instantaneous fluxes. If the swap structure of the final neutrino flavor

states varies widely during this time integration window, the clean flavor swaps

show in Figures 4.20 and 4.21 may not be easily detectable in the final signal.

To investigate whether these considerations are important, I conducted a

suite of multi-angle, 3-flavor, neutrino flavor transformation calculations using the
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neutronization burst neutrino emission from two separate studies of O-Ne-Mg core-

collapse explosions [4, 5]. Starting from the initial rapid rise in νe luminosity

as the bounce shock moves through the neutrinosphere surface, I solve for the

neutrino flavor evolution at six discrete times spaced 5 ms apart after the start

of the burst, giving an overall integration time of 30 ms. This section of time

slices covers what is broadly defined as the neutronization burst. Although the

total length of the neutronization burst is not identical between the two studies,

I choose the point of view of an observer who must make a single, appropriate

time cut in order to analyze the received signal. To construct the initial neutrino

emission spectra for each 5 ms time slice, I take a time average of the luminosity

and average neutrino energy for each ν/ν̄ flavor in a given time slice and use

those data to reconstruct overall energy spectra. The neutrino mixing parameters

employed for this calculation are the same as those stated at the beginning of this

paper when performing calculations for the normal neutrino mass hierarchy. I also

treat flavor transformation for neutrinos in the inverted neutrino mass hierarchy,

where ∆m2
atm = −2.4× 10−3 eV2.

The normalized total flux of neutrinos found in the final signal is taken to

be the time integrated sum of the neutrino flavor states and fluxes produced by

each of our calculations. Results for these calculations presented in the vacuum

mass basis can be seen in Figures 4.25 and 4.26 for the normal neutrino mass

hierarchy, and Figures 4.27 and 4.28 for the inverted neutrino mass hierarchy.

The neutrino flavor basis representation for these results is given in Figures 4.29

and 4.30 for the normal neutrino mass hierarchy, and Figures 4.31 and 4.32 for

the inverted neutrino mass hierarchy.

For neutrinos in the normal mass hierarchy, one can clearly see in Fig-

ure 4.25 that for a neutronization burst of the type found in [4], the swap structures

are noticeably disrupted by the time integration of the received neutrino signal.

The remnants of the two expected flavor swaps can be seen at ∼ 15 MeV and

∼ 20 MeV, but these have been smoothed out by variations over time. By con-

trast, Figure 4.26 shows that for a neutronization burst of the type found in [5],

the flavor swap signal remains sufficiently constant throughout the duration of the
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burst, with a mass state ν3/ν2 swap at 14.5 MeV and a mass state ν2/ν1 swap at

19 MeV.

The difference in the results for these two models derives from differences

in the luminosities and average energies of neutrino emission during the neutron-

ization neutrino burst, which in turn arrises from uncertainties in current models

of supernova explosion physics. The neutrino emission parameters given in Ref. [4]

are for the lab frame while those in Ref. [5] are for a frame comoving with an in-

falling mass element. However, even after correcting for the difference between the

reference frames, significant differences remain in the neutrino emission parameters

for the two supernova models, especially in terms of the neutrino luminosity. I con-

sider that such differences are most likely due to the different physics input used

by these two models. In any case, I wish to explore how small but significant varia-

tions of neutrino emission affect the signal through collective oscillations. So I have

adopted the neutrino emission parameters given in Refs. [4] and [5] as examples.

The study in Ref. [4] employs a model which produces νe’s which have relatively

lower average energies, making them more susceptible to luminosity and bump

modification of the swap signal over time compared to νe’s produced in Ref. [5].

Furthermore, the overall fluence of electron lepton number during the neutroniza-

tion burst epoch in Ref. [4] is less than Ref. [5], which provides a lower relative

νe luminosity. This in turn makes the swap signal produced in the neutronization

burst more variable with time for the neutronization burst in Ref. [4].

For neutrinos in the inverted mass heirarchy, Figures 4.27 and 4.28 show

that the swap signal is consistent over time for both models I consider. For both

studies, the expected neutrino signal has a clear mass state ν2/ν1 swap. The swap

energies are slightly different, owing to the different average energies of νe’s in both

studies. The swap signals in the inverted neutrino mass hierarchy are insensitive

to the differences in neutrino emission between these studies because the inverted

mass hierarchy forms only a single swap at the ∆m2
� scale. Because the mass

squared splitting for this scale is ∼ 30 times smaller than the atmospheric scale,

the νe luminosity for both of these studies is firmly in the “high luminosity” limit

for swap formation via the mode of collective neutrino flavor transformation I have
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outlined here and, as a result, is not sensitive to the changes in neutrino luminosity

and average energy over the course of the burst.

Chapter 4, in part, is a reprint of material has appeared in Physical Review

D, 2010-2012. Cherry, J. F., Wu, M.-R., Carlson, J., Duan, H., Fuller, G. M., and

Qian, Y.-Z., the American Physical Society, 2010-2012. The dissertation author

was the primary investigator and author of these papers.
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Figure 4.20: The final neutrino mass state emission energy spectra for calcu-
lations of the flavor transformation in the neutronization neutrino burst of an
O-Ne-Mg core-collapse supernova. Each panel shows the results for a different
possible burst luminosity, ranging from Lν = 1054 − 1052 erg s−1, with identical
Fermi-Dirac energy distributions.
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Figure 4.21: The probability for electron neutrinos in the neutronization neutrino
burst of an O-Ne-Mg core-collapse supernova to hop out of the (initial) heavy
mass eigenstate, 1 − PH, plotted as a function of inverse neutrino energy. Each
panel shows the results for a different possible burst luminosity, ranging from
Lν = 1054 − 1052 erg s−1, with identical Fermi-Dirac energy distributions.
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Figure 4.22: High luminosity evolution (L0 = 1053 erg s−1): The opening angle α
between the collective NFIS S(0) and HMSW, plotted as a function of |HMSW| / |Hv|
as the system moves through resonance. The idealized NFIS (solid line) shows the
evolution of S(0) in the ideal, strong neutrino self-coupling case. The dashed line,
dot-dashed line, and dotted line show the evolution of S as calculated for neutrino
luminosities 10L0,

√
10L0, and L0 respectively.
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Figure 4.23: Moderate luminosity evolution (L0 = 1053 erg s−1): The opening
angle α between the collective NFIS S(0) and HMSW, plotted as a function of
|HMSW| / |Hv| as the system moves through resonance. The idealized NFIS (solid
line) shows the evolution of S(0) in the ideal, strong neutrino self-coupling case. The
dashed line, dot-dashed line, and dotted line show the evolution of S as calculated
for neutrino luminosities L0, 0.8L0, and 0.6 L0 respectively.
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Figure 4.24: Low luminosity evolution (L0 = 1053 erg s−1): The opening angle α
between the collective NFIS S(0) and HMSW, plotted as a function of |HMSW| / |Hv|
as the system moves through resonance. The idealized NFIS (solid line) shows the
evolution of S(0) in the ideal, strong neutrino self-coupling case. The dashed line,
dot-dashed line, and dotted line show the evolution of S as calculated for neutrino
luminosities 0.4L0, 10−1/2 L0, and 10−1 L0 respectively.
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Figure 4.25: The expected signal from the neutronization burst of Ref. [4], in the
normal neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the vacuum mass basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the vacuum mass basis.
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Figure 4.26: The expected signal from the neutronization burst of Ref. [5], in the
normal neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the vacuum mass basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the vacuum mass basis.
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Figure 4.27: The expected signal from the neutronization burst of Ref. [4], in the
inverted neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the vacuum mass basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the vacuum mass basis.
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Figure 4.28: The expected signal from the neutronization burst of Ref. [5], in the
inverted neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the vacuum mass basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the vacuum mass basis.
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Figure 4.29: The expected signal from the neutronization burst of Ref. [4], in the
normal neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the neutrino flavor basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the neutrino flavor basis.
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Figure 4.30: The expected signal from the neutronization burst of Ref. [5], in the
normal neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the neutrino flavor basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the neutrino flavor basis.
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Figure 4.31: The expected signal from the neutronization burst of Ref. [4], in the
inverted neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the neutrino flavor basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the neutrino flavor basis.
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Figure 4.32: The expected signal from the neutronization burst of Ref. [5], in the
inverted neutrino mass hierarchy, created by integrating the final emission angle
averaged neutrino spectral energy distribution and fluxes over the first 30 ms of
the neutrino burst signal. Left: Scaled neutrino number flux, summed over all
neutrino flavors, shown in the neutrino flavor basis. Right: Scaled anti-neutrino
number flux, summed over all neutrino flavors, shown in the neutrino flavor basis.



Chapter 5

The Neutrino Halo

5.1 Issues with Neutrino Scattering

Two roads diverged in a wood, and I —

I took the one less traveled by,

And that has made all the difference.

— Robert Frost, Mountain Interval (1920)

5.1.1 Direction Changing Scattering

Now I shall point out a surprising feature of neutrino flavor transformation

in core-collapse supernovae. All collective neutrino flavor transformation calcu-

lations employ the “Neutrino Bulb” model, where neutrino emission is sourced

from the neutrinosphere, taken to be a hard spherical shell from which neutrinos

freely stream. This seems like a reasonable approximation because well above the

neutrinosphere scattered neutrinos comprise only a relatively small fraction of the

overall neutrino number density. However, this optically thin “halo” of scattered

neutrinos nonetheless may influence the way flavor transformation proceeds. This

result stems from a combination of the geometry of supernova neutrino emission,

as depicted in Fig. 5.1, and the neutrino intersection angle dependence of neutrino-

neutrino coupling.

Neutrinos are emitted in all directions from a neutrinosphere of radius Rν ,

89
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Figure 5.1: Supernova neutrino emission geometry.

but those that arrive at a location at radius r, and suffer only forward scattering,

will be confined to a narrow cone of directions (dashed lines in Fig. 5.1) when

r � Rν . In contrast, a neutrino which suffers one or more direction-changing

scattering events could arrive at the same location via a trajectory that lies well

outside this cone.

Following neutrino flavor evolution in the presence of scattering, in general,

requires a solution of the quantum kinetic equations [95, 96, 97]. However, the

rare nature of the scattering that generates the halo suggests a separation between

the scattering-induced and coherent aspects of neutrino flavor evolution. In the

coherent limit the neutrino-neutrino Hamiltonian, Ĥνν , couples the flavor histories

for neutrinos on intersecting trajectories [95, 56, 75, 46]. As shown in Fig. 5.1, a

neutrino νi leaving the neutrinosphere will experience a potential given by a sum

over neutrinos and antineutrinos located at the same point as neutrino νi:

Ĥνν =
√

2GF

∑

a

(1− cos θia)nν,a |ψν,a〉 〈ψν,a|

−
√

2GF

∑

a

(1− cos θia)nν̄,a |ψν̄,a〉 〈ψν̄,a|, (5.1)

where the flavor state of neutrino νa is represented by |ψν,a〉, and θia is the angle of

intersection between νi and neutrino or antineutrino νa/ν̄a. Here nν,a is the local
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number density of neutrinos in state a, and the 1 − cos θia factor disfavors small

intersection angles, thereby suppressing the potential contribution of the forward-

scattered-only neutrinos [24, 25]. Direction-altered scattered neutrinos may have

larger intersection angles as shown in Fig. 5.1, and therefore can contribute signif-

icantly to the flavor-changing potentials, despite their small numbers.

In the mean-field, coherent approximation, neutrino flavor evolution is gov-

erned by a Schrödinger-like equation [64], i∂|ψν,i〉/∂t = Ĥ|ψν,i〉, where t is an affine

parameter along neutrino νi’s world line, and Ĥ = ĤV + Ĥe + Ĥνν is the appro-

priate neutrino propagation Hamiltonian, with vacuum and matter components

ĤV and Ĥe, respectively. Ĥνν can be split into two pieces: Ĥbulb
νν , contributed

by neutrinos (index j in Fig. 5.1) which propagate directly (straight lines) from

the surface of the neutrinosphere; and Ĥhalo
νν , contributed by neutrinos that suffer

direction-changing scattering outside the neutrinosphere (index k in Fig. 5.1) and

propagate coherently thereafter. To wit, Ĥνν = Ĥbulb
νν + Ĥhalo

νν .

The operators Ĥhalo
νν and Ĥbulb

νν depend on the complex phases of the neu-

trino flavor states which contribute to them, so that the relative leverage of these

operators in determining flavor transformation at any point requires numerical

calculations. Some conditions have been shown to give phase locking, while other

conditions give phase decoherence [56, 29, 37, 46, 51]. For the purpose of evaluating

the validity of the Neutrino Bulb model, I ignore path length difference-induced

phase averaging [56] and compute the maximum magnitude of the diagonal Hamil-

tonian elements, which I denote with |Ĥhalo
νν | and |Ĥbulb

νν |. A necessary condition

for the validity of the Neutrino Bulb model is that |Ĥbulb
νν | � |Ĥhalo

νν |.

5.1.2 The Safety Criterion

A simple argument can be made about which varieties of spherically sym-

metric density profiles could render the Neutrino Bulb model inadequate. Consider

a series of spherical shells of matter stacked around the neutrinosphere. These

shells are taken to isotropically scatter neutrinos, and, as I discuss below, neutral

current neutrino-nucleon/nucleus scattering does just this. Some of these neutrinos

will contribute number density and flavor information to the sum in Eq. 5.1, adding
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to Ĥhalo
νν . For a point r well outside of these shells, the number density of neutrinos

being scattered to this location from a shell at radius r′, multiplied by the average

value of (1− cos θik) for neutrinos coming from this shell, is ∝ ρ (r′) δr′ (r′/Rν)
2,

where δr′ is the thickness of the shell. As r′ approaches r, the contribution from

these shells is regulated. For small r′, the shell contributions are regulated by the

neutrinosphere.

These considerations imply that when ρ (r′) ∝ r′−3, the potential con-

tributed by a given shell will be ∝ δr′/r′ ∝ δ log (r′). Any selection of logarithmi-

cally spaced shells with r′ < r will cause each shell to make an equal contribution

of neutrino number density at r. Physically, one might expect density features

of size r′ at radius r′. This matter density configuration will cause the ratio of

|Ĥhalo
νν |/|Ĥbulb

νν | to remain fixed with increasing radius.

To compare the contributions of the halo shells to |Ĥbulb
νν |, I observe that

the neutrinosphere (more precisely, the transport sphere [98]) can be treated in the

same spirit. The transport sphere is characterized by the neutrino optical depth,

τ , equal to unity. Requiring that the logarithmic shells above the neutrinosphere

contribute much less than the neutrinosphere itself results in

ρ (r)� ρτ=1

(
Rν

r

)3

. (5.2)

Early in the explosion epoch, the transport sphere corresponds to physical radii

Rν ∼ 30 − 60 km and densities ρτ=1 ∼ 10(11 to 12) g cm−3 [98]. In fact, Eq. 5.2

assumes that the thickness ∆Rν of the neutrinosphere is ∼ Rν , whereas models

show that ∆Rν < Rν , implying a more stringent constraint by a factor of ∆Rν/Rν .

If |Ĥhalo
νν |/|Ĥbulb

νν | < 1 % is taken as the limit where Ĥhalo
νν can be neglected,

then by Eq. 5.2 the range of density profiles for which the Neutrino Bulb model is

likely to be adequate is ρ (r) < 0.01× ρτ=1 (Rν/r)
3. As long as the matter density

in the supernova remains below this limit, there is no danger that the fractional

potential contribution from the scattered halo, |Ĥhalo
νν |, will grow above 1 % any-

where in the supernova envelope. Fig. 5.2 shows the density profiles for several

core-collapse supernova environments alongside the corresponding 1 % safety cri-

terion for each profile. This 1 % criterion is chosen to be commensurate with the

typical level of convergence accuracy in existing flavor transformation simulations.
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Figure 5.2: Solid lines show matter density profiles and dashed lines the cor-
responding Neutrino Bulb (1 %) safety criteria from Eq. 5.2. Black lines are for
the late-time neutrino driven wind environment [6], green lines the neutronization
burst O-Ne-Mg core-collapse environment [2, 3], and red lines the Fe-core-collapse
shock revival environment [7].
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As is evident in Fig. 5.2, the Fe-core-collapse shock revival environment will

have a significant scattered halo. Even though the O-Ne-Mg core-collapse density

profile [2, 3] drops into the safe zone at r > 1000 km, these models nevertheless

will have a significant scattered halo originating from shells at lower radius where

the density curve is above the 1 % safety margin. Only late-time neutrino-driven

wind models avoid scattered halo complication [6, 99, 39, 43, 100, 5, 47]. Fe-core-

collapse models (e.g., the red curve in Fig. 5.2), in general, exhibit an average

density profile that is ∝ r−(2 to 3), which means that |Ĥhalo
νν |/|Ĥbulb

νν | is expected to

increase with radius. Note, however, that though the relative contribution of the

halo may grow with radius, at sufficiently large distance from the proto-neutron

star the neutrino-neutrino potential ceases to be physically important.

5.1.3 Implicit Calculation of the Halo

Matter inhomogeneity, an essential feature of supernova explosion mod-

els [101, 102, 20, 12, 19, 7, 21], adds complexity to this issue. To study this effect

I use the 2D matter density distribution, Fig. 5.3, taken from a supernova model

derived from a 15M� progenitor [7]. This snapshot corresponds to 500 ms after

core bounce, during the shock revival epoch, after the onset of the SASI [12, 19].

I mock up a full 3D density profile by cloning the 2D profile into a 3D data cube.

Starting with an initial flux of neutrinos from the neutrinosphere [65], and taking

all baryons to be free nucleons, I use the full energy dependent neutral current

neutrino-nucleon scattering cross sections [14] to calculate the number flux of neu-

trinos scattered out of each spatial zone and into every other spatial zone (retaining

the necessary information about relative neutrino trajectories between zones). I

compute the magnitude of |Ĥhalo
νν | at each location in the 2D slice that comprises

the original density distribution.

The number density of forward-scattered-only neutrinos above the neutri-

nosphere can be approximated as,

dnν,a (r) =
Lν,a

〈Eν,a〉πR2
ν

dΩν,a

4π
fν,a (Eν) dEν , (5.3)

where Lν,a is the luminosity and 〈Eν,a〉 is the average energy of the ath neutrino or
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Figure 5.3: Left: Color scale indicates the density within the shock front in a
15M� progenitor core-collapse supernova 500 ms after core bounce, during the
shock revival epoch [7]. Right: Effect of the scattered neutrino halo for the matter
distribution at Left. Color scale indicates the ratio of the sum of the maximum (no
phase averaging) magnitudes of the constituents of the neutrino-neutrino Hamil-
tonian, |Ĥbulb

νν |+ |Ĥhalo
νν |, to the contribution from the neutrinosphere |Ĥbulb

νν |.
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anti-neutrino, dΩν,a is a pencil of directions that connects the neutrinosphere and

location ~r, and fν,a (Eν) is the normalized neutrino energy distribution function.

The local number density of neutrinos which have suffered direction-changing

scattering is found by performing integrals over the neutrino number flux in Eq. 5.3,

energy-dependent scattering kernels, and the geometry of the matter envelope

above the proto-neutron star. I define Kg,k′

(
~r − ~r′, Eν

)
as the effective scattering

kernel (with the dimensions of cross section) for process g to scatter neutrino k′

onto a trajectory that connects locations ~r′ and ~r, and ng

(
~r′
)

as the local number

density of scattering targets for process g. For scattering originating in volume

element dV ′, for neutrinos of species a, the contribution to |Ĥhalo
νν | for a radially

directed neutrino at location ~r is,

(1− cos θia)nν,a (~r) =
∑

g

∫

V ′

∫

Ων,k

∫

nν,a


1−

~r ·
(
~r − ~r′

)

|~r ·
(
~r − ~r′

)
|




×Kg,k′

(
~r − ~r′, Eν

)
ng

(
~r′
)
dnν,a (r′)

dΩν,k

4π2
(
dr′ν,k

)2dV
′ , (5.4)

where dΩν,k is a pencil of directions connecting the scattering location and ~r, and

dr′ν,k is the length scale of the volume element at the scattering location, which I

have included in the expression to make the effect of finite size volume elements

in the numerical evaluation of Eq. 5.4 obvious. Note that in all limits,
∫ dΩν,k

(dr′ν,k)
2

is finite. Once all the Hamiltonian contributions from Equation 5.4 have been

computed, they can be directly taken and used in the sum in Equation 5.1, once

one applies a consistent prescription for the elements of |ψν,a〉 〈ψν,a|. Because I

am comparing |Ĥhalo
νν | and |Ĥbulb

νν |, the prescription that I employ is simply that

|ψν,a〉 〈ψν,a| ≡ I, where I is the identity matrix, for all neutrino species.

In this example calculation the scattered halo is taken to be composed of

neutrinos which have suffered only a single direction-changing scattering. Because

the halo region is optically thin for neutrinos, multiple scatterings become increas-

ingly rare with radius and do not have a geometric advantage in their contribu-

tion to |Ĥhalo
νν | relative to singly-scattered neutrinos. Neutrinos which experience

direction-changing scattering that takes them into the same cone of directions as

neutrinos forward scattering from the neutrinosphere are counted as contributing
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to the halo (these neutrinos contribute ∼ 10−6 of the halo potential). As before, I

neglect the effects of neutrino flavor oscillations. Fig. 5.3 shows the results of this

calculation out to a radius of r = 2000 km.

In supernova models the bulk of the direct neutrino-capture heating occurs

at radius ∼ 100 km. This will be below the region of collective oscillations in

the absence of the halo. For example, absent the halo, neutrinos propagating

through the density profile of Fig. 5.3 will begin flavor transformation at a radius of

r ∼ 300−400 km, and finish flavor transformation at r ∼ 1000 km [47]. The effects

of the halo on this picture remain to be calculated. Disturbingly, neutrinos from

the scattered halo in this 2D model nowhere contribute a maximum magnitude

less than 14 % of the neutrino-neutrino potential magnitude, and in many places

contribute 90 % or more of the total.

Fig. 5.3 also shows that matter inhomogeneities generate large correspond-

ing scattered halo inhomogeneities. Furthermore, the inhomogeneity of the scat-

tered halo is increased by several scattering processes which have been omitted from

this illustrative calculation. I did not include neutrino-electron scattering. This

scattering process has smaller cross sections and relatively forward peaked angular

distributions and therefore produces a subdominant contribution to |Ĥhalo
νν |. What

is more important is that our calculation leaves out what is likely the dominant

source of neutrino direction-changing scattering in the low entropy regions of the

supernova envelope: coherent neutrino-nucleus neutral current scattering.

The cross sections for this process scale as the square of the neutrino energy

and square of the nuclear mass number A. In fact, since the proper number density

of nuclear targets is ∝ A−1, but the coherent scattering cross section ∝ A2, the

overall scattered halo potential contribution stemming from this process is ∝ A.

This process, like neutral current neutrino-nucleon scattering, is flavor independent

and flavor preserving, simply changing neutrino direction.

Since the heavy nucleus mass fraction, and the distribution of nuclear mass

numbers, can depend sensitively on the entropy and electron fraction [9], coherent

neutral current scattering could couple neutrino flavor transformation to macro-

scopic, multi-dimensional structures in the supernova envelope. For example, the
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model shown in Fig. 5.3 has relatively lower entropy, downward-flowing, higher

nuclear mass fraction matter; and higher entropy, upward-flowing plumes, with

relatively lower nuclear mass fraction. This could produce a scattered halo with a

complicated 3D geometry and flavor content, creating a non-trivial enhancement

to the inhomogeneities evident in the scattered halo potential shown in Fig. 5.3.

Because scattering processes are energy dependent, neutrinos in the scat-

tered halo possess different energy spectra than forward-scattered only neutrinos.

Furthermore, the flavor content of the scattered halo will not match that of neu-

trinos emerging from the neutrinosphere. For example, consider emergent νe and

ν̄e number fluxes that are equal, yet have different energy spectra. Taken alone,

unmolested by neutrino flavor oscillations, these fluxes give |Ĥbulb
νν | = 0. However,

passing through the energy-dependent scattering processes, they yield |Ĥhalo
νν | 6= 0.

Anticipating the course of neutrino flavor evolution in this environment is

clearly challenging. |Ĥe| is by far the largest contribution to |Ĥ| during the shock

revival epoch. However, considering the Bulb neutrinos alone, current coherent

calculations show that neutrino collective flavor oscillations can proceed despite

a large matter potential [30, 32, 6, 33]. The criterion for the matter suppression

of collective oscillations [103], ∆|Ĥe| ∼ ∆|ĤV|, where ∆ denotes the dispersion in

these potentials for Bulb neutrinos, is not met where the matter densities in Fig. 5.3

drop below ∼ 107 to 8 g cm−3 (the wide range is due to the geometric dependence

of ∆|Ĥe|). In a further complication, neutrinos from the spatially extended scat-

tered halo could arrive at a given location along many different trajectories with

different path lengths, so that significant neutrino oscillation phase averaging [56]

could come into play. This has been shown to suppress collective oscillations in

some conditions [47]. Inhomogeneity and the intersection angle dependence of the

neutrino-neutrino interaction may make phase averaging incomplete. Ascertaining

the role of decoherence and phase averaging processes requires detailed calculation

with specific supernova models [51]. Even if collective oscillations are found to be

suppressed at small radius, they may be operating, e.g. above the shock, because

the halo extends the collective oscillation region.

Though validating coherent flavor transformation studies for late-time neu-
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trino driven wind models, our calculations demonstrate the potential inadequacy

of these treatments in an environment important for the understanding of the su-

pernova explosion mechanism and nucleosynthesis. Ultimately, the scattered halo

changes the nature of the neutrino flavor transformation problem: it broadens the

region influencing flavor evolution from just the neutrinosphere to a much larger

fraction of the supernova envelope; and it introduces essential multi-dimensional

effects. The standard Neutrino Bulb model by its nature is an initial value problem

at each radius r, while the scattered halo makes it necessary to consider how flavor

transformations at large radii can feed back into the evolution at smaller radii.

With this additional source of nonlinearity, qualitatively new phenomena could, in

principle, occur. Further, the extended scattered halo can couple neutrino flavor

evolution to the nuclear composition and complex 3D flow geometries which are

characteristics of the supernova explosion epoch. A self-consistent solution of this

problem likely will demand new computational capabilities and approaches. Given

the importance of neutrinos and the supernova phenomenon for so many aspects

of our understanding of the cosmos, it may be that there is no choice but to seek

such a solution.

5.2 Flavor Transformation During the Accretion

and SASI phases

A widely used method for evaluating the flavor transformation properties

of a system of neutrinos is called the linearized stability analysis. This method

is explained in great detail in Ref. [49]. The essence of the linearized stability

analysis prescription is to insist on solutions to Equation 2.25 that are of the form

si = Aie
−iΩr where Ω is complex. One can then expand Equation 2.25 to linear

order and solve a set of integral eigenvalue equations at fixed radius. If a solution

is discovered where the imaginary portion of Ω = γ + iκ is large and positive,

then there exists the possibility that neutrinos will rapidly alter their flavor states,

which is refered to as flavor “instability”. Broadly speaking, if κr < 1 at some

fixed radius r, then there will be no large scale flavor oscillations, and hence the
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neutrino flavor states are stable in their initial configurations. The analysis is then

repeated, stepping outward in radius and re-evaluating the stability of the neutrino

flavor states.

One of the key features of this analysis is the effect that dispersion has on

collective neutrino flavor oscillations. The NFISs of all neutrinos emitted from the

neutrinosphere will oscillate about the total potential vector Hi at some frequency.

The degree to which these neutrinos can engage in collective phenomena is depen-

dent on how closely their flavor oscillation frequencies match up, i.e. how much

dispersion is present. This dispersion depends not only on the neutrino energies

and relative path lengths of the neutrino trajectories, but on both matter [103]

and neutrino-neutrino [47] interactions as well. Depending on the details of the

neutrino emission geometry and spectra, and on the matter density, the disper-

sion across different neutrino trajectories emerging from the neutrinosphere may

or may not suppress collective oscillations (e.g. damping the magnitude of κ [49]).

5.2.1 Flavor Transformation is now a Boundary Value Prob-

lem

In order to include the neutrino halo in a neutrino flavor transformation

analysis or calculation it must first and foremost be recognized that the halo itself

represents a set of outer boundary conditions that must be accounted for. Neu-

trinos which scatter onto trajectories that take them deeper into the supernova

envelope exist all the way out to the edge of the collapsing star. The halo starts

at zero neutrino number density at the edge of the envelope, but has a positive

gradient as one moves inward. Furthermore, the initial flavor content of the halo

neutrinos is set by neutrino flavor oscillations that are taking place tens of thou-

sands of kilometers deeper within the core.

This is quite distinct from the neutrino bulb model, and the associated

linearized stability analysis. These are fundamentally initial value problems. The

initial neutrino flavor states and emission energy spectra are set by the conditions

near the surface of the proto-neutron star. In such an initial value problem the

neutrino flavor evolution is then entirely determined by how the forward scattering
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potentials at the present radius change / do not change the flavor states of neutrinos

as one moves further out in radius. The evolution of neutrino flavor states is

directed entirely downstream, as the neutrinos propagate outward.

Ref. [104] uses this downstream method to attempt to include the halo in

a linearized stability analysis. In order to do this, they exclude halo neutrinos

which propagate from larger to smaller radii entirely from their analysis, calling

them “backwards-going modes”. The most strongly interacting neutrinos are on

trajectories which intersect head-on or nearly so, and, as result, the neutrinos that

scatter backwards after leaving the neutrinosphere have an enhanced purchase

on the neutrino-neutrino potential for neutrinos emitted from the neutrinosphere.

These so called “backwards-going modes” in fact constitute the bulk of the neutrino

halo potential out to large radii (specifically, large compared to the shock front

radius for the accretion and shock revival epochs) for massive star progenitors.

Using the neutrino emission spectra and an analytic fit to the density profile of

the calculations in [8] and [104], I have computed the fractional contribution that

the outward directed and inward directed halo neutrinos make to the total halo

potential. This is shown if Figure 5.4. From this plot it is clear that within

the inner portions of the supernova envelope, the neutrinos which have scattered

backward from larger radius are far from negligible, and constitute some ∼ 80 %

of the total halo potential or more within the shock front at r = 70 km [8].

5.2.2 Multi-dimensionality

If one wishes to include the neutrino halo in any initial value problem analy-

sis of neutrino flavor transformation in the supernova environment, the fundamen-

tally multi-dimensional nature of the halo must be addressed. Figure 5.4 brings

precisely this problem to the foreground. To make a genuine calculation of Hhalo
νν ,

one must also calculate the evolution of neutrino flavor states for neutrinos trav-

eling backwards in radial coordinate. This is a process which is manifestly absent

from any from initial value formulation of neutrino flavor transformation.

While the halo neutrinos obey Eq. 2.25 as they propagate along their tra-

jectories, oscillating about the instantaneous mass eigenbasis just as neutrinos
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spectra of Ref. [8].
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emerging from the neutrinosphere do, the evolution of Hi along a given halo neu-

trino’s world line will be utterly different from that of a neutrino propagating

outward from the neutrinosphere. The halo neutrinos will pass through a matter

density profile that is quite distinct from the matter density experienced by neu-

trinos emerging form the neutrinosphere, and halo neutrinos have a much larger

coupling to Hbulb
νν due to the wide angles with which they intersect the neutrinos

propagating out from the core.

Without a self consistent solution for the flavor transformation of the halo

neutrinos both before and after their direction changing scattering, it is an open

question how adiabatic their flavor evolution has been (e.g. do the halo neutrinos

maintain a constant opening angle between si and Hi as they propagate). Due to

the large volume over which the halo neutrinos originate, there will be significant

phase cancellation of the halo neutrino contributions to Eq. 5.1 when the opening

angle between si and Hi is large for halo neutrinos [56] (this is likely to happen when

matter densities are relatively low, such that |Hνν | ∼ |He|). Within the context

of the linearized stability analysis, the magnitude of this phase cancellation is an

entirely free parameter.

5.2.3 Multi-composition

The largest effect on the number density of halo neutrinos, absent in Ref. [104],

is coherent enhancement of neutrino-nucleus neutral current scattering. The cross

sections for this process scale as the square of the neutrino energy and square of

the nuclear mass number A. In fact, since the proper number density of nuclear

targets is ∝ A−1, but the coherent scattering cross section ∝ A2, the overall scat-

tered halo potential contribution stemming from this process is ∝ A. One of the

key reasons that the initial bounce shock stalls to become an accretion shock in the

early stages of a core-collapse supernova is that the shock must photo-dissociate

heavy nuclei streaming downward. At the time of the snapshot used in [104],

280 ms post bounce, most of this material is likely to be silicon group elements,

with A ≈ 28. This means that during the shock revival epoch, and especially the

accretion epoch, the magnitude of the neutrino halo potential will be enhanced by
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an order of magnitude or more [105].

5.2.4 Dispersion and Interference

We discussed briefly in the introduction the importance of dispersion in

the development of collective neutrino oscillation and in the linearized stability

analysis. For neutrinos streaming outward from the neutrinosphere, the build up

of flavor oscillation phase difference between adjacent neutrino trajectories can

suppress flavor transformation [56]. However, these flavor oscillation phases are

simply combined in superposition, and it is entirely possible that some sources of

phase build up interfere destructively with other sources.

Because neutrino-nucleus neutral current scattering processes depend on

E2
ν , neutrinos in the scattered halo possess different energy spectra than bulb

neutrinos. Furthermore, it is a general feature of supernova neutrino emission

that ν̄e posses hotter spectral energy distributions than νe. As a result, ν̄e are

preferentially scattered into the halo neutrino population. This means that the

sign of the halo contribution to Eq. 5.1 is not necessarily the same as that of

Hbulb
νν . Because the neutrino-neutrino coupling for halo neutrinos to bulb neutrinos

obeys precisely the same geometric relationship as the coupling of bulb neutrinos

to each other, one can quickly discover from Ref. [47] that when Hbulb
νν and Hhalo

νν

have a relative sign difference, their contributions to the dispersion will also have

a relative sign difference. This means that under certain conditions, the dispersion

created by the halo potential contributions will, in fact, destructively interfere with

dispersion from He and Hbulb
νν . Denoting the total number flux of bulb νe’s and ν̄e’s

as Φbulb
νe and Φbulb

ν̄e , Table 5.1 shows (in the absence of collective flavor oscillations)

under what conditions the contributions to the dispersion from the halo and bulb

neutrinos will interfere constructively and destructively. Table 5.2 shows (in the

absence of collective flavor oscillations) under what conditions the contributions

to the dispersion from the halo neutrinos and the matter potential will interfere

constructively and destructively.



105

Table 5.1: The conditions under which dispersion from the neutrino halo and
dispersion from the bulb neutrinos will interfere constructively or destructively.
Note that the neutrino emission spectra of Ref. [8] lies in the upper right box.

Φbulb
νe 〈E2

νe〉bulb

Φbulb
ν̄e 〈E2

ν̄e〉bulb
> 1

Φbulb
νe 〈E2

νe〉bulb

Φbulb
ν̄e 〈E2

ν̄e〉bulb
< 1

Φbulb
νe

Φbulb
ν̄e

> 1 Constructive Destructive

Φbulb
νe

Φbulb
ν̄e

< 1 Destructive Constructive

Table 5.2: The conditions under which dispersion from the neutrino halo and
dispersion from the matter potential will interfere constructively or destructively.
Note that the neutrino emission spectra and matter potential of Ref. [8] lies in the
upper right box.

Φbulb
νe 〈E2

νe〉bulb

Φbulb
ν̄e 〈E2

ν̄e〉bulb
> 1

Φbulb
νe 〈E2

νe〉bulb

Φbulb
ν̄e 〈E2

ν̄e〉bulb
< 1

ne− > ne+ Constructive Destructive
ne− < ne+ Destructive Constructive

5.2.5 Compounding Unknowns

We have repeated the analyses of Refs. [8, 104], essentially to illustrate the

range of possible outcomes for a linearized stability analysis. I employ the neutrino

emission spectra outlined in these papers, and use the analytic fit the authors

suggest for their matter density profile at a time snapshot of 280 ms post core

bounce. I also follow the convention of Ref. [104] by considering halo neutrinos

which originate from within the a given radial coordinate to be co-evolving in

physical and flavor space with the bulb neutrinos.

Results of performing the linearized stability analysis under several different

sets of assumed conditions are shown in Figure 5.5. The physical interpretation

of the information shown in Figure 5.5 is that when the density profile (shown

in black) passes through the κr ≥ 1 isosurface (shown in color), the flavor states

of the bulb neutrinos become unstable, and large scale collective neutrino flavor

transformation can begin.

For a narrow range of conditions, where there is no appreciable phase av-

eraging of halo neutrino flavor states and the matter in the supernova envelope is
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assumed to be free nucleons and electrons, our results agree with those found in

Refs. [8, 104] in the absence of the neutrino halo (blue) and when I exclude from

the analysis halo neutrinos propagating inward (green).

However, with the neutrino emission parameters used in Ref. [8], the neu-

trino halo potential will interfere destructively with the dispersion contributions

from both the bulb neutrinos and the matter potential. Moreover, all of the ef-

fects discussed at the beginning of this paper have been left out of the analysis

in Ref. [104], and these have varying effects on the dispersion contribution of the

halo potential.

The effect of including the dispersion from halo neutrinos propagating in-

ward is shown in yellow, where the average nuclear mass number is taken to be

〈A〉 = 1. Bulb neutrino flavor states, using this analysis, seemingly are found to be-

come unstable at r ∼ 600 km. This is in contrast to the results in Ref. [104], which

were taken to imply generic suppression of collective neutrino flavor oscillations

throughout the accretion phase.

Also shown in Figure 5.5 are the κr ≥ 1 isosurface contours when the matter

outside the shock is taken to have 〈A〉 typical of the composition in the various

burning shells that may be accreting through the shock. The dispersion created

by the neutrino halo in these cases is so strong that the instability region may be

pushed back as far as r ∼ 150 km. Interestingly, our calculations show that the

halo potential itself can create enough dispersion to suppress instability, at least

when matter density is below some critical value.

There is a further complication which cannot be explicitly shown in Fig-

ure 5.5, and that is the effect of phase averaging. Because the linearized stability

analysis contains no method for solving for the flavor evolution of neutrinos prop-

agating inward, there is no way to gauge the effect of phase averaging on the total

neutrino halo potential. The phase averaging must be considered as an unknown

free parameter that contributes an overall multiplicative pre-factor to Hhalo
νν . This

pre-factor may be anywhere between 0 and 1 and may also vary with radius. This

means that the isosurfaces shown in Figure 5.5 cannot be taken literally, and may

in reality be distorted along a seemingly arbitrary deformation between a hotter
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color contour (depending on the appropriate value of 〈A〉 for a given time) and the

blue contour (where phase averaging removes the halo potential entirely).

Ultimately there is a final difficulty associated with interpreting the out-

come of the linearized stability analysis. If it is found that the bulb neutrinos

do undergo collective flavor oscillations, this discovery immediately invalidates the

initial conditions on halo neutrino flavor states that have been used to conduct the

analysis. If there is any collective flavor oscillation deep within the envelope, this

will change the flavor states of any neutrinos which scatter into the halo. This in

turn changes the effect that the halo potential will have on the flavor state stability

of bulb neutrinos all the way down to the neutrinosphere. Initial value formula-

tions of neutrino flavor transformation, such as the linearized stability analysis,

completely omit this physics.

Attempting to include the neutrino halo in an initial value problem for-

malism for neutrino flavor evolution is fraught with difficulties that cannot be

addressed within the context of such models. The flavor evolution of neutrinos

after scattering, their coupling to matter densities and composition, and the sub-

sequent non-linear feedback onto the flavor transformation of neutrinos deeper

inside the envelope are all outside the scope of a linearized stability analysis. The

breadth of physically reasonable assumptions one might make about how these

phenomena might feed into the analysis show that one can make a plausible case

for both the suppression and enhancement of collective neutrino oscillations during

the accretion and SASI phases of the supernova explosion.

Chapter 5, in part, is a reprint of material has appeared in Physical Review

Letters, 2012 and material that will be shortly submitted to Physical Review D,

2012. Cherry, J. F.; Carlson, J.; Friedland, A.; Fuller, G. M.; Vlasenko, A.,

the American Physical Society, 2012. The dissertation author was the primary

investigator and author of these papers.
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