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EPIGRAPH

The most merciful thing in the world, I think, is the inability of the human mind to

correlate all its contents.

—H.P. Lovecraft
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ABSTRACT OF THE DISSERTATION

Dynamics and Information Processing in Recurrent Networks

by

Alexander Kuczala
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Professor Tatyana O. Sharpee, Chair
Professor Massimo Vergassola, Co-Chair

Random recurrent networks facilitate the tractable analysis of large networks. The

spectrum of the connectivity matrix, determined analytically by random matrix techniques,

determines the network’s linear dynamics as well as the stability of the nonlinear dynamics.

Knowledge of the onset of chaos helps determine the network’s computational capabilities

and memory capacity. However, fully homogeneous random networks lack the non-trivial

structures found in real world networks, such as cell types and plasticity induced correlations

in neural networks. We address this deficiency by investigating the impact of correlations

between forward and reverse connections, which may depend on the neuronal type. Using

x



random matrix theory, we derive a formula that efficiently computes the eigenvalue spectrum

of large random matrices with block-structured correlations. The inclusion of structured

correlations distorts the eigenvalue distribution in a nontrivial way; the distribution is

neither a circle nor an ellipse. We find that layered networks with strong interlayer

correlations have gapped spectra. For antisymmetric layered networks, oscillatory modes

dominate the linear dynamics.

We analyze the effect of structured correlations on the nonlinear dynamics of rate

networks by developing a set of dynamical mean field equations applicable for large system

sizes. We find that the power spectrum of strongly antisymmetric bipartite networks peaks

at nonzero frequency, miming the gap present in the eigenvalue distribution.

Heterogeneous connection statistics facilitate the presence of strongly feed-forward

connections in addition to recurrent ones, both of which promote signal amplification. We

investigate the role of feed-forward amplification in i.i.d. block-structured networks by

computing the Fisher information of past input perturbations. We apply this result to

find the optimal architecture for information retention in two populations, under energy

constraints. We find that this architecture is both strongly feed-forward and recurrent,

with the respective strengths of these connections depending on the available synaptic gain.

Finally, we assess the ability of rate networks to dynamically approximate the

dominant mode of a random symmetric matrix. Given an initial estimate of the eigenvector

as input, we find that there is an optimal processing time and synaptic gain strength

depending on the dimensionality and quality of the initial estimate.

xi



Chapter 1

Introduction

Random recurrent networks pragmatically characterize the dynamics and computa-

tional capabilities of large networks, permitting tractable analysis. These networks contain

a plentitude of feedback connections that allow “memories” of input signals to be stored

for long periods of time. Recurrent networks iteratively transform input signals, as well

as generate spontaneous activity in the absence of input, supplying a high-dimensional

reservoir of signals that can be employed in computational tasks [30, 36, 14, 63, 24].

However, the strength of these connections strongly impact the network’s information

processing capabilities. If the feedback connections are too weak, signals in the network

decay too rapidly, whereas if the connections are too strong, echoes of past signals pollute

the network with noise. It has been proposed that large random networks and other

systems with random interactions maximize information processing at the edge of chaos

[40, 63, 49, 69, 14, 34, 55, 41], although the scope of applicability of this principle is disputed

[12, 47, 11, 56]. These systems undergo a sharp transition from non-chaotic to chaotic

behavior as the strength of connections is increased. It is near this transition that large

disordered networks typically have the greatest information capacity.

Another key network property instrumental in information retention is non-normality.
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Networks with non-normal connections have hidden feed-forward structure, which amplifies

and propagates signals within the network. Non-normal connectivity can arise, for example,

from balanced excitation and inhibition [50, 1], from explicit feed-forward connectivity [29],

or from more subtle architectures [70, 1]. Introducing heterogeneity into the connections of

random networks allows us to investigate the impact of non-normal structure on information

processing.

Our prototypical network throughout this dissertation is the the firing rate model

of neural networks. In this model, the activities xi(t) of the N neurons obey

ẋi(t) = −xi(t) +
N∑
j=1

Jijφ[xj(t)] (1.1)

The function φ(x) is a saturating nonlinearity that maps neuron activities to a finite

range of firing rates. We will frequently choose φ(x) = tanh(x), which saturates to ±1.

The term −xi(t) acts as a capacitance, causing each node to decay exponentially in the

absence of input from other neurons. Each element Jij of the N ×N connectivity matrix

describes the weight from the firing rate of node j to the node i. These weights can be

positive or negative, and are drawn randomly from some probability distribution P(J).

This assumption lends itself well to analysis. When the number of neurons N is large, the

exact choice of connectivity J does not impact the macroscopic behavior of the network –

a well-known result from random matrix theory that is a non-abelian generalization of the

central limit theorem [66].

To gain some intuition about the network dynamics, we first consider the linear

case φ(x) = x, where

ẋi(t) = −xi(t) +
N∑
j=1

Jijxj(t). (1.2)

The solution of this system is x(t) = e(J−1)tx(0), which, in the eigenbasis {ek} corresponding
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to the eigenvalues {λk} of J , is xk(t) = e(λk−1)txk(0). This system is stable only if the

rightmost eigenvalue1 of J is less than one, in which case the network activity decays to

zero. When the system is unstable, the network activity blows up exponentially.

In the simplest case, the connections Jij are all drawn independently and identically

(i.i.d.) from a Gaussian distribution with mean zero and variance g2/N . The gain g is

a parameter that controls the strength of the connections. Remarkably, for large N , the

eigenvalues of J lie uniformly in a disk of radius g in the complex plane [33]. See Fig. 1.1.

This means that, for large networks, the rightmost eigenvalue is g, so that the system is

stable for g < 1 and unstable for g > 1.

In the nonlinear case where φ(x) = tanh(x), the saturating nonlinearity prevents

the network activity from blowing up when g > 1. The Jacobian is

∂ẋi
∂xj

= −δij + Jijφ
′(xj). (1.3)

For g < 1, the system is everywhere contracting, and x = 0 is the unique fixed point2. This

is known as the silent or quiescent phase, where all activity decays to zero, as in the linear

case (Fig. 1.1). When g = 1, the x = 0 fixed point becomes unstable, and the number of

fixed points (most of which are saddles) proliferates as g increases [72]. This is a distinctive

feature of chaotic dynamics [21]. Indeed, well-known dynamical mean field methods can

be used to show that for g > 1, the Lyapunov exponent is positive, and consequently the

network dynamics are chaotic [59, 23].

However, the assumption that connections are independent is limiting, and does

not address the affect of correlations. Most notably, correlations between connection

strengths arise as the result of plasticity, where connections are modified depending on

node activity and network input. One of the predominant effects of plasticity is that it

1The eigenvalue with greatest real part, also known as the spectral abscissa
2Banach fixed point theorem
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g < 1 g > 1

x(t)

t

Figure 1.1: For a large, homogeneous random network, the eigenvalue spectrum of g lies in a
disk of radius g on the complex plane, so that the rightmost eigenvalue is g. When g < 1, the
network activity decays to zero, and for g > 1, the network activity is chaotic

4



induces correlations between forward and reverse connections [31, 46]. That is, the degree

to which node i affects node j is correlated with the strength of the reverse connection from

node j to node i. We also wish to account for macroscopic heterogeneity in our network

models. Heterogeneity can arise, for example, as a result of distinct cell types in the brain,

which may be selective in their connection strengths and correlations to other cell types.

In the first part of this dissertation, we account for both heterogeneity and cor-

relations in network dynamics. In Chapter 2, we use random matrix theory to compute

the eigenvalue distribution of large matrices with structured correlations. We find that

the combined effect of correlations and heterogeneity yields exotic eigenspectra not found

in random matrices with either property alone. Furthermore, the structure of these ei-

genspectra are difficult to characterize succinctly; there are a wide variety of shapes and

behaviors that depend on the relative strengths of the correlations and variances. We

analyze special cases that exemplify these unique features.

In Chapter 3, we study the mean field dynamics of rate networks with block-

structured correlations. Using dynamical mean field theory (DMFT), we derive a set of

self-consistent equations that describe the equilibrium dynamics. For finite-sized networks,

this description is complicated by the presence of nonzero fixed points, whose presence or

absence is difficult to determine analytically.

In the second part of this work, we assess the ability of structured recurrent networks

to store information and perform computations. In Chapter 4, we extend the work of

Toyoizumi and Abbott [69] to compute the information that heterogeneous networks

retain about input perturbations. We find that the integrated Fisher memory curve [29]

is maximized when the structure matrix, describing the mean strength of connections

between populations, is highly non-normal. In the two-population case, networks with

a combination of strong feed-forward and recurrent connections maximize information

retention. Finally, in Chapter 5, we assess the ability of symmetric networks to perform

5



error correction. In particular, we determine the conditions under which an ensemble of

random symmetric networks can improve the estimate of the eigenvector corresponding to

the rightmost eigenvalue of the connectivity matrix.
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Chapter 2

Random matrix theory

Random matrices serve as a useful tool for analyzing the stability and dynamics of

a variety of networks, from neuroscience [59, 52, 5, 4] and genetic circuits [2] to ecology

[44, 6]. The eigenspectra of random matrices also help determine solutions to problems in

nuclear [73] and condensed matter physics [8, 60] as well as in data compression [42, 19]. In

particular, the rightmost eigenvalue (the eigenvalue with largest real component) determines

the stability of the system’s linear dynamics and onset of chaos of the nonlinear dynamics.

Knowledge of the onset of chaos is also useful for determining the network’s computational

capabilities [63, 14] as well as the network’s response to inputs [53].

However, most of these results do not address an important feature of biological

circuits where connection strengths are correlated [31, 61, 46]. While correlated Hermitian

ensembles have received some attention, [71, 57, 39, 18], results about correlated non-

Hermitian ensembles are scarce [58, 54].
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2.1 Hermitian random matrix theory

By means of introduction, we first consider the case where J is a complex N ×N

hermitian matrix, distributed according to

P (J) =
1

Z
e−NtrV (J) (2.1)

where Z =
∫
dJP (J) is the partition function. Since J is hermitian, it has only N2

independent elements, whereas a general complex matrix has 2N2 independent components.

This allows us to write the integral measure as dJ , as opposed to dJdJ̄ . A nice way to see

this is to transform the integral to an integral over the real eigenvalues of J .

If we choose a quadratic potential V (J) = 1
2g2
J2, then the independent elements of

J obey a Gaussian distribution with zero mean and variance g2/N . Specifically,

〈Jij〉 = 0 (2.2)

〈JijJ̄kl〉 =
g2

N
δilδjk (2.3)

where 〈·〉 denotes the expectation value over P (J). We can study the distribution of

eigenvalues of J with the Green’s function (also called the resolvent) [76]

G(z) =
1

N

〈
N∑
i=1

1

z − λi

〉
(2.4)

where λi are the eigenvalues of J . This function has poles at the eigenvalues of J . Since J

is hermitian, its eigenvalues will lie on the real axis. The density of eigenvalues ρ(x) can be

determined by taking the imaginary part of G(z). We can see this as follows [76]: on the

real axis z = x,

1

x+ iε
=

x

x2 + ε2
− iε

x2 + ε2
(2.5)
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For any ε > 0, ∫
dx

iε

x2 + ε2
= −iπ (2.6)

The width of this function decreases with ε, approaching a delta function as ε→ 0. Taking

this limit,

lim
ε→0

1

x+ iε
=

1

x
− iπδ(x) (2.7)

Thus we can see that

ρ(x) = lim
ε→0

1

π
ImG(x− iε)

= lim
ε→0

1

Nπ

〈∑
i

Im
1

x− iε− λi

〉

=

〈
1

N

∑
i

δ(x− λi)

〉 (2.8)

as desired. The Green’s function G(z) will have branch cuts or poles precisely on the

support of ρ(x). Wherever the expected spectrum has an isolated eigenvalue, G(z) has a

pole, and wherever the expected spectrum is continuous, G(z) has a branch cut (which can

be thought of as a continuous set of poles). Everywhere else, G(z) is holomorphic. This

means that we may compute G(z) analytically outside the support of the spectrum, and

take the limit to compute ρ(x).

We can calculate G(z) by expanding in powers of 1/z [76]. This expansion is valid

for all points outside the eigenvalue distribution, where G(z) is holomorphic. We find

G(z) =
1

N
tr

〈
1

z − J

〉
=
∞∑
n=0

tr

〈
1

z

(
1

z
J

)n〉
(2.9)

We make this calculation tractable by expressing G(z) in terms of diagrams [76, 16]. First

9



we define the matrix Green’s function

G =

〈
1

z − J

〉
(2.10)

from which we can recover G(z) = 1
N

trG(z). Then we have the matrix series

G(z) =
∞∑
n=0

〈
1

z

(
1

z
J

)n〉
= G0 + 〈G0JG0JG0〉+ 〈G0JG0JG0JG0JG0〉+ . . . (2.11)

Here, (G0)ij ≡ z−1δij, and the odd terms vanish since 〈J〉 = 0. Furthermore, since the

distribution over J is Gaussian, each term in the sum reduces to the Wick contraction of n

factors of J .

We represent G0 by a single directed line carrying one index, and the correlator

〈JijJkl〉 = g2

N
δilδjk by a double line carrying two sets of indices (Fig. 2.1) [28, 38, 27, 16]. In

analogy to QCD, these are called ‘quark’ and ‘gluon’ propagators, respectively. Each line

indicates the action of the delta function, which is to set its first index equal to its second.

Indices are summed at each connecting vertex. The nth term in the series (2.11) is the sum

of all diagrams with n vertices. As an example, the quartic term in the G(z) expansion is

1

z

∑
jkl

〈
1

z
Jij

1

z
Jjk

1

z
Jkl

1

z
Jlm

1

z

〉
(2.12)

Wick contracting, we get

1

z5

∑
jkl

[〈JijJjk〉〈JklJlm〉+ 〈JijJkl〉〈JjkJlm〉+ 〈JijJlm〉〈JjkJkl〉]

=
g4

N2z5

∑
jkl

[δikδjjδkmδll + δilδjkδjmδkl + δimδjlδjlδkk]

=
g4

N2z5

[
N2 + 1 +N2

]
δim

(2.13)
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Figure 2.1: Propagators in diagrammatic expansion of (2.11)

+

+

Figure 2.2: Fourth order diagrams in (2.13). The second term, which is nonplanar, is subleading
in 1/N .

Compare this explicit calculation with the diagrammatic representation (Fig. 2.2). For

every vertex, include a factor of g2/N , for every propagator G0, include a factor of z−1,

and for every loop, include a factor of N . This immediately yields the result above. For

large N we can drop all but the O(1) terms. The neglected terms correspond to diagrams

which crossing lines, and only “planar” diagrams remain (see Fig 2.3). Planar diagrams

are precisely those that can be embedded in the plane with no intersections. There is a

very nice topological proof of this due to t’Hooft [64, 27].

Although we have reduced the number of diagrams, there are still infinitely many

planar diagrams to sum over. We can solve this problem by resumming the series, a

technique well-known in quantum field theory [76]. In order to do this explicitly, we exploit

the recursive nature of the diagrams. Looking at a selection of diagrams in the series,

(Fig. 2.3), we see that we can generate every possible diagram D by starting with G0

11



and recursively joining diagrams (D = D1D2) and placing J propagators (rainbows) over

diagrams (D = z−1〈JD1J〉z−1). It is clear that every diagram D is of the form

D = G0〈JD1J〉G0〈JD2J〉G0 · · · 〈JDkJ〉G0

= G0

k∏
i=1

〈JDiJ〉G0

(2.14)

for some sequence of diagrams D1, . . . , Dk, k ≥ 0. Since G is the sum of all such diagrams,

G =
∞∏
k=0

∑
D1,...Dk

G0

k∏
i=1

〈JDiJ〉G0 (2.15)

where the sum is over all sequences of k diagrams. Now, by linearity,

G = G0

∞∏
k=0

k∏
i=1

〈
J

(∑
Di

Di

)
J

〉
G0

= G0

∞∏
k=0

k∏
i=1

〈JGJ〉G0

(2.16)

since the sum of all diagrams is just G. Finally,

G = G0

∞∏
k=0

(〈JGJ〉G0)k

=
1

z − 〈JGJ〉

≡ 1

z − Σ

(2.17)

Σ ≡ 〈JGJ〉 is known as the one-point irreducible self-energy, and has a simple form in this

case:

Σil =
∑
jk

〈JijGjkJkl〉 =
g2

N
δiltrG = g2δijG(z) (2.18)
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So we see that Σ is proportional to the identity. Tracing both sides of Eq. 2.17, we get an

equation for G(z):

G(z) =
1

z − g2G(z)
(2.19)

This gives us the quadratic equation

g2G2 − zG+ 1 = 0 (2.20)

with solutions

G(z) =
1

2g2

[
z ±

√
z2 − 4g2

]
(2.21)

We can determine which root to take by noting that G(z)→ 1/z for large z. Since we have

G(z)→ 1
2g2

[
z ± (z − 2g2

z
)
]
, we must take the minus sign.

G(λ) =


1

2g2

[
λ−

√
λ2 − 4g2

]
for |λ| > 2g

1
2g2

[
λ− i

√
4g2 − λ2

]
for |λ| < 2g

(2.22)

Taking the negative imaginary part of G(x) as in Eq. 2.8, we get

ρ(λ) =


0 for |λ| > 2g

1
2πg2

√
(2g)2 − λ2 for |λ| < 2g

(2.23)

and recover Wigner’s semicircle law [73]. Remarkably, the semicircle law holds for any

hermitian random matrix ensemble where the 2N components Jij, i > j are independent

[51, 67]. So long as the matrix elements have zero mean and variance g2/N , the eigenvalues

will obey the above distribution as N →∞. The matrix elements can be real, complex,

discrete, or sparse. This property, known as universality, is the matrix analogue of the

central limit theorem [66]. Other properties of the matrix distribution, such as eigenvalue
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correlations and the eigenvector distribution, are also universal for large N [67, 68]. Non-

hermitian matrix ensembles have also been shown to be universal [51, 10, 65, 3]. A

well-known non-hermitian matrix ensemble is the so-called Ginibre ensemble, in which the

matrix elements Jij are i.i.d. with mean zero and variance 1/N . In this case, the expected

eigenvalue distribution for large N lies uniformly on the unit circle in the complex plane,

known as the circular law [32, 33].

The advantage of the diagrammatic formalism is its extensibility beyond Gaussian

ensembles with zero mean. A. Zee and coauthors applied this formalism to a myriad of

generalizations, including general polynomial potentials V (J) [16], ensembles with nonzero

mean [15], sums of random matrices [75], and non-hermitian random matrices [27]. The

diagrammatic approach can also be used to compute eigenvalue correlations [16, 15].

2.2 Random matrices with structured correlations

We now analyze the case where J is non-hermitian, with matrix elements that are

correlated and not identically distributed. We allow J to have correlations between forward

and reverse connections that depend on the identity of the input j and output i node.

Specifically, the matix elements Jij have moments

〈Jij〉 = 0

〈J2
ij〉 = g2

ij/N

〈JijJji〉 =
1

N
τijgijgji

(2.24)

The gain matrix gij has positive elements. Correlation values τij are symmetric in i, j,

with |τij| ≤ 1, and denote the degree of correlation between forward j, i and reverse i, j

connections in the corresponding random network. However, to simplify the analysis of the

eigenvalue distribution, we choose the distribution over J to be complex gaussian. Although
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this may seem like a restrictive and unrealistic choice, we appeal to the universality principle

of random matrix distributions. Strictly, there is at present no proof that random matrix

distributions with the above moments have universal limiting eigenvalue distributions.

However, we have significant numerical evidence to suggest that universality holds in our

case.

We choose the complex gaussian matrix distribution to have real-valued variances

〈JijJ̄ij〉 =
1

N
g2
ij, (2.25)

and real-valued covariances

〈JijJji〉 =
1

N
τijgijgji. (2.26)

All other-second order correlations vanish. Explicitly,

〈JijJ̄kl〉 =
1

N
δikδjlgijgkl

〈JijJkl〉 =
1

N
δilδjk

√
τij
√
τklgijgkl

(2.27)

where
√
· denotes the principal square root.

To outline the steps of the derivation, we will first seek the expected density of

eigenvalues of J for large N by writing the density in terms of the Green’s function G.

While G is analytic for Hermitian matrices, G is generally non-analytic for non-Hermitian

matrices, so we cannot directly apply the diagrammatic method. We therefore relate G

to the analytic Green’s function of a Hermitian random matrix H, which we compute

with standard diagrammatic techniques. We derive a set of self-consistent equations for G

when the gain matrix gij is a continuous function in the limit N → ∞, and when gij is

block-structured. Finally, we apply our method to examples and compare the results to

empirical eigenvalue distributions obtained by exact diagonalization of realizations of J .
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We start by writing the expected density of eigenvalues of J in the complex plane

as

ρ(x, y) =

〈
1

N

∑
k

δ(x− Reλk)δ(y − Imλk)

〉
. (2.28)

where 〈·〉 indicates an average over realizations of J . Defining ∂ = (∂x − i∂y)/2 and

∂̄ = (∂x + i∂y)/2, and using the identity ∂̄ 1
x+iy

= πδ(x)δ(y) 1, we can write the density

(2.28) in terms of the Green’s function

G(z, z̄) ≡
〈

1

N
tr

1

z − J

〉
(2.29)

as

ρ(x, y) =
1

π
∂̄G(z, z̄). (2.30)

By way of analogy, we can think of the eigenvalues as electric charges on the plane, and the

Green’s function as the electric field of these charges, with the real and imaginary parts of

G(z) as the vector components. From this perspective, Eq. 2.30 is simply Gauss’s law, and

the identity ∂̄ 1
x+iy

= πδ(x)δ(y) is Gauss’s law for a point charge.

Since J is non-Hermitian, the eigenvalues of J will in general lie in some region of

the complex plane. As we have seen, Girko’s circular law states that if the elements of J are

independently and identically distributed with variances g2/N , then the eigenvalues lie in a

disk of radius g [32]. The Green’s function is therefore not in general holomorphic, and we

cannot expand in powers of 1/z as required for the diagrammatic expansion. Following [28],

we can find the Green’s function by solving a related Hermitian random matrix problem,

1This relation follows from the solution ∂̄∂ log z = πδ(x)δ(y) of Poisson’s equation in two dimensions.
See also [28].
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to which we can apply the diagrammatic approach. Define the 2N × 2N Hermitian matrix

H =

 0 J − z

(J − z)† 0

 . (2.31)

The matrix Green’s function for H is

G(η, z, z̄) =

〈
1

η −H

〉
, (2.32)

where we think of the eigenvalues of H as lying on the complex plane η. Since H is

Hermitian, these eigenvalues will lie on the real axis, and G is holomorphic in η except for

cuts on the real axis. Once G is computed, we obtain the original Green’s function G from

G by extracting the lower left matrix block and taking the limit η → i0+:

G(η = 0, z, z̄) =

〈 0 1
(z−J)†

1
z−J 0

〉 , (2.33)

yielding Eq. (2.29):

G(z, z̄) =
1

N
trG21(η = 0, z, z̄). (2.34)

Here, G21 is the lower left block of G. To compute G (2.32), we first rewrite η−H = G−1
0 −J

with

G−1
0 ≡

 η z

z̄ η

 and J ≡

 0 J

J† 0

 , (2.35)

so that the random part J has zero mean. Note that G0 is equal to G with J = 0. We

expand G in G0 as follows:

G =
∞∑
n=0

G0〈(JG0)n〉 = G0 + 〈G0JG0JG0〉+ . . . (2.36)
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αβ
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ij J γδ
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�
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�
k
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G = + + · · ·

+ + · · ·

G = + � + � � + · · ·

�
=

G

Figure 2.3: Diagrams used in the expansion of the Green’s function G (2.36). G is the sum of all
planar diagrams in the large N limit. G can be re-summed in terms of the self-energy matrix Σ.
In the large N limit, Σ consists of all diagrams nested under a double line (2.38).

Here, the odd terms vanish since 〈J 〉 = 0. Since the distribution over J is Gaussian, each

term in the sum reduces to the Wick contraction of n factors of J . We therefore use the

diagrammatic technique [17, 16] to represent each term in the sum. We denote the N node

indices by roman letters i = 1, . . . N and index the blocks by Greek letters α = 1, 2. We

represent G0 by a single directed line carrying one set of indices, and the correlator 〈J J 〉

by a double line carrying two sets of indices (Fig. 2.3) [28, 38, 27]. Indices are summed at

each connecting vertex. The nth term in G is the sum of all diagrams with n vertices. In

the large N limit diagrams which have crossing lines vanish, and only “planar” diagrams
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remain2 [64, 1]. This greatly simplifies the sum, since the only allowed diagrams are nested

‘rainbow diagrams’ such as those depicted in Fig. 2.3. This allows us to evaluate (2.36) by

performing a resummation of G in terms of the ‘self-energy’ matrix Σ:

G =
∞∑
n=0

G0(ΣG0)n =

(
1

G−1
0 − Σ

)
. (2.37)

In the planar limit, the self-energy matrix is

Σ = 〈J GJ 〉, (2.38)

encoding the nested ‘rainbow’ structure of the diagrams [16]. This is depicted diagramma-

tically in Fig. 2.3.

In block form, Eq. (2.37) is

G =

A B

C D

 =

η − Σ11 z − Σ12

z̄ − Σ21 η − Σ22


−1

. (2.39)

and Eq. (2.38) is

Σ =

Σ11 Σ12

Σ21 Σ22

 =

〈JDJ† JCJ

J†BJ† J†AJ

〉 (2.40)

where we have denoted the blocks of G as A,B,C and D. Substituting (2.40) into (2.39)

will give us self-consistent equations for the blocks of G.

Equations (2.39) and (2.40) describe the eigenvalue distribution in the general case,

with or without correlations.

2It is worth noting that since the correlators (2.25, 2.26) are not proportional to the identity as in the
i.i.d. case, loops produce a weighted trace weighted by elements of gij . However, assuming all elements of
gij are of O(1), the weighted trace is of O(N) as in the i.i.d. case.
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2.2.1 No correlations

Before analyzing the impact of correlations on the eigenvalue distribution, we first

check that this result reproduces previous results obtained in the absence of correlations.

When elements of J are independently distributed, the covariances (2.26) vanish. In this

case we find3

Σ11
il =

∑
j,k

〈JijDjkJ
†
kl〉 =

1

N
δil
∑
j

gijgljDjj,

Σ22
il =

∑
j,k

〈J†ijAjkJkl〉 =
1

N
δil
∑
j

gjigjlAjj,

(2.41)

and Σ12 = Σ21 = 0. This means that the matrix Σ is diagonal. Then, since each block on

the RHS of Eq. (2.39) is diagonal, each block of G is also diagonal. Inverting the RHS and

equating matrix elements yields

Aii =
η − 1

N

∑
j Ajjg

2
ji

qi(η, |z|)
, Dii =

η − 1
N

∑
j g

2
ijDjj

qi(η, |z|)
, (2.42)

Cii = z̄/qi(η, |z|), (2.43)

where

qi(η, |z|) = (η − 1

N

∑
j

Ajjg
2
ji)(η −

1

N

∑
j

g2
ijDjj)− |z|2. (2.44)

Writing out the blocks of G in Eq. (2.32),

A B

C D

 =

〈 η
η2−(J−z)(J−z)†

J−z
η2−(J−z)†(J−z)

(J−z)†
η2−(J−z)(J−z)†

η
η2−(J−z)†(J−z)

〉 , (2.45)

3We furthermore demand that gij converges to a uniformly bounded continuous function g(i/N, j/N)
on the unit square as N →∞, excepting discontinuities on a set of measure zero (see [4]).
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and rewriting η = iε, with ε > 0, we see that blocks A and D are positive definite matrices

multiplied by −i. We therefore define aj ≡ iAjj and dj ≡ iDjj, where ai and di are positive

real numbers. We also define cj = Cjj. This allows us to rewrite (2.42) and (2.43) as

ai = âi/qi, di = d̂i/qi, ci = z̄/qi(ε, |z|) (2.46)

with qi(ε, r) ≡ −qi(η, |z|) = âid̂i + r2 and

âi ≡ ε+
1

N

∑
j

ajg
2
ji, d̂i ≡ ε+

1

N

∑
j

g2
ijdj, (2.47)

where r = |z|. We now have a set of 2N self-consistent equations (2.46) for the elements ai

and di of the Green’s function G. These can be solved numerically with ε = 0 (or ε set to a

small value if many elements gij are also small). Once the ai and di are found, the ci can

be computed and used to find the original Green’s function G with Eq. (2.34), since the

trace of G21 ≡ C is the sum of the coefficients ci ≡ Cii. Note that since cj = re−iθ/qj(ε, r)

in polar coordinates, |cj| depends only on r. This allows us to rewrite Eq. (2.30) as a

function of r only:

ρ(r) =
1

2πN

∑
j

(
∂|cj|
∂r

+
|cj|
r

)
. (2.48)

The resulting eigenvalue distribution has support on the disk with radius r =
√
λ1(K),

where λ1(K) is the largest eigenvalue of the matrix Kij ≡ g2
ij/N (see Appendix A). This

result was previously presented in [3] and [4], and a similar argument was used in [1] for

the case of matrices with non-zero mean. However, previous analyses do not hold when J

has covariant elements.

21



2.2.2 Including correlations

We now allow J to have correlated elements across its diagonal (Eq. 2.26). Then

Σ12 and Σ21 6= 0, yielding a new expression for c:

ci = ĉi/qi(ε, z, z̄), ĉi ≡ z̄ − 1

N

∑
j

τijgijgjic̄j, (2.49)

where now qi = âid̂i + |ĉi|2, bi = c̄i. The τij denote the degree of correlation between i and

j as in Eq. (2.26). In this case, the eigenvalue density has the more general form

ρ(x, y) =
1

π
∂̄G(z, z̄) =

1

Nπ
∂̄

N∑
j=1

cj(z, z̄). (2.50)

The density ρ depends on x and y in a nontrivial way, and the support of the distribution

is neither circular nor elliptical. The boundary of the eigenvalue distribution now satisfies

(see Appendix A for a derivation):

λ1(K(z)) = 1, Kij(z) =
1

N
|ci(z)|2g2

ij, (2.51)

where the complex-valued ci(z) are now given by the self-consistent equations

ci(z) = (z −
∑
j

τijgijgjicj(z))−1. (2.52)

Now, to obtain the boundary, it is necessary to simultaneously solve (2.51) and (2.52) for

each boundary point. For example, we can set z = reiθ and solve the above for r for each

θ. Note that these expressions reduce to the circularly symmetric case when τij = 0.
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2.2.3 Block-structured correlations

We now consider the special case for which the gain matrix gij is block structured.

Block structured matrices describe networks with nodes partitioned into subgroups, for

example neural networks with cell-type-specific connectivity [5], or networks of ecological

communities [54]. Suppose the nodes of the network are grouped into M populations of

size fmN , for m = 1 . . .M and that J is block structured so that the gain g2
minj

= g2
mn

and correlations τminj
= τmn depend only on the population indices m and n of the output

and input nodes i and j, respectively. This allows us to sum (2.46) and (2.49) over each

population. Let Nm ≡ N
∑m

n=1 fn. Then define4

am ≡
1

Nfm

Nm∑
i=Nm+1

ai, (2.53)

and define cm and dm similarly. Then qm ≡ qi depends only on the population index, and

now we have

am = âm/qm, dm = d̂m/qm, cm = ĉm/qm, (2.54)

and qm = âmd̂m + |ĉm|2, with

âm = ε+
M∑
n=1

fnang
2
nm, d̂m = ε+

M∑
n=1

g2
mnfndn, (2.55)

ĉm = z̄ −
M∑
n=1

τmngmngnmfnc̄n. (2.56)

4These sums converge, since the Green’s function for H, 1
N trG =

∑
i(Aii +Dii) and Eq. (2.50) must

converge
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Now the dependence on N is removed, and we need only solve 3M self-consistent equations.

The eigenvalue density is now

ρ(x, y) =
1

π
∂̄
∑
m

fmcm(z, z̄). (2.57)

The boundary of the distribution satisfies the M equations

λ1(K(z)) = 1, Kmn(z) = |cm(z)|2g2
mnfn (2.58)

and

cm(z) = (z −
∑
n

τmngmngnmfncn(z))−1 (2.59)

similar to (2.51), (2.52). When τmn = 0, the distribution has boundary |z| =
√
λ1(K),

where λ1(K) is the largest eigenvalue of the matrix Kmn ≡ g2
mnfn [5].

2.2.4 Simple examples

We start by deriving Girko’s circular law in the case where J is homogeneous and

i.i.d. In this case self-consistent equations are simply

a =
1

q
(ε+ g2a), d =

1

q
(ε+ g2d) (2.60)

q = (ε+ g2a)(ε+ g2d) + r2 (2.61)

By symmetry, a = d. Furthermore, setting ε = 0 yields the cubic equation

a(a2 + r2) = g2a (2.62)
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which has solutions a = 0 and g4a2 + r2 = g2. We also have

c =
z̄

g4a2 + r2
=


g−2z̄ a > 0

z−1 a = 0

(2.63)

ρ(z, z̄) 6= 0 precisely where ∂̄c 6= 0, so we see that the a > 0 solution holds on the support

of the eigenvalue distribution, and the a = 0 solution holds outside the support of the

distribution. Further, the Green’s function G = c = 1/z for large z. These two solutions

match when r = g (both a and c are continuous). This means that the boundary of the

eigenvalue distribution must be circular with radius g. Finally, from (2.48), we have

ρ =
1

π
∂̄c =


1
πg2

r > g

0 r < g

(2.64)

which is Girko’s circular law.

Next, we compute the density and boundary of the eigenvalue distribution for a

homogeneous matrix with correlation τ 6= 0. Again, a = d by symmetry, but a now has

solutions a = 0 and g4a2 + |ĉ|2 = g2. The corresponding solutions for c are

c =
z̄ − τg2c̄

g4a2 + |ĉ|2
=


z̄−τz

g2(1−|τ |2)
a > 0

z±(z2−4g2τ)1/2

2g2τ
a = 0

(2.65)

The boundary of the eigenvalue distribution satisfies (2.51). We can verify that the spectrum

is elliptical by setting z = zel ≡ (1 + τ) cos θ + (1 − τ) sin θ. Since the solutions for c

match at the boundary, we can substitute this value into the a > 0 solution5 to yield

c(zel, z̄el)= e−iθ and |c|2 = 1, as required. Taking ∂̄c inside the boundary reveals that the

5 To evaluate c(zel) for a = 0, we must choose the square root so that the boundary condition c(z)→ 1/z
is satisfied for z →∞. This is necessary in the more complex examples explored in 2.3.
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distribution is uniform inside the ellipse.

Another simple example is the case where gmn and τmn are block diagonal. In this

case the eigenvalue distribution is simply a weighted sum over the eigenvalue distributions

of each block. This is the simplest example of a matrix that need not have a circular

or ellipsoidal eigenvalue distribution. For example, if we have two diagonal blocks with

correlations of opposite signs, the positively correlated block has a spectrum supported on

an ellipse stretched across the real axis, whereas the negatively correlated block will has

a spectrum supported on an ellipse stretched across the imaginary axis. The combined

distibution has support on the union of these two ellipses.

2.2.5 Numerical tests

To verify our results numerically, we consider a network with M = 3 populations,

with relative population sizes f = (1/6, 1/3, 1/2), and

g2
mn =


.54 .83 .65

.95 .46 .01

.72 .59 .55

 , τmn =


.5 −.2 .9

−.2 .3 .1

.9 .1 −.6

 . (2.66)

We iteratively solved the self-consistent Eqs. (2.54) for a grid of points on the complex plane

and approximated the eigenvalue distribution using finite differences, shown in Fig. 2.4(a).

We compare this distribution with eigenvalue histograms generated by exact diagonalization

of 1000 realizations of J . We find that realizations of J with complex elements agree with

our result (Fig. 2.4(c,e,f)). Removing the correlations (2.26) from realizations of J yields

a circular distribution (Fig. 2.4(b)). Notably, we find that including these correlations

distorts the eigenvalue distribution in a nontrivial way: the distribution is in general neither

a circle nor an ellipse. Furthermore, we find using Eqs. (A.4),(A.2) that the rightmost

eigenvalue of the distribution has moved from ∼ 0.713 to ∼ 0.890, so that the corresponding
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linear system (1.2) becomes more unstable.

For any finite N , J has non-universal features that disappear as N →∞ (Fig. 2.7).

In particular, the matrix J with real elements will have a higher density of eigenvalues on

the real axis (Fig. 2.4(d)). However, we find that the proportion of eigenvalues on the real

axis drops off as 1/
√
N (Fig. 2.6), as anticipated for large N [26].

To demonstrate that our technique applies to situations where the variance and

covariance depend continuously on the node indices i, j, we consider a neural network

inspired by connectivity around pinwheels in the visual cortex [50, 74]. The neurons are

arranged on a square grid on the unit square and assigned orientations based on their

position, shown in Fig. 2.5(a). For neurons i and j with positions ri and rj, the gain is

gij = g0 exp
[
−|ri − rj|2/w2

r −∆θ2(ri, rj)/w
2
θ

]
, (2.67)

where ∆θ(ri, rj) denotes the difference in orientation of neurons at ri and rj . We choose the

covariance to be proportional to the gain: τij = τ0gij. In this example, wr = 0.2, wθ = 20◦,

g0 = 1, and τ0 = 0.8. The gain matrix for a grid of 16× 16 neuron populations is shown

in Fig. 2.5(b). This grid size requires us to solve N = 256 self-consistent equations to

determine the eigenvalue density. For comparison, we generated 1000 realizations of J with

N = 2048; to mitigate finite-N effects [4], we used block structured matrices with 16× 16

populations, with 8 nodes in each population. We find that our result closely matches the

empirical distribution (Fig. 2.5(c-e)). Increasing the grid size to 32× 32 and 64× 64 did

not appreciably change the resulting eigenvalue distribution, indicating that the current

resolution is sufficient. Finally, using Eqs. (2.51-2.52), we find that including correlations

moves the rightmost eigenvalue from 0.24 to 0.41, decreasing the stability of the system.

In conclusion, we have adapted the diagrammatic technique to study correlated

connectivity matrices that are not independently or identically distributed, and relevant to
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Figure 2.4: Eigenvalue density for block structured J with gain and covariance given by (2.66).
(a) Eigenvalue density calculated from self-consistent equations (2.54). (b) Empirical histogram
of eigenvalues from exact diagonalization of realizations of J with independent elements. The
empirical histogram for J with covariance is shown with complex (c) and real (d) entries. (e,f)
Cross sections of the density along the real (e) and imaginary (f) axes, showing the theoretical
result (solid red line), the complex-valued empirical result (blue dots), and the distribution with
no covariance (dashed curve).
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Figure 2.5: Analysis of eigenvalue distribution with continuously varying gain (2.67). (a)
Orientation map of neurons. (b) Gain matrix gij . (c) Eigenvalue density calculated from self-
consistent equations (top) and from realizations of J (bottom). Density cross sections along the
real (d) and imaginary (e) axes, plotted as in Fig. 2.4(e).
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Figure 2.8: Left: Sketch of two-layer network (2.68). Right: Eigenvalue distribution for
N = 2000, g = 10, β = 0.1, τ = −0.8, f1 = 1/3

biological circuits. The results indicate that the presence of correlations can dramatically

influence the network stability and dynamics. The correlation structure is determined by

plasticity rules, which act locally on connections between nodes [31, 46]. The presented

analytical framework therefore makes it possible to evaluate the impact of local plasticity

rules on global network activity.

2.3 Examples

We can gain further insight into the variety and unique features that block-structured

correlations permit by considering simple examples. Of particular interest are layered

networks, with strong correlations between layers. We will first analyze a two layer network

in detail.
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2.3.1 Two layer network

Consider a network of two populations, with population sizes f1N and f2N , where

the gain matrix gmn and correlation coefficient matrix τmn are

gmn = g

β 1

1 β

 , τmn =

0 τ

τ 0

 (2.68)

We assume τ 6= 0. When β = 0 the network is bipartite. Small values of β introduce weak,

uncorrelated intra-layer connections (Fig. 2.8, left). Under certain choices of β and τ , (in

particular when β is small and τ is close to 1), the eigenvalue distribution of J has three

disconnected components (Fig. 2.8, right). This behavior is especially significant for τ < 0:

it is possible for the rightmost eigenvalue of the distribution to have a large imaginary

component, leading to strongly oscillatory behavior in the network (see Fig. 3.3). This is

in stark contrast to block random matrices without covariance, which are always circularly

symmetric, and therefore have rightmost eigenvalues with small imaginary part.

This class of networks also has tractable implicit analytic expressions for the

boundary of the eigenvalue distribution, given by the matrix K and complex coefficients

cm defined in Eqs. 2.58 and 2.59, respectively. Substituting Eq. 2.68 into Eq. 2.59, we get

the quadratic system of equations

(z − τf2g
2c2(z))c1(z) = 1

(z − τf1g
2c1(z))c2(z) = 1

(2.69)

Since g and τ amount to overall scalings and rotations of the Green’s function (which

will become clear below), we work with the rescaled variables ζ = τ−1/2g−1z and χm(ζ) =

τ 1/2gcm(z), so that cm(z) = τ−1/2g−1χm(τ−1/2g−1z). Then our system of equations reduces
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to

(ζ − f2χ2(ζ))χ1(ζ) = 1

(ζ − f1χ1(ζ))χ2(ζ) = 1

(2.70)

with two solutions

χ1(ζ) =
1

2f1ζ

(
(f1 − f2) + ζ2 ±

√
∆(ζ)

)
χ2(ζ) =

1

2f2ζ

(
(f2 − f1) + ζ2 ±

√
∆(ζ)

) (2.71)

where the discriminant

∆(ζ) = (ζ2 − 1)2 + (f1 − f2)2 − 1, (2.72)

plotted in the top panel of Fig. 2.9. The principal square root in Eq. 2.71 has four branch

cuts, shown in the middle panel of Fig. 2.9. Two of these cuts lie along the real axis, from

the ‘inside’ branch points ±rin to the ‘outside’ branch points ±rout, where

rin = |f 1/2
1 − f 1/2

2 |

rout = |f 1/2
1 + f

1/2
2 |.

(2.73)

The two remaining cuts lie along the hyperbola (Reζ)2 − (Imζ)2 = 1. We must choose a

branch of
√

∆(ζ) that satisfies the boundary condition G(z) = f1c1(z) + f2c2(z)→ 1/z as

z →∞. Furthermore, recall that in using Eq. 2.59, our expression for the Green’s function

is only accurate for z outside the eigenvalue distribution. Since ρ(z, z̄) ∝ ∂̄G(z, z̄) = 0 (Eq.

2.30), G must be analytic outside the eigenvalue distribution. We therefore must choose
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Figure 2.9: Plots of the discriminant ∆(z) (top), the principal root
√

∆(z) (middle), and root
with compact branch cuts (bottom) over the complex plane. Branch cuts are indicated by dashed
lines. Constant lines of complex modulus and argument are indicated by black contour lines. The
complex argument is indicated by hue.
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our branch cuts to be compact. First, we factor ∆(ζ) into its root pairs rin and rout:

∆(ζ) = (ζ2 − r2
in)(ζ2 − r2

out) (2.74)

By pulling factors out of the square root, we can eliminate the hyperbolic branch

cuts: √
∆(ζ) = (ζ2 − r2

in)

√
ζ2 − r2

out

ζ2 − r2
in

(2.75)

where again the square root indicates the principal square root. Finally, in order to satisfy

the z →∞ boundary condition on G, we choose the negative root in (2.71).

Let us now turn our attention to the eigenvalue equation (2.58). The matrix K has

the form

K(z) =

|c1|2f1β |c1|2f2

|c2|2f1 |c2|2f2β

 =
1

|τ |

|χ1(ζ)|2f1β
2 |χ1(ζ)|2f2

|χ2(ζ)|2f1 |χ2(ζ)|2f2β
2

 (2.76)

The Perron-Frobenius eigenvalue of K is then given by

λ1(K) =
1

2
β2(γ1 + γ2) +

1

2

√
β4(γ1 − γ2)2 + 4γ1γ2 (2.77)

where γm ≡ |τ |−1fm|χm(ζ)|2. Requiring that λ1(K) = 1 yields the boundary condition6

β2(γ1 + γ2) + (1− β4)γ1γ2 = 1 (2.78)

Note that this depends only on the sum and product of γ1 and γ2. When β = 0, this

reduces to γ1γ2 = 1, and when β = 1, to γ1 + γ2 = 1. Finally, from (2.71), we get somewhat

6 For an arbitary 2× 2 gmn, the boundary satisfies g211γ1 + g222γ2 + det[g2mn]γ1γ2 = 1
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Figure 2.10: Functions determining eigenvalue support of two-layer network. Left: Plots of χ1

(top) and χ2 (bottom) in the complex plane. Right: Contour plots of the real-valued functions
γ1 + γ2 (top), and γ1γ2 (bottom). The white regions indicate large values near the pole at z = 0.

compact expressions for the sum and product of γ1 and γ2:

γ1 + γ2 =
1

4|τ |f1f2|ζ|2
[
(f1 − f2)2(1− 2Re[q(ζ)]) + |q(ζ)|2

]
γ1γ2 =

∣∣∣∣(f1 − f2)2 − q2(ζ)

4τ
√
f1f2ζ2

∣∣∣∣2 (2.79)

where we have defined q(ζ) = ζ2 −
√

∆(ζ), with the choice of square root as above. These

functions are shown in Fig 2.10. Depending on the values of β2, τ and f1, these yield

different boundaries for the eigenvalue distribution7 (Fig. 2.11). Eq. (2.78) either defines

three contours, one around each branch cut and one around the pole at the origin, or one

contour encompassing all three non-holomorphic features. When f1 = f2, the distribution

is an ellipse.

We can exactly compute the Green’s function G = f1c1 + f2c2 outside the eigenvalue

7The parameter g trivially scales the distribution.
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Figure 2.11: Support of eigenvalue distribution for the two-layer network, as a function of β
(top), τ (middle), and f1 (bottom). The top and middle figures have f1 = 0.75, and the bottom
figures have τ = 0.75
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distribution, yielding

τ 1/2gG(τ 1/2gζ) = f1χ1(ζ) + f2χ2(ζ)

= ζ − 1

ζ
(ζ2 − r2

in)

√
ζ2 − r2

out

ζ2 − r2
in

(2.80)

Changing the sign of τ swaps the real and imaginary axes (and allowing τ to have an

arbitrary phase rotates the distribution) .

In the case where the eigenvalue distribution has disconnected components, we can

determine the fraction of eigenvalues in each piece. This is given by

∫
R

dxdyρ(x, y) =
1

2πi

∮
∂R

dzG(z) (2.81)

where the region R contains the component of interest, and the boundary ∂R is outside

the support of the eigenvalue distribution, where G is holomorphic. It is easiest to find

the fraction of eigenvalues in the center component. Computing the residue around the

simple pole at z = 0 yields the fraction |f1 − f2| for the central component. The other two

components therefore each contain a fraction 1
2

min(f1, f2) of the eigenvalues.

For the special case β = 0, when the network is bipartite, we can make more

definitive statements. In this case, the matrix J is not full rank. With probability one, the

first f1N columns of J have rank f2N , and the remaining f2N columns of J also have rank

f2N . Thus J has only rank 2f2N , so it must have N − 2f2N = (f1− f2)N zero eigenvalues.

The eigenvalue distribution therefore has a delta function at z = 0 containing a fraction

|f1 − f2| of the eigenvalues, consistent with our result above.

We can also write down a condition for whether or not the distribution has discon-

nected components. First, as noted before, the boundary in this case is simply γ1γ2 = 1.
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For ζ 6= 0, this simplifies to

|1− q(ζ)| = 2|τ |
√
f1f2 (2.82)

Expanding the holomorphic function on the LHS around ζ = 0:

1− q(ζ) ≈ (|1− |f1 − f2|)
(

1 +
ζ2

|f1 − f2|

)
+O(ζ4) (2.83)

We see that this function is a saddle point near ζ = 0. If the boundary condition (2.82) is

satisfied at ζ = 0, then the boundary will form an ‘X’ near ζ = 0; the eigenvalue distribution

will be at the cusp of splitting into disconnected pieces (see Fig. 2.11). Setting z = 0 in

(2.82) yields the condition

|τ |2 = min

(
f1

f2

,
f2

f1

)
(2.84)

2.3.2 Three layer network

Now consider a three layer network with

gmn =


gd gfb 0

gff gd gfb

0 gff gd

 and τmn =


0 τ 0

τ 0 τ

0 τ 0

 (2.85)

and populations Nf1, Nf2, Nf3. Transforming ζ = (τgfbgff )
−1/2z,

χm(ζ) = (τgfbgff )
1/2cm(z), and solving for χm(ζ), we get

χ1(ζ) =
1

2(f1 + f3)ζ

(
(f1 + f3 − f2) + ζ2 ±

√
∆(ζ)

)
χ2(ζ) =

1

2f2ζ

(
−(f1 + f3 − f2) + ζ2 ±

√
∆(ζ)

)
χ3(ζ) = χ1(ζ)

(2.86)
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where

∆(ζ) = (ζ2 − 1)2 + (f1 + f3 − f2)2 − 1. (2.87)

χ1 and χ2 have the same forms as 2.71, with f1 → f1 + f3. This means that the boundary

of the eigenvalue distribution for a symmetric 3-layer can be reduced to that of a 2-layer

network. More complex distributions (such distributions with 5 disconnected pieces) can

be obtained by introducing asymmetry between the connections 1↔ 2 and 2↔ 3.

2.3.3 Four layer network

Next, we consider a symmetric four layer network, with gmn and τmn defined

analogously to above, and fm = (f1, f2, f2, f1). The cm now satisfy cubic polynomials.

When z 6= 0, χ1 = χ4 and χ2 = χ3. The discriminant ∆(ζ) is8

∆(ζ) = ζ4
[
4(f1 − f2)3 − (8f1 + 20f1f2 − f2

2)ζ2 + 4f1ζ
4
]

(2.88)

The roots of this polynomial tell us the endpoints of the branch cuts in the expression for

χm. These roots are shown in Fig. 2.12a as a function of f1. ∆(z) has a four roots at z = 0

for all f1 and four other roots on the real or imaginary axes. Disconnected components in

the eigenvalue distribution appear only for f1 > 1/4, which then shrink as f1 increases. By

computing the residue of G(z) around z = 0, we find9 that the proportion of eigenvalues

in the center component is 2(f1 − f2). The eigenvalue equation for K yields a tractable

constraint on the boundary:

γ2

(
gffgbf + g2

d

)
− γ1γ2

(
g2
dgffgbf − g2

ffg
2
bf + g4

d

)
+ γ1g

2
d = 1 (2.89)

Consider the same four layer network, but now with alternating fractions fm =

8This is the discriminant for χ1 and χ4. The discriminant for χ2, χ3 is identical, times a factor of f22 .
9This is left as an exercise to the reader.
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(f1, f2, f1, f2). ∆(z) is now a complicated 10th order polynomial of the form ∆(z) =

z2(a0 + a1z
2 + a2z

4 + a3z
6 + a4z

8), whose solutions, while analytic, are very long and

complicated. For small values of f1 or f2, the eigenvalue distribution has five disconnected

components (Figs 2.12b,c). We can painstakingly calculate the residue of G around z = 0

to yield the proportion of eigenvalues in the center component: 2|f1 − f2|.

This chapter, in part, is based on material contained in Kuczala and Sharpee.

Eigenvalue spectra of large correlated random matrices. Physical Review E, 94(5), 05010,

2016. Part of this chapter is currently being prepared for submission for publication of the

material. Kuczala and Sharpee. The dissertation author was the primary investigator and

author of these papers.
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(c) Eigenvalues of a four-layer alternating network with f1 = 0.01, and N = 8000. Note that only
320 of these eigenvalues are outside the central disk.

Figure 2.12: Four layer network
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Chapter 3

Mean field dynamics

The dynamics of the rate equations

ẋi(t) = −xi(t) +
∑
j

Jijφ[xj(t)] (3.1)

can only be coarsely characterized by the eigenvalues of the connectivity matrix J . Strictly,

the eigenvalues only tell us the stability of the zero fixed point. Dynamical mean field

theory offers us a more quantitative characterization of the dynamics. In equilibrium, as

the number of nodes N →∞, the activities xi(t) become statistically independent, and

obey simple stochastic differential equations. For example, when the connections Jij are

i.i.d., the activities obey independent and identical equations

ẋi(t) = −xi(t) + ηi(t) (3.2)

where ηi(t) is Gaussian noise with zero mean. The ηi(t) have nontrivial temporal correlations

[59, 23]

〈ηi(t)ηi(t′)〉 = g2〈Si(t)Si(t′)〉 (3.3)
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determined by the gain g and nonlinearity φ. Here the expectation value is over realizations

of ηi(t), and Si(t) ≡ φ[xi(t)] The correlation function can be determined self-consistently, as

we will see below. In equilibrium, the correlation function depends only on τ ≡ t− s. For

g < 1, equilibrium is achieved only when all xi(t) = 0, so the correlation function is zero.

More interestingly, for g > 1 in the chaotic phase, the correlation decreases monotonically

with |τ |. Intuitively, trajectories become more scrambled as time goes on due to the chaotic

nature of the dynamics. As g increases, the width of the correlation function decreases, but

its amplitude increases. Again, this is an intuitive consequence of the network dynamics

becoming more chaotic for larger g. As g → 1+, the width of the correlation function

becomes infinite. We will later see in Chapter 4 that this is where the network can best

preserve information about its inputs [69]. Our goal in this chapter will be to extend

dynamical mean field theory to networks where J has block-structured correlations.

3.1 Single population

We first extend the mean field theory above to a homogeneous network with nonzero

correlations

〈J2
ij〉 = g2/N

〈JijJji〉 = ρg2/N

(3.4)

In this chapter, we denote the correlation coefficient as ρ, where 0 ≤ ρ ≤ 1 as usual. As

mentioned before, random matrix theory yields a coarse prediction of the dynamics. Since

the eigenvalues of J lie on an ellipse with major radius g(1 + ρ), positive correlations

destabilize the zero fixed point, whereas negative correlations will stabilize it. We expect

that the network transitions to chaos at g = 1/(1 + ρ).

Using dynamical mean field theory (see Appendix B.1 and [43]), we can show that
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each xi(t) independently obeys the mean field equation

ẋ(t) = −x(t) + g2ρ

∫
dt′R(t, t′)S(t′) + η(t) (3.5)

where R(t, t′) is the response function and η(t) is Gaussian with

〈η(t)〉 = 0 (3.6)

〈η(t)η(t′)〉 = g2C(t, t′) = g2〈S(t)S(t′)〉 (3.7)

as in the uncorrelated case. The effect of the correlations, then, is to introduce a convolution

term with the response function, which has a ‘memory’ of past firing rates. Assuming

R(t, t′) > 0, and noting that S(t) has the same sign as x(t), the convolution term competes

with the decay term−x(t) for ρ > 0, and enhances it for ρ < 0. This tends to slow the

dynamics for ρ > 0, and speed up the dynamics (and decay rate) for ρ < 0.

Note that the response function has R(t, t′) = 0 for t < t′ due to causality, and as

we shall see, decays exponentially. To determine R(t, t′) we use the relation (see B.22)

〈S(t)η(t′)〉 = g2

∫
dt′′C(t′, t′′)R(t, t′′) (3.8)

Convolving (3.8) with the convolutional inverse1 C−1(t, t′) of C(t, t′), we get

∫
dt′C−1(s, t′)〈S(t)η(t′)〉 = g2

∫
dt′dt′′C−1(s, t′)C(t′, t′′)R(t, t′′)

= g2

∫
dt′′δ(s− t′′)R(t, t′′)

= g2R(t, s)

(3.9)

1C−1(t, t′) is defined by
∫
dt′C−1(s, t′)C(t′, t′′) = δ(s− t′′).
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so that

R(t, s) =
1

g2

∫
dt′C−1(s, t′)〈S(t)η(t′)〉 (3.10)

At equilibrium, the correlation function and response function are functions only of τ = t−s.

Defining2

R(τ) ≡
∫
dtdsR(t, s)δ(t− s− τ), (3.11)

Eq. 3.10 becomes

R(τ) =
1

g2

∫
dtdt′〈S(t)η(t′)〉C−1(t− t′ − τ) (3.12)

which has Fourier components

R(ω) =
1

g2
〈S(ω)η(−ω)〉C−1(−ω) (3.13)

3.2 Multiple populations

Now we consider the case where the network has M populations with sizes fmN ,

and J has block-structured correlations

〈J2
ij〉 =

1

N
g2
m(i)n(j)

〈JijJji〉 =
1

N
ρmngmngnm

(3.14)

In the mean field limit, the activities xi(t) of each neuron are all independent and obey

statistics determined by the neuron’s population identity m. In Appendix B.2, we derive

the M mean field equations

ẋm(t) = −xm(t) +
∑
n

Tmn

∫
dt′Rn(t, t′)Sm(t′) + ηm(t) (3.15)

2With this definition of R(τ), τ > 0 denotes a time τ in the past. We expect R(τ) to decrease with τ as
the network loses memory of its past.
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where the ηm(t) are independently Gaussian with correlation functions

Cη
m(t, s) ≡ 〈ηm(t)ηm(s)〉 =

∑
n

Gmn〈Sn(t)Sn(s)〉 (3.16)

For simplicity we have introduced the shorthand

Gmn ≡ g2
mnfn, Tmn ≡ ρmnfngmngnm (3.17)

The response functions Rm(t, s) are determined analogously to Eq. 3.10:

Rm(t, s) =

∫
dt′[Cη

m]−1(s, t′)〈Sm(t)ηm(t′)〉 (3.18)

where [Cη
m]−1(t, t′) denotes the convolutional inverse of Cη

m(t, t′). When τmn = 0, the mean

field equations reduce to ẋm(t) = −xm(t) + ηm(t) as in [5].

3.3 Simulations

We now assess the accuracy of dynamical mean field theory (DMFT) by comparing

numerical simulations of the exact dynamics (3.1) to simulations of the DMFT equations.

For the simulations of the exact dynamics, we compute trajectories x(t) with random

initial conditions and realizations of J . We first run the dynamics for sufficient time for

the networks to approximately reach equilibrium, and then simulate the dynamics for an

additonal time T . Then we Fourier transform to average over time and different trajectories

to compute C(τ) using Eq. 3.7. For the simulations of the DMFT dynamics, we use an

iterative approach to compute C(τ) and R(τ). We first select an ansatz for C(τ) and R(τ).

We find that a Gaussian function is a reasonable ansatz for C(τ), and that a decaying

exponential convolved with a step function is a reasonable ansatz for R(τ). We then
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Figure 3.1: Comparison of DMFT dynamics and exact numerical simulations. Note the difference
in time scales for ρ < 0, ρ = 0, and ρ > 0. Top: Traces of η(t), x(t), and S(t) (gray, purple,
and green, respectively) from an exemplar sample. Middle: Correlation functions C(τ). DMFT
estimate shown in red, and ± standard deviation of C(τ) for exact simulations shown in black.

generate samples η(t) with time correlations given by the ansatz for g2C(τ) (Eq. 3.7).

Next, we compute x(t) and S(t) using the mean field equation (Eq. 3.5). This can be

accomplished either with fourier transforms or integration methods, though we find the

latter to be more accurate in practice. Once we have samples x(t) and S(t), we use S(t)

to compute C(τ), and then Eq. 3.13 to compute R(τ). The results of simulations are

shown in Fig. 3.1. We see here that compared to ρ = 0, ρ > 0 increases the width of the

correlation function, whereas ρ < 0 decreases it, in corroboration with the results of [43].

We employ an analogous algorithm for block-structured networks by simulating the

mean field equations 3.15 and iterating Eqs. 3.16 and 3.18. In Fig. 3.2, we plot results for

the two-layer network explored in 2.3.1. When ρ is sufficiently negative, the correlation
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function exhibits oscillations, as suggested by the eigenvalue distribution analyzed in

2.3.1. In Fig. 3.3, we compare the eigenvalue distribution, correlation function, and power

spectrum of two such networks. The behavior of the power spectrum qualitatively matches

the eigenvalue distribution, indicating that the gap in the eigenvalue distribution has a

significant impact on the modes of the network dynamics.

The proposed algorithm is often much slower than simulating the exact dynamics,

even for large values of N . A likely better approach is to derive a set of differential equations

for the correlation functions and response functions (see [43, 20]), and avoid simulating the

differential DMFT equations altogether, if possible.
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Figure 3.2: Comparison of DMFT solutions to numerical simulations for the two-layer network
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Figure 3.3: Examples of two-layer networks with a spectral gap (left). These networks have
strong oscillations in the correlation function C(τ) (center). The power spectrum (right) peaks
at a nonzero frequency. The top network has β = 0.1, and the bottom network has β = 0.2. In
the first case, the rightmost eigenvalues lie in the high frequency components of the distribution,
whereas in the second case, the rightmost eigenvalues lie in the central low frequency component.
Consequently, the β = 0.1 power spectrum peaks at nonzero frequency, whereas the β = 0.2 power
spectrum peaks more strongly at zero frequency.

3.4 Nonzero stable fixed points

The DMFT description of the network dynamics is valid only at equilibrium for

N → ∞. However, for finite N , the network dynamics may reach a fixed point. For

simplicity, we discuss fixed points in single population networks. We have already seen that

large networks decay to zero when g(1 + ρ) < 1. However, there is a finite probability that

even large networks will reach a nonzero fixed point. The probability of reaching a fixed

point increases with the correlation ρ, reaching certainty at ρ = 1, when J is symmetric. It
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Figure 3.4: Fraction of 1000 networks reaching a nonzero stable fixed point for N = 2000 with a
time limit of T = 2000 and ε = 10−8

is difficult to analytically compute the probability of a network converging to a nonzero

fixed point, even for finite N . We therefore numerically approximate this probability by

brute force simulation. For a given N , we choose a maximum network run time T and

fixed point threshold ε. If a given network satisfies 1
g2N
|ẋ(t∗)|2 < ε2 for t∗ < T , we say

that the network has reached a fixed point. We repeat this process for a number of initial

conditions and realizations of J then count the fraction of networks that meet this criterion

to estimate the probability. Fig. 3.4 shows the dependence of this probability on g and τ

for N = 2000. We have chosen T = 2000 because the majority of fixed points are reached

well before this time (Fig. 3.5).

Chapter 3, in part, is currently being prepared for submission for publication of the

material. Kuczala and Sharpee. The dissertation author was the primary investigator and

author of this paper.
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Chapter 4

Memory capacity of block-structured

networks

There is significant evidence that the information processing capabilities of homoge-

neous random networks is maximized at the edge of chaos [69, 14, 34, 63]. However, in

structured networks, non-normal and feed-forward structure plays an important role in

retention and amplification of inputs [29, 50, 1, 70]. Due to their self-averaging properties,

the effective structure of homogeneous random networks is highly constrained and cannot

fully take advantage of feed-forward connections. In this chapter we analyze the ability of

a block-structured network to retain information about its inputs. We compute the Fisher

information about an input perturbation given a noisy readout of the network activity,

and find a general expression dependent on the block structure. Finally, we maximize the

Fisher information for two-population networks with constraints on the population size

mean synaptic gain.
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We consider discrete dynamics of N neurons, given by

xi(t) =
N∑
j=1

JijSj(t) + ξi(t),

Sj(t) = φ [wjI(t− 1) + xj(t− 1)] .

(4.1)

As before,the xi(t) and Si(t) denote the activity and firing rate of the ith neuron, respectively.

The function φ is a saturating nonlinearity with φ′(0) = 1. I(t) is a scalar external input

to the network, and the wi are input weights to each neuron. The network has internal

white Gaussian noise ηi(t) with 〈ξi(t)ξj(s)〉 = σ2δijδts.

In previous work [69], the connectivity matrix J was taken to be a homogeneous

i.i.d. Gaussian random matrix. In order to introduce heterogeneity into the network, we

consider M cell types with population sizes f1N · · · fmN , where
∑

m fm = 1. We allow the

variance of connections to depend on the input and output cell type m and n. Then the

connectivity matrix J has block-structured variances

〈J2
ij〉J =

1

N
g2
m(i)n(j). (4.2)

where gmn ≥ 0 is the population-dependent gain, and 〈·〉J denotes the expectation value

over realizations of J . For simplicity, we take 〈Jij〉J = 0, and neglect correlations between

matrix elements.

For large N , the dynamics of (4.1) are well approximated by dynamical mean

field theory [5, 69, 48]. We can straightforwardly adapt the results of Chapter 3 to the

discrete case. In the limit N → ∞, the neuron activities xi(t) = ηi(t) are independent

and Gaussian with zero mean. The statistics are completely described by the correlation
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function qm(t, s) ≡ 〈xm(t)xn(s)〉, given by

qm(t, s) = σ2δts +
∑
n

g2
mnfn〈Sn(t)Sn(s)〉n

= σ2δts +
∑
n

GmnCn(t, s)

(4.3)

where we have defined

Cn(t, s) ≡ 〈Sn(t)Sn(s)〉n

Gmn ≡ g2
mnfn

(4.4)

and 〈·〉n denotes expectation over the Gaussian variables xn(t). Compare Eq. 3.16.

When the input is constant, the system reaches equilibrium, and the correlation

function qm(t, s) ∝ qmδt,s. qm is the variance of xm(t), satisfying the self consistent equations

qm = σ2 +
∑
n

Gmn〈S2
n〉n (4.5)

and can be solved numerically by iteration. When the internal noise σ is small, the

spectral radius of G, ρ(G), determines the macroscopic behavior of the network. As in

the continuous case, the network transitions from silent to chaotic activity at ρ(G)→ 1 as

σ → 0 [4, 5, 3, 48]. For finite σ, the noise suppresses the onset of chaos, and the transition

is pushed to larger values of g [48, 53].

4.1 M populations

We now investigate how much information about an input perturbation at time

t0 can be read out of the network at time t. The input I(t) = θδt,t0 is an infinitesimal

pulse with amplitude θ at time t0, where we will take the limit θ → 0. We consider noisy
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readouts of the network activity

vi(t) = wm(i)I(t) + xi(t) + χi(t) (4.6)

from K ∼ O(
√
N) nodes of the network, preserving the relative fractions fm from each

population. The last term is i.i.d. Gaussian white noise with variance σ2
obs. The input

weights wm depend only on the population identity m, and we normalize
∑

mw
2
m = 1. The

Fisher information that the readout contains about θ at time t is

I(θ, t) =

〈
∂

∂θ

∂

∂θ
log p(v(t)|θ)

〉
p(v(t)|θ)

, (4.7)

known as the Fisher memory curve (FMC) [29]. For a fixed realization of J , p(v|θ) is

Gaussian. Assuming the covariance of the distribution is independent of θ, the FMC has

the well-known form [69, 29]

I(θ, t) =
∑
ij

〈
∂µi(t)

∂θ
Σ−1
ij (t)

∂µj(t)

∂θ

〉
J

(4.8)

where

µi(t) ≡ 〈vi(t)|J〉 (4.9)

Σij(t) ≡ Cov[vi(t), vj(t)|J ] (4.10)

are the sufficient statistics of the vi(t) averaged over different trajectories (replicas) for a

fixed network realization J . From Appendix B of [69], the replica-averaged covariance Σ

deviates from the network averaged covariance only by O(N−1/2):

Σij(t) = 〈Σij(t)〉J +O(N−1/2) (4.11)
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The O(N−1/2) term introduces corrections of order
√
K/N to the fisher information. So

long as K ∼ O(
√
N) or less, these corrections are negligible.

Assuming Σ is approximately θ independent as before, the mean field equilibrium

statistics (4.5) yield

〈Σij(t)〉J = δij(σ
2
obs + qn) (4.12)

which is diagonal, meaning that the FMC is the weighted sum of squared signal-to-noise

ratios from each population

I(θ, t) = K
∑
m

fm
σ2
obs + qm

〈(
∂µm(t)

∂θ

)2
〉
J

(4.13)

In the limit of vanishingly small input perturbations θ = 0, we obtain a tractable expression

for 〈(∂µm/∂θ)2〉 using replicas (see Appendix C). In this case, the FMC is

I(t ≥ t0) = K
∑
mn

fm
σ2
obs + qm

(Mt−t0)mnw
2
n (4.14)

The matrix Mmn ≡ Gmn〈φ′〉2n describes the decay or amplification of information in each

population. When M is highly non-normal, the sequence ‖Mt−t0‖ exhibits transient

amplification [70], even though ρ(M) < 1. For non-normal M, the spectral radius only

asymptotically describes the decay rate of the sequence (Fig. 4.2).

Since v(t) is uncorrelated in time for θ = 0, the probability distribution over the

entire readout p({v(t0), . . . , v(∞)}|θ) factorizes across time, and we sum to compute the

total signal-to-noise ratio (SNR):

I =
∞∑
t=t0

I(θ, t)

= K
∑
mn

fm
σ2
obs + qm

[(1−M)−1]mnw
2
n

(4.15)
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This depends on the input weights w, but we can easily determine the best case using the

l1 norm, yielding

max
w
I = K

∥∥∥∥ fm
σ2
obs + qm

[
(1−M)−1

]
mn

∥∥∥∥
1

(4.16)

where ||Amn||1 denotes the l1 operator norm of a matrix A. From (C.8), the spectral radius

ρ(M) < 1, and the SNR is maximized when the spectral radius ρ(M) ≈ 1. When σ < σobs

is small, this occurs close to the transition to chaos.

The behavior of I away from the critical regions depends on features of M other

than the eigenvalues. In particular, the SNR is generally larger the less normal the matrix

M is. The resolvent ‖(z −M)−1‖ diverges faster near eigenvalues for strongly non-normal

matrices, and is closely related to the phenomenon of transient amplification [70].

For M = 1, this expression reduces to the single-population case [69]:

Isingle = K
1

σ2
obs + q

1

1− g2〈φ′〉2

q = g2〈S2〉
(4.17)

For σobs > σ, Isingle is maximized for some g∗ > 1 (see Fig. 4.1). When either the internal

noise σ → 0 or σ � σobs , the optimal gain g∗ → 1.

4.2 Two populations

We now consider the problem of determining the optimal network architecture

(choices of gmn and fm) for a network with two populations, under particular constraints.

First, we put an upper bound ‘budget’ on the mean synaptic gain ḡ ≡ (
∑

mn fmg
2
mnfn)

1/2
<

ḡmax. Secondly, we place a lower limit fminN on the number of neurons in a given population,

such that the mean field limit is valid to a desired accuracy for a given N . For example, if

N = 1000, one may choose fmin = 0.1 so that each population has at least 100 neurons and
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Figure 4.1: Optimal gain g∗ and Lyapunov exponent for a single-population network, as a
function of internal noise σ and observation noise σobs. When σ < σobs, g

∗ > 1. For small values
of σ, the total SNR is maximized when the Lyapunov exponent ≈ 0, close to the edge of chaos.

the largest fluctuations are of order 1/
√
fminN = 1/10. For simplicity, we restrict σ < σobs

and σ � 1.

To determine the form of the optimal network, we first numerically maximize

(4.16) with respect to the Gmn and fm with the above constraints. We find that optimal

matrices G have at least one vanishing off-diagonal element, corresponding to a feedforward

architecture. We can parameterize these networks in terms of f1, ḡ and the eigenvalues

λ1, λ2 of G as follows:

GFF =

 λ1 0

G21 λ2


G21 = f−1

2 (ḡ2 − f1λ1 − f2λ2)

(4.18)

where G21 ≥ 0 requires that f1λ1 + f2λ2 ≤ ḡ2. In this case, the equilibrium variances qm
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satisfy

q1 = σ2 + λ1〈S2〉1

q2 = σ2 + λ2〈S2〉2 +G21〈S2〉1
(4.19)

The best case SNR is

max
w
I = max(I1, I2)

I1 =
f1

∆1(σ2
obs + q1)

+
f2〈φ′〉21G21

∆1∆2(σ2
obs + q2)

I2 =
f2

∆2(σ2
obs + q2)

(4.20)

where ∆m ≡ 1 −Mmm = 1 − 〈φ′〉2mλm. I1 and I2 denote the SNR (4.15) for w = (1, 0)

and w = (0, 1), respectively. In the first case, the input is fed into the first population,

which has feed-forward connections to the second. In the second case, the input is fed into

the second population, which cannot propagate into the first. We therefore expect that

maxw I = I1 in situations where the feed-forward connections can be leveraged to maximize

information. In all cases, the SNR is maximized when the mean gain is saturated, ḡ = ḡmax

and increases monotonically with ḡ (Fig. 4.3). Notably, the SNR of the feed-forward

network equals the SNR of the single-population network at some ḡ = gc slightly less1 than

the single-population maximum at g∗. The optimal choices of the network parameters

λ1, λ2 and f1 vary with ḡ. Notably, λ2 = 0 for ḡ < gc, and λ2 > 0 for ḡ > gc, meaning that

the second population has no recurrent connections for ḡ < gc. Further, for most values

of ḡ, f1 = fmin , meaning that the network has divergent feed-forward connections. We

discuss these varying behaviors below.

For sufficiently small mean gain ḡ < ḡs, the feed-forward connections do not provide

any benefit, and I2 > I1. In fact, the single-population network with gain ḡ outperforms

1 As σ → 0, gc → g∗ → 1.
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all two-population networks with ḡ < ḡs. For ḡs < ḡ < gc, the second population has no

recurrent connections (λ2 = 0), and is simply a noisy readout of the first population. At

ḡ = gc, the memory capacity of the feed-forward network approximately equals the memory

capacity of the single population network at its maximum, and I1 → Isingle as fmin → 0.

The feed-forward network becomes convergent as f1 → 1− fmin as ḡ approaches gc from

either side. As a consequence, I1 becomes insensitive to λ2 (Fig. 4.4). For ḡ > gc, both λ1

and λ2 are nonzero, meaning that there are recurrent dynamics in both populations. The

strength of the recurrent connections controls the eigenvalues of M , the largest of which

sets the spectral radius ρ(M), which in turn determines the asymptotic rate of decay of the

FMC. Secondly, the feed-forward connections increase monotonically for large ḡ, causing

the transient amplification to rapidly increase with ḡ (Fig. 4.2). This can be understood

in the context of non-normality. GFF is in Schur form, and one measure of its departure

from normality is the relative size of the off-diagonal element [70]. Alternatively, we note

that the angle ψ between the eigenvectors of GFF is given by

cosψ =
G21√

G2
21 + (λ1 − λ2)2

(4.21)

The eigenvectors are perpendicular for G21 = 0, when G is diagonal, and the eigenvectors

become increasingly parallel as G21 increases.

Chapter 4, in part, is currently being prepared for submission for publication of the

material. Kuczala and Sharpee. The dissertation author was the primary investigator and

author of this paper.
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λ2 for select values of ḡ. For each plot we have chosen the value of f1 shown in (4.3). Parts of the
plot region are excluded according to the condition f1λ1 + f2λ2 < 1. For all values of ḡ, the SNR
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Chapter 5

Error correction in symmetric

networks

Here we study the optimal properties of symmetric RNNs for input reconstruction.

In the quadratic decoding model of cortical circuits [13], the sufficient statistics of stimuli

are encoded in the connection weights of a recurrent network. The matrix of weights

are capable of encoding multiple ambiguous stimuli, with the most prescient stimulus

encoded in the dominant eigenvector. Given an initial estimate of this stimulus from

a linear decoder, we expect that the dynamics of the recurrent network will converge

to the dominant eigenvector. By analogy, the power iteration method for finding the

dominant eigenvector works by iteratively multiplying some initial vector by the matrix,

and normalizing the resulting vector. The rate dynamics performs similar operations: the

network connections perform matrix multiplication, and the nonlinearity normalizes the

vector. We would like to optimize an ensemble of symmetric rate networks for this purpose.

We consider an ensemble of networks with normally distributed symmetric N ×N
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connectivity matrices J , with

〈Jij〉 = 0 (5.1)

〈J2
ij〉 = (1 + δij)/N (5.2)

Here 〈·〉 denotes an expectation value over the Gaussian orthogonal ensemble. Requiring J

to be symmetric implies that its eigenvalues are real and its eigenvectors are orthogonal.

Since J is real, the eigenvectors can also be chosen to be real-valued. Another consequence,

as we will see below, is that in appropriate limits, the network dynamics can be described

by a Lyapunov function, which guarantees that the network activity will asymptotically

approach a fixed point. In this setting, it is meaningful to ask under what conditions the

network activity approaches the eigenvector e1, corresponding to the rightmost eigenvalue

1 λ1 of J . More specifically, we want the network activity to be an approximate scalar

multiple of e1, with a choice of sign.

The network dynamics is given by

dx

dt
= −x(t) + Jφ[gx(t)] + I(t) + σtξ(t) (5.3)

where x(t) is the N -dimensional activity vector, and φ(x) is a saturating nonlinearity

applied element-wise. We choose φ(x) = tanh(x) throughout, but our results can be easily

generalized to any saturating nonlinearity with 0 ≤ φ′(x) ≤ φ′(0) = 1. For example, our

results also qualitatively hold for a piecewise linear function. ξ(t) is Gaussian white noise

with 〈ξi(t)〉ξ = 0 and σ2
t 〈ξi(t)ξj(t′)〉ξ = σ2

t δijδ(t− t′). We take σt to be small compared to

the input I(t); in particular we will choose σt = 0.01 unless otherwise specified. This noise

prevents the network activity from accurately approximating e1 for arbitrarily small |x|.
1In contrast to the power iteration algorithm, which converges to the eigenvector corresponding to

eigenvalue with largest absolute value (the spectral radius), the recurrent networks considered here do not
converge to eigenvectors with negative eigenvalue, even for those with maximum absolute value.
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The rate dynamics described in Eq. 5.3 has a few crucial differences from the rate

networks considered in previous chapters. Firstly, the variance of J is fixed, and g instead

controls the steepness of the nonlinearity. This amounts to rescaling the activity vector x

in previous chapters by g. One consequence of this choice is that the norm of the fixed

points of the dynamics saturates instead of diverging for large g. We include a pulsed input

I(t) of length ∆t, the form

I(t) = aẽ1Θ(∆t− t) (5.4)

for t > 0 and ∆t < T , where

ẽ1 = (e1 + ση)/(1 + σ2) (5.5)

is an estimate of the eigenvector e1. η is a static i.i.d. Gaussian vector with 〈σ2|η|2〉 = σ2,

which serves to corrupt the input. The constant σ > 0 controls the size of the corruption

noise. Averaged over η, the pulse has amplitude a > 0. Although both +e1 and −e1

correspond to the same eigenvector, the input introduces a bias towards +e1. We set the

initial condition x(0) = I(0).

For a given readout time T , we there is an optimal choice of gain g and input size

a for which the network activity x(T ) most closely converges to e1 on average. In other

words, x(T ) ≈ ce1 for some constant c > 0. We measure the deviation of x from e1 with

the l2 norm

d(x) =
1

4

∣∣∣∣ x

|x|
− e1

∣∣∣∣2 =
1

2

(
1− x · e1

|x|

)
=

1

2
(1− cos(θ))

(5.6)

where θ is the angle between e1 and x. We quantify the performance of the network in
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terms of its ability to improve the estimate ẽ1. To that end we define the performance

metric

m(x, ẽ1) = log10

d(ẽ1)

d(x)
(5.7)

This measures the number of order of magnitudes by which the network improves the

estimate: m > 0 and m < 0 indicate improvement and diminishment of the estimate,

respectively.

5.1 Linear fixed points

Let us first consider the time-independent case with σt = 0, and an infinite pulse

width ∆t→∞. A fixed point xf satisfies

xf = Jφ(xf ) + I (5.8)

which in the orthonormal eigenbasis {ek} of J is

xk = λkSk + bδ1k + σηk (5.9)

where vk denotes ek · v for any vector v and S = φ(x). For linear networks, with φ(x) = x,

we can solve for xk:

xk =
bδ1k + σηk

1− λk
(5.10)

This fixed point is stable only when all λk < 1. We see that the network amplifies modes

with eigenvalues close to 1. When the network has any λk > 1, the corresponding xk

diverge exponentially, with the fastest growing modes corresponding to the largest λk. In

either case, the network evolves towards an approximation of the dominant eigenvector.
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5.2 Lyapunov function

In the nonlinear case, the presence of the saturating function φ prevents the network

activity from diverging. Since J is symmetric, for a constant input I the network evolution

is described by a Lyapunov function. For simplicity, we first set I = 0, in which case the

Lyapunov function is

E(S) = −g
2

∑
ij

JijSiSj +
∑
i

∫ Si

0

φ−1(S)dS (5.11)

where here Si ≡ φ(gxi). The minima of E correspond to stable fixed points of the network

dynamics. Further, we have ẋ(t) = −g ∂E
∂S

. Note that since Si ∈ (−1, 1), E has an infinite

barrier near the edges of the unit hypercube (−1, 1)N . This holds for any φ(x) that saturates

to ±1. Near S = 0, the dynamics is approximately linear, with

Elinear =
1

2

∑
ij

(−gJij + δij)SiSj (5.12)

When gλ1 > 1, the origin is a saddle point with unstable axes along all eigenvectors ek of

J with gλk > 1. The Hessian of E(S) is

∂2E

∂SiSj
= −gJij +

∂

∂Si
φ−1(Sj) ≥ −gJij + δij =

∂2Elinear
∂SiSj

, (5.13)

noting that2 ∂
∂S
φ−1(S) ≥ 1. In the linear case the Hessian is positive definite for gλ1 < 1.

The inequality (5.13) implies that the Hessian for the nonlinear case is also positive

semidefinite, so that the Lyapunov function is convex. Therefore there is only one global

minimum for gλ1 < 1.

When gλ1 > 1, the saddle point potential and nonlinear potential compete, yielding

2For φ(x) = tanh(x), ∂
∂Sφ

−1(S) = (1− S2)−1
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Figure 5.1: Top: Contours of the lyapunov function as a function of S for examples of N = 2
networks. Bottom: Associated dynamics as a function of x. Red line indicates ±e1

2m minima, where m is the number of unstable eigenvalues. As g increases, these minima

are pushed closer to the boundary of the hypercube [35]. As an example, for N = 2, E

has either one, two, or four minima depending on the eigenvalues of J (Figure 5.1). When

λ1 ≈ 1, there is a line of approximate fixed points along e1 near the origin, where the

dynamics is slow.

For a fixed g, the network ensemble over realizations of J will generally contain

a mixture of stable and unstable networks. As N → ∞, the distribution of eigenvalues

approaches the the semicircular distribution [73], with support on [−2, 2]. In this limit, the

linear network is stable for g < 1/2 and unstable for g > 1/2. For finite N , the rightmost

eigenvalue fluctuates depending on the particular realization of J . The transition from

unstable to stable dynamics becomes sharper for larger N . As N decreases, the transition
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Figure 5.2: Fraction of networks with gλ1 > 1 as a function of g for different network dimensions
N

becomes more gradual and shifted to larger values of g (Fig. 5.2).

A nonzero constant input biases the potential towards direction of the input. When

the origin is unstable, a sufficiently strong input eliminates minima opposite the input

direction. In the case of a pulsed input as in 5.4, the network dynamics follows the gradient

of E(S, aẽ1) for a time ∆t before switching to the dynamics given by E(S, 0). This means

that the dynamics approaches two different fixed points during its dynamics. If ∆t is

sufficiently long, the network will asymptotically reach a minimum of E(S, aẽ1) before

approaching a minimum of E(S, 0).

5.3 Role of the nonlinearity in fixed point deviation

The stabilization of the dynamics incurred by the nonlinearity introduces a cost:

the nonlinear component of E distorts the quadratic form away from the origin. While the

system will flow towards unstable eigenvalues near the origin, this flow is distorted when
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Figure 5.3: Left: Angular deviation dependence on e1 orientation θ for different realizations of
J for N = 2. The scatter is due to fluctuations in the eigenvalues. Right: Deflection angles for
N = 4, 16, 64 and g = 2 as a function of θφ. In both plots, there are a small number of outliers
not shown.

the nonlinear term becomes significant. This distortion effected by the nonlinearity can

be best understood by considering the N = 2 case. In two dimensions, the eigenvector e1

lies on the unit circle, which we parameterize by the angle θ. The competition between

the quadratic potential and the nonlinear potential causes the stable fixed points of the

network to deviate from θ by an angle ∆θ. We plot this deviation for I = 0 as a function of

θ in Fig. 5.3, for g = 2 and different realizations of J . The average deviation is minimized

when e1 and φ(e1) are parallel, and the largest average deviation occurs near θ ≈ π/8.

This behavior is a consequence of the component-wise application of the nonlinearity. The

distortion increases with g, which controls the steepness of the nonlinearity.

For general N , the eigenvector matrix eij of J is uniformly (Haar) distributed on

O(N), and e1 is drawn from the matrix ensemble are uniformly distributed on the N − 1

sphere [45]. In analogy to the N = 2 case, the smallest angular deviations ∆θ occur when

the angle θφ between φ(e1) and e1 is small. See Fig. 5.3. In general, the angular deviation

72



depends on the orientation of all the eigenvectors, but the orientation of e1 places an upper

and lower bound on ∆θ. The deviation is zero only when e1 has k components ei1 = 0, and

N − k components ei1 = ±1/
√
k; in other words, when e1 is aligned with a vertex, edge,

face, etc of the hypercube.

5.4 Numerical simulations and optimization

We compute the optimal performance, averaged over realizations of J and η, as

a function of the network parameters g, a, ∆t, and the ‘processing time’ T0 = T − ∆t.

Surprisingly, the optimal performance is approximately independent of the pulse length

∆t (see Fig. 5.9 for a demonstrative example). In the interest of choosing solutions that

minimize the overall time T , We therefore only consider the case ∆t = 0 in what follows,

where the estimate of e1 appears only in the initial condition x(0).

First, we investigate the dependence of the optimal parameters on the processing

time T0. In Fig. 5.5, we plot the optimal performance 〈P〉 as a function of T0. The optimal

values of g∗(T0) and a∗(T0) are shown in Figs 5.6, 5.7. We now characterize the optimal

strategies for small and large T0.

For small T0, the optimal strategy has large gain g and small input magnitude a.

A large value of g means that the nonlinearity is sharp, and as a result, the fixed points

are highly distorted away from e1. However, this distortion is mitigated by using small

input weights a. This means that the network activity starts in the linear regime. Further,

the large value of g has another advantage: it speeds up the dynamics. With such a short

processing time, it is advantageous to run the dynamics for as long as it takes to span the

approximately linear region, and then read out x before the vector field deviates from e1

(Fig. 5.4a).

For large T0, the optimal gain g is slightly above 1/2, and the input magnitude
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(a) Optimal strategy for small processing time T0

(b) Optimal strategy for large processing time T0

Figure 5.4: Optimal strategies for small and large processing times

a is large. For large a, the initial conditions have large components. When g is close to

1/2, the network is close to its transition between having a single fixed point at zero for

gλ1 < 1, and having multiple nonzero fixed points for gλ1 > 1. Near the origin, along e1,

the dynamics is slow, and this strategy utilizes the large processing time to evolve along

this line (Fig. 5.4b).

From Fig. 5.5, we see that intermediate values of T0 yield maximum performance,

meaning that there is a limit to the performance benefits brought on by additional processing

time. For stable networks, with a single stable fixed point the origin, the performance

decreases if |x| is of order σt, because it becomes corrupted by the stochastic noise ξ. This

limit is reached when a is of order σt log T0. a must therefore increase exponentially with

T0 to avoid stochastic corruption. But for large a this has no benefit: far from the origin,

the nonlinearity is saturated, and the network dynamics is highly distorted.
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Figure 5.5: Left : performance as a function of T0 for N = 16 and various values of σ. Right :
Optimal value of T0 for each σ,N

Now we discuss the optimal processing time T0. The optimal processing time

increases with the corruption level σ (see Fig. 5.5). For larger σ, the initial conditions are

more scattered around e1, so it takes longer on average to evolve those points towards e1.

We also find that T0 increases with N , possibly because it takes longer for the dynamics to

evolve the same distance for larger N . Fig. 5.6 indicates that large N ensembles have an

approximately equal mixture of stable and unstable networks, whereas smaller networks

have a greater proportion of stable networks.

The performance is a non-monotonic function of σ, with the best performance at

σ ∼ O(1). We can understand this by recalling that the performance is defined relative to

the accuracy of the input. For small σ, the estimate of e1 is already accurate sufficiently

accurate, and it is difficult for the network to improve on this estimate. For large σ, the

estimate is poor, and the network has difficulty evolving towards e1. In particular, the

network may start in the basin of attraction of another eigenvector ek with eigenvalue

λk > 1, or it may start in the basin of attraction for −e1. For intermediate σ, the network

maximizes its usefulness towards improving the estimate.

Chapter 5, in part, is currently being prepared for submission for publication of the

material. Kuczala and Sharpee. The dissertation author was the primary investigator and

author of this paper.
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Chapter 6

Conclusions

We conclude by discussing potential extensions of the work covered in this disser-

tation, and then reflecting on the applicability of physics principles to new domains of

nature.

Our results on correlated matrix ensembles (2.2) can be extended to more general

correlation structures, such as correlations between arbitrary blocks, clusters, or motifs,

by summing diagrams with higher-order vertices. Our results can also be extended to the

case of nonzero mean as in [1], however, the number of self-consistent equations scales

with N rather than M , and we have not yet found a way to simplify these equations1.

The diagrammatic technique can be used to study further quantities of interest such as

eigenvalue correlations [38], eigenvector correlations [22, 37], and linear dynamics not

captured by the eigenvalues [1].

It would be interesting to strengthen the relationship between the presence of

oscillations in the nonlinear dynamics and the gap of the eigenvalue spectrum (Fig. 3.3). It

is likely straightforward to extend the approach of [43] to multiple populations – analyzing

small oscillations in the quiescent phase, where the dynamics is approximately linear.

1There is a nontrivial matrix inversion in Eq. 2.39.
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The appearance of non-zero fixed points has thus far eluded analytic treatment. In

principle, the number of fixed points can be calculated using the Kac-Rice formula [72, 9].

To this end, we attempted a mean-field description of the distribution of fixed points,

inspired by Merav, Sompolinsky and Abbott [62], but this formulation did not accurately

capture the fixed point statistics.

The results of Chapter 4 on the Fisher memory curve for block-structured networks

can likely be straightforwardly applied to the continuous rate dynamics (3.1) and more

general input signals [56]. It would be interesting to determine if oscillations facilitate or

inhibit information retention in strongly bipartite networks. However, the generalization

of this calculation to connectivity matrices with block-structured correlations is likely

nontrivial. In this case, the distribution of activities xi(t) is no longer Gaussian, and

consequently the Fisher information is not necessarily tractable.

There are a number potential extensions of the results of Chapter 5. One such

extension is studying the network’s response to changes in connections and its ability to

adapt to the evolution of the dominant eigenvector. When the elements of the connectivity

matrix undergo Brownian motion, the eigenvalues evolve according to the Brownian motion

of a Coulomb gas [25]. The behavior of the eigenvectors is also known [7].

The qualitative behavior of the optimal network parameters g, a, T,∆t holds also

for piecewise linear firing rates. A Fokker-Planck treatment of the dynamics of the network

ensemble may be tractable in this case. However a fundamental difficulty arises from the

tension between the component-wise application of the nonlinearity and the spherically

symmetric distribution of the dominant eigenvector. We would also like to generalize the

results of Chapter 5 to asymmetric connectivity matrices J . When J is asymmetric, the

eigenvectors are no longer real; it is no longer generally meaningful for the network activity

to converge to the dominant eigenvector. Instead, we may ask when the network activity

most closely converges to the subspace corresponding to the rightmost eigenvalue pair.

79



Taking a broader view, I frequently wonder to what extent the ideals held dear

in physics regarding phase transitions, criticality, and universality hold true in the wider

world, whose complexity greatly exceeds that of the highly symmetric systems commonly

considered by physicists. Dynamical mean field theory and statistical mechanics are chiefly

concerned with equilibrium systems, yet the living and nonliving systems that we would

like to think of as performing “computations” are far from equilibrium. To what degree

can we maximize the entropy of our descriptions of these systems, and appropriately

apply equilibrium assumptions? To what extent can we speak generally of non-equilibrium

systems? What aspects of nature and computation are addressable and intelligible only on

a case-by-case basis?
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Appendix A

Deriving the boundary of the

eigenvalue distribution

Here we derive the self-consistent equations (2.51, 2.52) for the boundary of the

eigenvalue distribution.

A.1 Boundary of eigenvalue distribution without co-

variance

We first show that the eigenvalue density (2.48) for J with independent elements

(τij = 0) has support on the disk with radius R =
√
λ1(K), where λ1(K) is the largest

eigenvalue of the matrix Kij ≡ g2
ij/N . There are two solutions to the self-consistent

equations (2.46) in the limit ε→ 0: a trivial solution, with all ai = di = 0, and a non-trivial

solution, with all ai, di > 0 1. The trivial solution corresponds to the region where ρ(r) = 0

[28, 27]. Indeed, we see that when ai = di = 0, all qi = r2. Then by (2.46) ci = 1/z, and

therefore ρ(r) = 0 by (2.48).

1It is not hard to show that if just one ai or di is zero, all are zero
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Now consider the region where ρ 6= 0, where all the ai and di are nonzero. Then,

combining (2.46) and (2.47) for di in the ε→ 0 limit yields

qidi =
1

N

∑
j

gijdj. (A.1)

We determine the radius R of the boundary by finding where the two solutions match.

Assuming continuity of the ai and di, then as di → 0+ as we approach the boundary, all

the qi → R2. Then, in the limit, (A.1) indicates that d is an eigenvector of Kij = g2
ij/N

with eigenvalue R2. Furthermore, since K and d have only positive entries, R2 must be the

largest eigenvalue λ1(K) of K by the Perron-Frobenius theorem. Thus, the boundary of

the eigenvalue distribution has radius R =
√
λ1(K). A nearly identical argument shows

Kmn = g2
mnfn for the block structured case. This result was previously presented in [3] and

[4], and a similar argument was used in [1] for the case of matrices with non-zero mean.

However, previous analyses do not hold when J has covariant elements.

A.2 Boundary of eigenvalue distribution with covari-

ance

Now we show that when τij 6= 0, the boundary of the eigenvalue distribution satisfies

(2.51) and (2.52). Again, we have ai, di 6= 0 on the support of the eigenvalue distribution,

and ai = di = 0 otherwise. Plugging the trivial solution into (2.49), the ci now satisfy

ci = (z −
∑
j

τijgijgjicj)
−1. (A.2)
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Now, approaching the boundary from the inside as before, in the limit di → 0+,

di =
∑
j

|ci|2g2
ijdj. (A.3)

where the ci satisfy (A.2) in the limit. Since all the di > 0, this means that d is the

Perron-Frobenius eigenvector of the matrix Kij = |ci|2g2
ij with eigenvalue 1. This means

that the points z on the boundary satisfy

λ1(K) = 1 (A.4)

where λ1(K) is the largest modulus eigenvalue of K. Together, (A.2) and (A.4) determine

the points z that lie on the boundary of the eigenvalue distribution. We have found that

these equations can be solved efficiently as follows: First we write z = reiθ and fix θ. Then,

to find the r satisfying (A.4), we use a root finding algorithm: at each step of the root

finding algorithm, we iterate (A.2) to find the ci(z).
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Appendix B

Dynamical mean field theory

Here, we derive mean field equations for the firing rate network (3.1) using dynamical

mean field theory (DMFT) [20]. See [23, 43] for similar derivations of the single population

case.

B.1 Single population

We start by writing the equations of motion (3.1) as a path integral:

Z =

∫ ∏
i

Dxi(t)δ

[
(∂t + 1)xi(t)−

∑
j

JijSj(t)

]
(B.1)

where the delta function merely picks out the x(t) that satisfy 3.1. Here we have defined

Si(t) ≡ φ[xi(t)]. Now we plug in the Fourier representation of the δ function:

Z =

∫ ∏
i

Dxi(t)Dx̂i(t) exp

[
−
∫
dtx̂i(t)

(
(∂t + 1)xi(t)−

∑
j

JijSj(t)

)]
(B.2)

Here, the x̂i are imaginary-valued. We will follow the convention throughout this

section that hatted variables are imaginary-valued. The integral over t is analogous to
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summing over all variables in a multidimensional Fourier transform (these are ‘indexed’

over t). Throughout, we will drop constant normalization factors.

Now we average over the quenched disorder Jij. In static systems, it would be

necessary to introduce replicas at this point, but they are not necessary in dynamical mean

field theory. One way to think about this is that the time variable acts like a replica [20].

The average Z̄ over J is

Z̄ =

∫ ∏
ij

dJij exp

(
− N

2g2(1− ρ2)
tr(JJT − ρJ2)

)
Z(J) (B.3)

This is just a Gaussian integral over the Jij, yielding

Z̄ =

∫ (∏
i

Dxi(t)Dx̂i(t)

)
e−S0

× exp

[
g2

2N

∑
ijkl

(∫
dtx̂i(t)Sj(t)

)
(δikδjl + ρδilδjk)

(∫
dt′x̂k(t

′)Sl(t
′)

)]

=

∫
DxDx̂e−S0 exp

[
g2

2N

∫
dtdt′

∑
ij

(x̂i(t)Sj(t)x̂i(t)Sj(t
′) + ρx̂i(t)Sj(t)x̂j(t

′)Si(t
′))

]
(B.4)

with S0 =
∑

j

∫
dtx̂j(t)(∂t + 1)xj(t).

The average over disorder has introduced a four-body interaction. We write these

more compactly by introducing the notation

a · b ≡
∑
j

aj(t)bj(t
′) (B.5)

reminiscient of replica theory, so we can write Z̄ as

Z̄ =

∫
DxDx̂e−S0 exp

[
g2

2N

∫
dtdt′

(
(x̂ · x̂)(S · S) + ρ(x̂ · S)(S · x̂)

)]
(B.6)
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Now we introduce the order parameters Q1(t, t′), Q2(t, t′), Q3(t, t′), Q4(t, t′) into the path

integral with δ functions:

Z̄ =

∫
DxDx̂DQe−S0δ(NQ1 − x̂ · x̂)δ(NQ2 − S · S)δ(NQ3 − x̂ · S)δ(NQ4 − S · x̂)

× exp

[
Ng2

2

∫
dtdt′(Q1Q2 + ρQ3Q4)

]
(B.7)

Each δ function can be written as a Fourier integral as follows:

∫
DQkδ(NQk − a · b) ∝

∫
DQkDQ̂k exp

[∫
dtdt′Q̂k(NQk − a · b)

]
(B.8)

This lets us write the partition function in the form

Z̄ = DQDQ̂e−NF (Q,Q̂) (B.9)

where

F = S1(Q) + S2(Q, Q̂) + S3(Q̂)

S1 = −g
2

2

∫
dtdt′(Q1Q2 + ρQ3Q4)

S2 =

∫
dtdt′

4∑
k=1

Q̂kQk

S3 = − 1

N
log

∫
DxDx̂ exp

[
−S0(x, x̂)− S4(Q̂, x, x̂)

]
S4 = −

∫
dtdt′

[
Q̂1(x̂ · x̂) + Q̂2(S · S) + Q̂3(x̂ · S) + Q̂4(S · x̂)

]
(B.10)

Now, for large N we can integrate over the Qk and Q̂k by saddle point. Extremizing the
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action F with respect to the Qk and Q̂k in (B.10)

Q̂1 =
g2

2
Q2; Q1 =

1

N
〈x̂ · x̂〉x,x̂ (B.11)

Q̂2 =
g2

2
Q1; Q2=

1

N
〈S · S〉x,x̂ (B.12)

Q̂3 =
g2ρ

2
Q4; Q3 =

1

N
〈x̂ · S〉x,x̂ (B.13)

Q̂4 =
g2ρ

2
Q3; Q4 =

1

N
〈S · x̂〉x,x̂ (B.14)

Substituting these values in for the Q̂k and Qk, and dropping overall factors independent

of x and x̂ gives us

Z̄ =

∫
DxDx̂e−S0

× exp

[
−
∫
dtdt′

g2

2

∑
k

(C(t, t′)x̂k(t)x̂k(t
′) + ρR(t, t′)x̂k(t)Sk(t

′) + ρR(t′, t)Sk(t)x̂k(t
′))

]
(B.15)

where we have defined [20]

Ĉ(t, t′) ≡ 1

N

∑
i

〈x̂i(t)x̂i(t′)〉x,x̂ = 0

C(t, t′) ≡ 1

N

∑
i

〈Si(t)Si(t′)〉x,x̂

R(t′, t) ≡ 1

N

∑
i

〈x̂i(t)Si(t′)〉x,x̂

(B.16)

The last two terms in the sum are symmetric with respect to t and t′, so they can be

combined. Furthermore, the sum factors out of the exponential as a product, allowing us

to factor Z̄ = (ZMF )N and consider the partition function ZMF over the mean fields x(t)
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and x̂(t):

ZMF =

∫
DxDx̂e−S0,MF exp

[
−g2

∫
dtdt′

(
1

2
C(t, t′)x̂(t)x̂(t′) + ρR(t, t′)x̂(t′)S(t′)

)]
(B.17)

Now we couple x̂ to a new variable η via a Hubbard transformation:

ZMF =

∫
DxDx̂Dη exp

{∫
dt [−x̂(t)(1 + ∂t)x(t) + x̂(t)η(t)]

−
∫
dtdt′

[
1

2g2
η(t)C−1(t, t′)η(t′) + g2ρR(t, t′)x̂(t)S(t′)

]} (B.18)

and finally undo the Fourier transformation over x̂ to get back a delta function:

ZMF =

∫ ∏
i

DxDηδ

[
(∂t + 1)x(t)− g2ρ

∫
dtR(t, t′)S(t′)− η(t)

]
P (η) (B.19)

where

P (η) = exp

[
−1

2

∫
dtdt′η(t)

1

g2
C−1(t, t′)η(t′)

]
(B.20)

In other words, η(t) is a gaussian random variable with 〈η(t)〉 = 0 and 〈η(t)η(t′)〉 = g2C(t, t′),

and x(t) satisfies the stochastic differential equation

ẋ(t) = −x(t) + g2ρ

∫
dtR(t, t′)S(t′) + η(t) (B.21)
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Introducing a generating functional, we have the useful relation [20]

〈S(t)η(t′)〉 =

〈
S(t)

∂

∂j(t′)
exp

[∫
dt′′η(t′′)j(t′′)

]〉 ∣∣∣∣
j=0

=

〈
S(t)

∂

∂j(t′)
exp

[∫
dt′′η(t′′)j(t′′)

]〉 ∣∣∣∣
j=0

=

〈
S(t)

∂

∂j(t′)
exp

[
g2(jCj + jCx̂+ x̂Cj)

]〉 ∣∣∣∣
j=0

= g2

〈
S(t)

∫
dt′′C(t′, t′′)x̂(t′′)

〉
= g2

∫
dt′′C(t′, t′′)R(t, t′′)

(B.22)

where we have integrated over η in the third line, and used the shorthand jCj ≡∫
dtdt′j(t)C(t, t′)j(t′)

B.2 Multiple populations

Now we consider the mean field dynamics of a block-structured network with

covariance (2.27). The calculation proceeds similarly to the single-population case. A

notable difference is that instead of defining (a · b) according to (B.5), we define

(a · b)m ≡
∑
i∈m

ai(t)bi(t
′) (B.23)

Then introducing 4M order parameters Qm
· using delta functions of the form δ(NfmQ

m
k −

(a · b)mk), expressions such as

Qm
2 (t, t′) =

1

fmN

∑
i∈m

〈Si(t)Si(t′)〉x,x̂ (B.24)
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we write the partition function in the form Z̄ = DQDQ̂e−NF (Q,Q̂), where

F = S1(Q) + S2(Q, Q̂) + S3(Q̂)

S1 = −1

2

∫
dtdt′

∑
mn

fm(GmnQ
m
1 Q

n
2 + TmnQ

m
3 Q

n
4 )

S2 =

∫
dtdt′

∑
m

fm

4∑
k=1

Q̂m
k Q

m
k

S3 = − 1

N
log

∫
DxDx̂ exp

[
−S0(x, x̂)− S4(Q̂, x, x̂)

]
S4 = −

∫
dtdt′

∑
m

[
Q̂m

1 (x̂ · x̂)m + Q̂m
2 (S · S)m + Q̂m

3 (x̂ · S)m + Q̂m
4 (S · x̂)m

]
(B.25)

and

Gmn = g2
mnfn, Tmn = gmngnmτmnfn (B.26)

Extremizing F yields the conditions

Q̂m
1 =

1

2

∑
n

GmnQ
n
2 ; Qm

1 =
1

fmN
〈(x̂ · x̂)m〉x,x̂

Q̂m
2 =

1

2

∑
n

GmnQ
n
1 ; Qm

2 =
1

fmN
〈(S · S)m〉x,x̂

Q̂m
3 =

1

2

∑
n

Tmn Q
n
4 ; Qm

3 =
1

fmN
〈(x̂ · S)m〉x,x̂

Q̂m
4 =

1

2

∑
n

Tmn Q
n
3 ; Qm

4 =
1

fmN
〈(S · x̂)m〉x,x̂

Defining

Ĉm(t, t′) ≡ 1

fmN

∑
i∈m

〈x̂i(t)x̂i(t′)〉x,x̂
!

= 0

Cm(t, t′) ≡ 1

fmN

∑
i∈m

〈Si(t)Si(t′)〉x,x̂

Rm(t, t′) ≡ 1

fmN

∑
i∈m

〈Si(t)x̂i(t′)〉x,x̂

(B.27)
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the partition function now has the form

Z̄ =

∫
DxDx̂ exp

[∫
dtdt′

∑
m

∑
i∈m(

1

2

(∑
n

GmnCn(t, t′)

)
x̂i(t)x̂i(t

′) +

(∑
n

TmnRn(t, t′)

)
x̂i(t)Si(t

′)

)] (B.28)

which can be factored as Z̄ =
∏

m(Zm)fmN , where

Zm =

∫
DxmDx̂m exp

[∫
dtdt′(

1

2

(∑
n

GmnCn(t, t′)

)
x̂m(t)x̂m(t′) +

(∑
n

TmnRn(t, t′)

)
x̂m(t)Sm(t′)

)] (B.29)

Using Hubbard and Fourier transformations in analogy to the single population case yields

the mean field equations

ẋm(t) = −xm(t) +
∑
n

Tmn

∫
dt′Rn(t, t′)Sm(t′) + ηm(t) (B.30)

〈ηm(t)ηn(s)〉 = δmnC
η
m(t, s) (B.31)

Cη
m(t, s) ≡

∑
p

GmpCp(t, s) (B.32)

Rm(t, s) =

∫
dt′[Cη

m]−1(s, t′)〈Sm(t)ηm(t′)〉 (B.33)

where the ηm(t) are gaussian, and [Cη
m]−1(t, t′) is the convolutional inverse of Cη

m(t, t′)

When τmn = 0, the mean field equations reduce to ẋm(t) = −xm(t) + ηm(t) as in

[5].
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Appendix C

Mean field calculation of signal

amplification

Here, we compute the evolution of the mean squared signal amplitude appearing in

Eq. 4.13 of Chapter 4. From (4.6),

〈(
∂µm(t)

∂θ

)2
〉
J

=

〈[
∂

∂θ
〈vm(i)(t)|J〉

]2
〉
J

=

〈
∂

∂θa
〈vam(t)|J〉 ∂

∂θb
〈vbm(t)|J〉

〉
J

=
∂2

∂θa∂θb
〈vam(t)vbm(t)〉

=
∂2

∂θa∂θb
(w2

mθ
aθbδt,t0 + qabm (t))

(C.1)
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where a and b denote replicas and qabm (t, s) ≡ 〈xam(t)xbn(s)〉 is given from mean field theory

by

qabm (t, s) = σ2δabδts +
∑
n

g2
mnfn〈San(t)Sbn(s)〉n

=
∑
n

GmnC
ab
n (t, s)

(C.2)

where

Cab
n (t, s) ≡ 〈San(t)Sbn(s)〉n (C.3)

From [69], for normally distributed random variables za with 〈zazb〉z = qab,

∂c〈φaφb〉z = ~a · ∂c~Θ

~a ≡ (〈φ′aφb〉z, 〈φaφ′b〉z, 〈φ′′aφb〉z, 〈φaφ′′b〉z, 〈φ′aφ′b〉z)

~Θ ≡ (wθa, wθb, qaa/2, qbb/2, qab)

(C.4)

where we have denoted ∂c ≡ ∂
∂θc

and φa ≡ φ(wθa + za) With θ = 0, the expectation values

of odd functions vanish, and

∂c〈φaφb〉z = 〈φ′′aφb〉z
∂cqaa

2
+ 〈φaφ′′b〉z

∂cqbb

2
+ 〈φ′aφ′b〉z∂cqab (C.5)

This yields a recurrence relation for the derivative of order parameters

∂aCaa
m (t+ 1) =

∑
n

Gmn∂
aCaa

n (t) [〈φ′′aφa〉m + 〈φ′aφ′a〉m]

∂cCab
m (t+ 1) =

∑
n

Gmn

[
〈φaφ′′a〉m

∂cCaa
n (t)

2

+〈φbφ′′b〉m
∂cCbb

n (t)

2
+ 〈φ′aφ′b〉m∂cCab

n (t)

] (C.6)
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At equilibrium, ∂aCaa, ∂aCab, and ∂bCab vanish if the following conditions are satisfied:

ρ ([〈φ′′aφa〉m + 〈φ′aφ′a〉m]Gmn) < 1 (C.7)

ρ(〈φ′aφ′b〉mGmn) < 1 (C.8)

where ρ(Amn) denotes the spectral radius of matrix A. Assuming that these conditions are

met, [69] also tell us that

∂a∂b〈φaφb〉z = 〈φ′aφ′b〉z(∂a∂bqabt + w2) (C.9)

so that (C.3)

∂a∂bCab
m (t+ 1) = 〈φ′aφ′b〉m(∂ak∂

b
l q
ab
m (t+ 1) + w2

mδt,t0) (C.10)

Using (C.2), this yields a recurrence relation for the time evolution of ∂a∂bqabm (t+ 1):

∂a∂bqabm (t+ 1) =
∑
n

Gmn〈φ′aφ′b〉n(∂a∂bqabn (t) + w2
nδt,t0) (C.11)

Note that for t < t0, the pulse has not yet started, so the derivative is zero. Then for t = t0,

we have

∂a∂bqabm (t0 + 1) =
∑
n

Gmn〈φ′aφ′b〉nw2
n (C.12)

Each succesive iteration for t > t0 amounts to matrix multiplication by Mmn ≡ Gmn〈φ′aφ′b〉n.

We obtain

∂a∂bqabm,t+1 =
∑
n

(M t−t0+1)mnw
2
nΘ(t− t0) (C.13)

and finally 〈(
∂µm(t)

∂θ

)2
〉
J

=
∑
n

(Mt−t0)mnw
2
nΘ(t− t0 − 1) (C.14)
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