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Abstract—This work presents a detailed case study on using
Generative AI (GenAI) to develop AI surrogates for simulation
models in fusion energy research. The scope includes the method-
ology, implementation, and results of using GenAI to assist in
model development and optimization, comparing these results
with previous manually developed models.

Index Terms—generative AI, surrogate modeling, regression,
correlation analysis, model optimization, fusion energy science,
AI-assisted code development and optimization

I. INTRODUCTION

The need for real-time experiment predictions and control
in fusion research has highlighted the limitations of traditional
simulation codes like GENRAY, which do not run fast enough
for real-time applications. There is significant interest in using
AI as surrogates to approximate the results of full numeri-
cal physics computations within known or predictable error
bounds, as demonstrated in our previous work [1].

Currently, Generative AI (GenAI) has gained substantial
attention for its capabilities in creating images, videos, text,
code, and even new AI models. Our focus in this work
is to leverage GenAI for creating numerical surrogates that
approximate high-fidelity physics simulations.

This study explores using GenAI as a well informed assis-
tant to aid in all steps of the model building, optimization, and
evaluation process. In this context, we engage in a conversation
with the GenAI about each of these stages, and it provides
suggestions about approach as well as initial code templates
that we then adapt for use in our particular problem. This
type of approach has proven effective for using AI in other
contexts, such as education [2].

We leverage GenAI to suggest approaches and provide code
templates for the various stages of the model development
pipeline, including exploratory data analysis; initial model
development and evaluations; more extensive model optimiza-
tion through k-fold cross-validation; final model training and
evaluation. Being able to leverage GenAI as part of this
process has enabled us to reproduce most of our previous

work in a shorter amount of development time and with
marginally better model performance as well as perform a
deeper exploration of model optimization strategies. Those
include finding ways to reduce the number of input model
features through different approaches like principal component
analysis and by studying correlations between input features
and output targets.

The organization of this paper reflects the conversational
nature of our interactions with GenAI. We first reflect on
background and previous work related to GenAI and its role
in developing software tools (§II). Next, the narrative about
approach and implementation begins with an overview then
delves into each of the stages of model development, which
is aimed at discovering the best parameters for each of the
different types of models (§III). Because preliminary results
at earlier stages in the model development pipeline inform and
impact decisions and action in later stages, these preliminary
results are included as part of the narrative about imple-
mentation. Once the best model parameters are identified,
the final models undergo evaluation in terms of accuracy
and computational speed (§IV). §V provides observations and
reflections about the results of the process of using GenAI and
about the nature of the quantitative and qualitative results of
the study.

The primary contributions of this paper are:
• A case study on using GenAI to produce code templates

for building AI surrogates for fusion physics simulations
and for identifying and implementing strategies for model
optimization.

• A comparison of AI-assisted codes in this work with
human-generated codes in previous work in terms of
the accuracy of the resulting models and computational
requirements for model training and inference.

• Use of GenAI to identify potential pathways for improv-
ing model performance and code templates for imple-
menting them along with some analysis results to support
their use, or not, as the case may be.
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• Anecdotal insights into out experience using GenAI as a
technical assistant.

II. BACKGROUND AND PREVIOUS WORK

A. Use of AI models as Surrogates for Fusion Energy Simu-
lations

In fusion energy science, a tokamak is a machine that
confines a burning plasma using a strong magnetic field [3].
They are widely believed to be one of the most promising
designs for a practical fusion reactors. There is a robust
international community of fusion energy scientists who study
tokamak designs with an eye towards creating viable reactors
for sustainably producing energy.

Among the challenges in the design and operation of a
tokamak is the need to understand what is happening inside the
burning plasma along as well as the ability to manipulate it in
various ways, such as reducing instabilities. Radio Frequency
(RF) systems such as lower hybrid current drive (LHCD)
and high harmonic fast wave (HHFW) are well suited for
use in tokamaks as they do not require line-of-sight access
through radiation shields and they have a high degree of
technology readiness. [1]. As such, being able to predict RF
wave heating and current drive is essential for present-day
real-time observation and control in fusion experiments and
for modeling the designs of future devices.

As a practical matter, the computational methods used to
predict RF wave heating and current drive have significant
costs. A single GENRAY/CQL3D simulation without radial
diffusion of fast electrons requires 10s of minutes of wall-
clock time to complete. This runtime may be acceptable for
some purposes, like offline modeling, but is much too slow for
use in integrated modeling and real-time experimental control
applications.

In previous work, Wallace et al., 2022 [1] describe develop-
ment of AI-based surrogate models to perform predictions of
RF power absorption and current density profiles. The results
show a dramatic reduction in computational time, going from
10s of minutes to a few milliseconds once models are trained.
While the surrogate-based computations are not identical to
those of the GENRAY/CQL3D code, that study quantifies
differences using mean squared error.

A significant amount of human effort was required by that
time to generate a database of runs, followed by manual code
generation to produce three different AI-based surrogates, and
to measure their runtime and numerical accuracy performance.
In this case, significant effort is somewhat difficult to quantify,
but can be characterized as the involvement of a team of four
fusion physicists and four computer scientists working part-
time over the period of about two years. In an effort to reduce
time-to-solution for such an endeavor, the main objective for
the work in this study is to explore the use of GenAI for
the purpose of producing similar AI surrogates, as well as
to explore ways to improve model optimization and reduce
computational cost of model training and inference.

B. Using AI to Create AI Models and Software Tools

Austin et al, 2021 [4] evaluate the efficacy of Large Lan-
guage Models (LLMs) to synthesize code from natural lan-
guage on two different datasets containing a total of about 24K
programming problems. Their findings show solution rates
between about 60-84% accuracy for this particular problem
set.

Denny et al. (2023) [5] investigate the limitations of GitHub
Copilot in solving programming problems typically encoun-
tered in first-year computer science courses (CS1). Their study
reveals that Copilot fails to generate a correct solution on
the first attempt approximately 50% of the time. They also
highlight the importance of prompt engineering, noting that
prompts enriched with detailed information, such as potential
problem-solving strategies or pseudocode, tend to yield better
results.

Idrisov et al. (2024) [6] perform a comparative analysis
of human- and AI-generated code across multiple metrics,
including correctness, efficiency, and maintainability. Their
study involves seven different generative AI-based systems,
such as GitHub Copilot and CodeWhisperer, applied to solv-
ing LeetCode problems of varying difficulty. The results are
mixed: some systems fail to produce correct solutions for any
of the problems, while others generate correct code for certain
problems but not others. Unlike their work, our study focuses
on comparing the quality of numerical results produced by
AI-generated code versus human-generated code for a specific
scientific problem.

Ziegler et al. (2024) [7] examine the impact of Copilot
on programmer productivity. Their methodology includes both
qualitative, self-reported data and quantitative metrics captured
by Copilot, such as the acceptance rate of generated code.
They find that the acceptance rate of Copilot’s suggestions
correlates more strongly with reported productivity than other
persistence measures, such as the ratio of accepted completions
that remain unchanged after a certain period. They propose
that tools like Copilot facilitate progress toward users’ goals
by providing useful templates or starting points, which can
be as beneficial as producing perfectly correct solutions. Our
work incorporates both subjective measures (e.g., estimated
duration to produce working, validated models) and objective
measures (e.g., correctness of model predictions) to evaluate
AI-based code generation in a scientific context.

These are but a few references of a growing body of work
that is evaluating the ability of GenAI systems to write code.
For additional reading, please see [4] as well as Kotti et
al., 2023 [8], who summarize dozens of machine learning for
software engineering studies from the years 2009–2022.

III. APPROACH, IMPLEMENTATION, AND INITIAL RESULTS

We begin with a brief overview of the process of creating
AI models to provide a starting point for our implementation
(§III-A). Even though we are focusing on regression models,
many of these concepts are also applicable to classification
models. After a discussion of the source data, transformations,
key assumptions and that influence aspects of our design and
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Fig. 1: Overview and sequence of operations for model devel-
opment, optimization, and evaluation.

implementation (§III-B), we dedicate a separate subsection
to each of the three different AI-based regression methods;
Random Forest Regression (§III-C), Multilayer Perceptron Re-
gression (§III-D), and Gaussian Process Regression (§III-E).
Included in the discussion of these methods is information
about optimizing models through k-fold cross validation. We
then examine approaches for eliminating input features in an
effort to reduce the computational cost for model training
and inference (§III-F). We also provide a brief comparison
of preliminary model results from these steps before moving
on to final model training and evaluation in the next section.

A. Overview of Model Development

The process of developing an AI-based regressor involves
several steps, including method selection, hyperparameter op-
timization, model training, and accuracy evaluation. While the
details of each step will vary depending upon the specific
method being employed, the same overall set of themes
is present for all methods. Fig. 1 shows the sequence of
processing steps we use in this study, and this sequence form
the organization of material in the subsections that follow.

A first step likely includes exploratory data analysis for
the purpose of deepening understanding of both the problem
domain and characteristics of the data at hand [9]. For our
specific problem, an initial exploration of the source data

revealed that certain combinations of inputs resulted in code
outputs that were not physically realistic. This can happen
when the physical models do not perform well in certain
ranges of input parameters. Ultimately, those data were filtered
out so as to provide only physically realistic and meaningful
inputs to model training [1].

A next step is to choose one or more AI models for the task
at hand where consideration is given to strengths, weaknesses,
and applicability to the problem at hand [10]. For exam-
ple, decision trees and random forests may be better suited
for problems with non-linear relationships and interactions.
Neural networks may perform well at capturing highly non-
linear relationships between input features and output targets.
Kernel-based methods might provide a better fit between a
particular kernel combination choice and the underlying data.
Typically, one might begin with initial model testing using
default parameters to help identify promising methods. In our
case, we are focusing on use of three different methods that
span three fundamentally different approaches: random forest,
Gaussian process regression, and multilayer perceptron. These
three models were the focus of previous work where they were
developed by hand prior to the prevalance of GenAI tools [1].

An integral part of AI model development and testing is to
evaluate its performance: how well do its predictions match
the ground truth? There are several different common metrics
such as mean-squared error (MSE), R2, mean absolute error
(MAE) and others, each of which has particular strengths and
weaknesses [11]. For our purposes, we are using MSE as a
measure of model accuracy.

Given a particular model, a next step is adjusting model
parameters to improve model predictive performance. Each
different model has its own unique set of parameters, and this
process of parameter tuning is referred to as hyperparameter
optimization. Because many models’ parameters cannot be
directly estimated from the data [12], the process of finding the
optimal setting for model parameters may entail an iterative
approach of model adjustment, evaluation, and testing. Regular
and systematic evaluation of the range of parameter values is
known as a grid search while a random search uses a random
values for parameters from a range and then makes adaptive
search decisions based on model performance [13].

A well established methodology for hyperparameter opti-
mization is known is k-fold cross validation (CV) [11]. The
basic idea is to split a dataset into K equally sized subsets, or
folds. Then the model is trained K times using K − 1 folds
for training and the remaining fold for validation. The process
ensures that each fold is used for validation only once. The
average model performance, e.g., using MSE, is computed as
the average of all individual model MSEs.

Complicating matters further is that each different model has
a different set of parameters. Random forest hyperparameters
include the size of the forest, the maximum depth of the trees,
and others [14]. Multilayer perceptron model hyperparameters
include the number of network layers and connectivity, acti-
vation functions, learning rate, and regularization [15]. GPR
hyperparameters the choice of one or more kernel functions,
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kernel parameters like length scale and variance, and oth-
ers [16].

B. Source Data Analysis and Preparation

For this study, we are using the same dataset reported
in Wallace et al., 2022 [1]. It consists of 13,347 records
consisting of 9 simulation input variables and 2 output fields
(current deposition and wave power profile) consisting of 23
variables each. The 9 input simulation variables, names, units,
and numeric ranges are shown in Fig. 2. During original
data preparation in 2022, the original 16K GENRAY outputs
were filtered to eliminate data records from certain input
parameter ranges known to correspond to output values that
were physically not meaningful.

Fig. 2: Parameters varied in the GENRAY/CQL3D database
along with their ranges. Note the diverse dynamic range of
these 9 parameters. Image source, Wallace et al., 2022 [1]

A common practice during supervised model training is
to randomly divide the dataset into portions used for model
training and model testing. Because the 2022 study involved
comparing 3 different models, to achieve consistency in which
the same partitions of data are used for training and testing
across the 3 different models, the study methodology included
steps to perform data partitioning once then use those labeled
partitions for all subsequent stages of the study.

In the 2022 study, a new column was added to the simulation
data that identifies its ”fold”. The source data was first
partitioned into an 80%/20% train/test split. The test split is
held out from model training and optimization and used only
in final model evaluation. The purpose of this ”hold-out” fold
of data is to validate the generalization ability of an AI model
and ensuring that it will perform well on new, unseen data. For
the remaining 80% of the simulation data, it was partitioned
into 5 equal-size folds. We adopt the same convention in our
work here so as to achieve consistency in the data subsets used
for k-fold CV as well as final model training and evaluation.

We use a common preprocessing step that normalizes the
data values associated with the input features; their features
and their ranges appear in Fig. 2. We made use of the
sklearn.StandardScaler method, which transforms
data from its native range to a new range with a zero mean
and unit variance. The reason for such resampling is two-fold.
First, some methods like GPR kernels assume that features
are centered around a mean of zero. Another reason is the

desire for the variances of all features to have the same
magnitude so that features of larger numerical ranges do
not dominate those with lower ranges during evaluation of
objective functions [17].

C. Random Forest Regression

The Random Forest model for classification or regression
is an ensemble method that uses the averaging of predictions
from many decision trees applied to random subsets of the
training data [18]. Its advantages include robustness to over-
fitting through the averaging of predictions from multiple trees,
as well as being effective with a larger number (dimension)
of features.

Working with ChatGPT-4o, we issued a prompt asking for
a description of a random forest regression along with key
references. In addition to some useful text-based information,
it also provided the source code template shown in Fig. 3. That
source code includes some key processing steps, including:

• Dividing data into partitions to be used for model training
and testing;

• Setting up a set of parameters and ranges to be used in
evaluating different model configurations;

• Code to perform a systematic (grid) search of the param-
eter space;

• Printing out the parameters of the best model

Fig. 3: Source code generated by ChatGPT-4o in response to a
query asking for information about Random Forest Regressors.

Starting with this code, we added our code to load the data
file and separate features and targets, perform normalization as
discussed in §III-B, and extract one fold from the dataset for
use in exploratory analysis. The initial results were promising:
the MSE was a bit higher than the mean MSE from 5-fold
testing from 2022 as shown in Tab. II but still promising.

It is important to note that in the code shown in Fig. 3
that there is a grid of model parameters with initial values,
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and what follows is a ”mini” k-fold CV combined with a
random grid search courtesy of the GridSearchCV call.
Again, ChatGPT-4o produced this code template in response
to a query about RFR and their models. While the grid search
approach is common practice, changed from a grid search to a
randomized search (RandomizedSearchCV), as it is known
to run more quickly and to produce better results [13].

Next, we pursued further exploratory model evaluation
aimed at better understanding the RFR hyperparameters and
their impacts. This was an iterative process of asking questions
of the GenAI, tinkering with the code template by expanding
the parameter grid variables and ranges, rerunning the code,
and observing the changes in model MSE. We used the
best model parameters from this portion of the study for
subsequent hyperparameter optimization. The results of this
early optimization step for all models is shown in Tab. I.

Next, we engaged in a discussion with the GenAI asking
it to describe hyperparameter optimization in general terms as
well as k-fold CV in particular. It shared the concept of nested
cross-validation that consists of an ”inner loop”, where a given
test/train split is subject to the randomized parameter search
using a CV strategy, and an ”outer loop” where the different
K folds of data are rotated so that only one fold is used for
validation. This nested CV is an addition to the methodology
from the 2022 study. The resulting code has a structure shown
in the Listing 1 is an abbreviated version of the actual code
but that contains all key ideas.

1 # skeleton for k-fold processing
2 parm_grid = [ ... param names and ranges ... ]
3 best_model_parms = [] # for model parms in each

fold
4 best_model_mse = [] # for model MSE in each fold
5 nfolds = 5
6 for fold in range(nfolds):
7 X_train, y_train = extract_train(data, fold)
8 X_test, y_test = extract_test(data, fold)

10 # build the model
11 model = RandomForestRegressor(random_state=42)

13 # use a randomized search of model parm settings
14 search = RandomizedSearchCV(...parameters...)

16 # perform model fits to training data
17 search.fit(X_train, y_train)

19 # obtain and retain params for best performing
model

20 best_model_parms.append(search.best_params_)

23 # compute and retain MSE for the best model
24 best_model = search.best_estimator_
25 y_pred = best_model.predict(X_test)
26 mse = mean_squared_error(y_test, y_pred)

28 best_model_mse.append(mse)

Listing 1: Code skeleton for performing k-fold CV.

From the k-fold CV process, we harvest the parameters of
the best-performing model and use them to as parameters for

the final, full-scale model training and testing. For both stages,
k-fold CV and final model, we collect runtime and MSE. These
results are presented and discussed later in §IV-C.

D. Multilayer Perceptron Regression

A Multilayer Perceptron (MLP) is a feed-forward artificial
neural network composed of multiple layers of neurons (per-
ceptrons) with activation functions. It typically consists of
three types of layers of nodes, an input layer, one or more
hidden layers and an output layer. The MLP is a supervised
learning algorithm that ”trains” a neural network to map from
inputs to outputs through a process of iteratively adjusting the
layer weights and parameters backwards from the outputs to
the inputs [19].

Working with ChatGPT-4o, we issued a prompt asking for
information about MLPs along with key references, and key
steps in hyperparameter optimisation. In addition to useful text
output, ChatGPT-4o generated an initial code template shown
in Fig. 4.

Fig. 4: Source code generated by ChatGPT-4o in response to
a query asking for information about Multilayer Perceptron
Regressors.

As in the case of the RFR code template, the MLP code
template consists of the steps needed to build a basic MLP
regressor starting with a simple set of model parameters and
parameter ranges. This starter code also performs a call to
GridSearchCV to perform both a systematic search through
the model parameter space that includes a 5-fold CV as
part of the search. The return value from the grid search is
information about the model parameters that produced the best
MSE results.

Like the RFR template example, we added our own code
to load in one fold from the original dataset for the purpose
of exploratory model analysis. We also changed from a grid
search to a randomized search, as it is known to run more
quickly and to produce better results [13].
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Fig. 5: Correlation maps showing the relative strength of correlation between input features and output variables. Cells indicate
the strength of the positive (red) or negative (blue) correlation between an input variable an an output feature. Cells where
the absolute value of the correlation threshold |t| < 0.1 are left blank. The charts show correlations between input simulation
variables for the variable Current (left), Powers (left-middle), and between 5 PCA components and the variable Current (right-
middle) and Powers (right).

Continued conversation with ChatGPT-4o on the topic of
model parameters led us to expand the range of parameter
values. For example, the code in Fig. 4 shows two single
hidden layer configurations and one two-layer configuration.
We explored several different permutations of network topolo-
gies (not shown here). Results from model optimization at this
stage are reported in Table. I.

E. Gaussian Processes Regression

In this study, we began to explore the same process for
building GPR models as with the RFR and MLP models.
These codes have significant computational cost, as evidence
by results from 2022 [1] showing that the GPR methods have
10x the computational cost of RFR and MLP, but the resulting
MSE is somewhere inbetween the two. For the purpose of this
study, we abandoned this particular line of investigation on
the basis of computational costs. Future work may examine
finding ways to significantly reduce the computational costs.

GPR involves the inversion of an N ×N covariance matrix
(also known as the kernel matrix), where N is the number of
training samples [20]. The time complexity of inverting this
matrix is O(N3) and the memory complexity is O(N2). As
the number of data points increases, the computational cost
grows cubically and the memory cost grows quadratically,
making GPR impractical for large datasets.

F. Reducing the Number of Features

In an effort to reduce computational cost, we again con-
sulted with ChatGPT-4o. Among its suggestions was one about
reducing the number of input features, which in turn could
reduce the computational cost of model training an inference.

Two different strategies came up in the conversation. One
is to study the correlations between input features and output
targets and perhaps exclude those features that do not have
any significant impact on output features. Another strategy is
to perform Principal Component Analysis (PCA) [21] on the
input features, and then perform model fitting on the resulting
PCA components rather than the original input features.

Since the key idea is the correlation between inputs and
outputs, we iterated with ChatGPT-4o to generate an initial
code template for creating correlation maps. We used that
code first to create maps showing the correlation strength
between input simulation variables (features) and outputs. We
iterated with ChatGPT-4o to generate a code template that
computes PCA components, and also created maps showing
the correlation strength between 5 PCA components and the
output variable. All correlation maps are shown in Fig. 5.

Based upon the results of this study, the suggested approach
was to eliminate those features where no strong positive or
negative correlation exists between the input feature and any
output variable, where strongly correlated would be defined
as |t| >= 0.1. From Fig. 5, for the variable Current, we can
eliminate one input feature R0_eqdsk, and for the variable
Powers, we can eliminate three input features: R0_eqdsk,
elecfld, and zeff. We modified versions of our RFR and
MLP codes to use these reduced features. There was some
minor impact on the model in terms of computational rate
and MSE both at the exploratory analysis phase (see Table I
and during final model construction and analysis (§IV-C.

Looking at the correlation maps for the 5 PCA components
in Fig. 5, none of the PCA components would appear to
qualify for exclusion using the thresholding criteria of the
absolute threshold value being smaller than some minimum,
e.g., |t| < 0.1. Nonetheless PCA-1 and PCA-5 appear to have
strong positive correlations for the variables Current and Pow-
ers, respectively. Therefore, we created derivative codes for
RFR and MLP that would perform PCA using 5 components,
then used them as input features for model training. The results
shown in Table I reveal the model accuracy in terms of MSE
is far inferior to that of the original simulation variables. The
fact that PCA did not produce advantageous results here is
not a surprise: the original simulation features are more or
less evenly distributed through their own parametric ranges
owing to a Latin Hypercube sampling used for setting up the
simulation runs [1]. We did not further pursue the idea of using
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PCA components in this study.

Method/features Current Powers
RFR, all features 0.681 0.016
RFR, reduced features 0.688 0.015
RFR, PCA-5 2.844 0.261

MLP, all features 0.339 0.014
MLP, reduced features 0.355 0.013
MLP, PCA-5 2.779 0.025

TABLE I: Results of best model accuracy in terms of mean-
squared error (MSE) from the exploratory model evaluation
stage. The model parameters producing these MSE values
were carried forward into the later model optimization and
validation stage. The models built using PCA components as
features had relatively poor performance, so this approach was
not carried forward into later model development stages.

IV. FINAL MODEL RESULTS

This section begins with a description of the hardware and
software environment used for the model development and
testing. Next, we present quantitative findings from final model
creation and evaluation, along with a comparison with earlier
work. We also examine the qualitative issue of whether or not
development time was reduced compared to earlier efforts.

A. Computational Environment – Software

In this study we leveraged two different GenAI systems,
Github’s Copilot [22] and OpenAI’s ChatGPT-4o [23].

When attempting to ascertain a version number for Copilot,
we asked it directly and it said ”As an AI developed by OpenAI
and GitHub, I don’t have a specific version number like a
traditional software application might. However, I’m based on
the GPT-4 version of OpenAI’s GPT models.”

Similarly, with ChatGPT-4o, it responded ”I am an AI
language model developed by OpenAI, based on the GPT-
4 architecture. I do not have a specific version number like
traditional software, but I am part of the GPT-4 series, which
was released by OpenAI in March 2023. You can refer to me
as ”GPT-4”.”

There are some troubling implications with respect to re-
producibility given that there is no specific software version
number to associate with a particular body of work, especially
when that software is central as an assistant for concepts and
code templates.

Other software that was leveraged as part of this work on
both laptop/desktops and large-scale computational facilities
includes:

• sklearn [17], v1.5.0 for x86 Linux and MacOS
• GPflow [24], v2.9.1 for x86 Linux (Perlmutter@NERSC)
• Visual Studio Code (code) [25], v1.89.1 on MacOS
• Python 3.10.0

B. Computational Environment – Hardware

The team’s general workflow is to use personal computers
like laptops for interactions with Copilot through VScode.

There was a diversity of platforms including x86 and Apple
M1/M2 chipsets. Interactions with the GenAI systems, initial
code development and testing occured on these personal
platforms.

For longer computational runs, the team made use of the
Perlmutter system at the National Energy Research Scientific
Computing Center (NERSC). Perlmutter is a HPE (Hewlett
Packard Enterprise) Cray EX supercomputer. It is a heteroge-
neous system comprised of 3,072 CPU-only and 1,792 GPU-
accelerated nodes.

C. Model Results and Comparison to Previous Implementa-
tion

The model accuracy results in terms of MSE for all models
are shown in Table II. These results include MSE from the four
new models from this study: MLP versions for all features and
reduced features, and RFR versions all features and reduced
features applied to both Current and Powers variables. For the
sake of comparison, we are including MSE data for the two
original models (MLP TensorFlow 2022, RFR sklearn 2022)
applied to both Current and Powers variables.

In terms of overall model accuracy, both the MLP and
RFR full-feature versions show minor accuracy improvement
compared to their counterparts from 2022 for the Current
variable and identical MSE for the Powers variable. While
both 2022 and present RFR codes are implemented using
sklearn, the 2022 MLP is implemented using TensorFlow
and the present MLP is implemented using sklearn. The
fact both RFR implementations use sklearn, use the same
data, and virtually identical methodology leads us to expect the
MSE will be nearly identical. For MLP, the implementation
differences along with differences in hyperparameter settings
for the final model, due to differences in 5-fold CV outcomes,
gives rise to a somewhat larger MSE difference for the Current
variable.

Of the models that make use of reduced features, the value
of the MLP metric MSE outcome is worse than (larger than)
than the MSE metric of both 2022 and present MLP full-
feature models. On the other hand, the RFR reduced feature
version show some MSE improvement compared to both 2022
and present versions for the Current variable. Results are
identical for the powers variable for all RFR versions.

For each of the different models, we accumulated the
accuracy using MSE during both 5-fold training and final
model construction. The results for all models in both stages
of training appear in Table II, where they are juxtaposed with
the corresponding model results from Wallace et al., 2022 [1].

The runtime costs for building models and performing
inference workloads appear in Table III. The present day
models required significantly more runtime for 5-fold CV than
those from 2022, most likely due to a greater number of
different parameter configurations, a broader numeric range of
parameter values, and the use of nested cross-validation. This
extra effort appears to have paid off in terms of the present
day models requiring substantially less final model training
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5-Fold CV Test (hold-out data)
Current Powers Current Powers

Method µ(MSE) σ(MSE) µ(MSE) σ(MSE) µ(MSE) µ(MSE)

MLP sklearn, all features 0.213 0.018 0.009 0.0007 0.210 0.008
MLP sklearn, reduced features 0.258 0.0129 0.011 0.0008 0.251 0.011
MLP TensorFlow (2022) 0.223 0.015 0.009 0.0007 0.227 0.008

RFR sklearn, all features 0.562 0.050 0.016 0.0007 0.525 0.015
RFR sklearn, reduced features 0.543 0.046 0.016 0.0007 0.508 0.015
RFR sklearn (2022) 0.559 0.045 0.016 0.0007 0.528 0.015

TABLE II: Evaluation of the three ML models using MSE as the performance metric, and comparing results of current study
results with those from Wallace et al., 2022 [1]. For the 5-Fold cross-validation process we present the mean (µ) and standard
deviation (σ) of the MSE across all folds. The second column presents the prediction results of each final model trained using
the full training data.

5-Fold CV Final model
Training time (min) Training time (min) Inference time (ms)

Method Current Powers Current Powers Current Powers

GENRAY/CQL3D – – – – O(10) (min)

MLP, all features 149.32 51.95 1.65 1.88 0.003 0.004
MLP, reduced features 153.35 60.43 2.21 1.89 0.010 0.004
MLP, (2022) all features 71.7 119.7 14.40 23.1 0.800 1.690

RFR, all features 20.49 19.54 1.52 1.57 0.480 0.488
RFR, reduced features 15.90 15.33 1.52 0.59 0.533 0.256
RFR, (2022) all features 3.2 1.6 9.10 3.9 0.930 0.750

TABLE III: Comparison of computation cost of performing 5-fold CV and final model training and testing. Model training
times are measured in minutes, while inference times are measured in milliseconds. For comparison, the cost of one GENRAY
”inference” run is O(10) minutes compared to millisecond-scale timings for inference using AI-based surrogates.

time. Inference times for present day models also appear to
be substantially less than for the 2022 models.

Comparing the present day reduced and all feature models,
we see that the reduced feature models require more training
time compared to the all feature models. The reverse is true
for the RFR models. This result is likely due to the data
dependent performance differences in MLP versus RFR model
optimization. The MLP optimizer may be working harder to
converge when there are fewer features.

In terms of visual comparison of model outputs, Fig. 6
presents 12 plots comparing the results of ground truth against
model predictions. There are four different models – RFR
all-features, RFR reduced-features, MLP all-features, MLP-
reduced features – and three different groups of ”goodness
of fit” based upon good, average, and poor MSE. The same
simulation record is used for each of good, average, and poor
fits to facilitate visual comparison amongst methods. Note that
this is one variable, Current. Due to space limitations, we are
unable to show the other 12 plots for the Powers variable. They
have similar visual characteristics. These results are visually
similar to those of the 2022 study [1].

D. Qualitative Results: Was Development Time Reduced?

While some previous works have painstakingly measured
developer performance to get a better feel for how GenAI
improves productivity (c.f. §II, in this case we can offer some
anecdotal observations.

For the 2022 study [1], the original team worked part-time
over the course of two years on producing the first results.
A significant amount of time was generating and validating
the simulation database that is the input for model training.
There were separate persons working on each of the three
models, though each was concurrently working on multiple
additional projects. The 2022 study software also includes the
creation of digital data artifacts that include the simulation
database along with file-based versions of the trained models
and Jupyter notebooks to load the train models and study data.

The present effort began in February 2024 and these results
represent about 4 months effort for a faculty and 3 students
working part-time on the project. All on the team are in
agreement that we all feel more productive in terms of being
able to interact with a capable GenAI assistant who can present
and summarize in-depth technical material along with code
templates to get started. Our own experience echoes that of
other studies that conclude that GenAI helps to improve coding
and learning productivity.

V. FINDINGS AND DISCUSSION

GenAI may not do so well with data dependent operations.
While Copilot and ChatGPT-4o did a reasonably good job of
producing general purpose code, it was not well suited for
situations that require knowledge about the characteristics of
a particular dataset or specific methods for working with those
specific characteristics.
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Fig. 6: For the variable current drive, comparison of model outputs for RFR with all features (first row), RFR with partial
features (second row), MLP with all features (third row), and MLP with reduced features (bottom row). The left column shows
typical ”good” model accuracy, the middle column shows an ”average” model accuracy, and the right column shows a ”poor”
model accuracy. Results for the variable powers are similar and omitted for brevity. In these charts, the x-axis is the set of
targets, or output values, produced by the model. The y-axis is the numerical value of each of these output values.
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For example, when prompting Copilot to perform hyper-
parameter optimization for GPR, the resulting code exhibited
lengthy runtimes and would not finish within the 6-hour limit
for Juypter jobs. In response to a prompt about improving
GPR runtime, ChatGPT-4o suggested ”using a more efficient
optimizer: The Scipy optimizer used in the code is a general-
purpose optimizer. If you have some knowledge about the
structure of the problem, you might be able to use a more
efficient optimizer. However, this requires a deep understand-
ing of the problem and the optimizers.”

Results from GenAI can be buggy. ChatGPT-4o sometimes
generates code with bugs, which we would repair using
Copilot from inside VScode. In addition, ChatGPT-4o would
sometimes provide citations to works that simply do not exist.
All results from GenAI should be subject to careful scrutiny
and validation.

It is well understood that there is bias in the output produced
by GenAI tools. This bias originates from several key factors
related to the data used for training, the design of the models,
and the algorithms that guide their learning. For example,
GenAI models are trained on vast datasets that are often
scraped from the internet. These datasets can reflect the
biases present in the real world, including cultural, social,
and linguistic biases. In our studies, some of the initial code
suggestions might not be the best for one reason or another.
For example, both ChatGPT-4o and Copilot always turn to a
grid search for doing hyperparameter optimization. It is well
known that a randomized search can often produce superior
results in reduced runtime [13]. We would often try out the
initial grid search suggestion but then switch to a randomized
search instead.

The GPR model was not included in this study because
it was too computationally expensive. From the 2022 study,
GPR was 10x more computationally expensive to train models
compared to RFR and MLP, and its model accuracy was
somewhere between RFR and MLP. While we did endeavor
to find ways to reduce the computational runtime through
a conversation with ChatGPT-4o, none of the approaches
provided satisfactory results. An open question is whether or
not there are other approaches we have not found yet that
would result in GPR being more competitive in terms of cost
vs. accuracy for this particular problem.

VI. CONCLUSION

The overall objective for this work is leverage GenAI for
all stages of AI-based model conception, development, opti-
mization, and evaluation. The results of this effort is compared
both quantitatively and qualitatively with results from a 2022
study [1]. The primary findings are that the current generation
models have comparable performance in terms of accuracy,
and there are some tradeoffs in terms of computational cost
where more time spent optimizing current models also results
in faster full model training and inference time.

A key finding of this study is that use of GenAI is far
from being ”turnkey”. The GenAI is best viewed as a capable
assistant, and the information and code products it produces

require careful scrutiny. In addition, the deeper the domain
knowledge of the human conversing with the GenAI, the better
the quality of results.
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