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Abstract

Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community
structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-
conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies,
supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic
effects on yeast density and species composition. When yeast densities were compared in pieces of the same fruits assigned
to different treatments, fruits that developed low yeast densities in the absence of flies developed significantly higher yeast
densities when exposed to larvae. Across all of the fruits, larvae regulated yeast densities within narrow limits, as compared
to a much wider range of yeast densities that developed in pieces of the same fruits not exposed to flies. Larvae also
affected yeast species composition, dramatically reducing species diversity across fruits, reducing variation in yeast
communities from one fruit to the next (beta diversity), and encouraging the consistent development of a yeast community
composed of three species of yeast (Candida californica, C. zemplinina, and Pichia kluvyeri), all of which were palatable to
larvae. Larvae excreted viable cells of these three yeast species in their fecal pools, and discouraged the growth of
filamentous fungi, processes which may have contributed to their effects on the yeast communities in banana fruits. These
and other findings suggest that D. melanogaster adults and their larval offspring together engage in ‘niche construction’,
facilitating a predictable microbial environment in the fruit substrates in which the larvae live and develop.
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Introduction

Many insects consume yeasts, and over the years, many

researchers have investigated the effects of dietary yeasts on the

growth, fecundity and survival of a wide array of insects (reviews in

[1], [2]). However, much less is known about the other side of the

equation: the effects of insects on yeast communities. Aside from

consumption, the most widely reported effect of insects on yeasts is

vectoring: adult insects in several taxa transfer viable, palatable

yeast cells to new substrates, where the yeast grows and is then

eaten by adults or their larvae [1], [2]. But insects might have a

variety of other effects on yeast communities, as a result of

transporting other microbes to new substrates, depositing their

waste products on substrates, physically altering the structure of

substrates, or other processes that encourage and discourage the

growth and survival of particular species of yeasts [2], [3]. In other

words, insect might engage in niche construction [4], [5], if their

actions and metabolic processes support particular yeast commu-

nities in the substrates in which they live and feed. Several

specialized insect yeast-farmers are known to reduce yeast species

diversity and encourage the growth of palatable species of yeasts

within the zone of cultivation. For instance, workers of attine ants

in the Cyphomyrmex rimosus complex farm cultivars of yeast that

belong to a derived, monophyletic clade, and engage in a variety

of behaviors that encourage the growth of these yeasts within their

nests [6], [7]. However, with the exception of a handful of species

that engage in advanced forms of yeast-farming, there is little

evidence that insects promote the growth and maintenance of

particular yeast communities in breeding substrates.

Drosophila are prime candidates for studies of the effects of insects

on yeast communities, because it is already clear that Drosophila

both consume and vector yeast. Yeasts are a major source of

nutrition for the adults and larvae of most saprophagous Drosophila

(Diptera: Drosophilidae) [8], and larval growth and survivorship is

affected by the yeast species available to them [8–10]. There are

indications that mixed yeast diets confer higher benefits to flies

than monocultures, especially when the yeasts and fly larvae are

growing on natural substrates [11], [12], and that some yeasts may

improve the ability of flies to resist pathogens [13]. Evidence that

Drosophila adults vector yeast comes from studies demonstrating

that yeasts develop in sterile substrates following visits by adult flies

[14], of overlap in species composition between the yeasts collected

at fly feeding or breeding sites and the yeasts carried by adult flies

(e.g. [15–17]), and experiments demonstrating that yeast commu-

nities fail to develop in some natural substrates if flies and other

potential animal vectors are physically excluded from them [18].

There are also indications that Drosophila larvae or adults might

engage in activities that encourage or discourage the growth of

particular species of yeasts, and hence affect yeast community
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composition, after yeast propagules have reached natural sub-

strates. For instance, Starmer and Fogelman [12] seeded pairs of

yeasts from the agria cactus yeast community onto sterile agria

cactus tissue, and then estimated the carrying capacity of each

yeast species based on fitted growth curves. They found that in the

absence of larvae, all yeast-yeast effects on carrying capacity were

positive, but when larvae were present various negative and

positive-negative interactions appeared. They interpreted these

results as suggesting that yeast communities with larvae might be

more qualitatively stable than those lacking larvae. Others have

suggested that larvae digging behavior might affect the develop-

ment of microbial communities that favor larval growth and

development [19], or that larvae may disperse yeast cells through

substrates as a result of their foraging activities [2]. However, to

our knowledge, no one has studied the effects of Drosophila adults or

larvae on the density or composition of yeast communities in

natural fruit substrates.

In principle, there are at least two reasons why we might expect

Drosophila to manage the yeast communities in natural substrates in

ways that are favorable for larval growth and development. First,

the breeding habitats of Drosophila (e.g. rotting fruits, flowers,

mushrooms, soft rots, leaf litter, tree bark, exudates and fluxes) are

also home to other animals, including other flies, beetles,

nematodes and mites [1]. As a result, adult flies often oviposit

on substrates that already harbor yeasts, bacteria, filamentous

fungi (i.e., molds) and other microbes left by previous visitors, and

other animals could easily ‘contaminate’ an oviposition site with

other microbes after a female Drosophila had laid her eggs there.

Hence, vectoring alone may not guarantee that a newly colonized

breeding site will eventually support high densities of yeasts that

support offspring development. Second, many Drosophila breed in

isolated patches of substrate, to which their offspring will be

confined until they initiate pupation, a process that typically

requires a week or more. In this situation, larval growth and

development depends upon the yeast communities that develop

and are maintained within their natal patch over an extended

period of time. Moreover, high densities of palatable yeasts are

most likely to be important towards the end of the larval

development period (third instar), when larval food intake rates

are highest [20]. Hence, when a small number of Drosophila larvae

first emerge in newly available natural substrates, one might

expect them to engage in activities early in the larval period that

encourage (or at least, do not discourage) high densities of

nutritious yeasts in their natal patch a week or so later, when their

food requirements will be highest.

Here, we investigate the effects of adult and larval Drosophila

melanogaster (Meigen, 1830) on the yeast communities that are

present at the end of the larval period on pieces of cultivated

banana fruits (Musa acuminata (Colla, 1820)). In order to mimic a

natural situation in which a small number of adult flies first arrive

and begin to oviposit on structurally intact, non-sterile fruits, we

cut matched pieces from the same banana fruits (including skin),

and compared the yeast communities in pieces exposed to D.

melanogaster adult females, to larvae, and to both adults and larvae

to the yeast communities that developed in matches pieces from

the same fruits that were not exposed to flies. This protocol

allowed us to control for variation among fruits in their microbial

communities at the onset of the study, and for differences among

fruits in any characteristics that might affect the microbial

communities that subsequently developed in them. In addition,

we investigated the effects of larvae on the filamentous fungi in

fruit, and showed that young larvae are able to ‘transplant’ viable,

palatable yeast in their fecal pools as they travel around a

substrate.

Materials and Methods

1. Experiment 1: Effects of Adult Females on Yeast
Abundance

The main goal of this experiment was to test the hypothesis that

adult D. melanogaster ‘vector’ yeasts to fruit, by comparing yeast

abundance on pieces of banana fruit exposed to virgin adult

females previously fed conditioned banana to the yeast abundance

on pieces of the same fruits not exposed to flies. We also included

two additional treatment groups with mated females to 1) confirm

that our experimental protocol generated viable larvae, and 2)

evaluate the potential effects of larvae on yeast abundance.

On the afternoon of Day 1, newly emerged females and adult

males from isoline 141 ([21], Appendix S1) were placed in vials

with Bloomington diet, a medium which contains inactive brewer’s

yeast (Saccharomyces cerevisiae), but no viable yeast. Twenty females

and 14 males were added to each vial; these were the ‘mated

females’ used in two treatments: M7 and M14. In the afternoon of

Day 3, newly emerged virgin females from isoline 141 were

collected and held in vials (20 females per vial) with Bloomington

diet; these were the virgin females used in the ‘virgin female’

treatment. On the morning of Day 4, two screened 800 ml jars

were each provisioned with 5 g of fly-conditioned banana that had

previously been exposed to flies in a population cage for 3–4 days

[21]. The mated females were transferred into one jar; the virgin

females were placed in the other.

On the morning of Day 5, four pieces of banana 15.0 (6 20.1)

g each were cut from the center of the same banana and placed

individually into 100–ml beakers covered with sterile mesh tops.

Five virgin females were transferred into the ‘virgin female’ beaker,

five mated females each were transferred into the M7 and M14

beakers; no flies were transferred into the fourth beaker (‘no flies’).

The beakers were maintained at 90–100% humidity and 25uC
throughout the experiment. All females were removed from the

beakers 24 hours later, on the morning of Day 6. Yeast density

was measured on Day 12 (7 days after cutting) for the no fly, virgin

female and M7 treatment groups (see Methods, 4). The M14

beaker was monitored for 7 more days, at which time all of the flies

that emerged from that piece were counted. This experiment was

repeated using 11 different banana fruits.

2. Experiment 2: Effects of Larvae, Adults and Both on
Yeast Species Diversity and Abundance

Methods for this experiment were the same as those described

above for Experiment 1, with the following exceptions. Four 15 g

slices of the same banana were each placed in a 100 ml beaker,

and then randomly assigned to the following treatment groups:

‘adults’, ‘larvae’, ‘adults and larvae’, and ‘no flies’. Virgin adult

females were prepared as described for the virgin female treatment

in Experiment 1. Clean one-day old larvae were prepared as

described in Methods, 3. Twenty larvae were gently transferred

onto the banana pieces in the ‘larvae’ and the ‘adults and larvae’

beakers, five adult females were then added to the ‘adults; and the

‘adults and larvae’ beakers; no flies were added to the ‘no flies’

beaker. All adult females were removed 24 h later. Eight days after

the fruit was cut, all four pieces were analyzed for yeast abundance

(Methods, 4). At this point, most of the larvae had not yet eclosed,

so it was not possible to measure their size or age as adults. Yeast

abundance was measured for a total of 36 bananas.

For a subset of the pieces in this experiment, the yeast colonies

from the highest dilutions on the track-dilution plates used to

quantify yeast abundance were categorized based on morphology,

and then each morphotype was identified to species (Methods, 5).

For seven bananas we were able to identify the yeasts for all four
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treatment groups; six other bananas provided additional samples

for yeast species identifications. The number of pieces analyzed

per treatment group were: no flies: 11, adults: 10, larvae: 10, adults

and larvae: 10.

3. Preparing ‘Clean’ Larvae
Adult flies of isoline 755 [22] were allowed to lay eggs overnight

(from 16:00 h, Day 1 to 8:00 h, Day 2) on 5 cm petri dishes filled

with Bloomington diet, and covered by a Kimwipe moistened with

a solution of inviable brewer’s yeast in distilled water. We collected

larvae from these dishes on the morning of Day 4 (24–38 h post-

hatch). On 10 occasions throughout the experiment we collected

six larvae, placed them individually on a RCBA plate for an hour,

then removed them. Twelve hours later, no yeast colonies had

grown on any of the 60 plates. These results confirmed that this

protocol produced larvae free of the yeast species most relevant to

the current study, because we also found that the yeasts consumed

and excreted by larvae previously fed fly-conditioned banana, and

the three yeast species characteristic of fly-exposed fruits (Pichia

kluveri (Bedford ex Kudryavtsev 1960), Candida californica (Anderson

& Skinner, Bai, Wu & Robert 2006), and Candida zemplinina

(Sipiczki 2003) all grew rapidly and formed large colonies 12 h

after being placed on RCBA plates (see Methods 6 and 7).

4. Measurement of Yeast Densities
Each piece of banana from Experiment 1 and Experiment 2 was

placed in a 7 oz. Whirl-Pak filter bag (Nasco) with 1 ml of saline

solution (0.85% NaCl, 0.01%Tween 80) and mixed until

homogeneous. Two samples were taken from each banana

mixture, and six dilutions per sample (100 to 1025 ) were prepared

in a 96 well plate. Ten ml per dilution were pipetted onto a RBCA

plate using a track-dilution technique [23]. Plates were incubated

at 22–24uC for two days and then yeast colonies at each dilution

were counted, and the presence/absence of filamentous fungi was

noted. The number of colony forming units (CFUs) of yeast per g

of fruit was measured for each sample, and the results for both

samples from the same piece were averaged for further analysis.

Yeast densities in this study ranged from 100 to more than 1010

CFU/g across fruits, so we used log CFU/g as our index of yeast

density in this study.

5. Analyses of Yeast Species Identity
Yeasts were plated on RCBA plates (Difco, Sparks, MD, USA,

DF1831-17-4), incubated in the dark at 22–24uC for 2–3 days,

and then evaluated for colony morphology. One representative of

each morphotype was picked from each plate, streaked separately

onto potato dextrose agar (PDA, Difco, Sparks, MD, USA,

DF0013-07-8) plates until each sample was pure, preserved in a

20% glycerol solution and stored at 280uC.

Yeasts were identified by amplifying and sequencing the D1/D2

loop of the large (26S) ribosomal RNA gene, using primers NL1

and NL4 [24], [25]. Purified PCR products were sequenced at the

CBS UCDNA Sequencing Facility at UC Davis using ABI BigDye

Terminator v3.1 Cycle Sequencing and analyzed on an ABI 3730

Capillary Electrophoresis Genetic Analyzer. Sequences were

compared to those in public databases using BLAST nucleotide

software (http://blast.ncbi.nlm.nih.gov/Blast.cgi). Yeast strains

with sequences of 99% or higher sequence identity were

considered to belong to the same species. All of the samples in

this study were assigned the name of a previously described yeast

species.

Selected yeast strains were assigned UCDFST identification

numbers and deposited in the Phaff Yeast Culture Collection,

University of California Davis (www.phaffcollection.org). Several

of the strains isolated from the ‘adults and larvae’ treatment in

Experiment 2 were used in subsequent experiments to determine

whether the yeasts that dominated fly-conditioned banana were

palatable to young larvae (Methods, 7).

6. Visualizing Yeast ‘Transplanted’ by Larvae
One-day-old larvae (24–36 h post-hatch) from isoline 755 were

collected from bananas previously exposed to adults for two days

in a fly population cage [21] placed individually on RCBA plates

for 0.5 h, and then removed (see also Appendix S2). At this point,

no yeast was visible on these RCBA plates. Fourteen hours later,

however, the fecal pools left by these larvae were filled with yeast

colonies. We measured the number of fecal pools per plate, the

length of three randomly selected pools, and the number of CFUs

per mm in three linear segments of the larva’s pathway. For each

of 38 larvae, we computed the average size of its fecal pools, and

the average number of CFUs per mm of travel.

On 10 occasions, after measuring fecal pools and yeast trails on

the RCBA plate, we placed a new one day old larvae from the

population cage on the same plate, and observed its behavior. In

all 10 cases, the new larvae began feeding on the yeast in the first

larva’s fecal pools as soon as they contacted it (based on

observations of feeding movements [26]), indicating that the yeast

excreted by young larvae were palatable to other young larvae.

7. The Palatability of Yeast Strains Collected from
Bananas Exposed to Adults and Larvae

From the yeast strains isolated from the ‘adults and larvae’

treatment in Experiment 2 and then deposited in the Phaff

collection, we randomly selected two strains each of Candida

californica (strains UCDFST 09–378 and UCDFST 09–541), C.

zemplinina (strains UCDFST 09–373 and UCDFST 09–522), and

P. kluyveri (strains UCDFST 09–523 and UCDFST 09–554). Pure

cultures of each of these strains were streaked onto separate RCBA

plates, then a 1–2 mm dot of each strain was lightly touched to the

center of a new RCBA plate and allowed to grow for 12 h, at

which point the resulting mound of yeast was spread to form a

uniform ‘lawn’ approximately 1 cm in diameter. Then, for each

replicate, 6 larvae of the same length (61 mm) were selected; each

was randomly assigned to a different strain of yeast. A single clean

larva was placed on a patch and observed until it began to feed,

then observed again for five minutes at the end of an hour. Each

larva was then transferred to a fresh RBCA plate for another hour,

and removed. Twelve hours later, the number and length of the

fecal pools on these plates were recorded (n = 17 replicates).

Preliminary analyses indicated no significant differences in the

number or length of the fecal pools as a function of strain within

species (all p values .0.30), so results from both strains of each

species were combined for further analysis.

All of the larvae began feeding within 5 min of being placed on

the lawn, and all of them had fed to satiation (based on a cessation

of feeding and crawling behavior) by the end of an hour on the

lawn. Hence, we simply describe these results in the text.

8. Statistical Methods
To study the effects of flies on yeast densities, for each banana

fruit, we computed the difference between the density for the

pieces in each fly-exposed treatment group and the density in the

piece not exposed to flies, where d= the yeast density (log CFU/g)

in each piece of fruit. For instance, the difference in density

between pieces exposed to larvae and pieces not exposed to flies =

(dlarvae 2 dno flies). To determine whether flies regulated yeast

densities across fruits, we regressed these differences against dno

Drosophila Effects on Yeast Communities
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flies, where a negative slope for one of these regressions would

indicate that flies in that treatment group regulated densities across

different fruits.

For the analyses of the yeast species communities in Experiment

2, we used nonparametric permutational multivariate analysis of

variance [27] to test for differences in the yeast community

composition among four treatment groups. Analyses using both

pairwise Sørensen’s dissimilarities and pairwise Jaccard distances

yielded identical qualitative conclusions, so here we report results

from the latter. Significance tests were based on 9999 permuta-

tions of the community matrix, implemented using the ‘‘adonis’’

function in the ‘‘vegan’’ package of R [28].

We evaluated the multivariate dispersion among communities

within each of the four treatment groups using the ‘‘betadisper’’

function with 9999 permutations in the ‘‘vegan’’ package of R

[28], [29]. In addition, we analyzed planned contrasts between 1)

the yeast communities on fruit exposed to larvae (the larvae and

the adults and larvae groups) and the yeast communities on fruit

not exposed to larvae (the adults and the no fly groups), and 2)

between yeast communities exposed to virgin adult females (the

adults and the adults and larvae groups) and the yeast

communities not exposed to virgin females (the larvae and the

no fly groups).

We tested whether yeast community composition and dispersion

differed among individual banana fruits by evaluating a reduced

dataset confined to the seven bananas that were represented in all

four treatment groups. We used individual banana identity as the

single explanatory factor in analyses that tested whether banana

identity was a significant predictor of yeast community composi-

tion (using both pairwise Sørensen’s dissimilarities and pairwise

Jaccard distances) and variability (using multivariate dispersion).

These analyses did not detect any variation among individual

bananas in either yeast community composition (F = 0.86,

df = 6,21, P = 0.69) or multivariate dispersion (F = 0.77, df = 6,21,

P = 0.61) using nonparametric permutational multivariate analysis

of variance. Based on these results, we did not consider banana

identity in the analyses of the yeast communities.

For statistical analyses that relied on assumptions about

normality and heteroscedasticity, we validated these assumptions

prior to analysis, and used alternate tests if either assumption was

violated (e.g. Welsh’s test when variances were unequal across

groups). Unless otherwise indicated, statistical tests were conduct-

ed using SPSS version 19. Family-wise errors for multiple tests

were controlled used the False Discovery Rate (FDR) procedure

[30].

9. Ethics Information
All animal experiments were conducted in conformity with the

Guiding principles in the care and use of animals’’ of the Council

of the American Physiological Society, and the Guidelines for

animal research of the Animal Behavior Society. All experiments

comply with the current laws pertaining to studies of Drosophila and

yeast in the United States.

Results

1. Experiment 1: Effects of Adult Females on Yeast
Abundance

Adult flies emerged from all 11 pieces of banana that were

exposed to mated females and then monitored for two weeks (M14

treatment group: mean = 21.7, S.D. = 12.1 flies per piece),

confirming that our experimental protocol was suitable for rearing

Drosophila melanogaster, and implying that viable larvae were also

present in the mated female, M7 group.

In the absence of flies (no fly group), bananas supported yeast

densities ranging from 100 to 108.3 CFU/g. Exposure to either

virgin females or to mated females and their offspring increased

yeast abundance in the same fruits (virgin females versus no flies:

paired t test, t = 5.6, df = 10; mated females versus no flies, t = 5.9,

df = 10, both results significant at P,0.001 after correction for

multiple tests via FDR). However, the effects of females on yeast

density were not uniform across different fruits. Instead, females

had the strongest impact on yeast densities in fruits that supported

low yeast densities in the absence of flies (Figures 1, 2). This is

indicated by negative slopes when the differences in density

between the fly-exposed and the no fly pieces were regressed

against the densities in the no fly pieces (dvirgin females 2 dno flies)

versus dno flies: slope = 20.69, t = 4.78; (dmated females 2 dno flies)

versus dno flies: slope = 20.82, t = 9.56, both results significant at

P,0.001 after FDR, Figure 1). Looking at these results another

way, pieces exposed to flies ended up with a narrow range of yeast

densities across fruits that supported a much wider range of

densities in the absence of flies (Figure 2). The reduction in the

variance of yeast densities across fruits was most pronounced for

the pieces exposed to mated females (variance in log (CFU/g): no

flies = 7.43, virgin females = 2.16, mated females = 0.63; compar-

ison of variance for virgin females versus mated females: Levene’s

statistic = 10.06, df = 1,20, P = 0.005).

Taken together, these results support the hypothesis that adult

female D. melanogaster can ‘vector’ yeasts from fly-conditioned to

new fruit substrates. As one would expect if females ‘seeded’ yeasts

on fruits, the positive effects of adult females on yeast abundance

were strongest for fruits with low densities of yeasts in the absence

of flies, resulting in relatively constant yeast densities across female-

exposed fruits. Finally, the lower variance in yeast densities in

pieces exposed to mated females than in those exposed to virgin

females suggested that larvae might help regulate yeast densities

across fruits, providing impetus for Experiment 2.

2. Experiment 2: Effects of Larvae, Adult Females and
both on Yeast Community Structure and Density

Flies had dramatic effects on the yeast communities on bananas.

Eight days after they were cut, pieces of banana exposed to virgin

adult females (adults), to larvae or to both supported different yeast

communities than pieces with no fly exposure (Figure 3). Yeast

community composition was affected by adults (F = 2.57, df = 1,37,

P = 0.014) and by larvae (F = 5.32, df = 1,37, P = 0.0001), with no

significant interaction between them (adult 6 larvae, F = 1.27,

df = 1,37, P = 0.255).

Processing by larvae dramatically reduced the variability of

yeast community composition from one fruit to the next, as

evidenced by significant differences in the multivariate dispersion

of community composition among the four groups (F = 8.13,

df = 3,17, P = 0.0003, Figures 4, S1, S2). Adults did not

significantly affect yeast community similarity (average Jaccard

distance to centroid with adults present: 0.44, with adults absent:

0.32, F = 1.78, df = 1,39, P = 0.188), but larvae significantly

increased the similarity of yeast communities (average Jaccard

distance to centroid with larvae present: 0.53, with larvae absent:

0.20, F = 27.97, df = 1,39,P = 0.0001; the latter result significant at

P,0.0002 after FDR). Of the pieces processed by larvae, 50% had

communities entirely composed of three yeast species, Candida

californica, Candida zemplinina and Pichia kluyveri; another 30% had

communities entirely composed of two of these species (see

Figures 3 and S3). In contrast, of the pieces not exposed to larvae,

only 9.5% had yeast communities composed of these three species,

and 14% had yeast communities composed of two of them.

Drosophila Effects on Yeast Communities
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Virgin adult females had effects on yeast densities similar to

those observed in Experiment 1 (compare Figures 1a and 5a; see

also below). However, larvae alone significantly increased yeast

densities in fruits that supported , = 108 CFU/g of yeast in the

absence of flies (larvae versus no flies: paired t test, t = 2.70, df = 7,

P = 0.03, Figure 5b), a first indication that larvae were not simply

consumers of yeast in banana fruits.

Instead, our results indicated that, if anything, larvae regulated

yeast densities across fruits more efficiently than was the case for

vectoring females. When we regressed the yeast densities in fly-

exposed pieces against the yeast densities for the pieces not

exposed to flies, the slopes of all three regressions were negative

((dadults 2 dno flies) versus dno flies: slope = 20.50, t = 6.56; (dlarvae 2

dno flies) versus dno flies: slope = 20.85, t = 10.46; (dadults and larvae 2

dno flies) versus dno flies: slope = 20.92, t = 8.75, all three slopes

significantly different from 0.0 at P,1.0e-6, after FDR)(Figure 5).

In addition, although all four treatment groups ended up with

approximately the same mean yeast density (mean density (CFU/

g): adults = 108.3, larvae = 108.0, adults and larvae = 108.5, no

flies = 108.5), the variance in density across fruits was substantially

and significantly lower for fruits exposed to larvae than for fruits

not exposed to flies (variance in log CFU/g: adults = 0.28,

larvae = 0.16, adults and larvae = 0.19, no flies = 0.63; adults

versus no flies, Levene’s statistic = 2.50, df = 1,70, P = 0.12; larvae

versus no flies, Levene’s statistic = 8.36, df = 1, 70, P,0.005;

adults and larvae versus no flies, Levenes’s statistic = 7.28, df = 1,

70, P,0.009; the last two findings both significant at P,0.025

after correction for three tests via FDR)(Figure 6).

At the mechanistic level, one way that larvae might have

affected yeast communities was by suppressing the growth of

filamentous fungi (molds), which may compete with yeast for

space or nutrients [31]. Previous studies have demonstrated that

D. melanogaster larvae can discourage the growth of molds [32],

even in substrates without yeasts [33], perhaps by physically

breaking up mold hyphae as they crawl around a substrate. We

found that the proportion of banana pieces with mold was

dramatically lower in pieces with larvae than without (no flies:

0.94, adults: 0.78, larvae: 0.08, adults and larvae: 0.06; effects of

larvae on mold (logistic regression, Wald = 24.2, df = 1,

P,0.000), effects of females on mold (Wald = 0.21, df 1,

P = 0.645), with no significant interaction between them

(Wald = 0.83, df = 1, P = 0.36).

Figure 1. Regulation of yeast densities by adult females. Where d indicates yeast density [log (CFU/g)], (dvirgin females 2 dno flies ) was regressed
against dno flies (a), and (dmated females 2 dno flies ) was regressed against dno flies (b). The dashed line indicates the null hypothesis in which treatment
yeast densities are identical to yeast densities in the matched ‘‘no flies’’ controls. Negative slopes for both analyses suggest that virgin females and
mated females regulated yeast densities across different banana fruits.
doi:10.1371/journal.pone.0042238.g001

Figure 2. Effects of virgin females and mated females on yeast densities. Exposure to virgin females (a) and mated females (b) increased
mean yeast densities and reduced the variance in yeast densities across different banana fruits.
doi:10.1371/journal.pone.0042238.g002
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3. ‘Transplantation’ of Yeasts within Substrates via Larval
Fecal Pools

Another way that larvae might have affected yeast densities and

species composition was by ‘transplanting’ otherwise sessile yeast

cells around their natal substrate. We discovered that one day old

larvae collected from fly-conditioned bananas left fecal pools

behind them that were, 12 h later, filled with yeast colonies, with

indications that fecal pool size might be related to food quality

(Appendix S2), and that the yeasts in the fecal pools left by one

larvae were palatable to other larvae (see Methods, 6). One day old

larvae previously fed on conditioned banana deposited 10.26

21.29 fecal pools per hour on RCBA plates, each of which was

nearly as long as their 1 mm body length (0.736 20.06 mm). In

addition, larvae smeared yeast cells from these pools behind them,

leaving an average of 7.176 20.61 CFUs per mm of pathway

(Figure 7). Since D. melanogaster larvae travel faster and farther in

areas that lack food than in areas with palatable yeast [26], yeast

transport via fecal pool deposits by young larvae may help disperse

palatable yeasts throughout their natal substrates.

Figure 3. Proportion of banana pieces containing each of the observed yeast species by treatment group. Bananas exposed to larvae
alone or to virgin adult females and larvae typically developed yeast communities composed of three species: Pichia kluyveri, Candida californica and
C. zemplinina.
doi:10.1371/journal.pone.0042238.g003
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4. Palatability of Yeasts Collected from Fly-conditioned
Fruits

We found that the strains of C. californica, C. zemplinina and

P. kluyveri isolated from fruits exposed to both adults and larvae in

Experiment 2 were highly palatable to young larvae. When clean

one day old larvae were placed on ‘lawns’ of these yeasts, they

quickly began feeding; by the end of an hour they had fed to

satiation, as indicated by the cessation of feeding and locomotory

activity. These larvae later deposited fecal pools of their own that

were, 12 h later, filled with yeast colonies. The number and size of

the fecal pools deposited by these larvae were comparable to those

of larvae fed fly-conditioned banana (see above), although they

also varied as a function of yeast diet (pools/h: C. califor-

nica = 7.2660.8, C. zemplinina = 10.561.54, P. kluyveri = 11.761.3,

Welsh statistic = 4.476, df = 2, 62.27, P = 0.015, n = 38 larvae per

group); pool size: C. californica = 0.7860.05 mm, n = 33; C.

zemplinia = 1.0260.08 mm, n = 31; P. kluvyeri = 1.2860.08 mm,

n = 33; Welsh statistic = 13.97, df = 2, 58.17, P,0.0005).

Discussion

Drosophila melanogaster adults and larvae, but especially larvae,

had profound effects on the densities and community structure of

yeasts that developed in banana substrates. Virgin adult females

previously fed conditioned fruit increased yeast abundance in fruits

that supported low yeast densities in the absence of flies, and

affected yeast species diversity in bananas, supporting the

hypothesis that adult Drosophila are able to vector yeasts to new

fruit substrates. However, vectoring is not the whole story, because

larvae alone had dramatic effects on yeast density and species

composition. Larvae increased yeast densities in fruits that

supported relatively low densities of yeast in the absence of

exposure to flies, and regulated yeast densities within relatively

narrow limits in fruits that supported a much wider range of yeast

densities in the absence of flies. Larvae also had dramatic effects on

yeast species composition, dramatically reducing species diversity

across fruits, and reducing variation in yeast communities from

one fruit to the next (beta diversity). In particular, larvae

encouraged the consistent development of a yeast community

comprised of three yeast species (Candida californica, C. zemplinina

and Pichia kluvyeri). Together, adult females and larvae encouraged

the growth and maintenance of a simple, predictable yeast

community in banana fruits which, in the absence of flies,

supported a much wider range of yeast species, and yeast

communities that differed widely from one fruit to the next.

Conversely, these results indicate that a small subset (C. californica,

Figure 4. Processing by Drosophila larvae increased the
similarity of yeast communities on banana fruits. Bars represent
the mean, pairwise Jaccard’s similarity between replicate yeast
communities in each of the four treatment groups. The mean, pairwise
Jaccard’s similarity provides a relative measure of the multivariate
dispersion within each treatment group; i.e., larger bars represent
communities that are more consistent in community composition than
shorter bars. Error bars represent 61 SE.
doi:10.1371/journal.pone.0042238.g004

Figure 5. Regulation of yeast densities across fruits by adults and larvae. Where d indicates yeast density [log (CFU/g)], (dadults 2 dno flies )
was regressed against dno flies (a), (dlarvae 2 dno flies ) was regressed against dno flies (b), and (dadults and larvae 2 dno flies ) was regressed against dno flies (c).
The dashed line indicates the null hypothesis in which treatment yeast densities are identical to yeast densities in the matched ‘‘no flies’’ controls. The
highly significant negative slopes for all three analyses indicate that virgin females, larvae alone, and virgin females and larvae acting together
regulated yeast densities across different banana fruits. The intersection of the dashed and solid lines indicates the equilibrium yeast density on the
abscissa; i.e., populations to the left of this intersection along the regression line would be expected to show positive population growth, while
populations to the right of this intersection along the regression line would be expected to show negative population growth due to the fly
treatment.
doi:10.1371/journal.pone.0042238.g005
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C. zemplinina and P. kluvyeri) of the 17 different species collected

from the banana fruits used in these experiments benefited from

exposure to females and larval processing.

At this point, it is not clear why these three yeast species were

especially favored in fly-exposed fruits. We do know that all three

of these species were able to survive passage through larval guts

(see also [34]), and that as a result, these yeasts might be

‘transplanted’ throughout a fruit in the fecal pools of larvae as they

crawled around a substrate. The fact that these three species all

thrived within larval fecal pools also implies that they were not

adversely affected by the presence of uric acid or other larval waste

products [10], [35]. Indeed, these species may have been able to

use uric acid as a source of nitrogen, as has been reported for other

species of yeast (e.g. [36], [37]). In addition, these yeasts might

have benefited from the lack of filamentous fungi in fruits

processed by larvae, or by the continuous churning of substrates

that occurs as a result of larval digging and burrowing behavior

[38].

We can also ask a related question, namely how larvae were

affected by the yeast community that grew in fly-exposed fruits. At

this point, we know that these species of yeast were consumed by

larvae, and have indirect evidence that this yeast community was

able to support larval growth and survival. We found that strains of

Candida californica, C. zemplinina and Pichia kluvyeri collected from

bananas exposed to flies were highly palatable to one day old

larvae, and that the fecal pools produced by young larvae

Figure 6. Effects of virgin adult females and larvae on yeast densities. Larvae either acting alone (b) or with adult females (c) significantly
reduced the variance across fruits in yeast densities, as compared to the variance in yeast densities of matched pieces of banana not exposed to flies.
doi:10.1371/journal.pone.0042238.g006

Figure 7. Yeasts ‘transplanted’ by traveling larvae. Yeast colonies fill the fecal pool deposited by a one day old D. melanogaster larva that had
crawled around a RCBA plate 12 h earlier; the larvae also smeared live yeast behind it as it traveled across the plate (direction of travel from right to
left).
doi:10.1371/journal.pone.0042238.g007
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previously fed these yeasts were comparable in size to those of

larvae of the same age collected from a natural food substrate (fly-

conditioned banana). We also found that viable adults emerged

from eggs laid on bananas prepared using our protocol, implying

that the yeast communities that developed on fly-exposed banana

were adequate to support larval growth and development. Indeed,

the traditional use of unsterilized pieces of banana to culture and

collect Drosophila melanogaster (e.g. [39], [40]), in itself implies that

the yeasts which develop on fly-conditioned banana are suitable

for larval growth and development. In the future, it would be

useful to confirm that a mixed yeast diet of C. candida, C. zemplinina

and P. kluyveri on sterile banana supports larval growth and

survival, and if so, compare the growth, survival or fecundity of

flies raised on this diet to that of flies raised on banana with other

yeast communities.

Our results may also help shed light on the functional

significance of larval mobility in D. melanogaster. In nature, most

larvae are highly mobile (‘rovers’), although a sizeable minority are

more sedentary (‘sitters’) [41]. Thus far, studies of the fitness

consequences of larval mobility have been conducted in the

laboratory using artificial food substrates, typically at densities in

which larvae compete with one another for food (e.g. [42], [43]).

However, our results suggest that highly mobile larvae might have

positive effects on their own future food supplies, especially when

larvae occur at low densities in a suitable new substrate, as was the

case in our study. In nature, low larval densities at a suitable new

substrate are most likely to occur when a single ‘pioneering’ fertile

female first locates and begins to oviposit on a newly available

patch of fruit, a situation in which the larvae within a fruit are full

or half sibs. If larvae ‘transplant’ palatable yeasts across suitable

substrates or improve conditions for yeast growth by churning fruit

substrates as they travel, then highly mobile larvae may improve

future foraging conditions for themselves and perhaps also for their

siblings, by encouraging a high density of palatable yeasts in their

natal patch.

Although studies of interactions between Drosophila larvae and

yeasts on natural substrates are rare, there are hints that the larvae

of flies other than D. melanogaster might affect the yeast

communities in natural substrates in ways comparable to those

reported here. As was noted in the Introduction, Starmer and

Fogleman found that D. mojavensis larvae encouraged yeast-yeast

interactions that theory suggests might increase the qualitative

stability of yeast communities in the necrotic agria (Stenocereus

gummosus) cactus tissue in which that species breeds [12]. More

recently, Morais et al. [17] studied D. serido and the yeasts in rots of

another cactus (Pilosocereus arrabidae), and found higher yeast species

diversity in rots in which adult flies were captured while feeding

than in rots that contained developing larvae. These results are

consistent with the hypothesis that the larvae of other drosophilids

might reduce the alpha and beta diversity of yeast communities,

although they are of course also consistent with alternate

hypotheses (e.g. adult flies might feed in patches with higher yeast

diversity than those in which they lay their eggs).

More generally, our results demonstrate that larvae Drosophila

melanogaster engage in ‘niche construction’ [5], [44], since, as a

result of their activities (food consumption, burrowing, excretory

patterns, etc.) larvae modify the micro-biotic environment in

which they themselves will live and develop. In addition, larvae

may also satisfy the criteria for ‘ecosystem engineers’, since they

physically modified the substrate in which they lived in ways likely

to affect other organisms living in that same substrate [45], [46].

For instance, larvae burrowing behavior may have contributed to

the differences between the communities of yeast and filamentous

fungi we observed in larval-exposed fruits versus control fruits;

confirmation of this hypothesis would merit further study.

Finally, we can ask about the nature of the relationship between

Drosophila and the strains of yeast that were favored on fly-exposed

bananas. In particular, we can ask whether the interactions of flies

and yeast on banana substrates satisfy the criterion for a special

type of harvest mutualism [3], [47], in which one organism vectors

and encourages the growth and survival of another organism,

which it then consumes. A more general term for this type of

mutualism is ‘farming’.

Agriculture in both animals and humans involves three actions

by farmers: 1) sowing: the transfer of propagules into areas in

which they can grow, 2) cultivating: processes that favor the

growth or survival of edible species (the crop), and 3) harvesting:

consumption of the crop [48], [49]. The simplest forms of

agriculture occur when farmers sow or cultivate wild, free-living

food items, which they then consume [48-50]. In rare cases, more

advanced forms of agriculture may evolve, in which farmers and

their crops become highly dependent on one another, in which

crops change in ways that benefit the farmers (domestication) and/

or in which farmers adjust their behavior in ways that benefit their

crops. Not surprisingly, to date, most studies of animal farming

have focused on examples of advanced forms of agriculture (e.g.

fungal farming by ants, termites and beetles [49], [51], [52], algal

farming by damselfish [53] or bacterial farming by amoebae [54].

Here we ask whether Drosophila melanogaster might be engaging in

a simple form of agriculture, analogous to the forms of proto-

farming that must have preceded the evolution of advanced

agriculture in animals and humans. Proto-farming occurs when

farmers consume, sow and/or cultivate wild species, leading to a

situation in which the growth rate, survival or density of an edible

species at a given locality is higher in the presence than in the

absence of the farmer. In this situation, a farmed species need not

be the most nutritious wild food item that is available to the

farmer. This is because a crop is a species that is capable of

growing, surviving and reproducing under the conditions created

by the farmers, and free-living species whose traits facilitate

sowing, cultivation and harvesting are not necessarily the highest

quality food items that occur in the surrounding environment [55],

[56].

As was noted earlier, to date there is evidence that Drosophila

both consume (harvest) and vector (sow) yeast onto new substrates.

The results of the current study indicate that Drosophila melanogaster

also encouraged the development of yeast communities that were

composed of three species of yeast (C. californica, C. zemplinina and

P. kluvyeri) on banana. If further studies show that a diet comprised

of these yeasts on banana supports larval growth and development,

then the fly-yeast-banana system would satisfy the basic criteria for

animal proto-agriculture.

However, it is also clear that relationships between D.

melanogaster and these yeast species are by no means obligatory:

Candida californica, C. zemplinina and P. kluvyeri have been collected

from substrates that in nature support a wide range of Drosophila

species and other saprophytic arthropods (see Appendix S3), and

conversely, D. melanogaster thrives on a wide range of species of

fruits and yeasts [1], [2], [57]. Nor is it known whether the

facilitating effects of D. melanogaster larvae on these yeasts in banana

substrates are simply by-products of larval physiology and

behavior (e.g. burrowing behavior, excretory products and

patterns, inefficient digestion that results in the excretion of viable

yeast cells), or whether particular aspects of larval behavior,

physiology or morphology have been altered by selection in ways

that enhance the growth of these or other strains of dietary yeasts

in the fruit substrates in which larvae live and develop. Conversely,
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it is not known whether the strains of yeast species that are

characteristic of fly-processed banana have undergone changes in

their physiology or morphology that enhance their ability to be

vectored or to grow in fruits used by flies, or that enhance their

value as dietary items for those flies. Hence, although the current

study emphasizes the effects of Drosophila on yeast communities, it

also opens the door to additional studies into the nature and

evolution of potentially beneficial mutualistic interactions between

Drosophila and the yeasts that adult flies and their offspring

consume on natural substrates.

Supporting Information

Figure S1 Larval processing decreased the variability of
yeast communities on banana fruits. Multivariate disper-

sion was measured as the mean distance to the centroid of a

treatment group in principal component space. Both the larvae

and the larvae and adult treatments were significantly different

from the control group (p,0.001).

(TIF)

Figure S2 Ordination of yeast community composition
on the first two principal coordinates (PCoA1 and
PCoA2). Each open symbol or cross represents a yeast

community. The colored polygons represent the ordination hull

encompassing each of the four treatment groups: green = adults,

blue = no flies, violet = larvae, and orange = adults and larvae.

The centroids of each group are represented with filled symbols:

circle = no flies, triangle = adults, diamond = larvae, square =

adults and larvae.

(TIF)

Figure S3 Yeast species richness for four treatment
groups. Flies tended to reduce variability in the species richness

of yeast communities. With adult and larvae present, the majority

of yeast communities contained three yeast species.

(TIF)

Appendix S1 Additional information on isolines.
(DOCX)

Appendix S2 Larval fecal pool size and size at emer-
gence as a function of fruit diet.
(DOCX)

Appendix S3 Evidence that Candida californica, C.
zemplinina and Pichia kluyveri are ‘‘substrate-general-
ists’’.
(DOCX)
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