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Binding free energy calculations based on molecular simulations provide predicted affinities
for biomolecular complexes. These calculations begin with a detailed description of a system,
including its chemical composition and the interactions between its components. Simulations of the
system are then used to compute thermodynamic information, such as binding affinities. Because
of their growing promise for guiding molecular design, these calculations have recently begun to
see widespread applications in early stage drug discovery. However, many challenges remain to
make them a robust and reliable tool. Here, we highlight key challenges facing these calculations,
describe known examples of these challenges, and call for the designation of standard community
benchmark test systems that will help the research community generate and evaluate progress. In
our view, progress will require careful assessment and evaluation of new methods, force fields, and
modeling innovations on well-characterized benchmark systems, and we lay out our vision for how

this can be achieved.
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I. INTRODUCTION

Molecular simulations provide a powerful technique for
predicting and understanding the structure, function, dy-
namics, and interactions of biomolecules. Often, these
techniques are valued because they provide a way to ac-
tually watch what might be going on at the atomic level.
However, simulations also can be used to make quanti-
tative predictions of thermodynamic and kinetic prop-
erties, with applications in fields including drug discov-
ery, chemical engineering, and nanoengineering. A ther-
modynamic property of particular interest is the bind-
ing affinity between biomolecules and ligands such as in-
hibitors, modulators, or activators. With accurate and
rapid affinity predictions, we could use simulations in var-
ied health-related applications, such as the prediction of
biomolecular interaction networks in support of systems
biology, or rapid design of new medications with reduced
side-effects and drug resistance. In this work, we give
a view of how these simulations could impact drug dis-
covery, briefly discuss where they stand now, and then
argue for benchmark systems chosen to drive and assess
the advancement of these methods, helping to make them
practical for drug discovery.
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A. Imagining a tool for drug discovery

A major aim in the development of molecular simula-
tions is to create quantitative, accurate tools which will
guide early stage drug discovery. Consider a medicinal
chemist in the not-too-distant future who has just fin-
ished synthesizing several new derivatives of an existing
inhibitor as potential drug leads targeting a particular
biomolecule, and has obtained binding affinity or potency
data against the desired biomolecular target. Before leav-
ing work, he or she generates ideas for perhaps 100 new
compounds which could be synthesized next, then sets a
computer to work overnight prioritizing them. By morn-
ing, the compounds have all been prioritized based on
reliable predictions of their affinity for the desired tar-
get, selectivity against alternative targets which should
be avoided, solubility, and membrane permeability. The
chemist then looks through the predicted properties for
the top few compounds and selects the next ones for syn-
thesis. If synthesizing and testing each compound takes
several days, this workflow compresses roughly a year’s
work into a few days.

While this workflow is not yet a reality, huge strides
have been made in this direction, with calculated binding
affinity predictions now showing real promise [28, 29, 38,
42, 129, 164, 189, 197], solubility predictions beginning
to come online [109, 147, 161], and predicted drug re-
sistance/selectivity also apparently tractable [105], with
some headway apparent on membrane permeability [34,
101]. A considerable amount of science and engineering
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still remains to be done to make this vision a reality, but,
given recent progress, the question now seems more one
of when rather than whether.

B. Increasing accuracy will yield increasing payoffs

Recent progress in computational power, especially
the widespread availability of graphics processing units
(GPUs) and advances in automation [111] and sampling
protocols, have helped simulation-based techniques reach
the point where they now appear to have sufficient ac-
curacy to be genuinely useful in guiding pharmaceuti-
cal drug discovery, at least for a certain subset of prob-
lems [28, 38, 81, 124, 164, 189, 197]. Specifically, in some
situations, free energy calculations appear to be capable
of achieving RMS errors in the 1-2 kcal/mol range with
current force fields, even in prospective applications. As
a consequence, pharmaceutical companies are beginning
to use these methods in discovery projects. The most im-
mediate application of these techniques is to guide syn-
thesis for lead optimization, but applications to scaffold
hopping and in other areas also appear possible.

At the same time, it is clear that not all situations are
so favorable, so it is worth asking what level of accuracy
is actually needed. It is often suggested that we need
binding free energy predictions accurate to within ~ 1
kcal/mol, but we are not aware of a clear basis for this
figure beyond the fact it is a pleasingly round number
that is close to the thermal kinetic energy, RT. Instead
of setting a single threshold requirement for accuracy,
it is more informative to consider how accurate calcula-
tions must be to reduce the number of compounds syn-
thesized and tested by some factor, relative to the num-
ber required without computational prioritization. If one
targets a three-fold reduction, the answer appears to be
that calculations with a 2 kcal/mol RMS error will suf-
fice [129, 170]. Thus, one can gain substantial benefit
from simulations that are good yet still quite imperfect.

More broadly, though, this analysis does not address
the net value of computational affinity predictions in drug
discovery. Costs include those of the software, computer
time, and personnel required to incorporate calculations
into the workflow; while benefits include the savings, rev-
enue gains, and externalities attributable to reducing the
number of low-affinity compounds synthesized and arriv-
ing earlier at a potent drug candidate. In addition, with
sufficiently reliable predictions, chemists may choose to
tackle difficult synthesis efforts they otherwise might have
avoided, resulting in more novel and valuable chemical
matter.

C. Overview of free energy calculations

The present review focuses on a class of methods in
which free energy differences are computed with simu-
lations that sample Boltzmann distributions of molec-

ular configurations. These samples are usually gener-
ated by molecular dynamics (MD) simulations [92], with
the system effectively coupled to a heat bath at con-
stant temperature, but Monte Carlo methods may also
be used [32, 120, 121]. In either case, the energy of a
given configuration is provided by a potential function,
or force field, which estimates the potential energy of
a system of solute and solvent molecules as a function
of the coordinates of all of its atoms. Such simulations
may be used in several different ways to compute binding
free energies or relative binding free energies, as detailed
elsewhere [27, 30, 121, 169] and summarized below. In
all cases, however, the calculations yield the free energy
difference between two states of a molecular system, and
they do so by computing the reversible work for changing
the initial state to the final one. Two broad approaches
deserve mention.

The first general approach directly computes the stan-
dard binding free energy of two molecules via evaluat-
ing the reversible work of transferring the ligand from
the binding site into solution. (This is sometimes called
an absolute binding free energy calculation.) The path-
way of this change may be one that is physically realiz-
able, or one that is only realizable in silico, in which case
it is sometimes called an “alchemical” pathway. Physi-
cal pathway methods provide the standard binding free
energy by computing the reversible work of, in effect,
pulling the ligand out of the binding site. Although,
by definition, the pathway used must be a physical one
that could occur in nature, it need not be probable, and
improbable pathways, governed by an order parameter
specifying how far the ligand is from the binding site, are
often used [13, 77, 82, 188, 202, 210]. In addition, artifi-
cial restraints may be useful to avoid sampling problems
in the face of often complex barriers along the pathway
[13, 77, 82, 188, 202]. By contrast, alchemical pathway
methods artificially decouple the ligand from the bind-
ing site and then recouple it to solution from the pro-
tein [14, 70, 78, 91, 125]. Although alchemical decoupling
methods may avoid clashes of the ligand with the pro-
tein that might be problematic when pathway methods
are applied to a protein with a buried binding site, they
still can pose some of the same sampling challenges. For
example, sampling of the unbound receptor must be ad-
equate after the ligand is removed, and water molecules
must have time to equilibrate in the vacated binding site.
Given that free energy is a state function, it is not sur-
prising that alchemical and physical pathway approaches
yield apparently comparable results when applied to the
same systems [41, 75, 104, 209].

The second general approach computes the difference
between the binding free energies of two different ligands
for the same receptor, by computing the work of arti-
ficially converting one ligand into another, first in the
bound state and then free in solution [27, 30, 121, 184].
Because these conversions are not physically realizable,
such calculations are, again, called alchemical. These cal-
culations can be quite efficient if the two ligands are very



similar to each other, but they become more complicated
and pose greater sampling problems if the two ligands are
very different chemically or if there is a high barrier to
interconversion between their most stable bound confor-
mations [111]. In addition, there may be concerns about
slow conformational relaxation of the protein in response
to the change in ligand. Nonetheless, alchemical relative
free energy calculations currently are the best automated
and most widely used free energy methods [111, 129, 197].

The accuracy and precision of all of these methods are
controlled by three major considerations. First, many
conformations typically need to be generated, or sam-
pled, in order to obtain an adequate representation of
the Boltzmann distribution. In the limit of infinite sam-
pling, a correctly implemented method would yield the
single value of the free energy difference dictated by the
specification of the molecular system and the chosen force
field. In reality, however, only finite sampling is possible,
so the reported free energy will differ from the nomi-
nal value associated with infinite sampling. In addition,
because sampling methods are typically stochastic and
the dynamics of molecular systems are sensitive to ini-
tial conditions [4], repeated calculations, using different
random number seeds or initial states, will yield some-
what different results. The problem of finite sampling is
most acute for systems where low-energy (hence highly
occupied) conformational states are separated by high ef-
fective barriers, whether energetic or entropic. Second,
even if adequate sampling is achievable, free energy dif-
ferences may disagree substantially with experiment if
the force field is not sufficiently accurate. Third, errors
may also arise if the representation of the system in the
simulation does not adequately represent the actual sys-
tem, e.g. if protonation states are assigned incorrectly
and held fixed.

D. Challenges and the domain of applicability

Thus, in order for a free energy calculation to be re-
liable, it must use an appropriate representation of the
physical system and an accurate force field, and it must
adequately sample the relevant molecular configurations.
In the case of the more widely used alchemical relative
free energy approach, this means that the best results are
expected when:

e a high quality receptor structure is available, with-
out missing loops or other major uncertainties

e the protonation state of the ligand and binding-site
residues (as well as any other relevant residues) can
reliably be inferred

e the ligand binding mode is defined by crystallo-
graphic studies and is not expected to change much
on modification

e the receptor does not undergo substantial, slow
conformational changes

e key interactions are expected to be well-described
by underlying force fields

Beyond this domain of applicability—whose dimen-
sions are, in fact, still somewhat vague [1] — substantial
challenges may be encountered. For example, binding
free energy calculations for a cytochrome C peroxidase
mutant suggest limitations of fixed-charge force fields.
In this case, the strength of electrostatic interactions in
a buried, relatively nonpolar binding site appears to be
overestimated by a conventional fixed-charge force field,
likely due to underestimation of polarization effects [156].
Sampling problems are also common, with slow sidechain
rearrangements and ligand binding mode rearrangements
in model binding sites in T4 lysozyme posing timescale
problems unless enhanced or biased sampling methods
are carefully applied [17, 61, 86, 126, 128, 196]; and
larger-scale protein motions induced by some ligands can
also pose challenges [17, 107].

Although such problems need not prevent free energy
calculations from being used, they can require specific
adjustment of procedures and parameters based on ex-
perience and knowledge of the system at hand. Thus,
a key challenge for the field is how to use insights from
well-studied cases to enable automation and reduce the
detailed knowledge of each system required to carry out
high quality simulations.

Troubleshooting is also a major challenge. In most
cases where calculations diverge substantially from ex-
periment, the reason for the discrepancy is not appar-
ent. Is the force field inaccurate? Would the results
improve with more sampling? Were protonation states
misassigned—or do they perhaps even change on bind-
ing? There might even be a software bug [47] or a hu-
man error in the use of the software. As a consequence,
it is not clear what steps are most urgently needed to
advance the field as a whole. In this work, we argue that
many of these problems can be alleviated, and that the
field will advance more rapidly, if we select a set of well-
chosen benchmark systems on which free energy methods
are regularly tested.

E. Improving modeling by cycles of testing,
prediction, and improvement

Modeling can in some cases improve rapidly, but, in
our experience, rapid advances are most common when
computational models undergo regular cycles of improve-
ment, predictive testing, learning, and then further im-
provement. This can be particularly difficult for aca-
demic groups which may not have the resources for pre-
dictive tests; however, these are essential, since it is only
in predictive tests that we can be sure we are assessing the
performance of a method as it works in real life, rather
than relying on knowledge of the expected outcome to
inform setup of the calculations. With this in mind, the
Statistical Assessment of the Modeling of Proteins and
Ligands (SAMPL) blind challenges, as well as the Com-
munity Structure Activity Resource (CSAR) challenge,
later replaced by the Drug Design Data Resource (D3R)



grand challenges, have arisen to meet part of this need.
Currently, D3R, focuses on running blind challenges on
protein-ligand binding with datasets from the pharma-
ceutical industry, allowing testing and evaluation of com-
putational methods on systems of direct pharmaceutical
relevance. SAMPL, in contrast, focuses on predictions in
simpler physical settings [127], such as small molecules in
aqueous and organic phases, and small molecules bind-
ing to supramolecular hosts. Together, the SAMPL and
D3R challenges roughly span the spectrum from proper-
ties we can predict now (though they may be challenging
in some cases [9, 127, 209]) to the drug binding we want
to be able to reliably predict. These challenges are vital
as they provide our only opportunity, at present, to rou-
tinely see how different methods compare when attempt-
ing to compute the same properties, and they provide the
beginnings of a model for how we can best advance free
energy techniques: routinely testing our methods on the
same, well-understood systems to learn what does and
doesn’t work to improve performance. Thus, we need
not just blind tests, but retrospective testing on well-
understood, “benchmark” systems.

II. THE NEED FOR WELL-CHOSEN
BENCHMARK SYSTEMS

Although tests of individual free energy methods are
not uncommon today [28, 38, 124, 189, 197], the use
of nonoverlapping molecular systems and computational
protocols makes it difficult to compare methods on a rig-
orous basis. In addition, few studies are designed to iden-
tify key sources of error and thereby focus future research
and development. A few molecular systems have now
emerged as de facto standards for general study (Sec-
tion IIT). These selections result in part from two se-
ries of blinded prediction challenges (SAMPL [138], and
CSAR [46] followed by D3R [64]), which have helped fo-
cus the computational chemistry community on a succes-
sion of test cases and highlighted the need for method-
ological improvements. However, broader adoption of a
larger and more persistent set of test cases is needed. By
coalescing around a compact set of benchmarks, well cho-
sen to challenge and probe free energy calculations, prac-
titioners and developers will be able to better assess and
drive progress in binding free energy calculations. Our
primary goals in this work are to explain how benchmark
systems can be used to advance the field, to encourage
adoption of a standard set of benchmark systems, and to
propose some candidates for this set.

A. Benchmark types and applications

We envision two classes of benchmark cases: “hard”
benchmarks, which are simple enough that well-
converged results can readily be computed; and “soft”
benchmarks, for which convincingly converged results

cannot readily be generated, but which are still simple
enough that concerted study by the community can delin-
eate key issues that might not arise in the simpler “hard”
cases. The following subsections provide examples of how
hard and soft benchmark systems may be used to address
important issues in free energy simulations.

1. Hard benchmarks

a. Systems to test software implementations and us-
age It is crucial yet nontrivial to validate that a simu-
lation package correctly implements and applies the de-
sired methods [168], and benchmark cases can help with
this. First, all software packages could be tested for their
ability to generate correct potential energies for a single
configuration of a specified molecular system and force
field. These results should be correct to within round-
ing error and the precision of the physical constants used
in the calculations [168]. Second, different methods and
software packages should give consistent binding free en-
ergies when identical force fields are applied with identi-
cal simulation setups and compositions. The benchmark
systems for such testing can be simple and easy to con-
verge, and high precision free energies (e.g., uncertainty
~ 0.1 kcal/mol) should serve as a reference. Test cal-
culations should typically agree with reference results to
within 95% confidence intervals, from established meth-
ods [55, 167], For this purpose, the correctly computed
values need not agree with experiment; indeed, experi-
mental results are unnecessary.

b. Systems to check sampling completeness and effi-
ciency As discussed above, free energy calculations re-
quire thorough sampling of molecular configurations from
the Boltzmann distribution dictated by the force field
that is employed. This sampling is typically done by run-
ning molecular dynamics simulations, and for systems as
large and complex as proteins, it is difficult to carry out
long enough simulations. Calculations with inadequate
sampling yield results that are imprecise, in the sense
that multiple independent calculations with slightly dif-
ferent initial conditions will yield significantly different
results, and these ill-converged results will in general be
poor estimates of the ideal result obtained in the limit
of infinite sampling. Advanced simulation methods have
been developed to speed convergence [169, 181], but it
is not always clear how various methods compare to one
another. To effectively compare such enhanced sampling
methods, we need benchmark molecular systems, param-
eterized with a force field that many software packages
can use, that embody various sampling challenges, such
as high dimensionality, and energetic and entropic bar-
riers between highly occupied states, but which are just
tractable enough that reliable results are available via
suitable reference calculations. Again, experimental data
are not required, as the main purpose is to test and com-
pare the power of various enhanced sampling technolo-
gies.



c. Systems to assess force field accuracy Some
molecular systems are small and simple enough that
current technology allows thorough conformational sam-
pling, and hence well converged calculations of experi-
mental observables. This has long been feasible for lig-
uids [90]; for example, it is easy to precisely compute
the heat of vaporization of liquid acetone with one of the
standard force fields. More recently, advances in hard-
ware and software have made it possible to compute bind-
ing thermodynamics to high precision for simple molec-
ular recognition systems [77], as further discussed below.
In such cases, absent complications like uncertain pro-
tonation states, the level of agreement with experiment
reports directly on the accuracy of the force field. Thus,
simple molecular recognition systems with reliable ex-
perimental binding data represent another valuable class
of benchmarks. Here, of course, experimental data are
needed. Ideally, the physical materials will be fairly easy
to obtain so that measurements can be replicated, and
new experimental conditions, such as different tempera-
tures and solvent compositions, can be explored.

2. Soft benchmarks

a. Systems to challenge conformational sampling
techniques Enhanced sampling techniques (Section
ITA1b), designed to speed convergence of free energy
simulations, may not be adequately tested by any hard
benchmark, because such systems are necessarily rather
simple. Thus, despite the fact that reliable reference re-
sults are not available for soft benchmarks, they are still
important for method comparisons. For example, it may
become clear that some methods are better at sampling
in systems with high energy barriers, and others in high-
dimensional systems with rugged energy surfaces. Devel-
opers should test methods on a standard set of bench-
mark systems for informative comparisons.

b. Direct tests of protein-ligand binding calculations
Although it is still very difficult to convincingly verify
convergence of many protein-ligand binding calculations,
it is still important to compare the performance of vari-
ous methods for these real-world challenges. Appropriate
soft benchmarks are likely to be cases which are still not
overly challenging, involving small proteins and simple
binding sites. We propose defining a series of bench-
mark protein-ligand systems that systematically intro-
duce specific challenges. In particular, they should ex-
emplify none, one, two, or N of the following challenges,
in various combinations:

1. Sampling challenges

(a) Sidechains in the binding site rearrange on
binding different ligands

(b) Modest backbone conformational changes,
such as loop motion

(¢) Large scale conformational changes, such as
domain motions and allostery

(d) Ligand binding modes change unpredictably

with small chemical modifications
(e) High occupancy water sites rearrange depend-
ing on bound ligand
2. System challenges
(a) Protonation state of ligand and/or protein
changes on binding
(b) Multiple protonation states of the ligand
and/or receptor are relevant, due to pK,s near
the experimental pH, or the presence of mul-
tiple relevant tautomers
(c) Results are sensitive to buffer, salts or other
environmental factors
3. Force field challenges
(a) Strong electric fields suggest that omission of
explicit electronic polarizability will limit ac-
curacy
(b) Ligands interact directly with metal ions
(¢) Ligands or co-factors challenge existing force
fields
c. Progression of soft benchmarks We envision these
more complex benchmark systems proceeding through
stages, initially serving effectively as a playground where
major challenges and issues are explored, documented,
and become well-known. Eventually, some will become
sufficiently well characterized and sampled that they be-
come hard benchmarks.

B. Applications and limitations of benchmark
systems

Benchmark systems along the lines sketched above will
allow potential advances in computational methods to be
tested in a straightforward, reproducible manner. For
example, force fields may be assessed by swapping new
parameters, or even a new functional form, into an ex-
isting workflow to see the impact on accuracy for a hard
benchmark test. Sampling methods may be assessed by
using various enhanced sampling methods for either hard
or soft sampling benchmarks, here without focusing on
accuracy relative to experiment. And system preparation
tools could be varied to see how different approaches to
assigning protonation states, modeling missing loops, or
setting initial ligand poses, affect agreement of receptor-
ligand binding calculations with experiment—with the
understanding that force field and sampling also play a
role. Finally, comparisons across methods will be greatly
facilitated by community acceptance of a set of standard
cases: well-characterized and studied benchmarks uti-
lized by the majority of developers and research groups,
ideally on a routine basis.

At the same time, there is a possibility that that some
methods will inadvertently end up tuned specifically to
generate good results for the set of accepted benchmarks.
In such cases, the results for systems outside the bench-
mark set might still be disappointing. This means the
field will need to work together to develop a truly rep-
resentative set of benchmarks. This potential problem



can also be mitigated by sharing of methods to enable
broader testing by non-developers, and by participation
in blinded prediction challenges, such as SAMPL and
D3R, which confront methods with entirely new chal-
lenge cases.

III. CURRENT BENCHMARK SYSTEMS FOR
BINDING PREDICTIONS

No molecular systems have yet been designated by the
field as benchmarks for free energy calculations, but cer-
tain host molecules and designed binding sites in the en-
zyme T4 lysozyme have emerged as particularly helpful
and widely studied test cases. Here, we describe these ar-
tificial receptors and propose specific host-guest and T4
lysozyme-ligand combinations as initial benchmark sys-
tems for free energy calculations. We also point to several
additional hosts and small proteins that also have poten-
tial to generate useful benchmarks in the future (Sec-
tion IV). We focus on cases where experimental data are
available and add value, rather than cases chosen to test
conformational sampling methods, for which experimen-
tal data are not required (Section ITA).

A. Host-guest benchmarks

Chemical hosts are small molecules, often compris-
ing fewer than 100 non-hydrogen atoms, with a cav-
ity or cleft that allows them to bind other compounds,
called guests, with significant affinity. Hosts bind their
guests via the same basic forces that proteins used to
bind their ligands, so they can serve as simple test sys-
tems for computational models of noncovalent binding.
Moreover, their small size, and, in many cases, their
rigidity, can make it feasible to sample all relevant con-
formations, making for “hard” benchmarks as defined
above (Section ITA). Furthermore, experiments can of-
ten be run under conditions that make the protona-
tion states of the host and guest unambiguous. Under
these conditions, the level of agreement of correctly ex-
ecuted calculations with experiment effectively reports
on the validity of the force field (Section IIA1lc). For
a number of host-guest systems, the use of isothermal
titration calorimetry (ITC) to characterize binding pro-
vides both binding free energies and binding enthalpies.
Binding enthalpies can often also be computed to good
numerical precision [77], so they provide an additional
check of the validity of simulations. A variety of cu-
rated host-guest binding data is available on BindingDB
at http://bindingdb.org/bind/HostGuest. jsp.

Hosts fall into chemical families, such that all members
of each family share a major chemical motif, but individ-
uals vary in terms of localized chemical substitutions and,
in some families, the number of characteristic monomers
they comprise. For example, all members of the cyclodex-
trin family are chiral rings of glucose monomers; family

members then differ in the number of monomers and in
the presence or absence of various chemical substituents.
For tests of computational methods ultimately aimed at
predicting protein-ligand binding affinities in aqueous so-
lution, water soluble hosts are, arguably, most relevant.
On the other hand, host-guest systems in organic sol-
vents may usefully test how well force fields work in the
nonaqueous environment within a lipid membrane. Here,
we focus on two host families, the cucurbiturils [56, 132]
and the octa-acids (more generally, Gibb deep cavity cav-
itands) [66, 80]. These have already been the subject of
concerted attention from the simulation community, due
in part to their use in the SAMPL blinded prediction
challenges [138, 140, 209].

1. Cucurbiturils

The cucurbiturils (Figure 1) are achiral rings of gly-
coluril monomers [56]. The first characterized fam-
ily member, cucurbit[6]uril, has six glycoluril units,
and subsequent synthetic efforts led to the five-,
seven-, eight- and ten-monomer versions, cucurbit[n]uril
(n=5,6,7,8,10) [110], which have been characterized to
different extents. The n=6,7,8 variants accommodate
guests of progressively larger size, but are consistent in
preferring to bind guests with a hydrophobic core sized
to fit snugly into the relatively nonpolar binding cavity,
along with at least one cationic moiety (though neutral
compounds do bind [102, 204]) that forms stabilizing in-
teractions with the oxygens of the carbonyl groups fring-
ing both portals of the host [110]. Although derivatives
of these host molecules have been made [5, 35, 103, 191],
most of the binding data published for this class of
hosts pertain to the non-derivatized forms. A fairly ex-
tensive set of data is available in BindingDB at http:
//bindingdb.org/bind/HostGuest. jsp.

We propose cucurbit[7]uril (CB7) as the basis of one se-
ries of host-guest benchmark systems (Figure 1). This
host is convenient experimentally, because it is reason-
ably soluble in water; and computationally, because it is
quite rigid and lacks acidic or basic groups. In addition, it
has attracted particular interest because of the high bind-
ing affinities of some guests, exceeding even the tightest-
binding protein-ligand systems [22, 110, 133, 155]. Fi-
nally, CB7 is already familiar to a number of compu-
tational chemistry groups, as it figured in two of the
three SAMPL challenges that included host-guest com-
ponents [138, 140], and it is currently the focus of the
“hydrophobe challenge” [162].

a. CB7 presents several challenges Despite the sim-
plicity of CB7, calculations of its binding thermodynam-
ics are still challenging, with several known complexities:

1. Tight exit portal: Guest molecules with bulky

hydrophobic cores, such as adamantyl or [2.2.2]bi-
cyclooctyl [133, 134] groups, do not fit easily
through the constrictive portals [187]. As a con-
sequence, free energy methods which compute the
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CB7 TEMOA

FIG. 1. Three host molecules, CB7, OA, and TEMOA, used in the host-guest benchmark sets. The first two are variants of
the octa-acid GDCC, and the third is a cucurbituril. Guest structures are available in the supplemental material. Top row
highlights the constituent monomers; middle and bottom rows show views into the binding sites and from the sides, respectively.

work of binding along a physical dissociation path-
way may encounter a high barrier as the bulky core
exits the cavity, and this can lead to subtle conver-
gence problems [77, 188]. One way to solve this
problem is to reversibly add restraints that open

composition of dissolved salts, both experimen-
tally [133, 134, 138] and computationally [82, 141].
As a consequence, to be valid, a comparison of cal-
culation with experiment must adequately model
the experimental salt conditions.

the portal, then remove the guest, and finally re- 4. Finite-size artifacts due to charge modifi-
versibly remove the restraints [77], including all of cation: Because many guest molecules carry net
these contributions in the overall work of dissocia- charge, it should be ascertained that calculations in
tion. which guests are decoupled from the system do not
. Water binding and unbinding: If one computes generate artifacts related to the treatment of long-
the work of removing the guest from the host by a ranged Coulombic interactions [108, 153, 157, 172].
nonphysical pathway, in which the bound guest is b. The proposed CB7 benchmark sets comprise two

gradually decoupled from the host and surround-
ing water [70], large fluctuations in the number of
water molecules within the host’s cavity can occur
when the guest is partly decoupled, and these fluc-
tuations can slow convergence [159].

. Salt concentration and buffer conditions:
Binding thermodynamics are sensitive to the

compound series For CB7, we have selected two sets of
guests that were studied experimentally under uniform
conditions (50 mM sodium acetate buffer, pH 4.74, 298K)
by one research group [22, 110]. Each series is based on
a common chemical scaffold, making it amenable to not
only absolute but also alchemical relative free energy cal-
culations (Section IC). One set is based on an adaman-



tane core (Table I), and the other on an aromatic ring
(Table II). These systems can be run to convergence
to allow detailed comparisons among methods and with
experiment. Their measured binding free energies range
from -5.99 to -17.19 kcal/mol, with the adamantane se-
ries spanning a particularly large range.

c. Prior studies provide additional insight into CB7’s
challenges Sampling of the host appears relatively
straightforward in CB7 as it is quite rigid and its sym-
metry provides for clever convergence checks [77, 135].
Due to its top-bottom symmetry, flips of guests from
“head-in” to “head-out” configurations are not neces-
sary to obtain convergence [51]. However, sampling of
the guest geometry can be a challenge, with transitions
between binding modes as slow as 0.07 flips/ns [135],
and flexible guests also presenting challenges [135]. As
noted above, water sampling can also be an issue, with
wetting/dewetting transitions occurring on the 50 ns
timescale [159] when the guest is partly decoupled from
the aqueous host in alchemical calculations.

Salt and buffer conditions are also key. In addition
to the strong salt-dependence of binding [134], acetic
acid (such as in a sodium acetate buffer) can compete
with guests for the binding site [133]. This may par-
tially explain systematic errors in some computational
studies [82, 141]. Indeed, the difference between 50 mM
sodium acetate buffer and 100 mM sodium phosphate
buffer impacts measured binding free energies by 2.5-2.8
kcal/mol [138, 141]. Cationic guests could also have sub-
stantial and differing interactions with the counterions in
solution, potentially lowering affinity relative to zero-salt
conditions [138]. Additionally, CB7 can also bind cations
fairly strongly [21, 83, 116]. Thus, one group found a
6.4-6.8 kcal/mol dependence on salt concentration [82]
(possibly due to cation competition for the binding site),
possibly impacting other studies as well [135].

Despite these issues, CB7 appears to be at the point
where careful studies can probe the true accuracy of our
force fields [63, 77, 82, 139, 207], and the results can
be sobering, with root mean square (RMS) errors in the
binding free energies as high as 8 kcal /mol [77, 135]. More
encouragingly, the values of R? values can be as high as
0.92 [77]. Calculated values are in many cases quite sen-
sitive to details of force field parameters [134, 135, 139].
For example, modest modification of some Lennard-Jones
parameters yielded dramatic improvements in calculated
values [207], and host-guest binding data has, accord-
ingly, been suggested as an input for force field develop-
ment [63, 77, 207]. Water structure around CB7 and cal-
culated binding enthalpies also appear particularly sen-
sitive to the choice of water model [51, 63, 159], and
water is clearly important for modulating binding [144].
The water model also impacts the number of sodium
ions which must be displaced (in sodium-based buffer)
on binding [63, 77].

In summary, CB7 is still a challenging benchmark that
can put important issues into high relief. For example, in
SAMPLA4, free energy methods yielded R? values from 0.1

to 0.8 and RMS errors of about 1.9 to 4.9 kcal /mol for the
same set of CB7 cases [138]. This spread of results across
rather similar methods highlights the need for shared
benchmarks. Potential explanations include convergence
difficulties, subtle methodological differences, and details
of how the methods were applied. Until the origin of such
discrepancies is clear, it is difficult to know how accurate
our methods truly are.

To aid the adoption of these systems as benchmarks,
input files for the CB7 systems proposed here are avail-
able in our GitHub repository.

2. Gibb Deep Cavity Cavitands (GDCC)

The octa-acids (OA) (Figure 1) are synthetic hosts
with deep, basket-shaped, hydrophobic binding sites [66].
The eight carboxylic acidic groups for which they were
originally named make these hosts water-soluble, but do
not interact directly with bound hosts; instead, they
project outward into solvent. Binding data have been
reported for the original form of this host (OA) [66] and
for a derivative with four added methyl groups at equiv-
alent locations in the entryway, where they can contact
a bound guest (TEMOA) [62, 178]. (Note that OA and
TEMOA have also been called OAH and OAMe, respec-
tively [209].) Additional family members with other sub-
stituents around the portal have been reported, as has a
new series in which the eponymic carboxylic groups are
replaced by various other groups, including a number of
basic amines [80]. However, we are not aware of bind-
ing data for these derivatives. Because these closely re-
lated hosts are clearly in the same family but do not have
eight acidic groups, and in recognition of the family’s de-
veloper, we propose the more general name Gibb deep
cavity cavitands (GDCCs) for this family of hosts. The
binding cavities of the GDCCs are fairly rigid, though
less so than the cucurbiturils. Some simulators report
“breathing” motions that vary the diameter of the en-
try by up to 8 A[123]; and, in some studies, the benzoic
acid “flaps” around the entry occasionally flip upward
and into contact with the guest [185, 208], though this
motion has not been verified experimentally. Addition-
ally, the four priopionate groups protruding into solution
from the exterior base of the cavity are all flexible.

The octa-acids tend to bind guest molecules possess-
ing a hydrophobic moiety that fits into the host’s cavity
and a hydrophilic moiety that projects into the aqueous
solvent. Within these specifications, they bind a diver-
sity of ligands, including both organic cations and an-
ions, as well as neutral compounds with varying degrees
of polarity [67, 69]. Compounds with adamantane or no-
radamantane groups display perhaps the highest affini-
ties observed so far, with binding free energies ranging
to about -8 kcal/mol [179]. Many of the experimental
binding data comes from ITC, so binding enthalpies are
often available.

Two experimental aspects of binding are particularly



TABLE I. Proposed CB7 Set 1 benchmark data

ID* name PC CIDP 2D SMILES AG® (kcal/mol)
1 memantine 4054 ﬁ’\ CC12CC3CC(C1) (CC(C3) (C2)N)C —5.99 +0.05 ¢
|
—N—
3 1,3-bis(trimethylaminio)adamantane 101379195 C[N+] (C) (C)C12CC3CC(C1)CC(C3) (C2) [N+1(C) (C)C  —6.55 + 0.05 ¢
N(\
/
5  N-(1l-adamantyl)ethylenediamine 303798 IN*‘ C1C2CC3CC1CC(C2) (C3)NCCN —18.22 +0.09 ©
17 adamantane-1,3-diamine 213512 @\ C€1€2CC3(CC1CC(C2) (C3)N)N —11.33+0.05 ¢
Ho o
18 1l-adamantanecarboxylic acid 13235 @ €1C2CC3CC1CC(C2) (C3)C(=0)0 —11.59 + 0.06 ¢
e
22  1-Adamantyltrimethylaminium 3010127 i C[N+] (C) (C)C12CC3CC(C1)CC(C3)C2 —16.66 + 0.08 ¢
23 amantadine 2130 E C1C2CC3CC1CC(C2) (C3)N —17.19 £ 0.08 ¢
24 N-(1-adamantyl)pyridinium 3848257 @ €1C2CC3CC1CC(C2) (C3) [N+]4=CC=CC=C4 —16.75 + 0.07 ¢
/NV
9

# Compound ID from original paper; b PubChem Compound ID; ¢ Standard binding free energy, where all measurements were done via NMR in
50mM sodium acetate buffer in D>O at pH 4.74 and 298 K. Uncertainties are obtained by taking the reported standard deviations across
triplicate measurements [84] and dividing by v/3; ¢ drawn from [110]; ¢ drawn from [22].

intriguing and noteworthy. First, the binding thermo-
dynamics of OA is sensitive to the type and concentra-
tion of anions in solution. Although NaCl produces rela-
tively modest effects, 100 mM sodium perchlorate, chlo-
rate and isothiocyanate can shift binding enthalpies by
up to about 10 kcal/mol and free energies by around 2
kcal/mol [68]. These effects are due in part to binding of
anions by the host; indeed, trichloroacetate is reported
to bind OA with a free energy of -5.2 kcal/mol [176], and
competition of other guests with bound anions leads to
entropy-enthalpy tradeoffs. Second, elongated guests can
generate ternary complexes, in which two OA hosts en-
capsulate one guest, especially if both ends of the guest
are not very polar [67].

a. The proposed GDCC benchmark sets are drawn
from SAMPL We propose the establishment of two
GDCC benchmark sets, based on data which formed part
of the SAMPL4 and SAMPL5 challenges. One set is
based on experiments carried out in phosphate buffer
at pH 11.5, and the other on experiments in tetrabo-
rate buffer at pH 9.2 The guests in the first set (Ta-
ble IIT) are adamantane derivatives and cyclic (aromatic

and saturated) carboxylic acids (Table III), which bind
to hosts OA and TEMOA with free energies of -3.7 to -7.6
kcal/mol. The second set of guests (Table IV) comprises
carboxylic acids based on phenyl and cyclohexane cores.
Both sets offer aqueous binding data with free energies
spanning about 4 keal /mol, frequently along with binding
enthalpies. The hosts and many or all of their guests are
small and rigid enough to allow convincing convergence
of binding thermodynamics with readily feasible simula-
tions; and, like the cucurbiturils, they are already emerg-
ing as de facto computational benchmarks, due to their
use in the SAMPL4 and SAMPLS5 challenges [138, 209].
b. The GDCC hosts introduce new challenges beyond
CB7 Issues deserving attention when interpreting the
experimental data and calculating the binding thermo-
dynamics of these systems include the following:

1. Tight exit portal: The methyl groups of the
TEMOA variant narrow the entryway and can
generate a barrier to the entry or exit of guest
molecules with bulky hydrophobic cores, though
the degree of constriction is not as marked as for
CBT7 (above). The TEMOA methyl groups can ad-



TABLE II. Proposed CB

10

7 Set 2 benchmark data

D* name PC CIDP 2D SMILES AGS? (keal/mol)
2 dopamine 681 hOH clcc(c(cc1CCN)0)0 —6.31 £0.05
4 o-phenylenediamine 7243 ©: ‘ clcce(c(c1)N)N —6.68 £ 0.05
5 m-phenylenediamine 7935 ’ \©/ clcc(cc(c1)N)N —6.69 £ 0.02
A
7 4-(aminomethyl)pyridine 77317 (% clcnccclCN —7.56 £ 0.06
NH.
8 p-phenylenediamine 7814 /©/ / clcc(cecIN)N —8.60 £ 0.06
HN
NH;
9 p-toluidine 7813 /©/ Celccc(cel)N ~9.4340.05
20 p-xylylenediamine 68315 clcc(ccclCN)CN —12.62 £ 0.06

# Compound ID from original paper; P PubChem Compound ID; ¢ Standard binding free energy, where all measurements were done via NMR in

50mM sodium acetate buffer in DO at pH 4.74 and 298 K. Uncertai

nties are obtained by taking the reported standard deviations across

triplicate measurements [84] and dividing by v/3; 4 drawn from [110].

ditionally hinder sampling of guest poses in the
bound state, leading to convergence problems [209]

. Host conformational sampling: Although the
flexible propionate groups are not proximal to the
binding cavity, they are charged and so can have
long-ranged interactions. As a consequence, it may
be important to ensure their conformations are well
sampled, though motions may be slow [123]. Simi-
larly, benzoic acid flips [185, 208] could potentially
be an important challenge in some force fields.

. Water binding and unbinding: Water appears
to undergo slow motions into and out of the OA
host, on timescales upwards of 5 ns [49]. This poses
significant challenges for some approaches, such as
metadynamics, where deliberately restraining wa-
ter to stay out of the cavity when the host is not
bound (and computing the free energy of doing so)
can help convergence [13], and perhaps for other
methods as well.

. Salt concentration and buffer conditions: As
in the case of CB7, binding to GDCCs is modulated
by the composition of dissolved salts, both experi-
mentally [68, 176] and computationally [146, 185].
As a consequence, to be valid, a comparison of cal-
culation with experiment must adequately model
the experimental salt conditions.

. Finite-size artifacts due to charge modifica-
tion: As for CB7, it should be ascertained that
calculations in which charged guests are decoupled
from the system do not generate artifacts related
to long range Coulomb interactions. [108, 153, 157,
172].

6. Protonation state effects: Although experi-
ments are typically run at pH values that lead to
well-defined protonation states of the host and its
guests, this may not always hold [49, 138, 185], par-
ticularly given experimental evidence for extreme
binding-driven pK, shifts of 3-4 log units for some
carboxylate compounds [176, 195]. Thus, attention
should be given to ionization states and their mod-
ulation by binding.

c. Prior studies provide additional insight into the
challenges of OA As noted, two different host confor-
mational sampling issues have been observed, with dihe-
dral transitions for the proprionate groups occurring on
1-2 ns timescales [123]); motions of the benzoic acid flaps
were also relatively slow [185, 208] though perhaps ther-
modynamically unimportant. Guest sampling can also
be an issue, at least in TEMOA [209], and this host’s
tight cavity may also have implications for binding en-
tropy [208].

Salt concentration strongly modulates binding affin-
ity, at least for anions, and the nature of the salt also
plays an important role [23]. Co-solvent anions can also
increase or decrease binding depending on their iden-
tity [68]. Some salts even bind to OA themselves, with
perchlorate [68] and trichloroacetate [176] being particu-
larly potent, and thus will compete with guests for bind-
ing. Computationally, including additional salt beyond
that needed for system neutralization changed binding
free energies by up to 4 kcal/mol [185].

Although the protonation states of the guests might
seem clear and unambiguous, experimental evidence also
indicates major pK, shifts on binding so that species
such as acetate, formate and others could bind in neutral
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TABLE III. Proposed GDCC Set 1 benchmark data

ID* SAMPLP name PC CID¢ 2D SMILES AG® (kecal/mol) AHY (kcal/mol)
OA host
3  OA-Gl 5-hexynoic acid 143036 ?\jﬁ C#CCCCC(=0)0 —5.400 £ 0.003  —7.71+0.05
4 OA-G6 3-nitrobenzoic acid 8497 Hk‘)k@l\\t clcc(cc(cl) [N+] (=0) [0-]1)C(=0)0 —5.340 &+ 0.005 —5.67 = 0.01
5 OA-G2  4-cyanobenzoic acid 12087 /@/k\ clcc(ccclC#N)C(=0)0 —4.73 £0.01 —4.45 £ 0.08
Z
6 OA-G4 4-bromoadamantane-1-carboxylic acid 12598766 j@w C1C2CC3CC(C2) (CC1C3Br)C(=0)0 —9.37 +0.01 —14.78 + 0.02
N
7  OA-G3 N,N,N-trimethylhexan-1-aminium 84774 4/—/_/ CCCCCCN+] (C) (C)C —4.49 +0.01 —5.91 £ 0.10
\
8 OA-G5  trimethylphenethylaminium 14108 ©A/\/ CclcceeclCC(C) (C) [NH3+] —3.72 +£0.01 —9.96 £ 0.11
TEMOA /OAMe host
3 OA-G1 5-hexynoic acid 143036 ?\_%m c#ccecc(=0)0 —5.476 £ 0.006 —9.96 4 0.006
4 OA-G6 3-nitrobenzoic acid 8497 H‘)JKO/N‘\\E clcc(cc(cl) [N+] (=0) [0-]1)C(=0)0 —4.52 4+ 0.02 —-9.1 +0.1
5 OA-G2  4-cyanobenzoic acid 12087 /@Av clcc(cecclC#N)C(=0)0 —5.26 +£0.01 —7.6 £0.1
Z
\
7 OA-G3  N,N,N-trimethylhexan-1-aminium 84774 I/_/Mg ccceccN+] (C) (e)ce —5.73 £0.06 —6.62 £ 0.20

@ Compound ID from [178]; ® SAMPL5 ID from [209]; ¢ PubChem Compound ID; ¢ Standard binding free energy from [178], where all
measurements were done via I'TC in 50 mM sodium phosphate buffer at pH 11.5 and 298 K. Uncertainties, drawn from the experimental paper,
were computed from triplicate measurements taken with freshly made solutions of host and guest. However, based on personal communication

with the authors, it may be advisable to regard the accuracy more conservatively, at ~2% for AG and ~6% for AH; 4 measured binding

enthalpy [178], subject to the same conditions/caveats as . © not done.

TABLE IV. Proposed GDCC Set 2 benchmark data for binding to the OA host.
D name PC CID" 2D SMILES Method AG® (kcal/mol)

1 benzoic acid 243 clccec(cecl1)C(=0)0 NMR —3.72+£0.03

2 4-methylbenzoic acid 7470 Cclccc(cc1)C(=0)0 NMR —5.85 4+ 0.06

4 4-chlorobenzoic acid 6318 clcc(ccclC(=0)0)C1 ITC —6.72 £ 0.01

3 4-ethylbenzoic acid 12086 \@o CCclccec(cc1)C(=0)0 ITC —6.27 + 0.01

OH

5 3-chlorobenzoic acid 447 clcc(ecc(c1)Cl)C(=0)0 NMR —5.24 4+ 0.02

7  trans-4-methylcyclohexanecarboxylic acid 20330 [ceeH] 1 (CcC[CeeH] (CC1)C(=0)0[H])C ITC —7.61 4+0.04

6 cyclohexanecarboxylic acid 7413 O/go cicce(cc1)c(=0)0 NMR —5.62 £ 0.04

# Compound ID from original paper [69]; P PubChem Compound ID; © Standard binding free energy from [69], where all measurements were
done in 10 mM sodium tetraborate buffer at pH 9.2 and 298 K. A quirk is that for the NMR measurements, the guest was titrated in from 50 mM
sodium tetraborate buffer, so the buffer concentration changed during the titration. Uncertainty is the standard error of the mean in free energy,
computed from the reported standard deviations in K,. Again, based on personal communication with the authors, uncertainties of perhaps 10%

may be more appropriate.



form at neutral pH [176, 195]. One study used absolute
binding free energy calculations for different guest charge
states, coupled with pK, calculations, and found that in-
clusion of pK, corrections and the possibility of alternate
charge states of the guests affected calculated binding
free energies by up to 2 kcal/mol [185]. Even the host
protonation state may be unclear. Although OA might
be assumed to have all eight carboxylic acids deproto-
nated at the basic pH of typical experiments, the four at
the bottom are in close proximity, and these might make
hydrogen bonds allowing retention of two protons [49].
Thus, there are uncertainties as to the host protonation
state [49, 138], which perhaps also could be modulated
by guest binding.

The challenges of system definition and conformational
sampling appear to be greater for OA and TEMOA than
for CB7, as discussed above, so it is harder to draw defi-
nite conclusions regarding force field accuracy and differ-
ences among force fields. Thus, although there have been
some comparisons of charge [123, 135, 138] and water
models [208], the resulting differences in computed bind-
ing thermodynamics so far seem mostly inconclusive or at
least not that large. Similarly, OPLS and GAFF results
did not appear dramatically different in accuracy [13]. It
is worth noting that several groups using different com-
putational approaches but the same force field and water
model in SAMPL5 did not obtain identical binding free
energies [13, 15, 209]. Some of these issues were resolved
in follow-up work [13], bringing the methods into fairly
good agreement for the majority of cases [15, 208].

To aid the adoption of these systems as benchmarks,
input files for the GDCC systems proposed here are avail-
able in our GitHub repository.

B. Protein-ligand benchmarks: the T4 lysozyme
model binding sites

Although we seek ultimately to predict binding in sys-
tems of direct pharmaceutical relevance, simpler protein-
ligand systems can represent important stepping stones
in this direction. Two model binding sites in T4 lysozyme
have been particularly useful in this regard (Figure 2).
These two binding sites, called L99A [136, 137] and
L99A/M102Q [73, 198] for point mutations which cre-
ate the cavities of interest, have been studied extensively
experimentally and via modeling. As protein-ligand
systems, they introduce additional complexities beyond
those observed in host-guest systems, yet they share some
of the same simplicity. The ligands are generally small,
neutral, and relatively rigid, with clear protonation
states. For most ligands, substantial protein motions do
not occur on binding at room temperature and ambient
pressure, helping calculated binding free energies to reach
apparent convergence relatively easily. However, like
host-guest systems, these binding sites are still surpris-
ingly challenging [17, 61, 86, 107, 125, 126, 128]. Thus,
precise convergence is sometimes difficult to achieve, and
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it is in all cases essentially impossible to fully verify. As
a consequence, these are “soft benchmarks” as defined
above (Section ITA). The utility of the lysozyme model
sites is also driven by the large body of available ex-
perimental data. It has been relatively easy to iden-
tify new ligands and obtain high quality crystal struc-
tures and affinity measurements, and this has allowed
two different rounds of blinded free energy prediction ex-
ercises [17, 128].

These binding sites do exhibit some surprising exper-
imental complexities which make them interesting ongo-
ing topics of study, such as the fact that the L99A site
is empty of water when ligands are not bound [33, 106,
145] yet the protein can undergo pressure-induced fill-
ing [33, 106] or denaturation [145] which can be inhib-
ited by binding of ligand [106, 145]. Pressure may also
cause the protein to populate an excited state [99, 114]
(but see [192]) which is already present to a very lim-
ited extent at equilibrium [16]. Still, as noted below,
these issues do not seem to dramatically impact our abil-
ity to calculate binding free energies at standard tem-
perature and pressure, probably in large part because
these are effects which come into play only at high pres-
sures [106, 114, 145], though as we discuss below, some
ligands do induce a protein conformational change which
affects the same helix as the proposed excited state [118].
It seems likely that the conformational hetereogeneity ob-
served experimentally will make lysozyme even more of a
valuable benchmark system as test cases here can range
from simple to challenging depending on the ligand and
pressure being considered.

1. The apolar and polar cavities and their ligands

The L99A site is also called the “apolar” cavity. It
is relatively flat and elongated, and binds mostly non-
polar molecules such as benzene, toluene, p-xylene, and
n-butylbenzene: basically, a fairly broad range of nonpo-
lar planar five- and six-membered rings and ring systems
(such as indole). The polar version, L99A /M102Q, intro-
duces an additional point mutation along one edge of the
binding site, providing a glutamine that introduces polar-
ity and the potential for hydrogen bonding. It still binds
a variety of nonpolar ligands such as toluene (though not
benzene). One small downside of these binding sites is
that the range of affinities is relatively narrow: about
-4.5 to -6.7 kcal/mol in the apolar site [128, 136], and
about -4 to -5.5 kcal/mol in the polar site [17]. Thus,
even the strongest binders are not particularly strong,
and the weakest binders tend to run up against their sol-
ubility limits. Still, these sites offer immensely useful
tests for free energy calculations.

For both sites, fixed charge force fields seem to yield
reasonably accurate free energies, with RMS errors of 1-2
kcal/mol, and some level of correlation with experiment,
despite limited dynamic range [17, 43, 61, 128, 194]. Sys-
tem composition/preparation issues also do not seem to



L99A

FIG. 2.
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L99A/M102Q

Benzene and hexylbenzene in the lysozyme LI9A site, and phenol and 4,5,6,7-tetrahydroindole in the L99A /M102Q

site (PDBs 4W52, 4W59, 1LI2, and 3HUA, respectively). The binding site shape is shown as a semi-transparent surface, and
the protein with cartoons. In both cases, the structure with the smaller ligand is shown in green and that with the larger ligand
is shown in blue. The larger ligand induces a motion of helix F bordering the binding site. Phenol and 4,5,6,7-tetrahydroindole
both also bind with an ordered water (red sphere), though this does not occur for all ligands in the polar L99A /M102Q site.

be a huge factor. Instead, sampling issues predominate:

1. Ligand orientation: These oblong binding sites are
buried, and their ligands are similar in shape. Lig-
ands with axial symmetry typically have at least
two reasonably likely binding modes, but broken
symmetry can drive up the number of likely bind-
ing modes. For example, phenol has two plausible
binding modes in the polar cavity [17, 74] but 3-
chlorophenol has at least four, three of which ap-
pear to have some population in simulations [61],
because the chlorine could point in either direction
within the site. Timescales for binding mode inter-
conversion are relatively slow, with in-plane transi-
tions on the 1-10 nanosecond timescale, and out-
of-plane transitions (e.g. between toluene’s two
symmetry-equivalent binding modes) taking hun-
dreds of nanoseconds (Mobley group, unpublished
data).

2. Sidechain rearrangement: Some sidechains reorga-
nize when certain ligands, particularly larger ones,
bind. This is common in particular for the side
chain of Val 111 in the L99A site [86, 126, 137] and
Leu 118, Val 111, and Val 103 in L99A/M102Q [17,
74, 198, 199]. These sidechain motions can be slow,
due to the tight packing of the binding site, and
therefore can present sampling problems for stan-
dard MD simulations [17, 86, 126, 128, 196].

3. Backbone rearrangement: Larger ligands induce

shifts of the F helix (residues 107 or 108 to 115),
which is adjacent to the binding site, allowing
the site to enlarge. This occurs in both binding
sites [17, 118, 199], but is best characterized for
L99A [118]. There, addition of a series of methyl
groups from benzene up to n-hexylbenzene causes a
conformational transition in the protein from closed
to intermediate to open conformations; this affects
the same region of helix F that undergoes a con-
formational change in the proposed excited state
which is partially populated at equilibrium [16].

Tables V and VI introduce two initial benchmark
sets based on the apolar and polar T4 lysozyme bind-
ing sites. These sets include ligands amenable to both
absolute and relative free energy calculations, and have
affinities that cover the currently available experimen-
tal range. Co-crystal structures are available in most
cases; the corresponding PDB IDs are provided in the
tables. The selected ligands span a range of challenges
and levels of difficulty, ranging from fairly simple to in-
cluding most of the challenges noted above. Essentially
all of them have been included in at least one prior com-
putational study, and some have appeared in a variety
of prior studies. Additional known ligands and non-
binders are available, with binding affinities available for
19 compounds in the L99A site [48, 128, 136] and 16 in
L99A/M102Q [17, 73, 198]. Because of the extent of the
sampling challenges in lysozyme, binding of most ligands



will currently constitute a soft benchmark, though long-
timescale simulations to turn these into hard benchmarks
may already be feasible.

2.  Computational challenges posed by the T4 lysozyme
benchmarks

Early work on the lysozyme sites focused on the diffi-
culty of predicting binding modes [17, 125, 128] because
of the slow interconversions noted above. Docking meth-
ods often can generate reasonable poses spanning most of
the important possibilities [17, 74, 125, 128] but do not
accurately predict the binding modes of individual com-
pounds [17, 74, 128]. Thus, binding calculations must
explore multiple potential binding modes, especially as
some ligands actually populate multiple poses at equi-
librium [17]. In a number of studies, candidate bind-
ing modes from docking are relaxed with MD simula-
tions, then clustered to select binding modes for further
study. It turns out an effective binding free energy for
each distinct candidate binding mode can be computed
separately [125] and combined to find the population of
each binding mode and determine the overall binding free
energy. However, this is costly, since each binding mode
requires a full binding free energy calculation.

Relative binding free energy calculations do not dra-
matically simplify the situation,as introduction of a lig-
and modification can leave the binding mode uncertain.
For example, adding a chlorine to phenol generates at
least two binding mode variants, even if the binding mode
of phenol is known) [17]. A naive solution is to consider
multiple possible binding modes in relative free energy
calculations [17], but this generates multiple results; de-
termining the true relative binding free energy requires
additional information [129]. Enhanced sampling ap-
proaches provide one possible solution to the binding
mode problem. For example, A or Hamiltonian exchange
techniques can incorporate sampling on an artificial en-
ergy surface where the ligand does not interact with the
protein, and thus can readily reorient. Thus, approaches
employing this strategy can naturally sample multiple
binding modes [61, 194].

While sidechain sampling has been a significant chal-
lenge, it is possible to use biased sampling techniques
such as umbrella sampling to deliberately compute and
include free energies of sampling slow sidechain rear-
rangements [126]. However, this is not a general solution,
since it requires knowing what sidechains might rearrange
on binding and then expending substantial computa-
tional power to map the free energy landscapes for these
rearrangements. An apparently better general strategy
is including sidechains in enhanced sampling regions se-
lected for Hamiltonian exchange [86, 95] or REST2 [196],
allowing sidechains to be alchemically softened
or torsion barriers lowered (or both), to enhance
sampling at alchemical intermediate states. Re-
duction of energy barriers at intermediate A\ states in
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this scheme allows enhanced conformational sampling at
these A values. Then, with swaps between A values,
enhanced sidechain sampling at intermediate states can
propagate to all states, improving convergence [86, 196].

Larger protein conformational changes in lysozyme
have received less attention, partly because until very re-
cently they seemed to be a peculiar oddity only rarely
observed; i.e., for ligands 4,5,6,7-tetrahydroindole and
benzyl acetate in the polar site [17]. However, recent
work noted above highlighted how a helix in the apo-
lar cavity can open to accommodate larger ligands [118].
Timescales for this motion appear to be on the order of
50 ns, so it can pose sampling challenges, even for rel-
ative free energy calculations [107]. Including part of
the protein in the enhanced sampling region via REST2
(described above) provides some benefits [107], but sam-
pling these motions will likely prove a valuable test for
enhanced sampling methods.

Accounting for water exchange into and out of these
buried binding sites could also be a challenge in the po-
lar binding site, as phenol binds with one ordered wa-
ter [198]. However, to our knowledge, the simulation
timescales for water sampling have not yet been exam-
ined, other than noting that water does not enter the
polar binding site as ligands are removed [17]. In con-
trast, the apolar cavity is dry, both with and without
a bound ligand, so water sampling is unlikely to be a
challenge in this case.

IV. FUTURE BENCHMARK SYSTEMS

Although the benchmark systems detailed above are
useful, more systems are needed to expand the dataset,
broaden the range of challenges, and bridge to biomedi-
cally relevant protein-ligand binding. The following sub-
sections discuss additional systems that have already
been used to test computational methods and that may
be suited for development as new benchmark systems in
the near future.

A. Host-Guest Systems

The cyclodextrins (CDs; Section IIIA) are a partic-
ularly promising source of additional host-guest bench-
mark sets. Cyclic glucose polymers, the CDs are pro-
duced from starch by an enzymatic process, and are avail-
able in gram quantities at low cost from multiple suppli-
ers. Many experimental binding data, for varied guest
molecules, are available for this class of host molecules,
especially for 6-membered a-CD and 7-membered (-
CD, which both have adequate aqueous solubility. In-
deed, a thorough review 1998 review tabulates hun-
dreds of binding data [154], and many additional mea-
surements have been published since then; e.g. refer-
ences [24, 36, 37, 119, 158, 171, 203]. A number of these
studies were done calorimetrically, and thus provide not
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TABLE V. Proposed Lysozyme L99A Set benchmark data

name PC CID" 2D SMILES AG?* (kcal/mol) PDB code reference
benzene” 241 @ clcccccl —5.19+0.16 181L [137], 4W52 [118] [136]
toluene® 1140 ©/ Celceceet ~5.52 + 0.04 4W53 [118] (136]
ethylbenzene? 7500 ©/\ CCclcccccl —5.76 £ 0.07 1INHB [137], 4W54 [118] [136]
propylbenzene® 7668 ©/r CCCclcccecl —6.55 +0.02 4W55 [118] [136]
butylbenzene® 7705 (j/\A CCCCetccceet —6.70 + 0.02 186L [137], 4W57 [118] [136]
hexylbenzene® 14109 ©/\N\ CCCCCCetceecet UNK® AW59 [118] [136]
p-xylened 7809 /©/ Cetece(eel)C —4.67 £ 0.06 187L [137] [136]
benzofuran 9223 @io/} clccc2e(cl)cco2 —5.46 +0.03 182L [137] [136]
thieno[2,3-c]pyridine 9224 '@/) clcnecc2clces2 NB® NDf [128]
phenol® 996 - clecc(cel)O NB® NDf [128, 136]

&

2T=302K, with compounds from [136] measured in 50mM sodium acetate at pH 5.5 and thieno[2,3-c]pyridine measured at pH 6.8 in 50 mM

potassium chloride and 38% (v/v) ethylene glycol; b part of the series of [118], so larger ligands in the series induce conformational change;
unknown due to solubility limitations, but likely binds strongly; ¢ L99A sidechain undergoes rotation;

c

© nonbinder; f not done; & included since it

is a binder in the polar cavity; B PubChem compound ID.

only binding free energies but also binding enthalpies.
Fewer data are available for 8-membered v-CD, and the
greater diameter of this host makes for a less well-defined
and floppier binding cavity. Overall, the amount of ex-
isting binding data for CDs greatly exceeds what is cur-
rently available for CB7 and other cucurbiturils.

Structurally, the binding cavity of g-CD is about
the same size as CB7 (Section IITA1), but the cy-
clodextrins are more flexible than CB7, as their glucose
monomers are joined by one single bond, whereas CB7’s
glycouril monomers are joined by two single bonds. The
CDs also appear easier to derivatize than the cucurbi-
turils. In particular, varied substituents may be ap-
pended by reactions involving secondary hydroxyls at
the wide entry and primary hydroxyls at the narrow en-
try [45, 57, 89, 151, 180], with the caveat that gener-
ating pure products can be difficult, because there are
so many hydroxyls that may be modified. Binding data
on CD derivatives could be quite useful as a means of
adding chemical diversity to host-guest benchmark sets,
and such data are already available for some derivatives
(see, e.g., [50, 154]).

The CDs are computationally tractable [11, 19, 26, 65,
77, 96, 113, 115, 163, 165, 200, 201, 212], and thus can
be used for “hard” benchmark sets to test force fields
(Section ITA1c). One complicating feature for calcula-
tions, relative to CB7, is that the two entryways to a CD
are not equivalent, and asymmetric guest molecules may
prefer to bind “head-in” or “head-out”. As these two
binding modes typically do not interchange on the mi-

crosecond timescale, they must be considered separately
when one computes binding thermodynamics [77]. It is
also worth noting that, because the CDs are glucose poly-
mers, they may be best modeled with dedicated carbohy-
drate force fields [25, 76, 98, 205], rather than generalized
small molecule force fields. A number of CD (and other
host guest) binding systems are available for download
in electronic format at the BindingDB [71, 112] website
(www.bindingdb.org/bind/HostGuest. jsp)

B. Protein-Ligand Systems

On the order of a million experimental protein-
ligand binding measurements are currently accessi-
ble through open-access databases, mnotably Bind-
ingDB [112], ChEMBL [12] and PubChem [97]. These
databases can be valuable sources of, or at least
starting points for, new protein-ligand benchmark
datasets. In fact, automated procedures have al-
ready been used to extract about 700 download-
able validation sets (www.bindingdb.org/validation_
sets/index. jsp), each comprising a congeneric series of
10-50 ligands with binding data against a defined pro-
tein, and a cocrystal structure for at least one of the
ligands in the series. However, there is still a need for
a smaller collection of highly optimized benchmark sets
as research foci for the computational chemistry commu-
nity. Such sets should exemplify specific challenges not
well covered by existing benchmark systems; be based


www.bindingdb.org/bind/HostGuest.jsp
www.bindingdb.org/validation_sets/index.jsp
www.bindingdb.org/validation_sets/index.jsp

TABLE VI. Proposed Lysozyme LI9A/M102Q Set benchmark data
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ligand PC CID* 2D SMILES AG? (kcal/mol) PDB code reference
toluene® 1140 ©/ Celceeced ~4.93 ND® [198]
phenol 996 ©/U clccc(ccl)0 —5.24 1LI2 [198] [198]
catechol® 289 @[ clccc(c(c1)0)0 —4.16 £ 0.03 1XEP [73] [198]
2-ethoxyphenol? 66755 @[0 CCOclcccecll —4.024+0.03 3HUS [17] [17]
benzyl acetate®f 8785 [ €C(=0)0Cclcccccl —4.48 £0.16 3HUK [17] [17]
4,5,6,7-tetrahydroindolef 57452536 CE) clc[nHlc2c1CCCC2  —4.614+0.09 3HUA [17] [17]
o
n-phenylglycinonitrile® 76372 I» clcccccINCC#N —5.524+0.18 2RBN [17] [17]
3-chlorophenol 7933 \©/ clcc(cc(c1)C1)0 —5.51 1LI3 [198] [198]
2-methoxyphenol 460 @[ o COclcccecl0 NB! ND*¢ [17]
N\ B
4-vinylpyridine 7502 I C=Cclccnccl NB' ND¢ [198]
=

aT=283K, with measurements done at pH 6.8 in 50 mM potassium phosphate, 200 mM potassium chloride buffer in the case of [17]; ® included

for symmetry with the L99A site since this (unlike phenol and benzene) binds in both;

¢ not determined; ¢ fails to make crystallographic

hydrogen bond [17]; ¢ multiple binding modes; f induces helix F motion; & induces flip of Vall1ll sidechain; ® induces flip of Leul18 sidechain; I
nonbinder; ¥ PubChem compound ID.

upon high quality binding measurements for at least 20
ligands, measured by consistent procedures across all lig-
ands; and include crystal structures for the apo-protein
and cocrystal structures for multiple ligands. Analysis
and extraction of such sets from the big databases is a
promising future direction. Here, however, we take the
less systematic but more expedient approach of consider-
ing several systems that have already proven themselves
to be computationally tractable and informative.

1. Constructed Binding Sites in Cytochrome C Peroxidase

Two artificial binding sites have been designed into the
enzyme cytochrome C peroxidase (CCP): the “closed”
site, created by the mutation W191G [53, 156]; and the
“open” site mutant, created by supplementing mutation
W191G with partial deletion of a loop, and thus open-
ing the site to the outside of the protein [142, 156, 160].
As for the artificial binding cavities in T4 lysozyme (Sec-
tion ITI B), the two CCP sites bind simple, fragment-like
ligands with modest binding free energies (e.g., -3 to -7
kcal /mol for the open site [156]); discovery of new ligands

is relatively straightforward [18, 156]; and new crystal
structures can be obtained fairly readily. The protein
has relatively modest size (around 280 residues) as in,
for example, the 1IKXM structure.

What is new is that the CCP binding sites contain an
ASP which appears to be charged, at least in the pres-
ence of some ligands, as evidenced by observed interac-
tions in structures, and by experiments where replacing
the ASP with ASN abolishes binding of imidazoles, de-
spite minimal changes to the binding site structure [54].
This side-chain interacts at short range with the ligands,
which may be cationic or polar neutral compounds. As a
consequence, the CCP sites challenge the ability of com-
putational methods to accurately account for strong elec-
trostatic interactions in the low-dielectric interior of a
protein [156]. Indeed, free energy calculations with two
different force fields and distinct computational meth-
ods were found to overestimate the range of affinities,
across a series of ligands, about three-fold, for the closed
site [7, 8], and a similar pattern appears to hold for the
open site [156]. Further analysis suggests that these over-
estimates stem from overestimated electrostatic interac-
tions in these buried sites [156], perhaps because the force



fields used did not account explicitly for electronic polar-
ization. Additionally, the fact that different CCP lig-
ands have different net charges may pose methodological
challenges for some free energy techniques [157]. One
modeling challenge is that CCP contains a heme, pro-
viding additional setup challenges (though since this is
such an important cofactor, these may be worthwhile to
face). In summary, these model CCP binding sites ap-
pear challenging yet tractable, and have already yielded
insight regarding possible directions for force field im-
provements. Thus, they are good candidates to provide
new benchmark sets in the near future.

2. Thrombin

Human thrombin, an enzyme of about 300 residues, is
interesting both as a drug target related to blood coag-
ulation and as a representative serine protease. Bind-
ing and structural data are available for a wide vari-
ety of ligands ([10, 150, 177, 186] and others), and have
already been used as the basis for free energy simula-
tions [20, 196, 197]. Some of the experimental bind-
ing data, obtained calorimetrically, highlight interesting
trends, such as non-additivity (positive coupling) be-
tween substitutions at different locations on the chemical
scaffolds of two compound series [10].

One computational study obtained relative free en-
ergies for two compound series that largely captured
experimental trends and achieved an overall mean un-
signed error of 0.74 kcal/mol over a range of roughly 5
kcal/mol. However, the accuracy of the results differed
significantly between the two series [20]. Another rela-
tive binding free energy study for thrombin found that
the results changed, depending on the initial conforma-
tion of the ligands, and showed that enhanced sampling
techniques could reduce the dependnce on starting con-
formation [196]. These prior studies suggests thrombin
may be at a “sweet spot” for benchmark systems, where
the system is relatively tractable, and encouraging re-
sults have been obtained, but where there are still clear
challenges.

8. Bromodomain proteins

Bromodomains (BRDs) are a family of protein do-
mains of about 100 residues that bind actylated lysine
residues at the surface of histones and thus read out epi-
genetic markers. Bromodomains are present in many hu-
man proteins, and are being explored as potential drug
targets for diseases including cancer and atherosclero-
sis [2]. These compact domains can be expressed, puri-
fied and studied as independent proteins, and are associ-
ated with a growing body of small molecule binding data
[6, 31, 52, 72, 79, 152, 206, 211], including some obtained
by isothermal titration calorimetry [31, 52, 72, 79).
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The small size of bromodomains, and the fact that
their binding sites are relatively solvent-exposed, makes
them particularly suitable for free energy simulations.
One recent study, which used alchemical techniques to
compute absolute binding free energies of 11 different lig-
ands for bromodomain BRD4 [2], achieved a remarkable
level of accuracy, RMS error 0.8 +0.2 kcal/mol, for bind-
ing free energies spanning a range of 4 kcal /mol. Docking
calculations included in the same study did not work as
well. The compounds studied were diverse, and therefore
not amenable to relative free energy methods in which
one ligand is computationally converted into another.

An additional study applied absolute binding free en-
ergy calculations to compute the selectivity of three dif-
ferent bromodomain inhibitors across a variety of differ-
ent bromodomain families. Affinities of two similar lig-
ands for seven different bromodomains were computed
with a mean unsigned error of just 0.81 kcal/mol and
a Pearson correlation coefficient of 0.75. Additionally,
the affinity of a broad spectrum bromodomain inhibitor
was calculated for some 22 different bromodomains with
more modest accuracy. Calculations also yielded insight
into likely binding modes. The affinity data for this case
is high quality, all from ITC, and a variety of crystal
structures are available, making this a potentially excit-
ing benchmark for absolute binding free energy calcula-
tions [3].

Overall, then, bromodomains appear to be class of sys-
tems that could yield relatively tractable and informa-
tive protein-ligand benchmark systems. One known chal-
lenge is that some ligands have multiple plausible binding
modes [2, 3]. In addition, a diverse ligand series (or bind-
ing to different proteins in a family!) can pose severe
challenges for relative free energy techniques, meaning
that bromodomains may perhaps be appealing primarily
as a benchmark for absolute calculations, though per-
haps suitable series for relative calculations may also be
available.

4. Other protein-ligand systems

Several other systems may be of possible interest be-
cause of the wealth and quality of experimental data,
the extent of prior computational work, or the combi-
nation of pharmaceutical relevance with important chal-
lenges. None of these seem to be well-characterized or
well-studied enough yet to be benchmark systems, but
they may be interesting choices for the future. The
first system we would put in this category is trypsin,
and especially binding of benzamidine and its deriva-
tives. While trypsin has been the focus of several free
energy studies [40, 87, 88, 182, 190] and the SAMPL3
challenge [143, 173], it also appears to be subject to ex-
tremely slow protein motions (on the tens of microsec-
ond timescale) which are only beginning to be char-
acterized [149]. As a consequence, short free energy
calculations may appear to converge [87, 83, 182], but



longer calculations can reveal a profound lack of con-
vergence [149]. Therefore, trypsin may become a good
benchmark for studying binding that is coupled with slow
conformational dynamics; enhanced sampling methods
and Markov state models [149] may be particularly help-
ful here.

HIV integrase is also of potential interest as a bench-
mark system. Indeed, blind predictions for a set of frag-
ments binding to several sites formed part of the basis of
the SAMPLA4 challenge [130, 148]. Although the range
of affinities in this set is modest (200 to 1450 pM [148]),
many crystal structures are available, as is a wealth of
verified nonbinders [148]. One group actually did re-
markably well using free energy calculations to recognize
binding modes and predict nonbinders [60, 130]. Coupled
with other HIV integrase data available in the literature
and binding databases for larger ligands or other series,
this may make this system attractive for future bench-
marks.

The protein FKBP has also been the focus of several
different free energy studies on the same series of ligands
over the years [58, 59, 85, 104, 166, 193, 210]. However, in
many cases, differences in calculated values between dif-
ferent studies — even with what appears to be the same
force field and system preparation — are larger than dif-
ferences relative to experiment [58, 85]. Some challenges
are clear, such as conformational sampling for some of
the larger ligands [166], and there have been some sug-
gestions of force field issues and long equilibration times
for the protein [59]. Perhaps this may be suitable as a
benchmark system in the near-term as well.

A number of other proteins also have strong potential
to generate useful benchmark sets. For example, free en-
ergy calculations have been carried out for influenza neu-
raminidase inhibitors [175] with some success [122], but
other series include more complicated structure-activity
relationships and are associated with protein loop mo-
tions that may be difficult to model [94]. Periplasmic
oligopeptide binding protein A (OppA) binds a series
of two to five-residue peptides, for which there exists a
large amount of calorimetric and crystallographic bind-
ing data [39, 174, 183], and the system appears chal-
lenging but potentially tractable for free energy calcu-
lations [117]. The JNK kinase may pose an interest-
ing conformational sampling challenge, due to its slow
interconversion between binding modes for some lig-
ands [93]. And the ongoing series of Drug Design Data
Resource (D3R) [64] blinded challenges may also be
source of informative protein-ligand systems (drugdesign-
data.org/about/datasets) that are familiar to the compu-
tational chemistry community. As noted above, however,
many other protein-ligand binding systems have been
characterized experimentally, and a systematic filtering
would undoubtedly yield more benchmark candidates.
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V. HOW TO USE BENCHMARK SYSTEMS

Benchmark systems will have multiple uses, as dis-
cussed above, but not all benchmark systems can cover all
uses. Some will be particularly valuable for testing accu-
racy relative to experiment. For this purpose, relatively
large numbers of ligands are needed to afford meaningful
statistics. Other benchmark systems will be more useful
for testing sampling techniques, and still others will, at
least initially, serve as test beds to determine the sensi-
tivity of computational results to various factors.

In our view, benchmark systems will serve also to help
design careful computational experiments. For example,
researchers can test whether a particular method is sam-
pling the motions which others have already shown to be
important, or how the choice of starting conformation im-
pacts the rate of convergence to a known, gold standard
value for a particular force field and system composition.
The availability of benchmark systems will also facilitate
comparisons where only a single piece of a workflow is
modified. For example, one may ask how results change
if a different protonation state assignment tool is used
to prepare a protein. Of course, such comparisons can
already be done, but the results will be far more useful
in the context of generally accepted and widely used test
cases.

We hope that, ultimately, results from reliable “gold
standard” binding free energy computations will be avail-
able for a set of benchmark systems. These would be
from fully converged binding free energy calculations,
and give correct results for a particular force field and
system preparation, allowing quantitative comparison of
the force field results with experiment. Such results will
also facilitate a great deal of science on method efficiency,
as new methods which purport to be more efficient could
easily and automatically be run on a standard set of
systems to see how much more efficient they are than
the (perhaps brute-force) method which yielded the gold
standard results. Thus, various enhanced sampling meth-
ods could easily be observed to have strengths and weak-
nesses on known problem classes. These systems will
allow automated testing of the efficiency of new methods
on real-world problems.

VI. WE NEED WORKFLOW SCIENCE

While the benchmark systems discussed here will al-
ready be useful, to fully realize their benefits a great
deal of engineering needs to be done to facilitate work-
flow science. Currently, a wide variety of computational
tools are available for different stages of the free energy
calculation process, from system preparation (protona-
tion state assignment, building in missing residues and
loops, adding counterions, etc.) to force field assignment,
to planning and conducting the calculations themselves
(choice of method, simulation package, and so on). Of-
ten, each set of tools lives in its own ecosystem and is not



designed to be easily interchangeable with tools from an-
other ecosystem. This makes it very difficult to system-
atically compare methods that differ only in one respect;
instead, one must adopt an entirely different toolset to
change one aspect of a procedure. For example, swapping
different tools for assigning protein protonation states
could yield valuable insights into the relative merits of
these tools and the importance of protonation at specific
residues, but currently, this is, at best, an arduous task.

A. Workflow automation is needed

At the most basic level, we need to allow calculations
to be easily repeated on all of the benchmark systems via
automated workflows. One should not have to become an
expert in the systems being studied in order to be able to
successfully apply calculations to them; inputs should be
easily available and repeating calculations should become
fully automated so that a new method can be tested by
simply specifying the set of benchmarks to run on.

To achieve this, at least two major innovations are
needed. First, we need automated workflows that can
proceed from the specification of a system to target to
yielding the desired results without human intervention.
Second, we need a standard data structure for input to
and output from these workflows so that people can easily
obtain inputs for benchmark systems and only change the
component they want to change (such as the force field
or system preparation) and leave the other components
unchanged so that, in an automated manner, they can
focus their testing on only the components they want to
test.

B. Analysis automation will also be needed

At the most basic level, we can simply check whether
we are getting the expected answer for each calculation
performed, at least for systems where a gold standard
result is available. However, this does not provide nearly
enough insight, especially in cases of failure, where we
would like insight into why we failed. Are the relevant
motions being sampled? Do we have the right protona-
tion states and binding modes? Many other factors may
need to be considered. We need ways to automatically
check that we are sampling the right motions, identi-
fying correct binding modes/conformations, and so on,
without having to become experts on the specific sys-
tems examined. Probably we will need to define ways to
automatically specify what order parameters should be
monitored to assess for adequate sampling.

C. Modularization will be key

To achieve these goals, researchers should develop or
package tools so that they take a set of well specified
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inputs and provide well specified outputs in an inter-
changeable way. This may involve containerizing key
pieces of workflows such as in Docker [44] or Singular-
ity [100] containers, and developing standards as to what
inputs and outputs are provided to each component of
the workflow. Another key goal of modularization is to
separate the operator from the method. Currently, bind-
ing calculations are most often done by a human expert,
who makes a variety of decisions along the way (though
Schrédinger’s workflow represents real progress toward
automation [197]), making it difficult to separate the im-
portance of human expertise from the merits of the meth-
ods employed. Containerizing and modularization will be
key for this, allowing methods to be employed only in a
well-defined way which is reproducible. It is this type of
science — coupled with benchmark tests — which is needed
to advance the field.

VII. THE FUTURE OF THIS WORK

This work has so far presented a small group of bench-
marks for binding free energy calculations, highlighted
some of the ways in which they have already proven their
utility, and has suggested some potential future bench-
mark systems. We hope that the community will be-
come involved in identifying, characterizing, and helping
to select additional benchmark systems, both from those
proposed here as well as from systems which are cur-
rently being studied or which we have overlooked. We
seek community input to help characterize, identify and
share such systems. We also expect that there may be
community interest in test systems specifically selected
to challenge sampling algorithms, without reference to
experimental data.

In order to provide for updates of this material
as new benchmark systems are defined, and to en-
able community input into the process of choosing
them, we have made the LaTeX source for this arti-
cle on GitHub at http://www.github.com/mobleylab/
benchmarksets, with each version having a permanent
DOI assigned by Zenodo. We encourage use of the
GitHub issue tracker for discussion, comments, and pro-
posed updates. We plan to incorporate new material via
GitHub as one would for a coding project, then make
it available via a preprint server, likely bioRxiv. Given
substantial changes to this initial version of the paper,
it may ultimately be appropriate to make it available as
a “perpetual review” [131] via another forum allowing
versioned updates of publications.

Ideally, we might also update this work in the future
with results from “standard” calculations on the bench-
mark systems discussed here, along with links to code to
allow reproduction of those calculations.


http://www.github.com/mobleylab/benchmarksets
http://www.github.com/mobleylab/benchmarksets

VIII. CONCLUSIONS AND OUTLOOK

Binding free energy calculations are a promising tool
for predicting and understanding molecular interactions
and appear to have enough accuracy to provide substan-
tial benefits in a pharmaceutical drug discovery context.
However, progress is needed to improve these tools so
that they can achieve their potential. To achieve steady
progress, and to avoid potentially damaging cycles of
enthusiasm and disillusionment, we need to understand
and be open and honest about key challenges. Commu-
nity adoption of well-chosen benchmark systems is vi-
tal for this, as it will allow researchers to rigorously test
and compare methods, arrive at a shared understanding
of problems, and measure progress on well-characterized
yet challenging systems. It is also worth emphasizing
the importance of sharing information about apparently
well thought-out and even promising methods that do
not work, rather than sharing only what does appear
to work. Identifying and addressing failure cases and
problems is critically important to advancing this tech-
nology, but failures can be harder to publish, and may
even go unpublished, even though they serve a unique
role in advancing the field. We therefore strongly en-
courage that such results be shared and welcomed by the
research community. Potentially, the GitHub repository
connected with this perpetual review paper could serve
as a place to deposit input files and summary results of
tests on these benchmark systems, with summary infor-
mation perhaps being included in this work itself or top-
ical sub-reviews within the same repository. Host-guest
input files are now available there.

Here, we have proposed several benchmark systems for
binding free energy calculations. These embody a sub-
set of the key challenges facing the field, and we plan to
expand the set as consensus emerges. Hopefully, these
systems will serve as challenging standard test cases for
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new methods, force fields, protocols, and workflows. Our
desire is that these benchmarks will advance the science
and technology of modeling and predicting molecular in-
teractions, and that other researchers in the field will
contribute to identifying new benchmark sets and up-
dating the information provided about these informative
systems.
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