# Lawrence Berkeley National Laboratory

**LBL Publications** 

# Title Nuclear Data Sheets for A=213

**Permalink** https://escholarship.org/uc/item/9p2742z9

Author Basunia, MS

Publication Date 2022-03-01

# DOI

10.1016/j.nds.2022.03.002

Peer reviewed





Available online at www.sciencedirect.com



Nuclear Data Sheets

Nuclear Data Sheets 181 (2022) 475-585

www.elsevier.com/locate/nds

# Nuclear Data Sheets for A=213\*

M. S. Basunia

Nuclear Science Division Lawrence Berkeley National Laboratory 1 Cyclotron Road Berkeley, California 94720, USA

(Received 27 July 2021; Revised 4 February 2022)

**Abstract:** Evaluated spectroscopic data and level schemes from radioactive decay and nuclear reaction studies are presented for <sup>213</sup>Hg, <sup>213</sup>Tl, <sup>213</sup>Pb, <sup>213</sup>Bi, <sup>213</sup>Po, <sup>213</sup>At, <sup>213</sup>Rn, <sup>213</sup>Fr, <sup>213</sup>Ra, <sup>213</sup>Ac, <sup>213</sup>At, <sup>213</sup>Rh, and <sup>213</sup>Pa. This evaluation for A=213 supersedes the earlier one by the same evaluator, M. S. Basunia (2007Ba19), published in Nuclear Data Sheets 108, 633 (2007).

One highlight of this evaluation is the following:

- In <sup>213</sup>Po, from <sup>208</sup>Pb(<sup>18</sup>O,X $\gamma$ ) study 2011As05 proposed revision of spin-parity assignments for 293 level: 7/2<sup>+</sup> instead of (11/2<sup>+</sup>); 440 level: 11/2<sup>+</sup> instead of (7/2<sup>+</sup>); 868 level: 9/2<sup>+</sup> instead of (13/2<sup>+</sup>). New experiments are needed.
- **Cutoff Date:** All data received prior to Jan 1, 2022, have been considered. During this evaluation, the NSR database (2014Pr09) was used extensively.
- **General Policies and Organization of Material:** See the January issue of the *Nuclear Data Sheets* or http://www.nndc.bnl.gov/nds/NDSPolicies.pdf.
- Acknowledgements: This evaluation benefits from earlier evaluations by Y. A. Akovali (1992Ak01), Y. A. Ellis (1979E108), C. Maples (1973Ma63), and the ENSDF evaluation of <sup>213</sup>Hg by B. Singh and M. Birch (Dated 15-May-2011) and <sup>213</sup>Tl by B. Singh (Dated 25-Sep-2012). The evaluator is thankful to the compilers of XUNDL datasets. Also the support of Dr. B. Pritychenko and Mrs. J. Totans (NNDC, BNL) during the evaluation process is deeply acknowledged. The evaluator is grateful to Dr. F.G. Kondev (ANL) for a critical review of the manuscript and useful comments/suggestions and to Dr. E. McCutchan (NNDC, BNL) for the editorial comments and preparation of this manuscript for publication.

<sup>\*</sup> This work was supported by Office of Basic Energy Sciences, US Department of Energy, under contract DE-AC02-05CH11231

#### NUCLEAR DATA SHEETS

#### Index for A=213

| Nuclide                           | Data Type                                                                                                                       | Page       |
|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------|
| $^{213}_{00}$ Hg <sub>122</sub> . | Skeleton Scheme for A=213                                                                                                       | 478<br>480 |
| 80 0133                           | Adopted Levels                                                                                                                  | 480        |
| $^{213}_{81}\text{Tl}_{132}$      |                                                                                                                                 | 481        |
| 01 102                            | Adopted Levels, Gammas ${}^{9}$ Be( ${}^{238}$ U,X $\gamma$ )                                                                   | 481<br>483 |
| $^{213}_{22}Pb_{121}$ .           |                                                                                                                                 | 484        |
| 82 131                            | Adopted Levels, Gammas                                                                                                          | 484        |
|                                   | $^{213}$ Tl $\beta^{-}$ decay (23.8 s)                                                                                          | 486        |
|                                   | <sup>217</sup> Po $\alpha$ decay                                                                                                | 487        |
|                                   | ${}^{9}\text{Be}({}^{238}\text{U},\text{X}\gamma)$                                                                              | 488        |
| $^{213}_{83}\text{Bi}_{130}$ .    |                                                                                                                                 | 489        |
| 00 100                            | Adopted Levels, Gammas                                                                                                          | 489        |
|                                   | <sup>213</sup> Pb $\beta^-$ decay (10.2 min) $\ldots \ldots$                                                                    | 493        |
|                                   | <sup>21/</sup> At $\alpha$ decay                                                                                                | 497        |
| 212-                              | $^{9}\text{Be}(^{238}\text{U},\text{X})$                                                                                        | 500        |
| $^{213}_{84}Po_{129}$ .           |                                                                                                                                 | 501        |
|                                   | Adopted Levels, Gammas                                                                                                          | 501        |
|                                   | $^{213}\text{Bi }\beta$ decay (45.59 min)                                                                                       | 505        |
|                                   | 208  pt (18  ps  x)                                                                                                             | 510        |
| 213                               | $200 \operatorname{Pb}(100, X\gamma) \ldots \ldots \ldots \ldots \ldots$                                                        |            |
| $_{85}^{-128}$ At $_{128}$ .      | Adapted Levels Commos                                                                                                           |            |
|                                   | Adopted Levels, Gammas $217$ Er of doory                                                                                        | 516        |
|                                   | 208  pb(71; 2  pc) 209  pc(18  cm 14  cm)                                                                                       | 517        |
|                                   | $209 \text{ Bi}(7 \text{ Li}, 2n\gamma), 209 \text{ Bi}(8 \text{ He} 4n\gamma)$                                                 | 510        |
| <sup>213</sup> Rn                 | $\mathbf{D}(\mathbf{L},\mathbf{p}\mathbf{L},\mathbf{p}\mathbf{r}), \mathbf{D}(\mathbf{H}\mathbf{c},\mathbf{H}\mathbf{r}) \dots$ | 521        |
| 86 × 127 ·                        | Adopted Levels, Gammas                                                                                                          | 521        |

| Nuclide                           | Data Type                                                                                                                                                  | Page |
|-----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| 212-                              | ${}^{213}\text{Fr }\varepsilon \text{ decay } (34.17 \text{ s}) \dots$ ${}^{217}\text{Ra }\alpha \text{ decay } \dots$ $(\text{HI},\text{xn}\gamma) \dots$ |      |
| $^{213}_{87}$ Fr <sub>126</sub>   |                                                                                                                                                            | 539  |
|                                   | Adopted Levels, Gammas                                                                                                                                     | 539  |
|                                   | $^{213}$ Ra $\varepsilon$ decay (2.73 min)                                                                                                                 | 544  |
|                                   | $^{217}$ Ac $\alpha$ decay (69 ns) $^{217}$ Ac $\alpha$ decay $E = 1.15$ MeV                                                                               |      |
|                                   | $^{217}$ Ac $\alpha$ decay: E=1.15 MeV .                                                                                                                   |      |
|                                   | At $\alpha$ decay (8 lls) $\ldots$ $\ldots$ $^{217}$ Ac $\alpha$ decay (740 ns)                                                                            | 548  |
|                                   | (HI $xn_2$ )                                                                                                                                               | 550  |
| <sup>213</sup> Ra                 | (111, x11)                                                                                                                                                 |      |
| 88144125                          | Adopted Levels, Gammas                                                                                                                                     |      |
|                                   | $^{213}$ Ra IT decay (2.18 ms)                                                                                                                             |      |
|                                   | $^{217}$ Th $\alpha$ decay $\ldots$ $\ldots$ $\ldots$                                                                                                      | 563  |
|                                   | $^{204}$ Pb( $^{13}$ C,4n $\gamma$ )                                                                                                                       | 564  |
| $^{213}_{89}Ac_{124}$ .           |                                                                                                                                                            | 567  |
| 0, 121                            | Adopted Levels, Gammas                                                                                                                                     | 567  |
|                                   | $^{217}$ Pa $\alpha$ decay (3.8 ms)                                                                                                                        | 568  |
| 212                               | <sup>217</sup> Pa $\alpha$ decay (1.08 ms)                                                                                                                 | 570  |
| $^{215}_{90}$ Th <sub>123</sub> . |                                                                                                                                                            | 572  |
|                                   | Adopted Levels, Gammas                                                                                                                                     | 572  |
|                                   | $^{217}$ U $\alpha$ decay                                                                                                                                  | 573  |
|                                   | $^{104}$ Dy( $^{34}$ Cr,5n $\gamma$ )                                                                                                                      | 574  |
| 213-                              | $^{1}$ <sup>1</sup> <sup>1</sup> <sup>0</sup> Hf( $^{40}$ Ar, $3n\gamma$ )                                                                                 |      |
| ${}^{213}_{91}Pa_{122}$ .         |                                                                                                                                                            |      |
| D.C                               | Adopted Levels                                                                                                                                             | 576  |
| References                        |                                                                                                                                                            | 577  |





| Ground-State and Isomeric-Level Properties |        |              |                  |                                                           |  |  |  |  |
|--------------------------------------------|--------|--------------|------------------|-----------------------------------------------------------|--|--|--|--|
| Nuclide                                    | Level  | Jπ           | T <sub>1/2</sub> | Decay Mode                                                |  |  |  |  |
| <sup>213</sup> Hg                          | 0.0    |              |                  | $\frac{1}{\%\beta^{-}=100; \%\beta^{-}n=?}$               |  |  |  |  |
| <sup>213</sup> Tl                          | 0.0    | $(1/2^+)$    | 23.8 s 44        | $\%\beta^{-}=100; \%\beta^{-}n=7.6 34$                    |  |  |  |  |
| <sup>213</sup> Tl                          | 380+x  |              | 4.1 µs 5         |                                                           |  |  |  |  |
| <sup>213</sup> Tl                          | 698+y  |              | 0.6 μs 3         |                                                           |  |  |  |  |
| <sup>213</sup> Pb                          | 0.0    | $(9/2^+)$    | 10.2 min 3       | $\%\beta^{-}=100$                                         |  |  |  |  |
| <sup>213</sup> Pb                          | 1331.0 | $(21/2^+)$   | 0.26 ms 2        |                                                           |  |  |  |  |
| <sup>213</sup> Bi                          | 0.0    | 9/2-         | 45.59 min 6      | $\% \alpha = 2.140 \ 10; \ \% \beta^{-} = 97.860 \ 10$    |  |  |  |  |
| <sup>213</sup> Bi                          | 1353   |              |                  |                                                           |  |  |  |  |
| <sup>213</sup> Po                          | 0.0    | 9/2+         | 3.706 µs 1       | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>213</sup> At                          | 0.0    | 9/2-         | 125 ns 6         | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>213</sup> Rn                          | 0.0    | $(9/2^+)$    | 19.4 ms 2        | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>213</sup> Fr                          | 0.0    | 9/2-         | 34.17 s 6        | $\% \alpha = 99.445; \% \epsilon + \% \beta^+ = 0.565$    |  |  |  |  |
| <sup>213</sup> Ra                          | 0.0    | $1/2^{-}$    | 2.73 min 5       | $\% \alpha = 86\ 2;\ \% \varepsilon + \% \beta^+ = 14\ 2$ |  |  |  |  |
| <sup>213</sup> Ra                          | 1770   | $(17/2^{-})$ | 2.18 ms 5        | %α=0.6 4; %IT=99.4 4                                      |  |  |  |  |
| <sup>213</sup> Ac                          | 0.0    | 9/2-         | 738 ms 16        | $\% \alpha \approx 100$                                   |  |  |  |  |
| <sup>213</sup> Th                          | 0.0    | 5/2-         | 146 ms +22-19    | $\% \alpha \approx 100$                                   |  |  |  |  |
| <sup>213</sup> Th                          | 1180   | $(13/2^+)$   | 8.3 µs 8         |                                                           |  |  |  |  |
| <sup>213</sup> Pa                          | 0.0    | 9/2-         | 5.3 ms +40-16    | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>217</sup> Po                          | 0.0    | (9/2+)       | 1.53 s 5         | %α=97.5 25                                                |  |  |  |  |
| <sup>217</sup> At                          | 0.0    | 9/2-         | 32.6 ms 3        | %α=99.993 <i>3</i>                                        |  |  |  |  |
| <sup>217</sup> Rn                          | 0.0    | 9/2+         | 0.59 ms 6        | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>217</sup> Fr                          | 0.0    | 9/2-         | 22 µs 5          | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>217</sup> Ra                          | 0.0    | (9/2+)       | 1.6 µs 2         | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>217</sup> Ac                          | 0.0    | 9/2-         | 69 ns 4          | $\% \alpha = 100$                                         |  |  |  |  |
| <sup>217</sup> Ac                          | 1149.1 | $15/2^{-}$   | <10 ns           | $\% \alpha < 0.31$                                        |  |  |  |  |
| <sup>217</sup> Ac                          | 1498.1 | $19/2^{-}$   | 8 ns 2           | $\% \alpha < 0.59$                                        |  |  |  |  |
| <sup>217</sup> Ac                          | 2012.2 | $(29/2)^+$   | 740 ns 40        | %α=4.51 <i>18</i>                                         |  |  |  |  |
| <sup>217</sup> Th                          | 0.0    | $(9/2^+)$    | 0.252 ms 4       | %α=100                                                    |  |  |  |  |
| <sup>217</sup> Pa                          | 0.0    | 9/2-         | 3.8 ms 2         | %α=100                                                    |  |  |  |  |
| <sup>217</sup> Pa                          | 1860   |              | 1.08 ms 3        | %α=73 4                                                   |  |  |  |  |
| <sup>217</sup> U                           | 0.0    |              | 16 ms +21-6      | %α=100                                                    |  |  |  |  |

#### Skeleton Scheme for A=213 (continued)

#### Adopted Levels

 $Q(\beta^{-})=6420 \text{ syst}; S(n)=2890 \text{ syst}; S(p)=10440 \text{ calc}; Q(\alpha)=1470 \text{ calc}$  2021Wa16,2019Mo01

 $\Delta Q(\beta^{-})=300$  (syst),  $\Delta S(n)=420$  (syst) (2021Wa16).

S(p) and Q( $\alpha$ ) from 2019Mo01.

 $Q(\beta^{-}n)=1680\ 360,\ S(2n)=7550\ 360\ (syst,\ 2021Wa16),\ S(2p)=19970\ (2019Mo01,\ calculated).$ 

2010Al24: <sup>213</sup>Hg nuclide identified in <sup>9</sup>Be(<sup>238</sup>U,X) reaction with a beam energy of 1 GeV/nucleon produced by the SIS synchrotron at GSI facility. Target=2500 mg/cm<sup>2</sup>. The fragment residues were analyzed with the high resolving power magnetic spectrometer Fragment separator (FRS). The identification of nuclei was made on the basis of magnetic rigidity, velocity, time-of-flight, energy loss and atomic number of the fragments using two plastic scintillators and two multisampling ionization chambers. The FRS magnet was tuned to center on <sup>210</sup>Au, <sup>216</sup>Pb, <sup>219</sup>Pb, <sup>227</sup>At and <sup>229</sup>At nuclei along the central trajectory of FRS.

Unambiguous identification of nuclides required the separation of different charge states of the nuclei passing through the FRS. Through the measurement of difference in magnetic rigidity in the two sections of the FRS and the difference in energy loss in the two ionization chambers, the charge state of the transmitted nuclei was determined, especially, that of the singly charged (hydrogen-like) nuclei which preserved their charge in the current experimental setup. Measured production cross sections with 10% statistical and 20% systematic uncertainties.

Criterion established in 2010Al24 for acceptance of identification of a new nuclide: 1. number of events should be compatible with the corresponding mass and atomic number located in the expected range of positions at both image planes of the FRS spectrometer; 2. number of events should be compatible with >95% probability that at least one of the counts does not correspond to a charge-state contaminant. Comparisons of measured  $\sigma$  with model predictions using the computer codes COFRA and EPAX.

#### <sup>213</sup>Hg Levels

E(level)

0

Comments

%β<sup>-</sup>=100; %β<sup>-</sup>n=?

The  $\beta^-$  and delayed neutron decay are the only decay modes expected.

Calculated  $\%\beta^{-}n=4$  (2019Mo01).

E(level): it is assumed that the observed fragments correspond to nuclei in their ground state.

From A/Z plot (figure 1 in 2010Al24),  $\approx$  35 events are assigned to <sup>213</sup>Hg.

 $J^{\pi}$ : 9/2<sup>+</sup> from systematics (2021Ko07), and 5/2<sup>+</sup> predicted in 2019Mo01 calculations.

 $T_{1/2}$ : Calculated value 10 s for  $\beta$  decay (2019Mo01), and systematic value of 15 s for  $\beta$  decay (2021Ko07).

Production  $\sigma$ =0.546 nb (from e-mail reply of H. Alvarez-Pol to B. Singh (Dated: Oct 29, 2010), which also stated that further analysis was in progress).

Production cross section measured in 2010Al24, values are given in figure 2, plot of  $\sigma$  versus mass number for Hg isotopes. Statistical uncertainty=10%, systematic uncertainty=20%.

#### Adopted Levels, Gammas

 $Q(\beta^{-})=4987\ 28;\ S(n)=4740\ syst;\ S(p)=8530\ syst;\ Q(\alpha)=1590\ syst$  2021Wa16

 $\Delta S(n)=200$  (syst),  $\Delta S(p)=300$  (syst),  $\Delta Q(\alpha)=400$  (syst) (2021Wa16).

S(p) and Q( $\alpha$ ) from 2019Mo01.

 $Q(\beta^{-}n)=1261\ 27,\ S(2n)=8280\ 50\ (2021Wa16),\ S(2p)=18760\ (2019Mo01,\ calculated).$ 

- 2010Ch19, 2012Ch19: <sup>213</sup>Tl isotope was produced in the fragmentation of <sup>238</sup>U beam at 670 MeV/nucleon with a 4 g/cm<sup>2</sup> <sup>9</sup>Be target followed by separation by Fragment Recoil Separator facility at GSI. The fragments were then injected into the cooler electron storage ring ESR. Measured mass and half-life by time-resolved Schottky Mass spectrometry technique.
- 2010Al24: <sup>213</sup>Tl nuclide identified in <sup>9</sup>Be(<sup>238</sup>U,X) reaction with a beam energy of 1 GeV/nucleon produced by the SIS synchrotron at GSI facility. Target=2500 mg/cm<sup>2</sup>. The fragment residues were analyzed with the high resolving power magnetic spectrometer Fragment separator (FRS). The identification of nuclei was made on the basis of magnetic rigidity, velocity, time-of-flight, energy loss and atomic number of the fragments using two plastic scintillators and two multisampling ionization chambers. The FRS magnet was tuned to center on <sup>210</sup>Au, <sup>216</sup>Pb, <sup>219</sup>Pb, <sup>227</sup>At and <sup>229</sup>At nuclei along the central trajectory of FRS.
- Unambiguous identification of nuclides required the separation of different charge states of the nuclei passing through the FRS. Through the measurement of difference in magnetic rigidity in the two sections of the FRS and the difference in energy loss in the two ionization chambers, the charge state of the transmitted nuclei was determined, especially, that of the singly charged (hydrogen-like) nuclei which preserved their charge in the current experimental setup. Measured production cross sections with 10% statistical and 20% systematic uncertainties.
- Criterion established in 2010Al24 for acceptance of identification of a new nuclide: 1. number of events should be compatible with the corresponding mass and atomic number located in the expected range of positions at both image planes of the FRS spectrometer; 2. number of events should be compatible with >95% probability that at least one of the counts does not correspond to a charge-state contaminant. Comparisons of measured  $\sigma$  with model predictions using the computer codes COFRA and EPAX.
- 2012Be28: Method of production at GSI facility same as in 2010Al24. In this work half-life of the isotope is measured from an implant of 1526 events using FRS-RISING setup at GSI.

#### <sup>213</sup>Tl Levels

Measured mass excess=1763 keV 61 (2010Ch19, 2012Ch19).

#### Cross Reference (XREF) Flags

#### $^{9}$ Be( $^{238}$ U,X $\gamma$ )

Α

| E(level)     | $J^{\pi}$ | T <sub>1/2</sub> | XREF   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------|-----------|------------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0            | (1/2+)    | 23.8 s 44        | A      | <ul> <li>%β<sup>-</sup>=100; %β<sup>-</sup>n=7.6 34 (2017Ca12,2016Ca25)</li> <li>J<sup>π</sup>: from shell-model calculations (2019Go10 – (<sup>238</sup>U,Xγ)). 1/2<sup>+</sup> from systematics (2021Ko07). Configuration: π (s<sub>1/2</sub><sup>-1</sup>).</li> <li>T<sub>1/2</sub>: From 2017Ca12: (ion)β correlated decay curve and analyzed by maximum-likelihood method, also 24 s 4 in 2016Ca25 – same research group. Others: 46 s +55-26 (2012Be28 – (implant)βγ correlations of 2768 implants) also in 2014Mo15, 101 s +484-46 (2010Ch19).</li> <li>%β<sup>-</sup>n: beta-delayed neutron branching ratio deduced from implant-β and implant-β-neutron correlations detected in forward and backward directions (2017Ca12,2016Ca25).</li> <li>Production cross section measured in 2010Al24, values are given in figure 2, plot of σ versus mass number for TI isotopes. Statistical uncertainty=10%, systematic uncertainty=20%. Production σ=9.74 nb (from e-mail reply of H. Alvarez-Pol to B. Singh (Dated: Oct 29, 2010), which also stated that further analysis was in progress. From A/Z plot (figure 1 in 2010Al24), a large number of events is assigned to <sup>213</sup>TI.</li> </ul> |
| 0+x?<br>0+y? |           |                  | A<br>A |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

# <sup>213</sup>Tl Levels (continued)

| E(level)                                   | T <sub>1/2</sub>     | XREF   | Comments                                                                                                                                                                                      |
|--------------------------------------------|----------------------|--------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 380+x?<br>698+y?                           | 4.1 μs 5<br>0.6 μs 3 | A<br>A | $T_{1/2}$ : from 380 $\gamma$ (t) (2019Go10). Uncertainty includes statistical and systematic. $T_{1/2}$ : from 698 $\gamma$ (t) (2019Go10). Uncertainty includes statistical and systematic. |
|                                            |                      |        | $\gamma$ <sup>(213</sup> Tl)                                                                                                                                                                  |
| $\underline{\mathrm{E}_i(\mathrm{level})}$ | Εγ                   | Ιγ     | $\underline{\mathrm{E}_{f}}$                                                                                                                                                                  |

 380+x?
 380 I
 100
 0+x?

 698+y?
 698 I
 100
 0+y?

#### <sup>9</sup>Be(<sup>238</sup>U,Xγ) 2019Go10

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster), Feb 01, 2020.

2019Go10: projectile fragmentation of 1 GeV <sup>238</sup>U beam from the UNILAC-SIS18 accelerator facilities at GSI with an intensity of  $1.5 \times 10^9$  ions/spill. Target was 2.5 mg/cm<sup>2</sup> thick <sup>9</sup>Be, followed by a 223 mg/cm<sup>2</sup> Nb stripper foil. The reaction products were separated and identified in the magnetic spectrometer Fragment Separator (FRS), based on B $\rho$ - $\Delta$ E-B $\rho$  scheme. Implanted in a composite DSSSD detector system consists of three layers. The DSSSD detectors were surrounded by the RISING  $\gamma$ -ray spectrometer consists of 105 HPGe crystals arranged in clusters of seven elements. Measured E $\gamma$ , I $\gamma$ , delayed  $\gamma$  in coincidence with implanted recoils,  $\gamma\gamma$ -coin. Deduced isomeric activity and measured half-life. Shell-model calculations.

Experimental level structure of <sup>213</sup>Tl seems different from that of <sup>209</sup>Tl and <sup>211</sup>Tl, as described by 2019Go10, making it difficult to assign the two observed  $\gamma$  rays of 380 and 698 keV, although, shell-model calculations by 2019Go10 for all the three nuclei give similar level pattern.

#### <sup>213</sup>Tl Levels

2019Go10 observed two transitions, which are not in coincidence with each other and have half-lives which are incompatible within errors. This suggests two isomeric levels, however their placement in the level scheme could not be determined.

| E(level)             | $J^{\pi}$ | T <sub>1/2</sub>     | Comments                                                                                                                                                                                      |
|----------------------|-----------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $0 \\ 0+x? \\ 0+x^2$ | (1/2+)    |                      | J <sup><math>\pi</math></sup> : From shell-model calculations (2019Go10). Configuration: $\pi$ (s <sup>-1</sup> <sub>1/2</sub> ).                                                             |
| 380+x?<br>698+y?     |           | 4.1 μs 5<br>0.6 μs 3 | $T_{1/2}$ : from 380 $\gamma$ (t) (2019Go10). Uncertainty includes statistical and systematic. $T_{1/2}$ : from 698 $\gamma$ (t) (2019Go10). Uncertainty includes statistical and systematic. |

#### $\gamma(^{213}\text{Tl})$

| Eγ                 | $E_i$ (level) | $E_f$             | $I_{(\gamma+ce)}$         | Comments                                                                   |
|--------------------|---------------|-------------------|---------------------------|----------------------------------------------------------------------------|
| 380 <sup>†</sup> 1 | 380+x?        | $\overline{0+x?}$ | 91 <sup>‡</sup> <i>11</i> | 2019Go10 reported I( $\gamma$ +ce)=26 5 per 100 ions of <sup>213</sup> Tl. |
| 698 <sup>†</sup> 1 | 698+y?        | 0+y?              | 17 <sup>‡</sup> 5         | 2019Go10 reported I( $\gamma$ +ce)=7 3 per 100 ions of <sup>213</sup> Tl.  |

<sup>†</sup> 698 $\gamma$  and 380 $\gamma$  were not in coincidence.

<sup>‡</sup> Corrected measured peak area for efficiency and electron conversion (assuming E2).

#### **Adopted Levels, Gammas**

 $Q(\beta^{-})=2028 \ 8; \ S(n)=3726 \ 7; \ S(p)=8.94\times10^{3} \ syst; \ Q(\alpha)=2.98\times10^{3} \ syst$  2021Wa16

 $\Delta S(p)=200$  (syst),  $\Delta Q(\alpha)=150$  (syst) 2021Wa16.

Assignment: descendant of <sup>221</sup>Rn, parent of <sup>213</sup>Bi (1964Bu05).

2020De36: <sup>238</sup>U(<sup>48</sup>Ca,X), E=233.3 MeV; measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative}}$ =139 nb/sr 4 for <sup>213</sup>Pb.

Calculation of isotope shifts and nuclear change radii:

1990Du03: Calculated isotope shifts and nuclear charge radii for lead isotopes using an enlarged superfluid model.

1987Sa51: Calculated isotope shifts of lead nuclei by including perturbations due to giant monopole and giant quadrupole

resonances.

1987Za02: Calculated nuclear charge radius using the HFB method. The calculations were done including a separable four-body interaction and also a three-body contact force in the procedure. Their calculations, which were carried out also for other lead nuclei as well as for mercury isotopes in the region and for tin isotopes, by using an effective interaction, reproduced the odd-even staggering. These calculations were compared with experiments.

1984He17: Calculated lead radii relative to <sup>208</sup>Pb radius.

#### <sup>213</sup>Pb Levels

#### Cross Reference (XREF) Flags

| Α | $^{213}$ Tl $\beta^{-}$ decay (23.8 s) |
|---|----------------------------------------|
| В | <sup>217</sup> Po $\alpha$ decay       |
|   | 0                                      |

| C | $9 \mathbf{p}_{a}(238)$ | U Val               |
|---|-------------------------|---------------------|
| C | DC                      | $(0,\Lambda\gamma)$ |

| E(level) <sup>†</sup> | $J^{\pi}$             | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                         |
|-----------------------|-----------------------|------------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | (9/2+)                | 10.2 min 3       | ABC  | %β <sup>-</sup> =100                                                                                                                                                                                                                                             |
|                       |                       |                  |      | $T_{1/2}$ : From 1964Bu05: measured from growth of <sup>213</sup> Bi.                                                                                                                                                                                            |
|                       |                       |                  |      | J <sup><math>\pi</math></sup> : favored $\alpha$ decay (HF=1.4) suggest a g <sub>9/2</sub> to g <sub>9/2</sub> transition between <sup>217</sup> Po and <sup>213</sup> Pb ground states (2004Li28). Also from analogy to <sup>215</sup> Po and <sup>217</sup> Rn |
|                       |                       |                  |      | isotones. Suggested configuration: $\nu$ (g <sup>+1</sup> <sub>9/2</sub> ).                                                                                                                                                                                      |
| 675                   | $(5/2^+, 7/2^+)$      |                  | Α    | $J^{\pi}$ : From 2014Mo02 ( <sup>213</sup> Tl $\beta$ - decay (23.8 s)) based on shell-model predictions.                                                                                                                                                        |
| 772.0 10              | $(13/2^+)^{\ddagger}$ |                  | С    |                                                                                                                                                                                                                                                                  |
| 1083.2 14             | $(15/2^+)^{\#}$       |                  | С    |                                                                                                                                                                                                                                                                  |
| 1141.0 15             | $(17/2^+)^\ddagger$   |                  | С    |                                                                                                                                                                                                                                                                  |
| 1259.8 14             | $(17/2^+)^{\#}$       |                  | С    |                                                                                                                                                                                                                                                                  |
| 1331.0 18             | $(21/2^+)^\ddagger$   | 0.26 ms 2        | С    | Suggested configuration: $v$ ( $g_{9/2}^{+3}$ ).<br>T <sub>1/2</sub> : From sum of (176,190,311,369,488 and 772) $\gamma$ (t) ( <sup>238</sup> U,X).                                                                                                             |

<sup>†</sup> From  $E\gamma$ .

<sup>‡</sup> Based on 190-369-772  $\gamma$  cascade from (21/2<sup>+</sup>) seniority isomer to (17/2<sup>+</sup>)  $\rightarrow$  (13/2<sup>+</sup>)  $\rightarrow$  (9/2<sup>+</sup>) g.s. in (<sup>238</sup>U,X $\gamma$ ), supported by shell model calculations.

<sup>#</sup> Based on shell model calculations ( $^{238}$ U,X $\gamma$ ).

|                                       | Adopted Levels, Gammas (Continued)           |                                    |                        |                                                                               |       |               |                                                                             |
|---------------------------------------|----------------------------------------------|------------------------------------|------------------------|-------------------------------------------------------------------------------|-------|---------------|-----------------------------------------------------------------------------|
| $\underline{\gamma(^{213}\text{Pb})}$ |                                              |                                    |                        |                                                                               |       |               |                                                                             |
| E <sub>i</sub> (level)                | $\mathbf{J}_i^{\pi}$                         | $E_{\gamma}^{\dagger}$             | $I_{\gamma}^{\dagger}$ | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$                                      | Mult. | $\alpha^{\#}$ | Comments                                                                    |
| 675<br>772.0                          | $(5/2^+, 7/2^+) (13/2^+)$                    | 675<br>772 <i>1</i>                | 100<br>100             | $\begin{array}{c c} \hline 0.0 & (9/2^+) \\ \hline 0.0 & (9/2^+) \end{array}$ |       |               | $E_{\gamma}, I_{\gamma}$ : From <sup>213</sup> Tl $\beta$ - decay (23.8 s). |
| 1083.2<br>1141.0                      | (15/2 <sup>+</sup> )<br>(17/2 <sup>+</sup> ) | 311 <sup>‡</sup> 1<br>369 1        | 100<br>100             | 772.0 (13/2 <sup>+</sup> )<br>772.0 (13/2 <sup>+</sup> )                      |       |               |                                                                             |
| 1259.8                                | (17/2 <sup>+</sup> )                         | 176 <sup>‡</sup> 2<br>488 <i>1</i> | 98<br>1009             | $\begin{array}{c} 1083.2 & (15/2^+) \\ 772.0 & (13/2^+) \end{array}$          |       |               |                                                                             |
| 1331.0                                | $(21/2^+)$                                   | 190 <i>1</i>                       | 100                    | 1141.0 (17/2+)                                                                | [E2]  | 0.512 12      | $B(E2)(W.u.) = 7.7 \times 10^{-5} + 7 - 6$                                  |

<sup>†</sup> From (<sup>238</sup>U,X $\gamma$ ).

<sup>‡</sup> The ordering of 176 $\gamma$  and 311 $\gamma$  is supported by the proposed level scheme (<sup>238</sup>U,X $\gamma$ ).

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>213</sup><sub>82</sub>Pb<sub>131</sub>-3

#### <sup>213</sup>Tl $\beta^-$ decay (23.8 s) 2014Mo02

Parent: <sup>213</sup>Tl: E=0.0;  $J^{\pi} = (1/2^+)$ ;  $T_{1/2} = 23.8 \text{ s} 44$ ;  $Q(\beta^-) = 4987 28$ ;  $\%\beta^-$  decay=100

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster), March 5, 2014. Proposed decay scheme is tentative.

<sup>213</sup>Tl was produced by projectile fragmentation using  $E(^{238}U)=1$  GeV/nucleon beam at GSI with an intensity of  $1.5\times10^9$  ions/spill (a repetition of 3 s and an extraction time of 1 s). The reaction products were separated and identified in the magnetic spectrometer Fragment Separator (FRS). Separation of <sup>213</sup>Tl nuclei is based on B $\rho$ - $\Delta$ E-B $\rho$  scheme. Implanted in a composite DSSSD detector system comprising of 3 layers. The DSSSD detectors were surrounded by the RISING  $\gamma$ -ray spectrometer comprised of 105 HPGe crystals arranged clusters of seven elements. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin,  $\beta$ - $\gamma$ -t coin in coincidence with implanted recoils.

#### <sup>213</sup>Pb Levels

| E(level) | $J^{\pi \dagger}$                                         | T <sub>1/2</sub>  | Comme                            | ents |
|----------|-----------------------------------------------------------|-------------------|----------------------------------|------|
| 0<br>675 | 9/2 <sup>+</sup><br>(5/2 <sup>+</sup> ,7/2 <sup>+</sup> ) | 10.2 min <i>3</i> | $T_{1/2}$ : From Adopted Levels. |      |

<sup>†</sup> From 2014Mo02 based on shell-model predictions.

$$\gamma$$
<sup>(213</sup>Pb)

| $E_{\gamma}^{\dagger}$ | Iγ     | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ |
|------------------------|--------|---------------|----------------------|------------------|------------------------|
| 675                    | 100 29 | 675           | $(5/2^+, 7/2^+)$     | 0                | 9/2+                   |

<sup>†</sup> No numerical datum of the resolution was listed in 2014Mo02.

#### <sup>213</sup>Tl $\beta^-$ decay (23.8 s) 2014Mo02

#### Decay Scheme

Intensities: Relative  $I_{\gamma}$ 



 ${}^{213}_{82}\text{Pb}_{131}$ -4

#### <sup>217</sup>**Po** $\alpha$ decay 2004Li28,1997Li23,1977Vy02

Parent: <sup>217</sup>Po: E=0.0;  $J^{\pi}=(9/2^+)$ ;  $T_{1/2}=1.53$  s 5;  $Q(\alpha)=6662.1$  24; % $\alpha$  decay=97.5 25

 $^{217}$ Po-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From 2018Ko01 (A=217 evaluation).

<sup>217</sup>Po-Q(*α*): From 2021Wa16.

<sup>217</sup>Po- $\%\alpha$  decay: Based on  $\%\alpha > 95$  (2018Ko01 – A=217 evaluation) and using uniform probability distribution.

2004Li28: Parent: <sup>221</sup>Rn; studied <sup>217</sup>Po level structure and g.s. of <sup>213</sup>Pb through  $\alpha$  decay; measured T<sub>1/2</sub> of <sup>217</sup>Po,  $\alpha$ - $\gamma$  coin. 1997Li23: Parent: <sup>221</sup>Rn; studied <sup>217</sup>Po level structure and g.s. of <sup>213</sup>Pb through  $\alpha$  decay,  $\alpha$ - $\gamma$  coin. 1977Vy02: Parent: <sup>221</sup>Rn; studied <sup>217</sup>Po, <sup>213</sup>Pb, and <sup>213</sup>Po level structure, E $\alpha$ , E $\gamma$ , I $\gamma$ . <sup>213</sup>Pb through  $\alpha$  decay.

| <sup>213</sup> Pb | Levels |
|-------------------|--------|
|-------------------|--------|

| $\frac{\mathrm{E(level)}}{0.0}$ | $\frac{J^{\pi}}{(9/2^+)}$ | $\frac{T_{1/2}}{10.2 \min 3}$ | J <sup>π</sup> ,1 | $\frac{Comments}{J^{\pi}, T_{1/2}: \text{ From Adopted Levels.}}$                                                                                                                                                                                                                                                                                                                         |  |  |  |  |
|---------------------------------|---------------------------|-------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Eα                              | E(level)                  | Ια <sup>‡</sup> Ι             | ∃HF               | $\alpha$ radiations<br>Comments                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |
| 6539 4                          | 0.0                       | 100 1                         | .39 6             | Eα: Weighted average of 6537 keV 4 (1977Vy02 – Eα=6539 4) is decreased by 2 keV, as recommended by 1991Ry01, because of a change in calibration energy), 6543 keV 4 (2003Ku25), and 6540 keV 20 (1956Mo15), 6537 keV 4 (1997Li23). Uncertainty is the lowest input value.<br>Iα: No other α groups were observed; if they exist, $I\alpha ≤ 5\%$ of the $I\alpha(6537\alpha)$ (1977Vy02). |  |  |  |  |

<sup>†</sup> Using  $r_0(^{213}Pb)=1.5395 4$ ; average of  $r_0(^{212}Pb)=1.5412 3$  and  $r_0(^{214}Pb)=1.5379 2$  (2020Si16).

<sup>‡</sup> For absolute intensity per 100 decays, multiply by 0.975 25.

#### <sup>9</sup>Be(<sup>238</sup>U,Xγ) 2021Va03

Produced from <sup>238</sup>U fragmentation bombarding <sup>9</sup>Be target, E=1 GeV/nucleon; fragments were separated according to their magnetic rigidity (B $\rho$ ) with the double-stage magnetic spectrometer, implanted in a double-sided silicon-strip detector (DSSSD). The RISING  $\gamma$  spectrometer consisted of 105 germanium crystals arranged in 15 clusters surrounded the implantation DSSSD. Measured decay products, E $\gamma$ , I $\gamma$ ; deduced half-life, isomer decays with asymmetric E2 transition probabilities.

#### <sup>213</sup>Pb Levels

| E(level) <sup>†</sup> | $J^{\pi\ddagger}$ | T <sub>1/2</sub> | Comments                                                                                                                                                |
|-----------------------|-------------------|------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $(9/2^+)$         | 10.2 min 3       | $T_{1/2}$ , $J^{\pi}$ : From Adopted Levels.                                                                                                            |
| 772.0 10              | $(13/2^+)^{\#}$   |                  |                                                                                                                                                         |
| 1083.2 14             | $(15/2^+)$        |                  |                                                                                                                                                         |
| 1141.0 <i>15</i>      | $(17/2^+)^{\#}$   |                  |                                                                                                                                                         |
| 1259.8 <i>14</i>      | $(17/2^+)$        |                  |                                                                                                                                                         |
| 1331.0 <i>18</i>      | $(21/2^+)^{\#}$   | 0.26 µs 2        | Suggested configuration: $\nu$ (g <sup>+3</sup> <sub>9/2</sub> ).<br>T <sub>1/2</sub> : From sum (176,190,311,369,488 and 772) $\gamma$ (t) (2021Va03). |

<sup>†</sup> From  $E\gamma$ .

<sup>‡</sup> Tentative spin-parity assignment from 2021Va03, based on the systematics and shell model calculations.

<sup>#</sup> Based on the  $\gamma$  cascade from the (21/2<sup>+</sup>) seniority isomer, configuration:  $\nu$  ( $g_{9/2}^3$ ) (2021Va03).

#### $\gamma(^{213}\text{Pb})$

| $E_{\gamma}^{\dagger}$ | Ι <sub>γ</sub> & | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ $J_f^{\pi}$          | Mult. | $\alpha^{a}$ | $I_{(\gamma+ce)}^{(a)}$ | Comments                                          |
|------------------------|------------------|---------------|----------------------|----------------------------|-------|--------------|-------------------------|---------------------------------------------------|
| (71)                   |                  | 1331.0        | $(21/2^+)$           | 1259.8 (17/2+)             |       |              |                         |                                                   |
| 176 <sup>#</sup> 2     | 76               | 1259.8        | $(17/2^+)$           | 1083.2 (15/2+)             | [M1]  | 1.87 7       | 19 <i>16</i>            |                                                   |
| 190 <sup>‡</sup> 1     | 15 10            | 1331.0        | $(21/2^+)$           | 1141.0 (17/2+)             | [E2]  | 0.512 12     | 22 15                   |                                                   |
| 311 <sup>#</sup> 1     | 17 7             | 1083.2        | $(15/2^+)$           | 772.0 (13/2+)              | [M1]  | 0.387 7      | 23 10                   |                                                   |
| 369 <sup>‡</sup> 1     | 29 9             | 1141.0        | $(17/2^+)$           | 772.0 (13/2+)              | [E2]  | 0.0640 11    | 30 9                    |                                                   |
| 488 1                  | 77 8             | 1259.8        | $(17/2^+)$           | 772.0 (13/2 <sup>+</sup> ) | [E2]  | 0.0311       | 79 8                    | $E_{\gamma}$ : In coincidence with 772 $\gamma$ . |
| 772 <sup>‡</sup> 1     | 100 10           | 772.0         | $(13/2^+)$           | $0.0 (9/2^+)$              | [E2]  | 0.01119      | 100 10                  |                                                   |

<sup>†</sup> Uncertainty from statements in the text.

<sup>‡</sup> In mutual coincidence.

<sup>#</sup> The ordering of 176 $\gamma$  and 311 $\gamma$  is supported by the proposed level scheme.

<sup>@</sup> From 2021Va03.

& Deduced by the evaluator, rounded value, using I( $\gamma$ +ce) and  $\alpha$  for assumed  $\gamma$  multipolarity.

<sup>*a*</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

#### **Adopted Levels, Gammas**

 $Q(\beta^{-})=1422 6$ ; S(n)=5185 5; S(p)=4972 5;  $Q(\alpha)=5988 3$ 2021Wa16

Other studies: 1984Es01: <sup>208</sup>Pb(<sup>18</sup>O,X), E≈80-180 MeV; measured residuals absolute production  $\sigma$ (E).

2020De36: <sup>238</sup>U(<sup>48</sup>Ca,X), E=233.3 MeV; measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative}}$ =2031 nb/sr 8 for

<sup>213</sup>Bi production.

<sup>213</sup>Bi Levels

#### Cross Reference (XREF) Flags

- <sup>213</sup>Pb  $\beta^{-}$  decay (10.2 min) A
- $^{217}$ At  $\alpha$  decay  $^{9}$ Be( $^{238}$ U,X) В
- С

| $J^{\pi}$                                                            | T <sub>1/2</sub>                                                    | XREF                                                                                              | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|----------------------------------------------------------------------|---------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 9/2-                                                                 | 45.59 min 6                                                         | ABC                                                                                               | %α=2.140 10; %β <sup>-</sup> =97.860 10<br>μ=+3.699 7<br>Q=-0.83 5<br>Isotope shift: δ <r<sup>2&gt;(<sup>213</sup>Bi, <sup>209</sup>Bi)=0.422 fm<sup>2</sup> 29 (2018Ba03). Other: 0.416<br/>fm<sup>2</sup> 1 (2013An02).<br/>J<sup>π</sup>: Based on favored α decay of <sup>217</sup>At(J<sup>π</sup>)=9/2<sup>-</sup> → to <sup>213</sup>Bi g.s<br/>J<sup>π</sup>(<sup>217</sup>At)=9/2<sup>-</sup> based on <sup>221</sup>Fr(J<sup>π</sup>)=5/2<sup>-</sup> α decay → 218 level (J<sup>π</sup>)=5/2<sup>-</sup><br/>and → E2 γ to g.s. of <sup>217</sup>At (1972Dz14, 1977Vy02). Also supported by the<br/>HFS and μ measurements (2019Ba22).<br/>T<sub>1/2</sub>: Weighted average of 45.59 min 6 (1973Po16), 47 min 1 (1950Ha52), 46<br/>min 1 (1964Gr11), 45.636 min 220 and 45.598 min 91 from Cherenkov<br/>counting and γ(t), respectively (2021Ta01), 45.62 min 6 (2013Su13,<br/>2013Ma13 – from beta decay curve). Others: 46 min (1947En03).<br/>%α=2.140 10 from 2013Ma13 and %β<sup>-</sup> = 100 – %α. Others: %α=2.09 3<br/>(1998Ar03), %α=2.20 3 (1997Ch53), %α=2.16 11 (1964Gr11), %α=2.0<br/>(1950Ha52), %α=2 (1947En03), and %α=2.022 26 (1986He06 based on<br/>465γ of <sup>209</sup>TI). Weighted average of all values, with uncertainty, excluding<br/>the 1986He06 value yields %α=2.140 14.<br/>μ: From 2019StZV (based on +3.716 7 in 1997Ki15, 2000Pe30, 2000Bi23<br/>(laser spectroscopy)). Others: +3.89 9 (1992Li25 – from γ(θ,t)), the value<br/>3.672 7 in 2018Ba03 appears to be quoted from 1992Li25 as of Fig. 7,<br/>however the reason of the difference value -0.516 15 <sup>209</sup>Bi). Others: -0.60<br/>5 (1997Ki15, 2000Pe30 – reference value -0.370 26 (<sup>209</sup>Bi))0.68 5<br/>(2018Ba03 – not clear if it is their measured value or not).<br/>Configuration: π (h<sup>+1</sup><sub>-</sub>).</r<sup> |
| 7/2-                                                                 |                                                                     | AB                                                                                                | J <sup>π</sup> : 257.9γ M1+E2 to 9/2 <sup>-</sup> state. Unfavored α decay (HF=394) from <sup>217</sup> At g.s. (J <sup>π</sup> =9/2 <sup>-</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (5/2,7/2,9/2) <sup>-</sup><br>(5/2 <sup>-</sup> ,13/2 <sup>-</sup> ) |                                                                     | AB<br>B<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A<br>A                                         | J <sup><math>\pi</math></sup> : 593.1 $\gamma$ to 9/2 <sup>-</sup> state, 335.3 $\gamma$ to 7/2 <sup>-</sup> state.<br>J <sup><math>\pi</math></sup> : 758.9 $\gamma$ to 9/2 <sup>-</sup> state.<br>E(level): From 6037 $\alpha$ feeding from <sup>217</sup> At.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                      | $\frac{J^{\pi}}{9/2^{-}}$ 7/2- (5/2,7/2,9/2)^{-} (5/2^{-},13/2^{-}) | $\frac{J^{\pi}}{9/2^{-}} \frac{T_{1/2}}{45.59 \text{ min } 6}$ 7/2- (5/2.7/2.9/2)- (5/2^-,13/2^-) | $\frac{J^{\pi}}{9/2^{-}} = \frac{T_{1/2}}{45.59 \text{ min } 6} = \frac{\text{XREF}}{\text{ABC}}$ $7/2^{-} = AB$ $(5/2,7/2,9/2)^{-} = AB$ $(5/2^{-},13/2^{-}) = B$ $A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

| E(level) <sup>†</sup>                  | XREF   | Comments                                                                                                       |
|----------------------------------------|--------|----------------------------------------------------------------------------------------------------------------|
| 1295.55 <i>11</i><br>1343 12 3         | A      |                                                                                                                |
| 1353 <i>21</i>                         | C      | E(level): Isomer ( <sup>238</sup> U,X) was identified from Schottky frequency spectrum (figure 2 in 2012Ch19). |
| 1445.14 <i>10</i><br>1495.26 <i>11</i> | A<br>A |                                                                                                                |
| 1543.37 11                             | Α      |                                                                                                                |
| 1592.74 22                             | A      |                                                                                                                |

<sup>&</sup>lt;sup>†</sup> From least-square fit to Ey. Uncertainties of 720.3y and 977.5y from 977.7 keV level, 1187.0y and 1335.5y from 1445 were doubled, 1445.4y and 1592.1y from 1592 keV level were tripled for the fit. Critical  $\chi^2$ =2.0, otherwise the reduced  $\chi^2$ =7.8:

| $\frac{\gamma(^{213}\text{Bi})}{257.86} = \frac{J_i^{\pi}}{7/2^-} = \frac{E_{\gamma}^{\dagger}}{257.89} \frac{I_{\gamma}^{\dagger}}{100} = \frac{E_f}{0.0} \frac{J_f^{\pi}}{9/2^-} = \frac{\text{Mult.}}{\text{M1} + \text{E2}} = \frac{\delta}{0.59} \frac{\alpha^{\#}}{100} = \frac{\alpha^{\#}}{0.575} = \frac{\text{Comments}}{\text{Mult.: M1} + \text{E2 from } \alpha(\text{K})\exp=0.454 \left(^{217}\text{At } \alpha \text{ decay}\right), \alpha(\text{K})\exp=0.454 \left(^{217}\text{At } \alpha \text{ decay}\right), \alpha(\text{K})\exp=0.564 \left(^{213}\text{Pb} \beta - \text{ decay}\right). \text{M1 in } 1969\text{LeZW from } (\alpha)(\text{K x ray})/(\alpha)(\gamma) \text{ coincidence.}}$<br>593.13 $(5/2,7/2,9/2)^ \frac{335.265}{593.133} \frac{543}{1004} \frac{257.86}{0.099/2^-} \frac{7/2^-}{9/2^-}$<br>758.90 $(5/2^-, 13/2^-)$ $\frac{593.133}{758.91} \frac{1004}{100} \frac{0.09/2^-}{0.09/2^-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                  | (ed)           | as (continu | els, Gamm                    | dopted Lev         | A                                    |               |                             |                                    |                    |                        |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|-------------|------------------------------|--------------------|--------------------------------------|---------------|-----------------------------|------------------------------------|--------------------|------------------------|
| $\frac{E_{i}(\text{level})}{257.86}  \frac{J_{i}^{\pi}}{7/2^{-}}  \frac{E_{\gamma}^{\dagger}}{257.89.6}  \frac{I_{\gamma}^{\dagger}}{100}  \frac{E_{f}}{0.0}  \frac{J_{f}^{\pi}}{9/2^{-}}  \frac{\text{Mult.}}{\text{M1+E2}}  \frac{\delta}{0.59.13}  \frac{\alpha^{\#}}{0.57.5}  \frac{\alpha^{\#}}{\text{Mult.: M1+E2 from } \alpha(\text{K})\exp=0.45.4  (2^{17}\text{At } \alpha \text{ decay}), \alpha(\text{K})\exp=0.56.4  (2^{13}\text{Pb} \ \beta-\text{ decay}). \text{M1 in } 1969\text{LeZW from } (\alpha)(\text{K x ray})/(\alpha)(\gamma) \text{ coincidence.} \delta: \text{ Deduced by the evaluator from } \alpha(\text{K})\exp=0.45.4. \text{ I}_{\gamma}: \text{Other: 80 } 13  (2^{13}\text{Pb} \ \beta-\text{ decay}). \text{M1 in } 1969\text{LeZW} \text{ from } (\alpha)(\text{K x ray})/(\alpha)(\gamma) \text{ coincidence.} \delta: \text{ Deduced by the evaluator from } \alpha(\text{K})\exp=0.45.4. \text{ I}_{\gamma}: \text{ Other: 80 } 13  (2^{13}\text{Pb} \ \beta-\text{ decay}). \text{M1 in } 1969\text{LeZW} \text{ from } (\alpha)(\text{K x ray})/(\alpha)(\gamma) \text{ coincidence.} \delta: \text{ Deduced by the evaluator from } \alpha(\text{K})\exp=0.45.4. \text{ I}_{\gamma}: \text{ Other: 80 } 13  (2^{13}\text{Pb} \ \beta-\text{ decay}). \text{M1 in } 1969\text{LeZW} \text{ from } (\alpha)(\text{K x ray})/(\alpha)(\gamma) \text{ coincidence.} \delta: \text{ Deduced by the evaluator from } \alpha(\text{K})\exp=0.45.4. \text{ I}_{\gamma}: \text{ Other: 80 } 13  (2^{13}\text{Pb} \ \beta-\text{ decay}). \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha \text{ from } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha \text{ from } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.45.4. \text{ In } 100  0.0  9/2^{-1}} \text{ From } \alpha(\text{K})\exp=0.4. \text{ From } \alpha(\text{K})\exp=0$ |                                         |                                                                                                                                                                                                                                                                                  |                |             | $\gamma$ <sup>(213</sup> Bi) |                    |                                      |               |                             |                                    |                    |                        |
| 257.86 $7/2^-$ 257.89 6       100 $0.0$ $9/2^-$ M1+E2 $0.59$ $13$ $0.57$ Mult.: M1+E2 from $\alpha$ (K)exp= $0.45$ $4$ ( $^{217}$ At $\alpha$ decay), $\alpha$ (K)exp= $0.45$ $4$ ( $^{213}$ Pb $\beta$ - decay). M1 in 1969Le2W from $(\alpha)$ (K x ray)/ $(\alpha)$ ( $\gamma$ ) coincidence.         593.13 $(5/2, 7/2, 9/2)^ 335.26$ $54$ $257.86$ $7/2^ 593.13$ $100$ $0.0$ $9/2^-$ 758.90 $(5/2^-, 13/2^-)$ $758.9$ $100$ $0.0$ $9/2^ 758.9$ $100$ $0.0$ $9/2^-$ 874.3 $874.3^{\frac{1}{2}}$ $100$ $0.0$ $9/2^ 758.9$ $7758.9$ $100$ $0.0$ $9/2^ 874.3$ $874.3^{\frac{1}{2}}$ $100$ $0.0$ $9/2^ 758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$ $7758.9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         | Comments                                                                                                                                                                                                                                                                         | α <sup>#</sup> | δ           | Mult.                        | $\mathrm{J}_f^\pi$ |                                      | $E_f$         | $I_{\gamma}^{\dagger}$      | $E_{\gamma}^{\dagger}$             | $\mathbf{J}_i^\pi$ | E <sub>i</sub> (level) |
| 593.13 $(5/2,7/2,9/2)^-$ 335.26 5       54 3       257.86 7/2^-       I <sub>γ</sub> : Other: 80 13 ( <sup>213</sup> Pb β- decay).         758.90 $(5/2^-, 13/2^-)$ 758.9 1       100       0.0       9/2^-         874.3       874.3 $\ddagger$ 10       100       0.0       9/2^-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\alpha$ decay),<br>cidence.<br>0.45 4. | Mult.: M1+E2 from $\alpha$ (K)exp=0.45 4 ( <sup>217</sup> At $\alpha$ de $\alpha$ (K)exp=0.56 4 ( <sup>213</sup> Pb $\beta$ - decay). M1 in 1969LeZW from ( $\alpha$ )(K x ray)/( $\alpha$ )( $\gamma$ ) coincider $\delta$ : Deduced by the evaluator from $\alpha$ (K)exp=0.45 | 0.57 5         | 0.59 13     | M1+E2                        |                    | 9/2-                                 | 0.0           | 100                         | 257.89 6                           | 7/2-               | 257.86                 |
| 758.90 $(5/2^-, 13/2^-)$ 758.9 I       100 $0.0$ $9/2^-$ 874.3       874.3 <sup>±</sup> I0       100 $0.0$ $9/2^-$ 975.90       102 5 <sup>±</sup> 5       974.2 <sup>±</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         | $I_{\gamma}$ : Other: 80 <i>13</i> ( <sup>213</sup> Pb β- decay).                                                                                                                                                                                                                |                |             |                              | ,-<br>             | 7/2 <sup>-</sup><br>9/2 <sup>-</sup> | 257.86<br>0.0 | 54 <i>3</i><br>100 <i>4</i> | 335.26 <i>5</i><br>593.13 <i>3</i> | (5/2,7/2,9/2)-     | 593.13                 |
| 874.3 874.3 <sup><math>\ddagger</math></sup> 10 100 0.0 9/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | 9/2-                                 | 0.0           | 100                         | 758.9 <i>1</i>                     | (5/2-,13/2-)       | 758.90                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | _                  | 9/2-                                 | 0.0           | 100                         | 874.3 <sup>‡</sup> 10              |                    | 874.3                  |
| 977.80 103.5* 5 874.3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    |                                      | 874.3         |                             | 103.5 <sup>‡</sup> 5               |                    | 977.80                 |
| $720.3^{\ddagger}$ <i>I</i> 56 <sup>‡</sup> 7 257.86 7/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | _                  | 7/2-                                 | 257.86        | 56 <sup>‡</sup> 7           | 720.3 <sup>‡</sup> 1               |                    |                        |
| $977.5^{\ddagger} 1  100^{\ddagger} 13  0.0  9/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | _                  | 9/2-                                 | 0.0           | 100 <sup>‡</sup> <i>13</i>  | 977.5 <sup>‡</sup> 1               |                    |                        |
| 982.89 $389.8^{\ddagger} 5$ $593.13 (5/2,7/2,9/2)^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | 2,7/2,9/2)-        | (5/2                                 | 593.13        |                             | 389.8 <sup>‡</sup> 5               |                    | 982.89                 |
| $982.9^{\ddagger} \ 1  100^{\ddagger} \ 13  0.0  9/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 9/2-                                 | 0.0           | 100 <sup>‡</sup> 13         | 982.9 <sup>‡</sup> 1               |                    |                        |
| 1142.42 $1142.4^{\ddagger} I = 100 \qquad 0.0  9/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 9/2-                                 | 0.0           | 100                         | 1142.4 <sup>‡</sup> <i>1</i>       |                    | 1142.42                |
| 1149.34 $893.1^{\ddagger} 10 99^{\ddagger} 14 257.86 7/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | ;_                 | 7/2-                                 | 257.86        | 99 <sup>‡</sup> 14          | 893.1 <sup>‡</sup> 10              |                    | 1149.34                |
| $1149.3^{\ddagger} I = 100^{\ddagger} I4 = 0.0 9/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 9/2-                                 | 0.0           | 100 <sup>‡</sup> 14         | 1149.3 <sup>‡</sup> <i>1</i>       |                    |                        |
| 1171.01 913.8 <sup>‡</sup> 10 5 <sup>‡</sup> 1 257.86 $7/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 7/2-                                 | 257.86        | 5 <sup>‡</sup> 1            | 913.8 <sup>‡</sup> 10              |                    | 1171.01                |
| $1171.0^{\ddagger} I = 100^{\ddagger} I3 = 0.0 9/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 9/2-                                 | 0.0           | 100 <sup>‡</sup> <i>13</i>  | 1171.0 <sup>‡</sup> <i>1</i>       |                    |                        |
| 1202.14? 944.5 <sup><math>\ddagger</math></sup> $0$ 1 100 257.86 7/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 7/2-                                 | 257.86        | 100                         | 944.5 <sup>‡@</sup> 1              |                    | 1202.14?               |
| 1222.34? 964.7 <sup><math>\ddagger</math></sup> $0$ 1 100 257.86 7/2 <sup>-</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | -                  | 7/2-                                 | 257.86        | 100                         | 964.7 <sup>‡@</sup> 1              |                    | 1222.34?               |
| 1287.24? $1029.6^{\ddagger @} I 100 257.86 7/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | 7/2-                                 | 257.86        | 100                         | 1029.6 <sup>‡@</sup> 1             |                    | 1287.24?               |
| 1295.55 $1037.7^{\ddagger} 1  100  257.86  7/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | 7/2-                                 | 257.86        | 100                         | 1037.7 <sup>‡</sup> 1              |                    | 1295.55                |
| 1343.1? $1085.5^{\ddagger @} 3 100 257.86 7/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | <i>.</i> -         | 7/2-                                 | 257.86        | 100                         | 1085.5 <sup>‡@</sup> 3             |                    | 1343.1?                |
| 1445.14 $274.3^{\ddagger @} 5 10^{\ddagger 5} 1171.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    |                                      | 1171.01       | 10‡ 5                       | 274.3 <sup>‡@</sup> 5              |                    | 1445.14                |
| $295.4^{\ddagger} 5$ 1149.34                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    |                                      | 1149.34       |                             | 295.4 <sup>‡</sup> 5               |                    |                        |
| $302.7^{\ddagger}_{-1} I \qquad 30^{\ddagger} 4 \qquad 1142.42$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | ,                                    | 1142.42       | 30# 4                       | 302.7# 1                           |                    |                        |
| $462.7^{\mp}_{\pm}$ 5 982.89                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | 1                                    | 982.89        |                             | 462.7 5                            |                    |                        |
| 467.8 <sup>4</sup> 5 977.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | )                                    | 977.80        |                             | 467.8 <sup>‡</sup> 5               |                    |                        |
| $1187.0^{\mp} I = 100^{\mp} I5 = 257.86 T/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | <i>.</i>           | 7/2-                                 | 257.86        | 100 <sup>‡</sup> 15         | 1187.0 <sup>‡</sup> <i>1</i>       |                    |                        |
| $1445.4^{\ddagger} I \qquad 18^{\ddagger} 3 \qquad 0.0  9/2^{-}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | <i>,</i>           | 9/2-                                 | 0.0           | 18 <sup>‡</sup> 3           | 1445.4 <sup>‡</sup> 1              |                    |                        |
| 1495.26 $324.2^{\text{T}}_{\text{L}} \underbrace{1}_{\text{L}} 100^{\text{T}}_{\text{L}} 13 1171.01$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    |                                      | 1171.01       | 100 <sup>‡</sup> 13         | 324.2 <sup>‡@</sup> 1              |                    | 1495.26                |
| $1237.4^{\ddagger} I \qquad 86^{\ddagger} I2 \qquad 257.86  7/2^{-1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | <i>.</i>           | 7/2-                                 | 257.86        | 867 12                      | 1237.4 <sup>‡</sup> 1              |                    |                        |
| 1543.37 $248.0^{+}_{-}5$ 1295.55                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    |                                      | 1295.55       |                             | 248.0 5                            |                    | 1543.37                |
| 565.5 <sup>+</sup> 5 977.80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              |                    | (                                    | 977.80        | 2                           | 565.5 5                            |                    |                        |
| $1285.5^+ I$ $100^+ I5$ $257.86 7/2^-$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                         |                                                                                                                                                                                                                                                                                  |                |             |                              | <i>,</i>           | 7/2-                                 | 257.86        | 100+ 15                     | 1285.5+ 1                          |                    |                        |

 $^{213}_{83}{
m Bi}_{130}$ -3

<sup>213</sup><sub>83</sub>Bi<sub>130</sub>-3

 $\gamma$ (<sup>213</sup>Bi) (continued)

| $E_i$ (level) | $J_i^{\pi}$ | $E_{\gamma}^{\dagger}$       | $I_{\gamma}^{\dagger}$ | $E_f$  | $\mathbf{J}_f^{\pi}$ |
|---------------|-------------|------------------------------|------------------------|--------|----------------------|
| 1592.74       |             | 1335.5 <sup>‡</sup> 1        | 49 <sup>‡</sup> 14     | 257.86 | 7/2-                 |
|               |             | 1592.1 <sup>‡</sup> <i>1</i> | 100 <sup>‡</sup> 14    | 0.0    | 9/2-                 |

<sup>†</sup> From <sup>217</sup>At  $\alpha$  decay, except otherwise noted. <sup>‡</sup> From <sup>213</sup>Pb  $\beta$ - decay (10.2 m).

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>@</sup> Placement of transition in the level scheme is uncertain.

#### <sup>213</sup>Pb $\beta^-$ decay (10.2 min) 2004DeZV

Parent: <sup>213</sup>Pb: E=0.0;  $J^{\pi}=(9/2^+)$ ;  $T_{1/2}=10.2 \text{ min } 3$ ;  $Q(\beta^-)=2028 \ 8$ ;  $\%\beta^-$  decay=100 <sup>213</sup>Pb- $J^{\pi}$ , $T_{1/2}$ : From Adopted Levels.

Adapted/Edited the XUNDL dataset compiled by M. Birch and B. Singh (McMaster); June 8, 2011.

<sup>213</sup>Pb produced via the reaction <sup>232</sup>Th(p,X) with E(p)=1.0 GeV, ionized by a plasma ion source and separated using the ISOLDE on-line mass separator. Detector system included an Si-detector for  $\alpha$ -particles, a LEGe (25 mm thick, with 300  $\mu$ m beryllium entrance window) and a HPGe set up in close geometry for X-rays and  $\gamma$ -rays, as well as a 0.5 mm thick plastic scintillator  $\Delta E$  detector for  $\beta$ -particles. Measured E $\gamma$ , I $\gamma$ , I $\beta$ ,  $\beta\gamma$  and  $\gamma\gamma$  coincidence. Deduced levels.

<sup>213</sup>Bi Levels

| E(level) <sup>†</sup>     | $J^{\pi \ddagger}$   | T <sub>1/2</sub> | Comments                                             |
|---------------------------|----------------------|------------------|------------------------------------------------------|
| 0.0                       | 9/2-                 | 45.59 min 6      | T <sub>1/2</sub> : From Adopted Levels.              |
| 257.637<br>592.728        | $(5/2,7/2,9/2)^{-1}$ |                  | $J^{\pi}$ : Other: $(5/2^{-}, 7/2^{-})$ in 2004DeZV. |
| 874.2 5                   |                      |                  |                                                      |
| 977.71-8<br>982.87-10     |                      |                  | $J^{*}: (9/2^{-}) \text{ in } 2004 \text{DeZV}.$     |
| 1142.39 9                 |                      |                  |                                                      |
| 1149.33 10                |                      |                  |                                                      |
| 1202.14? 12               |                      |                  |                                                      |
| 1222.34? 12               |                      |                  |                                                      |
| 1287.24? 12<br>1295.33 12 |                      |                  |                                                      |
| 1343.1? 3                 |                      |                  |                                                      |
| 1445.08 10                |                      |                  |                                                      |
| 1543.15 12                |                      |                  |                                                      |
| 1592.62 15                |                      |                  |                                                      |

<sup>†</sup> From least-squares fit of the E $\gamma$  data. Uncertainties of following E $\gamma$  were doubled in the fitting procedure to get an an acceptable reduced  $\chi^2$ =2.8 as compared to critical  $\chi^2$ =2.0, otherwise the reduced  $\chi^2$ =7.0: 1187.0, 1335.5, 1445.4, 1592.1 from 1445 and 1592 keV levels.

<sup>‡</sup> From Adopted Levels.

#### $\beta^-$ radiations

| E(decay) | E(level) | <u>Iβ-†‡</u> | Log ft | Comments                                                                                                       |
|----------|----------|--------------|--------|----------------------------------------------------------------------------------------------------------------|
| (435 8)  | 1592.62  | 1.7          | 5.5    |                                                                                                                |
| (485 8)  | 1543.15  | 0.9          | 6.0    |                                                                                                                |
| (533 8)  | 1495.04  | 2.6          | 5.7    |                                                                                                                |
| (583 8)  | 1445.08  | 8.8          | 5.2    |                                                                                                                |
| (685 8)  | 1343.1?  | 0.6          | 6.6    |                                                                                                                |
| (733 8)  | 1295.33  | 2.3          | 6.1    |                                                                                                                |
| (826 8)  | 1202.14? | 1.0          | 6.7    |                                                                                                                |
| (857 8)  | 1171.01  | 6.8          | 5.9    |                                                                                                                |
| (879 8)  | 1149.33  | 1.9          | 6.5    |                                                                                                                |
| (886 8)  | 1142.39  | 3.7          | 6.2    |                                                                                                                |
| (1045 8) | 982.87   | 2.3          | 6.6    |                                                                                                                |
| (1050 8) | 977.71   | 23.4         | 5.6    |                                                                                                                |
| (1154 8) | 874.2    | 3.6          | 6.6    |                                                                                                                |
| (1435 8) | 592.72   | 1.0          | 7.5    |                                                                                                                |
| (1770 8) | 257.63   | 1.4          | 7.7    |                                                                                                                |
| (2028 8) | 0.0      | 34.0         | 6.5    | I $\beta$ <sup>-</sup> : Ground state feeding, $\leq$ 34%, was estimated by 2004DeZV from the absolute $\beta$ |

Continued on next page (footnotes at end of table)

#### <sup>213</sup>Pb $\beta^-$ decay (10.2 min) 2004DeZV (continued)

#### $\beta^-$ radiations (continued)

E(decay) E(level)

Comments

branching of the 264.6 keV  $\gamma$ -ray in <sup>217</sup>Bi  $\beta$ - decay and the intensity ratio of the 257.7 keV to 264.6 keV  $\gamma$  transitions.

<sup>†</sup> Per 100 decays of the parent (2004DeZV).

<sup>‡</sup> Absolute intensity per 100 decays.

#### $\gamma(^{213}\text{Bi})$

Iy normalization: Estimated by the evaluator based on  $\Sigma I\gamma(1+\alpha)=66$ , assuming g.s.  $\beta$  feeding=34% (in 2004DeZV  $\leq$ 34%).

| $\mathrm{E}_{\gamma}$  | $I_{\gamma}^{\ddagger}$ | $E_i$ (level) | $\mathbf{J}_i^\pi$  | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult.   | $\alpha^{\#}$ | Comments                         |
|------------------------|-------------------------|---------------|---------------------|------------------|----------------------|---------|---------------|----------------------------------|
| 103.5 5                |                         | 977.71        |                     | 874.2            |                      |         |               |                                  |
| 248.0 5                |                         | 1543.15       |                     | 1295.33          |                      |         |               |                                  |
| 257.7 1                | 100                     | 257.63        | 7/2-                | 0.0              | 9/2-                 | M1+E2   | 0.45 26       | Mult.: From $\alpha$ (K)exp=0.56 |
| $274.3^{@}.5$          | 4.0.19                  | 1445.08       |                     | 1171.01          |                      |         |               |                                  |
| 295.4 5                |                         | 1445.08       |                     | 1149.33          |                      |         |               |                                  |
| 302.7 1                | 12.3 16                 | 1445.08       |                     | 1142.39          |                      |         |               |                                  |
| 324.2 <sup>@</sup> 1   | 9.5 12                  | 1495.04       |                     | 1171.01          |                      |         |               |                                  |
| 334.9 <i>1</i>         | 3.2 5                   | 592.72        | $(5/2,7/2,9/2)^{-}$ | 257.63           | 7/2-                 |         |               |                                  |
| 389.8 5                |                         | 982.87        |                     | 592.72           | $(5/2,7/2,9/2)^{-}$  |         |               |                                  |
| 462.7 5                |                         | 1445.08       |                     | 982.87           |                      |         |               |                                  |
| 467.8 5                |                         | 1445.08       |                     | 977.71           |                      |         |               |                                  |
| 565.5 5                |                         | 1543.15       |                     | 977.71           |                      |         |               |                                  |
| 592.9 <i>1</i>         | 4.0 7                   | 592.72        | $(5/2,7/2,9/2)^{-}$ | 0.0              | 9/2-                 | [M1+E2] |               |                                  |
| 720.3 1                | 62 8                    | 977.71        |                     | 257.63           | 7/2-                 |         |               |                                  |
| 874.3 10               | 27 4                    | 874.2         |                     | 0.0              | 9/2-                 |         |               |                                  |
| 893.1 10               | 6.8 10                  | 1149.33       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 913.8 10               | 3.2 8                   | 1171.01       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 944.5 <sup>†@</sup> 1  | 7.3 11                  | 1202.14?      |                     | 257.63           | 7/2-                 |         |               |                                  |
| 964.7 <sup>†@</sup> 1  | 26 4                    | 1222.34?      |                     | 257.63           | 7/2-                 |         |               |                                  |
| 977.5 1                | 111 15                  | 977.71        |                     | 0.0              | 9/2-                 |         |               |                                  |
| 982.9 1                | 17.0 23                 | 982.87        |                     | 0.0              | 9/2-                 |         |               |                                  |
| 1029.6 <sup>†@</sup> 1 | 4.8 7                   | 1287.24?      |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1037.7 1               | 16.7 23                 | 1295.33       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1085.5 <sup>†@</sup> 3 | 4.6 7                   | 1343.1?       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1142.4 <i>1</i>        | 40 5                    | 1142.39       |                     | 0.0              | 9/2-                 |         |               |                                  |
| 1149.3 <i>1</i>        | 6.9 10                  | 1149.33       |                     | 0.0              | 9/2-                 |         |               |                                  |
| 1171.0 <i>1</i>        | 61 8                    | 1171.01       |                     | 0.0              | 9/2-                 |         |               |                                  |
| 1187.0 <i>1</i>        | 41 <i>6</i>             | 1445.08       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1237.4 <i>1</i>        | 8.2 12                  | 1495.04       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1285.5 <i>1</i>        | 6.8 10                  | 1543.15       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1335.5 <i>1</i>        | 4.2 12                  | 1592.62       |                     | 257.63           | 7/2-                 |         |               |                                  |
| 1445.4 <i>1</i>        | 7.5 11                  | 1445.08       |                     | 0.0              | 9/2-                 |         |               |                                  |
| 1592.1 <i>1</i>        | 8.6 12                  | 1592.62       |                     | 0.0              | 9/2-                 |         |               |                                  |

<sup>†</sup> Depopulation level listed as questionable in 2004DeZV – so do for E $\gamma$  by evaluator.

<sup>‡</sup> For absolute intensity per 100 decays, multiply by  $\approx 0.154$ .

## <sup>213</sup>Pb $\beta^-$ decay (10.2 min) 2004DeZV (continued)

#### $\gamma(^{213}\text{Bi})$ (continued)

- <sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- <sup>@</sup> Placement of transition in the level scheme is uncertain.

#### <sup>213</sup>Pb $\beta^-$ decay (10.2 min) 2004DeZV



#### <sup>217</sup>At α decay 1997Ch19,1997Ch53,1967Dz02

Parent: <sup>217</sup>At: E=0.0;  $J^{\pi}=9/2^{-}$ ;  $T_{1/2}=32.6$  ms 3;  $Q(\alpha)=7201.4$  12; % $\alpha$  decay=99.993 3

<sup>217</sup>At-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From 2018Ko01 (A=217 evaluation).

<sup>217</sup>At-Q(*α*): From 2021Wa16.

Others: 1969LeZW (ay,semi), 1964Va20 (ay,scin), 1962Wa28, 1960Vo05, 1955St04.

1997Ch19: Source: Separated <sup>225</sup>Ac from <sup>229</sup>Th; Detector: Si(Au)  $\alpha$ -detector, HPGe  $\gamma$ -detector; Measured: E $\alpha$ , I $\alpha$ , E $\gamma$ , I $\gamma$ ,  $\alpha$ - $\gamma$  coin.

1997Ch53: Source: Separated <sup>225</sup>Ac from <sup>229</sup>Th; Detector: Si(Au)- $\alpha$ -detector, Measured: E $\alpha$ .

<sup>213</sup>Bi Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$    | T <sub>1/2</sub> | Comments                                |
|-----------------------|-----------------------|------------------|-----------------------------------------|
| 0.0                   | 9/2-                  | 45.59 min 6      | T <sub>1/2</sub> : From Adopted Levels. |
| 257.88 5              | 7/2-                  |                  |                                         |
| 593.13 <i>3</i>       | $(5/2,7/2,9/2)^{-}$   |                  |                                         |
| 758.90 10             | $(5/2^{-}, 13/2^{-})$ |                  |                                         |
| 1050                  |                       |                  | E(level): From 1997Ch53.                |

<sup>†</sup> From E $\gamma$ , except where otherwise noted. The 465-keV level in <sup>213</sup>Bi, reported earlier in 1967Dz02 feeding through 6609-keV  $\alpha$  from <sup>217</sup>At, was not confirmed by 1997Ch53, instead the 6609 $\alpha$  has been assigned to <sup>221</sup>Ra (1997Ch53).

<sup>‡</sup> From Adopted Levels.

#### $\alpha$ radiations

| $\mathrm{E}\alpha^{\dagger}$ | E(level) | $I\alpha^{\ddagger@}$ | HF <sup>#</sup> | Comments                                                                                                                                                 |
|------------------------------|----------|-----------------------|-----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 6037                         | 1050     | < 0.002               | >5.4            | $E\alpha$ : From 1997Ch53. In 1968Le07 and 1967Dz02, the 6037 $\alpha$ is shown from <sup>221</sup> Fr.                                                  |
| 6322.0 16                    | 758.90   | 0.005 1               | 37 8            |                                                                                                                                                          |
| 6484.7 16                    | 593.13   | 0.021 2               | 40 4            | $E\alpha$ : Others: 6483 5 (adjusted value in 1991Ry01), 6484.7 15 (1996GrZT).                                                                           |
|                              |          |                       |                 | Iα: Weighted average of 0.02 <i>l</i> (1969LeZW), 0.021 <i>2</i> (1997Ch19), and 0.020 <i>3</i> (1996GrZT). Iγ intensity balance yields 0.018 <i>l</i> . |
| 6813.8 <i>16</i>             | 257.88   | 0.038 <i>3</i>        | 394 <i>32</i>   | $E\alpha$ : Others: 6812 5 (adjusted value in 1991Ry01) and 6813.8 15 (1996GrZT).                                                                        |
|                              |          |                       |                 | Iα: Weighted average of 0.036 3 (1997Ch19), 0.040 3 (1996GrZT), and 0.06 2 (1969LeZW).                                                                   |
| 7066.9 16                    | 0.0      | 99.9 1                | 1.19 <i>1</i>   | Eα: Others: 7066.9 15 (adjusted value in 1991Ry01), 7062 5 (1977Vy02), 7071 2 (1982Bo04), 7066.9 15 (1996GrZT), 7064 5 (1960Vo05).                       |
|                              |          |                       |                 | I $\alpha$ : From 1969LeZW. Others: I $\alpha$ =99.9 (1997Ch19), 99.9 (1996GrZT).                                                                        |

<sup>†</sup> From 1997Ch19.  $\alpha$ 's 6849-, 6772-, 6541-, and 6422-keV reported in 1967Dz02 were not confirmed in 1997Ch19,1997Ch53, and 1969LeZW. These  $\alpha$ 's are assumed to be due to contaminants and they are not listed here.

<sup>‡</sup> From 1997Ch19, except otherwise noted. In 1997Ch19, I $\alpha$  per 100 <sup>217</sup>At decays is reported, assuming the absence of  $\gamma$ -feeding from higher-lying unknown levels.

<sup>#</sup>  $r_0(^{213}\text{Bi})=1.5509$  7, average of  $r_0(^{212}\text{Pb})=1.5412$  3 and  $r_0(^{214}\text{Po})=1.5606$  7 (2020Si16).

<sup>@</sup> For absolute intensity per 100 decays, multiply by 0.99993 3.

#### $\gamma(^{213}\text{Bi})$

I $\gamma$  normalization: from 2018Ko01 (A=217 evaluation) based on 1997Ch19.

|                                       |                     |                        | $^{217}$ At $\alpha$ decay                                          | 1997             | Ch19,1               | 997Ch53,1   |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|---------------------------------------|---------------------|------------------------|---------------------------------------------------------------------|------------------|----------------------|-------------|----------------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                       |                     |                        |                                                                     | <u> </u>         | ( <sup>213</sup> Bi) | (continued) | <u>)</u>       |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| ${\rm E_{\gamma}}^{\dagger}$          | Ι <sub>γ</sub> ‡#   | E <sub>i</sub> (level) | ${f J}^\pi_i$                                                       | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult.       | δ              | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 165.8                    | < 0.0002            |                        |                                                                     |                  |                      |             |                |                | $E_{\gamma}$ : Reported both in 1997Ch19<br>and 1964Va20.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 257.89 6                              | 0.0287 7            | 257.88                 | 7/2-                                                                | 0.0              | 9/2-                 | M1+E2       | 0.59 <i>13</i> | 0.57 5         | E <sub>y</sub> : Weighted average of 257.88<br>4 (1997Ch19), 258.5 2<br>(1981Di14), and 257.87 4<br>(1996GrZT).<br>I <sub>y</sub> : Others: 0.0297 20<br>(1996GrZT), 0.04 1<br>(1969ArZV), and also 0.056 20<br>by scaling I <sub>Y</sub> (258.5)=0.239 20<br>(relative) (1981Di14) with<br>I <sub>Y</sub> (218)=49 (relative)<br>(1981Di14) and and<br>I <sub>Y</sub> (218)=11.38% of <sup>221</sup> Fr $\alpha$<br>decay (11.57% 15 (1986He06)<br>and 11.2% 2 (1997Ch19).<br>Mult.: M1+E2 from<br>$\alpha$ (K)exp=0.45 4 (1997Ch19).<br>M1 from ( $\alpha$ )(K x ray)/( $\alpha$ )( $\gamma$ )<br>coincidence (1969LeZW).<br>$\delta$ : Deduced from $\alpha$ (K)exp=0.45<br>4 (1997Ch19) using<br>BriaeMiring code |
| 335.26 5                              | 0.0062 3            | 593.13                 | (5/2,7/2,9/2) <sup>-</sup>                                          | 257.88           | 7/2-                 |             |                |                | $E_{\gamma}$ : Weighted average of 335.33<br><i>10</i> (1997Ch19) and 335.24 5<br>(1996GrZT). Others: 334<br>(1969LeZW).<br>L: Other: 0.0048 9 (1996GrZT).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <sup>x</sup> 501.0<br>593.13 <i>3</i> | <0.0002<br>0.0115 5 | 593.13<br>758 90       | (5/2,7/2,9/2) <sup>-</sup><br>(5/2 <sup>-</sup> 13/2 <sup>-</sup> ) | 0.0              | 9/2-                 |             |                |                | E <sub>y</sub> : From 1996GrZT. Others:<br>593.1 2 (1997Ch19), 593.1<br>(1981Di14).<br>I <sub>y</sub> : Other: 0.0128 9 (1996GrZT),<br>also 0.018 6 by scaling<br>I <sub>γ</sub> (593.1)=0.0507 25 (relative)<br>(1981Di14) with I <sub>γ</sub> (218)=49<br>(relative) (1981Di14) and and<br>I <sub>γ</sub> (218)=11.38% of $^{221}$ Fr $\alpha$<br>decay (11.57% 15 (1986He06)<br>and 11.2% 2 (1997Ch19).                                                                                                                                                                                                                                                                                                            |
| 130.9 1                               | 0.0049 4            | 138.90                 | (3/2, 13/2)                                                         | 0.0              | 9/2                  |             |                |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

<sup>†</sup> From 1997Ch19.  $\gamma$ 's 140-, 375-, and 455-keV, reported in 1964Va20, are not placed in the level scheme. These  $\gamma$  rays were not confirmed by 1997Ch19 and 1969LeZW. Also the reported 218 $\gamma$  in 1969LeZW was not confirmed by 1997Ch19 and appears to be associated with <sup>217</sup>At. Aforementioned  $\gamma$  could arise due to summing effect or remnant of random coincidence peaks (1997Ch19). These  $\gamma$  are not listed in the dataset.

<sup>‡</sup> From 1997Ch19, absolute photon intensity per 100 <sup>217</sup>At decays.

<sup>#</sup> Absolute intensity per 100 decays.

<sup>(a)</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$  ray not placed in level scheme.

# <sup>217</sup>At α decay 1997Ch19,1997Ch53,1967Dz02

# $\underbrace{Decay \; Scheme}_{Intensities: \; I_{(\gamma+ce)} \; per \; 100 \; parent \; decays}$





<sup>213</sup><sub>83</sub>Bi<sub>130</sub>

## <sup>9</sup>Be(<sup>238</sup>U,X) 2012Ch19

<sup>213</sup>Bi nuclide was obtained from fragmentation of <sup>238</sup>U beam, E=670 MeV/nucleon, at the GSI heavy-ion synchrotron SIS. Target thickness=4 g/cm<sup>2</sup>. Fragments were separated in flight by the Fragment Separator (FRS) and injected into the ESR. Measured masses by Schottky Mass Spectrometry (SMS) technique. The ions produced were mainly fully-stripped (bare) or carried a few electrons. Deduced an isomer in <sup>213</sup>Bi.

#### <sup>213</sup>Bi Levels

| E(level)            | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0<br>1353 <i>21</i> | 9/2-      | 45.59 min 6      | $J^{\pi}$ , $T_{1/2}$ : from Adopted Levels.<br>E(level): Isomer ( <sup>238</sup> U,X) was identified from Schottky frequency spectrum (figure 2 in 2012Ch19). Excitation energy was deduced from Schottky frequency spectrum (figure 2 in 2012Ch19), mass measurement. 2012Ch19 mention $\gamma$ decay to the ground-state was discovered in the time resolved spectrum shown in Fig. 2.<br>$T_{1/2}$ : > 168 s from single-ion tracing evaluation method (2008ChZI). |

#### Adopted Levels, Gammas

 $Q(\beta^{-})=-74\ 6$ ;  $S(n)=4355\ 3$ ;  $S(p)=5825\ 3$ ;  $Q(\alpha)=8536\ 3$  2021Wa16

2020De36: <sup>238</sup>U(<sup>48</sup>Ca,X), E=233.3 MeV; measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative}}$ =2350 nb/sr 9 for <sup>213</sup>Po.

2015Ba20: <sup>136</sup>Xe + <sup>208</sup>Pb, E(c.m.)=450 MeV, measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative yield}}=0.193$  mb 39 and  $\sigma_{\text{independent yield}}=0.190$  mb 38 for <sup>213</sup>Po.

#### <sup>213</sup>Po Levels

#### Cross Reference (XREF) Flags

**A**  $^{213}$ Bi  $\beta^{-}$  decay (45.59 min)

**B**  $^{217}$ Rn  $\alpha$  decay

С

 $^{208}$ Pb( $^{18}$ O,X $\gamma$ )

| E(level) <sup>†</sup>                                                                                                         | J <sup>π#</sup>                                                                                                                                 | T <sub>1/2</sub> | XREF                                 | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------|------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0‡                                                                                                                          | 9/2+                                                                                                                                            | 3.706 µs 1       | ABC                                  | %α=100<br>J <sup>π</sup> : favored α decay to <sup>209</sup> Pb g.s. (J <sup>π</sup> =9/2 <sup>+</sup> ).<br>T <sub>1/2</sub> : Weighted average of 3.709 μs 2 (2020Ko06 − 440γ-α(t)), 3.705<br>μs 1 (2018Al32 − deduced from the 622-day decay curve using parent<br><sup>229</sup> Th), 3.5 μs 3 (2018Sa45 − α <sub>1</sub> -α <sub>2</sub> -α <sub>3</sub> correlations), 3.65 μs 4<br>(1998Wa25), 3.75 μs 4 (1997Wa27), 3.70 μs 3 (1997VaZV), and 3.74<br>μs 2 (1995WaZQ), 4.2 μs 8 (1948Je05), 3.708 μs 8 (2013Su13 −<br><sup>213</sup> Po α decay). Others: 4.2 μs (1949Me54), and 3.65 μs (2002Mo46).<br>Eα (group 1)=8376 3 (1982Bo04), 8377 5 (1964Va20), 8368 10<br>(1960Vo05); Eα (group 2)=7614 10 (1964Va20). |
| 292.805 8                                                                                                                     | (11/2 <sup>+</sup> )                                                                                                                            | 78 ps 14         | А                                    | J <sup><math>\pi</math></sup> : 292.78 $\gamma$ (M1+E2) to 9/2 <sup>+</sup> state. 2011As05 ( <sup>18</sup> O,X $\gamma$ ) proposed spin<br>parity 7/2 <sup>+</sup> instead of 11/2 <sup>+</sup> .<br>T <sub>1</sub> $\beta$ : From delayed $\gamma\gamma$ -coin in <sup>213</sup> Bi $\beta^-$ decay (1997Wa27).                                                                                                                                                                                                                                                                                                                                                                                                          |
| 440.446 <i>9</i><br>600.87? <i>17</i>                                                                                         | (7/2 <sup>+</sup> )                                                                                                                             | 93 ps <i>3</i>   | A                                    | %α < 0.001 from 1997Wa27 (see <sup>213</sup> Bi β- decay).<br>J <sup>π</sup> : 440γ M1 to 9/2 <sup>+</sup> state. log <i>tt</i> =6.1 in 9/2 <sup>-213</sup> Bi β <sup>-</sup> decay. HF≥70<br>estimated in 1997Wa27. 2011As05 ( <sup>18</sup> O,Xγ) proposed spin-parity 11/2 <sup>+</sup><br>instead of 7/2 <sup>+</sup> .<br>T <sub>1/2</sub> : From β-γ coincidences in <sup>213</sup> Bi β <sup>-</sup> decay (1997Wa27).                                                                                                                                                                                                                                                                                              |
| 645.6 5                                                                                                                       | $13/2^+$                                                                                                                                        |                  | C                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 867.98 3                                                                                                                      | $(13/2^+)$                                                                                                                                      |                  | A                                    | J <sup><math>\pi</math></sup> : 2011As05 ( <sup>18</sup> O,X $\gamma$ ) proposed spin-parity to be 9/2 <sup>+</sup> instead of 13/2 <sup>+</sup> , since it was not populated in their work.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 1003.605 22<br>1045.65 9<br>1068.4 <sup>‡</sup> 5<br>1100.173 8<br>1119.38 4<br>1328.2 3<br>1357.4 <sup>‡</sup> 6<br>1412.9 8 | $\begin{array}{c} (9/2^+) \\ (9/2^+, 11/2^+) \\ 17/2^{+@} \\ (7/2, 9/2, 11/2) \\ (7/2, 9/2, 11/2) \\ (7/2, 9/2, 11/2) \\ 21/2^{+@} \end{array}$ |                  | A<br>A<br>C<br>A<br>A<br>A<br>C<br>C |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1503.6 8<br>1619.1 8<br>1779.6 6<br>2017.2 9                                                                                  | $(25/2^+)^{\textcircled{0}}$<br>$(23/2^+)$                                                                                                      |                  | C<br>C<br>C                          | Possible configuration: $\pi h_{9/2}^{+2} \otimes \nu i_{11/2}^{+1}$ .<br>J <sup><math>\pi</math></sup> : 261.7 $\gamma$ to 21/2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

<sup>†</sup> Deduced by evaluator from a least square fit to the  $\gamma$ -ray energies.

<sup>213</sup>Po Levels (continued)

- <sup>±</sup> Yrast sequence. Possible configuration:  $9/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ),  $13/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ) $\otimes 2^+$ ,  $17/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ) $\otimes 4^+$ , and  $21/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ) $\otimes 6^+$ .
- <sup>#</sup> From 1998Ar03 (<sup>213</sup>Bi  $\beta^-$  decay), except where otherwise noted. In 1998Ar03, semiempirical shell-model calculation results were compared as a guide for parity and spin assignments. Additional arguments are given as comments.
- <sup>@</sup> From (<sup>18</sup>O,X $\gamma$ ) based on  $\gamma$ -ray multipole assignments.

| 84   |  |
|------|--|
| P    |  |
| LC L |  |
| -02  |  |
| دن   |  |

|                        |                                     |                                                                          |                                     |                             |                                                                             | <u>γ(<sup>213</sup>P</u> | <u>'o)</u>         |                 |                                                                                                                                                                 |
|------------------------|-------------------------------------|--------------------------------------------------------------------------|-------------------------------------|-----------------------------|-----------------------------------------------------------------------------|--------------------------|--------------------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                | $E_{\gamma}^{\dagger}$                                                   | $I_{\gamma}^{\dagger}$              | $\mathrm{E}_{f}$            | $\mathbf{J}_f^{\pi}$                                                        | Mult. <sup>†</sup>       | $\delta^{\dagger}$ | $\alpha^{@}$    | Comments                                                                                                                                                        |
| 292.805                | (11/2+)                             | 292.80 1                                                                 | 100                                 | 0.0                         | 9/2+                                                                        | M1+E2                    | 1.0 +5-4           | 0.34 10         | B(M1)(W.u.)=0.0042 +24-17; B(E2)(W.u.)=17 8<br>Mult.,δ: Mult: from α(K)exp=0.24 7<br>(1998MaZO = $^{213}$ Bi $\beta^-$ decay)                                   |
| 440.446                | (7/2 <sup>+</sup> )                 | 147.66 <i>5</i>                                                          | 0.057 4                             | 292.805                     | (11/2+)                                                                     | (E2)                     |                    | 1.454 20        | B(E2)(W.u.)= $0.563 \ 45$<br>Mult.: B(E2)= $0.0031 \ 6 \ (1997Wa27)$ is close to the B(E2, 2 <sup>+</sup> to 0 <sup>+</sup> ) values of the neighboring nuclei. |
|                        |                                     | 440.45 1                                                                 | 100 <i>1</i>                        | 0.0                         | 9/2+                                                                        | M1+E2                    | 0.39 +15-19        | 0.161 <i>13</i> | B(M1)(W.u.)=0.00207 +21-24;<br>B(E2)(W.u.)=0.55 +40-35<br>Mult.,δ: Mult: from $\alpha$ (K)exp=0.12 1 ( <sup>213</sup> Bi β <sup>-</sup> decay).                 |
| 600.87?                | $(5/2^+)$                           | 600.9 2                                                                  | 100                                 | 0.0                         | 9/2+                                                                        |                          |                    |                 | •                                                                                                                                                               |
| 645.6                  | $13/2^{+}$                          | 645.6 <sup>‡</sup> 5                                                     | 100                                 | 0.0                         | 9/2+                                                                        | E2 <sup>#</sup>          |                    | 0.01796 25      |                                                                                                                                                                 |
| 867.98                 | $(13/2^+)$                          | 574.9 <i>3</i>                                                           | 22 9                                | 292.805                     | $(11/2^+)$                                                                  |                          |                    |                 |                                                                                                                                                                 |
| 1003.605               | (9/2+)                              | 867.98 <i>3</i><br>402.8 <i>3</i><br>710.82 <i>3</i><br>1003 58 <i>3</i> | 100 5<br>0.20 3<br>22.2 10<br>100 6 | 0.0<br>600.87?<br>292.805   | $9/2^+$<br>(5/2 <sup>+</sup> )<br>(11/2 <sup>+</sup> )<br>$9/2^+$           |                          |                    |                 |                                                                                                                                                                 |
| 1045.65                | (9/2+,11/2+)                        | 604.94 <i>21</i><br>1045.70 <i>9</i>                                     | 13 <i>3</i><br>100 <i>17</i>        | 440.446<br>0.0              | $(7/2^+)$<br>$9/2^+$                                                        |                          |                    |                 |                                                                                                                                                                 |
| 1068.4<br>1100.173     | 17/2 <sup>+</sup><br>(7/2,9/2,11/2) | 422.8 <sup>‡</sup> 1<br>659.75 2<br>807.36 1                             | 100<br>12.9 7<br>100.0 25<br>91.6   | 645.6<br>440.446<br>292.805 | $13/2^+$<br>(7/2 <sup>+</sup> )<br>(11/2 <sup>+</sup> )<br>9/2 <sup>+</sup> | E2#                      |                    | 0.0486 7        |                                                                                                                                                                 |
| 1119.38                | (7/2,9/2,11/2)                      | 826.55 <i>5</i><br>1119.40 <i>6</i>                                      | 13.7 <i>19</i><br>100 <i>4</i>      | 292.805<br>0.0              | $(11/2^+)$<br>$9/2^+$                                                       |                          |                    |                 |                                                                                                                                                                 |
| 1328.2                 | (7/2,9/2,11/2)                      | 886.66 <sup>&amp;</sup> 14<br>1328.2 <i>3</i>                            | 100 <i>20</i><br>40 <i>10</i>       | 440.446<br>0.0              | (7/2 <sup>+</sup> )<br>9/2 <sup>+</sup>                                     |                          |                    |                 |                                                                                                                                                                 |
| 1357.4                 | $21/2^{+}$                          | 289.0 <sup>‡</sup> 1                                                     | 100                                 | 1068.4                      | $17/2^{+}$                                                                  | (E2) <sup>#</sup>        |                    | 0.1410 20       |                                                                                                                                                                 |
| 1412.9                 |                                     | 344.5 <sup>‡</sup> 5                                                     | 100                                 | 1068.4                      | $17/2^{+}$                                                                  |                          |                    |                 |                                                                                                                                                                 |
| 1503.6                 | (25/2+)                             | 146.2 <sup>‡</sup> 5                                                     | 100                                 | 1357.4                      | 21/2+                                                                       | (E2)                     |                    | 1.512 29        | $\alpha(\exp)=0.15 \ 5 \ (2011As05)$<br>Mult.: From $\alpha(\exp) \ (^{18}O, x\gamma)$ .                                                                        |
| 1619.1                 | $(23/2^+)$                          | 261.7 <sup>‡</sup> 5                                                     | 100                                 | 1357.4                      | $21/2^+$                                                                    |                          |                    |                 |                                                                                                                                                                 |
| 1779.6                 |                                     | 711.2 <sup>‡</sup> 3                                                     | 100                                 | 1068.4                      | $17/2^{+}$                                                                  |                          |                    |                 |                                                                                                                                                                 |
| 2017.2                 |                                     | 398.1 <sup>‡</sup> 5                                                     | 100                                 | 1619.1                      | $(23/2^+)$                                                                  |                          |                    |                 |                                                                                                                                                                 |

<sup>†</sup> From <sup>213</sup>Bi  $\beta^-$  decay, except where otherwise noted. <sup>‡</sup> From (<sup>18</sup>O,X $\gamma$ ). <sup>#</sup> From (<sup>18</sup>O,X $\gamma$ ) based on the the angular anisotropy ratio R<sub>ADO</sub> measurements. Evaluator assign as E2 based on the assigned configuration, systematics, and

503

 $\gamma$ (<sup>213</sup>Po) (continued)

measurement timescale ( $\gamma\gamma$  coin).

<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>&</sup> Placement of transition in the level scheme is uncertain.

504

#### <sup>213</sup>Bi $\beta^-$ decay (45.59 min) 1998Ar03,1997Wa27,1994Ar23

Parent: <sup>213</sup>Bi: E=0.0;  $J^{\pi}=9/2^{-}$ ;  $T_{1/2}=45.59 \text{ min } 6$ ;  $Q(\beta^{-})=1422 \ 6$ ;  $\%\beta^{-}$  decay=97.860 *10* 

Others: 2020Go11, 2010Fi10, 2003ChZV, 2002Mo46, 2000Gr35, 1998MaZO, 1989Ko26, 1986He06, 1981Di14, 1977Vy02, 1972Dz14, 1969ArZV, 1969Dz06, 1969DzZZ, 1968Va17, 1967LoZZ, 1955Ma61, 1952Wa24.

1998Ar03,1994Ar23: Source: Chemically separated <sup>213</sup>Bi; Detector: p-type coaxial HPGe and planar HPGe; Measured:  $E\gamma$ ,  $I\gamma$ ,  $\gamma\gamma$  coin.

1997Wa27: Source: <sup>213</sup>Bi was accumulated on an Al foil from the recoil of <sup>217</sup>At decay; Measured:  $T_{1/2}$  by the method of delayed coincidences in <sup>213</sup>Bi  $\beta^-$  decay.

1989Ko26: Source: Chemically separated <sup>213</sup>Bi; Detector: HPGe and LEPS (Low Energy Photon Spectrometer); Ey, Iy, yy coin.

#### <sup>213</sup>Po Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T_1/2          | Comments                                                                                                                                                                                                                |
|-----------------------|--------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 9/2+               | 3.706 µs 1     | $J^{\pi}, T_{1/2}$ : From Adopted Levels.                                                                                                                                                                               |
| 292.805 8             | $(11/2^+)$         | 78 ps 14       | $J^{\pi}$ : 292.78 $\gamma$ (M1+E2) to 9/2 <sup>+</sup> state.                                                                                                                                                          |
| 440.446 9             | (7/2+)             | 93 ps <i>3</i> | T <sub>1/2</sub> : From delayed γγ-coin in <sup>213</sup> Bi β <sup>-</sup> decay (1997Wa27).<br>%α<0.001 (1997Wa27).<br>T <sub>1/2</sub> : From β-γ coincidences in <sup>213</sup> Bi β <sup>-</sup> decay (1997Wa27). |
| 600.87? 17            | $(5/2^+)$          |                |                                                                                                                                                                                                                         |
| 867.98 <i>3</i>       | $(13/2^+)$         |                |                                                                                                                                                                                                                         |
| 1003.605 22           | $(9/2^+)$          |                |                                                                                                                                                                                                                         |
| 1045.65 9             | $(9/2^+, 11/2^+)$  |                |                                                                                                                                                                                                                         |
| 1100.173 8            | (7/2,9/2,11/2)     |                |                                                                                                                                                                                                                         |
| 1119.38 4             | (7/2,9/2,11/2)     |                |                                                                                                                                                                                                                         |
| 1328.2 3              | (7/2,9/2,11/2)     |                |                                                                                                                                                                                                                         |

<sup>†</sup> Deduced by evaluator from a least square fit to the  $\gamma$ -ray energies.

<sup>‡</sup> From 1998Ar03, except otherwise noted. In 1998Ar03, semiempirical shell-model calculation results were compared as a guide for parity and spin assignments.

#### $\beta^{-}$ radiations

| E(decay)† | E(level) | Iβ <sup>-‡#</sup> | Log ft                       | Comments                                                                                                         |
|-----------|----------|-------------------|------------------------------|------------------------------------------------------------------------------------------------------------------|
| (94 6)    | 1328.2   | 0.00039 14        | 7.67 18                      |                                                                                                                  |
| (303 6)   | 1119.38  | 0.059 2           | 7.08 4                       |                                                                                                                  |
| (322 6)   | 1100.173 | 0.578 11          | 6.17 <i>3</i>                |                                                                                                                  |
| (376 6)   | 1045.65  | 0.020 3           | 7.85 7                       |                                                                                                                  |
| (418 6)   | 1003.605 | 0.065 3           | 7.49 <i>3</i>                |                                                                                                                  |
| (554 6)   | 867.98   | 0.0144 13         | 8.64 <sup>1</sup> <i>u</i> 5 |                                                                                                                  |
| (821 6)   | 600.87?  | 0.0042 8          | $10.03^{1u}$ 9               |                                                                                                                  |
| (982 6)   | 440.446  | 30.1 4            | 6.08 1                       | $I\beta^-$ : 35% 3 of <sup>213</sup> Bi $\beta^-$ decay was measured by 1968Va17, and 32% by 1952Wa24, 1955Ma61. |
| (1129 6)  | 292.805  | 0.21 5            | 8.45 10                      |                                                                                                                  |
| (1422 6)  | 0.0      | 66.8 5            | 6.31 <i>1</i>                | E(decay): 1420 <i>10</i> measured value in 1968Va17. Others measurements by 1952Wa24, 1955Ma61.                  |
|           |          |                   |                              | I $\beta^-$ : 65% 3 of <sup>213</sup> Bi $\beta^-$ decay was measured by 1968Va17 and 68% (1955Ma61).            |

<sup>†</sup> From excited level energy and  $Q(\beta^{-})$ . Measured value to g.s is listed in comments.

<sup>‡</sup> From intensity balance at each level.

<sup>#</sup> Absolute intensity per 100 decays.

 $\gamma$ <sup>(213</sup>Po)

| 84  |
|-----|
| P   |
| 10  |
| -62 |
| 6   |

NUCLEAR DATA SHEETS

| these x-i<br>spectrum<br>intensiti<br>decays of<br>The expect | x-rays (Po):<br>I(K $\alpha_1$ x<br>I(K $\alpha_2$ x<br>I(K $\beta_1$ x<br>I(K $\beta_2$ x<br>ray intensitie<br>of <sup>225</sup> Ac an<br>es were normation<br>$E^{225}Ac$ . The<br>cted total x-r | $\begin{array}{c} 1972D21\\ x ray)=1.6\\ x ray)=0.9\\ ray)=0.35\\ ray)=0.12\\ es were me\\ nd its dau\\ alized to 2\\ e uncertai\\ ray intens\end{array}$ | 4<br>%<br>3%<br>%<br>asured by<br>ghters in<br><sup>225</sup> Ac 7<br>nties we<br>ity from | y 1972Dz<br>n equilil<br>y's, giv<br>re assigu<br>level se | 14 in $\gamma$<br>brium wi<br>ven per 1<br>ned as 1<br>cheme is | th it;<br>100<br>0-15%.<br>4.00% 5. |             |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|---------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|-------------------------------------|-------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_{\gamma}^{\dagger}$                                        | $I_{\gamma}^{\#a}$                                                                                                                                                                                  | E <sub>i</sub> (level)                                                                                                                                    | $\mathbf{J}_i^{\pi}$                                                                       | $E_f$                                                      | ${ m J}_f^\pi$                                                  | Mult. <sup>&amp;</sup>              | δ           | α <sup>b</sup>  | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 147.66 5                                                      | 0.0149 <i>12</i>                                                                                                                                                                                    | 440.446                                                                                                                                                   | (7/2 <sup>+</sup> )                                                                        | 292.805                                                    | (11/2+)                                                         | (E2)                                |             | 1.454 20        | E <sub>γ</sub> : Others: 147.1 <i>l</i> (2000Gr35), 147.63 <i>8</i> (1989Ko26).<br>I <sub>γ</sub> : Weighted average of 0.0147 <i>l</i> 2 (1998Ar03 – 0.0148<br><i>l</i> 2) and 0.022 <i>8</i> (2000Gr35). Others: 0.011 <i>l</i><br>(1989Ko26).<br>Mult.: B(E2)=0.0031 <i>6</i> (1997Wa27) is close to the<br>B(E2, 2 <sup>+</sup> to 0 <sup>+</sup> ) values of the neighboring nuclei.                                                                                                                                                                                                                        |
| 292.80 1                                                      | 0.419 8                                                                                                                                                                                             | 292.805                                                                                                                                                   | (11/2+)                                                                                    | 0.0                                                        | 9/2+                                                            | M1+E2                               | 1.0 +5-4    | 0.34 10         | <ul> <li>E<sub>γ</sub>: Weighted average of 292.76 5 (1998Ar03), 292.81 1<br/>(2000Gr35), 292.86 10 (1977Vy02), and 292.80 1<br/>(1989Ko26).</li> <li>I<sub>γ</sub>: Weighted average of 0.413 23 (1998Ar03 - 0.416<br/>23), 0.429 7 (1986He06), 0.41 1 (2000Gr35 - 0.40 1),<br/>0.31 4 (2002Mo46), 0.403 23 (1981Di14 - 0.426 24),<br/>0.41 2 (1989Ko26).</li> <li>Mult.,δ: From α(K)exp=0.24 7 (1998MaZO), mixing<br/>ratio was deduced using the briccMixing code.</li> </ul>                                                                                                                                 |
| 402.8 <i>3</i>                                                | 0.00010 <sup>@</sup> 3                                                                                                                                                                              | 1003.605                                                                                                                                                  | $(9/2^+)$                                                                                  | 600.87?                                                    | (5/2+)                                                          | [E2]                                |             | 0.0552 8        | $E_{\gamma}$ : Weak gamma – not observed by 2000Gr35 and suggested for confirmation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 440.45 1                                                      | 25.9 2                                                                                                                                                                                              | 440.446                                                                                                                                                   | (7/2+)                                                                                     | 0.0                                                        | 9/2+                                                            | M1+E2                               | 0.39 +15-19 | 0.161 <i>13</i> | E <sub>γ</sub> : Weighted average of 440.43 5 (1998Ar03) and<br>440.44 <i>I</i> (2000Gr35), 440.420 20 (1977Vy02), 440.46<br><i>I</i> (1989Ko26). Other: 440.4 (2003ChZV).<br>I <sub>γ</sub> : Weighted average of 26.2 <i>3</i> (2010Fi10), 26.1 <i>3</i><br>(1986He06), 25.4 <i>3</i> (2000Gr35), and 25.8 <i>3</i><br>(2020Go11). Others: 21 <i>I</i> (1989Ko26 quoted from<br>1969DZ06), 27.4 (1981Di14), ~25.4 (2003ChZV).<br>Mult.,δ: From $\alpha_{\rm K}$ =I <sub>e</sub> /I <sub>γ</sub> =[3.15 <i>I</i> 5 (1969DzZZ)/25.9<br>2]=0.12 <i>I</i> . Other conversion electron measurements in<br>1967LoZZ. |
| 574.9 <i>3</i>                                                | 0.0025 10                                                                                                                                                                                           | 867.98                                                                                                                                                    | (13/2+)                                                                                    | 292.805                                                    | (11/2 <sup>+</sup> )                                            | [M1+E2]                             |             | 0.056 32        | $E_{\gamma}$ : Weighted average of 574.8 <i>3</i> (1998Ar03), and 575.2 <i>5</i> (2000Gr35).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 600.9 2                                                       | 0.0043 8                                                                                                                                                                                            | 600.87?                                                                                                                                                   | (5/2 <sup>+</sup> )                                                                        | 0.0                                                        | 9/2+                                                            |                                     |             |                 | $I_{\gamma}$ : From 2000Gr35. Other: 0.00063 17 (1998Ar03).<br>$E_{\gamma}$ : Weighted average of 600.7 3 (1998Ar03) and 601.0<br>2 (2000Gr35).                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

506

|                                          |                         |                        | <sup>213</sup> <b>Bi</b> $\beta^{-}$ decay (45.59 min) |         |                      | 1998Ar03,1997Wa27,1994Ar23 (continued) |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
|------------------------------------------|-------------------------|------------------------|--------------------------------------------------------|---------|----------------------|----------------------------------------|---------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| $\gamma$ <sup>(213</sup> Po) (continued) |                         |                        |                                                        |         |                      |                                        |                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |
| $E_{\gamma}^{\dagger}$                   | $I_{\gamma}^{\#a}$      | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                                     | $E_f$   | $\mathbf{J}_f^{\pi}$ | Mult. <sup>&amp;</sup>                 | $\alpha^{\boldsymbol{b}}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 604.94 21                                | 0.0023 6                | 1045.65                | (9/2+,11/2+)                                           | 440.446 | (7/2+)               |                                        |                           | $I_{\gamma}$ : From 2000Gr35 (0.0042 8). Other: 0.00069 22 (1998Ar03 – 0.00070 22).<br>E <sub><math>\gamma</math></sub> ,I <sub><math>\gamma</math></sub> : From 2000Gr35. Other: E $\gamma$ =604.9 3 and I $\gamma$ =0.00050 18 (1998Ar03).                                                                                                                                                                                                                                                                               |  |
| <sup>x</sup> 646.03 9                    | 0.00229 <sup>@</sup> 22 |                        |                                                        |         |                      |                                        |                           | $E_{\gamma}, I_{\gamma}$ : I $\gamma$ from 0.00231 22 (1998Ar03). Other: $E_{\gamma}$ 646.0 <i>I</i> and                                                                                                                                                                                                                                                                                                                                                                                                                   |  |
| 659.75 2                                 | 0.0374 21               | 1100.173               | (7/2,9/2,11/2)                                         | 440.446 | (7/2+)               |                                        |                           | $E_{\gamma}$ : Weighted average of 0.0358 20 (1998Ar03 = 0.0361 20)                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
|                                          |                         |                        |                                                        |         |                      |                                        |                           | 0.035 11 (2002Mo46), 0.044 3 (2000Gr35 $-$ 0.044 3), and 0.05<br>2 (1969ArZV $-$ 0.04 2), 0.043 4 (2003ChZV $-$ 0.042 4), 0.031<br>3 (1989Ko26).                                                                                                                                                                                                                                                                                                                                                                           |  |
| 710.82 3                                 | 0.0114 5                | 1003.605               | (9/2 <sup>+</sup> )                                    | 292.805 | (11/2 <sup>+</sup> ) | [M1+E2]                                | 0.033 18                  | E <sub>y</sub> : From 2000Gr35. Others: 710.81 21 (1998Ar03), 710.8 1<br>(1989Ko26), 710.8 (2003ChZV).<br>I <sub>y</sub> : Weighted average of 0.0101 11 (1998Ar03 – 0.0102 11),                                                                                                                                                                                                                                                                                                                                           |  |
|                                          |                         |                        |                                                        |         |                      |                                        |                           | 0.0121 <i>10</i> (2000Gr35 – 0.0119 <i>10</i> ), and 0.015 <i>8</i> (2002Mo46),<br>0.0118 <i>8</i> (2003ChZV – 0.116 probably is a misprint of 0.0116<br><i>8</i> ), 0.011 <i>1</i> (1989Ko26).                                                                                                                                                                                                                                                                                                                            |  |
| 807.36 <sup>‡</sup> 1                    | 0.289 7                 | 1100.173               | (7/2,9/2,11/2)                                         | 292.805 | (11/2+)              |                                        |                           | <ul> <li>E<sub>y</sub>: Others: 807.37 <i>I</i> (2000Gr35), 807.38 <i>5</i> (1998Ar03), 807.355 <i>37</i> (1977Vy02), 807.4 (2003ChZV).</li> <li>I<sub>y</sub>: Weighted average of 0.290 <i>12</i> (1986He06 - 0.292 <i>12</i>), 0.289 <i>18</i> (2000Gr35 - 0.283 <i>18</i>), 0.239 <i>15</i> (1998Ar03 - 0.241 <i>15</i>), 0.27 <i>2</i> (2002Mo46), 0.30 <i>4</i> (1969ArZV - 0.24 <i>3</i>), 0.303 <i>10</i> (2003ChZV - 0.297 <i>10</i>), 0.271 <i>16</i> (1989Ko26), 0.299 <i>7</i> (1981Di14 - 0.316 7)</li> </ul> |  |
| 826.55 <i>5</i>                          | 0.0067 5                | 1119.38                | (7/2,9/2,11/2)                                         | 292.805 | (11/2 <sup>+</sup> ) |                                        |                           | $E_{\gamma}$ : Weighted average of 826.59 5 (2000Gr35), 826.8 2<br>(1989Ko26), 826.47 6 (1998Ar03). Other: 826.5 (2003ChZV).<br>$I_{\gamma}$ : Weighted average of 0.0077 13 (2000Gr35 – 0.0077 13),<br>0.0075 5 (2003ChZV – 0.0074 5), 0.0057 5 (1998Ar03), and<br>0.0070 7 (1988Ko26)                                                                                                                                                                                                                                    |  |
| 867.98 <i>3</i>                          | 0.0118 6                | 867.98                 | (13/2 <sup>+</sup> )                                   | 0.0     | 9/2+                 |                                        |                           | $E_{\gamma}$ : Weighted average of 867.98 <i>3</i> (1998Ar03) and 867.93 <i>3</i> (2000Gr35). Other: 867.9 (2003ChZV).<br>I <sub>\gamma</sub> : Weighted average of 0.0110 <i>11</i> (1998Ar03 – 0.0111 <i>11</i> ) and 0.0125 <i>11</i> (2000Gr35 – 0.0123 <i>11</i> ), 0.0117 8 (2003ChZV –                                                                                                                                                                                                                              |  |
| <sup>x</sup> 880.91 1                    | 0.0041 5                |                        |                                                        |         |                      |                                        |                           | 0.0115 8), and 0.023 13 (2002Mo46).<br>$E_{v}$ : From 2000Gr35. Other: 880.2 3 (1998Ar03).                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                          |                         |                        |                                                        |         |                      |                                        |                           | I <sub>γ</sub> : Weighted average of 0.0029 <i>10</i> (1998Ar03) and 0.0043 <i>4</i> (2000Gr35 – 0.0042 <i>4</i> ).                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| <sup>x</sup> 884.6 3                     | 0.00029 <sup>@</sup> 10 |                        |                                                        |         |                      |                                        |                           | $E_{\gamma}$ : Weak gamma – not observed by 2000Gr35 and suggested for confirmation.                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |

507

<sup>213</sup><sub>84</sub>Po<sub>129</sub>-7

| <sup>213</sup> Bi $\beta^{-}$ decay (45.59 min) | 1998Ar03,1997Wa27,1994Ar23 (continued |
|-------------------------------------------------|---------------------------------------|
|-------------------------------------------------|---------------------------------------|

#### $\gamma$ (<sup>213</sup>Po) (continued)

| ${\rm E_{\gamma}}^{\dagger}$                    | $I_{\gamma}^{\#a}$                | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|-------------------------------------------------|-----------------------------------|------------------------|----------------------|------------------|------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 886.66 <sup>c</sup> 14                          | 0.00101 19                        | 1328.2                 | (7/2,9/2,11/2)       | 440.446          | $(7/2^+)$              | I <sub>γ</sub> : From 0.00102 19 (1998Ar03).                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <sup>x</sup> 897.0 <i>3</i><br>1003.58 <i>3</i> | 0.00031 <sup>@</sup> 9<br>0.053 3 | 1003.605               | (9/2+)               | 0.0              | 9/2+                   | <ul> <li>E<sub>γ</sub>: Weak gamma – not observed by 2000Gr35 and suggested for confirmation.</li> <li>E<sub>γ</sub>: Weighted average of 1003.58 <i>3</i> (1998Ar03), 1003.59 <i>3</i> (2000Gr35), 1003.57 <i>3</i> (1989Ko26). Other: 1003.6 (2003ChZV).</li> <li>I<sub>γ</sub>: Weighted average of 0.050 <i>5</i> (1998Ar03), 0.054 <i>3</i> (2000Gr35 – 0.053 <i>3</i>), and 0.04 <i>I</i> (2002Mo46). Others: 0.0565 <i>13</i> (2003ChZV – 0.0554 <i>13</i>), 0.043 <i>4</i> (1989Ko26).</li> </ul> |
| 1045.70 9                                       | 0.018 <sup>@</sup> 3              | 1045.65                | (9/2+,11/2+)         | 0.0              | 9/2+                   | <ul> <li>E<sub>γ</sub>: Others: 1045.10 40 (2000Gr35), 1045.7 (2003ChZV).</li> <li>I<sub>γ</sub>: Others: 0.015 3 (2003ChZV - 0.15 probably is a misprint), 0.035 19 (2000Gr35 - 0.034 19).</li> </ul>                                                                                                                                                                                                                                                                                                    |
| 1100.17 <i>1</i>                                | 0.252 8                           | 1100.173               | (7/2,9/2,11/2)       | 0.0              | 9/2+                   | <ul> <li>E<sub>γ</sub>: Weighted average of 1100.18 2 (2000Gr35), 1100.12 5 (1998Ar03), 1100.16 2 (1989Ko26), 1100.14 6 (1977Vy02). Other: 1100.2 (2003ChZV).</li> <li>I<sub>γ</sub>: Weighted average of 0.257 <i>16</i> (1998Ar03 - 0.259 <i>16</i>), 0.256 <i>15</i> (2000Gr35 - 0.251 <i>17</i>), 0.259 7 (1981Di14 - 0.274 7), 0.284 <i>17</i> (1989Ko26), 0.219 <i>12</i> (2003ChZV - 0.215 <i>12</i>), and 0.23 2 (2002Mo46).</li> </ul>                                                           |
| 1119.40 6                                       | 0.052 2                           | 1119.38                | (7/2,9/2,11/2)       | 0.0              | 9/2+                   | <ul> <li>E<sub>γ</sub>: Unweighted average of 1119.50 4 (2000Gr35), 1119.29 5 (1998Ar03), 1119.4 1 (1989Ko26). Other: 1119.3 (2003ChZV).</li> <li>I<sub>γ</sub>: Weighted average of 0.050 3 (1998Ar03), 0.052 3 (2000Gr35 - 0.051 3), 0.053 4 (2003ChZV - 0.052 4), 0.04 1 (2002Mo46), and 0.062 6 (1989Ko26).</li> </ul>                                                                                                                                                                                |
| 1328.2 <i>3</i>                                 | 0.00039 <sup>@</sup> 14           | 1328.2                 | (7/2,9/2,11/2)       | 0.0              | 9/2+                   | $E_{\gamma}$ : Weak gamma – not observed by 2000Gr35 and suggested for confirmation.                                                                                                                                                                                                                                                                                                                                                                                                                      |

508

<sup>†</sup> From 1998Ar03, except otherwise noted.

<sup>‡</sup> From 1989Ko26.

#  $\gamma$ -ray intensities were reported with respect to  $\% I\gamma(440)=26.1 \ 3$  in 1986He06, 1998Ar03, 2002Mo46;  $\% I\gamma(440)=25.4 \ 3$  in 2000Gr35, 2003ChZV;  $\% I\gamma(440)=21 \ I$  in 1989Ko26, 1969ArZV;  $\% I\gamma(440)=27.4$  in 1981Di14. All values are normalized with respect to  $\% I\gamma(440)=25.9$  (of this dataset) and listed in the comments, if different.

<sup>@</sup> From 1998Ar03.

& From ce measurements of 1955Ma61 and 1969DzZZ, except otherwise noted.

<sup>a</sup> Absolute intensity per 100 decays.

<sup>b</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>c</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.



#### <sup>213</sup>Bi $\beta^-$ decay (45.59 min) 1998Ar03,1997Wa27,1994Ar23
# $^{217}\mathbf{Rn}~\alpha$ decay

Parent: <sup>217</sup>Rn: E=0.0;  $J^{\pi}=9/2^+$ ;  $T_{1/2}=0.59$  ms 6;  $Q(\alpha)=7887.2$  29;  $\%\alpha$  decay=100 <sup>217</sup>Rn- $J^{\pi}$ : From 2018Ko01 (A=217 evaluation).

<sup>217</sup>Rn-T<sub>1/2</sub>: Weighted average of 0.54 ms 5 (1961Ru06) and 0.67 ms 6 (2018Sa45). Others: ~1 ms (1949Me54), 1.0 ms *I* (1951Me10), and 0.54 ms 5 in 2018Ko01 (A=217 evaluation).

 $\alpha\gamma$ : no (7735 $\alpha$ )( $\gamma$ ,L x ray) (1961Ru06).

Another  $\alpha$  peak at 7.50 MeV with an intensity of 0.1% was observed by 1961Ru06. The energy difference from the 7741-keV  $\alpha$ , including the recoil, yields 243 keV for the level energy, if the 7500-keV  $\alpha$  is from <sup>217</sup>Rn decay. The first excited state in <sup>213</sup>Po has been observed at 293 keV in <sup>213</sup>Bi decay. The observed  $\alpha$  peak at 7.50 MeV may be due to an impurity; no positive identification could be made by 1961Ru06.

# <sup>213</sup>Po Levels

| $\frac{\mathrm{E(level)}}{0.0}$ | $\frac{J^{\pi}}{9/2^+}$         | $\frac{\mathrm{T}_{1/2}}{3.706\ \mu\mathrm{s}\ I}$ | $\overline{J^{\pi},T}$   | Comments<br>1/2: From Adopted Levels.                                                                                                                                                                                                                                                                                                      |
|---------------------------------|---------------------------------|----------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |                                 |                                                    |                          | $\alpha$ radiations                                                                                                                                                                                                                                                                                                                        |
| <u>Εα</u><br>7738 <i>3</i>      | $\frac{\mathrm{E(level)}}{0.0}$ | $\frac{\mathrm{I}\alpha^{\ddagger}}{100}$          | HF <sup>†</sup><br>1.7 2 | Comments $E\alpha$ : Weighted average of 7741 4 (1982Bo04 – $E\alpha$ =7739 keV 4 in 1982Bo04 is increased by 2 keV, as recommended by 1991Ry01 for a change in calibration energy) and 7735 4 (1961Ru06). Other measured values: $E\alpha$ =7740 10 (2018Sa45 – 7.74 MeV 1), 7740 30 (1951Me10 – 7.74 MeV 3), 7740 (1949Me54 – 7.74 MeV). |

<sup>†</sup> Using  $r_0(^{213}Po)=1.5632\ 26$ , unweighted average of  $r_0(^{212}Po)=1.5658\ 6$  (assuming 1.56580 59 in 2020Si16 – listed as 1.5658 59) and  $r_0(^{214}Po)=1.5606\ 7\ (2020Si16)$ .

<sup>‡</sup> Absolute intensity per 100 decays.

### $^{208}$ Pb( $^{18}$ O,X $\gamma$ ) 2011As05

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster); Mar 05, 2011.

E=85 MeV from Vivitron tandem of IReS (Strasbourg). Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$  coin,  $\gamma(\theta)$  (ADOs) using Euroball IV array with 71 Compton- suppressed Ge detector systems (15 clusters, 26 clovers and 30 tapered single-Ge detectors; cluster is composed of seven large volume Ge crystals and a clover of four smaller Ge crystals; thus a total 239 individual Ge crystals). Some revisions proposed for  $J^{\pi}$  assignments of low-spin levels of <sup>213</sup>Po populated in the  $\beta^-$  decay of <sup>213</sup>Bi.

Measured  $\sigma \approx 0.3$  mb for the production of <sup>213</sup>Po in the reaction used. From this low cross section, 2011As05 proposed that levels in <sup>213</sup>Po were populated by neutron emission of high-lying levels in <sup>214</sup>Po for which the production cross section  $\sigma$ =0.5-1 mb.

Proposed revisions of  $J^{\pi}$  assignments in <sup>213</sup>Bi decay: 293 level: 7/2<sup>+</sup> instead of (11/2<sup>+</sup>); 440 level: 11/2<sup>+</sup> instead of (7/2<sup>+</sup>); 868 level: 9/2<sup>+</sup> instead of (13/2<sup>+</sup>), for  $J^{\pi}=13/2^+$ , it was expected to be populated in the 2011As05 work.

### <sup>213</sup>Po Levels

| E(level) <sup>†</sup>                                                                                                                                                         | J <sup>π#</sup>                                                                                               | Comments                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $\begin{array}{r} 0.0^{\ddagger} \\ 645.6^{\ddagger} 5 \\ 1068.4^{\ddagger} 2 \\ 1357.4^{\ddagger} 2 \\ 1412.9 5 \\ 1503.6 5 \\ 1619.1 5 \\ 1779.6 4 \\ 2017.2 7 \end{array}$ | $\frac{3}{9/2^{+}}$ $\frac{13/2^{+}}{17/2^{+}}$ $\frac{21/2^{+}}{(25/2^{+})}$ $\frac{(25/2^{+})}{(23/2^{+})}$ | Possible configuration: $\pi$ (h <sup>+2</sup> <sub>9/2</sub> ) $\otimes \nu$ (g <sup>+1</sup> <sub>9/2</sub> ), $\pi$ h <sup>2</sup> <sub>9/2</sub> $\otimes \nu$ i <sub>11/2</sub> (2011As05 – probably a misprint). |

<sup>†</sup> From  $E\gamma$  data.

<sup>‡</sup> Yrast sequence. Possible configuration:  $9/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ),  $13/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ) $\otimes 2^+$ ,  $17/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ) $\otimes 4^+$ , and  $21/2^+$ :  $\nu$  ( $g_{9/2}^{+1}$ ) $\otimes 6^+$ .

<sup>#</sup> Proposed by 2011As05 based on  $\gamma$ -ray multipole assignments.

# $\gamma(^{213}\text{Po})$

| $E_{\gamma}^{\dagger}$ | Iγ     | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>‡</sup> | $\alpha^{\#}$ | Comments                                                                                                                                                                                                     |
|------------------------|--------|------------------------|----------------------|------------------|----------------------|--------------------|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 146.2 5                | 8 2    | 1503.6                 | (25/2+)              | 1357.4           | 21/2+                | (E2)               | 1.512 29      | $\alpha(\exp)=1.5\ 5\ (0.15\ 5\ in\ 2011As05\ probably\ a$ misprint).                                                                                                                                        |
|                        |        |                        |                      |                  |                      |                    |               | Mult.: Proposed by 2011As05 based on $\alpha(exp)$ , extracted from intensity imbalances measured in spectra in double coincidence with the 146 keV transition and either the 423 or the 646 keV transition. |
| 261.7 5                | 4.8 14 | 1619.1                 | $(23/2^+)$           | 1357.4           | $21/2^{+}$           |                    |               |                                                                                                                                                                                                              |
| 289.0 1                | 60 10  | 1357.4                 | $21/2^{+}$           | 1068.4           | $17/2^{+}$           | Q                  |               | $R_{ADO} = 1.3 2.$                                                                                                                                                                                           |
| 344.5 5                | 15 5   | 1412.9                 |                      | 1068.4           | $17/2^{+}$           |                    |               |                                                                                                                                                                                                              |
| 398.1 5                | 3.5 12 | 2017.2                 |                      | 1619.1           | $(23/2^+)$           |                    |               |                                                                                                                                                                                                              |
| 422.8 1                | 100    | 1068.4                 | $17/2^{+}$           | 645.6            | $13/2^{+}$           | Q                  |               | R <sub>ADO</sub> =1.18 10.                                                                                                                                                                                   |
| 645.6 5                |        | 645.6                  | $13/2^{+}$           | 0.0              | $9/2^{+}$            | Q                  |               | R <sub>ADO</sub> =1.25 10.                                                                                                                                                                                   |
| 711.2 3                | 24 6   | 1779.6                 |                      | 1068.4           | $17/2^{+}$           |                    |               |                                                                                                                                                                                                              |

<sup>†</sup> 2011As05 state uncertainty as 0.1-0.5 keV. The evaluator assigns as follows: 0.1 keV for intense  $\gamma$  rays (I $\gamma$ >40), 0.3 keV for I $\gamma$ =20-40, 0.5 keV for I $\gamma$ <20.

<sup>‡</sup> Assigned by the evaluator, except where otherwise noted, based on the angular anisotropy ratio,  $R_{ADO} = I\gamma(39.3^{\circ})/I\gamma(76.6^{\circ})$ , with respect to the beam axis for the most intense  $\gamma$  rays. It appears that for a quadrupole transition  $R_{ADO} \sim 1.2$  was expect, not

# <sup>208</sup>Pb(<sup>18</sup>O,Xγ) 2011As05 (continued)

# $\gamma$ (<sup>213</sup>Po) (continued)

## mentioned in 2011As05.

<sup>#</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

#### Adopted Levels, Gammas

 $Q(\beta^{-}) = -884 6$ ; S(n) = 6023 5; S(p) = 3499 5;  $Q(\alpha) = 9254 5 2021$  Wal6

Assignment: daughter of <sup>229</sup>Np, <sup>225</sup>Pa, <sup>221</sup>Ac, and <sup>217</sup>Fr (1968Ha14,1970Bo13).

Induced fission data from  $^{209}$ Bi( $\alpha$ ,f) reaction were taken, and fission barrier parameters were deduced by 1982Gr21, 1982Gr24, 1983Gr17, 1984Gr06, 1984Gr13, 1984Ig01, 1984It01, 1985It01, 1986Be20, 1986It01, 1987It03, and 1988Gr16.

2020De36: <sup>238</sup>U(<sup>48</sup>Ca,X), E=233.3 MeV; measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative}}$ =54.0 nb/sr *12* for <sup>213</sup>At.

2015Ba20: <sup>136</sup>Xe + <sup>208</sup>Pb, E(c.m.)=450 MeV, measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative yield}}=0.384$  mb 77 and  $\sigma_{\text{independent yield}}=0.384$  mb 77 for <sup>213</sup>At.

See 1972Mo10, 1973Ba19, 1974Ba87, 1977Ha41, 1977Pr10, 1979Ad07, 1979Ig04, 1980Ig02, 1983Br06, 1983Br15, 1984Ni09, and 1984Ro23 for calculations of fission barriers and probabilities for decay by fission. Effective moment of inertia was calculated by 1982Ad01.

# <sup>213</sup>At Levels

#### Cross Reference (XREF) Flags

A  $^{217}$ Fr  $\alpha$  decay

 $B = \frac{208 \text{Pb}(^7\text{Li},2n\gamma)}{^{209}\text{Bi}(^{18}\text{O},^{14}\text{C}\gamma)}$ 

C  $^{209}\text{Bi}(^7\text{Li},p2n\gamma),^{209}\text{Bi}(^8\text{He},4n\gamma)$ 

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$                    | T <sub>1/2</sub>         | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|---------------------------------------|--------------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 9/2-                                  | 125 ns 6                 | ABC  | $%\alpha$ =100<br>Possible %ε decay to <sup>213</sup> Po g.s. is expected to be <2.5×10 <sup>-12</sup> from log <i>ft</i> >5.1.<br>J <sup>π</sup> : favored α decay to <sup>209</sup> Bi g.s. (J <sup>π</sup> =9/2 <sup>-</sup> ).<br>Configuration: π (h <sup>+1</sup> <sub>9/2</sub> ).<br>T <sub>1/2</sub> : from 1981Bo29. Other measurements: <2 s (1968Ha14), 110 ns<br>(1975LiZH), 110 ns 20 (1970Bo13, 1976Da18).<br>Probability for decay by <sup>8</sup> Be emission relative to α emission was calculated by<br>1986Pi11. See 1973Ma52 for theoretical calculations of α-decay probabilities.<br>See also 1976De25 for absolute reduced Γ(α) obtained by analyzing <sup>209</sup> Bi(α) |
|                       |                                       |                          |      | reaction cross sections. $\alpha$ clustering effects were studied by 1982Ka37.<br>E $\alpha$ =9080 5 (1988Hu08), 9080 12 (1970Bo13), 9060 20 (1968Ha14).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 340.5 <i>3</i>        | (7/2 <sup>-</sup> ,9/2 <sup>-</sup> ) | ≤5.5 <sup>&amp;</sup> ns | В    | J <sup><math>\pi</math></sup> : 340.5 $\gamma$ (M1,E2) to 9/2 <sup>-</sup> state. Dominant $\pi$ (f <sup>+1</sup> <sub>7/2</sub> ) with possible $\pi$ (h <sup>+1</sup> <sub>0/2</sub> ) $\otimes$ 2 <sup>+</sup> admixture.                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 724.6 3               | (13/2 <sup>-</sup> )                  | ≤5.5 <sup>&amp;</sup> ns | BC   | $J^{\pi}$ : 724.6 $\gamma$ (E2) to 9/2 <sup>-</sup> state.<br>Possible configuration: $\pi$ (h <sub>0</sub> <sup>+1</sup> ) $\otimes$ 2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1111.3 5              | $(15/2^{-})$                          | ≤5.5 <sup>&amp;</sup> ns | BC   | $J^{\pi}$ : 386.7 $\gamma$ (M1+E2) to (13/2 <sup>-</sup> ) state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1129.7 5              | (17/2 <sup>-</sup> )                  | ≤5.5 <sup>&amp;</sup> ns | BC   | J <sup><math>\pi</math></sup> : 405 $\gamma$ (E2) to (13/2 <sup>-</sup> ) state.<br>Possible configuration: $\pi$ (h <sup>+1</sup> <sub>02</sub> ) $\otimes$ 4 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 1318.1 6              | $(19/2^{-})$                          | ≤5.5 <sup>&amp;</sup> ns | BC   | $J^{\pi}$ : 188.4 $\gamma$ D to (17/2 <sup>-</sup> ) state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 1318.1+x              |                                       | 110 ns 17                | В    | E(level), $J^{\pi}$ : 1358 23 (2021Ko07 – NUBASE) and 25/2 <sup>-</sup> from systematics (2021Ko07 – NUBASE).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                       |                                       |                          |      | $T_{1/2}$ : from 386.7 $\gamma$ (t) in <sup>208</sup> Pb( <sup>7</sup> Li,2n $\gamma$ ) (1980Sj01 – also 113 ns <i>10</i> from 405 $\gamma$ (t) measurements).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1318.1+y              | $(27/2^{-})^{\#}$                     | 85 <sup>@</sup> ns       | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1681+y                | $(29/2^+)^{\#}$                       |                          | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1838+y                | $(33/2^+)^{\#}$                       | 82 <sup>@</sup> ns       | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2194+y                | $(35/2^{-})^{\#}$                     |                          | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2570+y                | (37/2 <sup>-</sup> ) <sup>#</sup>     |                          | С    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2620+y                | (43/2 <sup>-</sup> ) <sup>#</sup>     | 34.7 <sup>@</sup> ns     | С    | possible configuration: $\pi$ ([h <sup>+2</sup> <sub>9/2</sub> ,f <sup>+1</sup> <sub>7/2</sub> ] <sub>23/2</sub> -) $\nu$ ([(g <sup>+1</sup> <sub>9/2</sub> ,i <sup>+1</sup> <sub>11/2</sub> ] <sub>10</sub> +) (2003LaZZ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

T<sub>1/2</sub>: A low-energy (50-keV) unobserved transition was postulated to explain

#### <sup>213</sup>At Levels (continued)

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-----------------------|--------------------|------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2926+y                | (49/2+)#           | 45 μs 4          | С    | the observed isomer (2003LaZZ – ( <sup>7</sup> Li,p2n $\gamma$ )).<br>E(level): 2998 27 (2021Ko07 – NUBASE).<br>possible configuration: $\pi$ ([h <sup>2</sup> <sub>9/2</sub> ,i <sup>+1</sup> <sub>13/2</sub> ] <sub>29/2+</sub> ) $\nu$ ([g <sup>+1</sup> <sub>9/2</sub> ,i <sup>+1</sup> <sub>11/2</sub> ] <sub>10+</sub> )<br>(2003LaZZ). 306 $\gamma$ [E3] to 43/2 <sup>-</sup> state.<br>T <sub>1/2</sub> : From 306 $\gamma$ (t) (2003LaZZ – ( <sup>7</sup> Li,p2n $\gamma$ )). |

<sup>†</sup> From E $\gamma$ . Energy levels at 1318.1+y keV and above are from <sup>209</sup>Bi(<sup>7</sup>Li,p2n $\gamma$ ). These level energies are about 235 keV less than the level energy presented in 2003LaZZ. Evaluator labeled these levels with '+y', because placement of some highly converted low energy  $\gamma$ -lines between (27/2<sup>-</sup>) and 19/2<sup>-</sup> states are not clear and the evaluator placed those gammas as unplaced in the <sup>209</sup>Bi(<sup>7</sup>Li,p2n $\gamma$ ),<sup>209</sup>Bi(<sup>8</sup>He,4n $\gamma$ ) dataset.

<sup>‡</sup> From  $\gamma$  transition multipolarity, deduced from measured  $\gamma$ -ray angular distribution in <sup>208</sup>Pb(<sup>7</sup>Li,2n $\gamma$ ), except otherwise noted.

<sup>#</sup> From 2003LaZZ (<sup>7</sup>Li,p2n $\gamma$ ), detailed arguments are not available. It appears that the assignment was based on the placement of gamma transitions in the level scheme following the decay of 2626+y isomer (J<sup> $\pi$ </sup>=(49/2<sup>+</sup>)), shell model calculations, and comparison with a comparable isomer at 4771.4 (J<sup> $\pi$ </sup>=(25<sup>-</sup>)), T<sub>1/2</sub>=152  $\mu$ s 5, in <sup>212</sup>At.

<sup>@</sup> From time-difference spectra by gating on  $\gamma$ -ray transition above and below the level of interest in <sup>209</sup>Bi(<sup>7</sup>Li,p2n $\gamma$ ) (2003LaZZ). <sup>&</sup> From <sup>208</sup>Pb(<sup>7</sup>Li,2n $\gamma$ ), <sup>209</sup>Bi(<sup>18</sup>O,<sup>14</sup>C $\gamma$ ) (1980Sj01).

 $\gamma(^{213}\text{At})$ 

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | $I_{\gamma}$ | $E_f$    | $\mathrm{J}_f^\pi$   | Mult. <sup>#</sup> | $\alpha^{@}$ | Comments                                                                                                                                                                                                                        |
|------------------------|----------------------|------------------------|--------------|----------|----------------------|--------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 340.5                  | $(7/2^{-}, 9/2^{-})$ | 340.5 3                | 100          | 0.0      | 9/2-                 | (M1.E2)            | 0.24 15      |                                                                                                                                                                                                                                 |
| 724.6                  | $(13/2^{-})$         | 724.6 3                | 100          | 0.0      | 9/2-                 | (E2)               | 0.01473      |                                                                                                                                                                                                                                 |
| 1111.3                 | $(15/2^{-})$         | 386.7 <i>3</i>         | 100          | 724.6    | $(13/2^{-})$         | (M1+E2)            | 0.17 11      |                                                                                                                                                                                                                                 |
| 1129.7                 | (17/2 <sup>-</sup> ) | (18.4)                 |              | 1111.3   | (15/2 <sup>-</sup> ) |                    |              | Transition was not observed. Its existence<br>is inferred from the observed<br>(188.4)(386.7 $\gamma$ ) coincidences. Intensity<br>balance at 1111.3 level yields<br>I( $\gamma$ +ce)(18.4)/I $\gamma$ (405.1 $\gamma$ )<1.2 4. |
|                        |                      | 405.1 <i>3</i>         | 100          | 724.6    | $(13/2^{-})$         | (E2)               | 0.0568       |                                                                                                                                                                                                                                 |
| 1318.1                 | $(19/2^{-})$         | 188.4 <i>3</i>         | 100          | 1129.7   | $(17/2^{-})$         | D                  |              |                                                                                                                                                                                                                                 |
| 1681+y                 | $(29/2^+)$           | 363 <sup>‡</sup>       | 100          | 1318.1+y | $(27/2^{-})$         |                    |              |                                                                                                                                                                                                                                 |
| 1838+y                 | $(33/2^+)$           | 156 <sup>‡</sup>       |              | 1681+y   | $(29/2^+)$           |                    |              |                                                                                                                                                                                                                                 |
| 2                      | ,                    | 520 <sup>‡</sup>       |              | 1318.1+y | (27/2-)              |                    |              |                                                                                                                                                                                                                                 |
| 2194+y                 | (35/2-)              | 356‡                   | 100          | 1838+y   | $(33/2^+)$           |                    |              |                                                                                                                                                                                                                                 |
| 2570+y                 | $(37/2^{-})$         | 376 <sup>‡</sup>       | 100          | 2194+y   | $(35/2^{-})$         |                    |              |                                                                                                                                                                                                                                 |
| 2620+y                 | (43/2 <sup>-</sup> ) | (50)                   |              | 2570+y   | (37/2 <sup>-</sup> ) |                    |              | $E_{\gamma}$ : A low-energy (50-keV) unobserved γ<br>transition was postulated to explain the<br>observed isomer (2003LaZZ –<br>( <sup>7</sup> Li,p2nγ)).                                                                       |
| 2926+y                 | $(49/2^+)$           | 306 <sup>‡</sup>       | 100          | 2620+y   | $(43/2^{-})$         | [E3]               | 0.707        | B(E3)(W.u.)=23 2                                                                                                                                                                                                                |
|                        |                      |                        |              | -        |                      |                    |              | The large B(E3)(W.u) value implies $\Delta J=\Delta L=3$ transition, which is                                                                                                                                                   |

<sup>†</sup> From <sup>208</sup>Pb(<sup>7</sup>Li,2n $\gamma$ ), except otherwise noted.

<sup> $\pm$ </sup> From <sup>209</sup>Bi(<sup>7</sup>Li,p2n $\gamma$ ), <sup>209</sup>Bi(<sup>8</sup>He,4n $\gamma$ ).

Continued on next page (footnotes at end of table)

consistent with the  $\pi$  (i<sup>+1</sup><sub>13/2</sub>)  $\rightarrow \pi$ 

 $(f_{7/2}^{+1})$  orbitals change.

# $\gamma(^{213}\text{At})$ (continued)

<sup>#</sup> From <sup>208</sup>Pb(<sup>7</sup>Li,2n $\gamma$ ) (1980Sj01), based on  $\gamma(\theta)$  and RUL, except where otherwise noted.

<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

**Adopted Levels, Gammas** 



<sup>213</sup><sub>85</sub>At<sub>128</sub>

Legend

# $^{217}{\rm Fr}\,\alpha$ decay

Parent: <sup>217</sup>Fr: E=0.0;  $J^{\pi}=9/2^{-}$ ;  $T_{1/2}=22 \ \mu s$  5;  $Q(\alpha)=8469 \ 4$ ; % $\alpha \ decay=100$  $^{217}$ Fr-J<sup> $\pi$ </sup>,T<sub>1/2</sub>: From 2018Ko01 (A=217 evaluation). <sup>217</sup>Fr-Q( $\alpha$ ): From 2021Wa16.

# <sup>213</sup>At Levels

| $\frac{\mathrm{E(level)}}{0.0}$ | $\frac{J^{\pi}}{9/2^{-}}$ | $\frac{T_{1/2}}{125 \text{ ns } 6}$ | $\overline{J^{\pi},T_{1/2}}$ | Comments<br>,T <sub>1/2</sub> : From Adopted Levels.                                                                                                      |  |  |  |  |  |  |  |  |
|---------------------------------|---------------------------|-------------------------------------|------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|                                 |                           |                                     | ·                            | $\alpha$ radiations                                                                                                                                       |  |  |  |  |  |  |  |  |
| $E\alpha$                       | E(level)                  | $I\alpha^{\mp}$                     | $HF^{\dagger}$               | Comments                                                                                                                                                  |  |  |  |  |  |  |  |  |
| 8313 5                          | 0.0                       | 100                                 | 1.2 3                        | E $\alpha$ : Weighted average of 8315 8 (1970Bo13) and 8312 5 (1988Hu08), uncertainty is the lower input value. Other measured value: 8310 20 (1968Ha14). |  |  |  |  |  |  |  |  |

<sup>†</sup> Using  $r_0(^{213}\text{At})=1.5656$  5, unweighted average of  $r_0(^{212}\text{Po})=1.5658$  6 (Perhaps 1.5658 59 in 2020Si16 is a misprint of 1.56580 59) and  $r_0(^{214}Rn)=1.5655$  13 (2020Si16). <sup>‡</sup> Absolute intensity per 100 decays.

#### $^{208}$ Pb(<sup>7</sup>Li,2n $\gamma$ ), $^{209}$ Bi( $^{18}$ O, $^{14}$ C $\gamma$ ) 1980Sj01,1981Bo29

1980Sj01: <sup>208</sup>Pb(<sup>7</sup>Li,2n $\gamma$ ) E=30-34 MeV, (pulsed beam); measured: E $\gamma$ , I $\gamma$ , E $\alpha$ ,  $\alpha\gamma$ ,  $\gamma\gamma$ ,  $\gamma(\theta)$ . 1981Bo29: <sup>209</sup>Bi(<sup>18</sup>O,<sup>14</sup>C $\gamma$ ) E=79 MeV (pulsed beam); measured: E $\alpha$ , E $\gamma$ , T<sub>1/2</sub>. Level scheme was not presented.

Others:

- $2009Vi09 {}^{208}Bi({}^{9}Li,4n\gamma)$  measured fusion cross section.
- 2013Vi01  $^{208}$ Bi( $^{11}$ Li, $^{6}$ n $\gamma$ ) measured fusion cross section.

 $\frac{2015017 - 206}{2015} = \frac{206}{16} \frac{18}{18} = \frac{180}{18} = \frac{1800}{18} \frac{1000}{18} = \frac{1200}{18} \frac{1000}{18} = \frac{1200}{18} \frac{1000}{18} = \frac{1200}{18} = \frac{1200}{18} \frac{1000}{18} = \frac{1200}{18} = \frac{1$ 

# <sup>213</sup>At Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$                    | T <sub>1/2</sub>     | Comments                                                                                                                                                                                                                                                                  |
|-----------------------|---------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 9/2-                                  | 125 ns 6             | Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> .<br>T <sub>1/2</sub> : From Adopted Levels.                                                                                                                                                                         |
| 340.5 <i>3</i>        | (7/2 <sup>-</sup> ,9/2 <sup>-</sup> ) | ≤5.5 <sup>#</sup> ns |                                                                                                                                                                                                                                                                           |
| 724.6 <i>3</i>        | 13/2-                                 | ≤5.5 <sup>#</sup> ns | Configuration: $\pi$ (h <sup>+1</sup> <sub>0/2</sub> $\otimes$ 2 <sup>+</sup> .                                                                                                                                                                                           |
| 1111.3 5              | 15/2-                                 | ≤5.5 <sup>#</sup> ns | 712                                                                                                                                                                                                                                                                       |
| 1129.7 5              | $(17/2^{-})$                          | ≤5.5 <sup>#</sup> ns | Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> $\otimes$ 4 <sup>+</sup> .                                                                                                                                                                                           |
| 1318.1 6              | $(19/2^{-})$                          | ≤5.5 <sup>#</sup> ns | 7 <u>1</u>                                                                                                                                                                                                                                                                |
| 1318.1+x              |                                       | 110 ns <i>17</i>     | E(level): Other: 1358 23 (2021Ko07 – NUBASE). All gammas, except the 340.5-keV $\gamma$ , had delayed components. The 386.7-, 405.1- and 724.6-keV gammas also showed prompt peak in their time spectra; however, existence of any prompt component in 188.4-keV $\gamma$ |

could not be excluded (1980Sj01). The 110-ns state, therefore, is at or above 1318.1 keV.  $T_{1/2}$ : from  $\tau$ =159 ns 25 (386.7 $\gamma$ )(t) (1980Sj01). The authors also measured (405 $\gamma$ )(t) and obtained  $\tau$ =163 ns 14 for its <sup>213</sup>At component and  $\tau$ =25 ns 9 for the <sup>212</sup>Po component.

<sup>†</sup> Deduced by evaluator from a least square fit to the  $\gamma$ -ray energies.

<sup>‡</sup> Assignments are from 1980Sj01, based on  $\gamma$ -ray multipolarity deduced from  $\gamma(\theta)$ .

<sup>#</sup> From 1980Sj01.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger}$ | E <sub>i</sub> (level) | $\mathrm{J}_i^\pi$                    | $\mathbf{E}_{f}$ | ${ m J}_f^\pi$       | Mult. <sup>#</sup> | α <sup>@</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------|-------------------------|------------------------|---------------------------------------|------------------|----------------------|--------------------|----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (18.4)                 |                         | 1129.7                 | (17/2 <sup>-</sup> )                  | 1111.3           | 15/2-                |                    |                | Transition was not observed. Its existence is<br>inferred from the observed (188.4)(386.7 $\gamma$ )<br>coincidences (1980Si01)                                                                                                                                                                                                                                                                                        |
| 188.4 <i>3</i>         | 13 2                    | 1318.1                 | (19/2 <sup>-</sup> )                  | 1129.7           | (17/2 <sup>-</sup> ) | D                  |                | A <sub>2</sub> =-0.21 7 (1980Sj01)<br>It was not possible to exclude the prompt<br>component of 188.4γ due to higher<br>Compton background at this energy region<br>(1980Sj01).                                                                                                                                                                                                                                        |
| 340.5 <i>3</i>         | 40 4                    | 340.5                  | (7/2 <sup>-</sup> ,9/2 <sup>-</sup> ) | 0.0              | 9/2-                 | (M1,E2)            | 0.24 15        | $A_2 = +0.14 \ 4 \ (1980Sj01)$<br>E <sub>v</sub> : Other: 340.6 (1981Bo29).                                                                                                                                                                                                                                                                                                                                            |
| 386.7 <i>3</i>         | 27 3                    | 1111.3                 | 15/2-                                 | 724.6            | 13/2-                | (M1+E2)            | 0.17 11        | $A'_{2} = -0.35 \ 6 \ (1980Sj01)$<br>E <sub>v</sub> : Other: 388.8 (1981Bo29).                                                                                                                                                                                                                                                                                                                                         |
| 405.1 3                | 33 9                    | 1129.7                 | (17/2 <sup>-</sup> )                  | 724.6            | 13/2-                | (E2)               | 0.0568         | A <sub>2</sub> =+0.21 5 (1980Sj01 – for doublet)<br>E <sub><math>\gamma</math></sub> : Other: 405.1 (1981Bo29).<br>I <sub><math>\gamma</math></sub> : $\gamma$ overlapped with 405-keV transition in<br><sup>212</sup> Po, and I $\gamma$ =58 was measured for the<br>total peak. The <sup>213</sup> At and <sup>212</sup> Po<br>components were deduced by 1980Sj01<br>from $\gamma\gamma$ -coincidence measurements. |
| 724.6 3                | 100 10                  | 724.6                  | 13/2-                                 | 0.0              | 9/2-                 | (E2)               | 0.01473        | $A_2 = +0.28 5 (1980Sj01)$<br>$E_{\gamma}$ : Other: 725.2 (1981Bo29).                                                                                                                                                                                                                                                                                                                                                  |

 $\gamma(^{213}\text{At})$ 

# <sup>208</sup>Pb(<sup>7</sup>Li,2nγ),<sup>209</sup>Bi(<sup>18</sup>O,<sup>14</sup>Cγ) **1980Sj01,1981Bo29** (continued)

# $\gamma(^{213}\text{At})$ (continued)

<sup>†</sup> From 1980Sj01. Assignments to <sup>213</sup>At were made from the observed (9.08-MeV  $\alpha$  from <sup>213</sup>At g.s.)( $\gamma$ ) and  $\gamma\gamma$ -coincidences.

<sup>‡</sup> Relative photon intensity, from 1980Sj01, normalized to  $I\gamma$ =100 for 724.6 $\gamma$ .

<sup>&</sup>lt;sup>#</sup> From 1980Sj01 based on  $\gamma$ -ray angular distributions by assuming that the states were aligned and that the dominant  $\gamma$  rays proceed via yrast levels by stretched transitions. Lifetime information was considered to eliminate higher multipolarities. (M1,E2) multipolarities in 1980Sj01 are presented as (M1+E2) here.

<sup>&</sup>lt;sup>(a)</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

# <sup>209</sup>Bi(<sup>7</sup>Li,p2nγ),<sup>209</sup>Bi(<sup>8</sup>He,4nγ) 2003LaZZ,2005Ga46

Other:  $2004\text{Da}23 - {}^{209}\text{Bi}({}^{7}\text{Li},p2n\gamma)$  – measured fusion cross section.

2003LaZZ: <sup>209</sup>Bi(<sup>7</sup>Li,p2n $\gamma$ ) E=48 MeV; Detector: CAESAR array, consisting of six Compton-suppressed HPGe detector and two LEPS detectors, an ADC clock; measured: E $\gamma$ ,  $\gamma$ - $\gamma$  coin, T<sub>1/2</sub>.

2005Ga46: <sup>209</sup>Bi(<sup>8</sup>He,4nγ) E=28 MeV; Detector: EXOGAM array, composed of four Compton suppressed Ge Clover detectors; Measured: Eγ. Level scheme not given.

### <sup>213</sup>At Levels

| E(level) <sup>†</sup>              | $J^{\pi \ddagger}$                                                                                               | T <sub>1/2</sub>     | Comments                                                                                                                                                                                                                                                                                                                                                                                                |
|------------------------------------|------------------------------------------------------------------------------------------------------------------|----------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0<br>725<br>1112<br>1130<br>1319 | 9/2 <sup>-</sup><br>(13/2 <sup>-</sup> )<br>(15/2 <sup>-</sup> )<br>(17/2 <sup>-</sup> )<br>(19/2 <sup>-</sup> ) | 125 ns 6             | T <sub>1/2</sub> : From Adopted Levels.                                                                                                                                                                                                                                                                                                                                                                 |
| 1319+y                             | (27/2 <sup>-</sup> ) <sup>#</sup>                                                                                | 85 <sup>@</sup> ns   | E(level): In 2003LaZZ, this level energy is presented as (1554) keV, can be obtained combining $\gamma$ -rays, presented as unplaced in this dataset, and 1319 keV level as 1319+92+105+(38)=1554 or 1319+92+55+51=1556.<br>T <sub>1/2</sub> : From $\tau$ =122 ns (2003LaZZ).                                                                                                                          |
| 1682+y                             | $(29/2^+)^{\#}$                                                                                                  | -                    | E(level): (1917) keV in 2003LaZZ.                                                                                                                                                                                                                                                                                                                                                                       |
| 1839+y                             | $(33/2^+)^{\#}$                                                                                                  | 82 <sup>@</sup> ns   | E(level): (2073) keV in 2003LaZZ.<br>T <sub>1/2</sub> : From $\tau$ =118 ns (2003LaZZ).                                                                                                                                                                                                                                                                                                                 |
| 2195+y                             | $(35/2^{-})^{\#}$                                                                                                |                      | E(level): (2429)  keV in  2003LaZZ.                                                                                                                                                                                                                                                                                                                                                                     |
| 2571+y                             | $(37/2^{-})^{\#}$                                                                                                |                      | E(level): (2805) keV in 2003LaZZ.                                                                                                                                                                                                                                                                                                                                                                       |
| 2621+y                             | (43/2 <sup>-</sup> ) <sup>#</sup>                                                                                | 34.7 <sup>@</sup> ns | E(level): (2855) keV in 2003LaZZ.<br>$T_{1/2}$ : From $\tau$ =50 ns (2003LaZZ).<br>Possible configuration: $\pi$ ([h <sub>9/2</sub> ,t <sup>+1</sup> ] <sub>23/2</sub> -) $\nu$ ([g <sub>9/2</sub> ,i <sub>11/2</sub> ] <sub>10</sub> +) (2003LaZZ).<br>$T_{1/2}$ : A low-energy (50-keV) unobserved transition was postulated to explain the observed isomer (2003LaZZ).                               |
| 2927+у                             | (49/2 <sup>+</sup> ) <sup>#</sup>                                                                                | 45 μs 4              | E(level): Other: 2998 27 (2021K007 – NUBASE). (3161) keV in 2003LaZZ.<br>Possible configuration: $\pi$ ( $[h_{9/2}^{+2}, i_{13/2}^{+1}]_{29/2^+}$ ) $\nu$ ( $[g_{9/2}^{+1}, i_{11/2}^{+1}]_{10^+}$ ) (2003LaZZ).<br>T <sub>1/2</sub> : From $\tau$ =65 $\mu$ s 6, 306 $\gamma$ (t) (2003LaZZ – preliminary result).<br>%Isomeric production ratio=4.7 5 (2013Bo18) from <sup>238</sup> U fragmentation. |

<sup>†</sup> Deduced by evaluator from a least square fit to the  $\gamma$ -ray energies, assuming  $\Delta E=1$  keV for all  $E\gamma$ . Levels above  $19/2^-$  state, 1319 keV, are labeled adding '+x' by the evaluator due to premature placements of highly converted low energy  $\gamma$ -lines between  $(27/2^-)$  and  $19/2^-$  states. Those low energy  $\gamma$ -lines are presented as unplaced here in the dataset.

<sup>‡</sup> From Adopted Levels, except where otherwise noted.

<sup>#</sup> From 2003LaZZ, detailed arguments are not available. It appears that the assignment was based on the placement of gamma transitions in the level scheme following the decay of 2626+y isomer  $(J^{\pi}=(49/2^+))$ , shell model calculations, and comparison with a comparable isomer at 4771.4  $(J^{\pi}=(25^-))$ ,  $T_{1/2}=152 \ \mu s 5$ , in <sup>212</sup>At.

<sup>@</sup> From intermediate time spectra between different parts of  $\gamma$ -ray transitions in 2003LaZZ.

 $\gamma(^{213}\text{At})$ 

| $E_{\gamma}^{\dagger}$        | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | $\mathbf{J}_{f}^{\pi}$ | Comments                                                                                                                      |
|-------------------------------|---------------|----------------------|--------|------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| (17)<br>$(x_{38}^{\ddagger})$ | 1130          | (17/2 <sup>-</sup> ) | 1112   | (15/2 <sup>-</sup> )   |                                                                                                                               |
| (50)                          | 2621+y        | (43/2 <sup>-</sup> ) | 2571+y | (37/2 <sup>-</sup> )   | $E_{\gamma}$ : A low-energy (50-keV) unobserved $\gamma$ transition was postulated to explain the observed isomer (2003LaZZ). |
| <sup>x</sup> 51 <sup>‡</sup>  |               |                      |        |                        |                                                                                                                               |

# <sup>209</sup>Bi(<sup>7</sup>Li,p2nγ),<sup>209</sup>Bi(<sup>8</sup>He,4nγ) 2003LaZZ,2005Ga46 (continued)

# $\gamma(^{213}\text{At})$ (continued)

| $E_{\gamma}^{\dagger}$        | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$         | E <sub>f</sub> | $J_f^\pi$                                    | Mult. | α <sup>@</sup> | Comments                                                                                                                                                        |
|-------------------------------|------------------------|------------------------------|----------------|----------------------------------------------|-------|----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $x_{55}^{\ddagger}$           |                        |                              |                |                                              |       |                |                                                                                                                                                                 |
| x92 <sup>‡</sup>              |                        |                              |                |                                              |       |                |                                                                                                                                                                 |
| <sup>x</sup> 105 <sup>‡</sup> |                        |                              |                |                                              |       |                |                                                                                                                                                                 |
| 156                           | 1839+y                 | $(33/2^+)$                   | 1682+y         | $(29/2^+)$                                   |       |                |                                                                                                                                                                 |
| 189 <sup>#</sup>              | 1319                   | $(19/2^{-})$                 | 1130           | $(17/2^{-})$                                 |       |                |                                                                                                                                                                 |
| 306                           | 2927+y                 | (49/2 <sup>+</sup> )         | 2621+y         | (43/2 <sup>-</sup> )                         | [E3]  | 0.707          | Mult.: Proposed in 2003LaZZ based on predicted E3 strength<br>of 23 W.u. 2 compared to 26 W.u. <i>1</i> in <sup>212</sup> At (27 W.u. <i>1</i><br>in the ENSDE) |
| 356                           | 2195+y                 | $(35/2^{-})$                 | 1839+y         | $(33/2^+)$                                   |       |                |                                                                                                                                                                 |
| 363 <sup>#</sup>              | 1682+y                 | $(29/2^+)$                   | 1319+y         | $(27/2^{-})$                                 |       |                |                                                                                                                                                                 |
| 376 <sup>#</sup>              | 2571+y                 | $(37/2^{-})$                 | 2195+y         | $(35/2^{-})$                                 |       |                |                                                                                                                                                                 |
| 387 <sup>#</sup>              | 1112                   | $(15/2^{-})$                 | 725            | $(13/2^{-})$                                 |       |                |                                                                                                                                                                 |
| 405 <sup>#</sup><br>520       | 1130<br>1839+y         | $(17/2^{-})$<br>$(33/2^{+})$ | 725<br>1319+y  | (13/2 <sup>-</sup> )<br>(27/2 <sup>-</sup> ) |       |                |                                                                                                                                                                 |
| 725 <sup>#</sup>              | 725                    | (13/2 <sup>-</sup> )         | 0.0            | 9/2-                                         |       |                |                                                                                                                                                                 |

<sup>†</sup> From 2003LaZZ, except where otherwise noted.

<sup>‡</sup> Placement in 2003LaZZ between the  $(27/2^{-})$  and  $19/2^{-}$  states, in coincidence with 725 keV within a timeframe of 30-850 ns. The evaluator presents these  $\gamma$ -rays as unplaced due to unclear level scheme between  $(27/2^{-})$  and  $19/2^{-}$  states.

<sup>#</sup> This  $\gamma$ -ray is also present in figure of the  $\gamma$ -ray spectrum in 2005Ga46.

<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>x</sup>  $\gamma$  ray not placed in level scheme.

#### Adopted Levels, Gammas

 $Q(\beta^{-}) = -21426$ ; S(n) = 51084; S(p) = 43574;  $Q(\alpha) = 82453$  2021Wa16

2020De36: <sup>238</sup>U(<sup>48</sup>Ca,X), E=233.3 MeV; measured multi-nucleon transfer reaction cross section σ<sub>direct</sub>=33.0 nb/sr 9 and σ<sub>cumulative</sub>=33.0 nb/sr 9 for <sup>213</sup>Rn.
 2015Ba20: <sup>136</sup>Xe + <sup>208</sup>Pb, E(c.m.)=450 MeV, measured multi-nucleon transfer reaction cross section σ<sub>cumulative yield</sub>=0.166 mb

2015Ba20: <sup>136</sup>Xe + <sup>208</sup>Pb, E(c.m.)=450 MeV, measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative yield}}=0.166 \text{ mb}$ 33 and  $\sigma_{\text{independent yield}}=0.146 \text{ mb}$  29 for <sup>213</sup>Po.

# <sup>213</sup>Rn Levels

## Cross Reference (XREF) Flags

- A  $^{213}$ Fr  $\varepsilon$  decay (34.17 s)
- **B**  $^{217}$ Ra  $\alpha$  decay
- **C** (HI,xn $\gamma$ )

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$   | $T_{1/2}^{\#}$ | XREF | Comments                                                                                                                                                                                                                                                         |
|-----------------------|----------------------|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $(9/2^+)$            | 19.4 ms 2      | ABC  | %α=100                                                                                                                                                                                                                                                           |
|                       |                      |                |      | Only $\alpha$ decay observed.                                                                                                                                                                                                                                    |
|                       |                      |                |      | Possible $\varepsilon$ decay to <sup>213</sup> At g.s. is expected to be <5.8×10 <sup>-4</sup> % from log <i>ft</i> >5.1.                                                                                                                                        |
|                       |                      |                |      | J <sup><math>\pi</math></sup> : Based on analogy with the spin-parity of <sup>209</sup> Pb and <sup>211</sup> Po isotones.                                                                                                                                       |
|                       |                      |                |      | Configuration: $\nu$ (g <sup>+1</sup> <sub>0/2</sub> ).                                                                                                                                                                                                          |
|                       |                      |                |      | $T_{1/2}$ : Weighted average of 19.5 ms <i>l</i> from $8088\alpha(t)$ , 18.0 ms 4 from $7550\alpha(t)$                                                                                                                                                           |
|                       |                      |                |      | and 19.0 ms 5 from 7552a(t) – all from 2000He17; 20.5 ms 10 (1970TaZS);                                                                                                                                                                                          |
|                       |                      |                |      | 21 ms 4 8064 $\alpha$ (t) (2005Li17) – $\chi^2$ =3.8 cf. $\chi^2_{crit}$ =2.4. Unweighted average:                                                                                                                                                               |
|                       |                      |                |      | 19.6 ms 5. Others: 25.0 ms 2 $8088\alpha(t)$ outlier (1970Va13); 16 ms 1                                                                                                                                                                                         |
|                       |                      |                |      | $(2019Mi08 - \text{from time correlations between }^{217}\text{Ra and }^{213}\text{Rn }\alpha \text{ decays}); 31$                                                                                                                                               |
|                       |                      |                |      | ms $8024\alpha(t)$ , 15 ms $7976\alpha(t)$ , 8.1 ms $8074\alpha(t)$ , 4.3 ms $8177\alpha(t)$ – all four                                                                                                                                                          |
|                       |                      |                |      | values from 2003N110, 19 ms (1962Gr20), and 16 ms $+5-3$ (2021Hu19 – rounded value of 15.88 ms $+547-324$ ).                                                                                                                                                     |
| 704.90 19             | $(11/2^+)$           |                | AC   | $J^{\pi}$ : 705.0 $\gamma$ M1 to (9/2 <sup>+</sup> ). Configuration: Dominant $\gamma$ (i <sup>+1</sup> ).                                                                                                                                                       |
| 896.05 15             | $(15/2^{-})$         | 26.3 ns 7      | C    | $J^{\pi}$ : 191.1 $\gamma$ M2 to (11/2 <sup>+</sup> ) and 896.1 $\gamma$ E3 to (9/2 <sup>+</sup> ). Configuration: Dominant                                                                                                                                      |
|                       | (                    |                |      | $\gamma$ ( $i_{ren}^{+1}$ ).                                                                                                                                                                                                                                     |
| 1259.60 17            | $(13/2^+)$           |                | С    | $J^{\pi}$ : 1259.6v to (9/2 <sup>+</sup> ). Configuration: $v$ (g <sup>+1</sup> ) $\otimes$ 2 <sup>+</sup> .                                                                                                                                                     |
| 1347.1 4              | (                    |                | Α    | (gg/2) = 1                                                                                                                                                                                                                                                       |
| 1352.7 5              |                      |                | Α    |                                                                                                                                                                                                                                                                  |
| 1529.00 18            | (17/2 <sup>+</sup> ) |                | C    | $J^{\pi}$ : 269.4 $\gamma$ E2 to (13/2 <sup>+</sup> ), 632.9 $\gamma$ E1 to (15/2 <sup>-</sup> ). Configuration: $\nu$ $(g^{+1}_{\sigma,\gamma}) \otimes 4^+$ .                                                                                                  |
| 1574.1 <i>3</i>       |                      |                | С    | (29/2)                                                                                                                                                                                                                                                           |
| 1612.4?               |                      |                | С    |                                                                                                                                                                                                                                                                  |
| 1663.98 20            | $(21/2^+)$           | 29.1 ns 14     | С    | μ=4.73 11                                                                                                                                                                                                                                                        |
|                       |                      |                |      | $J^{\pi}$ : 135.0 $\gamma$ E2 to (17/2 <sup>+</sup> ), 767.9 $\gamma$ (E3) to (15/2 <sup>-</sup> ). Configuration: $\nu$                                                                                                                                         |
|                       |                      |                |      | $(g_{9/2}^{+1}) \otimes 6^+$ .                                                                                                                                                                                                                                   |
|                       |                      |                |      | $\mu$ : From 2020StZV, 1988St10.                                                                                                                                                                                                                                 |
| 1663.98+x 20          | $(25/2^+)$           | 1.01 µs 21     | С    | $\mu$ =7.6 3                                                                                                                                                                                                                                                     |
|                       |                      |                |      | Configuration: Dominant $\nu$ (g <sub>9/2</sub> <sup>+1</sup> ) $\pi$ ([h <sub>9/2</sub> <sup>+1</sup> , f <sub>7/2</sub> <sup>+1</sup> ] <sub>8+</sub> ).<br>$\mu$ : From 2020StZV, 1988St10.                                                                   |
| 1703.5? 4             |                      |                | С    |                                                                                                                                                                                                                                                                  |
| 1745.89 24            |                      |                | С    |                                                                                                                                                                                                                                                                  |
| 1785.2 4              |                      |                | Α    |                                                                                                                                                                                                                                                                  |
| 1788.70 24            |                      |                | С    |                                                                                                                                                                                                                                                                  |
| 1834.1 5              |                      |                | Α    |                                                                                                                                                                                                                                                                  |
| 1856.59+x <i>14</i>   | $(25/2^+)$           |                | C    | $J^{\pi}$ : 192.6 $\gamma$ (M1) to (25/2 <sup>+</sup> ). A <sub>2</sub> /A <sub>0</sub> (192.6 $\gamma$ )=0.40 <i>6</i> is consistent with $\Delta J$ =0 transition. Configuration: Dominant $\nu$ ( $g_{0/2}^{+1}$ ) $\pi$ ([ $h_{0/2}^{+2}$ ] <sub>8+</sub> ). |
| 1879.3 <i>3</i>       |                      |                | С    |                                                                                                                                                                                                                                                                  |
| 1936.9 <i>3</i>       |                      |                | С    |                                                                                                                                                                                                                                                                  |
| 2007.39 23            |                      |                | С    |                                                                                                                                                                                                                                                                  |

# <sup>213</sup>Rn Levels (continued)

| E(level) <sup>†</sup>                  | Jπ‡          | $T_{1/2}^{\#}$ | XREF | Comments                                                                                                                                        |
|----------------------------------------|--------------|----------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| 2072.78 21                             |              |                | С    |                                                                                                                                                 |
| 2121.58+x 20                           | (27/2)       |                | С    |                                                                                                                                                 |
| 2184.3 3                               | (24/2-)      |                | C    |                                                                                                                                                 |
| 2186.69+x <i>13</i>                    | $(31/2^{-})$ | 1.36 μs 7      | С    | $\mu = 9.86 \ 8$<br>$I\pi$ : 220 ls: (E2) to (25/2 <sup>+</sup> ) 522 7s: E2 to (25/2 <sup>+</sup> )                                            |
|                                        |              |                |      | $J^{*}$ . 550.17 (E5) to (25/2), 522.77 E5 to (25/2).                                                                                           |
|                                        |              |                |      | $\mu$ : From 2020StZV, 1988St10 (9 90 8).                                                                                                       |
| 2201.48+x 16                           | $(27/2^{-})$ |                | С    | $J^{\pi}$ : 344.9 $\gamma$ (E1) to (25/2 <sup>+</sup> ), 537.5 $\gamma$ (E1) to (25/2 <sup>+</sup> ).                                           |
| 2227.5 3                               |              |                | С    |                                                                                                                                                 |
| 2257.5 3                               |              |                | C    |                                                                                                                                                 |
| 2327.1 4                               |              |                | C    |                                                                                                                                                 |
| 2640.79+x 24                           |              |                | C    |                                                                                                                                                 |
| 2662.0+x 3                             |              |                | C    |                                                                                                                                                 |
| 2676.96+x 14                           | $(29/2^+)$   |                | С    | $J^{\pi}$ : 490.2 $\gamma$ D+Q to (31/2 <sup>-</sup> ), 1013.0 $\gamma$ Q to (25/2 <sup>+</sup> ).                                              |
| 2684.5+x 3                             | (21/2-)      |                | C    |                                                                                                                                                 |
| 2/39.79+x 19                           | (31/2)       |                | C    | J <sup>*</sup> : 553.1 $\gamma$ M1 to (31/2).                                                                                                   |
| $2780.09 \pm x 19$<br>2915 78 \pm x 16 | $(29/2)^+$   |                | C    | $J^{*}$ : 950.17 to (25/2).<br>$I^{\pi}$ : 729 1 $\gamma$ E1 to (31/2 <sup>-</sup> )                                                            |
| 2983.99+x 15                           | $(33/2^+)$   |                | C    | $J^{\pi}$ : 68.2 $\gamma$ M1 to (33/2 <sup>+</sup> ), 797.3 $\gamma$ E1 to (31/2 <sup>-</sup> ).                                                |
| 3029.31+x 19                           | $(37/2^+)$   | 26.3 ns 7      | С    | $\mu$ =13.61 <i>13</i>                                                                                                                          |
|                                        |              |                |      | $J^{\pi}$ : 45.3 $\gamma$ E2 to (33/2 <sup>+</sup> ), 113.5 $\gamma$ E2 to (33/2 <sup>+</sup> ).                                                |
|                                        |              |                |      | Configuration: Dominant $\nu$ ( $g_{12}^{+1}$ ) $\pi$ ( $[h_{12}^{+5}, f_{7/2}^{+1}]_{14+}$ ).                                                  |
| 3181 77+x 19                           | $(35/2^{-})$ |                | C    | $\mu$ : FIOIII 2020SIZ V, 1988SII0 (15.07 15).<br>$I^{\pi}$ : 995 1 $\gamma$ (F2) to (31/2 <sup>-</sup> )                                       |
| 3301.32+x 24                           | (33/2)       |                | C    | <b>5</b> · <i>) )</i> · · <i>)</i> · · · <i>)</i> · · · · · · · · · · · · · · · · · · ·                                                         |
| 3441.13+x 22                           | (39/2-)      |                | С    | $J^{\pi}$ : 411.8 $\gamma$ E1 to (37/2 <sup>+</sup> ).                                                                                          |
| 3495.4+x <i>3</i>                      | $(43/2^{-})$ | 27.7 ns 7      | С    | $\mu$ =15.52 15                                                                                                                                 |
|                                        |              |                |      | $J^{n}$ : 54.3 $\gamma$ E2 to (39/2 <sup>-</sup> ).                                                                                             |
|                                        |              |                |      | Configuration: $v(g_{12}) \pi([h_{12}, 1_{13/2}]_{17-})$ .                                                                                      |
| 3604.8+x <i>3</i>                      |              |                | С    | $\mu$ . 11011 2020512 V, 19005110 (15.59 15).                                                                                                   |
| 3623.8+x 4                             |              |                | С    |                                                                                                                                                 |
| 3922.9+x 4                             | $(43/2^{-})$ |                | С    | $J^{\pi}$ : 427.5 $\gamma$ M1 to (43/2 <sup>-</sup> ). A <sub>2</sub> /A <sub>0</sub> (427.5 $\gamma$ )=0.26 7 is consistent with $\Delta J$ =0 |
| 2027.2 . 4                             |              |                | C    | transition.                                                                                                                                     |
| 3927.3 + X 4<br>4047.9 + X 4           | $(45/2^{-})$ |                | C    | $I^{\pi}$ : 552 5 $\times$ M1 to (13/2 <sup>-</sup> )                                                                                           |
| 4050.3+x 4                             | (43/2)       |                | c    | $3 \cdot 352.3 \text{ [WI to (+5/2)]}.$                                                                                                         |
| 4343.1+x 4                             |              |                | С    |                                                                                                                                                 |
| 4505.5+x 4                             | $(49/2^+)$   | 11.8 ns 7      | С    | $\mu = 19.8 \ 3$                                                                                                                                |
|                                        |              |                |      | $J^{n}$ : 1010.1 $\gamma$ E3 to (43/2 <sup>-</sup> ).                                                                                           |
|                                        |              |                |      | Configuration: $v(j_{15/2}) \pi([n_{9/2}, i_{13/2}]_{17-})$ .                                                                                   |
| 4532.7+x 4                             |              |                | С    | μ. Ποπ 20205(23), 17005(10 (17.07 27).                                                                                                          |
| 4581.3+x 11                            |              |                | C    |                                                                                                                                                 |
| 4723.0+x 4                             |              |                | С    |                                                                                                                                                 |
| 4875.6+x 4                             | $(49/2^+)$   |                | C    | $J^{n}$ : 370.1 $\gamma$ M1 to (49/2 <sup>+</sup> ). A <sub>2</sub> /A <sub>0</sub> (370.1 $\gamma$ )=0.33 5 is consistent with                 |
| 5225 6+x 4                             | $(51/2^+)$   |                | C    | $\Delta J=0$ transition.<br>$I^{\pi}$ : 350 by M1+F2 to (49/2 <sup>+</sup> ), 720 by (M1) to (49/2 <sup>+</sup> )                               |
| 5763.7+x 4                             | (53/2,55/2)  |                | C    | $J^{\pi}$ : 1258.1 $\gamma$ to (49/2 <sup>+</sup> ) and (51/2 <sup>+</sup> ).                                                                   |
| 5928.9+x 4                             | (53/2,55/2)  |                | С    | $J^{\pi}$ : 165.2 M1 to (53/2,55/2).                                                                                                            |
| 5928.9+y 4                             | $(55/2^+)$   | 164 ns 10      | С    | $\mu = 16.54 \ 14$                                                                                                                              |
|                                        |              |                |      | E(level): $y=x+z$ .                                                                                                                             |
|                                        |              |                |      | Configuration: $\nu ([p_{1/2}, g_{9/2}, 1_{11/2}]_{21/2-}) \pi ([n_{9/2}, 1_{13/2}]_{17-}).$                                                    |
| 6743.90+v 20                           |              | 59 ns          | С    | $T_{1/2}$ : From $815\gamma(t)$ in 1989Lo02 (HI,Xny).                                                                                           |
|                                        |              |                | ~    |                                                                                                                                                 |

## <sup>213</sup>Rn Levels (continued)

| E(level) <sup>†</sup> | $T_{1/2}^{\#}$ | XREF | Comments                                                         |
|-----------------------|----------------|------|------------------------------------------------------------------|
| 7926.4+y 3            |                | С    |                                                                  |
| 8831.8+y 4            | 14 ns          | С    | $T_{1/2}$ : From 905 $\gamma$ (t) in 1989L002 (HI,Xn $\gamma$ ). |

<sup>†</sup> From least square fit to the  $\gamma$ -ray energies assuming equal weight if no uncertainty for E $\gamma$ . In the latter case, no uncertainty for the level is listed.

<sup>‡</sup> Proposed in (HI,xn $\gamma$ ) based on  $\gamma$  multipolarity assignments from conversion electron and  $\gamma(\theta)$  measurements. Monotonically increasing spins are assumed. See 1988St10, 1989Lo02, and 1990St14 for configuration assignments.

<sup>#</sup> From 1988St10 (HI,xn $\gamma$ ), except where otherwise noted.

| 2 | γ( <sup>2</sup> | <sup>13</sup> F | (n) |
|---|-----------------|-----------------|-----|
| _ |                 |                 |     |

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$   | $I_{\gamma}$  | $\mathbf{E}_{f}$           | $\mathrm{J}_f^\pi$             | Mult. <sup>†</sup> | $\alpha^{@}$                        | Comments                                                                                                                                                                                                                                        |
|------------------------|----------------------|--------------------------------|---------------|----------------------------|--------------------------------|--------------------|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 704.90                 | (11/2+)              | 704.9 3                        | 100           | 0.0                        | (9/2 <sup>+</sup> )            | M1                 | 0.0606 9                            | E <sub>γ</sub> : weighted average of 704.3 5 from <sup>213</sup> Fr ε decay and 705.0 2<br>from (HI,xnγ).<br>Mult.: from $\alpha$ (K)exp, $\alpha$ (L)exp and $\alpha$ (M)exp measurements (2016Pr08<br>- <sup>213</sup> Fr ε decay (34.17 s)). |
| 896.05                 | (15/2 <sup>-</sup> ) | 191.1 2<br>896.1 2             | 0.44 8<br>100 | 704.90<br>0.0              | $(11/2^+)$<br>$(9/2^+)$        | M2<br>E3           | 9.96 <i>14</i><br>0.02500 <i>35</i> | $B(M2)(W.u.)=0.53 \ 10$<br>$B(E3)(W.u.)=34.4 \ 10$                                                                                                                                                                                              |
| 1259.60                | $(13/2^+)$           | 1259.6 2                       | 100           | 0.0                        | $(9/2^+)$                      |                    |                                     |                                                                                                                                                                                                                                                 |
| 1347.1                 |                      | 1347.0 <sup>‡</sup> 5          | 100           | 0.0                        | $(9/2^+)$                      |                    |                                     |                                                                                                                                                                                                                                                 |
| 1352.7                 |                      | 1352.7 <sup>‡</sup> 5          | 100           | 0.0                        | $(9/2^+)$                      |                    |                                     |                                                                                                                                                                                                                                                 |
| 1529.00                | $(17/2^+)$           | 269.4 2                        | 1.6 1         | 1259.60                    | $(13/2^+)$                     | E2                 | 0.1922 27                           |                                                                                                                                                                                                                                                 |
| 1574 1                 |                      | 632.9 2                        | 100 10        | 896.05                     | $(15/2^{-})$<br>$(12/2^{+})$   | EI                 | 0.00688 10                          |                                                                                                                                                                                                                                                 |
| 1612.4?                |                      | 314.52<br>$352.8^{a}2$         | 36 14         | 1259.60                    | $(13/2^{+})$                   |                    |                                     |                                                                                                                                                                                                                                                 |
| 1012111                |                      | $907.4^{a}$ 2                  | 100 20        | 704.90                     | $(11/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
| 1663.98                | $(21/2^+)$           | 135.0 2                        | 100 2         | 1529.00                    | $(17/2^+)$                     | E2                 | 2.351 33                            | B(E2)(W.u.)=1.69 9                                                                                                                                                                                                                              |
|                        |                      | 767.9 2                        | 3.6 4         | 896.05                     | $(15/2^{-})$                   | (E3)               | 0.0365 5                            | B(E3)(W.u.)=1.05 <i>13</i>                                                                                                                                                                                                                      |
| 1703.5?                |                      | (39.5#)                        |               | 1663.98                    | $(21/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
| 1745.89                |                      | (81.9**)                       | 100           | 1663.98                    | $(21/2^+)$<br>$(17/2^+)$       |                    |                                     |                                                                                                                                                                                                                                                 |
| 1785 2                 |                      | 210.92                         | 16 2          | 1329.00                    | (1/2)                          |                    |                                     |                                                                                                                                                                                                                                                 |
| 1765.2                 |                      | 1080 7 5                       | 10 2          | 704.90                     | $(11/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
|                        |                      | $1080.7 \pm 5$<br>1785 0 \pm 5 | 100‡0         | 004.90                     | (11/2)<br>$(0/2^+)$            |                    |                                     |                                                                                                                                                                                                                                                 |
| 1788.70                |                      | 259.7 2                        | 100           | 1529.00                    | $(17/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
| 1834.1                 |                      | 1834.1 <sup>‡</sup> 5          | 100           | 0.0                        | $(9/2^+)$                      |                    |                                     |                                                                                                                                                                                                                                                 |
| 1856.59+x              | $(25/2^+)$           | 192.6 2                        | 100           | 1663.98+x                  | $(25/2^+)$                     | M1                 | 2.045 29                            | A <sub>2</sub> /A <sub>0</sub> =0.40 6 (1988St10)                                                                                                                                                                                               |
| 1879.3                 |                      | 1174.4 2                       | 100           | 704.90                     | $(11/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
| 1936.9                 |                      | 233.4 2                        | 100 12        | 1/03.5?                    | $(21/2^{+})$                   |                    |                                     |                                                                                                                                                                                                                                                 |
| 2007.39                |                      | 218.7 2                        | ≈12           | 1788.70                    | (21/2)                         |                    |                                     |                                                                                                                                                                                                                                                 |
|                        |                      | 261.5 2                        | ≈12           | 1745.89                    |                                |                    |                                     |                                                                                                                                                                                                                                                 |
| 2072 78                |                      | 343.4 2                        | 100 25        | 1663.98                    | $(21/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
| 2072.78                |                      | 543.7 2<br>1176 8 2            | 12.0          | 1529.00<br>896.05          | $(17/2^{-1})$<br>$(15/2^{-1})$ |                    |                                     |                                                                                                                                                                                                                                                 |
| 2121.58+x              | (27/2)               | 457.6 2                        | 100 12        | 1663.98+x                  | $(15/2^+)$<br>$(25/2^+)$       |                    |                                     |                                                                                                                                                                                                                                                 |
| 2184.3                 | (=-,=)               | 520.3 2                        | 100           | 1663.98                    | $(21/2^+)$                     |                    |                                     |                                                                                                                                                                                                                                                 |
| 2186.69+x              | $(31/2^{-})$         | (65.1 <sup>#</sup> )           |               | 2121.58+x                  | (27/2)                         |                    |                                     | $I(\gamma+ce)(65.1\gamma) < 7$ from intensity balance at 2121.6+x level.                                                                                                                                                                        |
|                        |                      | 330.1 2                        | 1.9 2         | 1856.59+x                  | $(25/2^+)$                     | (E3)               | 0.552 8                             | B(E3)(W.u.)=13.0 15                                                                                                                                                                                                                             |
| 2201 49                | $(27/2^{-1})$        | 522.7 2                        | 100 2         | 1663.98+x                  | $(25/2^+)$                     | E3<br>(E1)         | 0.1073                              | B(E3)(W.u.)=27.4 14                                                                                                                                                                                                                             |
| 2201.40+X              | (27/2)               | 544.9 2<br>537.5 2             | 33 4          | 1650.59 + x<br>1663.98 + x | $(25/2^{+})$<br>$(25/2^{+})$   | (E1)<br>(E1)       | 0.02429 34                          |                                                                                                                                                                                                                                                 |
|                        |                      |                                |               |                            | /                              | . /                |                                     |                                                                                                                                                                                                                                                 |

 $^{213}_{86}\mathrm{Rn}_{127}\text{-}4$ 

NUCLEAR DATA SHEETS

# $\gamma$ <sup>(213</sup>Rn) (continued)</sup>

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | ${\rm E_{\gamma}}^{\dagger}$ | $I_{\gamma}$  | $E_f$                      | $\mathbf{J}_f^{\pi}$ | Mult. <sup>†</sup> | δ            | $\alpha^{@}$    | Comments                           |
|------------------------|----------------------|------------------------------|---------------|----------------------------|----------------------|--------------------|--------------|-----------------|------------------------------------|
| 2227 5                 |                      | 563 5 2                      | 100           | 1663 98                    | $(21/2^+)$           |                    |              |                 |                                    |
| 2257.5                 |                      | 184 7 2                      | 100           | 2072.78                    | (21/2)               |                    |              |                 |                                    |
| 2327.1                 |                      | 390.2.2                      | 100           | 1936.9                     |                      |                    |              |                 |                                    |
| 2610.7                 |                      | 383.2.2                      | 100           | 2227.5                     |                      |                    |              |                 |                                    |
| $2640.79 \pm x$        |                      | 454 1 2                      | 100           | $2186.69 \pm x$            | $(31/2^{-})$         |                    |              |                 |                                    |
| 2640.771               |                      | 460 5 2                      | 100           | 2100.09 + x<br>2201.48 + x | $(31/2^{-})$         |                    |              |                 |                                    |
| 2602.0+x<br>2676.96+x  | $(29/2^{+})$         | 490.2.2                      | 100 8         | 2201.40+x<br>2186 69+x     | $(21/2^{-})$         | $D \pm O$          |              | 0.0115          |                                    |
| 2070.90+X              | (29/2)               | 1013.0.2                     | 85 31         | $1663.09 \pm x$            | (31/2)<br>$(25/2^+)$ | $D^+Q$             |              | 0.0115          |                                    |
| 2684 5 L x             |                      | 1015.0 2                     | 100           | $2201.48 \pm x$            | (23/2)               | Q                  |              | 0.00802         |                                    |
| 2004.3+X               | (24/2-)              | 405.0 2                      | 100           | 2201.40+x                  | (21/2)               |                    |              |                 |                                    |
| 2739.79+x              | (31/2)               | (99.0")                      |               | 2640.79+x                  | (21/2-)              |                    |              | 0 11 47 14      |                                    |
|                        | (00/04)              | 553.1 2                      | 100           | 2186.69+x                  | $(31/2^{-})$         | MI                 |              | 0.1147 16       |                                    |
| 2786.69+x              | $(29/2^{+})$         | 930.1 2                      | 100           | 1856.59+x                  | $(25/2^{+})$         |                    |              |                 |                                    |
| 2915.78+x              | $(33/2)^+$           | 238.8 2                      | 1.3 10        | 2676.96+x                  | $(29/2^+)$           | -                  |              |                 |                                    |
|                        |                      | 729.1 2                      | 100 5         | 2186.69+x                  | $(31/2^{-})$         | E1                 |              | 0.00525         |                                    |
| 2983.99+x              | $(33/2^+)$           | 68.2 2                       | 3.0 3         | 2915.78+x                  | $(33/2)^+$           | M1+E2              | 0.23 + 6 - 8 | 9.9 12          |                                    |
|                        |                      | 197.3 2                      | 2.3 3         | 2786.69+x                  | $(29/2^+)$           |                    |              |                 |                                    |
|                        |                      | 244.2 2                      | 7.8 20        | 2739.79+x                  | $(31/2^{-})$         | (E1)               |              | 0.0535 7        |                                    |
|                        |                      | 307.0 2                      | 2.0 12        | 2676.96+x                  | $(29/2^+)$           |                    |              |                 |                                    |
|                        |                      | 797.3 2                      | 100 2         | 2186.69+x                  | $(31/2^{-})$         | E1                 |              | 0.00444 6       |                                    |
| 3029.31+x              | $(37/2^+)$           | 45.3 2                       | ≈33           | 2983.99+x                  | $(33/2^+)$           | E2                 |              | 359 5           | B(E2)(W.u.)=3.9+5-7                |
|                        |                      | 113.5 2                      | 100 33        | 2915.78+x                  | $(33/2)^+$           | E2                 |              | 4.85 7          | B(E2)(W.u.)=0.12 + 10 - 5          |
|                        |                      | 842.6 <sup><i>a</i></sup> 2  | 167 <i>33</i> | 2186.69+x                  | $(31/2^{-})$         | [E3]               |              | 0.0290 4        | B(E3)(W.u.)=0.8 + 6 - 3            |
| 3181.77+x              | $(35/2^{-})$         | 266.0 2                      | $\approx 8$   | 2915.78+x                  | $(33/2)^+$           |                    |              |                 |                                    |
|                        |                      | 995.1 2                      | 100 12        | 2186.69+x                  | $(31/2^{-})$         | (E2)               |              | 0.00821 11      |                                    |
| 3301.32+x              |                      | 272.0 2                      | 100           | 3029.31+x                  | $(37/2^+)$           |                    |              |                 |                                    |
| 3441.13+x              | $(39/2^{-})$         | 139.8 2                      | 0.88 16       | 3301.32+x                  |                      |                    |              |                 |                                    |
|                        |                      | 259.4 2                      | ≈0.77         | 3181.77+x                  | $(35/2^{-})$         |                    |              |                 |                                    |
|                        |                      | 411.8 2                      | 100.0 19      | 3029.31+x                  | $(37/2^+)$           | E1                 |              | 0.01652 23      |                                    |
| 3495.4+x               | $(43/2^{-})$         | 54.3 2                       | 100           | 3441.13+x                  | $(39/2^{-})$         | E2                 |              | 148.8 <i>21</i> | B(E2)(W.u.)=3.83 21                |
| 3604.8+x               |                      | 575.5 2                      | 100           | 3029.31+x                  | $(37/2^+)$           |                    |              |                 |                                    |
| 3623.8+x               |                      | 128.4 2                      | 100           | 3495.4+x                   | $(43/2^{-})$         |                    |              |                 |                                    |
| 3922.9+x               | $(43/2^{-})$         | 427.5 2                      | 100           | 3495.4+x                   | $(43/2^{-})$         | M1                 |              | 0.2282 32       | $A_2/A_0 = 0.26\ 7\ (1988\ St10)$  |
| 3927.3+x               |                      | 431.9 2                      | 100           | 3495.4+x                   | $(43/2^{-})$         |                    |              |                 |                                    |
| 4047.9+x               | $(45/2^{-})$         | $(125.0^{\#})$               | <2            | 3922.9+x                   | $(43/2^{-})$         |                    |              |                 |                                    |
|                        |                      | 552.5 2                      | 100.9         | 3495.4+x                   | $(43/2^{-})$         | M1                 |              | 0.1150 16       |                                    |
| 4050.3+x               |                      | 445.5 2                      | 100           | 3604.8+x                   | (-1)                 |                    |              |                 |                                    |
| 4343.1+x               |                      | 420.2 2                      | 100           | 3922.9+x                   | $(43/2^{-})$         |                    |              |                 |                                    |
| 4505 5±v               | $(49/2^+)$           | 457 6 2 2                    | <6            | 4047 Q±v                   | $(45/2^{-})$         |                    |              | 0 579           |                                    |
| 7JUJ.JTA               | (+9/4)               | $\frac{101012}{101012}$      | 100 8         | $3495 4 \pm v$             | $(43/2^{-})$         | F3                 |              | 0.01801.26      | $B(F3)(W_{11}) = 33.4 \pm 21 = 27$ |
| 1532 7⊥-               |                      | 600.8.2                      | 100 0         | 3077 0+*                   | $(\frac{13}{2})$     | <u>цэ</u>          |              | 0.01091 20      | D(L3)(m.u.) = 33.7 + 21 - 27       |
| +JJ2./TA               |                      | (40 5#)                      | 100           | 3922.9TX                   | (+3/2)               |                    |              |                 |                                    |
| 4581.3+x               |                      | (48.6")                      |               | 4532.7+x                   |                      |                    |              |                 |                                    |
|                        |                      | 533.4 <sup><i>a</i></sup> 2  |               | 4047.9+x                   | $(45/2^{-})$         |                    |              |                 |                                    |

NUCLEAR DATA SHEETS

|                        |                      |                        |        |           | Adopte                 | ed Levels, (                 | Gammas (contin | ued)     |                              |
|------------------------|----------------------|------------------------|--------|-----------|------------------------|------------------------------|----------------|----------|------------------------------|
|                        |                      |                        |        |           |                        | $\gamma$ <sup>(213</sup> Rn) | (continued)    |          |                              |
| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_{\gamma}^{\dagger}$ | Iγ     | $E_f$     | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>†</sup>           | δ              | α@       | Comments                     |
| 4723.0+x               |                      | 217.5 2                | 100    | 4505.5+x  | $(49/2^+)$             |                              |                |          |                              |
| 4875.6+x               | $(49/2^+)$           | 370.1 2                | 100    | 4505.5+x  | $(49/2^+)$             | M1                           |                | 0.337 5  | $A_2/A_0 = 0.335$ (1988St10) |
| 5225.6+x               | $(51/2^+)$           | 350.0 2                | 90 20  | 4875.6+x  | $(49/2^+)$             | M1+E2                        | 0.70 +26-23    | 0.29 5   |                              |
|                        |                      | 720.1 2                | 100 30 | 4505.5+x  | $(49/2^+)$             | (M1)                         |                | 0.0572 8 |                              |
| 5763.7+x               | (53/2,55/2)          | 538.1 2                | 62 6   | 5225.6+x  | $(51/2^+)$             |                              |                |          |                              |
|                        |                      | 1258.1 2               | 100 19 | 4505.5+x  | $(49/2^+)$             |                              |                |          |                              |
| 5928.9+x               | (53/2,55/2)          | 165.2 2                | 100 25 | 5763.7+x  | (53/2,55/2)            | M1                           |                | 3.15 4   |                              |
|                        |                      | 1053.3 2               | 75 25  | 4875.6+x  | $(49/2^+)$             |                              |                |          |                              |
|                        |                      | 1423.3 2               | 75 25  | 4505.5+x  | $(49/2^+)$             |                              |                |          |                              |
| 6743.90+y              |                      | 815.0 2                | 100    | 5928.9+y  | $(55/2^+)$             |                              |                |          |                              |
| 7926.4+y               |                      | 1182.5 2               | 100    | 6743.90+y |                        |                              |                |          |                              |
| 8831.8+y               |                      | 905.4 2                | 100    | 7926.4+y  |                        |                              |                |          |                              |

<sup>†</sup> From (HI,xnγ), except where otherwise noted.
<sup>‡</sup> From <sup>213</sup>Fr ε decay (34.17 s).
<sup>#</sup> From level energy difference. Transition was not observed; existence proposed from coincidence data.
<sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ-ray energies,

assigned multipolarities, and mixing ratios, unless otherwise specified.

& Multiply placed.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain.

 $^{213}_{86}\text{Rn}_{127}\text{-}6$ 

### <sup>213</sup>Fr ε decay (34.17 s) 2016Pr08

Parent: <sup>213</sup>Fr: E=0.0;  $J^{\pi}=9/2^{-}$ ;  $T_{1/2}=34.17$  s 6;  $Q(\varepsilon)=2142$  6;  $\%\varepsilon+\%\beta^{+}$  decay=0.56 5

<sup>213</sup>Fr-Q(ε): From 2021Wa16: AME-2020.

Adapted/Edited the XUNDL dataset compiled by B. Singh (McMaster) Jan 6, 2017.

2016Pr08: <sup>213</sup>Fr produced in U(p,X), E(p)=1.4 GeV pulsed beam at ISOLDE-CERN facility using UC<sub>x</sub> target and general purpose separator (GPS). Measured E $\gamma$ , I $\gamma$ , (x ray) $\gamma$ - and  $\gamma\gamma$ -coin using two HPGe detectors, and conversion electrons using a Mini-Orange magnetic spectrometer and a Si(Li) detector. Deduced levels,  $\varepsilon$  feedings, and log *ft* values. Shell-model calculations.

#### <sup>213</sup>Rn Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> ‡ |
|-----------------------|--------------------|--------------------|
| 0.0                   | $(9/2^+)$          | 19.4 ms 2          |
| 704.3 5               | $(11/2^+)$         |                    |
| 1347.0 5              |                    |                    |
| 1352.7 5              |                    |                    |
| 1785.0 5              |                    |                    |
| 1834.1 5              |                    |                    |

<sup>†</sup> From  $E\gamma$  data.

<sup>‡</sup> From Adopted Levels.

# $\gamma(^{213}\text{Rn})$

I $\gamma$  normalization: Ground state (g.s.) feeding is expected and not known and so not normalized. If no g.s.  $\varepsilon$  feeding is assumed, normalization factor is 0.603 11. 2016Pr08 estimates  $\varepsilon$  feeding to the g.s. of 5% or 30% corresponding to log *ft* 7.4 or 6.6, respectively, based on the log *ft* value systematics for first forbidden transitions.

| $E_{\gamma}^{\dagger}$ | Iγ             | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$  | ${ m J}_f^\pi$ | Mult. | $\alpha^{\ddagger}$ | Comments                                                                                     |
|------------------------|----------------|------------------------|----------------------|--------|----------------|-------|---------------------|----------------------------------------------------------------------------------------------|
| 438.0 5                | 2.6 3          | 1785.0                 |                      | 1347.0 |                |       |                     |                                                                                              |
| 704.3 5                | 100            | 704.3                  | $(11/2^+)$           | 0.0    | (9/2+)         | M1    | 0.0606              | $\alpha$ (K)exp=0.0502 59; $\alpha$ (L)exp=0.0097 13;<br>$\alpha$ (M)exp=0.0023 3 (2016Pr08) |
|                        |                |                        |                      |        |                |       |                     | Mult.: from $\alpha$ (K)exp, $\alpha$ (L)exp and $\alpha$ (M)exp measurements (2016Pr08).    |
|                        |                |                        |                      |        |                |       |                     | δ : The subshell $ α(exp) $ values yield $ δ=0.00 12 $ using the BriccMixing code.           |
| 1080.7 5               | 3.1 5          | 1785.0                 |                      | 704.3  | $(11/2^+)$     |       |                     |                                                                                              |
| 1129.8 <sup>#</sup> 5  |                | 1834.1                 |                      | 704.3  | $(11/2^+)$     |       |                     | Weak $\gamma$ ray. Uncertain placement, not adopted.                                         |
| 1347.0 5               | 16.4 <i>14</i> | 1347.0                 |                      | 0.0    | $(9/2^+)$      |       |                     |                                                                                              |
| 1352.7 5               | 22.7 19        | 1352.7                 |                      | 0.0    | $(9/2^+)$      |       |                     |                                                                                              |
| 1785.0 5               | 16.4 <i>14</i> | 1785.0                 |                      | 0.0    | $(9/2^+)$      |       |                     |                                                                                              |
| 1834.1 5               | 4.3 5          | 1834.1                 |                      | 0.0    | $(9/2^+)$      |       |                     |                                                                                              |

<sup>†</sup> Uncertainty in E<sub> $\gamma$ </sub> is stated by 2016Pr08 as within 0.5 keV and 0.5 keV has been assigned for each E<sub> $\gamma$ </sub> by the evaluator.

<sup>‡</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>#</sup> Placement of transition in the level scheme is uncertain.

# <sup>213</sup>Fr ε decay (34.17 s) 2016Pr08



<sup>213</sup><sub>86</sub>Rn<sub>127</sub>

## <sup>217</sup>Ra α decay 1970To07,1970Va13,2019Mi08

Parent: <sup>217</sup>Ra: E=0.0;  $J^{\pi}=(9/2^+)$ ;  $T_{1/2}=1.6 \ \mu s \ 2$ ;  $Q(\alpha)=9161 \ 6$ ; % $\alpha \ decay=100$ 

<sup>217</sup>Ra-J<sup> $\pi$ </sup>: From 2018Ko01 (A=217 evaluation).

<sup>217</sup>Ra-T<sub>1/2</sub>: from 8995α(t) (1970Va13 – good statistics). Others: 1.7  $\mu$ s 3 (1990An19 – appears to supersede their earlier value 1.7 us *I* (1990AnZU)), 1.4  $\mu$ s +4–3 (2019Ya04), 4  $\mu$ s 2 (1970To07), and 2.5  $\mu$ s 2 (2019Mi08 – from time correlations between <sup>221</sup>Th and <sup>217</sup>Ra α decays). Weighted average of all the data, without 2.5  $\mu$ s 2 (2019Mi08) yields the same value.

<sup>217</sup>Ra-Q( $\alpha$ ): From 2021Wa16.

Others: 2021Hu19, 1990An19, 1990AnZU.

1970To07: <sup>221</sup>Th was produced from <sup>208</sup>Pb(<sup>16</sup>O,3n), E=10.6 MeV/nucleon, 99% enriched <sup>208</sup>Pb target, alpha spectra were obtained on-line using the helium-jet recoil transport method for <sup>221</sup>Th decay chain, Si(Au) detector. Measured E $\alpha$ , T<sub>1/2</sub>; deduced O $\alpha$ . FWHM = 25 keV.

1970Va13: <sup>221</sup>Th was produced bombarding different targets with different projectiles, measured  $E\alpha$  of the <sup>221</sup>Th decay chain. Deduce t, Q.

2019Mi08: Studied <sup>225</sup>U  $\alpha$  decay chain, produced by the fusion evaporation reactions of E=212, 217, and 226 MeV (mid-target) <sup>48</sup>Ca beams on a  $\approx$ 530 µg/cm<sup>2</sup> <sup>181</sup>Ta target sandwiched between carbon layers of 50 µg/cm<sup>2</sup> upstream and 10 µg/cm<sup>2</sup> downstream. Evaporation residues (ERs) were separated by the SHIP velocity filter and implanted into the COMPAct Spectroscopy Set-up (COMPASS), consisting of a Double sided Silicon Strip Detector (DSSD), surrounded by 4 Single sided Silicon Strip Detectors (SSSDs). Measured energy and time spectra of correlations between ER and  $\alpha$  particles from subsequent decays. Deduced halflife.

## <sup>213</sup>Rn Levels

| E(level) | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                  |  |
|----------|-----------|------------------|-------------------------------------------|--|
| 0.0      | $(9/2^+)$ | 19.4 ms 2        | $J^{\pi}, T_{1/2}$ : From Adopted Levels. |  |

#### $\alpha$ radiations

2019Mi08 reported two E $\alpha$  of values 8990 keV 40 (8.99 MeV 4) and 8910 keV 40 (8.91 MeV 4). 8990 $\alpha$  is in good agreement with the literature value for the <sup>217</sup>Ra g.s. to <sup>213</sup>Rn g.s. decay. The other 8910 $\alpha$ , if considered to decay from <sup>217</sup>Ra g.s., it would feed an excited level at about 84 keV 41 (deduced from Q $\alpha$ (<sup>221</sup>Ra) and E $\alpha$ ). 2019Mi08 did not propose any depopulation or feeding level for this E $\alpha$ , and no known excited levels in <sup>217</sup>Ra or <sup>213</sup>Rn are matching for the decay of this E $\alpha$ .

| Eα     | E(level) | $I\alpha^{\ddagger}$ | $HF^{\dagger}$ | Comments                                                                                                                                                                   |
|--------|----------|----------------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 8992 8 | 0.0      | 100                  | 1.69 22        | Eα: Weighted average of 8990 8 (1970To07, semi), 8995 10 (1970Va13, semi), 8990 40 (2019Mi08 – 8.99 MeV 4), and 8988 26 (2019Ya04). Uncertainty is the lowest input value. |

<sup>†</sup> Using  $r_0(^{213}Rn)=1.5526\ 27$ , extrapolated value based on  $r_0(^{212}Rn)=1.5433\ 36$  and  $r_0(^{214}Rn)=1.5655\ 13\ (2020Si16)$ .

<sup>‡</sup> Absolute intensity per 100 decays.

## $(HI,xn\gamma)$

<sup>204</sup>Hg(<sup>14</sup>C,5nγ) E=80-94 MeV (1989Lo02). <sup>208</sup>Pb(<sup>9</sup>Be,4nγ) E=45-60 MeV (1988St10); <sup>204</sup>Hg(<sup>13</sup>C,4nγ) E=72-75 MeV (1988St10). <sup>208</sup>Pb(<sup>9</sup>Be,4nγ) E=31-57 MeV (1988Fu10); <sup>206</sup>Pb(<sup>12</sup>C,αnγ) E=63-75 MeV (1988Fu10). <sup>208</sup>Pb(<sup>14</sup>C,α5nγ) E=75-95 MeV (1983Lo16).

1989Lo02 measured: E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma$ ,  $\gamma\gamma(t)$ , ce, pulsed beam- $\gamma(t)$ . 1988St10 measured: E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma$ ,  $\gamma\gamma(t)$ ,  $\gamma(\theta,H,t)$ , ce, pulsed beam- $\gamma(t)$ . 1988Fu10 measured: E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma$ ,  $\gamma\gamma(t)$ ,  $\gamma(linear polarization)$ , pulsed beam- $\gamma(t)$ . 1983Lo16 measured: E $\gamma$ , I $\gamma$ ,  $\gamma(\theta)$ ,  $\gamma\gamma$ ,  $\gamma\gamma(t)$ , pulsed beam- $\gamma(t)$ .

Others:

2004Da23:  $^{209}$ Bi( $^{7}$ Li,3n $\gamma$ ) – measured incomplete fusion cross section.

2009Vi09:  ${}^{208}$ Bi( ${}^{9}$ Li,4n $\gamma$ ) – measured evaporation residue (ER) cross section.

2010Da04: <sup>208</sup>Pb,<sup>209</sup>Bi(<sup>9</sup>Be,X), E=44.0, 50.0. 60.0 MeV, - measured incomplete fusion cross section.

2011Ka30: Pt(<sup>36</sup>S,X), E=5.96 MeV/nucleon and W(<sup>48</sup>Ca,X), E=5.41 MeV/nucleon – measured differential cross section  $d\sigma/d\Omega$ . The level scheme constructed by 1988St10, except where noted otherwise, is presented here. There are a number of differences

between the level schemes of 1988St10 and 1989Lo02, especially at high energy levels and their deexcitation. The  $\gamma$ s associated with the three highest energy levels of this dataset, proposed by 1989Lo02, are adopted without the proposed  $\gamma$  multipolarity assignments for consistency. These are listed in comments.

Results from  $\gamma(\theta, H, t)$  measurements:

| E(level) | $J^{\pi}$  | deduced g factor<br>1988St10 | deduced magnetic moment $\mu$ |
|----------|------------|------------------------------|-------------------------------|
| 1664.0   | 21/2+      | 0.45 1                       | 4.73 11                       |
| 1664.0+x | $25/2^{+}$ | 0.61 2                       | 7.6 3                         |
| 2186.7+x | $31/2^{-}$ | 0.639 5                      | 9.90 8                        |
| 3029.3+x | $37/2^+$   | 0.739 7                      | 13.67 13                      |
| 3495.4+x | $43/2^{-}$ | 0.725 7                      | 15.59 15                      |
| 4505.5+x | $49/2^{+}$ | 0.811 <i>12</i>              | 19.87 29                      |
| 5928.8+x | $(55/2^+)$ | 0.604 5                      | 16.61 14                      |

<sup>213</sup>Rn Levels

See 1989Lo02 for calculations of level energies by using the deformed Woods-Saxon potential, and for inferred deformations. See 1988St10 and 1990St14 for shell-model level energies calculated by using empirical interaction energies derived from neighboring nuclei. See 1988St10 and 1990St14 also for calculations of g-factors and comparison with their experiment.

| E(level) <sup>†</sup>                                                | $J^{\pi \ddagger}$                     | $T_{1/2}^{(0)}$ | Comments                                                                                                                                                                                                                                       |
|----------------------------------------------------------------------|----------------------------------------|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0<br>705.00 <i>16</i>                                              | $(9/2^+)$<br>11/2 <sup>+</sup>         | 19.4 ms 2       | $J^{\pi}, T_{1/2}$ : From Adopted Levels.                                                                                                                                                                                                      |
| 896.09 15                                                            | 15/2-                                  | 26.3 ns 7       | Configuration: Dominant $\nu$ (j <sup>+1</sup> <sub>15/2</sub> ).<br>T <sub>1/2</sub> : From $\tau$ =38 ns <i>l</i> (1988St0). Others: 25 ns <i>l</i> (1988Fu10), 50 ns <i>l</i> (1983Lo16), 28 ns (1989Lo02 – same first author of 1983Lo16). |
| 1259.62 <i>17</i><br>1529.03 <i>17</i><br>1574.1 <i>3</i><br>1612.4? | 13/2 <sup>+</sup><br>17/2 <sup>+</sup> |                 |                                                                                                                                                                                                                                                |
| 1664.02 20                                                           | 21/2+                                  | 29.1 ns 14      | Configuration: $\nu (g_{9/2}^{+1}) \otimes 6^+$ .<br>T <sub>1/2</sub> : From $\tau$ =42 ns 2 (1988St10). Others: 16 ns 5 (1983Lo16) and 16 ns (1989Lo02).                                                                                      |

# <sup>213</sup>Rn Levels (continued)

| E(level) <sup>†</sup>                                                                      | $J^{\pi \ddagger}$                     | T <sub>1/2</sub> @ | Comments                                                                                                                                                                                                                                                                                                                                                                                                     |
|--------------------------------------------------------------------------------------------|----------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1664.02+x 20                                                                               | 25/2+                                  | 1.01 µs 21         | Configuration: Dominant $v (g_{9/2}^{+1}) \pi ([h_{9/2}^{+1}, f_{7/2}^{+1}]_{8+})$ .<br>%Isomeric production ratio=6 3 (2013Ba29), E=1 GeV/nucleon, from <sup>238</sup> U fragmentation.<br>$T_{1/2}$ : From $\tau$ =1.45 µs 30 (1988St10). Others: ~1 µs (1983Lo16), 0.680 µs (1989Lo02 – same first author of 1983Lo16).                                                                                   |
| 1703.5? <i>4</i><br>1745.93 <i>23</i><br>1788.73 <i>23</i>                                 |                                        |                    | (150)L002 = same mist author of 1505L010).                                                                                                                                                                                                                                                                                                                                                                   |
| 1856.63+x <i>14</i>                                                                        | 25/2+                                  |                    | J <sup><math>\pi</math></sup> : A <sub>2</sub> /A <sub>0</sub> value consistent with $\Delta$ J=0 transition. Configuration: Dominant $\nu$ (g <sup>+1</sup> <sub>9/2</sub> ) $\pi$ ([h <sup>+2</sup> <sub>9/2</sub> ] <sub>8+</sub> ).                                                                                                                                                                      |
| 1879.4 <i>3</i><br>1936.9 <i>3</i><br>2007.43 <i>23</i><br>2072.82 <i>21</i>               |                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2121.62+x 20<br>2184.3 3                                                                   | (27/2)                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2186.73+x <i>13</i>                                                                        | 31/2-                                  | 1.36 μs 7          | Configuration: $\nu (g_{9/2}^{+1}) \pi ([h_{9/2}^{+1}, i_{13/2}^{+1}]_{11-})$ .<br>$T_{1/2}$ : From $\tau$ =1.96 $\mu$ s 10 (1988St10). Others: ~2 $\mu$ s (1983Lo16), 1.4 $\mu$ s (1989Lo02 – same first author of 1983Lo16).<br>%Isomeric production ratio=7.2 31 (2013Bo18) and 17 2 (2013Ba29 – using only one transition), E=1 GeV/nucleon, from <sup>238</sup> U fragmentation.                        |
| 2201.52+x 16<br>2227.5 3<br>2257.5 3<br>2327.1 4<br>2610.7 4<br>2640.83+x 24<br>2662.0+x 3 | (27/2 <sup>-</sup> )                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2677.00+x <i>14</i><br>2684.5+x <i>3</i><br>2739.83+x <i>19</i>                            | 29/2 <sup>+</sup><br>31/2 <sup>-</sup> |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2786.73+x <i>19</i><br>2915.82+x <i>16</i><br>2984.03+x <i>15</i>                          | $29/2^+$<br>$33/2^+$<br>$33/2^+$       |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3029.35+x <i>19</i>                                                                        | 37/2+                                  | 26.3 ns 7          | Configuration: Dominant $v$ ( $g_{9/2}^{+1}$ ) $\pi$ ([ $h_{9/2}^{+3}, f_{7/2}^{+1}$ ] <sub>14+</sub> ).<br>T <sub>1/2</sub> : From $\tau$ =38 ns <i>l</i> (1988St10). Others: 24 ns (1989Lo02), 55 ns 8 (1983Lo16 – for (37/2) with 795.5 $\gamma$ depopulating the state – 795.8 $\gamma$ (797.3 $\gamma$ here) placed from (33/2 <sup>+</sup> ) at 2984 0+x in 1989Lo02 = same first author of 1983Lo16). |
| 3181.81+x <i>19</i><br>3301.36+x <i>24</i>                                                 | (35/2 <sup>-</sup> )                   |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3441.17+x 22                                                                               | 39/2-                                  |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3495.5+x <i>3</i>                                                                          | 43/2-                                  | 27.7 ns 7          | Configuration: $v (g_{9/2}^{+1}) \pi ([h_{9/2}^{+3}, i_{13/2}^{+1}]_{17/2})$ .<br>$T_{1/2}$ : From $\tau$ =40 ns <i>l</i> (19885110). Others: 26 ns (1989Lo02), 35 ns 2 (1983Lo16).<br>%Isomeric production ratio=9 5 (2013Ba29 – using only one transition), E=1<br>GeV/nucleon from <sup>238</sup> U fragmentation                                                                                         |
| 3604.8+x <i>3</i>                                                                          |                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3623.9+x 4                                                                                 |                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3923.0+x 4                                                                                 | $(43/2^{-})$                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 392/.4+x 4<br>4048 0+x 4                                                                   | $(45/2^{-})$                           |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4050.3+x 4                                                                                 | (15/2)                                 |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4343.2+x 4                                                                                 |                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |
| 4505.6+x 4                                                                                 | 49/2 <sup>+#</sup>                     | 11.8 ns 7          | Configuration: $\nu (j_{15/2}^{+1}) \pi ([h_{9/2}^{+3}i_{13/2}^{+1}]_{17-})$ .<br>T <sub>1/2</sub> : From $\tau$ =17 ns 1 (1988St10). Other: 14 ns (1989Lo02).                                                                                                                                                                                                                                               |
| 4532.8+x 4                                                                                 |                                        |                    |                                                                                                                                                                                                                                                                                                                                                                                                              |

## <sup>213</sup>Rn Levels (continued)

| E(level) <sup>†</sup>                                                             | $J^{\pi \ddagger}$                                                                      | T <sub>1/2</sub> @ | Comments                                                                                                                                                                                                                                                                                                                             |
|-----------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4581.4+x 11<br>4723.1+x 4<br>4875.6+x 4<br>5225.6+x 4<br>5763.7+x 4<br>5928.9+x 4 | (49/2 <sup>+</sup> )<br>(51/2 <sup>+</sup> ) <sup>#</sup><br>(53/2,55/2)<br>(53/2,55/2) |                    |                                                                                                                                                                                                                                                                                                                                      |
| 5928.9+y 4                                                                        | $(55/2^+)$                                                                              | 164 ns 10          | $y=x+z$ , where $5 \le z \le 50$ -keV estimated in 1988St10 – see comments for expected (50) keV $\alpha$ from 5928 9+ $y$ level                                                                                                                                                                                                     |
|                                                                                   |                                                                                         |                    | Configuration: $\nu ([p_{1/2}^{-1}, g_{9/2}^{+1}, i_{1/2}^{+1}]_{21/2}) \pi ([h_{9/2}^{+3}, i_{13/2}^{+1}]_{17-}).$<br>$T_{1/2}$ : From $\tau = 237$ ns 15 (1988St10). Other: 157 ns (1989Lo02).<br>%Isomeric production ratio=0.8 2 (2013Ba29 – using only one transition), E=1<br>GeV/uucleon from <sup>238</sup> LI fragmentation |
| 6743.90+y 20                                                                      |                                                                                         | 59 ns              | Level proposed by 1989Lo02 (6636 + $\Delta'$ ).                                                                                                                                                                                                                                                                                      |
|                                                                                   |                                                                                         |                    | $J^{\pi}$ : $J^{\pi} = (61/2^+)$ in 1989Lo02.<br>T <sub>1/2</sub> : From 815 $\gamma(t)$ in 1989Lo02.                                                                                                                                                                                                                                |
| 7926.4+y 3                                                                        |                                                                                         |                    | Level proposed by 1989L002 (6818 + $\Delta'$ ).                                                                                                                                                                                                                                                                                      |
| 8831.8+y 4                                                                        |                                                                                         | 14 ns              | J <sup>*</sup> : $(65/2, 61/2)$ in 1989L002.<br>Level proposed by 1989L002 (8724 + $\Delta'$ ).<br>J <sup><math>\pi</math></sup> : $(71/2, 73/2)$ in 1989L002.<br>T <sub>1/2</sub> : From 905.4 $\gamma$ (t) (1989L002).                                                                                                             |

<sup>†</sup> From least square fit to the  $\gamma$ -ray energies assuming equal weight if no uncertainty for E $\gamma$ . In the latter case, no uncertainty for the level is listed.

<sup>‡</sup> Proposed by 1988St10 from  $\gamma$  multipolarities assigned based on conversion electron and  $\gamma(\theta)$  measurements.

<sup>#</sup> Spin in 1989Lo02 is two units less than those given here because of the 54.3-keV transition, not seen by 1989Lo02.

<sup>(a)</sup> From 1988St10, except noted otherwise. Mean lifetime reported in 1988St10, determined from  $\gamma\gamma$  coin,  $\gamma$ X coin, pulsed beam, and time differential perturbed angular distribution (TDPAD) g-factor measurements. Others values are listed in the comments section.

# $\gamma$ <sup>(213</sup>Rn)</sup>

See 1988St10 for B(E3) values calculated using the empirical-shell model, and comparison with experiments. See 1989Dr02 and 1985Be05 for systematics of E3 strengths of  $15/2^-$  to  $9/2^+$  transitions in the region.

| $E_{\gamma}^{\dagger @}$        | Ι <sub>γ</sub> &                 | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$             | $\mathbf{E}_{f}$      | $\mathbf{J}_{f}^{\pi}$ | Mult. <sup>b</sup> | δ         | $\alpha^{c}$    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                |
|---------------------------------|----------------------------------|------------------------|----------------------------------|-----------------------|------------------------|--------------------|-----------|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (39.5 <sup>‡</sup> )            |                                  | 1703.5?                |                                  | 1664.02               | 21/2+                  |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 45.3 <sup>#</sup> 2             | ≈1                               | 3029.35+x              | 37/2+                            | 2984.03+x             | 33/2+                  | E2                 |           | 359 5           | Mult.: $\alpha(\exp) \sim 380 \ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                                                           |
| (48.6 <sup>‡</sup> )            |                                  | 4581.4+x               |                                  | 4532.8+x              |                        |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (≤50 <sup>+</sup> )             |                                  | 5928.9+y               | (55/2 <sup>+</sup> )             |                       |                        |                    |           |                 | Transition not observed, expected a $\gamma$ transition 5<br>$\leq E\gamma \leq 50$ -keV in 1988St10 based on the<br>observation that the 165.2 $\gamma$ deexciting the<br>5928.8+x-keV level had a prompt component,<br>suggesting that the 164-ns level is above the<br>5928.9+x level.                                                                                                                                               |
| 54.3 <sup>#</sup> 2             | $\approx 1^{a}$                  | 3495.5+x               | 43/2-                            | 3441.17+x             | 39/2-                  | E2                 |           | 148.8 <i>21</i> | Mult.: $\alpha(\exp)=160\ 70\ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                                                             |
| (65.1 <sup>‡</sup> )            |                                  | 2186.73+x              | 31/2-                            | 2121.62+x             | (27/2)                 |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 68.2 <sup>#</sup> 2             | 7.6 <sup>a</sup> 7               | 2984.03+x              | 33/2+                            | 2915.82+x             | 33/2+                  | M1+E2              | 0.23 +6-8 | 9.9 12          | Mult., $\delta$ : From $\alpha(\exp)=9.8 \ 11 \ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                                           |
| (81.9 <sup>‡</sup> )            |                                  | 1745.93                |                                  | 1664.02               | $21/2^+$               |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (99.0 <sup>‡</sup> )            |                                  | 2739.83+x              | 31/2-                            | 2640.83+x             |                        |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 113.5 <sup>#</sup> 2            | 3 1                              | 3029.35+x              | 37/2+                            | 2915.82+x             | 33/2+                  | E2                 |           | 4.85 7          | $A_2/A_0 = +0.15 \ 10 \ (1988St10)$<br>Mult.: $\alpha(exp) = 5.9 \ 16 \ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                   |
| (125.0 <sup>‡</sup> 2)          | <1                               | 4048.0+x               | $(45/2^{-})$                     | 3923.0+x              | (43/2 <sup>-</sup> )   |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 128.4 <sup>#</sup> 2            | 3.4 <sup><i>a</i></sup> 4        | 3623.9+x               |                                  | 3495.5+x              | 43/2-                  |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 135.0 2                         | 274 5                            | 1664.02                | 21/2+                            | 1529.03               | 17/2+                  | E2                 |           | 2.351 33        | $\begin{array}{l} A_2/A_0 = 0.07 \ l \ (1988 \text{St10}) \\ A_2 = +0.085 \ l 2; \ A_4 = -0.008 \ 23 \ (1988 \text{Fu10}) \\ A_2/A_0 = +0.03 \ 5; \ A_4/A_0 = -0.04 \ 8 \ (1983 \text{Lo16} - \text{ for doublet}) \\ E_{\gamma}: \ \text{Others:} \ 135.3 \ 2 \ (1989 \text{Lo02}), \ 135.1 \\ \ (1988 \text{Fu10}), \ 131.3 \ (1983 \text{Lo16}). \\ \text{Mult.:} \ \alpha(\text{exp}) = 2.46 \ 4 \ (1988 \text{St10}). \end{array}$ |
| 139.8 <sup>#</sup> 2<br>165.2 2 | 2.3 <sup><i>a</i></sup> 4<br>4 1 | 3441.17+x<br>5928.9+x  | 39/2 <sup>-</sup><br>(53/2,55/2) | 3301.36+x<br>5763.7+x | (53/2,55/2)            | M1                 |           | 3.15 4          | E <sub>γ</sub> : Other: 165.7 2 (1989Lo02).<br>Mult.,δ: From $\alpha(\exp)=3$ 1 (1988St10). $\delta=0.3$ 8 using the BriccMixing code.                                                                                                                                                                                                                                                                                                  |
| 184.7 <sup>#</sup> 2            | 2.0 5                            | 2257.5                 |                                  | 2072.82               |                        |                    |           |                 |                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 191.1 <sup>#</sup> 2            | 4.4 8                            | 896.09                 | 15/2-                            | 705.00                | 11/2+                  | M2                 |           | 9.96 14         | $A_2/A_0 = -0.06\ 28\ (1988St10)$<br>Mult.: $\alpha(exp) = 9.9\ 13\ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                       |
| 192.6 <sup>#</sup> 2            | 29 1                             | 1856.63+x              | 25/2+                            | 1664.02+x             | 25/2+                  | M1                 |           | 2.045 29        | $A_2/A_0=0.40\ 6\ (1988St10)$<br>Mult.: $\alpha(exp)=2.5\ 3\ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                              |

<sup>213</sup><sub>86</sub>Rn<sub>127</sub>-13

 $^{213}_{86}\mathrm{Rn}_{127}\text{--}13$ 

# $\gamma(^{213}$ Rn) (continued)

| $E_{\gamma}^{\dagger @}$        | Ι <sub>γ</sub> &           | E <sub>i</sub> (level) | $J_i^{\pi}$          | $E_f$               | $J_f^\pi$                              | Mult. <sup>b</sup> | δ           | α <sup>c</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|---------------------------------|----------------------------|------------------------|----------------------|---------------------|----------------------------------------|--------------------|-------------|----------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 197.3 <sup>#</sup> 2            | 6.0 <sup><i>a</i></sup> 7  | 2984.03+x              | $33/2^{+}$           | 2786.73+x           | $29/2^{+}$                             |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 216.9 <sup>#</sup> 2            | 8.2 <sup><i>a</i></sup> 12 | 1745.93                |                      | 1529.03             | $17/2^{+}$                             |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 217.5 <sup>#</sup> 2            | 13 <sup>a</sup> 2          | 4723.1+x               |                      | 4505.6+x            | $49/2^{+}$                             |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 218.7 <sup>#</sup> 2            | ≈1                         | 2007.43                |                      | 1788.73             |                                        |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 233.4 <sup>#</sup> 2            | 91                         | 1936.9                 |                      | 1703.5?             |                                        |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 238.8 <sup>#</sup> 2            | 1.5 12                     | 2915.82+x              | $33/2^{+}$           | 2677.00+x           | $29/2^{+}$                             |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 244.2 <sup>#</sup> 2            | 20 5                       | 2984.03+x              | 33/2+                | 2739.83+x           | 31/2-                                  | (E1)               |             | 0.0535 7       | $A_2/A_0 = -0.15 \ 4 \ (1988St10)$<br>Mult.: $\alpha(exp) < 0.3$ , $\alpha(exp) = 0.0 \ 3$ in 1988St10.                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 259.4 <sup>#</sup> 2            | ≈2 <sup><i>a</i></sup>     | 3441.17+x              | 39/2-                | 3181.81+x           | (35/2-)                                |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 259.7 <sup>#</sup> 2            | $\approx 1^{a}$            | 1788.73                |                      | 1529.03             | $17/2^{+}$                             |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 261.5 <sup>#</sup> 2            | $\approx 1^{a}$            | 2007.43                |                      | 1745.93             |                                        |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 266.0 <sup>#</sup> 2            | ≈3 <sup><i>a</i></sup>     | 3181.81+x              | $(35/2^{-})$         | 2915.82+x           | 33/2+                                  |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 269.4 <sup>#</sup> 2            | 15 <i>I</i>                | 1529.03                | 17/2+                | 1259.62             | 13/2+                                  | E2                 |             | 0.1922 27      | $A_2/A_0=0.01$ 6 (1988St10)<br>Mult.: $\alpha(\exp)=0.18$ 16, deduced from intensity balance (1988St10).                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 272.0 <sup>#</sup> 2            | 51                         | 3301.36+x              |                      | 3029.35+x           | $37/2^{+}$                             |                    |             |                | $A_2/A_0 = -0.26 \ 15 \ (1988St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 272.9 <sup>#</sup> 2            | 1.7 5                      | 1936.9                 |                      | 1664.02             | $21/2^+$                               |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 307.0 <sup>#</sup> 2            | 53                         | 2984.03+x              | $33/2^{+}$           | 2677.00+x           | $\frac{1}{29/2^+}$                     |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 314.5 <sup>#</sup> 2            | 6 1                        | 1574.1                 | ,                    | 1259.62             | $13/2^{+}$                             |                    |             |                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 330.1 <sup>#</sup> 2            | 91                         | 2186.73+x              | $31/2^{-}$           | 1856.63+x           | $25/2^+$                               | (E3)               |             | 0.552 8        | Mult.: $\alpha(\exp) < 0.5$ , $\alpha(\exp) = 0.2$ 3 in 1988St10.                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 343.4 <sup>#</sup> 2            | 8 2                        | 2007.43                |                      | 1664.02             | $21/2^{+}$                             |                    |             |                | $A_2/A_0 = 0.34 \ I3 \ (1988St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 344.9 <sup>#</sup> 2            | 54 2                       | 2201.52+x              | (27/2 <sup>-</sup> ) | 1856.63+x           | 25/2+                                  | (E1)               |             | 0.02429 34     | $A_2/A_0 = -0.28 \ 3 \ (1988St10)$<br>Mult.: $\alpha(\exp) < 0.17 \ (1988St10)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 350.0 2                         | 92                         | 5225.6+x               | (51/2+)              | 4875.6+x            | (49/2+)                                | M1+E2              | 0.70 +26-23 | 0.29 5         | A <sub>2</sub> /A <sub>0</sub> =-0.39 14 (1988St10)<br>Mult.,δ: From $\alpha$ (K)exp=0.23 4, and $\alpha$ (L)exp<0.09<br>(1988St10). There is disagreement between the<br>multipolarity assignments of 1988St10 and 1989Lo02.<br>$\alpha$ (K)exp=0.23 4 was deduced, and M1 was suggested<br>by 1988St10; from a weak K line, 1989Lo02 deduced<br>E1 multipolarity. However, since the 720.1 $\gamma$ (parallel<br>to the cascading 350.0 and 370.1 gammas) and the<br>370.1 $\gamma$ are (M1), the 350.0 $\gamma$ probably is not E1. |
| 352.8 <sup>e</sup> 2<br>370.1 2 | 1.8 7<br>8 2               | 1612.4?<br>4875.6+x    | (49/2+)              | 1259.62<br>4505.6+x | 13/2 <sup>+</sup><br>49/2 <sup>+</sup> | М1                 |             | 0.337 5        | A <sub>2</sub> /A <sub>0</sub> =0.33 <i>5</i> (1988St10)<br>E <sub>γ</sub> : Other measurement: 369.4 (1989Lo02).<br>Mult.,δ: From $\alpha$ (K)exp=0.22 <i>4</i> , $\alpha$ (L)exp=0.12 <i>1</i> (1988St10). $\delta$ =0.00 <i>12</i> using the BriccMixing code.<br>Intensities measured by 1989Lo02 suggest that the 350.0γ is stronger, and therefore, should be below                                                                                                                                                              |

 $^{213}_{86}$ Rn $_{127}$ -14

|                             |                         |                        |                             |                       |                                           | (HI,xn                      | $\gamma$ ) (continued) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------|-------------------------|------------------------|-----------------------------|-----------------------|-------------------------------------------|-----------------------------|------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                         |                        |                             |                       |                                           | $\gamma$ ( <sup>213</sup> R | n) (continued)         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $E_{\gamma}^{\dagger @}$    | Ι <sub>γ</sub> &        | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$        | $\mathbf{E}_{f}$      | $J_f^{\pi}$                               | Mult. <sup>b</sup>          | $\alpha^{c}$           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                             |                         |                        |                             |                       |                                           |                             |                        | the 370.1 $\gamma$ . However, if the above placement between the above $\gamma$ switched, then placement of 1053.3 $\gamma$ from 5928.8+x keV level to this level (1988St10) do not fit the level energy difference. So, 1988St10 level structure is followed by the evaluator. 1053.3 $\gamma$ is not reported in 1989Lo02.                                                                                                                                               |
| 383.2 <sup>#</sup> 2        | <1                      | 2610.7                 |                             | 2227.5                |                                           |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 390.2 <sup>#</sup> 2        | 51                      | 2327.1                 |                             | 1936.9                |                                           |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 411.8 2                     | 260 5                   | 3441.17+x              | 39/2-                       | 3029.35+x             | 37/2+                                     | E1                          | 0.01652 23             | $\begin{array}{l} A_2/A_0 = -0.18 \ I \ (1988 \text{St10}) \\ A_2/A_0 = -0.29 \ 3; \ A_4/A_0 = -0.05 \ 5 \ (1983 \text{Lo16}) \\ E_{\gamma}: \ \text{Others:} \ 412.2 \ 2 \ (1989 \text{Lo02}), \ 411.8 \ (1988 \text{Fu10}). \\ \text{Mult.:} \ \alpha(\text{K}) \text{exp} = 0.035 \ 4, \ \text{and} \ \alpha(\text{L}) \text{exp} = 0.005 \ I \ (1988 \text{St10}). \end{array}$                                                                                        |
| 420.2 <sup>#</sup> 2        | <1                      | 4343.2+x               |                             | 3923.0+x              | $(43/2^{-})$                              |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 427.5 <sup>#</sup> 2        | 16 <i>3</i>             | 3923.0+x               | (43/2 <sup>-</sup> )        | 3495.5+x              | 43/2-                                     | M1                          | 0.2282 32              | A <sub>2</sub> /A <sub>0</sub> =0.26 7 (1988St10)<br>Mult.: $\alpha$ (K)exp=0.19 3, and $\alpha$ (L)exp=0.08 2 (1988St10).                                                                                                                                                                                                                                                                                                                                                 |
| 431.9 <sup>#</sup> 2        | 13 <i>I</i>             | 3927.4+x               |                             | 3495.5+x              | 43/2-                                     |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 445.5 <sup>#</sup> 2        | $\approx 1^{a}$         | 4050.3+x               |                             | 3604.8+x              |                                           |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 454.1 <sup>#</sup> 2        | 13 2                    | 2640.83+x              |                             | 2186.73+x             | $31/2^{-}$                                |                             |                        | $A_2/A_0 = 0.0 \ l \ (1988St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 457.6 <sup>d</sup> 2        | 30 5                    | 2121.62+x              | (27/2)                      | 1664.02+x             | $25/2^+$                                  |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 457.6 <sup><i>d</i></sup> 2 | <3                      | 4505.6+x               | 49/2+                       | 4048.0+x              | (45/2 <sup>-</sup> )                      |                             |                        | <ul> <li>I<sub>γ</sub>: Determined by 1988St10 from coincidence spectra.</li> <li>E<sub>γ</sub>: Other: 456.9 2 (1989Lo02). This transition was placed on the level scheme only once by 1989Lo02.</li> </ul>                                                                                                                                                                                                                                                               |
| 460.5 <sup>#</sup> 2        | 41                      | 2662.0+x               |                             | 2201.52+x             | $(27/2^{-})$                              |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 483.0 <sup>#</sup> 2        | 51                      | 2684.5+x               |                             | 2201.52+x             | $(27/2^{-})$                              |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 490.2 <sup>#</sup> 2        | 13 <i>1</i>             | 2677.00+x              | 29/2+                       | 2186.73+x             | 31/2-                                     | D+Q                         |                        | $A_2/A_0 = -0.15 \ 8 \ (1988St10)$<br>Mult.: from $A_2/A_0$ .                                                                                                                                                                                                                                                                                                                                                                                                              |
| 520.3 <sup>#</sup> 2        | 8 <sup>a</sup> 2        | 2184.3                 |                             | 1664.02               | $21/2^{+}$                                |                             |                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 522.7 2                     | 480 10                  | 2186.73+x              | 31/2-                       | 1664.02+x             | 25/2+                                     | E3                          | 0.1073                 | $\begin{array}{l} A_2/A_0 = 0.130 \ 6 \ (1988St10) \\ A_2/A_0 = + 0.00 \ 2; \ A_4/A_0 = + 0.00 \ 4 \ (1983Lo16) \\ A_2 = + 0.148 \ 11; \ A_4 = + 0.017 \ 18 \ (1988Fu10) \\ E_{\gamma}: \ Others: \ 521.7 \ 2 \ (1989Lo02) \ and \ 522.7 \ (1988Fu10), \ 521.7 \\ \ (1983Lo16). \\ \ Mult.: \ \alpha(K)exp = 0.060 \ 2, \ \alpha(L)exp = 0.036 \ 2, \ and \ \alpha(M)exp = 0.013 \ 1 \\ \ (1988St10). \\ \ Polarization \ amplitude = -0.01 \ 4 \ (1988Fu10). \end{array}$ |
| 533.4 <sup>#e</sup> 2       |                         | 4581.4+x               |                             | 4048.0+x              | (45/2 <sup>-</sup> )                      |                             |                        | $E_{\gamma}$ : From decay scheme of 1988St10; this transition was not listed by the authors.                                                                                                                                                                                                                                                                                                                                                                               |
| 537.5 2<br>538.1 2          | $18\ 2 \\ 10^{a}\ 1$    | 2201.52+x<br>5763.7+x  | $(27/2^{-})$<br>(53/2,55/2) | 1664.02+x<br>5225.6+x | 25/2 <sup>+</sup><br>(51/2 <sup>+</sup> ) | (E1)                        | 0.00951 13             | $E_{\gamma}$ : Other: 536.7 2 (1989Lo02).<br>$E_{\gamma}$ : Other: 536.7 2 (1989Lo02).                                                                                                                                                                                                                                                                                                                                                                                     |
| 543.7# 2                    | 2 <sup><i>a</i></sup> 1 | 2072.82                | (15/0-)                     | 1529.03               | $17/2^+$                                  | 2.61                        | 0.1150.35              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 552.5 2                     | 414                     | 4048.0+x               | $(45/2^{-})$                | 3495.5+x              | $43/2^{-}$                                | MI                          | 0.1150 16              | $E_{\gamma}$ : Other: 551.8 2 (1989Lo02).                                                                                                                                                                                                                                                                                                                                                                                                                                  |

|                          |                       |               |                      |                  |                      | (HI,x              | (continued)      | 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|--------------------------|-----------------------|---------------|----------------------|------------------|----------------------|--------------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                       |               |                      |                  |                      | $\gamma(^{213})$   | Rn) (continued   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                          |                       |               |                      |                  |                      | <u>/ (</u>         |                  | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $E_{\gamma}^{\dagger @}$ | $I_{\gamma}^{\&}$     | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. <sup>b</sup> | $\alpha^{c}$     | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                          |                       |               |                      |                  |                      |                    |                  | Mult.: $\alpha(K)\exp=0.12\ 2\ (1988St10)$ . The $\alpha(K)\exp$ value is presented<br>for 553 $\gamma$ with a multipolarity M1 in Table 3 (1988St10). Evaluator<br>presents the same $\alpha(K)\exp$ value and M1 multipolarity for both the<br>552.5 $\gamma$ and 553.1 $\gamma$ from (45/2 <sup>-</sup> ) state at 4048.0+x and 31/2 <sup>-</sup> state<br>at 2737.4+x levels, respectively.                                                                          |
| 553.1# 2                 | 26 4                  | 2739.83+x     | 31/2-                | 2186.73+x        | 31/2-                | M1                 | 0.1147 <i>16</i> | Mult.: $\alpha(K)exp=0.12\ 2\ (1988St10)$ . The $\alpha(K)exp$ value is presented<br>for 553 $\gamma$ with a multipolarity M1 in Table 3 (1988St10). Evaluator<br>presents the same $\alpha(K)exp$ value and M1 multipolarity for both the<br>552.5 $\gamma$ and 553.1 $\gamma$ from (45/2 <sup>-</sup> ) state at 4048.0+x and 31/2 <sup>-</sup> state<br>at 2737.4+x levels, respectively.                                                                             |
| 563.5 <sup>#</sup> 2     | 28 1                  | 2227.5        |                      | 1664.02          | $21/2^+$             |                    |                  | $A_2/A_0 = -0.11 \ 7 \ (1988St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 575.5 <sup>#</sup> 2     | 12 3                  | 3604.8+x      |                      | 3029.35+x        | 37/2+                |                    |                  | $A_2/A_0 = -0.05 \ 10 \ (1988St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 609.8 <sup>#</sup> 2     | 73                    | 4532.8+x      |                      | 3923.0+x         | (43/2-)              |                    |                  | $A_2/A_0 = -0.19 \ 6 \ (1988St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 632.9 2                  | 95×10 <sup>1</sup> 10 | 1529.03       | 17/2+                | 896.09           | 15/2-                | E1                 | 0.00688 10       | $\begin{array}{l} A_2/A_0 = -0.112 \ 24 \ (1988St10) \\ A_2/A_0 = -0.15 \ 5; \ A_4/A_0 = +0.12 \ 10 \ (1983Lo16) \\ A_2 = -0.095 \ 6; \ A_4 = +0.010 \ 11 \ (1988Fu10) \\ E_{\gamma}: \ Others: \ 631.7 \ 2 \ (1989Lo02), \ 632.7 \ (1988Fu10), \ 631.7 \\ \ (1983Lo16). \\ Mult.: \ \alpha(K)exp = 0.008 \ 1, \ \alpha(L)exp = 0.0014 \ 2, \ and \ \alpha(M)exp < 0.0009 \\ \ (1988St10). \\ Polarization \ amplitude = -0.01 \ 2 \ (1988Fu10). \end{array}$            |
| 705.0 <sup>#</sup> 2     | 770 5                 | 705.00        | $11/2^{+}$           | 0.0              | $(9/2^+)$            | M1                 | 0.0604 8         | $A_2/A_0 = -0.03\ 2\ (1988\ St10)$                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          |                       |               | ,                    |                  |                      |                    |                  | Mult.: $\alpha$ (K)exp=0.040 <i>3</i> and $\alpha$ (L)exp=0.013 <i>2</i> (1988St10).                                                                                                                                                                                                                                                                                                                                                                                     |
| 720.1 2                  | 10 3                  | 5225.6+x      | $(51/2^+)$           | 4505.6+x         | 49/2+                | (M1)               | 0.0572 8         | $E_{\gamma}$ : Other: 718.9 2 (1989Lo02).                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 729.1 2                  | 115 6                 | 2915.82+x     | 33/2+                | 2186.73+x        | 31/2-                | E1                 | 0.00525          | Mult.: $\alpha(K)\exp=0.0414$ (19885110).<br>$E_{\gamma}$ : Others: 727.8 2 (1989Lo02) and 728.7 (1988Fu10).<br>Mult.: there are disagreements between the experimental Ice's and the<br>angular distributions measured by 1988St10 and by 1989Lo02:<br>$\alpha(K)\exp<0.0065$ , $\alpha(L)\exp=0.004$ <i>I</i> (1988St10), $\alpha(K)\exp=0.019$<br>(1989Lo02); angular distribution: A <sub>2</sub> /A <sub>0</sub> =-0.22 2 (1988St10), -0.02<br><i>4</i> (1989Lo02). |
| 767.9 2                  | 10 <i>I</i>           | 1664.02       | 21/2+                | 896.09           | 15/2-                | (E3)               | 0.0365 5         | <ul> <li>A<sub>2</sub>/A<sub>0</sub>=0.4 <i>I</i> (1988St10)</li> <li>E<sub>y</sub>: Other: 767.6 (1988Fu10).</li> <li>Mult.: E3 is expected from the level scheme; angular distribution is consistent with this multipolarity; no conversion electron line was observed.</li> </ul>                                                                                                                                                                                     |
| 797.3 2                  | 256 5                 | 2984.03+x     | 33/2+                | 2186.73+x        | 31/2-                | E1                 | 0.00444 6        | $A_2/A_0 = -0.168 \ 8 \ (1988St10) \\ A_2/A_0 = -0.01 \ 2; \ A_4/A_0 = -0.02 \ 2 \ (1983Lo16) \\ E_{\gamma}: \ Comparable \ 795.5\gamma \ from \ (37/2) \ level \ as \ (E3) \ in \ 1983Lo16. \\ E_{\gamma}: \ Others: \ 795.8 \ 2 \ (1989Lo02), \ 797.2 \ (1988Fu10), \ 795.5 \\ \ (1983Lo16). \\ Mult.: \ \alpha(K)exp = 0.0048 \ 4 \ and \ \alpha(L)exp = 0.0013 \ 3 \ (1988St10). \\ \end{cases}$                                                                     |

536

 $^{213}_{86}$ Rn $_{127}$ -16

# $\gamma(^{213}\text{Rn})$ (continued)

 $\alpha^{c}$ 

(1989Lo02).

Mult.<sup>b</sup>

 $J^{\pi}_{c}$ 

 $(55/2^+)$ 

| an |  |
|----|--|
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |
| n  |  |
|    |  |
|    |  |
|    |  |
|    |  |
|    |  |

Comments

Mult.: E3 from A<sub>2</sub>/A<sub>0</sub>=0.29 5, A<sub>4</sub>/A<sub>0</sub>=0.28 4;  $\alpha$ (K)exp=0.027

842.6<sup>#e</sup> 2 5<sup>a</sup> 1 3029.35+x  $37/2^+$ 2186.73+x 31/2-Placement of 842.6 $\gamma$  between the 37/2<sup>+</sup> state at 3029.3+x and the  $31/2^{-}$  state at 2186.7+x keV requires the 842.6 $\gamma$  to be an E3 transition, with B(E3)(W.u.)=0.74. 896.1 2 1000 896.09  $15/2^{-}$ 0.02500 35  $A_2 = +0.155$  7;  $A_4 = +0.009$  11 (1988Fu10) 0.0  $(9/2^+)$ E3  $A_2/A_0 = 0.098 \ 9 \ (1988St10)$ E<sub>v</sub>: Others: 894.5 2 (1989Lo02), 896.0 (1988Fu10), 894.5 (1983Lo16). Mult.:  $\alpha(K) \exp = 0.016 \ l, \ \alpha(L) \exp = 0.0059 \ 4$ , and  $\alpha$ (M)exp=0.0016 2 (1988St10). Polarization amplitude=-0.04 2 (1988Fu10). 60<sup>@</sup> 905.4 2 18 8831.8+y 7926.4+y  $E_{\gamma}$ : From 1989Lo02. Mult.: (E3) from  $A_2/A_0=0.34$  7,  $A_4/A_0=0.41$  10;  $\alpha$ (K)exp<0.024 (1989Lo02).  $907.4^{e}$  2 51 705.00  $11/2^{+}$  $E_{\gamma}$ : Other: 905.4 (1989Lo02). This transition was placed by 1612.4? 1989Lo02 to deexcite a level at 8724 +  $\Delta'$  keV, 8831.8+y in this dataset.  $930.1^{\#}2$ 12 *I*  $29/2^{+}$ 1856.63+x 25/2+  $A_2/A_0 = 0.0 \ I \ (1988St10)$ 2786.73 + x995.1<sup>#</sup> 2 35 4 3181.81+x  $(35/2^{-})$ 2186.73+x 31/2-(E2) 0.00821 11  $A_2/A_0 = 0.135$  (1988St10) 1010.1 2 51 4 4505.6+x  $49/2^{+}$ 3495.5+x 43/2<sup>-</sup> E3 0.01891 26  $A_2/A_0 = 0.47 \ 2 \ (1988 \ St10)$  $E_{\gamma}$ : Other: 1008.1 2 (1989Lo02). Mult.:  $\alpha(K) \exp = 0.0155 \ 12, \ \alpha(L) \exp = 0.0049 \ 5, \ and$  $\alpha$ (M)exp=0.0014 3 (1988St10).  $1013.0^{\#} 2$ 11 4 2677.00 + x $29/2^{+}$  $1664.02 + x \quad 25/2^+$ Q  $A_2/A_0 = 0.10 \ 9 \ (1988St10)$ Mult.: from  $A_2/A_0$  by the evaluator.  $1053.3^{\#}2$  $3^{a}$  1 5928.9+x (53/2, 55/2)4875.6+x (49/2<sup>+</sup>)  $1174.4^{\#}$  2 17 3 1879.4  $11/2^{+}$ 705.00 1176.8<sup>#</sup> 2 163 2072.82 896.09  $15/2^{-}$  $A_2/A_0 = 0.14 \ 10 \ (1988St10)$ ≈80<sup>@</sup> 1182.5 2 7926.4+y 6743.90+y  $E_{\gamma}$ : From 1989Lo02. Mult.: (E3) from  $A_2/A_0=0.36\ 2$ ,  $A_4/A_0=0.02\ 3$ ;  $\alpha$ (K)exp $\leq 0.025$  (1989Lo02). 1258.1 2 16 3 5763.7+x (53/2, 55/2)4505.6+x $49/2^{+}$ E<sub>v</sub>: Other: 1255.9 2 (1989Lo02).  $1259.6^{\#}2$ 24.3 1259.62  $13/2^{+}$ 0.0  $(9/2^+)$ 1423.3<sup>#</sup> 2 3<sup>a</sup> 1 5928.9+x (53/2, 55/2)4505.6+x  $49/2^{+}$ 

<sup>†</sup> From 1988St10, unless noted otherwise.  $\Delta E\gamma = 0.2$  keV listed by evaluator based on the e-mail communications (dated: Feb 3, 2022) with the first author, A.E.Stuchbery, of 1988St10. The reported E $\gamma$  in 1988St10 and 1988Fu10, and those of 1989Lo02 are discrepant. However, the data reported in 1988St10 and

Ι<sub>γ</sub>&

≈100<sup>@</sup>

 $\mathbf{J}_i^{\pi}$ 

 $\mathbf{E}_{f}$ 

5928.9+y

E<sub>i</sub>(level)

6743.90+y

 $E_{\nu}^{\dagger @}$ 

815.0 2

NUCLEAR DATA SHEETS

 $\gamma(^{213}$ Rn) (continued)

1988Fu10 are consistent.

- <sup>‡</sup> From level energy difference. Transition was not observed; existence proposed from coincidence data.
- <sup>#</sup> Transition was not seen by others.
- <sup>@</sup> From 1989Lo02.
  <sup>&</sup> Relative singles intensity measured in <sup>208</sup>Pb(57-MeV <sup>9</sup>Be,4n) by 1988St10 and normalized to Iγ(896)=1000.

<sup>*a*</sup> From coincidence data (1988St10).

<sup>b</sup> From conversion electron measurements by 1989Lo02 and 1988St10, angular distribution measurements of 1989Lo02, 1988St10, 1988Fu10, and 1983Lo16.

<sup>c</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>d</sup> Multiply placed.

<sup>e</sup> Placement of transition in the level scheme is uncertain.

 $^{213}_{87}\mathrm{Fr}_{126}\text{-}1$ 

### Adopted Levels, Gammas

 $Q(\beta^{-}) = -3900 \ 11; \ S(n) = 8110 \ 10; \ S(p) = 2184 \ 6; \ Q(\alpha) = 6904.7 \ 13 \ 2021Wa16$ 

2015Ba20: <sup>136</sup>Xe + <sup>208</sup>Pb, E(c.m.)=450 MeV, measured multi-nucleon transfer reaction cross section  $\sigma_{\text{cumulative yield}}=0.0402$  mb 80 a  $\sigma_{\text{independent yield}}=0.0402$  mb 80 for <sup>213</sup>Fr.

1986Hi01,1988Ne03: <sup>197</sup>Au(<sup>16</sup>O,F), E=95-124 MeV, measured neutron fission-fragment angular correlations for the compound nuclei. 1988Ne03 measured average number of neutrons preceding fission.

2009Pa49: <sup>238</sup>U(p,X), E=1 GeV; measured fission and spallation yields from different mass targets.

2014Si03: <sup>194</sup>Pt(<sup>19</sup>F,X), E=96.2-137.3 MeV; measured spectra and angular distribution of evaporation residues (ER),  $\sigma$ (ER, E). 1972Le23: <sup>205</sup>Tl(<sup>12</sup>C,4n), E=60-90 MeV, measured  $\sigma$ (E).

# <sup>213</sup>Fr Levels

#### Cross Reference (XREF) Flags

|                                        |                                        | I<br>I                    | $\begin{array}{c} 2^{13}\text{Ra} \\ 2^{17}\text{Ac} \\ 2^{17}\text{Ac} \\ 2^{17}\text{Ac} \end{array}$ | $ \begin{aligned} \varepsilon & \text{decay (2.73 min)} & \text{D} & {}^{217}\text{Ac } \alpha & \text{decay (8 ns)} \\ \alpha & \text{decay (69 ns)} & \text{E} & {}^{217}\text{Ac } \alpha & \text{decay (740 ns)} \\ \alpha & \text{decay: E=1.15 MeV} & \text{F} & (\text{HI,xn}\gamma) \end{aligned} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------------------|----------------------------------------|---------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| E(level) <sup>†</sup>                  | $J^{\pi \ddagger}$                     | $T_{1/2}^{\#}$            | XREF                                                                                                    | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 0.0                                    | 9/2-                                   | 34.17 s 6                 | BCDEF                                                                                                   | %α=99.44 5; %ε+%β <sup>+</sup> =0.56 5<br>µ=+4.02 8; Q=-0.14 2<br>J <sup>π</sup> : Measured by Atomic Beam Magnetic Resonance (ABMR) technique<br>(1978Ek02, 1978Ek05); configuration: π (h <sup>4</sup> <sub>9/2</sub> ) from µ and shell model.<br>T <sub>1/2</sub> : Weighted average of 34.6 s 3 (1974Ho27), 34.7 s 3 (1967Va20), 33.7 s 15<br>(1964Gr04), 34.14 s 6 (2013Fi08), 33.2 s 20 (2016Pr08 – 605.9-keV conversion<br>electron (t) (corresponding to the 704.3 keV γ ray ). 28.4 s 35 (2016Pr08 –<br>from 577.0γ(t) of <sup>209</sup> At following the α decay of <sup>213</sup> Fr), 34.1 s 7 and 34 s 6<br>(2012No08 – the latter value was measured for <sup>213</sup> Fr <sup>+86</sup> at rest and both from<br>α(t)), 16 s +37-13 (2015De22), 20 s +48-8 (2019Mi08). Others: 35.0 s 2<br>(1982Bo04 – possibly contribution from <sup>213</sup> Ra, <sup>211</sup> Po contaminations not<br>discussed), 34 s (1961Gr42 – from 6770α(t)).<br>%α: Weighted average of %α=99.1 1, %(ε+β <sup>+</sup> )=0.9 1 (1974Ho27), %α=99.48 3,<br>%(ε+β <sup>+</sup> )=0.52 3 (1964Gr04) and %α=99.43 3, %(ε+β <sup>+</sup> )=0.57 3 (1967Va20).<br>$\chi^2$ =6.7 cf. $\chi^2_{crit}$ =3.0. Other: %α=99.75 15, %(ε+β <sup>+</sup> )=0.25 15 (2017Lo13 –<br>possible escape of <sup>213</sup> Rn). (ε+β <sup>+</sup> ) branching was deduced from comparison of<br><sup>213</sup> Fr and <sup>213</sup> Rn α's in by 1964Gr04, 1967Va20, 1974Ho27, and 2017Lo13.<br>Weighted average of all values is the same as above with $\chi^2$ =5.9 cf. $\chi^2_{crit}$ =2.6<br>and unweighted average: %α=99.44 13, %(ε+β <sup>+</sup> )=0.56 13.<br>µ: From 2019StZV, (1985Co24 and 1986Ek02 – by LASER induced optical<br>pumping). Other: 3.996 14 (1980Li22 – deduced from g <sub>1</sub> value).<br>Q: From 2016St14, 1985Co24.<br>$\delta < r^2 > (212Fr,213Fr)=0.06829 fm2 8 (1987Co19) and 0.02780 3 (1985Co24). Same first author for both. Uncertainty is statistical only, 1987Co19 noted the systematic uncertainty to be a few percent. Isotope shift measurement – 2014Co18.$ |
| 498.0 10                               | (7/2-)                                 |                           | E                                                                                                       | J <sup>n</sup> : From dominant $I_{\alpha}=11$ with respect to $I_{\alpha}(10540)=100$ in <sup>217</sup> Ac $\alpha$ decay (740 ns).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1105.0 10                              | $(13/2)^+$                             |                           | E                                                                                                       | $J^{\pi}$ : 1105 $\gamma$ M2 to 9/2 <sup>-</sup> g.s. and $I_{\alpha}(10540)$ =90 6 branching in <sup>217</sup> Ac $\alpha$ decay (740 ns).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1188.80 <i>10</i><br>1411.00 <i>15</i> | 13/2 <sup>-</sup><br>17/2 <sup>-</sup> | <2.1 ns<br>18 ns <i>1</i> | F<br>F                                                                                                  | J <sup><math>\pi</math></sup> : 1188.8 $\gamma$ E2 to 9/2 <sup>-</sup> state. Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> ) $\otimes$ 2 <sup>+</sup> .<br>$\mu$ =7.5 <i>14</i> (1986By01,2020StZV)<br>J <sup><math>\pi</math></sup> : 222.2 $\gamma$ E2 to 13/2 <sup>-</sup> state. g=0.88 <i>16</i> by $\gamma$ (H, $\theta$ ,t) in (HI,xn $\gamma$ ) (1986By01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 1590.40 <i>18</i>                      | 21/2-                                  | 505 ns 14                 | F                                                                                                       | Configuration: $\pi$ (h <sub>9/2</sub> ) $\otimes$ 4 <sup>-</sup> .<br>$\mu$ =9.28 3 (2020StZV)<br>J <sup><math>\pi</math></sup> : 179.4 $\gamma$ E2 to 17/2 <sup>-</sup> state. Measurements: g=0.888 3 (1977Be56, 1976Ha37);                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

# <sup>213</sup>Fr Levels (continued)

| E(level) <sup>†</sup>       | $J^{\pi \ddagger}$        | $T_{1/2}^{\#}$                     | XREF   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|-----------------------------|---------------------------|------------------------------------|--------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                             |                           |                                    |        | 0.888 4 (1979Ho06); 0.89 2 (1986By01) by $\gamma(H,\theta,t)$ in (HI,xn $\gamma$ ); 0.888 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                             |                           |                                    |        | (1978Ha50). Configuration: $\pi$ (h <sup>+1</sup> <sub>0(2)</sub> ) $\otimes$ 6 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1856.30 20                  | $23/2^{-}$                | <1.4 ns                            | F      | $J^{\pi}$ : 265.9 $\gamma$ M1+E2 to 21/2 <sup>-</sup> state. Configuration: $\pi$ ( $h_{0/2}^{+2}, f_{7/2}^{+1}$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2537.61 23                  | $29/2^+$                  | 238 ns 6                           | F      | $\mu$ =15.15 5; Q=-0.70 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             |                           |                                    |        | $J^{\pi}$ : 681.3 $\gamma$ E3 to 23/2 <sup>-</sup> state. Main configuration: $\pi$ (h <sub>9/2</sub> <sup>+2</sup> , i <sub>13/2</sub> <sup>+1</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                           |                                    |        | $T_{1/2}$ : Other: 243 ns 21 (1986By01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                             |                           |                                    |        | $\mu$ : From 2020StZV, 1977Be56. g factor measurements by $\gamma(H,\theta,t)$ , corrected for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                           |                                    |        | Knight shift: $g=1.055.5$ (1989By01), 1.049.2 (1979Ho06), 1.0494.18<br>(1077D -5( 107(H-27.1078H-50), 1.04.2 (1074D -00), and 1.05.2 (1072D -7D)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                           |                                    |        | (19/1800, 19/0803, 19/0803), 1.042 (19/4809), and 1.053 (19/0802P).<br>O: From 1000By03, 2016St14, Deduced value using B(E2) for the 8 <sup>+</sup> to 6 <sup>+</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                             |                           |                                    |        | transition in $^{212}$ Rn and an effective charge of 1.5e. See also 1991Ha02 for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                           |                                    |        | calculations. $O=0.81.4$ in 1990Ha30 from level mixing spectroscopy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2740.2.3                    | 27/2-                     | <7 ns                              | F      | $J^{\pi}$ : 884 $\gamma$ E2 to 23/2 <sup>-</sup> state. Configuration: $\pi$ (h <sup>+2</sup> f <sup>+1</sup> ) $\otimes$ 2 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2950.5 3                    | $31/2^{-}$                | <2.1 ns                            | F      | $J^{\pi}$ : 413.0 $\gamma$ E1 to 29/2 <sup>+</sup> state, 210.4 $\gamma$ (E2) to 27/2 <sup>-</sup> state. Configuration: $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             | - 1                       |                                    |        | $(h_{0,0}^{+2}, f_{7,0}^{+1}) \otimes 4^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3427.34 24                  | $33/2^{+}$                | <2.1 ns                            | F      | $J^{\pi}$ : 476.9 $\gamma$ E1 to 31/2 <sup>-</sup> state, 889.7 $\gamma$ E2 to 29/2 <sup>+</sup> state. Configuration: $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                           |                                    |        | $(\mathbf{h}_{9/2}^{+2}, \mathbf{i}_{13/2}^{+1}) \otimes 2^+.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 3489.2 <i>4</i>             | (33/2)                    |                                    | F      | $J^{\pi}$ : 538.7 $\gamma$ (D) to 31/2 <sup>-</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3655.4 4                    | $37/2^{+}$                | 2.4 ns 7                           | F      | J <sup><math>\pi</math></sup> : 228.1 $\gamma$ E2 to 33/2 <sup>+</sup> state. Configuration: $\pi$ (h <sup>+2</sup> <sub>9/2</sub> ,i <sup>+1</sup> <sub>13/2</sub> ) $\otimes$ 4 <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 4029.2 5                    | 20/2+                     | 1.4                                | F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4082.9 4                    | 39/21                     | <1.4 ns                            | F E    | $J^{4}$ : 427.5 $\gamma$ M1+E2 to 37/2 <sup>+</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4033.07 11                  |                           | <2.1 ns                            | г<br>F | Two cascading gammas combining the level with $47/2^{-1}$ three cascading gammas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| +075.+ +                    |                           | <2.1 H5                            | 1      | from $49/2^+$ state, and probable M1 character of the 592.5v to $39/2^+$ suggest                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             |                           |                                    |        | $(41/2^+)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4695.9 <i>4</i>             | 39/2-                     | <2.1 ns                            | F      | $J^{\pi}$ : 1040.3 $\gamma$ E1 to 37/2 <sup>+</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 4898.5 <i>4</i>             | $41/2^{-}$                | <2.8 ns                            | F      | $J^{\pi}$ : 815.6 $\gamma$ E1 to 39/2 <sup>+</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4982.0 6                    |                           |                                    | F      | If $306.5\gamma$ to $4675.4$ -keV level is E1, as implied by intensity balance at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             |                           |                                    |        | $4675.4$ -keV level, and if $J^{n}(4675.4$ -keV level) is $(41/2^{+})$ , $J^{n}(4982.0$ -keV level) $(42/2^{-})$ is consistent with being perpleted from $40/2^{+}$ state through                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                             |                           |                                    |        | $(45/2)$ is consistent with being populated from $49/2^{+}$ state through three cascading $\alpha$ transitions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4992.7 4                    | $45/2^{-}$                | 13 ns 2                            | F      | $\mu = 23.2.7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                           | 10 110 -                           | -      | $J^{\pi}$ : 909.8 $\gamma$ E3 to 39/2 <sup>+</sup> state, 94.4 $\gamma$ E2 to 41/2 <sup>-</sup> state. Measurements: g=0.990                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                             |                           |                                    |        | 25 (1979Ho06); 1.03 3 (1986By01) by $\gamma(H,\theta,t)$ in (HI,xn $\gamma$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                             |                           |                                    |        | Configuration: $\pi$ (h <sup>+3</sup> <sub>9/2</sub> , i <sup>+2</sup> <sub>13/2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                             |                           |                                    |        | $\mu$ : From 2020StZV, <sup>7</sup> 1986By01 from time-differential perturbed angular                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5001.0.5                    |                           |                                    |        | distribution (TDPAD) measurements.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 5001.9.5                    |                           |                                    | F      | (D) and 502 52 (D)) suggest $I^{\pi} = (A_2/2^{-1})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 5220.2.5                    |                           |                                    | F      | ( $D$ ) and $D/2.57$ ( $D$ )) suggests $J = (T_3/2_1)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 5506.3 4                    | $43/2^{-}$                | <2.1 ns                            | F      | $J^{\pi}$ : 810.2 $\gamma$ E2 to 39/2 <sup>-</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 5785.9 <i>4</i>             | $47/2^{-}$                | <1.4 ns                            | F      | $J^{\pi}$ : 793.2 $\gamma$ M1 to 45/2 <sup>-</sup> state. 279.6 $\gamma$ E2 to 43/2 <sup>-</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 5814.8 5                    | $(45/2^+)$                |                                    | F      | $J^{\pi}$ : 308.3 $\gamma$ (E1) to 43/2 <sup>-</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 5951.5 5                    |                           |                                    | F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 6102.7 6                    | (49/2 <sup>-</sup> )      |                                    | F      | $J^{n}$ : 316.8 $\gamma$ (M1+E2) to 47/2 <sup>-</sup> state.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0334.1 J<br>6572 0 <i>4</i> | 40/2+                     | $\sim 2.1 \text{ ns}$              | r<br>F | $I^{\pi}$ , 786 0 , E1 to $47/2^{-}$ state                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 6715.3 5                    | +3/2<br>53/2 <sup>+</sup> | $\sim 2.1 \text{ ms}$<br>6.2 ns 14 | r<br>F | $J^{\pi}$ : 142.3 $\gamma$ E2 to 49/2 <sup>+</sup> state. 929.5 $\gamma$ E3 to 47/2 <sup>-</sup> state. Configuration: $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5.10.00                     | 20,2                      | 0.2 110 17                         | •      | $([h_{\alpha\alpha}^{+4}]_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1})_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1})_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}^{+1}]_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{\alpha})_{12}(p_{$ |
| 6724.5 7                    | $(55/2^+)$                |                                    | F      | $J^{\pi}$ : 621.8 $\gamma$ to (49/2 <sup>-</sup> ) state presumably an E3, since of the cascading 621.8 $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                             | /                         |                                    |        | and 316.8 $\gamma$ (from 49/2 <sup>-</sup> state) later one is (M1+E2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 6803.0 8                    | (55/2)                    |                                    | F      | J <sup><math>\pi</math></sup> : Assuming the 738.8 $\gamma$ from the 7541 level is dipole; no $\gamma$ from (59/2 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 6812.8 6                    |                           |                                    | F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| /135.0 8                    |                           |                                    | F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1241.58                     |                           |                                    | F      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |

## <sup>213</sup>Fr Levels (continued)

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$                  | $T_{1/2}^{\#}$ | XREF   | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----------------------|-------------------------------------|----------------|--------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 7288.0 7<br>7374.4 8  | (57/2 <sup>+</sup> )<br>(57/2,59/2) | <2.1 ns        | F<br>F | J <sup><math>\pi</math></sup> : 563.3 $\gamma$ M1 to (55/2 <sup>+</sup> ) state.<br>J <sup><math>\pi</math></sup> : 349.5 $\gamma$ from (59/2 <sup>+</sup> ) state at 7723 keV is probably dipole; possible $\gamma$ to (57/2 <sup>+</sup> ); level decays through six cascading gammas to 45/2 <sup>-</sup> level. If 349.5 $\gamma$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 7541.8 7              | (57/2)                              |                | F      | $J^{\pi}$ : 182.0 $\gamma$ from (59/2 <sup>+</sup> ) state at 7723 keV is dipole; 817.7 $\gamma$ to (55/2 <sup>+</sup> ) state. If 182.0 $\gamma$ is M1, as suggested by the intensity balance at the 7723.3 level, then $J^{\pi}$ =(57/2 <sup>+</sup> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7723.7 7              | (59/2+)                             |                | F      | $J^{\pi}$ : 182 $\gamma$ D to (57/2), 349.5 $\gamma$ D to (57/2,59/2). Configuration: $\pi$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7983.6 7              | (61/2 <sup>-</sup> )                | <3.5 ns        | F      | $(\ln_{9/2}, \ln_{3/2}, \pi_{1/2}, $ |
| 8094.9 7              | (65/2 <sup>-</sup> )                | 3.1 µs 2       | F      | <ul> <li>μ=22.5 2; 3(2)=-2.19 53</li> <li>J<sup>π</sup>: 371.2γ (E3) to (59/2<sup>+</sup>) state. Configuration: π ([h<sub>9/2</sub><sup>+3</sup>, i<sub>13/2</sub><sup>+2</sup>]<sub>45/2<sup>-</sup></sub>) ν ([p<sub>1/2</sub><sup>-2</sup>, g<sub>9/2</sub>, i<sub>11/2</sub>]<sub>10<sup>+</sup></sub>).</li> <li>μ: From 2020StZV, 1989By01 from time-differential perturbed angular distribution (TDPAD) measurements.</li> <li>Q: From 1991Ha02 (not given in 2016St14), if Q(29/2<sup>+</sup> state) = -0.70 7. In 1990Ha30, Q=2.51 51 was obtained by level mixing spectroscopy, a g-factor of 0.695 7 was used.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

<sup>†</sup> Deduced by the evaluator from a least squares fit to the  $\gamma$ -ray energies. E $\gamma$  related to uncertain placement and expected ones were ignored.

<sup>‡</sup> Spins and parities for levels above 1188 keV are from (HI,xn $\gamma$ ) data. These assignments are based on  $\gamma$  angular distribution, linear polarization, conversion electron measurements, and transition strengths.

<sup>#</sup> All excited states' half-lives are from (HI, $xn\gamma$ ) data.

 $\gamma(^{213}\text{Fr})$ 

542

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$    | $E_{\gamma}$          | $I_{\gamma}$  | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$ | Mult. | δ         | $\alpha^{\ddagger}$ | Comments                                                                |
|------------------------|-------------------------|-----------------------|---------------|------------------|----------------------|-------|-----------|---------------------|-------------------------------------------------------------------------|
| 498.0                  | $(7/2^{-})$             | 498                   | 100           | 0.0 9            | 9/2-                 |       |           |                     |                                                                         |
| 1105.0                 | $(13/2)^+$              | 1105                  | 100           | 0.0              | 9/2-                 | M2    |           | 0.0479 7            | Mult.: from ce in <sup>217</sup> Ac $\alpha$ decay (740 ns) (1985De14). |
| 1188.80                | 13/2-                   | 1188.8 <i>1</i>       | 100           | 0.0 9            | 9/2-                 | E2    |           | 0.00616 9           |                                                                         |
| 1411.00                | $17/2^{-}$              | 222.2 1               | 100           | 1188.80          | $13/2^{-}$           | E2    |           | 0.382 5             | B(E2)(W.u.)=0.556 + 33 - 30                                             |
| 1590.40                | $21/2^{-}$              | 179.4 <i>1</i>        | 100           | 1411.00          | $17/2^{-}$           | E2    |           | 0.823 12            | B(E2)(W.u.)=0.0438 13                                                   |
| 1856.30                | $23/2^{-}$              | 265.9 1               | 100           | 1590.40 2        | 21/2-                | M1+E2 | 0.9 +11-9 | 0.60 31             |                                                                         |
| 2537.61                | $29/2^{+}$              | 681.3 <i>1</i>        | 100           | 1856.30 2        | $23/2^{-}$           | E3    |           | 0.0529 7            | B(E3)(W.u.)=26.4 7                                                      |
| 2740.2                 | $27/2^{-}$              | 202.8 <sup>#</sup> 4  |               | 2537.61 2        | 29/2+                |       |           |                     |                                                                         |
|                        |                         | 884.0 <i>3</i>        | 100 16        | 1856.30 2        | $23/2^{-}$           | E2    |           | 0.01087 15          |                                                                         |
| 2950.5                 | $31/2^{-}$              | 210.4 3               | <33           | 2740.2           | 27/2-                | (E2)  |           | 0.462 7             |                                                                         |
|                        |                         | 413.0 2               | 100 2         | 2537.61 2        | 29/2+                | E1    |           | 0.01695 24          |                                                                         |
| 3427.34                | $33/2^{+}$              | 476.9 2               | 45.7 20       | 2950.5           | 31/2-                | E1    |           | 0.01255 18          |                                                                         |
|                        |                         | 889.7 <i>1</i>        | 100 4         | 2537.61 2        | 29/2+                | E2    |           | 0.01073 15          |                                                                         |
| 3489.2                 | (33/2)                  | 538.7 <i>3</i>        | 100           | 2950.5           | 31/2-                | (D)   |           |                     |                                                                         |
| 3655.4                 | $37/2^{+}$              | 228.1 2               | 100           | 3427.34          | 33/2+                | E2    |           | 0.349 5             | B(E2)(W.u.)=3.8 + 16 - 8                                                |
| 4029.2                 | <b>a</b> a / <b>a</b> + | 540.0 3               | 100           | 3489.2 (         | (33/2)               |       |           | 0.014.1             |                                                                         |
| 4082.9                 | 39/2+                   | 427.5 1               | 100           | 3655.4           | 37/2*                | M1+E2 | 0.10 3    | 0.246 4             |                                                                         |
| 4653.6?                |                         | 624.2 <sup>#</sup> 5  | 100           | 4029.2           |                      |       |           |                     |                                                                         |
| 4675.4                 |                         | 592.5 <u>3</u>        | 100 7         | 4082.9           | 39/2+                |       |           |                     |                                                                         |
| 4695.9                 | 39/2-                   | (42.3)                |               | 4653.6?          |                      |       |           |                     |                                                                         |
|                        |                         | 665 <sup>#</sup>      |               | 4029.2           |                      |       |           |                     |                                                                         |
|                        |                         | 1040.3 <i>3</i>       | 100 10        | 3655.4 3         | $37/2^{+}$           | E1    |           | 0.00286 4           | Other probable gammas from the level are ignored.                       |
| 4898.5                 | $41/2^{-}$              | 815.6 2               | 100           | 4082.9 3         | 39/2+                | E1    |           | 0.00443 6           |                                                                         |
| 4982.0                 |                         | 306.5 4               | 100           | 4675.4           |                      |       |           |                     |                                                                         |
| 4992.7                 | $45/2^{-}$              | 94.4 <i>3</i>         | 3.4 9         | 4898.5 4         | $41/2^{-}$           | E2    |           | 11.49 24            | B(E2)(W.u.) = 1.80 + 48 - 43                                            |
|                        |                         | 909.8 2               | 100 8         | 4082.9 3         | 39/2+                | E3    |           | 0.0255 4            | B(E3)(W.u.) = 46 + 10 - 7                                               |
| 5001.9                 |                         | 326.3 4               | 100           | 4675.4           |                      | (D)   |           |                     |                                                                         |
| 5220.2                 |                         | (227.5 <sup>†</sup> ) |               | 4992.7 4         | 45/2-                |       |           |                     |                                                                         |
|                        |                         | 238                   |               | 4982.0           |                      |       |           |                     |                                                                         |
|                        |                         | 545.1 5               | 100           | 4675.4           |                      |       |           |                     |                                                                         |
| 5506.3                 | $43/2^{-}$              | 810.2 <i>3</i>        | 100           | 4695.9 3         | 39/2-                | E2    |           | 0.01293 18          |                                                                         |
| 5785.9                 | 47/2-                   | 279.6 2               | 46 4          | 5506.3 4         | 43/2-                | E2    |           | 0.1797 25           |                                                                         |
|                        |                         | 784.0 4               | 2.3 8         | 5001.9           |                      |       |           | 0.0404              |                                                                         |
| 5014.0                 | (15/0+)                 | 793.2 3               | 100 16        | 4992.7 4         | 45/2-                | Ml    |           | 0.0481              |                                                                         |
| 5814.8                 | $(45/2^+)$              | 308.3 3               | 60 20         | 5506.3 4         | 43/2-                | (EI)  |           | 0.0322 5            |                                                                         |
| 5051 5                 |                         | 594.7 4               | 100 20        | 5220.2           |                      |       |           |                     |                                                                         |
| 3931.5                 |                         | 949.4 <i>3</i>        | 91 <i>3</i> 0 | 5001.9           | 45/0-                |       |           |                     |                                                                         |
|                        |                         | 959.03                | 100/27        | 4992.7 4         | 43/2                 |       |           |                     |                                                                         |

# $\gamma(^{213}\text{Fr})$ (continued)

| $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | Eγ                   | Iγ                      | $\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$     | Mult.        | $\alpha^{\ddagger}$ | Comments                                                   |
|---------------|----------------------|----------------------|-------------------------|----------------------------------------------|--------------|---------------------|------------------------------------------------------------|
| 6102.7        | $(49/2^{-})$         | 316.8 4              | 100                     | 5785.9 47/2-                                 | (M1+E2)      | 0.34 22             |                                                            |
| 6334.1        |                      | 382.7 <i>3</i>       | 100                     | 5951.5                                       |              |                     |                                                            |
| 6572.9        | $49/2^{+}$           | 239.0 4              | 95                      | 6334.1                                       |              |                     |                                                            |
|               |                      | 469.7 <sup>#</sup> 4 |                         | $6102.7 (49/2^{-})$                          |              |                     |                                                            |
|               |                      | 758.0 4              | 16 <i>3</i>             | 5814.8 (45/2+)                               |              |                     |                                                            |
|               |                      | 786.9 <i>1</i>       | 100 9                   | 5785.9 47/2-                                 | E1           | 0.00473 7           |                                                            |
| 6715.3        | $53/2^{+}$           | 142.3 <i>3</i>       | 719                     | 6572.9 49/2+                                 | E2           | 2.027 33            | B(E2)(W.u.)=4.6+15-9                                       |
|               |                      | 929.5 <i>3</i>       | 100 20                  | 5785.9 47/2-                                 | E3           | 0.02428 34          | B(E3)(W.u.)=38 + 13 - 9                                    |
| 6724.5        | $(55/2^+)$           | $(9.2^{\dagger})$    |                         | 6715.3 53/2+                                 |              |                     |                                                            |
|               |                      | 621.8 3              | 100 33                  | 6102.7 (49/2 <sup>-</sup> )                  | [E3]         | 0.0681 10           |                                                            |
| 6803.0        | (55/2)               | $(78.4^{\dagger})$   | 100                     | $6724.5 (55/2^+)$                            |              |                     |                                                            |
| 6812.8        | (1)                  | 478.7 <i>3</i>       | 100                     | 6334.1                                       |              |                     |                                                            |
| 7135.0        |                      | 322.2 5              | 100                     | 6812.8                                       |              |                     |                                                            |
| 7247.5        |                      | $(112.2^{\dagger})$  | 100                     | 7135.0                                       |              |                     |                                                            |
| 7288.0        | $(57/2^+)$           | 563.3 <i>3</i>       | 100                     | 6724.5 (55/2+)                               | M1           | 0.1187 17           |                                                            |
| 7374.4        | (57/2, 59/2)         | $(86.3^{\dagger})$   |                         | $7288.0$ $(57/2^+)$                          |              |                     |                                                            |
|               | (* . / = , = , / = ) | 127.2 4              | 100 19                  | 7247.5                                       |              |                     |                                                            |
| 7541.8        | (57/2)               | 253.6 4              | 100 7                   | 7288.0 (57/2 <sup>+</sup> )                  |              |                     |                                                            |
|               |                      | 294.1 <i>3</i>       | 13 <i>3</i>             | 7247.5                                       |              |                     |                                                            |
|               |                      | 738.8 <i>3</i>       | 12.8 15                 | 6803.0 (55/2)                                | D            |                     |                                                            |
|               |                      | 817.7 <i>3</i>       | 15 5                    | 6724.5 (55/2+)                               |              |                     |                                                            |
| 7723.7        | $(59/2^+)$           | 182.0 <i>3</i>       | 56 11                   | 7541.8 (57/2)                                | D            |                     |                                                            |
|               |                      | 349.5 <i>3</i>       | 100 6                   | 7374.4 (57/2,59/                             | 2) D         |                     |                                                            |
|               |                      | 435.6 4              | 11 3                    | 7288.0 (57/2 <sup>+</sup> )                  |              |                     |                                                            |
| 7002 (        | ((1))                | 998.9 <i>3</i>       | 16 5                    | $6724.5 (55/2^+)$                            |              |                     |                                                            |
| /983.6        | $(61/2^{-})$         | 695                  | 100 5                   | $7288.0 (57/2^+)$                            | F2           | 0.01000.17          |                                                            |
| 8004.0        | $((5/2)^{-})$        | 1259.13              | 100 5                   | 6/24.5 (55/2 <sup>+</sup> )                  | E3           | 0.01229 17          | $\mathbf{P}(\mathbf{F}_{2})/(\mathbf{W}_{1}) = 0.01(2, 1)$ |
| 8094.9        | (03/2)               | 371.2 2              | 04.0 <i>19</i><br>100 8 | 7983.0 (61/2)<br>7723.7 (59/2 <sup>+</sup> ) | (E2)<br>(E3) | 0.372 5             | B(E2)(W.u.)=0.0102 11<br>B(E3)(W.u.)=26.6 24               |

 $^{\dagger}$  Transition expected, but not observed.

<sup>‡</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified. <sup>#</sup> Placement of transition in the level scheme is uncertain.

## <sup>213</sup>Ra ε decay (2.73 min) 1984Gu29

Parent: <sup>213</sup>Ra: E=0.0;  $J^{\pi}=1/2^-$ ;  $T_{1/2}=2.73 \text{ min } 5$ ;  $Q(\varepsilon)=3900 \ 11$ ;  $\%\varepsilon+\%\beta^+$  decay=14 2

<sup>213</sup>Ra was produced from <sup>204</sup>Pb(<sup>12</sup>C,4n) reaction, reaction products recoiled out of the thin target and were stopped in 500  $\mu$ g/cm<sup>2</sup> carbon foils. The foils were transported by a belt into the spectrometer for the measurements. A Si(Li) detector for electrons on the long side and a gamma-x-ray counter for  $\gamma$ -rays about 3 cm from the foils on the short side were used. The e<sup>-</sup>-x-ray coincidences occur predominanantly with the x-ray emitted as a consequence of a K-converted transition. Measured K-conversion lines. No E $\gamma$ , I $\gamma$ , I $_e$  are reported.

| γ | $(^{21})$ | 3 | Fr) |
|---|-----------|---|-----|
| - |           |   |     |

 $\frac{E_{\gamma}^{\dagger}}{x_{175}}$   $x_{195}^{x_{208}}$   $x_{218}^{x_{218}}$   $x_{227^{\ddagger}}^{x_{317^{\ddagger}}}$   $x_{339}^{x_{400}}$   $x_{475}^{x_{498}}$ 

<sup>†</sup> From Fig. 11 in 1984Gu29. E $\gamma$  are labeled for corresponding K-conversion electrons lines.

<sup>‡</sup> Comparable E $\gamma$  is only available in the adopted gammas from (HI,Xn $\gamma$ ) studies.

<sup>x</sup>  $\gamma$  ray not placed in level scheme.

## <sup>217</sup>Ac $\alpha$ decay (69 ns)

Parent: <sup>217</sup>Ac: E=0.0;  $J^{\pi}=9/2^-$ ;  $T_{1/2}=69$  ns 4;  $Q(\alpha)=9832$  10;  $\%\alpha$  decay=100 <sup>217</sup>Ac- $J^{\pi}$ : From 2018Ko01 (A=217 evaluation).

<sup>217</sup>Ac-T<sub>1/2</sub>: from 1985De14  $\alpha$ (t) (earlier value 72 ns 5 in 1981MaYW). Others: 75 ns 3 (1982GoZU); 111 ns 7 (1973No09, from  $\alpha$ (t), previous value was 0.10  $\mu$ s *I* in 1972No06 – due to pulsed beam of ~100 ns, possibly missed the long-lived component of g.s. decay – noted in 1985De14), 150 ns +370-60 (2019Mi08). Adopted T<sub>1/2</sub> in 2018Ko01 (A=217 evaluation) is also 69 ns 4.

<sup>217</sup>Ac-Q(*α*): From 2021Wa16.

#### <sup>213</sup>Fr Levels

| E(level) | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                  |
|----------|-----------|------------------|-------------------------------------------|
| 0.0      | 9/2-      | 34.17 s 6        | $J^{\pi}, T_{1/2}$ : From Adopted Levels. |

#### $\alpha$ radiations

No strong  $\gamma$  transitions belonging to <sup>213</sup>Fr were observed by 1973No09. The observed 9650-keV  $\alpha$  has been assigned as the transition to the <sup>213</sup>Fr g.s. by considering the Q( $\alpha$ ) systematics and the known levels in <sup>213</sup>Fr.

 $\alpha$  angular distribution was measured by 1973No09 following production of <sup>217</sup>Ac in the <sup>207</sup>Pb(<sup>14</sup>N,4n) reaction where nuclear alignment is expected to be preserved during its short (69 ns) half-life. The angular distribution was found to be isotropic within 2%, indicating that the 9650 $\alpha$  has mainly L=0 component.

| Εα      | E(level) | $I\alpha^{\ddagger}$ | $HF^{\dagger}$ | Comments                                                                                |
|---------|----------|----------------------|----------------|-----------------------------------------------------------------------------------------|
| 9650 10 | 0.0      | 100                  | 1.0 <i>1</i>   | Eα: from 1973No09 (semi). Others: 9870 keV (1982SaZO), 9300 keV 200 (2019Mi08 – 9.3 MeV |
|         |          |                      |                | 2).                                                                                     |

<sup>†</sup> Using  $r_0(^{213}Fr)=1.5460\ 27$ , unweighted average of  $r_0(^{212}Rn)=1.5433\ 36$  and  $r_0(^{214}Ra)=1.5487\ 30\ (2020Si16)$ . <sup>‡</sup> Absolute intensity per 100 decays.
## <sup>217</sup>Ac $\alpha$ decay: E=1.15 MeV

Parent: <sup>217</sup>Ac: E=1149.1; J<sup>π</sup>=15/2<sup>-</sup>; T<sub>1/2</sub><10 ns; Q(α)=9832 10; %α decay<0.31</li>
<sup>217</sup>Ac-E: 1985De14 show a doublet parent of 1147 (17/2<sup>-</sup>) and 1150 (15/2<sup>-</sup>), which are 1146.6 and 1149.1, respectively, in 2018Ko01 (A=217 evaluation).
<sup>217</sup>Ac-J<sup>π</sup>: From 2018Ko01 (A=217 evaluation).
<sup>217</sup>Ac-T<sub>1/2</sub>: From 1985De14.
<sup>217</sup>Ac-Q(α): From 2021Wa16.

<sup>217</sup>Ac-%α decay: From ≤0.27 4 in (1985De14).

#### <sup>213</sup>Fr Levels

| E(level) | <u>J</u> π | T <sub>1/2</sub> | 2               |                        | Comments                                                                                                                                                                                                                                                     |
|----------|------------|------------------|-----------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0      | 9/2-       | 34.17            | s 6             | $J^{\pi}, T_{1/2}$ : F | rom Adopted Levels.                                                                                                                                                                                                                                          |
|          |            |                  |                 |                        | $\alpha$ radiations                                                                                                                                                                                                                                          |
| Εα       | E(lev      | el) I            | [α <sup>‡</sup> | $HF^{\dagger}$         | Comments                                                                                                                                                                                                                                                     |
| 10780 15 | 0.0        | 10               | 00              | >8000                  | E $\alpha$ : measured by 1985De14. The 9.65 and 10.54 MeV $\alpha$ 's from the g.s. and 740-ns isomer of $^{217}$ Ac were used as calibration energies. Other: 10820 keV (1982SaZO). I $\alpha$ : $\alpha$ intensity per 100 $\alpha$ decays from the level. |

<sup>†</sup> Using  $r_0(^{213}Fr)=1.5460\ 27$ , unweighted average of  $r_0(^{212}Rn)=1.5433\ 36$  and  $r_0(^{214}Ra)=1.5487\ 30\ (2020Si16)$ . <sup>‡</sup> For absolute intensity per 100 decays, multiply by <0.0031.

## $^{217}{\rm Ac}~\alpha$ decay (8 ns)

Parent: <sup>217</sup>Ac: E=1498.1 4; J<sup> $\pi$ </sup>=19/2<sup>-</sup>; T<sub>1/2</sub>=8 ns 2; Q( $\alpha$ )=9832 10; % $\alpha$  decay<0.59

<sup>217</sup>Ac-E: 1985De14 show a doublet parent of 1498 (19/2<sup>-</sup>) and 1529 (21/2<sup>-</sup>), which are 1498.1 and 1528.4, respectively, in 2018Ko01 (A=217 evaluation).

 $^{217}$ Ac-T<sub>1/2</sub>: From 1973No02. Also quoted in 1985De14.

<sup>217</sup>Ac-Q(*α*): From 2021Wa16.

<sup>217</sup>Ac-% $\alpha$  decay: From ≤0.46 13 (1985De14).

## <sup>213</sup>Fr Levels

| E(level) | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                  |
|----------|-----------|------------------|-------------------------------------------|
| 0.0      | 9/2-      | 34.17 s 6        | $J^{\pi}, T_{1/2}$ : From Adopted Levels. |

#### $\alpha$ radiations

| Eα       | E(level) | $I\alpha^{\ddagger}$ | $HF^{\dagger}$       | Comments                                                                                                                                |
|----------|----------|----------------------|----------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| 11137 15 | 0.0      | 100                  | <2.7×10 <sup>4</sup> | $E\alpha$ : From 1985De14 (peaks at 9.65 and 10.54 MeV, measured by 1973No09 were used as calibration points). Other: 11130 (1973No09). |
|          |          |                      |                      | I $\alpha$ : $\alpha$ intensity per 100 $\alpha$ decays from the level.                                                                 |

<sup>†</sup> Using  $r_0(^{213}Fr)=1.5460\ 27$ , unweighted average of  $r_0(^{212}Rn)=1.5433\ 36$  and  $r_0(^{214}Ra)=1.5487\ 30\ (2020Si16)$ . Assuming  $\%\alpha$  branching=0.30 30 of  $^{217}Ac$ .

<sup>‡</sup> For absolute intensity per 100 decays, multiply by <0.0059.

## $^{217}{\rm Ac}~\alpha$ decay (740 ns)

Parent: <sup>217</sup>Ac: E=2012.2 7;  $J^{\pi}=(29/2)^+$ ;  $T_{1/2}=740$  ns 40;  $Q(\alpha)=9832$  10;  $\%\alpha$  decay=4.51 18 <sup>217</sup>Ac-E,  $J^{\pi}$ ,  $T_{1/2}$ : From 2018Ko01 (A=217 evaluation). <sup>217</sup>Ac-Q( $\alpha$ ): From 2021Wa16. <sup>217</sup>Ac- $\%\alpha$  decay: From 2018Ko01 (A=217 evaluation).

#### <sup>213</sup>Fr Levels

| E(level) | $J^{\pi}$           | T <sub>1/2</sub> | Comments                                                                             |
|----------|---------------------|------------------|--------------------------------------------------------------------------------------|
| 0.0      | 9/2 <sup>-</sup>    | 34.17 s 6        | $J^{\pi}$ , $T_{1/2}$ : From Adopted Levels.                                         |
| 498      | (7/2 <sup>-</sup> ) |                  | $J^{\pi}$ : From dominant $I_{\alpha}$ =11 with respect to $I_{\alpha}(10540)$ =100. |
| 1105     | (13/2) <sup>+</sup> |                  | $J^{\pi}$ : 1105 $\gamma$ M2 to 9/2 <sup>-</sup> g.s. and $I_{\alpha}(10540)$ =90 6. |

#### $\alpha$ radiations

*α*(*θ*): 1985De14, 1973No09. (*α*)(*γ*): 1985De14.

| Εα                           | E(level) | $\mathrm{I}\alpha^{\#\&}$ | HF <sup>@</sup>         |                                  | Comments |
|------------------------------|----------|---------------------------|-------------------------|----------------------------------|----------|
| 10540 <sup>†</sup>           | 1105     | 90 6                      | 1.67×10 <sup>4</sup> 16 |                                  |          |
| 11137 <sup>‡</sup> <i>15</i> | 498      | 7.1 21                    | $2.50 \times 10^{6}$ 76 |                                  |          |
| 11625 <sup>‡</sup> 17        | 0.0      | 2.7 5                     | 4.21×10 <sup>7</sup> 84 | Eα: Other: 11570 keV (1982SaZO). |          |

<sup>†</sup> Measurement of 1973No09.

<sup>‡</sup> Measurement of 1985De14. E $\alpha$ =9.650 MeV and E $\alpha$ =10.54 MeV lines were used as calibration energies.

<sup>#</sup> From 1985De14.

<sup>(a)</sup> Using  $r_0(^{213}Fr)=1.5460\ 27$ , unweighted average of  $r_0(^{212}Rn)=1.5433\ 36$  and  $r_0(^{214}Ra)=1.5487\ 30\ (2020Si16)$ .

<sup>&</sup> For absolute intensity per 100 decays, multiply by 0.0451 18.

 $\gamma(^{213}\text{Fr})$ 

| Eγ          | $E_i$ (level) | $\mathbf{J}_i^{\pi}$        | $\underline{\mathrm{E}_f}$ $\underline{\mathrm{J}_f^{\pi}}$ | Mult. | $\alpha^{\dagger}$ | Comments                                              |
|-------------|---------------|-----------------------------|-------------------------------------------------------------|-------|--------------------|-------------------------------------------------------|
| 498<br>1105 | 498<br>1105   | $(7/2^{-})$<br>$(13/2)^{+}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$      | M2    | 0.0479             | Mult.: from ce (1985De14 – quoted from their Ref. 8). |

<sup>†</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

# $\frac{217}{\text{Ac}} \alpha \text{ decay (740 ns)}$

## Decay Scheme



#### (HI,xny)

2010Da04: <sup>209</sup>Bi(<sup>9</sup>Be,X), E=44.0, 50.0. 60.0 MeV, - measured fusion cross section.

The decay scheme of levels below E≤2538 keV was constructed by 1971MaXH from their γγ coincidence data, and it was confirmed by 1976Ha37. The main cascade of strongly populated levels above 2538 keV and up to 6573 keV was added by 1979Ho06 from their coincidence data; the levels above 6573-keV and the weakly populated side cascades were built by 1986By01 and 1989By01. Delayed and out-of-beam coincidences were also taken by 1989By01, designed to study the high energy isomeric state. The placements of 1259.1 and 563.3 gammas to feed the 6725-keV level were based on the coincidences observed with the 621.8-keV γ (1991ByZZ). The level scheme shown in 1989By01 is presented here.

2011Ka30: Pt(<sup>36</sup>S,X), E=5.96 MeV/nucleon and W(<sup>48</sup>Ca,X), E=5.41 MeV/nucleon – measured differential cross section  $d\sigma/d\Omega$ .

| $^{204}$ Hg( $^{14}$ N,5n $\gamma$ )  | E=94 MeV, pulsed beam                    | 1974Re09       |
|---------------------------------------|------------------------------------------|----------------|
| $^{205}$ T1( $^{12}$ C, 4n $\gamma$ ) | E=71 <sup>-</sup> to 80-MeV pulsed       | beams 1976Ha37 |
| $^{205}$ T1( $^{13}$ C, 5n $\gamma$ ) | E=72 <sup>-</sup> to 86-MeV pulsed       | beams 1979Ho06 |
| $^{205}$ T1( $^{12}$ C,4n $\gamma$ ), | $^{205}$ T1( $^{13}$ C, 5n $\gamma$ ) E= | 77-96 MeV; and |
| $^{198}$ Pt( $^{19}$ F,5n $\gamma$ )  | E=102 MeV, pulsed beam                   | 1986By01       |
| $^{205}$ T1( $^{13}$ C, 5n $\gamma$ ) | E=90 MeV, pulsed beam                    | 1989By01       |
| <sup>238</sup> U fragmentation        | at E/A=900 MeV                           | 2006Po01       |
|                                       | Other:                                   | 1971MaXH.      |

### <sup>213</sup>Fr Levels

| E(level) <sup>†</sup>                                   | $J^{\pi \ddagger}$ | $T_{1/2}^{\#}$                                                                                                      | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                                                     | 9/2-               | 34.17 s 6                                                                                                           | Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> ).<br>T <sub>1/2</sub> : From Adopted Levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1188.80 10                                              | $13/2^{-}$         | <2.1 ns                                                                                                             | $J^{\pi}$ : Configuration: $\pi$ ( $h_{0/2}^{+1}$ ) $\otimes 2^+$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 1411.00 <i>15</i>                                       | 17/2-              | 18 ns <i>1</i>                                                                                                      | Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> ) $\otimes 4^{+1}$ .<br>T <sub>1/2</sub> : Other: T <sub>1/2</sub> $\leq 60$ ns – measured by delayed coincidence method (1976Ha37).<br>g(1411 level)=0.88 <i>16</i> (1986By01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 1590.40 18                                              | 21/2-              | 505 ns 20                                                                                                           | Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> ) $\otimes$ 6 <sup>+</sup> .<br>%Isomeric production ratio=22 2 (2013Ba29), E=1 GeV/nucleon, from <sup>238</sup> U fragmentation.<br>T <sub>1/2</sub> : Weighted average of 499 ns 21 (1986By01) and 510 ns 20 (1976Ha37). Uncertainty is<br>the lower input value. Other: $\approx 1 \mu$ s (1971MaXH).<br>g(1590 level)=0.888 3 (1977Be56,1976Ha37); 0.888 4 (1979Ho06); 0.89 2 (1986By01).                                                                                                                                                                                                                                                                                                    |
| 1856.30 20                                              | $23/2^{-}$         | <1.4 ns                                                                                                             | Configuration: $\pi$ (h <sub>9/2</sub> <sup>+2</sup> , f <sup>+1</sup> <sub>7/2</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 2537.61 23                                              | $29/2^+$           | 238 ns 6                                                                                                            | Q = -0.707                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 2740.2.2                                                | 27/2-              | -7 m                                                                                                                | <ul> <li>Q: From 1990By03, deduced using the B(E2) value for the 8<sup>+</sup> to 6<sup>+</sup> transition in <sup>212</sup>Rn and an effective charge of 1.5e. Other: Q=0.81 <i>4</i> was obtained by 1990Ha30 by level mixing spectroscopy.</li> <li>Configuration: π (h<sub>9/2</sub><sup>+2</sup>, i<sub>13/2</sub><sup>+1</sup>).</li> <li>%Isomeric production ratio=23 2 (2013Ba29), E=1 GeV/nucleon, from <sup>238</sup>U fragmentation; and Isomeric population ratio %R<sub>exp</sub>=12 8 (2006Po01), E=900 MeV/nucleon.</li> <li>T<sub>1/2</sub>: From 1976Ha37. Others: 243 ns 21 (1986By01) and ≈0.5 µs (1971MaXH).</li> <li>g(2537 level)=1.0494 18 (1977Be56,1976Ha37), 1.04 2 (1974Re09), 1.055 5 (1989By01) by γ(H,θ,t).</li> </ul> |
| 2740.2 3                                                | 21/2               | ns</td <td>Configuration: <math>\pi</math> (<math>n_{9/2}^{+}, r_{7/2}^{+}</math>) <math>\otimes 2^{+}</math>.</td> | Configuration: $\pi$ ( $n_{9/2}^{+}, r_{7/2}^{+}$ ) $\otimes 2^{+}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 2950.5 3                                                | $\frac{31}{2}$     | <2.1 ns                                                                                                             | Configuration: $\pi$ ( $n_{9,2},r_{7/2}$ ) $\otimes 4^{\circ}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 3427.34 24                                              | 33/2               | <2.1 ns                                                                                                             | Configuration: $\pi (n_{9/2}, i_{13/2}) \otimes 2^{+}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 3655.4 4                                                | 37/2+              | 2.4 ns 7                                                                                                            | Configuration: $\pi$ (h <sup>+2</sup> <sub>9/2</sub> ,i <sup>+1</sup> <sub>13/2</sub> ) $\otimes$ 4 <sup>+</sup> .<br>T <sub>1/2</sub> : Other: 4.1 ns (1979Ho06).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 4029.2 <i>5</i><br>4082.9 <i>4</i><br>4653.6? <i>11</i> | 39/2+              | <1.4 ns                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4675.4 4                                                |                    | <2.1 ns                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4695.9 4                                                | 39/2-              | <2.1 ns                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 4898.5 4                                                | $41/2^{-}$         | <2.8 ns                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

#### (HI,xn $\gamma$ ) (continued)

#### <sup>213</sup>Fr Levels (continued)

| E(level) <sup>†</sup>                                                    | $J^{\pi \ddagger}$                                             | T <sub>1/2</sub> # | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------|----------------------------------------------------------------|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 4982.0 6<br>4992.7 4                                                     | 45/2-                                                          | 13 ns 2            | $\mu$ =23.2 7<br>J <sup>π</sup> : 909.8γ E3 to 39/2 <sup>+</sup> state, 94.4γ E2 to 41/2 <sup>-</sup> state. g(4993 level)=0.990 25<br>(1979Ho06), 1.03 3 (1986By01) by γ(H,θ,t). Configuration: π (h <sup>+3</sup> <sub>9/2</sub> ,i <sup>+2</sup> <sub>13/2</sub> ).<br>T <sub>1/2</sub> : Other: 13.5 ns (1979Ho06).<br>$\mu$ : From 1986By01 (time-differential perturbed angular distribution (TDPAD)<br>measurements).                                                                                                                                                                                                                                              |
| 5001.9 5<br>5220 2 5                                                     |                                                                |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 5506.3 <i>4</i><br>5785.9 <i>4</i><br>5814.8 <i>5</i><br>5951.5 <i>5</i> | 43/2 <sup>-</sup><br>47/2 <sup>-</sup><br>(45/2 <sup>+</sup> ) | <2.1 ns<br><1.4 ns |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6102.7 <i>6</i><br>6334.1 <i>5</i>                                       | 49/2-                                                          |                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 6572.9 4                                                                 | 49/2+                                                          | <2.1 ns            | $T_{1/2}$ : Other: 7 ns (1979Ho06).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 6715.3 <i>5</i><br>6724.5 <i>7</i>                                       | 53/2 <sup>+</sup><br>55/2 <sup>+</sup>                         | 6.2 ns <i>14</i>   | Configuration: $\pi$ ([h <sup>44</sup> <sub>9/2</sub> ,i <sup>+1</sup> <sub>13/2</sub> ] <sub>37/2<sup>+</sup></sub> ) $\nu$ ([p <sup>-1</sup> <sub>1/2</sub> ,i <sup>+1</sup> <sub>15/2</sub> ] <sub>8<sup>+</sup></sub> ).<br>J <sup><math>\pi</math></sup> : Assignment based on 9.2 $\gamma$ M1 to 53/2 <sup>+</sup> state (1989By01).<br>T <sub>1/2</sub> : The half-life 6.2 ns <i>14</i> was determined by 1989By01 from the 142- and 929-keV $\gamma$ 's deexciting the 6715-keV level. Since the 621.8 $\gamma$ was observed in coincidence with the 1259.1 $\gamma$ (from 7983.6) and 563.3 $\gamma$ (from 7288.0), T <sub>1/2</sub> (6724-keV level) is short. |
| 6803.0 8<br>6812.8 6<br>7135.0 8<br>7247.5 8                             | (55/2)                                                         |                    | $J^{\pi}$ : From Adopted Levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 7288.0 7                                                                 | 57/2+                                                          | <2.1 ns            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 7374.4 8                                                                 | (57/2,59/2)                                                    |                    | E(level): From Adopted Levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7541.8 7                                                                 | (57/2)                                                         |                    | E(level): From Adopted Levels.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 7723.7 7                                                                 | 59/2+                                                          |                    | Configuration: $\pi ([h_{9/2}^{+3}, i_{13/2}^{+1}, f_{7/2}]_{39/2^+}) \nu ([p_{1/2}^{-2}, g_{9/2}, i_{11/2}]_{10^+}).$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 7983.6 7                                                                 | 61/2-                                                          | <3.5 ns            | J <sup><math>\pi</math></sup> : 1259 $\gamma$ E3 to 55/2 <sup>+</sup> state. Possible configuration: $\pi([h_{9/2}^{+3}, i_{13/2}^{+2}]_{45/2^{-}}) \nu$<br>( $[p_{1/2}^{-1}, j_{15/2}^{+1}]_{8^+}$ ).<br>T <sub>1/2</sub> : From 1989By01.                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 8094.9 7                                                                 | 65/2-                                                          | 3.1 µs 2           | $\mu = 22.5 2; \ Q = -2.19 53$ Configuration: $\pi ([h_{9/2}^{+3}, i_{13/2}^{+2}]_{45/2^{-}}) \nu ([p_{1/2}^{-2}, g_{9/2}, i_{11/2}]_{10^{+}}).$ $\mu: \text{ From 1989By01 (time-differential perturbed angular distribution (TDPAD) measurements).}$ Q: From 1991Ha02, relative to Q(29/2 <sup>+</sup> state)=-0.70 7. In 1990Ha30, Q=2.51 51 was obtained by level mixing spectroscopy, a g-factor of 0.695 7 was used.                                                                                                                                                                                                                                                |

<sup>†</sup> Deduced by the evaluator from a least squares fit to the  $\gamma$ -ray energies. E $\gamma$  related to uncertain placement and expected ones were ignored.

<sup>‡</sup> From 1989By01. The assignments were based on the  $\gamma$ -ray transition multipolarities, determined by the  $\gamma$ -ray angular distributions and conversion electron, linear polarization measurements of 1979Ho06, transition strengths, and shell states in neighboring nuclei.

<sup>#</sup> Obtained by 1986By01 from pulsed-beam, chopped-beam,  $\gamma\gamma(t)$  and  $n,\gamma(t)$  measurements, unless otherwise noted.

|                                   |                  |               |                      |         |                | (H                 | I,xnγ) (contin               | ued)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----------------------------------|------------------|---------------|----------------------|---------|----------------|--------------------|------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                   |                  |               |                      |         |                |                    | $\gamma$ <sup>(213</sup> Fr) |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $E_{\gamma}^{\dagger}$            | $I_{\gamma}^{a}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$   | ${ m J}_f^\pi$ | Mult. <sup>b</sup> | ac                           | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (9.2 <sup>#</sup> )               |                  | 6724.5        | 55/2+                | 6715.3  | 53/2+          | M1                 | 778 11                       | Mult.: $\alpha(\exp)(M1)=828.1$ . Other multipolarities were ruled out by 1989By01 by considering the transition strength limits deduced from the measured $T_{1/2}=6.2$ ns which was assigned also to the 6724-keV level.<br>0.21 4 <iy<0.51 6="" 621.8<math="" 6715-kev="" 6724-kev="" 9.2-kev="" and="" assuming="" at="" balance="" from="" intensity="" is="" levels,="" m1="" that="" the="" transition="">\gamma is an E3 transition. An assumption of E1 multipolarity and the intensity balance would yield <math>10 &lt; I\gamma &lt; 24</math> and <math>0.002 &lt; B(E1)(W.u.) &lt; 0.005</math>.</iy<0.51> |
| $(42.3^{\#})$<br>$x_{60.3}^{@}$ 3 |                  | 4695.9        | 39/2-                | 4653.6? |                |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (78.4 <sup>#</sup> )              |                  | 6803.0        | (55/2)               | 6724.5  | $55/2^{+}$     |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| (86.3#)                           |                  | 7374.4        | (57/2,59/2)          | 7288.0  | 57/2+          |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 94.4 3                            | 4 1              | 4992.7        | 45/2-                | 4898.5  | 41/2-          | E2                 | 11.49 24                     | A <sub>2</sub> =+0.09 26 (1986By01)<br>I <sub><math>\gamma</math></sub> : from I $\gamma$ (94.4 $\gamma$ )/I $\gamma$ (909.7 $\gamma$ )=4 1/117 2, measured by 1986By01.<br>I $\gamma$ (94.4 $\gamma$ ) was not listed by 1991ByZZ.                                                                                                                                                                                                                                                                                                                                                                                     |
| 111.3 2                           | 80.0 24          | 8094.9        | 65/2-                | 7983.6  | 61/2-          | E2                 | 5.66 9                       | <ul> <li>A<sub>2</sub>=+0.17 <i>13</i> or +0.35 <i>15</i> (1986By01 – contaminant peaks were comparable &gt; 1/3).</li> <li>Mult.: From α(exp)=6.2 <i>3</i>, determined from the delayed intensity data (1989By01).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                          |
| (112.2 <sup>#</sup> )             |                  | 7247.5        |                      | 7135.0  |                |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 127.2 4                           | 11.6 22          | 7374.4        | (57/2,59/2)          | 7247.5  |                |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 142.3 3                           | 93 12            | 6715.3        | 53/2+                | 6572.9  | 49/2+          | E2                 | 2.027 33                     | $A_2$ =+0.04 <i>10</i> or +0.22 7 and $A_4$ =-0.16 <i>14</i> or -0.20 <i>10</i> (1986By01 - contaminant peaks were comparable > 1/3).<br>Mult : From total $\alpha < 0$ from intensity balance in 1986By01                                                                                                                                                                                                                                                                                                                                                                                                              |
| 179.4 <i>1</i>                    | 538 24           | 1590.40       | 21/2-                | 1411.00 | 17/2-          | E2                 | 0.823 12                     | A <sub>2</sub> =+0.73 8 or +0.16 <i>I</i> and A <sub>4</sub> =-0.01 <i>I</i> or +0.00 3 (1986By01 – contaminant peaks were comparable > 1/3).<br>Mult.: From total $\alpha$ =0.83 <i>18</i> , deduced from delayed intensity measurement (1986By01)                                                                                                                                                                                                                                                                                                                                                                     |
| 182.0 <i>3</i>                    | 42 8             | 7723.7        | 59/2+                | 7541.8  | (57/2)         | D                  |                              | A <sub>2</sub> =-0.007 272 or -0.23 20 (1986By01 – contaminant peaks were<br>comparable > 1/3).<br>The angular distribution suggests a dipole character for the 182.5 $\gamma$ .<br>$\alpha$ (E1)=0.1106, $\alpha$ (M1)=2.616.                                                                                                                                                                                                                                                                                                                                                                                          |
| 202.8 <sup>d</sup> 4              |                  | 2740.2        | $27/2^{-}$           | 2537.61 | $29/2^{+}$     |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 210.4 3                           | <43              | 2950.5        | 31/2-                | 2740.2  | 27/2-          | (E2)               | 0.462 7                      | A <sub>2</sub> =+0.29 79; A <sub>4</sub> =-0.05 11 (1986By01)<br>I $\gamma$ <38 5 (1991ByZZ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 222.2 1                           | 694 <i>30</i>    | 1411.00       | 17/2-                | 1188.80 | 13/2-          | E2                 | 0.382 5                      | A <sub>2</sub> =+0.08 <i>I</i> or +0.17 <i>2</i> and A <sub>4</sub> =+0.00 <i>2</i> or -0.01 <i>2</i> (1986By01).<br>Mult.: From $\alpha$ (L)exp=0.16 <i>6</i> , $\alpha$ (M)exp=0.048 <i>20</i> (1986By01).                                                                                                                                                                                                                                                                                                                                                                                                            |
| (227.5 <sup>#</sup> )             |                  | 5220.2        |                      | 4992.7  | 45/2-          |                    |                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 228.1 2                           | 425 26           | 3655.4        | 37/2+                | 3427.34 | 33/2+          | E2                 | 0.349 5                      | A <sub>2</sub> =+0.293 <i>14</i> ; A <sub>4</sub> =-0.091 <i>19</i> (1979Ho06)<br>Mult.: From $\alpha$ (L)exp=0.12 <i>5</i> , $\alpha$ (M)exp=0.067 <i>23</i> (1986By01), pol=0.81<br><i>45</i> (1979Ho06).<br>A <sub>2</sub> =+0.22 <i>3</i> or +0.26 <i>6</i> and A <sub>4</sub> =-0.02 <i>4</i> or -0.09 <i>8</i> (1986By01).                                                                                                                                                                                                                                                                                        |

552

NUCLEAR DATA SHEETS

 $^{213}_{87}\mathrm{Fr}_{126}$ -14

# $^{213}_{87}\mathrm{Fr}_{126}$ -15

| $(\mathbf{n}_{\mathbf{x}}\mathbf{n}_{\mathbf{y}})$ (continued) | HI,xn | $\gamma$ ) ( | conti | nued) |
|----------------------------------------------------------------|-------|--------------|-------|-------|
|----------------------------------------------------------------|-------|--------------|-------|-------|

# $\gamma$ <sup>(213</sup>Fr) (continued)</sup>

| $E_{\gamma}^{\dagger}$                                | $I_{\gamma}^{a}$               | E <sub>i</sub> (level)                | $J_i^{\pi}$                                      | $E_f$                                 | $\mathbf{J}_{f}^{\pi}$                 | Mult. <sup>b</sup> | δ         | $\alpha^{c}$        | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-------------------------------------------------------|--------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------|----------------------------------------|--------------------|-----------|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 238 <sup>&amp;</sup><br>239.0 4<br>253.6 4<br>265.9 1 | 19 9<br>131 9<br>283 <i>13</i> | 5220.2<br>6572.9<br>7541.8<br>1856.30 | 49/2 <sup>+</sup><br>(57/2)<br>23/2 <sup>-</sup> | 4982.0<br>6334.1<br>7288.0<br>1590.40 | 57/2 <sup>+</sup><br>21/2 <sup>-</sup> | M1+E2              | 0.9 +11-9 | 0.60 <i>31</i>      | $A_2 = -0.11 \ I \text{ or } -0.09 \ 2 \text{ and } A_4 = +0.03 \ I \text{ or } +0.01 \ 3.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 279.6 2                                               | 117 <i>11</i>                  | 5785.9                                | 47/2-                                            | 5506.3                                | 43/2-                                  | E2                 |           | 0.1797 25           | Mult.: From total $\alpha$ =0.76 <i>18</i> (1986By01).<br>A <sub>2</sub> =+0.19 2 or +0.23 4 and A <sub>4</sub> =-0.03 3 or +0.01 7<br>(1986By01 – contaminant peaks were comparable > 1/3).<br>Mult.: From $\alpha$ (K)exp=0.06 4 (1986By01).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 294.1 <i>3</i><br>306 5 <i>4</i>                      | 17 <i>4</i><br>15 4 <i>24</i>  | 7541.8<br>4982 0                      | (57/2)                                           | 7247.5<br>4675 4                      |                                        |                    |           |                     | $\alpha(E1)=0.0326 \ \alpha(M1)=0.614 \ \alpha(E2)=0.136$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 308.3 <sup>‡</sup> 3<br>316.8 4                       | 18.6<br>24.4                   | 5814.8<br>6102.7                      | (45/2 <sup>+</sup> )<br>49/2 <sup>-</sup>        | 5506.3<br>5785.9                      | 43/2 <sup>-</sup><br>47/2 <sup>-</sup> | (E1)<br>(M1+E2)    |           | 0.0322 5<br>0.34 22 | A <sub>2</sub> =-0.24 <i>17</i> ; A <sub>4</sub> =-0.08 <i>23</i> (1986By01)<br>A <sub>2</sub> =-0.78 <i>3</i> , A <sub>4</sub> =+0.06 <i>4</i> or A <sub>2</sub> =-0.81 <i>11</i> (1986By01).<br>Mult.: the measured large A <sub>2</sub> value indicated some<br>quadrupole admixture. Authors' earlier assignment of E1<br>(1986By01) from conversion electron measurement has<br>been withdrawn (1991ByZZ). Since the ce(K 317 $\gamma$ ) line<br>was contaminated by the ce(M 222 $\gamma$ ), the angular<br>distribution measurements were more reliable for<br>determination of its multipolarity. E1+M2 with any<br>significant amount of M2 admixture is ruled out because<br>of short half-life of the 6102-keV level. |
| 322.2 5<br>326.3 4                                    | 13 <i>4</i><br>16 <i>5</i>     | 7135.0<br>5001.9                      |                                                  | 6812.8<br>4675.4                      |                                        | (D)                |           | 0.0283              | A <sub>2</sub> =-0.11 4, A <sub>4</sub> =-0.02 6 or A <sub>2</sub> =-0.09 10 (1986By01 – contaminant peaks were comparable > 1/3).<br>$\alpha$ : for E1, as implied by the intensity balance at the 4675-keV level. $\alpha$ (M1)=0.517. The angular distribution is consistent with a dipole transition.                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 349.5 <sup>‡</sup> 3                                  | 75 4                           | 7723.7                                | 59/2+                                            | 7374.4                                | (57/2,59/2)                            | D                  |           |                     | A <sub>2</sub> =-0.41 3; A <sub>4</sub> =-0.05 5 (1986By01)<br>Mult.: No ce line was listed for this transition. It is<br>assumed that ce lines were weak, suggesting E1 or E2<br>multipolarity. The angular distribution coefficient listed<br>is in agreement with a dipole character. $\alpha$ (E1)=0.0243.                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 371.2 <sup>‡</sup> 2                                  | 125 10                         | 8094.9                                | 65/2-                                            | 7723.7                                | 59/2+                                  | E3                 |           | 0.372 5             | A <sub>2</sub> =+0.03 6; A <sub>4</sub> =+0.04 8 (1986By01)<br>Mult.: $\alpha(\exp)=0.35$ 7, deduced by 1989By01 (method was<br>not discussed), and E3 multipolarity was assigned.<br>Although $\alpha(\exp)$ is also consistent with an M1 transition<br>[ $\alpha(M1)=0.3638$ ], if its placement is correct, T <sub>1/2</sub> (8094<br>level) suggests E3 multipolarity.                                                                                                                                                                                                                                                                                                                                                      |
| 382.7 <sup>‡</sup> 3                                  | 27 3                           | 6334.1                                |                                                  | 5951.5                                |                                        |                    |           |                     | A <sub>2</sub> =+0.13 6; A <sub>4</sub> =+0.05 8 (1986By01)<br>Mult.: $\alpha$ (K)exp=0.20 7 and M1/E2 in 1986By01 but<br>different placement in 1986By01 compared to that in<br>1989By01.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                          | $(\mathbf{HI},\mathbf{xn}\gamma) \text{ (continued)}$ |                        |                    |                  |                    |                    |        |              |                                                                                                                                                                                                                                                                                                                |  |  |
|------------------------------------------|-------------------------------------------------------|------------------------|--------------------|------------------|--------------------|--------------------|--------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| $\gamma$ <sup>(213</sup> Fr) (continued) |                                                       |                        |                    |                  |                    |                    |        |              |                                                                                                                                                                                                                                                                                                                |  |  |
| ${\rm E_{\gamma}}^{\dagger}$             | $I_{\gamma}^{a}$                                      | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$ | $\mathbf{E}_{f}$ | $\mathrm{J}_f^\pi$ | Mult. <sup>b</sup> | δ      | $\alpha^{c}$ | Comments                                                                                                                                                                                                                                                                                                       |  |  |
| 413.0 2                                  | 129 3                                                 | 2950.5                 | 31/2-              | 2537.61          | 29/2+              | E1                 |        | 0.01695 24   | A <sub>2</sub> =-0.222 24; A <sub>4</sub> =+0.034 34 (1979Ho06)<br>A <sub>2</sub> =-0.16 3; A <sub>4</sub> =+0.08 5 (1986By01)<br>Mult.: From $\alpha$ (K)exp=0.047 24 (1986By01), pol=0.36 12<br>(1979Ho06).                                                                                                  |  |  |
| 427.5 1                                  | 255 11                                                | 4082.9                 | 39/2+              | 3655.4           | 37/2+              | M1+E2              | 0.10 3 | 0.246 4      | A <sub>2</sub> =-0.424 <i>13</i> ; A <sub>4</sub> =+0.023 <i>19</i> (1979Ho06)<br>A <sub>2</sub> =-0.32 <i>2</i> ; A <sub>4</sub> =+0.01 <i>2</i> (1986By01)<br>Mult.: From $\alpha$ (K)exp=0.28 <i>7</i> , $\alpha$ (L)exp=0.051 <i>15</i> ,<br>$\alpha$ (M)exp=0.018 (5) (1986By01), pol=-0.32 8 (1979Ho06). |  |  |
| 435.6 4                                  | 8.4 20                                                | 7723.7                 | 59/2+              | 7288.0           | $57/2^{+}$         |                    |        |              |                                                                                                                                                                                                                                                                                                                |  |  |
| 469.7 <sup>d</sup> 4                     |                                                       | 6572.9                 | 49/2+              | 6102.7           | 49/2-              |                    |        |              | $E_{\gamma}$ : from 1986By01; transition was not listed by 1991ByZZ.                                                                                                                                                                                                                                           |  |  |
| 476.9 2                                  | 137 6                                                 | 3427.34                | 33/2+              | 2950.5           | 31/2-              | E1                 |        | 0.01255 18   | $\begin{array}{l} A_2 = -0.257 \ 20; \ A_4 = +0.059 \ 29 \ (1979 \text{Ho06}) \\ A_2 = -0.21 \ 2; \ A_4 = +0.05 \ 2 \ (1986 \text{By} 01) \\ \text{Mult.:} \ \alpha(\text{K}) \exp < 0.047 \ (1986 \text{By} 01), \ \text{pol} = 0.25 \ 12 \ (1979 \text{Ho06}). \end{array}$                                  |  |  |
| 478.73                                   | 25 4                                                  | 6812.8                 | 22/2               | 6334.1           | 21/2-              |                    |        |              | A = 0.47.6(109(D-01))                                                                                                                                                                                                                                                                                          |  |  |
| 538.7 3                                  | 27.8 10                                               | 3489.2                 | 33/2               | 2950.5           | 31/2               | (D)                |        |              | $A_2 = -0.47$ o (1986By01)<br>$\alpha(\text{E1}) = 0.00981, \ \alpha(\text{M1}) = 0.1337, \ \alpha(\text{E2}) = 0.0310.$                                                                                                                                                                                       |  |  |
| 540.0 3                                  | 17.2 10                                               | 4029.2                 |                    | 3489.2<br>4675 4 | 33/2               |                    |        |              |                                                                                                                                                                                                                                                                                                                |  |  |
| 563 3 3                                  | 136.6                                                 | 7288.0                 | 57/2+              | 4073.4<br>6724 5 | 55/2+              | M1                 |        | 0 1187 17    | $A_{2} = -0.47.6$ ; $A_{4} = +0.23.10$ (1986By01)                                                                                                                                                                                                                                                              |  |  |
| 592.5 3                                  | 33 7                                                  | 4675.4                 | 572                | 4082.9           | 39/2 <sup>+</sup>  | 1911               |        | 0.1107 17    | $A_2 = -0.53 \ 4 \ (1986By01)$<br>The angular distribution is consistent with a dipole transition;<br>the intensity balance at the 4675-keV level is worse if it is an<br>E1 transition. $\alpha(E1)=0.00812, \ \alpha(M1)=0.1038.$                                                                            |  |  |
| 594.7 4                                  | 30.6                                                  | 5814.8                 | $(45/2^+)$         | 5220.2           | 40/2-              | (17.01             |        | 0.0(01.10    | A = (0.10, 14)(100(D, 01))                                                                                                                                                                                                                                                                                     |  |  |
| 621.83<br>$624.2^{@d}5$                  | 18 0                                                  | 6724.5<br>4653.6?      | 55/2               | 4029.2           | 49/2               | [E3]               |        | 0.0681 10    | $A_2 = +0.19  14  (1980 \text{By01})$                                                                                                                                                                                                                                                                          |  |  |
| 665 <sup>&amp;a</sup>                    |                                                       | 4695.9                 | 39/2-              | 4029.2           |                    |                    |        |              |                                                                                                                                                                                                                                                                                                                |  |  |
| 681.3 <i>I</i>                           | 439 15                                                | 2537.61                | 29/2+              | 1856.30          | 23/2-              | E3                 |        | 0.0529 7     | A <sub>2</sub> =+0.20 <i>I</i> ; A <sub>4</sub> =+0.02 <i>I</i> (1986By01)<br>Mult.: $\alpha$ (K)exp=0.046 5, $\alpha$ (L)exp=0.018 2, and $\alpha$ (M)exp=0.007<br><i>I</i> (1986By01).                                                                                                                       |  |  |
| 695 <mark>&amp;</mark>                   |                                                       | 7983.6                 | 61/2-              | 7288.0           | $57/2^{+}$         |                    |        |              |                                                                                                                                                                                                                                                                                                                |  |  |
| 738.8 <sup>‡</sup> <i>3</i>              | 16.8 20                                               | 7541.8                 | (57/2)             | 6803.0           | (55/2)             | D                  |        |              | A <sub>2</sub> =-0.33 <i>10</i> (1986By01)<br>Mult.: The angular distribution is consistent with dipole<br>character for this transition. $\alpha$ (E1)=0.00532, $\alpha$ (M1)=0.0580.                                                                                                                         |  |  |
| 758.0 <sup>‡</sup> 4                     | 34 7                                                  | 6572.9                 | $49/2^{+}$         | 5814.8           | $(45/2^+)$         |                    |        |              | $A_2 = +0.26 \ I5; A_4 = -0.15 \ 21 \ (1986By01)$                                                                                                                                                                                                                                                              |  |  |
| 784.0 <i>4</i>                           | 62                                                    | 5785.9                 | $47/2^{-}$         | 5001.9           |                    |                    |        |              | • •                                                                                                                                                                                                                                                                                                            |  |  |
| 786.9 1                                  | 214 20                                                | 6572.9                 | 49/2+              | 5785.9           | 47/2-              | E1                 |        | 0.00473 7    | $A_2 = -0.292\ 53;\ A_4 = +0.020\ 82\ (1979Ho06)$<br>$A_2 = -0.21\ 2;\ A_4 = +0.02\ 3\ (1986By01)$<br>Mult : From $\alpha(K)\exp[0.007\ 2\ (1986By01)]$                                                                                                                                                        |  |  |
| 793.2 3                                  | 254 40                                                | 5785.9                 | 47/2-              | 4992.7           | 45/2-              | M1                 |        | 0.0481       | A <sub>2</sub> =-0.212 78; A <sub>4</sub> =+0.048 120 (1979Ho06)<br>A <sub>2</sub> =-0.067 15; A <sub>4</sub> =+0.04 2 (1986By01)<br>Mult., $\delta$ : $\alpha$ (K)exp=0.041 7, $\alpha$ (L)exp=0.0097 10 (1986By01),                                                                                          |  |  |

NUCLEAR DATA SHEETS

 $^{213}_{87}$ Fr $_{126}$ -16

# $^{213}_{87}\mathrm{Fr}_{126}$ -16

554

#### (HI, $xn\gamma$ ) (continued)

## $\gamma(^{213}\text{Fr})$ (continued)

| ${\rm E_{\gamma}}^{\dagger}$     | $I_{\gamma}^{a}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $\mathrm{E}_{f}$ | $\mathbf{J}_f^{\pi}$  | Mult. <sup>b</sup> | $\alpha^{c}$ | Comments                                                                                                                                                                |
|----------------------------------|------------------|------------------------|----------------------|------------------|-----------------------|--------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                  |                  |                        |                      |                  |                       |                    |              | pol=-0.52 36 (1979Ho06). $\delta$ =0.00 19 using the $\alpha$ (K)exp and $\alpha$ (L)exp data.                                                                          |
| 810.2 3                          | 144 8            | 5506.3                 | 43/2-                | 4695.9           | 39/2-                 | E2                 | 0.01293 18   | $A_2 = +0.23 2; A_4 = +0.03 4 (1986By01)$                                                                                                                               |
|                                  |                  | 4000 <b>-</b>          |                      |                  | <b>a</b> a / <b>a</b> | -                  | 0.00110      | Mult.: $\alpha$ (K)exp=0.0065 35 (1986By01).                                                                                                                            |
| 815.6 2                          | 1579             | 4898.5                 | $41/2^{-}$           | 4082.9           | 39/2+                 | EI                 | 0.00443 6    | $A_2 = -0.229 \ 18; A_4 = +0.002 \ 26 \ (1979 Ho06)$                                                                                                                    |
|                                  |                  |                        |                      |                  |                       |                    |              | $A_2 = -0.24$ 2; $A_4 = +0.09$ 3 (1986By01)                                                                                                                             |
| 01772                            | 20 (             | 7541.0                 | (57)                 | (704 5           | 5510+                 |                    |              | Mult.: From $\alpha(K)$ exp=0.006 3 (1986By01), pol=0.35 15 (1979Ho06).                                                                                                 |
| 81/./ 3                          | 20.0             | /541.8                 | (57/2)               | 0/24.5           | 55/2°                 | <b>F0</b>          | 0.01007.15   | A = (0.22) ((100) (D = 0.1))                                                                                                                                            |
| 884.0 3                          | 51.5             | 2740.2                 | 21/2                 | 1830.30          | 23/2                  | E2                 | 0.01087 15   | $A_2 = +0.22 \ 0 \ (1980By01)$                                                                                                                                          |
| <u> </u>                         | 200 12           | 2427.24                | 22/2+                | 2527 61          | 20/2+                 | E2                 | 0.01072.15   | Mull.: From $\alpha(\mathbf{K})\exp=0.015$ o (1980By01).                                                                                                                |
| 889.7 1                          | 500 12           | 5427.54                | 55/2                 | 2357.01          | 29/2                  | E2                 | 0.01075 15   | $A_2=0.311$ 16; $A_4=-0.022$ (19/9 $H000$ )                                                                                                                             |
|                                  |                  |                        |                      |                  |                       |                    |              | $A_2 = \pm 0.24$ <i>I</i> , $A_4 = \pm 0.02$ <i>Z</i> (1900 By01)<br>Mult: From $\alpha(K) = 0.011$ <i>Z</i> $\alpha(L) = 0.002$ <i>L</i> (1086 Bu01) pol=0.52 <i>L</i> |
|                                  |                  |                        |                      |                  |                       |                    |              | (1979Ho06).                                                                                                                                                             |
| 909.8 2                          | 116 9            | 4992.7                 | $45/2^{-}$           | 4082.9           | $39/2^{+}$            | E3                 | 0.0255 4     | $A_2 = 0.538 \ 37$ ; $A_4 = +0.038 \ 51 \ (1979 Ho06)$                                                                                                                  |
|                                  |                  |                        |                      |                  |                       |                    |              | $A_2 = +0.43 3; A_4 = +0.06 4 (1986By01)$                                                                                                                               |
|                                  |                  |                        |                      |                  |                       |                    |              | Mult.: From α(K)exp=0.023 3, α(L)exp=0.006 1 (1986By01), pol=0.88 22 (1979Ho06).                                                                                        |
| 929.5 <i>3</i>                   | 132 26           | 6715.3                 | $53/2^{+}$           | 5785.9           | $47/2^{-}$            | E3                 | 0.02428 34   | $A_2 = +0.46 \ 3; \ A_4 = +0.03 \ 5 \ (1986By01)$                                                                                                                       |
|                                  |                  |                        |                      |                  |                       |                    |              | Mult.: From $\alpha$ (K)exp=0.014 8, $\alpha$ (L)exp=0.0045 15 (1986By01).                                                                                              |
| 949.4 <sup>‡</sup> <i>3</i>      | 10 4             | 5951.5                 |                      | 5001.9           |                       |                    |              | $A_2 = -0.03 \ I3 \ (1986By01)$                                                                                                                                         |
| 959.0 <sup>‡</sup> 3             | 11 3             | 5951.5                 |                      | 4992.7           | $45/2^{-}$            |                    |              | $A_2 = +0.23 \ 14 \ (1986By01)$                                                                                                                                         |
| $x_{9634}$ 063 4 $\frac{1}{2}$ 5 |                  |                        |                      |                  | ,                     |                    |              | 2 ( ) /                                                                                                                                                                 |
| 998.9.3                          | 12.4             | 7723 7                 | $59/2^{+}$           | 6724 5           | 55/2+                 |                    |              |                                                                                                                                                                         |
| 1040.3.3                         | 111 11           | 4695.9                 | $39/2^{-}$           | 3655.4           | $37/2^+$              | E1                 | 0.00286 4    | $A_2 = -0.27$ 3: $A_4 = +0.04$ 4 (1986Bv01)                                                                                                                             |
| 101010 0                         |                  | 107017                 | <i>U</i> >/ <b>_</b> | 000011           | 0.72                  | 21                 | 0100200      | Mult.: From $\alpha(K) \exp[0.0017.6](1986Bv01)$ .                                                                                                                      |
| 1188.8 1                         | 1000 40          | 1188.80                | $13/2^{-}$           | 0.0              | $9/2^{-}$             | E2                 | 0.00616-9    | $A_{2}=+0.041$ 6: $A_{4}=-0.01$ <i>l</i> (1986Bv01)                                                                                                                     |
| 110010 1                         | 1000 10          | 1100100                | 10/2                 | 0.0              | >/=                   |                    | 0100010 2    | Mult.: From $\alpha(K) \exp[0.0053/6, \alpha(L) \exp[0.00097/10](1986Bv01)]$ .                                                                                          |
| 1259.1 <i>3</i>                  | 254 12           | 7983.6                 | $61/2^{-}$           | 6724.5           | $55/2^{+}$            | E3                 | 0.01229 17   | $A_{2}=+0.15$ 4; $A_{4}=+0.00$ 6 (1986Bv01)                                                                                                                             |
|                                  |                  |                        | - 1                  |                  | - /                   |                    |              | Mult.: From $\alpha$ (K)exp=0.010 2 (1986By01).                                                                                                                         |

<sup>†</sup> From 1991ByZZ, except where otherwise noted. See also 1989By01, 1986By01, 1976Ha37, 1977Be56. Other measurements: 1971MaXH, 1974Re09.

<sup>‡</sup> E $\gamma$  placement from 1989By01.

# Transition was not observed; energy from decay scheme.
 @ From 1986By01, not listed by 1991ByZZ.

<sup>&</sup> From level scheme shown in 1989By01; transition was not listed by 1991ByZZ and 1986By01.

<sup>a</sup> Relative photon intensities, measured by 1991ByZZ in a time window 2-9 microseconds after the beam burst. Therefore, these Iy's represent relative feedings through the  $4.5-\mu s$  isomer at 8095 keV. See also 1986By01.

<sup>b</sup> From conversion electron measurements and angular distribution of the  $\gamma$ -ray (1986By01), except otherwise noted.

### (HI, $xn\gamma$ ) (continued)

## $\gamma(^{213}\text{Fr})$ (continued)

<sup>c</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>d</sup> Placement of transition in the level scheme is uncertain. <sup>x</sup>  $\gamma$  ray not placed in level scheme.

#### **Adopted Levels, Gammas**

 $Q(\beta^{-})=-5795 \ 15$ ;  $S(n)=7527 \ 14$ ;  $S(p)=3427 \ 13$ ;  $Q(\alpha)=6861.7 \ 23$ 2021Wa16

2011Ka30: Pt(<sup>36</sup>S,X), E=5.96 MeV/nucleon and W(<sup>48</sup>Ca,X), E=5.41 MeV/nucleon – measured differential cross section  $d\sigma/d\Omega$ . 2002Mi20: Measured evaporation residue production cross section of <sup>213</sup>Ra, bombarding <sup>154</sup>Sm target with <sup>64</sup>Ni beam, E=4-5 MeV/nucleon.

2009Ga07: Measured production cross section of  $^{213}$ Ra in the  $^{209}$ Bi( $^{10}$ B,X) reaction, E(cm)=52-72 MeV.

<sup>213</sup>Ra Levels

#### Cross Reference (XREF) Flags

Α

 $^{217}$  Th  $\alpha$  decay  $^{213}$  Ra IT decay (2.18 ms)  $^{204}$  Pb( $^{13}$  C,4n $\gamma)$ В

С

| E(level) <sup>†</sup> | _J <sup>π‡</sup>     | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                       |
|-----------------------|----------------------|------------------|------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 1/2-                 | 2.73 min 5       | ABC  | $\% \alpha = 86\ 2;\ \% \epsilon + \% \beta^+ = 14\ 2$<br>$\mu = +0.610\ 2$<br>$T_{1/2}$ : Weighted average of 2.74 min 6 (1968Lo15), 2.75 min 15 (1967Va22), 2.7<br>min 3 (1955Mo68) and 2.54 min $\pm 2I - 18$ (9217 $\sigma$ (t)) (2000Ni02 = also reported |
|                       |                      |                  |      | 2.7 min +21-8 (8713 $\alpha$ (t)) and 2.5 min +12-6 (8429 $\alpha$ (t)). Other: 2.72 min                                                                                                                                                                       |
|                       |                      |                  |      | (1961Gr42). All from <sup>213</sup> Ra $\alpha$ decay measurements.                                                                                                                                                                                            |
|                       |                      |                  |      | J <sup><i>i</i></sup> : spin measured (hyperfine structure by LASER spectroscopy, 1983Ah03).                                                                                                                                                                   |
|                       |                      |                  |      | $\mu$ : From 2019StZV, 1987Ar20 – Larmor precession, optical pumping by LASER.<br>Others: 0.62.3 (1983Ab03) 0.592 11 (1987We03)                                                                                                                                |
|                       |                      |                  |      | % $\alpha$ : Weighted average of 87 2 (2017Lo13) and 80 5 (1967Va22); $\%\epsilon + \%\beta = 100 - \%\alpha$ .                                                                                                                                                |
| 546.35 5              | $(5/2^{-})$          | 21.5 ps 28       | ABC  | $J^{\pi}$ : 546.35 $\gamma$ (E2) to 1/2 <sup>-</sup> g.s.; probable configuration: $\nu$ (f <sup>-1</sup> <sub>5/2</sub> ).                                                                                                                                    |
|                       |                      | •                |      | T <sub>1/2</sub> : From $\tau$ =31 ps 4 (2021Ge07 – ( <sup>13</sup> C,4n $\gamma$ )), from $\gamma$ gated time difference measurements by Generalised Centroid Difference method.                                                                              |
| 820 6                 | (3/2 <sup>-</sup> )  |                  | A    | E(level): Level energy calculated by the evaluator using $Q(\alpha)$ ( <sup>217</sup> Th) and $E\alpha$ feeding this level.                                                                                                                                    |
|                       |                      |                  |      | $J^{\pi}$ : From systematics of <sup>211</sup> Rn isotone.                                                                                                                                                                                                     |
| 1608.85 <i>21</i>     | (9/2 <sup>-</sup> )  |                  | BC   | $J^{\pi}$ : 1062.5 $\gamma$ (E2) to 5/2 <sup>-</sup> state. Systematics of 9/2 <sup>-</sup> levels in nuclei with 125 neutrons (see 1976Ra37).                                                                                                                 |
| 1769.72 22            | (13/2 <sup>-</sup> ) |                  | BC   | J <sup><math>\pi</math></sup> : 160.87 $\gamma$ to (9/2 <sup>-</sup> ) state is predominantly E2; no $\gamma$ to the (5/2 <sup>-</sup> ) state. Please see <sup>213</sup> Ra IT decay (2.18 ms) dataset.                                                       |
| 1770 5                | $(17/2^{-})$         | 2.18 ms 5        | BC   | %α=0.6 4; %IT=99.4 4                                                                                                                                                                                                                                           |
|                       |                      |                  |      | $\mu = 7.4.4$                                                                                                                                                                                                                                                  |
|                       |                      |                  |      | E(level): From <sup>213</sup> Ra IT decay (2.18 ms).<br>$\overline{M}_{1}$ Maximum d = 0.87.5 (1004Nz01) unline suggests the coefficient for                                                                                                                   |
|                       |                      |                  |      | J <sup>**</sup> : Measured $g=0.87.5$ (1994Ne01) value supports the configuration: $\pi$<br>([h <sup>+2</sup> ] <sub>2</sub> ) $\Re(n^{-1})$ for which the calculated magnetic moment 7.672.33                                                                 |
|                       |                      |                  |      | $(\ln_{9/2}18+)\otimes (p_{1/2})$ for which the calculated magnetic moment, 7.072 55, is in good agreement with the measured g value (1994Ne01).                                                                                                               |
|                       |                      |                  |      | $T_{1/2}$ : From IT decay.                                                                                                                                                                                                                                     |
|                       |                      |                  |      | $\mu$ : From 2019StZV, 1994Ne01 – Level Mixing Spectroscopy (LEMS).                                                                                                                                                                                            |
|                       |                      |                  |      | % $\alpha$ : From 2006Ku26. Other: 0.6 in 1976Ra37 (also ≈1) – both in the <sup>213</sup> Ra IT decay (2.18 ms) dataset. %IT = 100 – % $\alpha$ .                                                                                                              |
| 2287.50 10            | $(21/2^{-})$         |                  | С    | Configuration: $\pi(h_{9/2}^6)_{8+} \otimes \nu f_{5/2}^{-1}$ .                                                                                                                                                                                                |
| 2609.90 15            | $(23/2^+)$           | 18.7 ns 21       | C    | Configuration: $\pi[(h_{5/2}^5)_{9/2}i_{13/2}]_{11-} \otimes vp_{1/2}^{-1}$ .<br>T <sub>1/2</sub> : From (455 $\gamma$ +731 $\gamma$ )(322 $\gamma$ )( $\Delta$ t) measurements ( <sup>13</sup> C,4n $\gamma$ ) – 2018Pa04).                                   |
| 3065.3 4              | $(25/2^+)$           |                  | С    | Configuration: $\pi[(h_{0/2}^5)_{9/2}i_{13/2}]_{10} \otimes \nu f_{5/2}^{-1}$ .                                                                                                                                                                                |
| 3136.6 <i>3</i>       | $(25/2^{-})$         |                  | С    | Configuration: $\pi(\mathbf{h}_{0/2}^{6/2})_{12+} \otimes v \mathbf{p}_{1/2}^{-1}$ .                                                                                                                                                                           |
| 3281.1 5              | $(25/2^{-})$         |                  | С    | Configuration: $\pi[(h_{0/2}^{7/2})_{17/2}f_{7/2}]_{12+} \otimes \nu p_{1/2}^{-1}$ .                                                                                                                                                                           |
| 3340.4 4              | $(27/2^+)$           |                  | С    | Configuration: $\pi[(h_{9/2}^{5'})_{9/2}i_{13/2}]_{11-} \otimes \nu f_{5/2}^{-1}$ .                                                                                                                                                                            |

Continued on next page (footnotes at end of table)

#### Adopted Levels, Gammas (continued)

#### <sup>213</sup>Ra Levels (continued)

| E(level) <sup>†</sup> | Jπ‡          | T <sub>1/2</sub> | XREF | Comments                                                                                                         |
|-----------------------|--------------|------------------|------|------------------------------------------------------------------------------------------------------------------|
| 3345.60 22            | $(25/2^{-})$ |                  | С    | Configuration: $\pi(h_{g/2}^6)_{10+} \otimes \nu f_{5/2}^{-1}$ .                                                 |
| 3433.2 <i>3</i>       | $(27/2^{-})$ |                  | С    | Configuration: $\pi[(h_{0/2}^{5})_{21/2}f_{7/2}]_{13+} \otimes \nu p_{1/2}^{-1}$ .                               |
| 3441.4 5              | $(29/2^{-})$ |                  | С    | Configuration: $\pi[(h_{0/2}^{5/2})_{21/2}f_{7/2}]_{14+} \otimes \nu p_{1/2}^{-1}$ .                             |
| 3863.8 11             | $(27/2^+)$   |                  | С    | Configuration: $\pi[(h_{0/2}^{5/2})_{13/2}i_{13/2}]_{13-} \otimes \nu p_{1/2}^{1/2}$ .                           |
| 3878.0 7              | $(29/2^+)$   |                  | С    | Configuration: $\pi[(h_{9/2}^{5/2})_{17/2}i_{13/2}]_{14-} \otimes vp_{1/2}^{-1/2}$ .                             |
| 4006.9 5              | $(31/2^+)$   |                  | С    | Configuration: $\pi[(h_{0/2}^{5/2})_{17/2}i_{13/2}]_{15-} \otimes vp_{1/2}^{-1}$ .                               |
| 4047.7 7              | $(33/2^+)$   | 34.7 ns 21       | С    | Configuration: $\pi[(h_{0/2}^{5/2})_{21/2}i_{13/2}]_{16-} \otimes \nu p_{1/2}^{-1}$ .                            |
|                       |              |                  |      | $T_{1/2}$ : From $(455\gamma + 731\gamma)(322\gamma)(\Delta t)$ measurements $((^{13}C, 4n\gamma) - 2018Pa04)$ . |
|                       |              |                  |      | Lifetime measured by (beam pulse)(566 $\gamma$ and 667 $\gamma$ )(t) showed no difference.                       |
| 4047.7+x?             | $(35/2^+)$   |                  | С    |                                                                                                                  |
| 4506.2+x?             | $(37/2^+)$   |                  | С    |                                                                                                                  |

<sup>†</sup> Deduced by the evaluator from a least square fit to the  $\gamma$ -ray energies, except where otherwise noted. <sup>‡</sup> Above 1770 level, spin-parity assignments are from ( $^{13}C,4n\gamma$ ) – 2018Pa04, based on proposed  $\gamma$  multipolarity from measured  $\gamma(\theta)$  data and deduced total conversion coefficients.

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$                         | $E_{\gamma}^{\dagger}$   | $I_{\gamma}^{\dagger}$            | E <sub>f</sub>     | $J_f^\pi$                                    | Mult. <sup>†</sup> | $\delta^{\dagger}$ | α <sup>@</sup>    | Comments                                                                            |
|------------------------|----------------------------------------------|--------------------------|-----------------------------------|--------------------|----------------------------------------------|--------------------|--------------------|-------------------|-------------------------------------------------------------------------------------|
| 546.35                 | $(5/2^{-})$                                  | 546.35 <sup>‡</sup> 5    | 100 <sup>‡</sup>                  | 0.0                | $1/2^{-}$                                    | (E2) <sup>‡</sup>  |                    | 0.0315 4          | B(E2)(W.u.)=6.9 + 11 - 8                                                            |
| 1608.85                | $(9/2^{-})$                                  | 1062.5 <sup>‡</sup> 2    | 100 <sup>‡</sup>                  | 546.35             | $(5/2^{-})$                                  | (E2) <sup>‡</sup>  |                    | 0.00802 11        |                                                                                     |
| 1769.72                | $(13/2^{-})$                                 | 160.87 <sup>‡</sup> 5    | 100 <sup>‡</sup>                  | 1608.85            | (9/2 <sup>-</sup> )                          | E2 <sup>‡</sup>    |                    | 1.328 19          |                                                                                     |
| 2287.50                | $(21/2^{-})$                                 | 517.5 <i>1</i>           | 100                               | 1770               | $(17/2^{-})$                                 | Q <sup>#</sup>     |                    |                   |                                                                                     |
| 2609.90                | (23/2+)                                      | 322.4 1                  | 100                               | 2287.50            | (21/2 <sup>-</sup> )                         | (E1)               |                    | 0.0299 4          | $\alpha(\exp)=0.11 \ 5 \ (2018Pa04)$<br>B(E1)(W.u.)=2.94×10 <sup>-7</sup><br>+36-31 |
| 3065.3                 | $(25/2^+)$                                   | 455.4 <i>4</i>           | 100                               | 2609.90            | $(23/2^+)$                                   | D+Q <sup>#</sup>   |                    |                   |                                                                                     |
| 3136.6                 | $(25/2^{-})$                                 | 849.1 <i>3</i>           | 100                               | 2287.50            | $(21/2^{-})$                                 | Q <sup>#</sup>     |                    |                   |                                                                                     |
| 3281.1                 | $(25/2^{-})$                                 | 993.6 7                  | 100                               | 2287.50            | $(21/2^{-})$                                 | Q <sup>#</sup>     |                    |                   |                                                                                     |
| 3340.4                 | $(27/2^+)$                                   | 275.0 4                  | 72 3                              | 3065.3             | $(25/2^+)$                                   | M1+E2              | 0.64 2             | 0.697 14          | $\alpha(\exp)=0.99 \ 8 \ (2018Pa04);$<br>A <sub>2</sub> =-0.41 <i>16</i>            |
|                        |                                              | 730.5 5                  | 100 5                             | 2609.90            | $(23/2^+)$                                   | Q <sup>#</sup>     |                    |                   |                                                                                     |
| 3345.60<br>3433.2      | (25/2 <sup>-</sup> )<br>(27/2 <sup>-</sup> ) | 1058.1 2<br>87.6 4       | 100                               | 2287.50<br>3345.60 | (21/2 <sup>-</sup> )<br>(25/2 <sup>-</sup> ) | Q <sup>#</sup>     |                    |                   |                                                                                     |
|                        |                                              | 152.1 5<br>296.6 2       | 18.7 <i>16</i><br>100.0 <i>24</i> | 3281.1<br>3136.6   | $(25/2^{-})$<br>$(25/2^{-})$                 | M1+E2<br>M1        | 0.7 3              | 3.7 6<br>0.732 10 | $\alpha(\exp)=3.7\ 5\ (2018Pa04)$<br>$\alpha(\exp)=0.96\ 9\ (2018Pa04)$             |
| 3441.4                 | $(29/2^{-})$                                 | 304.8 8                  | 100                               | 3136.6             | $(25/2^{-})$                                 |                    |                    |                   |                                                                                     |
| 3863.8                 | $(27/2^+)$                                   | 798.5 10                 | 100                               | 3065.3             | $(25/2^+)$                                   |                    |                    |                   |                                                                                     |
| 3878.0                 | $(29/2^+)$                                   | 436.7 8                  | 100 8                             | 3441.4             | $(29/2^{-})$                                 | щ                  |                    |                   |                                                                                     |
|                        |                                              | 537.8 11                 | 83 8                              | 3340.4             | $(27/2^+)$                                   | D#                 |                    |                   |                                                                                     |
| 4006.9                 | $(31/2^+)$                                   | 565.5 2                  | 100.0 17                          | 3441.4             | $(29/2^{-})$                                 | D <sup>#</sup>     |                    |                   |                                                                                     |
|                        |                                              | 666.5 4                  | 24.4 10                           | 3340.4             | $(27/2^+)$                                   | Q <sup>#</sup>     |                    |                   |                                                                                     |
| 4047.7                 | (33/2+)                                      | 169.7 <i>3</i>           | 82 4                              | 3878.0             | (29/2+)                                      | E2                 |                    | 1.079 17          | $\alpha(\exp)=1.3 \ 2 \ (2018Pa04)$<br>B(E2)(W.u.)=0.422 +31-28                     |
|                        |                                              | 606.3 5                  | 100 6                             | 3441.4             | $(29/2^{-})$                                 | [M2]               |                    | 0.277 4           | B(M2)(W.u.)=0.103 8                                                                 |
| 4047.7+x?              | $(35/2^+)$                                   | у <sup>&amp;</sup>       |                                   | 4047.7             | $(33/2^+)$                                   |                    |                    |                   |                                                                                     |
| 4506.2+x?              | $(37/2^+)$                                   | 458.7 <sup>&amp;</sup> 6 |                                   | 4047.7+x?          | $(35/2^+)$                                   |                    |                    |                   |                                                                                     |

 $\gamma(^{213}\text{Ra})$ 

Continued on next page (footnotes at end of table)

#### Adopted Levels, Gammas (continued)

## $\gamma(^{213}\text{Ra})$ (continued)

- <sup>†</sup> From (<sup>13</sup>C,4n $\gamma$ ), except where otherwise noted.
- <sup> $\ddagger$ </sup> From <sup>213</sup>Ra IT decay (2.18 ms).
- <sup>#</sup> In 2018Pa04 ( $^{13}C,4n\gamma$ ) based on  $\gamma(\theta)$  data M1, E1, E2, and M1+E2 were assigned, evaluator list those as D, Q, D+Q.
- <sup>@</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.
- <sup>&</sup> Placement of transition in the level scheme is uncertain.

#### <sup>213</sup>Ra IT decay (2.18 ms) 1976Ra37,1994Ne01,2006Ku26

Parent: <sup>213</sup>Ra: E=1770 5;  $J^{\pi} = (17/2^{-})$ ;  $T_{1/2} = 2.18$  ms 5; %IT decay=99.4 4

Others: 2004He25, 1993Ne04.

1976Ra37: The decay scheme is given as constructed by 1976Ra37. Measured  $\gamma\gamma$  coin.

1994Ne01: Measured g factor for the 17/2<sup>-</sup> isomeric state using an indirect method that is the ratio of Korringa constant for two isomers is proportional to the inverse ratio of the respective g factors.

2006Ku26: <sup>213</sup>Ra isotope produced by <sup>48</sup>Ca(<sup>170</sup>Er,5n), E=4.25, 4.30 MeV/nucleon, and <sup>50</sup>Ti(<sup>170</sup>Er,X), 4.35 MeV/nucleon,

reactions. Evaporation residues were separated in-flight with the velocity filter SHIP. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ , ce, lifetimes using a 16-strip PIPS detector and a Ge-Clover detector placed behind the pips.

2004He25: <sup>208</sup>Pb(<sup>12</sup>C,7n), E=68-136 MeV; measured prompt and delayed E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin, (recoil) $\gamma$ -coin; Deduced levels, spin, parity, half-life.

1993Ne04: Determined the static-quadrupole-interaction frequency of the 17/2<sup>-</sup> isomeric state using level-mixing-spectroscopy (LEMS).

2004He25: Measured half-life of the  $(17/2^{-})$  isomeric state.

| x-rays: 1976Ra | 137                   |              |       |
|----------------|-----------------------|--------------|-------|
| E(x ray)       | I $\gamma$ (relative) |              |       |
|                |                       |              |       |
| 85.4           | 4.2 3                 | $K\alpha_2$  | x ray |
| 88.5           | 6.2 4                 | $K\alpha_1$  | x ray |
| 100.0          | 2.1 3                 | К $\beta_1'$ | x ray |
| 103.0          | 0.7 2                 | $K\beta_2'$  | x ray |
|                |                       |              |       |

<sup>213</sup>Ra Levels

| E(level) <sup>†</sup> | $J^{\pi}$    | T <sub>1/2</sub> | Comments                                                                                                                                                              |
|-----------------------|--------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 1/2-         | 2.73 min 5       | $J^{\pi}$ , $T_{1/2}$ : From Adopted Levels.                                                                                                                          |
| 546.35 5              | $(5/2^{-})$  | 21.5 ps 28       | $T_{1/2}$ : From Adopted Levels.                                                                                                                                      |
|                       |              |                  | $J^{\pi}$ : 546.35 $\gamma$ E2 to 1/2 <sup>-</sup> state.                                                                                                             |
| 1608.85 <i>21</i>     | $(9/2^{-})$  |                  | $J^{\pi}$ : 1062.5 $\gamma$ (E2) to (5/2 <sup>-</sup> ) state.                                                                                                        |
| 1769.72 22            | $(13/2^{-})$ |                  | $J^{\pi}$ : 160.8 $\gamma$ E2 to (9/2 <sup>-</sup> ) state requires (13/2 <sup>-</sup> ), in 1976Ra37 $J^{\pi}$ is given as (13/2 <sup>-</sup> , 11/2 <sup>-</sup> ). |
| 1770 5                | $(17/2^{-})$ | 2.18 ms 5        | $\% \alpha = 0.6 4$                                                                                                                                                   |
|                       |              |                  | E(level): From 1770 +5-1 (2006Ku26). Others: ≈1770 (1976Ra37), 1769 7 can be deduced                                                                                  |
|                       |              |                  | considering E $\alpha$ =8467 5 and E $\alpha$ =6731 5 (1976Ra37) from the isomeric level and g.s.                                                                     |
|                       |              |                  | <sup>213</sup> Ra $\alpha$ decay, respectively, to the g.s. of <sup>209</sup> Rn.                                                                                     |
|                       |              |                  | $J^{\pi}$ : Measured g=0.87 5 (1994Ne01) value supports the configuration                                                                                             |
|                       |              |                  | $[(\pi 1h_{0/2}^2)_{8+} \otimes (\nu 3p_{1/2}^{-1})]_{17/2-}$ for which the calculated magnetic moment, 7.672 33, is                                                  |
|                       |              |                  | in good agreement with the measured g value (1994Ne01).                                                                                                               |
|                       |              |                  | $T_{1/2}$ : Weighted average of 2.1 ms <i>l</i> (1976Ra37), 2.20 ms 5 (2006Ku26), and 2.2 ms <i>l</i>                                                                 |
|                       |              |                  | $(545.4\gamma)$ (2004He25) – uncertainty is the lowest input value. 2004He25 also reported two                                                                        |
|                       |              |                  | more values of 2.1 ms l (1061.2 $\gamma$ ) and 2.1 ms l (160.4 $\gamma$ ). All three values determined by                                                             |
|                       |              |                  | 2004He25 from the decrease of $\gamma$ -ray intensities within the 14.6 ms pause between two                                                                          |
|                       |              |                  | consecutive beam bursts.                                                                                                                                              |
|                       |              |                  | % $\alpha$ : 0.6 4 (2006Ku26) and 0.6 (1976Ra37 − also ≈1).                                                                                                           |

<sup>†</sup> From  $E\gamma$ , except where otherwise noted.

## <sup>213</sup>Ra IT decay (2.18 ms) 1976Ra37,1994Ne01,2006Ku26 (continued)

## $\gamma(^{213}\text{Ra})$

I $\gamma$  normalization: Absolute I $\gamma$  deduced by the evaluator equating the total transition intensity for each of the 546.35, 1062.5, and 160.87 cascading  $\gamma$ 's to the 99.4 4 IT decay branching. Measured I $\gamma$  used to deduced the absolute intensities is listed in the comments.

| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\ddagger @}$ | E <sub>i</sub> (level) | $\mathbf{J}_i^\pi$                           | $\mathbf{E}_{f}$   | $\mathbf{J}_{f}^{\pi}$                      | Mult. <sup>#</sup> | α <sup>&amp;</sup> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------|---------------------------|------------------------|----------------------------------------------|--------------------|---------------------------------------------|--------------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (<6)<br>160.87 5       | 42.2 24                   | 1770<br>1769.72        | (17/2 <sup>-</sup> )<br>(13/2 <sup>-</sup> ) | 1769.72<br>1608.85 | (13/2 <sup>-</sup> )<br>(9/2 <sup>-</sup> ) | [E2]<br>E2         | 1.328              | E <sub>γ</sub> : From level scheme.<br>$\alpha$ (K)exp=0.25 2 (1976Ra37)<br>$\alpha$ (K)exp=0.26 6 (2006Ku26)<br>E <sub>γ</sub> : Others: 160.4 5 (2004He25), 161.2 1<br>(2006Ku26). In 1976Ra37, a transition<br>≈161γ was shown in Fig. 7 to feed the<br>level at 1608.85 (9/2 <sup>-</sup> ), but argued it would<br>not depopulate the isomeric state<br>(J <sup>π</sup> =(17/2 <sup>-</sup> )) as an E2 transition.<br>Iγ(rel)=43.5 25: Weighted average of 46 2 |
| 546.35 5               | 93.0 11                   | 546.35                 | (5/2 <sup>-</sup> )                          | 0.0                | 1/2-                                        | E2                 | 0.0315             | (1976Ka37) and $41.2$ (2006Ku26).<br>$\alpha$ (K)exp=0.02 <i>I</i> (1976Ra37)<br>$\alpha$ (K)exp=0.024 <i>9</i> (2006Ku26)<br>E <sub>y</sub> : Others: 545.4 <i>5</i> (2004He25), 546.2 <i>I</i><br>(2006Ku26).<br>Iy(rel)=100.4 <i>I</i> 2: Weighted average of 104 <i>3</i><br>(1976Ra37) and 100 <i>I</i> (2006Ku26)                                                                                                                                               |
| 1062.5 2               | 98.4 27                   | 1608.85                | (9/2 <sup>-</sup> )                          | 546.35             | (5/2 <sup>-</sup> )                         | (E2)               | 0.00802            | $\alpha$ (K)exp=0.005 <i>10</i> (1976Ra37)<br>$\alpha$ (K)exp=0.014 <i>9</i> (2006Ku26)<br>E <sub><math>\gamma</math></sub> : Others: 1061.2 <i>5</i> (2004He25), 1062.1 <i>1</i><br>(2006Ku26).<br>I $\gamma$ (rel)=99.4 27: Weighted average of 100 <i>3</i><br>(1976Ra37) and 97 <i>6</i> (2006Ku26).                                                                                                                                                              |

<sup>†</sup> Measurements of 1976Ra37 (semi).

<sup>‡</sup> Deduced by evaluator (see normalization comments) using the  $I\gamma$ (rel) listed in comments.

<sup>#</sup> Proposed in 1976Ra37 based on  $\alpha(K)$ exp data.

<sup>@</sup> Absolute intensity per 100 decays.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.



<sup>213</sup>Ra IT decay (2.18 ms) 1976Ra37,1994Ne01,2006Ku26

 ${}^{213}_{88}$ Ra<sub>125</sub>-7

#### <sup>217</sup>**Th** $\alpha$ decay 2005Ku31,2002He29,2000Ni02

Parent: <sup>217</sup>Th: E=0.0;  $J^{\pi} = (9/2^+)$ ;  $T_{1/2} = 0.252$  ms 4;  $Q(\alpha) = 9435$  4;  $\% \alpha$  decay=100

 $^{217}$ Th-J<sup>#</sup>,  $T_{1/2}$ : From 2018Ko01 (A=217 evaluation). Other  $T_{1/2}$ =0.249 ms 11 (2019Zh54). Consideration of 2019Zh54 value with the ones in 2018Ko01 yields same  $T_{1/2}=0.252$  ms 4.

<sup>217</sup>Th-O( $\alpha$ ): From 2021Wa16.

Others: 2005Li17, 2000He17, 1968Va18, 2005YeZZ, and 2008DoZZ. 2005Ku31: <sup>217</sup>Th produced through <sup>170</sup>Er(<sup>50</sup>Ti,3n)<sup>217</sup>Th; E=4.35 A-MeV; Detector: 16-strip PIPS-detector, Ge-Clover detector of 4 crystals; Measured: E $\alpha$ , I $\alpha$ , investigated by Evaporation Residues (ER)- $\gamma$ - $\alpha$ - coincidences.

2002He29: <sup>217</sup>Th produced through <sup>181</sup>Ta(<sup>40</sup>Ar,p3n)<sup>217</sup>Th, Target: 99.988% natural tantalum; E=182 MeV; Detector: 16-strip PIPS-detector, Ge-Clover detector of 4 crystals; Measured: E $\alpha$ , I $\alpha$ ,  $\alpha$ - $\gamma$  coincidences.

2000Ni02: <sup>217</sup>Th produced through  $^{198}$ Pt( $^{28}$ Si, $\alpha$ 5n)<sup>217</sup>Th; E=140-180 MeV; Detector: Double sided strip detector, TOF signal; Measured: E $\alpha$ , I $\alpha$ , t, deduced  $J^{\pi}$  of 818 state. 2000He17: <sup>217</sup>Th produced through <sup>170</sup>Er(<sup>50</sup>Ti,3n)<sup>217</sup>Th; E=215-235 MeV; Detector: 16-strip PIPS-detector, a HPGe detector;

Measured:  $E\alpha$ .  $I\alpha$ .

2005Li17: Isotope produced by fragment separator of 1 GeV/u <sup>238</sup>U beam; Measured: E $\alpha$ .

1968Va18: <sup>217</sup>Th produced through <sup>206</sup>Pb(<sup>16</sup>O,5n)<sup>217</sup>Th; E=166 MeV; 97.22% <sup>206</sup>Pb isotopes in the target; Detector: Semi; Measured:  $E\alpha$ ,  $T_{1/2}$ .

2005YeZZ: <sup>217</sup>Th from <sup>181</sup>Ta(<sup>40</sup>Ar,p3n)<sup>217</sup>Th; Detector: array of silicon strip, 7 HPGe, time-of-flight detectors; Measured E $\alpha$ ; no  $\gamma$  event was attributed to the decay of <sup>217</sup>Pa isomer.

#### <sup>213</sup>Ra Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | $T_{1/2}^{\ddagger}$ | Comments                                                   |  |
|-----------------------|--------------------|----------------------|------------------------------------------------------------|--|
| 0.0                   | $1/2^{-}$          | 2.73 min 5           | T <sub>1/2</sub> : From Adopted Levels.                    |  |
| 545 6                 | $(5/2^{-})$        | 21.5 ps 28           | $T_{1/2}$ : From Adopted Levels.                           |  |
| 820 6                 | $(3/2^{-})$        |                      | $J^{\pi}$ : From systematics of <sup>211</sup> Rn isotone. |  |

<sup>†</sup> Deduced by the evaluator using  $Q(\alpha)(^{217}\text{Th})$  and  $E\alpha$ .

<sup>‡</sup> From Adopted Levels, except noted otherwise.

#### $\alpha$ radiations

| E(level) | $I\alpha^{\ddagger}$          | $HF^{\dagger}$                                                                             | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------|-------------------------------|--------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 820      | 3.69 14                       | 24 1                                                                                       | Eα: Weighted average of 8460 7 (2005Ku31), 8455 5 (2002He29), 8459 15 (2000He17), and 8429 32 (2000Ni02).                                                                                                                                                                                                                                                                                                                                                                                             |
|          |                               |                                                                                            | Iα: Normalization value of 1.67 14: Weighted average of 3.0 2 (2005Ku31), 3.7 1 (2002He29), 3.8 1 (2000He17), and 5.1 +20-16 (2000Ni02).                                                                                                                                                                                                                                                                                                                                                              |
| 545      | 1.65 8                        | 283 16                                                                                     | <i>Ea</i> : Weighted average of 8727 8 (2005Ku31), 8725 5 (2002He29), 8731 <i>15</i> (2000He17), and 8713 <i>32</i> (2000Ni02).                                                                                                                                                                                                                                                                                                                                                                       |
|          |                               |                                                                                            | <i>Iα</i> : Normalization value of 1.64 8: Weighted average of 1.5 <i>I</i> (2005Ku31), 1.8 <i>I</i> (2002He29), 1.6 <i>I</i> (2000He17), and 2.6 + <i>I</i> 6- <i>II</i> (2000Ni02).                                                                                                                                                                                                                                                                                                                 |
| 0.0      | 94.7 7                        | 108 2                                                                                      | E $\alpha$ : Weighted average of 9250 <i>10</i> (1968Va18), 9269 <i>9</i> (2005Ku31), 9250 <i>47</i> (2005Li17), 9261 <i>5</i> (2002He29), 9268 <i>15</i> (2000He17), 9247 <i>15</i> (2000Ni02), and 9257 <i>15</i> (2019Zh54).<br>I $\alpha$ : Normalized value of 94.2 <i>7</i> : Unweighted average of 95.5 <i>3</i> (2005Ku31), 94.5 <i>5</i> (2002He29), 94.6 <i>6</i> (2000He17), and 92.3 <i>6</i> (2000Ni02). Weighted average 94.8 <i>6</i> with $\frac{2}{3}$ = 7.8 of $\frac{12}{3}$ = 2.6 |
|          | E(level)<br>820<br>545<br>0.0 | $\frac{E(\text{level})}{820} = \frac{I\alpha^{\ddagger}}{3.69 \ I4}$ 545 1.65 8 0.0 94.7 7 | $\frac{\text{E(level)}}{820}  \frac{\text{I}\alpha^{\ddagger}}{3.69 \ 14}  \frac{\text{HF}^{\dagger}}{24 \ 1}$ 545 1.65 8 283 16 0.0 94.7 7 108 2                                                                                                                                                                                                                                                                                                                                                     |

<sup>†</sup> Using  $r_0(^{213}Ra)=1.5091$  22 obtained from interpolation (or unweighted average) of radius parameters  $r_0(^{212}Ra)=1.4695$  14 and  $r_0(^{214}Ra) = 1.5487 \ 30 \ (2020Si16).$ 

<sup>‡</sup> Absolute intensity per 100 decays.

#### <sup>204</sup>Pb(<sup>13</sup>C,4nγ) 2018Pa04,2021Ge07

Combined 2021Ge07 data with the XUNDL dataset of 2018Pa04, compiled by B. Singh (McMaster), Feb 8, 2018.

2018Pa04:  $E({}^{13}C)=80$  MeV pulsed beam. Target=5.4 mg/cm<sup>2</sup> thick, 99.6% enriched  ${}^{204}$ Pb. Prompt and delayed (out-of-beam)  $\gamma$  rays were detected using CAESAR array of nine Compton-suppressed HPGe detectors, and two LEPS Ge detectors for low-energy  $\gamma$  radiation. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin,  $\gamma(\theta)$ . Deduced high-spin levels,  $J^{\pi}$ , lifetime of a new isomer, total conversion coefficients of low-energy  $\gamma$  rays, multipolarities, configurations.

2021Ge07 (same lab and research group of 2018Pa04):  $E(^{13}C)=80$  MeV pulsed beam. Target=5.4 mg/cm<sup>2</sup> thick, 99.6% enriched <sup>204</sup>Pb. Emitted  $\gamma$  rays were measured using the CAESAR array of six Compton-suppressed LaBr<sub>3</sub> detectors, three suppressed HPGe and one unsuppressed LEPS Ge detector. Measured  $E\gamma$ ,  $\gamma\gamma$ -coin,  $\gamma\gamma$  time difference spectra. Deduced lifetime for the 5/2<sup>-</sup> state at 546 keV.

## <sup>213</sup>Ra Levels

Nominal configurations are as given in 2018Pa04 in their Table V.

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | Comments                                                                                                                                                         |
|-----------------------|--------------------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | $1/2^{-}$          |                  | Configuration: $\pi(h_{0,0}^6)_{0+} \otimes \nu p_{1,0}^{-1}$ .                                                                                                  |
| 546.35 5              | $(5/2^{-})$        | 21.5 ps 28       | Configuration: $\pi(h_{0,0}^{\ell_2})_{0+} \otimes \nu f_{5,0}^{-1}$ .                                                                                           |
|                       |                    |                  | T <sub>1/2</sub> : From $\tau$ =31 ps 4 (2021Ge07), from $\gamma$ gated time difference measurements by Generalised Centroid Difference method.                  |
| 1608.85 21            | $(9/2^{-})$        |                  | Configuration: $\pi(h_{\alpha/2}^6)_{4+} \otimes \nu p_{1/2}^{-1}$ .                                                                                             |
| 1769.72 22            | $(13/2^{-})$       |                  | Configuration: $\pi(h_{0,2}^{\gamma/2})_{6+} \otimes \nu p_{1,2}^{-1}$ .                                                                                         |
| 1770 5                | $(17/2^{-})$       | 2.18 ms 5        | E(level), $T_{1/2}$ : From Adopted Levels.                                                                                                                       |
|                       |                    |                  | Configuration: $\pi(h_{0/2}^6)_{8+} \otimes \nu p_{1/2}^{-1}$ .                                                                                                  |
| 2287.50 10            | $21/2^{-}$         |                  | Configuration: $\pi(\mathbf{h}_{0/2}^{6/2})_{8+} \otimes \pi_{5/2}^{-\frac{1}{4}}$ .                                                                             |
| 2609.90 14            | $23/2^{+}$         | 18.7 ns 21       | Configuration: $\pi[(h_{0/2}^{y/2})_{9/2}i_{13/2}]_{11-} \otimes \nu p_{1/2}^{-1}$ .                                                                             |
|                       |                    |                  | $T_{1/2}$ : from τ=27 ns $\frac{3}{3}$ ( $^{13}C, 4n\gamma$ ) – 2018Pa04) – based on (455γ+731γ)(322γ)(Δt) measurements.                                         |
| 3065.3 4              | $25/2^{+}$         |                  | Configuration: $\pi[(h_{0/2}^5)_{9/2}i_{13/2}]_{10-\otimes}\nu f_{5/2}^{-1}$ .                                                                                   |
| 3136.6 <i>3</i>       | $25/2^{-}$         |                  | Configuration: $\pi(h_{0/2}^{6})_{12+} \otimes \nu p_{1/2}^{-1}$ .                                                                                               |
| 3281.1 5              | $25/2^{-}$         |                  | Configuration: $\pi[(h_{0/2}^{9/2})_{17/2}f_{7/2}]_{12+} \otimes \nu p_{1/2}^{-1}$ .                                                                             |
| 3340.4 4              | $27/2^{+}$         |                  | Configuration: $\pi[(h_{0/2}^{5/2})_{9/2}i_{13/2}]_{11-} \otimes vf_{5/2}^{-1}$ .                                                                                |
| 3345.60 22            | $25/2^{-}$         |                  | Configuration: $\pi(h_{0/2}^{6/2})_{10+} \otimes v f_{5/2}^{-1}$ .                                                                                               |
| 3433.2 <i>3</i>       | $27/2^{-}$         |                  | Configuration: $\pi[(h_{0/2}^{5/2})_{21/2}f_{7/2}]_{13+} \otimes vp_{1/2}^{-1}$ .                                                                                |
| 3441.4 5              | $29/2^{-}$         |                  | Configuration: $\pi[(h_{0/2}^{3/2})_{21/2}f_{7/2}]_{14+} \otimes \nu p_{1/2}^{1/2}$ .                                                                            |
| 3863.8 8              | $27/2^+$           |                  | Configuration: $\pi[(h_{0/2}^{1/2})_{13/2}i_{13/2}]_{13-} \otimes vp_{1/2}^{-1}$ .                                                                               |
| 3878.0 6              | $29/2^{+}$         |                  | Configuration: $\pi[(h_{0/2}^{3/2})_{17/2}i_{13/2}]_{14-} \otimes vp_{1/2}^{1/2}$ .                                                                              |
| 4006.9 5              | $31/2^{+}$         |                  | Configuration: $\pi[(h_{0/2}^{3/2})_{17/2}i_{13/2}]_{15-} \otimes vp_{1/2}^{1/2}$ .                                                                              |
| 4047.7 6              | $33/2^{+}$         | 34.7 ns 21       | Configuration: $\pi[(h_{0/2}^{3/2})_{21/2}i_{13/2}]_{16} \otimes vp_{1/2}^{1/2}$ .                                                                               |
|                       |                    |                  | $T_{1/2}$ : from $\tau = 50 \text{ ns}^{3/2}$ (( <sup>13</sup> C, 4n $\gamma$ ) – 2018Pa04) – based on (455 $\gamma$ +731 $\gamma$ )(322 $\gamma$ )( $\Delta$ t) |
|                       |                    |                  | measurements. Lifetime measured by (beam pulse)(566 $\gamma$ and 667 $\gamma$ )(t) showed no difference.                                                         |
| 4047.7+x?             | $(35/2^+)$         |                  |                                                                                                                                                                  |
| 4506.2+x?             | $(37/2^+)$         |                  |                                                                                                                                                                  |

<sup>†</sup> From least-squares fit to  $E\gamma$  data.

<sup>‡</sup> Up to 1770 from Adopted Levels, above assignments are from 2018Pa04, based on proposed  $\gamma$  multipolarity from measured  $\gamma(\theta)$  data and deduced total conversion coefficients.

 $\gamma(^{213}\text{Ra})$ 

A<sub>2</sub> values are from 2018Pa04, with A<sub>4</sub> set to zero. These data were obtained in  $\gamma\gamma$ -coin mode, with coincident gates placed on known  $\Delta J=2$ , E2 transitions. Typical A<sub>2</sub> values, based on alignment  $\sigma/J=0.3$ , were expected as -0.2 for  $\Delta J=1$ , dipole, +0.28 for  $\Delta J=2$ , quadrupole (E2), and +0.46 for  $\Delta J=3$ , octupole (E3) transitions.

The  $\alpha$ (total)expt values are from 2018Pa04, based on intensity balance arguments in  $\gamma\gamma$ -coin mode.

| Eγ                   | Ιγ#    | E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | $E_f$       | $J_f^{\pi}$ | Mult.@     | $\delta^{@}$ | $\alpha^{\&}$ | Comments                                                                                |
|----------------------|--------|------------------------|----------------------|-------------|-------------|------------|--------------|---------------|-----------------------------------------------------------------------------------------|
| ya                   |        | 4047.7+x?              | $(35/2^+)$           | 4047.7      | 33/2+       |            |              |               |                                                                                         |
| (8.2 <sup>†</sup> )  |        | 3441.4                 | $29/2^{-}$           | 3433.2      | $27/2^{-}$  | [M1]       |              | 1213 17       |                                                                                         |
| (14.2 <sup>†</sup> ) |        | 3878.0                 | $29/2^{+}$           | 3863.8      | $27/2^{+}$  | [M1]       |              | 236.8 33      | $E_{\gamma}$ : 14.4 in 2018Pa04.                                                        |
| (40.8 <sup>†</sup> ) |        | 4047.7                 | $33/2^{+}$           | 4006.9      | $31/2^{+}$  | [M1]       |              | 42.8 6        | $E_{\gamma}$ : 40.9 in 2018Pa04.                                                        |
| 87.6 4               |        | 3433.2                 | $27/2^{-}$           | 3345.60     | $25/2^{-}$  | [M1]       |              | 4.56 9        |                                                                                         |
| 152.1 5              | 2.3 2  | 3433.2                 | $27/2^{-}$           | 3281.1      | $25/2^{-}$  | M1+E2      | 0.7 3        | 3.7 6         | $\alpha(\exp)=3.75$ (2018Pa04)                                                          |
| + .                  |        |                        |                      |             |             |            |              |               | $\alpha$ for $\delta(E2/M1)=0.7$ (deduced by 2018Pa04 from $\alpha$ (total)exp).        |
| 160.87 + 5           | 442    | 1769.72                | $(13/2^{-})$         | 1608.85     | $(9/2^{-})$ | E2         |              | 1 070 17      | $a(avr) = 1.2.2 (2019 D_{2} 0.4)$                                                       |
| $x_{204}^{x_{204}}$  | 4.4 2  | 4047.7                 | 55/2                 | 3878.0      | 29/2*       | E2         |              | 1.079 17      | $\alpha(\exp)=1.5\ 2\ (2018Pa04)$<br>v in coin with 297 314 377 397/398 416 447 518 849 |
| 204                  |        |                        |                      |             |             |            |              |               | 994 and 1058 $\gamma$ rays.                                                             |
| 275.0 4              | 4.2 2  | 3340.4                 | $27/2^+$             | 3065.3      | $25/2^+$    | M1+E2      | 0.64 2       | 0.697 14      | $\alpha(\exp)=0.99\ 8\ (2018Pa04);\ A_2=-0.41\ 16$                                      |
|                      |        |                        |                      |             |             |            |              |               | $\delta$ : Deduced using the $\alpha(exp)$ datum and BriccMixing code.                  |
| 296.6 2              | 12.3 3 | 3433.2                 | $27/2^{-}$           | 3136.6      | $25/2^{-}$  | M1         |              | 0.732 10      | $\alpha(\exp)=0.96\ 9\ (2018Pa04);\ A_2=-0.73\ 4$                                       |
| 204.9.9              | 107    | 2441 4                 | 20/2-                | 2126.6      | 25/2-       | 1521       |              | 0 1450 22     | $\delta$ : 0.00 16 from the $\alpha(\exp)$ datum and BriccMixing code.                  |
| 304.8 8<br>x314      | 1.8 2  | 3441.4                 | 29/2                 | 5150.0      | 25/2        | [E2]       |              | 0.1450 25     | v in coin with 204 297 377 397/398 416 447 518 849                                      |
| 514                  |        |                        |                      |             |             |            |              |               | 994 and 1058 $\gamma$ rays.                                                             |
| 322.4 1              | 44.6 6 | 2609.90                | $23/2^{+}$           | 2287.50     | $21/2^{-}$  | E1         |              | 0.0299 4      | $\alpha(\exp)=0.11\ 5\ (2018Pa04);\ A_2=-0.31\ 5$                                       |
| <sup>x</sup> 377     |        |                        |                      |             |             |            |              |               | γ in coin with 204, 297, 314, 397/398, 416, 447, 518, 849, 994 and 1058 γ rays.         |
| <sup>x</sup> 397     |        |                        |                      |             |             |            |              |               | $\gamma$ in coin with 204, 297, 314, 377, 398, 416, 447, 518, 849,                      |
|                      |        |                        |                      |             |             |            |              |               | 994 and 1058 $\gamma$ rays.                                                             |
| <sup>x</sup> 398     |        |                        |                      |             |             |            |              |               | $\gamma$ in coin with 204, 297, 314, 377, 397, 416, 447, 518, 849,                      |
| X 41 C               |        |                        |                      |             |             |            |              |               | 994 and 1058 $\gamma$ rays.                                                             |
| -410                 |        |                        |                      |             |             |            |              |               | $\gamma$ in coin with 204, 297, 377, 397/398, 518, 849, 994 and 1058 $\gamma$ rays      |
| 436.7 8              | 2.4 2  | 3878.0                 | $29/2^{+}$           | 3441.4      | $29/2^{-}$  | [E1]       |              | 0.01557 23    | 1050 y 1ays.                                                                            |
| <sup>x</sup> 447     |        |                        | ,                    |             | ,           |            |              |               | $\gamma$ in coin with 204, 297, 377, 397/398, 518, 849, 994 and                         |
| 155 A A              | 713    | 3065 3                 | 25/2+                | 2609.90     | 23/2+       | $M1\pm F2$ |              |               | $1038 \gamma$ rays.                                                                     |
| $458.7^{a}$ 6        | 7.1 5  | 4506.2+x?              | $(37/2^+)$           | 4047.7 + x? | $(35/2^+)$  | 1411   122 |              |               | 112- 1.00 0                                                                             |
| <sup>x</sup> 459     |        | .500.2 FA              | (3712)               |             | (33/2)      |            |              |               | γ in coin with 297, 397/398, 518, 565, 667, 849, 994 and<br>1058 γ rays.                |

565

NUCLEAR DATA SHEETS

### $^{204}$ Pb( $^{13}$ C,4n $\gamma$ ) 2018Pa04,2021Ge07 (continued)

 $\gamma$ <sup>(213</sup>Ra) (continued)

| Eγ                    | $I_{\gamma}^{\#}$ | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | E <sub>f</sub> | $J_f^{\pi}$         | Mult.@  | α <sup>&amp;</sup> | Comments           |
|-----------------------|-------------------|---------------|----------------------|----------------|---------------------|---------|--------------------|--------------------|
| 517.5 <i>1</i>        | 100               | 2287.50       | 21/2-                | 1770           | $(17/2^{-})$        | E2      |                    | $A_2 = +0.26 I$    |
| 537.8 11              | 2.0 2             | 3878.0        | $29/2^+$             | 3340.4         | $27/2^+$            | M1      |                    | $A_2 = -0.467$     |
| 546.35 <sup>‡</sup> 5 |                   | 546.35        | $(5/2^{-})$          | 0.0            | $1/2^{-}$           |         |                    |                    |
| 565.5 2               | 41.0 7            | 4006.9        | $31/2^{+}$           | 3441.4         | 29/2-               | E1      |                    | $A_2 = -0.46 \ 6$  |
| 606.3 5               | 5.4 <i>3</i>      | 4047.7        | $33/2^{+}$           | 3441.4         | 29/2-               | [M2+E3] | 0.18 10            |                    |
| 666.5 4               | 10.0 4            | 4006.9        | $31/2^{+}$           | 3340.4         | $27/2^+$            | E2      |                    | $A_2 = +0.38 \ 13$ |
| 730.5 5               | 5.8 <i>3</i>      | 3340.4        | $27/2^{+}$           | 2609.90        | $23/2^{+}$          | E2      |                    | $A_2 = +0.38 \ 17$ |
| 798.5 10              | 0.7 2             | 3863.8        | $27/2^{+}$           | 3065.3         | $25/2^+$            | [M1+E2] | 0.033 19           |                    |
| 849.1 <i>3</i>        | 24.4 6            | 3136.6        | $25/2^{-}$           | 2287.50        | $21/2^{-}$          | E2      |                    | $A_2 = +0.38 \ 4$  |
| 993.6 7               | 3.7 <i>3</i>      | 3281.1        | $25/2^{-}$           | 2287.50        | $21/2^{-}$          | E2      |                    | $A_2 = +0.33 \ 14$ |
| 1058.1 2              | 28.3 7            | 3345.60       | $25/2^{-}$           | 2287.50        | $21/2^{-}$          | E2      |                    | $A_2 = +0.305$     |
| 1062.5 <sup>‡</sup> 2 |                   | 1608.85       | $(9/2^{-})$          | 546.35         | (5/2 <sup>-</sup> ) |         |                    |                    |

<sup>†</sup> This  $\gamma$  not seen but required from the analysis of  $\gamma\gamma$ -coin data. Energy deduced from level-energy difference.

<sup>‡</sup> From Adopted Gammas.

566

<sup>#</sup> Delayed  $\gamma$ -intensities relative to I $\gamma(517.5)$ =100 for 'out-of-beam' data.

<sup>(a)</sup> From 2018Pa04, based on  $\gamma(\theta)$  data and  $\alpha(\text{tot})$ exp. Multipolarities listed in square brackets are from  $\Delta J^{\pi}$  assigned in their work (see footnote 'a' in Table I of 2018Pa04).

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

<sup>*a*</sup> Placement of transition in the level scheme is uncertain.

 $x \gamma$  ray not placed in level scheme.

#### **Adopted Levels, Gammas**

 $Q(\beta^{-}) = -5979 \ 15$ ;  $S(n) = 9230 \ 25$ ;  $S(p) = 949 \ 16$ ;  $Q(\alpha) = 7498 \ 4$ 2021Wa16

Assignment: <sup>209</sup>Bi(<sup>12</sup>C,8n) excit (1961Gr42,1968Va04); <sup>197</sup>Au(<sup>20</sup>Ne,4n) excit (1968Va04); <sup>203</sup>Tl(<sup>16</sup>O,6n) excit (1968Va04); <sup>205</sup>Tl(<sup>16</sup>O,8n) excit (1968Va04); parent of <sup>209</sup>Fr (1968Va04).

2002Sa22, 2003Ik01: <sup>138</sup>Ba(<sup>82</sup>Se,p6n), E(cm)=193-251 MeV and <sup>134</sup>Ba(<sup>82</sup>Se,p2n); measured evaporation residue cross section  $\sigma$ . 2002Mi20:  ${}^{154}$ Sm( ${}^{64}$ Ni,p4n), E=4-5 MeV/nucleon, measured evaporation residue cross section  $\sigma$ .

2015Ma63:  $^{162}$ Dy( $^{54}$ Cr,p2n), E=5.1 MeV/nucleon, measured evaporation residue cross section  $\sigma$ .

## <sup>213</sup>Ac Levels

Cross Reference (XREF) Flags

 $^{217}$ Pa  $\alpha$  decay (3.8 ms) А

<sup>217</sup>Pa  $\alpha$  decay (1.08 ms) В

| E(level) <sup>†</sup> | $\mathbf{J}^{\pi}$ | T <sub>1/2</sub> | XREF | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------|--------------------|------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 9/2-               | 738 ms 16        | AB   | $%\alpha \approx 100$<br>μ=+4.2 4<br>Only α decay was observed. Eα=7360 keV 30 (1997Mi03).<br>Possible ε decays to 1608.85 (9/2 <sup>-</sup> ) and 546.35 (5/2 <sup>-</sup> ) levels are expected to be <25%<br>and <0.05%, if log <i>ft</i> >3.6 and log <i>f</i> <sup>4</sup> <i>t</i> >8.5, respectively. β gross theory calculations<br>by 1973Ta30 give T <sub>1/2</sub> (β <sup>+</sup> )≈50 s, which suggests %(ε+β <sup>+</sup> )≈1.6.<br>J <sup>π</sup> : Favored α decay to <sup>209</sup> Fr g.s. (J <sup>π</sup> =9/2 <sup>-</sup> ). Also J=(9/2) has been proposed in |
|                       |                    |                  |      | 2017Fe10, based on direct HFS measurements. Configuration: $\pi$ (h <sup>+1</sup> <sub>9/2</sub> ).<br>T <sub>1/2</sub> : Weighted average of 731 ms <i>17</i> (2000He17) and 800 ms <i>50</i> (1968Va04). Other:<br>$\approx 1 \text{ s}$ (1961Gr42).<br>$\mu$ : From 2019StZV, 2017Gr18 – in-gas laser ionization and spectroscopy (IGLIS). Also<br>see 2017Fe10.                                                                                                                                                                                                                 |
| 466.50 20             |                    |                  | AB   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 612.80 10             |                    |                  | AB   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 634.30 10             |                    |                  | AB   | $J^{\pi}$ : Tentative $J^{\pi} = (13/2^{-})$ in 2002He29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1063.20 15            |                    |                  | В    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 1884.00 25            |                    |                  | В    | $J^{\pi}$ : Tentative $J^{\pi} = (21/2^{-})$ in 2002He29.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <sup>†</sup> From Εγ  | <b>.</b>           |                  |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

## $\gamma(^{213}\text{Ac})$

| E <sub>i</sub> (level) | $E_{\gamma}$   | $E_f$   | $J_f^{\pi}$ |
|------------------------|----------------|---------|-------------|
| 466.50                 | 466.5 2        | 0.0     | 9/2-        |
| 612.80                 | 612.8 <i>1</i> | 0.0     | 9/2-        |
| 634.30                 | 634.3 <i>1</i> | 0.0     | 9/2-        |
| 1063.20                | 450.4 <i>1</i> | 612.80  |             |
| 1884.00                | 820.8 2        | 1063.20 |             |

<sup>†</sup> From <sup>217</sup>Pa  $\alpha$  decay (1.08 ms).

#### <sup>217</sup>Pa α decay (3.8 ms) 2002He29,2000He17,1968Va18

Parent: <sup>217</sup>Pa: E=0.0;  $J^{\pi}=9/2^{-}$ ;  $T_{1/2}=3.8$  ms 2;  $Q(\alpha)=8489$  4;  $\%\alpha$  decay=100

<sup>217</sup>Pa-J<sup> $\pi$ </sup>: Based on favored  $\alpha$ -decay chain from <sup>217</sup>Pa g.s. to g.s. of <sup>213</sup>Ac,  $J^{\pi}=9/2^{-}$ , to g.s. of <sup>209</sup>Fr,  $J^{\pi}=9/2^{-}$  (firm  $J^{\pi}=9/2-(^{209}\text{Fr})$  in 2015Ch30).

<sup>217</sup>Pa-T<sub>1/2</sub>: From 2018Ko01 (A=217 evaluation).

<sup>217</sup>Pa-Q( $\alpha$ ): From 2021Wa16.

Others: 1998Ik01, 1996An21, 1979Sc09, and 2005YeZZ.

2002He29: <sup>217</sup>Pa produced through <sup>181</sup>Ta(<sup>40</sup>Ar,4n)<sup>217</sup>Pa, Target: 99.988% natural tantalum; E=182 MeV; Detector: 16-strip PIPS-detector, Ge-Clover detector of 4 crystals; Measured:  $E\alpha$ ,  $I\alpha$ ,  $\alpha$ - $\alpha$  coincidences.

2000He17: <sup>217</sup>Pa produced through <sup>170</sup>Er(<sup>51</sup>V,4n)<sup>217</sup>Pa; E=214-286 MeV; Detector: 16-strip PIPS-detector, a HPGe detector; Measured:  $E\alpha$ ,  $I\alpha$ .

1968Va18: <sup>217</sup>Pa produced through <sup>206</sup>Pb(<sup>20</sup>Ne,p8n)<sup>217</sup>Pa and <sup>208</sup>Tl(<sup>20</sup>Ne,11n)<sup>217</sup>Pa; Detector: Semi; Measured: E $\alpha$ .

1998Ik01: <sup>217</sup>Pa produced through <sup>194</sup>Pt(<sup>28</sup>Si,p4n)<sup>217</sup>Pa; E=163–MeV and 175-MeV; Detector: double sided position sensitive strip detector; Measured:  $E\alpha$ ,  $T_{1/2}$ .

1996An21: <sup>217</sup>Pa from <sup>170</sup>Er(<sup>51</sup>V,4n)<sup>217</sup>Pa; E=28-87 MeV; Detector: ER are separated in flight, 16-strip PIPS detector, a HPGe detector; Measured:  $E\alpha$ ,  $T_{1/2}$ .

1979Sc09:  ${}^{181}$ Ta( ${}^{40}$ Ar,4n) ${}^{217}$ Pa; E=165-202 MeV; Measured: E $\alpha$ , T<sub>1/2</sub>.

2005YeZZ: <sup>217</sup>Pa from <sup>181</sup>Ta(<sup>40</sup>Ar,4n)<sup>217</sup>Pa; Detector: array of silicon strip, 7 HPGe, time-of-flight detectors; Measured E $\alpha$ .

#### <sup>213</sup>Ac Levels

| $E(level)^{\dagger}$ | $\mathbf{J}^{\pi}$ | T <sub>1/2</sub> | Comments                                                                                                                                                              |
|----------------------|--------------------|------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                    | 9/2-               | 738 ms 16        | $J^{\pi}$ , $T_{1/2}$ : From Adopted Levels.                                                                                                                          |
| 466.1 20             |                    |                  | E(level): Other: 468 6 from $E\alpha$ and $Q\alpha$ .                                                                                                                 |
| 612.5 8              |                    |                  | E(level): Other: 616 6 from E $\alpha$ and Q $\alpha$ .                                                                                                               |
| 634.3 11             |                    |                  | E(level): Other: 634 6 from E $\alpha$ and Q $\alpha$ .                                                                                                               |
|                      |                    |                  | J <sup><math>\pi</math></sup> : In 2002He29, J <sup><math>\pi</math></sup> =(13/2 <sup>-</sup> ) is presented for this level in the tentative partial decay scheme of |
|                      |                    |                  | <sup>213</sup> Ac.                                                                                                                                                    |

<sup>†</sup> From E $\gamma$ . Values from the E $\alpha$  and Q( $\alpha$ ) are listed in comments.

#### $\alpha$ radiations

| Eα     | E(level) | $I\alpha^{\ddagger\#}$ | $_{\rm HF}^{\dagger}$ | Comments                                                                           |
|--------|----------|------------------------|-----------------------|------------------------------------------------------------------------------------|
| 7710 5 | 634.3    | 0.3 2                  | 75                    | E <i>α</i> : From 2002He29.                                                        |
| 7728 5 | 612.5    | 0.3 2                  | 86                    | $E\alpha$ : From 2002He29.                                                         |
| 7873 5 | 466.1    | 0.4 2                  | 18 <i>9</i>           | $E\alpha$ : From 2002He29.                                                         |
| 8336 4 | 0        | 99 <i>1</i>            | 1.72 15               | Eα: Weighted average of 8337 5 (2002He29), 8334 15 (2000He17), 8330 50 (1998Ik01), |
|        |          |                        |                       | 8330 10 (1996An21), 8334 15 (1979Sc09), and 8340 10 (1968Va18).                    |

<sup>†</sup> Using  $r_0(^{213}Ac)=1.491\ 21$ , unweighted average of  $r_0(^{212}Ra)=1.4695\ 14$  and  $r_0(^{214}Th)=1.512\ 14\ (2020Si16)$ .

<sup>‡</sup> From 2002He29.

<sup>#</sup> Absolute intensity per 100 decays.

 $^{217}\mathbf{Pa}~\alpha$  decay (3.8 ms) 2002He29,2000He17,1968Va18 (continued)

# $\gamma$ <sup>(213</sup>Ac)</sup>

| $E_{\gamma}^{\dagger}$ | $E_i$ (level) | $\mathbf{E}_{f}$ | $\mathbf{J}_f^{\pi}$ |
|------------------------|---------------|------------------|----------------------|
| 466.1 <sup>‡</sup> 20  | 466.1         | 0                | 9/2-                 |
| 612.5‡ 8               | 612.5         | 0                | 9/2-                 |
| 634.3 <sup>‡</sup> 11  | 634.3         | 0                | 9/2-                 |

<sup>†</sup> From 2002He29.
<sup>‡</sup> Placement of transition in the level scheme is uncertain.

#### <sup>217</sup>Pa $\alpha$ decay (3.8 ms) 2002He29,2000He17,1968Va18

Legend

Decay Scheme

 $---- \sim \gamma$  Decay (Uncertain)



#### <sup>217</sup>Pa α decay (1.08 ms) 2002He29,2000He17,1998Ik01

Parent: <sup>217</sup>Pa: E=1860 7;  $T_{1/2}$ =1.08 ms 3; Q( $\alpha$ )=8489 4; % $\alpha$  decay=73 4

<sup>217</sup>Pa-E: From 2021K007 – NUBASE. Other: 1855 6 can be deduced from the energy difference of the 10157 keV 5 and 8336 keV 4 (E $\alpha$  – see <sup>217</sup>Pa  $\alpha$  decay (3.8 ms)) E $\alpha$ , emitted in the decay of <sup>217</sup>Pa isomer (1.08-ms) and g.s. (3.8-ms), respectively, by assuming these  $\alpha$  particles feeding the g.s. of <sup>213</sup>Ac. In 2002He29 and 2018Ko01 – 1854 keV 7, considering using E $\alpha$ =8337 keV 5 for the <sup>217</sup>Pa g.s.  $\alpha$  decay.

<sup>217</sup>Pa-J<sup> $\pi$ </sup>: Tentative  $J^{\pi}$ =(29/2<sup>-</sup>) in 2002He29. In 2018Ko01 (A=217 evaluation) recommended spin-parity is (23/2<sup>-</sup>).

<sup>217</sup>Pa-T<sub>1/2</sub>: From 2018Ko01 (A=217 evaluation).

<sup>217</sup>Pa-Q( $\alpha$ ): From 2021Wa16.

<sup>217</sup>Pa-% $\alpha$  decay: From 2002He29.

Others: 1996An21, 1979Sc09, and 2008DoZZ.

2002He29: <sup>217</sup>Pa produced through <sup>181</sup>Ta(<sup>40</sup>Ar,4n)<sup>217</sup>Pa, Target: 99.988% natural tantalum; E=182 MeV; Detector: 16-strip PIPS-detector, Ge-Clover detector of 4 crystals; Measured:  $E\alpha$ ,  $I\alpha$ ,  $\alpha$ - $\alpha$  coincidences.

2000He17: <sup>217</sup>Pa produced through <sup>170</sup>Er(<sup>51</sup>V,4n)<sup>217</sup>Pa; E=214-286 MeV; Detector: 16-strip PIPS-detector, a HPGe detector; Measured:  $E\alpha$ ,  $I\alpha$ .

1998Ik01: <sup>217</sup>Pa produced through <sup>194</sup>Pt(<sup>28</sup>Si,p4n)<sup>217</sup>Pa; E=163–MeV and 175-MeV; Detector: double sided position sensitive strip detector; Measured:  $E\alpha$ ,  $T_{1/2}$ .

1996An21: <sup>217</sup>Pa from <sup>170</sup>Er(<sup>51</sup>V,4n)<sup>217</sup>Pa; E=28-87 MeV; evaporation residue were separated in flight, 16-strip PIPS detector, a HPGe detector; Measured:  $E\alpha$ ,  $T_{1/2}$ .

1979Sc09:  ${}^{181}$ Ta( ${}^{40}$ Ar,4n) ${}^{217}$ Pa; E=165-202 MeV; Measured: E $\alpha$ , T<sub>1/2</sub>.

#### <sup>213</sup>Ac Levels

| E(level) <sup>†</sup> | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                                                                                                                                                                                          |
|-----------------------|-----------|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.0                   | 9/2-      | 738 ms 16        | $J^{\pi}$ : From Adopted Levels.                                                                                                                                                                                  |
| 466.5 2               |           |                  |                                                                                                                                                                                                                   |
| 612.8 <i>1</i>        |           |                  |                                                                                                                                                                                                                   |
| 634.30 10             |           |                  | $J^{\pi}$ : Tentative $J^{\pi} = (13/2^{-})$ in 2002He29.                                                                                                                                                         |
| 1063.2? 2             |           |                  | E(level): Proposed in 2002He29 (Fig. 4) for connecting the excited level at 188 (assumed $J^{\pi}=(21/2^{-})$ ) with the 634 level (assumed $J^{\pi}=(13/2^{-})$ ) through 820.8 $\gamma$ -450 $\gamma$ -cascade. |
| 1884.0 <i>3</i>       |           |                  | E(level): Others: 1887 9 or 1882 9 – using the E $\alpha$ , Q( $\alpha$ ), and the isomeric state of <sup>217</sup> Pa at 1860 keV 7 or 1855 keV 6.                                                               |
|                       |           |                  | $J^{\pi}$ : Tentative $J^{\pi} = (21/2^{-})$ in 2002He29.                                                                                                                                                         |

<sup>†</sup> From  $E\gamma$ .

#### $\alpha$ radiations

| $E\alpha^{\ddagger}$ | E(level) | $I\alpha^{\ddagger\#}$ | $\mathrm{HF}^{\dagger}$ | Comments                                                                                            |
|----------------------|----------|------------------------|-------------------------|-----------------------------------------------------------------------------------------------------|
| 8306 5               | 1884.0   | 11 2                   | 5.0 11                  |                                                                                                     |
| 9533 5               | 634.30   | 61                     | 1.35×10 <sup>4</sup> 26 | E $\alpha$ : Other: 9540 50 (1998Ik01).                                                             |
| 9552 5               | 612.8    | 91                     | 9.9×10 <sup>3</sup> 15  | E $\alpha$ : Other: 9648 15 (2000He17).                                                             |
| 9697 5               | 466.5    | 21                     | 9.5×10 <sup>4</sup> 49  | E $\alpha$ : Other: 9694 20 (2000He17).                                                             |
| 10157 5              | 0.0      | 72 4                   | 2.61×10 <sup>4</sup> 28 | Eα: Others: 10155 15 (2000He17), 10140 50 (1998Ik01), 10155 15 (1996An21), and 10160 20 (1979Sc09). |

<sup>†</sup> Using  $r_0(^{213}Ac)=1.491\ 21$ , unweighted average of  $r_0(^{212}Ra)=1.4695\ 14$  and  $r_0(^{214}Th)=1.512\ 14\ (2020Si16)$ .

<sup>‡</sup> From 2002He29.

<sup>#</sup> For absolute intensity per 100 decays, multiply by 0.73 4.

# <sup>217</sup>Pa α decay (1.08 ms) 2002He29,2000He17,1998Ik01 (continued)

# $\gamma$ <sup>(213</sup>Ac)</sup>

| $E_{\gamma}^{\dagger}$ | E <sub>i</sub> (level) | $E_f$   | $\mathbf{J}_f^{\pi}$ | Comments                                                |
|------------------------|------------------------|---------|----------------------|---------------------------------------------------------|
| 450.4 <sup>‡</sup> 1   | 1063.2?                | 612.8   |                      |                                                         |
| 466.5 <sup>‡</sup> 2   | 466.5                  | 0.0     | 9/2-                 |                                                         |
| 612.8 <sup>‡</sup> 1   | 612.8                  | 0.0     | 9/2-                 | $E_{\gamma}$ : Weighted average of 613.0 2 and 612.7 1. |
| 634.3 <sup>‡</sup> 1   | 634.30                 | 0.0     | 9/2-                 |                                                         |
| 820.8 <sup>‡</sup> 2   | 1884.0                 | 1063.2? |                      |                                                         |

<sup>†</sup> From 2002He29.

<sup>‡</sup> Placement of transition in the level scheme is uncertain.

### <sup>217</sup>Pa α decay (1.08 ms) 2002He29,2000He17,1998Ik01

Legend

Decay Scheme

 $---- \sim \gamma$  Decay (Uncertain)



#### **Adopted Levels, Gammas**

 $Q(\beta^{-}) = -7530 \ 60; \ S(n) = 8062 \ 14; \ S(p) = 2468 \ 14; \ Q(\alpha) = 7837 \ 7$ 2021Wa16

Assignment: <sup>206</sup>Pb(<sup>16</sup>O,9n) excit (1968Va18), <sup>177</sup>Hf(<sup>40</sup>Ar,4n) excit (1980Ve01).

2002Mi20:  $^{154}$ Sm( $^{64}$ Ni,5n), E=4-5 MeV/nucleon, measured evaporation residue cross section  $\sigma$ .

2002Sa22, 2003Ik01: <sup>138</sup>Ba(<sup>82</sup>Se,7n), E(cm)=193-251 MeV and <sup>134</sup>Ba(<sup>82</sup>Se,3n); measured evaporation residue cross section  $\sigma$ . 2007Ma57 and 2008La14: 2007Ma57 reported long-lived isomer (half-life  $\ge 1 \times 10^8$  year) for <sup>213</sup>Th from mass measurement and abundances relative to <sup>232</sup>Th in a study of naturally-occurring thorium using inductively coupled plasma-sector field mass spectrometry. Not confirmed by accelerator mass spectrometry (AMS) measurements (2008La14). An upperlimit of  $1.2 \times 10^{12}$  was determined for the detection of  $^{213}$ Th/ $^{232}$ Th.

#### <sup>213</sup>Th Levels

#### Cross Reference (XREF) Flags

| A 217U | Jα | decay |
|--------|----|-------|
|--------|----|-------|

В

 $^{164}$ Dy( $^{54}$ Cr, $5n\gamma$ )  $^{176}$ Hf( $^{40}$ Ar, $3n\gamma$ ) С

| E(level)                              | $\mathbf{J}^{\pi}$                          | T                                          | 1/2                                | XR                  | EF                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                              | Comments                                                                                                  |  |  |
|---------------------------------------|---------------------------------------------|--------------------------------------------|------------------------------------|---------------------|-----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|--|--|
| 799 <i>1</i><br>1180 <i>1</i>         | (9/2 <sup>-</sup> )<br>(13/2 <sup>+</sup> ) | 146 ms<br>8.3 μ                            | 5 ms +22–19 ABC<br>8.3 μs 8 BC     |                     |                                         | $%\alpha \approx 100$<br>J <sup>π</sup> : favored α decay to 5/2 <sup>-</sup> g.s. of <sup>209</sup> Ra. Configuration: ν (f <sup>-1</sup> <sub>5/2</sub> ).<br>Only α decay is reported. Branching for a possible (ε+β <sup>+</sup> ) decay to <sup>213</sup> Ac is<br>estimated by the evaluator as ≈1.4% from T <sub>1/2</sub> (ε+β <sup>+</sup> )≈10 second, calculated<br>by 1973Ta30 using β gross theory. Eα=7700 keV 30 (1997Mi03).<br>T <sub>1/2</sub> : Weighted average of 150 ms 25 (1968Va18 – 7690α(t)) and 130 ms +50-30<br>(1980Ve01 – 7689α(t)).<br>J <sup>π</sup> : 381γ M2 from (13/2) <sup>+</sup> .<br>J <sup>π</sup> : Proposed by 2007Kh22 in analogy of 13/2 <sup>+</sup> isomeric states in <sup>205</sup> Po, <sup>207</sup> Po,<br><sup>209</sup> Rn, and <sup>211</sup> Ra. Configuration: ν (i <sup>-1</sup> <sub>13/2</sub> ).<br>T <sub>1/2</sub> : From ( <sup>40</sup> Ar,3nγ) – 2021Zh24. Other value 1.3 μs 3 (( <sup>54</sup> Cr,5nγ) –<br>reported as 1.4 μs 4 in 2007Kh22) is discrepant. The 2021Zh24 value is chosen<br>based on the transition strenghs B(M2)(W.u.) of the 13/2 <sup>+</sup> isomers for N=123<br>isotones: 0.0056 +6-5 ( <sup>213</sup> Th), 0.0046 3 ( <sup>211</sup> Ra) (2013Si17), 0.0043 5 ( <sup>209</sup> Rn) |                                                              |                                                                                                           |  |  |
| E <sub>i</sub> (level)<br>799<br>1180 | $\frac{J_i^{\pi}}{(9/2^-)} \\ (13/2^+)$     | $\frac{E_{\gamma}^{\dagger}}{799 I}$ 381 I | $\frac{I_{\gamma}^{\dagger}}{100}$ | $\frac{E_f}{0}$ 799 | $\frac{{\sf J}_f^\pi}{5/2^-}_{(9/2^-)}$ | Mult.<br>(M2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{\gamma(^{213}\text{Th})}{\alpha^{\ddagger}}$ 1.331 22 | Comments<br>B(M2)(W.u.)=0.0056 + 6-5<br>Mult.: from $\alpha(exp)=0.77$ 29, deduced from intensity balance |  |  |

<sup>†</sup> From (<sup>54</sup>Cr,  $5n\gamma$ ).

<sup>‡</sup> Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on  $\gamma$ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

#### <sup>217</sup>U α decay 2000Ma65,2005Le42

Parent: <sup>217</sup>U: E=0;  $T_{1/2}$ =16 ms +21-6;  $Q(\alpha)$ =8430 80; % $\alpha$  decay=100

<sup>217</sup>U-T<sub>1/2</sub>: From 2018Ko01 (A=217 evaluation).

<sup>217</sup>U-J<sup> $\pi$ </sup>: In 2005Le42,  $J^{\pi}$ =(1/2<sup>-</sup>) was proposed.

<sup>217</sup>U-Q( $\alpha$ ): From systematics in 2021Wa16.

2000Ma65: <sup>217</sup>U was produced through <sup>182</sup>W(<sup>40</sup>Ar,5n)<sup>217</sup>U; Target 92% enriched; E=193 MeV; multi-strip silicon detector; E $\alpha$ , T<sub>1/2</sub> measured.

2005Le42: <sup>217</sup>U was produced through <sup>182</sup>W(<sup>40</sup>Ar,5n)<sup>217</sup>U; E=186 MeV, double-sided silicon detector; E $\alpha$ , T<sub>1/2</sub> measured.

## <sup>213</sup>Th Levels

| E(level) | $J^{\pi^{\dagger}}$ | $T_{1/2}^{\dagger}$ |
|----------|---------------------|---------------------|
| 0        | 5/2-                | 146 ms +22-19       |

<sup>†</sup> From Adopted Levels.

#### $\alpha$ radiations

| Εα             | E(level) | $I\alpha^{\ddagger}$ | $HF^{\dagger}$ | Comments                                                                                              |
|----------------|----------|----------------------|----------------|-------------------------------------------------------------------------------------------------------|
| 8018 <i>14</i> | 0        | 100                  | <6             | Eα: Weighted average of 8005 20 (2000Ma65), 8024 14 (2005Le42). Uncertainty is the lower input value. |
|                |          |                      |                | HF: Limit based on the calculated value of 2 4, where $HF \neq 0$ .                                   |

<sup>†</sup> Using  $r_0(^{213}\text{Th})=1.499\ 24$  is deduced from interpolation (or unweighted average) of  $r_0(^{214}\text{Th})=1.512\ 14$  and  $r_0(^{212}\text{Th})=1.486\ 33\ (2020\text{Si16})$ .

<sup>‡</sup> Absolute intensity per 100 decays.

## $^{164}$ **Dy**( $^{54}$ **Cr,5n** $\gamma$ ) **2007Kh22**

Enriched (96.8%) <sup>164</sup>DyF<sub>3</sub> target (thickness=393  $\mu$ g/cm<sup>2</sup>). <sup>54</sup>Cr beam, E=258 MeV, from the UNILAC accelerator at GSI. Evaporation residues were separated with SHIP velocity filter and implanted in 16 strip Si detector. HPGe detector of four crystals and particle detectors. Measured E $\gamma$ , I $\gamma$ , (evaporation residues) $\gamma \alpha$  correlations.

# <sup>213</sup>Th Levels

| E(level) <sup>†</sup> | $J^{\pi}$   | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------|-------------|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0                     | 5/2-        |                  | $J^{\pi}$ : From Adopted Levels.<br>Production $\sigma = 0.5 \ \mu b$ at 55-MeV excitation energy (2007Kb22).                                                                                                                                                                                                                                                                                                                                                                                      |
| 799 <i>1</i>          | $(9/2)^{-}$ |                  | $J^{\pi}$ : 381 $\gamma$ M2 from (13/2) <sup>+</sup> .                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1180.0 14             | (13/2)+     | 1.3 μs 3         | <ul> <li>T<sub>1/2</sub>: Weighted average of measured values: 1.0 μs 4 – X-ray(t), 1.7 μs 6 – 381γ(t), 2.4 μs 16 – 799γ(t) in 2007Kh22. 2007Kh22 report the weighted average value of 1.4 μs 4.</li> <li>J<sup>π</sup>: Proposed by 2007Kh22 in analogy of 13/2<sup>+</sup> isomeric states in <sup>205</sup>Po, <sup>207</sup>Po, <sup>209</sup>Rn, and <sup>211</sup>Ra.</li> <li>Production σ=0.16 μb 11 and 0.5 μb 3 at 47- and 55-MeV excitation energy, respectively (2007Kh22).</li> </ul> |
| † From E              | γ.          |                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

## $\gamma(^{213}\text{Th})$

## I(K x ray)=121 24 (2007Kh22).

| Eγ           | Ιγ     | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_{f}$ | $\mathbf{J}_{f}^{\pi}$ | Mult. | Comments                                                                                  |
|--------------|--------|---------------|----------------------|------------------|------------------------|-------|-------------------------------------------------------------------------------------------|
| 381 <i>1</i> | 100    | 1180.0        | $(13/2)^+$           | 799              | (9/2)-                 | M2    | Mult.: from $\alpha(\exp)=0.77$ 29 (2007Kh22) deduced from intensity balance at 799 level |
| 799 <i>1</i> | 177 29 | 799           | (9/2)-               | 0                | $5/2^{-}$              |       |                                                                                           |

## $^{176}$ Hf( $^{40}$ Ar,3n $\gamma$ ) 2021Zh24

<sup>40</sup>Ar beam, E=183, 190 MeV, from Sector-Focusing Cyclotron (SFC) of HIRFL-Lanzhou facility. Enriched target (84.6%) in <sup>176</sup>Hf. Evaporation residues (ERs) were separated using the SHANS gas-filled recoil separator, and implanted into three position-sensitive silicon strip detectors (PSSDs). Two multi-wire proportional counters (MWPCs) and two HPGe detectors. Measured half-life of the 13/2<sup>+</sup> isomer. Shell model calculations.

## <sup>213</sup>Th Levels

| E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | T <sub>1/2</sub> | Comments                                                                                                                     |
|-----------------------|--------------------|------------------|------------------------------------------------------------------------------------------------------------------------------|
| 0                     | 5/2-               |                  |                                                                                                                              |
| 799 <i>1</i>          | $(9/2^{-})$        |                  |                                                                                                                              |
| 1180 <i>1</i>         | $(13/2^+)$         | 8.30 µs 82       | %IT=100                                                                                                                      |
|                       |                    |                  | $T_{1/2}$ : from $(381\gamma+799\gamma)(t)$ (2021Zh24). For individual $\gamma(t)$ : 9.56 $\mu$ s 174 – $\gamma(381)(t)$ and |
|                       |                    |                  | 8.80 $\mu$ s 140 - $\gamma$ (799)(t) (2021Zh24).                                                                             |

<sup>†</sup> From  $E\gamma$ .

<sup>‡</sup> From Adopted Levels. Same assignments are listed in 2021Zh24 without parentheses. References or arguments were not listed/mentioned.

## $\gamma(^{213}\text{Th})$

| Eγ           | $E_i$ (level) | $\mathbf{J}_i^{\pi}$ | $E_f$ | $J_f^{\pi}$ |
|--------------|---------------|----------------------|-------|-------------|
| 381 <i>1</i> | 1180          | $(13/2^+)$           | 799   | $(9/2^{-})$ |
| 799 <i>1</i> | 799           | $(9/2^{-})$          | 0     | 5/2-        |

### Adopted Levels

 $S(n)=1.001\times 10^4 \ 10; S(p)=-250 \ 60; Q(\alpha)=8384 \ 12 2021Wa16$  $^{150}Er(^{51}V,X), E=5.2-5.6 \ MeV/nucleon; measured E\alpha, I\alpha, \alpha\alpha$  correlation (1995Ni05). The production cross sections for  $^{213}$ Pa were measured to be 100 pb 50 and 200 pb 100 at the beam energies of 5.4 A-MeV and 5.6 A-MeV, respectively.

# <sup>213</sup>Pa Levels

| E(level) | $J^{\pi}$ | T <sub>1/2</sub> | Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------|-----------|------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0        | 9/2-      | 5.3 ms +40-16    | <ul> <li>%α=100</li> <li>J<sup>π</sup>: Based on favored α-decay chain from <sup>213</sup>Pa g.s. to g.s. of <sup>209</sup>Ac, J<sup>π</sup>=9/2<sup>-</sup>, to g.s. of <sup>205</sup>At, J<sup>π</sup>=9/2<sup>-</sup> (firm J<sup>π</sup>=9/2-(<sup>205</sup>At) in 2020Ko17). Configuration: π (h<sub>9/2</sub><sup>+1</sup>).</li> <li>T<sub>1/2</sub>: Weighted average of 5.3 ms +40-16 (1995Ni05 – from measured time intervals between implantation of evaporation residue (ER) and the first α-decay – also in 2000He17 and 1996An21 – same research group of 1995Ni05) and 4.9 ms +59-18 (2020Au04 – extracted with the exact maximum likelihood method of three correlated α decay chains). Uncertainty is the lower input value.</li> <li>Eα: 8236 keV 20, 8236 keV 15, and 8236 keV 15 reported in 1995Ni05, 1996An21, and 2000He17, respectively, all from the same group. 8210 keV 20 in 2020Au04.</li> <li>Proton decay is allowed for S(p)=-250 60, However, 2020Au04 noted – proton emission was found unlikely.</li> </ul> |

#### REFERENCES FOR A=213

| 1947En03             | A.C.English, T.E.Cranshaw, P.Demers, J.A.Harvey et al Phys.Rev. 72, 253 (1947).                                                                                                        |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1948Je05             | J.V.Jelley - Can.J.Res. 26A, 255 (1948).                                                                                                                                               |
| 104014 54            | Measurement of the Half-Period of Polonium 213.                                                                                                                                        |
| 1949Me54             | W.W.Meinke, A.Gniorso, G.I.Seaborg - Phys.Rev. 75, 514 (1949).<br>Three Additional Collateral Alpha-Decay Chains                                                                       |
| 1950Ha52             | F.Hagemann, L.I.Katzin, M.H.Studier, G.T.Seaborg, A.Ghiorso - Phys.Rev. 79, 435 (1950).                                                                                                |
|                      | The $4n + 1$ Radioactive Series: The Decay Products of $U^{233}$ .                                                                                                                     |
| 1951Me10             | W.W.Meinke, A.Ghiorso, G.T.Seaborg - Phys.Rev. 81, 782 (1951).                                                                                                                         |
| 1052Wa24             | Artificial Chains Collateral to the Heavy Radioactive Families.<br>EWegner, Jr., M.S. Freedman, D.W.Engelkameir, J. P.Magnusson, Phys. Rev. 88, 1714 (1952)                            |
| 1952 Wa24            | <i>Radiations of Bi</i> <sup>213</sup> $Ph^{209}$ $Tl^{209}$                                                                                                                           |
| 1955Ma61             | L.B.Magnusson, F.Wagner, Jr., D.W.Engelkemeir, M.S.Freedman - ANL-5386 (1955).                                                                                                         |
| 105514 (0            | Radiations of $Tl^{209}$ , $Pb^{209}$ , $Bi^{213}$ , and $Ra^{225}$ .                                                                                                                  |
| 1955M068             | F.F.Momyer, Jr., E.K.Hyde - J.Inorg.Nucl.Chem. 1, 2/4 (1955).<br>The Influence of the 126 Neutron Shell on the Alpha-Decay Properties of the Isotones of Emanation Francium and Padium |
| 1955St04             | ES. Stephens. Jr Thesis. Univ. California (1955): UCRL-2970 (1955).                                                                                                                    |
| 19999001             | Decay Schemes and Nuclear Spectroscopic States in the Heavy Element Region.                                                                                                            |
| 1956Mo15             | F.F.Momyer, Jr., E.K.Hyde - Phys.Rev. 101, 136 (1956).                                                                                                                                 |
|                      | Properties of $Em^{221}$ .                                                                                                                                                             |
| 1960Vo05             | A.A. Vorobev, A.P.Komar, V.A.Korolev - Zhur.Eksptl.i Teoret.Fiz. 39, 70 (1960); Soviet Phys.JETP 12, 50 (1961).                                                                        |
| 1961Gr42             | Measurement of the Energy of Alpha Particles from Some Emitters.<br>B D Grifficen B D Macfarlane - UCBL-10023, p.47 (1961)                                                             |
| 19010142             | Alpha Decay Studies in the Translead Region.                                                                                                                                           |
| 1961Ru06             | C.P.Ruiz - Thesis, Univ. California (1961); UCRL-9511 (1961).                                                                                                                          |
|                      | Alpha Decay Studies in the Families of the Light Uranium Isotopes.                                                                                                                     |
| 1962Gr20             | R.D.Griffioen, R.D.Macfarlane - Bull.Am.Phys.Soc. 7, No.8, 541, K5 (1962).                                                                                                             |
| 1062W228             | New $\alpha$ Emitters Near the Closed-Shell N = 120.<br>B I Walen - Compt Rend. 255, 1604 (1962)                                                                                       |
| 1902 Wa20            | Spectrographic $\alpha$ Due Radium 224 et de Ses Derives.                                                                                                                              |
| 1964Bu05             | F.D.S.Butement, V.J.Robinson, S.M.Qaim - J.Inorg.Nucl.Chem. 26, 491 (1964).                                                                                                            |
|                      | A New Isotope of Lead: <sup>213</sup> Pb.                                                                                                                                              |
| 1964Gr04             | R.D.Griffioen, R.D.Macfarlane - Phys.Rev. 133, B1373 (1964).                                                                                                                           |
| 1064Cr11             | Alpha-Decay Properties of Some Francium Isotopes Near the 126-NeutronClosed Shell.                                                                                                     |
| 19040111             | Alpha Fine Structure in Bi-213.                                                                                                                                                        |
| 1964Va20             | K.Valli - Ann.Acad.Sci.Fennicae, Ser.A VI, No.165 (1964).                                                                                                                              |
|                      | An Experimental Investigation of the Alpha Fine Structure in Ac-225, Fr-221, At-217, and Po-213.                                                                                       |
| 1967Dz02             | B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, L.N.Moskvin et al Izv.Akad.Nauk SSSR, Ser.Fiz. 31, 568 (1967);                                                                              |
|                      | Bull.Acad.Sci.USSR, Ser.Fiz. 31, 563 (1968).<br>Alpha Decay of $^{225}$ Ac $^{221}$ Fr and $^{217}$ At                                                                                 |
| 1967LoZZ             | W.Lourens - Thesis. Technische Hogeschool Delft (1967).                                                                                                                                |
|                      | A Double Focusing Beta-Ray Spectrometer Applied in Heavy Element Studies.                                                                                                              |
| 1967Va20             | K.Valli, E.K.Hyde, W.Treytl - J.Inorg.Nucl.Chem. 29, 2503 (1967).                                                                                                                      |
| 10(731.00            | Alpha Decay of Neutron-Deficient Francium Isotopes.                                                                                                                                    |
| 1967 va22            | K. Valli, W. Ifeyil, E.K. Hyde - Phys. Rev. 161, 1284 (1967).                                                                                                                          |
| 1968Ha14             | R.L.Hahn, M.F.Roche, K.S.Toth - Nucl.Phys. A113, 206 (1968).                                                                                                                           |
|                      | New Neptunium Isotopes, <sup>230</sup> Np and <sup>229</sup> Np.                                                                                                                       |
| 1968Le07             | CF.Leang, G.Bastin-Scoffier - Compt.Rend. 266B, 629 (1968).                                                                                                                            |
|                      | Etude du Schema de Niveaux de l'Astatine 217.                                                                                                                                          |
| 1968Lo15             | Y.V.Lobanov, V.A.Durin - Yadern.Fiz. 8, 849 (1968); Soviet J.Nucl.Phys. 8, 493 (1969).                                                                                                 |
| 1968Va04             | K Valli W I Trevel E K Hyde - Phys Rev. 167, 1094 (1968)                                                                                                                               |
| 1900 va04            | On-Line Alpha Spectroscopy of Neutron-Deficient Actinium Isotopes.                                                                                                                     |
| 1968Va17             | H.Van Krugten, E.W.Koopmann - Physica 40, 253 (1968).                                                                                                                                  |
|                      | Beta Continuum Measurements on <sup>226</sup> Ac and Daughter Products of <sup>225</sup> Ac.                                                                                           |
| 1968Va18             | K.Valli, E.K.Hyde - Phys.Rev. 176, 1377 (1968).                                                                                                                                        |
| $1060 \Lambda r 7 V$ | New Isotopes of Inorium Studied with an Improved Helium-Jet Recoil Transport Apparatus.                                                                                                |
| 1707AIL V            | Ann.Conf.Nucl.Spectroscopy and Struct.of At.Nuclei, Erevan, p. 152 (1969).                                                                                                             |
|                      | $\gamma$ -Rays of <sup>225</sup> Ac and its Decay Products.                                                                                                                            |

| 1969Dz06 | B.S.Dzhelepov, A.V.Zolotavin, R.B.Ivanov, M.A.Mikhailova, V.O.Sergeev - Izv.Akad.Nauk SSSR, Ser.Fiz. 33, 1607 (1969); Bull.Acad.Sci.USSR, Phys.Ser. 33, 1475 (1970).                                                                                                              |
|----------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1969DzZZ | B.S.Dzhelepov, A.V.Zolotavin, R.B.Ivanov, M.A.Mikhailova et al Program and Theses, Proc.19th<br>Ann.Conf.Nucl.Spectroscopy and Struct.Of At.Nuclei, Erevan, p.153 (1969).                                                                                                         |
| 1969LeZW | Conversion Electron Spectra of <sup>223</sup> Ac and its Decay Products.<br>CF.Leang - Thesis, Univ.Paris (1969).<br>Etude des Schemes de Nivegur de Quelques Noveur de Transition de 7 Impeir Alimentes par Emission Alpha                                                       |
| 1970Bo13 | J.Borggreen, K.Valli, E.K.Hyde - Phys.Rev. C2, 1841 (1970).<br>Production and Decay Properties of Protactinium Isotopes of Mass 222 to 225 Formed in Heavy-Ion Reactions.                                                                                                         |
| 1970TaZS | N.I.Tarantin, A.P.Kabachenko, A.V.Demyanov, N.S.Ivanov - Proc.Int.Conf.Mass Spectrosc., Kyoto (1969), K.Ogata,<br>T.Hayakawa, Eds., University Park Press, Baltimore, p.548 (1970).                                                                                               |
| 1970To07 | Gas Discharge Ion Source for an Electromagnetic Mass-Separator on-Line With a Heavy Ion Cyclotron.<br>D.F.Torgerson, R.D.Macfarlane - Nucl.Phys. A149, 641 (1970).<br>Alpha Decay of the <sup>221</sup> Th and <sup>222</sup> Th Decay Chains                                     |
| 1970Va13 | K.Valli, E.K.Hyde, J.Borggreen - Phys.Rev. C1, 2115 (1970).                                                                                                                                                                                                                       |
| 1971MaXH | Production and Decay Properties of Thorium Isotopes of Mass 221-224 Formed in Heavy-Ion Reactions.<br>K.H.Maier, J.R.Leigh, F.Puhlhofer, R.M.Diamond - J.Phys.(Paris) 32, Suppl.No.11-12, Colloq.C6-221 (1971).                                                                   |
| 1972Dz14 | <ul> <li>B.S.Dzhelepov, R.B.Ivanov, M.A.Mikhailova, V.O.Sergeev - Izv.Akad.Nauk SSSR, Ser.Fiz. 36, 2080 (1972);</li> <li>Bull.Acad.Sci.USSR, Phys.Ser. 36, 1832 (1973).</li> </ul>                                                                                                |
| 10701 00 | $\gamma$ -Spectrum of <sup>225</sup> Ac.                                                                                                                                                                                                                                          |
| 1972Le25 | Y.Le Beyec, M.Lefort, M.Sarda - Nucl. Phys. A192, 405 (1972).<br>Nuclear Reactions Induced by <sup>12</sup> C and <sup>16</sup> O on <sup>205</sup> Tl and <sup>209</sup> Ri <sup>, 214</sup> Fr Isomeric Ratio: Compound Nucleus and <sup>8</sup> Re Transfer                    |
|          | Process.                                                                                                                                                                                                                                                                          |
| 1972Mo10 | L.G.Moretto, S.G.Thompson, J.Routti, R.C.Gatti - Phys.Lett. 38B, 471 (1972).<br>Influence of Shells and Pairing on the Fission Probabilities of Nuclei Below Radium.                                                                                                              |
| 1972No06 | T.Nomura, K.Hiruta, T.Inamura, M.Odera - Phys.Lett. 40B, 543 (1972).                                                                                                                                                                                                              |
| 1973Ba19 | V.S.Barashenkov, A.S.Iljinov, V.D.Toneev, F.G.Gereghi - Nucl.Phys. A206, 131 (1973).<br>Fission and Decay of Excited Nuclei.                                                                                                                                                      |
| 1973Ma52 | A.A.Martynov, S.G.Kadmenskii - Yad.Fiz. 17, 75 (1973); Sov.J.Nucl.Phys. 17, 39 (1973).                                                                                                                                                                                            |
| 1973Ma63 | Probabilities of a Decay of Odd and Odd-Odd Spherical Nuclei and Superfluidity.<br>C.Maples - Nucl.Data Sheets 10, 597 (1973).<br>Nuclear Data Sheets for $A = 213$                                                                                                               |
| 1973No02 | T.Nomura, K.Hiruta - Nucl.Instrum.Methods 108, 61 (1973).                                                                                                                                                                                                                         |
| 1973No09 | T.Nomura, K.Hiruta, T.Inamura, M.Odera - Nucl.Phys. A217, 253 (1973).                                                                                                                                                                                                             |
| 10720 1( | Ground-State $\alpha$ -Decay of $N = 128$ Isotones <sup>216</sup> Ra, <sup>217</sup> Ac and <sup>218</sup> Th.                                                                                                                                                                    |
| 1973P016 | P.Polak - Kadiochim.Acta 19, 148 (1973).<br>Determination of the Half Life of <sup>213</sup> Bi                                                                                                                                                                                   |
| 1973ReZP | E.Recknagel, Y.Yamazaki, O.Hashimoto, S.Nagamiya, K.Nakai - Proc.Int.Conf.Nuclear Physics, Munich, J.de Boer,<br>H.J.Mang, Eds., North-Holland Publ.Co., Amsterdam, Vol.1, p.268 (1973).<br><i>The g-Factor of the</i> 29/7 <sup>+</sup> <i>Level of</i> <sup>213</sup> <i>Fr</i> |
| 1973Ta30 | K.Takahashi, M.Yamada, T.Kondoh - At.Data Nucl.Data Tables 12, 101 (1973).                                                                                                                                                                                                        |
| 1974Ba87 | V.S.Barashenkov, F.G.Zheregi, A.S.Ilinov, V.D.Toneev - Fiz.Elem.Chastits At.Yadra 5, 479 (1974); Sov.J.Particles Nucl. 5, 192 (1974).                                                                                                                                             |
| 1974Ho27 | Production and Decay of Compound Nuclei in Reactions Induced by Heavylons.<br>P.Hornshoj, P.G.Hansen, B.Jonson - Nucl.Phys. A230, 380 (1974).                                                                                                                                     |
| 1974Re09 | E.Recknagel, Y.Yamazaki, O.Hashimoto, S.Nagamiya, K.Nakai - Phys.Lett. 52B, 414 (1974).                                                                                                                                                                                           |
| 1975LiZH | J.S.Lilley, M.Franey, J.A.Becker - COO-1265-170, p.122 (1975).                                                                                                                                                                                                                    |
| 1976Da18 | W.G.Davies, R.M.DeVries, G.C.Ball, J.S.Forster et al Nucl.Phys. A269, 477 (1976).                                                                                                                                                                                                 |
| 1976De25 | R.M.DeVries, J.S.Lilley, M.A.Franey - Phys.Rev.Lett. 37, 481 (1976).                                                                                                                                                                                                              |
| 1976Ha37 | Absolute Reduced $\alpha$ Widths in the Lead Region.<br>O.Hausser, J.R.Beene, A.B.McDonald, T.K.Alexander et al Phys.Lett. 63B, 279 (1976).                                                                                                                                       |
| 1976Ra37 | <ul> <li>Precise Magnetic Moments of (h<sub>9/2</sub>)n Proton States.</li> <li>D.G.Raich, H.R.Bowman, R.E.Eppley, J.O.Rasmussen, I.Rezanka - Z.Phys. A279, 301 (1976); Erratum Z.Phys. A282, 124 (1977).</li> </ul>                                                              |

|                 | Gamma and Alpha Decay from the 2.1-msec Isomer $^{213m}Ra$ .                                                                                                    |
|-----------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1977Be56        | J.R.Beene, O.Hausser, A.B.McDonald, T.K.Alexander et al Hyperfine Interactions 3, 397 (1977).                                                                   |
|                 | Knight Shifts and Absolute Magnetic Moments of (ho/>)n Proton States in Trans-Bismuth Nuclei.                                                                   |
| 1977Ha41        | H.Hagelund, A.S.Jensen - Phys.Scr. 15, 225 (1977).                                                                                                              |
|                 | Lifetime and Fission-Probability Estimates                                                                                                                      |
| 1977Pr10        | M H A Pramanik, E Ahmed, S Mostafa - Nucl Sci Appl., Ser B 10, 20 (1977)                                                                                        |
| 19771110        | Saddle Point Radii and Fission Barriers                                                                                                                         |
| $1977 V_{v} 02$ | TVylov N A Golovkov B S Dzhelepov R B Ivanov et al Izv Akad Nauk SSSR Ser Fiz 41 1635 (1977).                                                                   |
| 1777 ¥ y02      | Bull Acad Sci USSR Phys Ser 41 No 8 85 (1977)                                                                                                                   |
|                 | The Decay of 221 $P_{\rm D}$                                                                                                                                    |
| 1078EL02        | C Electory S Lagelman, C Wannhard, M Skaraetad, Phys Sor, 18, 51 (1078)                                                                                         |
| 1970LK02        | Nuclean Group State Scine of the Engenismin Lestence 208-213 220-222 En                                                                                         |
| 107951-05       | Nuclear Ground state spins of the Francium isotopes Fr.                                                                                                         |
| 1978EK05        | (107) (Lessitorin, S.ingelman, G.wannoerg, M.Skarestad, and the ISOLDE Conadoration - Hyperline Interactions 4, 165                                             |
|                 | (1978).<br>Hunoritan Structure Muslean Spins and Moments of Short Lined Nuclider Studied by On Line Atomic Pears Magnetic Pea                                   |
|                 | nyperjine Snuclure,Nuclear Spins and Moments of Snort-Lived Nuclearsshaled by On-Line Atomic-Beam Magnetic Kes-                                                 |
| 1078Ha50        | Onduce reconfigues.<br>O Hausser I B Beane T Fastermann, T.K. Alexander et al Hyperfine Interactions 4, 210 (1078)                                              |
| 197011050       | Uniduster, S.K.Beche, 1.1 asternatin, T.K.Alexander et al Hyperine Instactions 4, 219 (1976).                                                                   |
| 1070 \ d07      | C D A deay I A Eilineante D A Chardonteau V ad Eiz 30, 032 (1070): Soy I Nucl Phys. 30, 485 (1070)                                                              |
| 1979Au07        | O.D.Aucey, E.A.Tinpenko, I.A.Cherdanisev - Tau. 72, 35, 353 (1977), SoviJ. Auch. 1985. 30, 463 (1977).                                                          |
| 1070E109        | VA Ellis Nival Data Shorta 29 610 (1070)                                                                                                                        |
| 1979E106        | 1.A.EIIIS - INUCLEAR SILECTS 20, 019 (1979).                                                                                                                    |
| 107011-04       | Nuclear Data Sheets for $A = 215$ .                                                                                                                             |
| 19/98000        | D. notify O. nausset, B. naas, I.K. Alexander et al Nucl. Phys. A517, 520 (1979).                                                                               |
| 10701-04        | High Spin Trast States in $N = 120$ isotones.                                                                                                                   |
| 19791g04        | A. V.Ignatyuk, K.K.Istekov, G.N.Smirenkin - rad.Fiz. 50, 1205 (1979).                                                                                           |
| 10700 00        | Collective Effects in the Level Density and the Nuclear Fission Probability.                                                                                    |
| 19/98009        | KH.Schmidt, W.Faust, G.Munzenberg, HG.Clerc et al Nucl.Phys. A318, 253 (1979).                                                                                  |
| 10001 00        | Alpha Decay Properties of New Protactinium Isotopes.                                                                                                            |
| 1980Ig02        | A. V.Ignatyuk, K.K.Istekov, G.N.Smirenkin - Yad.Fiz. 32, 347 (1980); Sov.J.Nucl.Phys. 32, 180 (1980).                                                           |
| 10001 :22       | Fission Barriers of the Pre-Actinide Nuclei.                                                                                                                    |
| 1980L122        | S.Liberman, J.Pinard, H.I.Duong, P.Juncar et al Phys.Rev. A22, 2732 (1980).                                                                                     |
| 100014-05       | Laser Optical Spectroscopy on Francium $D_2$ Resonance Line.                                                                                                    |
| 1980Me05        | M.C.Mermaz - Phys.Rev. C21, 2356 (1980).                                                                                                                        |
| 10000101        | Direct Transfer Reaction to Discrete and Continuum States.                                                                                                      |
| 19808j01        | 1.P.Sjoreen, U.Garg, D.B.Fossan - Phys.Rev. C21, 1838 (1980).                                                                                                   |
|                 | Spectroscopy of <sup>213</sup> At, <sup>212</sup> Po, and <sup>210</sup> Pb Following <sup>200</sup> Pb + <sup>1</sup> Li.                                      |
| 1980Ve01        | D. Vermeulen, HG. Clerc, W. Lang, KH. Schmidt, G. Munzenberg - Z. Phys. A294, 149 (1980).                                                                       |
|                 | <sup>212</sup> Th, a New Isotope.                                                                                                                               |
| 1981Bo29        | H.Bohn, E.Endres, T.Faestermann, P.Kienle - Z.Phys. A302, 51 (1981).                                                                                            |
|                 | Spectroscopy of Excited States in <sup>212</sup> Po, <sup>210</sup> Pb, and <sup>213</sup> At Empolying <sup>18</sup> O Induced Few-Nucleon Transfer Reactions. |
| 1981Di14        | J.K.Dickens, J.W.McConnell - Radiochem.Radioanal.Lett. 47, 331 (1981).                                                                                          |
|                 | Energies and Intensities of Gamma Rays from Decay of <sup>229</sup> Th and Daughters in Equilibrium.                                                            |
| 1981MaYW        | K.H.Maier, D.J.Decman, H.Grawe, H.Kluge - Proc.Int.Conf.Nuclei Far from Stability, Helsingor, Denmark, Vol.1, p.183                                             |
|                 | (1981); CERN-81-09 (1981).                                                                                                                                      |
|                 | Time-Differential Observation of $\alpha$ -Particle Perturbed Angular Distribution; g-Factor Measurements for <sup>217</sup> Ac <sup>gs</sup> and               |
| 1000 1 101      | $^{217}Ac^{\rm m}$                                                                                                                                              |
| 1982Ad01        | G.D.Adeev, T.S.Trunova - Yad.Fiz. 35, 27 (1982).                                                                                                                |
|                 | Influence of Diffused Distribution of the Nucleon Density on Effective Moments of Inertia of Fissionable Nuclei.                                                |
| 1982Bo04        | J.D.Bowman, R.E.Eppley, E.K.Hyde - Phys.Rev. C25, 941 (1982).                                                                                                   |
|                 | Alpha Spectroscopy of Nuclides Produced in the Interaction of 5 GeV Protons with Heavy Element Targets.                                                         |
| 1982GoZU        | Y.Gono, Y.Itoh, S.Sasagase, M.Sugawara et al Proc.Intern.Symp. Dynamics of Nuclear Collective Motion – High                                                     |
|                 | Spin States and Transitional Nuclei –, Yamanishi, Japan, p.283 (1982).                                                                                          |
|                 | In-Beam $\alpha$ - and $\gamma$ -Ray Study on <sup>213</sup> Fr and <sup>217</sup> Ac.                                                                          |
| 1982Gr21        | E.N.Gruzintsev, M.G.Itkis, V.N.Okolovich, A.Ya.Rusanov et al Pisma Zh.Eksp.Teor.Fiz. 35, 449 (1982); JETP                                                       |
|                 | Lett.(USSR) 35, 557 (1982).                                                                                                                                     |
|                 | Observation of Asymmetric Fission of <sup>213</sup> At in the Reaction <sup>209</sup> Bi( $\alpha$ ,f).                                                         |
| 1982Gr24        | E.N.Gruzintsev, M.G.Itkis, V.N.Okolovich, A.Ya.Rusanov et al Pisma Zh.Eksp.Teor.Fiz. 36, 304 (1982); JETP                                                       |
|                 | Lett.(USSR) 36, 372 (1982).                                                                                                                                     |
|                 | Energy Dependence of the Probability for Asymmetric Fission of <sup>213</sup> At.                                                                               |
| 1982Ka37        | V.G.Kadmensky, S.G.Kadmensky, S.D.Kurgalin, V.I.Furman - Acta Phys.Pol. B13, 885 (1982).                                                                        |
|                 | Problem of $\alpha$ -Clustering Levels in Heavy Nuclei.                                                                                                         |
| 1982SaZO        | S.Sasagase, Y.Gono, Y.Itoh, T.Kubo et al Contrib.Intern.Symp. Dynamics of Nuclear Collective Motion - High Spin                                                 |
|                 | States and Transitional Nuclei –, Yamanashi, Japan, p.52 (1982).                                                                                                |

|           | In-Beam $\alpha$ - and $\gamma$ -Ray Spectroscopy on <sup>217</sup> Ac and <sup>215</sup> Fr.                                                    |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
| 1983Ah03  | S.A.Ahmad, W.Klempt, R.Neugart, E.W.Otten et al Phys.Lett. 133B, 47 (1983).                                                                      |
|           | Determination of Nuclear Spins and Moments in a Series of Radium Isotopes.                                                                       |
| 1983Br06  | U.Brosa, S.Grossmann - Z.Phys. A310, 177 (1983).                                                                                                 |
|           | In the Exit Channel of Nuclear Fission.                                                                                                          |
| 1983Br15  | U.Brosa, S.Grossmann - Phys.Lett. 126B, 425 (1983).                                                                                              |
|           | Droplet Fission: A performance of surface tension.                                                                                               |
| 1983Gr17  | Ye.N.Gruzintsev, M.G.Itkis, V.N.Okolovich, A.Ya.Rusanov et al Phys.Lett. 126B, 428 (1983).                                                       |
|           | <sup>213</sup> At Fission Asymmetry.                                                                                                             |
| 1983Lo16  | T.Lonnroth, C.Baktash - Phys.Scr. 28, 459 (1983).                                                                                                |
|           | In-Beam Study of $^{213}Rn$ $^{215}Ra$ and $^{217}Ra$ : Stronely enhanced E3transitions in odd-A N = 127 isotones.                               |
| 1984Es01  | K Eskola P Eskola M M Fowler H Ohm et al Phys Rev C29 2160 (1984)                                                                                |
| 19012501  | Production of Neutron-Rich Bi Isotones by Transfer Reactions                                                                                     |
| 1984Gr06  | Y.N.Gruzintsev, M.G.Itkis, V.N.Okolovich, A.Ya.Rusanov et al Z.Phys. A316, 61 (1984).                                                            |
|           | New Experimental Data on the Formation of the Symmetric Fission Mode.                                                                            |
| 1984Gr13  | E N Gruzintsey, M G Itkis, V N Okolovich, G N Smirenkin et al Yad Fiz, 39, 1100 (1984)                                                           |
| 190.0110  | Investigation of Symmetric Fission of Pre-Actinide Nuclei in the ( $\alpha$ f) Reactions                                                         |
| 1984Gu29  | M Guttormsen, H Hubel, A v Grumbkow, Y K Agarwal et al Nucl Instrum Methods 227, 489 (1984)                                                      |
| 190.0029  | A Superconducting Electron Spectrometer                                                                                                          |
| 1984He17  | E.E.Hefter, M.de Llano, I.A. Mitropolsky - Phys.Rev. C30, 2042 (1984).                                                                           |
|           | Inverse Methods and Nuclear Radii                                                                                                                |
| 1984Iø01  | A V Ignatyuk M G Itkis, I A Kameney, S I Mulgin et al Yad Fiz. 40, 625 (1984).                                                                   |
| 190 11801 | Investigation of Fissility of Pre-Actinide Nuclei Induced by Protons and $\alpha$ Particles.                                                     |
| 1984It01  | M G Itkis, VN Okolovich, A Ya Rusanov, G N Smirenkin - Yad Fiz, 39, 1349 (1984)                                                                  |
| 190 1101  | Asymmetrical Fission of <sup>208</sup> - <sup>212</sup> Po Nuclei                                                                                |
| 1984Nj09  | IR Nix A 1 Sister H Hofmann F Scheuter D Vautherin - Nucl Phys A424 239 (1984)                                                                   |
| 170410107 | Stationary Folker Planck Fourition Applied to Fission Dynamics                                                                                   |
| 1984Ro23  | G Rover B Remaid - I Phys (London) G10 153101 Bynamics.                                                                                          |
| 190 11025 | On the Fiscion Barrier of Henry and Superheavy Nuclei                                                                                            |
| 1985Be05  | I Bergstrom B Eant - Phys Ser 31 26 (1985)                                                                                                       |
| 170510005 | Systematics of RF31 Values in the Trans-Lead Region                                                                                              |
| 1985Co24  | A Coc C Thibault F Touchard H T Duong et al Phys Lett. 163B. 66 (1985)                                                                           |
| 19050021  | Hyperfine Structure and Isotone Shifts of $207 - 228$ Fr. Possible anidance of octupolar deformation                                             |
| 1985De14  | D D Deeman H Grave H Kluge K H Majer et al Nucl Phys. A436 311 (1985)                                                                            |
| 1905DC14  | Dispetiality in Control State and the (2007) <sup>+</sup> Looma in <sup>217</sup> As and a Faster Massurements from Porturbed & Porticle Anoulan |
|           | Dieterbuitons                                                                                                                                    |
| 1985It01  | M.G.Itkis, V.N.Okolovich, A.Ya.Rusanov, G.N.Smirenkin - Z.Phys. A320, 433 (1985).                                                                |
|           | Asymmetric Fission of the Pre-Actinide Nuclei.                                                                                                   |
| 1986Be20  | S.D.Beizin, M.G.Itkis, I.A.Kamenev, S.I.Mulgin et al Yad.Fiz. 43, 1373 (1986).                                                                   |
|           | Angular Anisotropy and Critical Angular Momentum in Nuclear Fission Induced by Light Charged Particles.                                          |
| 1986By01  | A.P.Byrne, G.D.Dracoulis, C.Fahlander, H.Hubel et al Nucl.Phys. A448, 137 (1986).                                                                |
|           | Spectroscopy of High-Spin States in <sup>211</sup> <sup>212</sup> <sup>213</sup> Fr.                                                             |
| 1986Ek02  | C.Ekstrom, L.Robertsson, A.Rosen - Phys.Scr. 34, 624 (1986).                                                                                     |
|           | Nuclear and Electronic e-Factors of $^{211}$ Fr Nuclear Ground-State Spin of $^{207}$ Fr and the Nuclear Single-Particle Structure in            |
|           | the Range 207 - 228 Fr.                                                                                                                          |
| 1986He06  | R.G.Helmer, C.W.Reich, M.A.Lee, I.Ahmad - Int.J.Appl.Radiat.Isotop. 37, 139 (1986).                                                              |
|           | Emission Probabilities of $\gamma$ -Rays Associated with the Decay of $^{229}$ Th and Its Daughters.                                             |
| 1986Hi01  | D.J.Hinde, R.J.Charity, G.S.Foote, J.R.Leigh et al Nucl. Phys. A452, 550 (1986).                                                                 |
|           | Neutron Multiplicities in Heavy-Ion-Induced Fission: Timescale of fusion-fission.                                                                |
| 1986It01  | M.G.Itkis, S.I.Mulgin, A.Ya.Rusanov, V.N.Okolovich, G.N.Smirenkin - Yad.Fiz, 43, 1125 (1986).                                                    |
|           | On Formation of Mass Distributions of Fragments from Fission of Nuclei Lighter than Thorium.                                                     |
| 1986Pi11  | G.A.Pik-Pichak - Yad.Fiz. 44, 1421 (1986).                                                                                                       |
|           | Natural Radioactivity of a New Kind.                                                                                                             |
| 1987Ar20  | E.Arnold, W.Borchers, M.Carre, H.T.Duong et al Phys.Rev.Lett. 59, 771 (1987).                                                                    |
|           | Direct Measurement of Nuclear Magnetic Moments of Radium Isotopes.                                                                               |
| 1987Co19  | A.Coc, C.Thibault, F.Touchard, H.T.Duong et al Nucl.Phys. A468, 1 (1987).                                                                        |
|           | Isotope Shifts Spins and Hyperfine Structures of <sup>118</sup> <sup>146</sup> Cs and of some Francium Isotopes                                  |
| 1987It03  | M.G.Itkis, J.V.Kotlov, S.I.Mulgin, V.N.Okolovich et al Europhys Lett. 4, 275 (1987).                                                             |
|           | Barriers and 'Anomaly ' of Symmetric to Asymmetric Yield Ratio in Fission of $^{213}\Delta t$                                                    |
| 1987Sa51  | H Sagawa A Arima O Scholten - Nucl Phys. A474 155 (1987)                                                                                         |
| 17070401  | Nuclear Compression Modulus and Isotope Shifts of Ph Nuclei                                                                                      |
| 1987We03  | K Wendt, S.A. Ahmad, W.Klempt, R.Neugart et al Z.Phys. D4 (1987)                                                                                 |
|           | On the Hyperfine Structure and Isotope Shift of Radium.                                                                                          |
|           |                                                                                                                                                  |

| 1987Za02                                | D.Zawischa, U.Regge, R.Stapel - Phys.Lett. 185B, 299 (1987).                                                                                                                                                                                                                |
|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1988Fu10                                | Y.Fukuchi, T.Komatsubara, H.Sakamoto, T.Aoki, K.Furuno - J.Phys.Soc.Jpn. 57, 2976 (1988).                                                                                                                                                                                   |
| 10000 16                                | Low-Lying Excited States in <sup>213</sup> Rn and <sup>213</sup> Ra.                                                                                                                                                                                                        |
| 1988Gr16                                | E.N.Gruzintsev, M.G.Itkis, Yu.V.Kotlov, V.N.Okolovich et al Yad.Fiz. 47, 1201 (1988).<br>Experimental Study of Three-Component Structure of Mass-Energy Distributions of Fission Fragments in the Vicinity of                                                               |
| 1988Hu08                                | Pb.<br>M.Huyse, P.Dendooven, K.Deneffe - Nucl.Instrum.Methods Phys.Res. B31, 483 (1988).<br>Production and Mass Separation of Short-Living Neutron-Deficient Actinides                                                                                                      |
| 1988Ne03                                | J.O.Newton, D.J.Hinde, R.J.Charity, J.R.Leigh et al Nucl.Phys. A483, 126 (1988).                                                                                                                                                                                            |
| 1988St10                                | A.E.Stuchbery, G.D.Dracoulis, A.P.Byrne, S.J.Poletti, A.R.Poletti - Nucl.Phys. A482, 692 (1988).                                                                                                                                                                            |
| 1989By01                                | Spectroscopy and Octupole Coupling of High-Spin States in <sup>213</sup> Rn.<br>A.P.Byrne, R.Musseler, H.Hubel, M.Murzel et al Phys.Lett. 217B, 38 (1989).                                                                                                                  |
| 1989Dr02                                | <i>Extremely Long Lived</i> (65/2) <sup>-</sup> <i>Isomer in</i> <sup>213</sup> <i>Fr.</i><br>G.D.Dracoulis, F.Riess, A.E.Stuchbery, R.A.Bark et al Nucl.Phys. A493, 145 (1989).                                                                                            |
| 1989Ko26                                | Properties of $(15/2)^-$ States in <sup>215</sup> Ra and <sup>217</sup> Th; Evaluation of the $(15/2)^-$ to $(9/2)^+$ E3 strength in N = 127 isotones.<br>M.C.Kouassi, A.Hachem, C.Ardisson, G.Ardisson - Nucl.Instrum.Methods Phys.Res. A280, 424 (1989).                  |
| 19891 002                               | Excited Levels in <sup>213</sup> Po and <sup>209</sup> Pb Fed by $\beta$ -Decays of <sup>213</sup> Bi $(T_{1/2} = 45.6 \text{ Min})$ and <sup>209</sup> Tl $(T_{1/2} = 2.2 \text{ Min})$ .<br>TLonnroth C W Beausang D B Fossan L Hildingsson et al Phys Scr. 39, 56 (1989) |
| 10004 10                                | Very-High-Spin and Core-Coupled States in <sup>213</sup> Rn. A Test of the Applicability of the Deformed Independent Particle Model.                                                                                                                                        |
| 1990An19                                | A.N.Andreev, D.D.Bogdanov, V.I.Chepigin, A.P.Kabachenko et al Z.Phys. A337, 229 (1990).<br>A New Isotope and $\alpha$ -Lines in the Th-Np Region and Their Production Cross-Sections.                                                                                       |
| 1990AnZU                                | A.N.Andreev, D.D.Bogdanov, A.V.Eremin, A.P.Kabachenko et al JINR-P7-90-232 (1990).<br><i>The New Nuclide</i> <sup>224</sup> <i>U</i> .                                                                                                                                      |
| 1990By03                                | A.P.Byrne, R.Musseler, H.Hubel, K.H.Maier, H.Kluge - Nucl.Phys. A516, 145 (1990).                                                                                                                                                                                           |
| 1990Du03                                | O.Dumitrescu, M.Horoi - Nuovo Cim. 103A, 653 (1990).                                                                                                                                                                                                                        |
| 1000Ha30                                | An Enlarged Superfluid Model of Atomic Nucleus.<br>E Hardaman, G. Scheveneels, G. Navens, P. Nouwen, P. Coussement, Hyperfine Interactions 50, 13 (1000)                                                                                                                    |
| 199011030                               | Quadrupole Moments of High Spin Isomers Studied by Level Mixing Spectroscopy (LEMS)                                                                                                                                                                                         |
| 1990St14                                | A.E.Stuchbery, G.D.Dracoulis - Phys.Rev. C42, 784 (1990).                                                                                                                                                                                                                   |
| $1001 D_{\rm W} 77$                     | High Spin Core-Excited Isomers and Octupole Coupling in <sup>213</sup> Rn.                                                                                                                                                                                                  |
| 1991Ha02                                | E Hardeman, G Nevens, G Scheveneels, R Nouwen et al Phys Rev. C43, 514 (1991).                                                                                                                                                                                              |
| 1777111002                              | <i>Quadrupole Moments of High Spin Isomers in</i> $^{213}Fr^{212}Fr$ and $^{211}Fr$ .                                                                                                                                                                                       |
| 1991Ry01                                | A.Rytz - At.Data Nucl.Data Tables 47, 205 (1991).                                                                                                                                                                                                                           |
|                                         | Recommended Energy and Intensity Values of Alpha Particles from Radioactive Decay.                                                                                                                                                                                          |
| 1992Ak01                                | Y.A.Akovali - Nucl.Data Sheets 66, 237 (1992).                                                                                                                                                                                                                              |
|                                         | Nuclear Data Sheets for $A = 213$ .                                                                                                                                                                                                                                         |
| 1992L125                                | M.Lindroos, P.Richards, J.Blomqvist, J.Rikovska et al Hyperfine Interactions 75, 109 (1992).<br>Ground State Magnetic Moments of <sup>212</sup> , <sup>213</sup> Bi.                                                                                                        |
| 1993Ne04                                | G.Neyens, R.Nouwen, G.S'heeren, M.Van Den Bergh, R.Coussement - Nucl.Phys. A555, 629 (1993).<br><i>Quadrupole Moments of Isomeric States in</i> <sup>212</sup> <i>Ra</i> <sup>213</sup> <i>Ra and</i> <sup>214</sup> <i>Ra</i> .                                            |
| 1994Ar23                                | G.Ardisson, V.Barci, O.El Samad - Nucl.Instrum.Methods Phys.Res. A339, 168 (1994).                                                                                                                                                                                          |
| 1994Ne01                                | G.Neyens, R.Nouwen, G.S'heeren, M.Van Den Bergh, R.Coussement - Phys.Rev. C49, 645 (1994).                                                                                                                                                                                  |
| 1995Ni05                                | Spin-Lattice Relaxation of Ra in Tl and g Factor of the <sup>213th</sup> Ra, $\tau$ = 2.1 ms Isomer.<br>V.Ninov, F.P.Hessberger, S.Hofmann, H.Folger et al Z.Phys. A351, 125 (1995).                                                                                        |
| 1995WaZO                                | <i>Identification of the Neutron-Deficient Isotopes</i> <sup>213</sup> , <sup>214</sup> <i>Pa</i> .<br><i>I.Wawryszczuk</i> M.B.Yuldashey K.Ya.Gromoy T.M.Muminoy - Program and Thesis. Proc 45th                                                                           |
| 1)))) ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( | Ann.Conf.Nucl.Spectrosc.Struct.At.Nuclei, St.Petersburg, p.107 (1995).<br>Half-Life of the Polonium-213                                                                                                                                                                     |
| 1996An21                                | A.N.Andreev, A.G.Popeko, A.V.Eremin, S.Hofmann et al Bull.Rus.Acad.Sci.Phys. 60, 119 (1996).                                                                                                                                                                                |
| 1996GrZT                                | K.Ya.Gromov, M.Ya.Kuznetsova, Yu.V.Norseev, V.I.Fominykh et al Program and Thesis, Proc.46th                                                                                                                                                                                |
|                                         | Decay of $^{217}At$ .                                                                                                                                                                                                                                                       |
| 1997Ch19                                | V.G.Chumin, V.I.Fominykh, K.Ya.Gromov, M.Ya.Kuznetsova et al Z.Phys. A358, 33 (1997).                                                                                                                                                                                       |
| 1997Ch53                                | V.G.Chumin, J.K.Jabber, K.V.Kalyapkin, S.A.Kudrya et al Bull.Rus.Acad.Sci.Phys. 61, 1606 (1997).<br>Alpha Spectra of <sup>221</sup> Fr, <sup>217</sup> At, <sup>213</sup> Bi, and <sup>213</sup> Po Nuclei.                                                                 |
| 1997Ki15   | J.Kilgallon, and the ISOLDE Collaboration - Phys.Lett. 405B, 31 (1997).<br>Ouadrupole Moments and Mean Square Charge Radii in the Bismuth Isotope Chain.                                               |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1997Li23   | C.F.Liang, P.Paris, R.K.Sheline - Phys.Rev. C56, 2324 (1997).                                                                                                                                          |
| 100714:02  | Level Structure of <sup>217</sup> Po and the Spin of the Previously Proposed <sup>213</sup> Pb Ground State.                                                                                           |
| 1997Mi03   | S.Milsuoka, H.Ikezoe, I.Ikula, I.Nagame et al Phys.Rev. C55, 1555 (1997).<br><i>a-Decay Properties of the New Neutron Deficient Isotone</i> <sup>212</sup> Pa                                          |
| 1997VaZV   | Ya. Vavryshchuk, K. Ya. Gromov, V.B. Zlokazov, V.G. Kalinnikov et al JINR-P6-97-180 (1997).                                                                                                            |
| 1997Wa27   | J.Wawryszczuk, K.V.Kalyapkin, M.B.Yuldashev, K.Ya.Gromov, V.I.Fominykh - Bull.Rus.Acad.Sci.Phys. 61, 25 (1997).                                                                                        |
| 1998Ar03   | G.Ardisson, V.Barci, O.El Samad - Phys.Rev. C57, 612 (1998).                                                                                                                                           |
|            | Nuclear Levels and Structure from the Decays of <sup>213</sup> Bi and <sup>209</sup> Tl.                                                                                                               |
| 1998Ik01   | T.Ikuta, H.Ikezoe, S.Mitsuoka, I.Nishinaka et al Phys.Rev. C57, R2804 (1998).                                                                                                                          |
| 10001 70   | Observation of a New Isomeric State in <sup>21</sup> Pa.                                                                                                                                               |
| 1998MaZO   | Sn.K.Malikov, Yu.A. vaganov, K. Ya. Gromov, I. W. Wuminov et al Program and Thesis, Proc.48th<br>Conf Ann Nucl Spectrosc Struct At Nuclei Moscow, p.76 (1998)                                          |
|            | Multipolarity of the $\gamma$ Transitions in the <sup>209</sup> Tl (2.2 min) and <sup>213</sup> Bi (46 min) Decays.                                                                                    |
| 1998Wa25   | J.Wawryszczuk, K.Ya.Gromov, V.B.Zlokazov, V.G.Kalinnikov et al Yad.Fiz. 61, No 8, 1424 (1998); Phys.Atomic                                                                                             |
|            | Nuclei 61, 1322 (1998).                                                                                                                                                                                |
| 20000.22   | New Measurement of the Half-Life of <sup>215</sup> Po.                                                                                                                                                 |
| 2000B123   | J.Billowes, P.Campbell - Hyperfine Interactions 129, 289 (2000).<br>Laser spectroscopy of the hismuth isotopes                                                                                         |
| 2000Gr35   | K.Ya.Gromov, S.A.Kudrva, Sh.R.Malikov, T.M.Muminov et al Bull.Rus.Acad.Sci.Phys. 64, 1770 (2000).                                                                                                      |
| 20000100   | Investigation of the Structure of Excited States of the <sup>213</sup> Po and <sup>209</sup> Pb Nucleus at the Decay of the <sup>213</sup> Bi and <sup>209</sup> Tl Nuclei.                            |
| 2000He17   | F.P.Hessberger, S.Hofmann, D.Ackermann, V.Ninov et al Eur.Phys.J. A 8, 521 (2000); Erratum Eur.Phys.J. A 9, 433 (2000).                                                                                |
| 200014 (5  | Decay Properties of Neutron-Deficient Nuclei in the Region $Z = 86-92$ .                                                                                                                               |
| 2000Ma65   | O.N.Malyshev, A.V.Belozerov, M.L.Chelnokov, V.I.Chepigin et al Eur.Phys.J. A 8, 295 (2000).                                                                                                            |
| 2000Ni02   | I ne New Isotope U.<br>K Nichio, H Ikezoe, S Mitsuoka, I I.u., Phys Rev. C61, 034300 (2000)                                                                                                            |
| 20001102   | $\alpha$ Decay of <sup>217</sup> Th Populating Excited States in <sup>213</sup> Ra                                                                                                                     |
| 2000Pe30   | M.R.Pearson, P.Campbell, K.Leerungnavarat, J.Billowes et al J.Phys.(London) G26, 1829 (2000).                                                                                                          |
|            | Nuclear Moments and Charge Radii of Bismuth Isotopes.                                                                                                                                                  |
| 2001Bi23   | J.Bieron, P.Pyykko - Phys.Rev.Lett. 87, 133003 (2001).                                                                                                                                                 |
| 200211 20  | Nuclear Quadrupole Moments of Bismuth.                                                                                                                                                                 |
| 2002He29   | F.P.Hessberger, S.Hofmann, I.Kojouharov, D.Ackermann et al Eur.Phys.J. A 15, 335 (2002).                                                                                                               |
| 2002Mi20   | Kaaloachve aecay of <sup>22</sup> Pa.<br>S Mitsuoka H Ikezoe K Nishio K Satou II.u. Phys Rev. C65, 054608 (2002)                                                                                       |
| 2002101120 | Effects of Neutron Number and Nuclear Deformation on Complete Fusion of $^{60,64}$ Ni + $^{154}$ Sm Near the Coulomb Barrier                                                                           |
| 2002Mo46   | V.A.Morozov, N.V.Morozova, Yu.V.Norseev, Zh.Sereeter, V.B.Zlokazov - Nucl.Instrum.Methods Phys.Res. A484, 225 (2002).                                                                                  |
|            | High-sensitivity delayed-coincidence spectrometer to search for short-lived nuclear states.                                                                                                            |
| 2002Sa22   | K.Satou, H.Ikezoe, S.Mitsuoka, K.Nishio, S.C.Jeong - Phys.Rev. C65, 054602 (2002).                                                                                                                     |
| 20020171   | Effect of Shell Structure in the Fusion Reactions ${}^{62}Se + {}^{134}Ba$ and ${}^{62}Se + {}^{136}Ba$ .                                                                                              |
| 2003CnZ v  | V.G.Chumin, V.I.Fominykh, K. Ya.Gromov, A.A.Klimenko et al Program and Thesis, Proc.Conf.on Nucl.Physics (53rd<br>Ann.Conf.Nucl.Spectrosc.At.Nuclei), Moscow, p.105 (2003).                            |
| 2003Ik01   | H Ikezoe K Satou S Mitsuoka K Nishio S C Jeong - Yad Fiz 66 1089 (2003): Phys Atomic Nuclei 66 1053 (2003)                                                                                             |
| 20031101   | Effect of Nuclear Shell Structure on Fusion Reaction.                                                                                                                                                  |
| 2003Ku25   | J.Kurpeta, A.Plochocki, A.N.Andreyev, J.Aysto et al Eur.Phys.J. A 18, 5 (2003).                                                                                                                        |
|            | The decay of the new neutron-rich isotope $^{217}Bi$ .                                                                                                                                                 |
| 2003LaZZ   | G.J.Lane, A.P.Byrne, G.D.Dracoulis - Proc.Frontiers of Nuclear Structure, Berkeley, California, P.Fallon and R.Clark,                                                                                  |
|            | Eds., p.386 (2003); AIP Conf.Proc. 656 (2003).<br>High Spin Jacomers, Pasidual Interactions and Octupals Convolutions In The N=128 Isotomes, <sup>211</sup> Pi <sup>212</sup> Po and <sup>213</sup> At |
| 2003Ni10   | K Nishio, H Ikezoe, S Mitsuoka, K Satou, C I J in Phys Rev. C 68, 064305 (2003)                                                                                                                        |
| 20051110   | Half-life of $^{228}$ Pu and $\alpha$ decay of $^{228}$ Np                                                                                                                                             |
| 2004Da23   | M.Dasgupta, P.R.S.Gomes, D.J.Hinde, S.B.Moraes et al Phys.Rev. C 70, 024606 (2004).                                                                                                                    |
|            | Effect of breakup on the fusion of <sup>6</sup> Li, <sup>7</sup> Li, and <sup>9</sup> Be with heavy nuclei.                                                                                            |
| 2004DeZV   | H.De Witte - Thesis, Leuven Univ. Belgium (2004).                                                                                                                                                      |
|            | Probing the nuclear structure along the Z=82 closed shell: decay- and laser spectroscopic studies of exotic Pb, Bi and Po                                                                              |
|            | nuclei.                                                                                                                                                                                                |

|           | Decay properties of isomeric states in radium isotopes close to $N = 126$ .                                                          |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------|
| 2004Li28  | C.F.Liang, P.Paris, R.K.Sheline, P.Alexa - Czech.J.Phys. 54, 189 (2004).                                                             |
|           | Alpha decay of <sup>221</sup> Rn and <sup>217</sup> Po; level structure of <sup>217</sup> Po and the <sup>213</sup> Pb ground state. |
| 2005Ga46  | A.B.Garnsworthy, N.J.Thompson, Zs.Podolyak, P.M.Walker et al J.Phys.(London) G31, S1851 (2005).                                      |
|           | Spectroscopy of $^{212}Po$ and $^{213}At$ using a <sup>8</sup> He radioactive beamand EXOGAM.                                        |
| 2005Ku31  | P.Kuusiniemi, F.P.Hessberger, D.Ackermann, S.Hofmann et al Eur.Phys.J. A 25, 397 (2005).                                             |
|           | Decay studies of $^{215-217}$ Th using ER- $\gamma$ - $\alpha$ - $\gamma$ coincidences.                                              |
| 2005Le42  | AP.Leppanen, J.Uusitalo, S.Eeckhaudt, T.Enqvist et al Eur.Phys.J. A 25, Supplement 1, 183 (2005).                                    |
|           | Alpha-decay study of $^{218}$ U; a search for the sub-shell closure at Z= 92.                                                        |
| 2005Li17  | Z.Liu, J.Kurcewicz, P.J.Woods, C.Mazzocchi et al Nucl.Instrum.Methods Phys.Res. A543, 591 (2005).                                    |
|           | Decay spectroscopy of suburanium isotopes following projectile fragmentation of $^{238}U$ at 1 GeV/u.                                |
| 2005YeZZ  | A.V.Yeremin, A.V.Belozerov, M.L.Chelnokov, V.I.Chepigin et al Proc.Intern.Symposium Exotic Nuclei, Peterhof,                         |
|           | Russia, July 5-12, 2004, Yu.E.Penionzhkevich, E.A.Cherepanov, Eds., World Scientific, Singapore, p.206 (2005).                       |
|           | Gamma spectroscopy of transfermium elements at the VASSILISSA set up.                                                                |
| 2006Ku26  | P.Kuusiniemi, F.P.Hessberger, D.Ackermann, S.Antalic et al Eur.Phys.J. A 30, 551 (2006).                                             |
|           | Studies of $^{213g,m}Ra$ and $^{214g,m}Ra$ by $\alpha$ and $\gamma$ decay.                                                           |
| 2006Po01  | Zs.Podolyak, J.Gerl, M.Hellstrom, F.Becker et al Phys.Lett. B 632, 203 (2006).                                                       |
|           | High angular momentum states populated in fragmentation reactions.                                                                   |
| 2007Ba19  | M.S.Basunia - Nucl.Data Sheets 108, 633 (2007).                                                                                      |
|           | Nuclear Data Sheets for $A = 213$ .                                                                                                  |
| 2007Kh22  | J.Khuyagbaatar, S.Hofmann, F.P.Hessberger, D.Ackermann et al Eur.Phys.J. A 34, 355 (2007).                                           |
|           | <i>Isomeric states in <sup>214</sup>Th and <sup>213</sup>Th.</i>                                                                     |
| 2007Ma57  | A.Marinov, I.Rodushkin, Y.Kashiv, L.Halicz et al Phys.Rev. C 76, 021303 (2007).                                                      |
|           | Existence of long-lived isomeric states in naturally-occurring neutron-deficient Th isotopes.                                        |
| 2008ChZI  | L.Chen - Justus-Liebig Univ. Giessen (2008).                                                                                         |
| 20000 77  | Investigation of stored neutron-rich nuclides in the element range of Pt-U with the FRS-ESR facility at 360-400 Mev/u.               |
| 2008DoZZ  | O.Dorvaux, A.Lopez-Martens, K.Hauschild, A.V.Yeremin et al Proc.Frontiers in Nuclear Structure, and Reactions                        |
|           | (FINUSTAR 2), Crete, Greece, 10-14 Sept. 2007, P.Demetriou, R.Julin, S.V.Harissopulos, Eds. p.64 (2008); AIP                         |
|           | Cont.Proc 1012 (2008).                                                                                                               |
| 20081 214 | spectroscopy of nearly elements al Dania.<br>Ll achier I Dillingung T Faastermann C Korschingk et al. Phys Rev. C 78, 064313 (2008)  |
| 20001414  | Search for long-lived isomeric states in neutron-deficient thorium isotones                                                          |
| 2009Ga07  | L.R.Gascues, D.J.Hinde, M.Dasgunta, A.Mukheriee, R.G.Thomas - Phys.Rev. C 79, 034605 (2009).                                         |
| 2007 0407 | Suppression of complete fusion due to breakup in the reactions $10,118 \pm 209 Ri$                                                   |
| 2009Pa49  | VN Panteleev O Alvakrinskiv M Barbui, A E Barzakh et al Eur Phys I A 42, 495 (2009).                                                 |
| 20071417  | Production of Cs and Fr isotopes from a high-density UC targets with different grain dimensions                                      |
| 2009Vi09  | A.M.Vinodkumar, W.Loveland, P.H.Sprunger, L.Prisbrev et al Phys.Rev. C 80, 054609 (2009).                                            |
|           | Fusion of <sup>9</sup> Li with <sup>208</sup> Ph                                                                                     |
| 2010Al24  | H.Alvarez-Pol, J.Benlliure, E.Casarejos, L.Audouin et al Phys.Rev. C 82, 041602 (2010).                                              |
|           | Production of new neutron-rich isotopes of heavy elements in fragmentation reactions of $2^{38}U$ projectiles at 1A GeV.             |
| 2010Ch19  | L.Chen, W.R.Plass, H.Geissel, R.Knobel et al Phys.Lett. B 691, 234 (2010).                                                           |
|           | Discovery and investigation of heavy neutron-rich isotopes with time-resolved Schottky spectrometry in the element range             |
|           | from thallium to actinium.                                                                                                           |
| 2010Da04  | M.Dasgupta, D.J.Hinde, S.L.Sheehy, B.Bouriquet - Phys.Rev. C 81, 024608 (2010).                                                      |
|           | Suppression of fusion by breakup: Resolving the discrepancy between the reactions of $^{9}$ Be with $^{208}$ Pb and $^{209}$ Bi.     |
| 2010Fi10  | R.Fitzgerald, R.Colle, L.Laureano-Perez, L.Pibida et al Appl.Radiat.Isot. 68, 1303 (2010).                                           |
|           | A new primary standardization of <sup>229</sup> Th.                                                                                  |
| 2011As05  | A.Astier, MG.Porquet - Phys.Rev. C 83, 034302 (2011), Erratum Phys.Rev. C 86, 049905 (2012).                                         |
|           | High-spin states in the five-valence-particle nucleus <sup>213</sup> Po.                                                             |
| 2011Ka30  | Sh.A.Kalandarov, G.G.Adamian, N.V.Antonenko, W.Scheid et al Phys.Rev. C 84, 054607 (2011).                                           |
|           | Emission of clusters with $Z > 2$ from excited actinide nuclei.                                                                      |
| 2011Ko04  | F.G.Kondev, S.Lalkovski - Nucl.Data Sheets 112, 707 (2011).                                                                          |
|           | Nuclear Data Sheets for A = 207.                                                                                                     |
| 2012Be28  | G.Benzoni, A.I.Morales, J.J.Valiente-Dobon, A.Gottardo et al Phys.Lett. B 715, 293 (2012).                                           |
| 20120110  | First measurement of beta decay half-lives in neutron-rich 11 and Bi isotopes.                                                       |
| 2012Cn19  | L.Chell, W.K.Plass, H.Gelssel, K.Khodel et al NUCLPhys. A882, /1 (2012).                                                             |
|           | <i>thew results on mass measurements of stored neutron-rich nuclides in the element range from Pt to U with the FRS-ESR</i>          |
| 2012No08  | C Nociforo F Farinon A Musumarra F Bosch et al Phys Scr. T150, 014028 (2012)                                                         |
| _01_11000 | Measurements of $\alpha$ -decay half-lives at GSI.                                                                                   |
| 2013An02  | I.Angeli, K.P.Marinova - At.Data Nucl.Data Tables 99, 69 (2013).                                                                     |
|           | Table of experimental nuclear ground state charge radii: An update.                                                                  |

| 2013Ba29      | A.M.D.Bacelar, A.M.Bruce, Zs.Podolyak, N.Al-Dahan et al Phys.Lett. B 723, 302 (2013).                                                                                                                |
|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2013Bo18      | M.Bowry, Zs.Podolyak, S.Pietri, J.Kurcewicz et al Phys.Rev. C 88, 024611 (2013).                                                                                                                     |
|               | Population of high-spin isomeric states following fragmentation of <sup>238</sup> U.                                                                                                                 |
| 2013Fi08      | M.Fisichella, A.Musumarra, F.Farinon, C.Nociforo et al Phys.Rev. C 88, 011303 (2013).                                                                                                                |
| 2013Ma13      | M.Marouli, G.Suliman, S.Pomme, R.Van Ammel et al Appl.Radiat.Isot. 74, 123 (2013).                                                                                                                   |
|               | Decay data measurements on $^{213}Bi$ using recoil atoms.                                                                                                                                            |
| 2013Si17      | B.Singh, D.Abriola, C.Baglin, V.Demetriou et al Nucl.Data Sheets 114, 661 (2013).                                                                                                                    |
| 2013Su13      | G.Suliman, S.Pomme, M.Marouli, R.Van Ammel et al Appl.Radiat.Isot. 77, 32 (2013).                                                                                                                    |
| 20100010      | Half-lives of $^{221}$ Fr, $^{217}$ At, $^{213}$ Bi, $^{213}$ Po and $^{209}$ Pb from the $^{225}$ Ac decay series.                                                                                  |
| 2013Vi01      | A.M.Vinodkumar, W.Loveland, R.Yanez, M.Leonard et al Phys.Rev. C 87, 044603 (2013).                                                                                                                  |
| 2014C - 19    | Interaction of "Li with SPD.<br>D. Califord, C. Califord, M. Tardachi, J.A. Dahr et al., Phys. Rev. A 00, 052502 (2014). Exectory Phys. Rev. A 02, 010002                                            |
| 2014C018      | R.Collister, G.Gwinner, M. Iandecki, J.A.Benr et al Phys.Rev. A 90, 052502 (2014), Erratum Phys.Rev. A 92, 019902 (2015)                                                                             |
|               | (2017).<br>Kotope shifts in francium isotopes $^{206-213}$ Fr and $^{221}$ Fr                                                                                                                        |
| 2014Mo02      | A.I.Morales, G.Benzoni, A.Gottardo, J.J.Valiente-Dobon et al Phys.Rev. C 89, 014324 (2014).                                                                                                          |
|               | β-decay studies of neutron-rich Tl, Pb, and Bi isotopes.                                                                                                                                             |
| 2014Mo15      | A.I.Morales, J.Benlliure, T.Kurtukian-Nieto, KH.Schmidt et al Phys.Rev.Lett. 113, 022702 (2014).                                                                                                     |
|               | Half-Life Systematics across the $N=126$ Shell Closure: Role of First-Forbidden Transitions in the $\beta$ Decay of Heavy                                                                            |
| 2014Pr09      | Neutron-Rich Nuclei.<br>B.Pritychenko, E.Betak, B.Singh, I.Totans - Nucl.Data Sheets 120, 291 (2014).                                                                                                |
| 20111109      | Nuclear Science References Database.                                                                                                                                                                 |
| 2014Si03      | V.Singh, B.R.Behera, M.Kaur, A.Kumar et al Phys.Rev. C 89, 024609 (2014).                                                                                                                            |
|               | Measurement of evaporation residue excitation functions for the ${}^{19}F + {}^{194,196,198}Pt$ reactions.                                                                                           |
| 2015Ba20      | J.S.Barrett, W.Loveland, R.Yanez, S.Zhu et al Phys.Rev. C 91, 064615 (2015).                                                                                                                         |
|               | $^{136}Xe + ^{208}Pb$ reaction: A test of models of multinucleon transferreactions.                                                                                                                  |
| 2015Ch30      | J.Chen, F.G.Kondev - Nucl.Data Sheets 126, 373 (2015).                                                                                                                                               |
|               | Nuclear Data Sheets for $A = 209$ .                                                                                                                                                                  |
| 2015De22      | H.M.Devaraja, S.Heinz, O.Beliuskina, V.Comas et al Phys.Lett. B 748, 199 (2015).                                                                                                                     |
|               | Observation of new neutron-deficient isotopes with $Z \ge 92$ in multinucleon transfer reactions.                                                                                                    |
| 2015Ma63      | D.A.Mayorov, T.A.Werke, M.C.Alfonso, E.E.Tereshatov et al Phys.Rev. C 92, 054601 (2015).                                                                                                             |
|               | Evaporation residue excitation function measurements in $^{50}$ Ti- and $^{54}$ Cr-induced reactions with lanthanide targets.                                                                        |
| 2015So17      | Sonika, B.J.Roy, A.Parmar, U.K.Pal et al Phys.Rev. C 92, 024603 (2015).                                                                                                                              |
|               | Multinucleon transfer study in $^{206}Pb(^{18}O, x)$ at energies above the Coulomb barrier.                                                                                                          |
| 2016Ca25      | R.Caballero-Folch, C.Domingo-Pardo, J.Agramunt, A.Algora et al Phys.Rev.Lett. 117, 012501 (2016).                                                                                                    |
|               | First Measurement of Several $\beta$ -Delayed Neutron Emitting Isotopes Beyond N = 126.                                                                                                              |
| 2016Pr08      | Pragati, A.Y.Deo, Zs.Podolyak, P.M.Walker et al Phys.Rev. C 94, 064316 (2016).                                                                                                                       |
| 001(0)11      | Decay of the $N=126$ , <sup>213</sup> Fr nucleus.                                                                                                                                                    |
| 2016St14      | N.J.Stone - At.Data Nucl.Data Tables 111-112, 1 (2016).                                                                                                                                              |
| 2017C-12      | Table of nuclear electric quadrupole moments.                                                                                                                                                        |
| 2017Ca12      | R. Cabanero-Forch, C. Dominigo-Pardo, J. Agramum, A. Argora et al Phys. Rev. C 95, 004522 (2017).                                                                                                    |
|               | p-aecay nalp-lives and $p$ -delayed neutron emission probabilities forseveral isotopes of Au, fig. 11, Fb, and Bi, beyond $N-126$                                                                    |
| 2017Fe10      | R.Ferrer, A.Barzakh, B.Bastin, R.Beerwerth et al Nat. Commun. 8, 14520 (2017).                                                                                                                       |
|               | Towards high-resolution laser ionization spectroscopy of the heaviestelements in supersonic gas jet expansion.                                                                                       |
| 2017Gr18      | C.Granados, P.Creemers, R.Ferrer, L.P.Gaffney et al Phys.Rev. C 96, 054331 (2017).                                                                                                                   |
|               | In-gas laser ionization and spectroscopy of actinium isotopes near the $N=126$ closed shell.                                                                                                         |
| 2017Lo13      | Ch.Lorenz, L.G.Sarmiento, D.Rudolph, D.E.Ward et al Phys.Rev. C 96, 034315 (2017).                                                                                                                   |
|               | Quantum-state-selective decay spectroscopy of $^{213}$ Ra.                                                                                                                                           |
| 2018Al32      | E.N.Alexeev, Yu.M.Gavrilyuk, A.M.Gangapshev, A.M.Gezhaev et al Physics of Part.and Nuclei 49, 557 (2018).                                                                                            |
|               | Search for Variations of <sup>213</sup> Po Half-Life.                                                                                                                                                |
| 2018Ba03      | A.E.Barzakh, D.V.Fedorov, V.S.Ivanov, P.L.Molkanov et al Phys.Rev. C 97, 014322 (2018).                                                                                                              |
| 201912-01     | Shell effect in the mean square charge radii and magnetic moments of bismuth isotopes near $N=126$ .                                                                                                 |
| 2018K001      | F.G.Kondev, E.A.NicCutchan, B.Singh, K.Banerjee et al Nucl.Data Sheets 14/, 382 (2018).                                                                                                              |
| $2018D_{0}04$ | INUCLEUR DUR SHEETS JOR $A = 21/$ .<br>T Dalazzo, G. I. Jana, A. E. Stuchherv, A. I. Mitchell et al. Drug Day, C. 07, 014202 (2018).                                                                 |
| 2010FaU4      | 1.1 at a L20, O.J. Land, A.E. Studnower, A.J. Windhen et al Flys. Kev. $U = 97$ , 014525 (2016).                                                                                                     |
| 201889/15     | nigh-spin speciroscopy and sheu-model interpretation of the IV < 120 radium isotopes                                                                                                                 |
| 20103a4J      | A. Saamark-Rom, E.O. Sammento, D. Rudolphi, J.Ljungoelg et al Flys. Rev. C 90, 044507 (2010).<br>Low bying states in $219 \text{ Pa}$ and $215 \text{ Ph}$ . Campling microscopid of decrying mucloi |
|               | Low-tying states in Ka and Kn: sampling microsecona $\alpha$ -aecaying nuclei.                                                                                                                       |

<sup>2019</sup>Ba22 A.E.Barzakh, J.G.Cubiss, A.N.Andreyev, M.D.Seliverstov et al. - Phys.Rev. C 99, 054317 (2019).

|          | Inverse odd-even staggering in nuclear charge radii and possible octupole collectivity in <sup>217,218,219</sup> At revealed by in-source |
|----------|-------------------------------------------------------------------------------------------------------------------------------------------|
| 20100 10 | laser spectroscopy.                                                                                                                       |
| 2019Go10 | A.Gottardo, J.J. valiente-Dobon, G.Benzoni, A.I.Morales et al Phys.Rev. C 99, 054526 (2019).                                              |
|          | New spectroscopic information on $^{11213}$ II: A changing structure beyond the N=120 shell closure.                                      |
| 2019Mi08 | A.K.Mistry, J.Khuyagbaatar, F.P.Hessberger, D.Ackermann et al Nucl. Phys. A987, 337 (2019).                                               |
|          | The $^{46}Ca + ^{161}Ta$ reaction: Cross section studies and investigation of neutron-deficient $86 \le Z \le 93$ isotopes.               |
| 2019Mo01 | P.Moller, M.R.Mumpower, T.Kawano, W.D.Myers - At.Data Nucl.Data Tables 125, 1 (2019).                                                     |
|          | Nuclear properties for astrophysical and radioactive-ion-beam applications (II).                                                          |
| 2019StZV | N.J.Stone - INDC(NDS)-0794 (2019).                                                                                                        |
|          | Table of Recommended Nuclear Magnetic Dipole Moments: Part I – Long-lived States.                                                         |
| 2019Ya04 | H.B.Yang, Z.G.Gan, Z.Y.Zhang, M.M.Zhang et al Eur.Phys.J. A 55, 8 (2019).                                                                 |
|          | A digital pulse fitting method for the $\alpha$ decay studies of short-lived nuclei.                                                      |
| 2019Zh54 | M.M.Zhang, Y.L.Tian, Y.S.Wang, X.H.Zhou et al Phys.Rev. C 100, 064317 (2019).                                                             |
|          | Fine structure in the $\alpha$ decay of <sup>219</sup> U.                                                                                 |
| 2020Au04 | K.Auranen, J.Uusitalo, H.Badran, T.Grahn et al Phys.Rev. C 102, 034305 (2020).                                                            |
|          | Exploring the boundaries of the nuclear landscape: $\alpha$ -decay properties of <sup>211</sup> Pa.                                       |
| 2020De36 | H.M.Devaraja, S.Heinz, D.Ackermann, T.Gobel et al Eur.Phys.J. A 56, 224 (2020).                                                           |
|          | New studies and a short review of heavy neutron-rich transfer products.                                                                   |
| 2020Go11 | R.S.Gomes, J.U.Delgado, C.J.da Silva, R.L.da Silva et al Appl.Radiat.Isot. 166, 109323 (2020).                                            |
|          | Measurement of the absolute gamma emission intensities from the decayof Th-229 in equilibrium with progeny.                               |
| 2020Ko06 | K.Kossert, M.P.Takacs, O.Nahle - Appl.Radiat.Isot. 156, 109020 (2020).                                                                    |
|          | Determination of the activity of $^{225}Ac$ and of the half-lives of $^{213}Po$ and $^{225}Ac$ .                                          |
| 2020Ko17 | F.G.Kondev - Nucl.Data Sheets 166, 1 (2020).                                                                                              |
|          | Nuclear Data Sheets for $A = 205$ .                                                                                                       |
| 2020Si16 | S.Singh, S.Kumar, B.Singh, A.K.Jain - Nucl.Data Sheets 167, 1 (2020).                                                                     |
|          | Nuclear radius parameters ( $r_0$ ) for even-even nuclei from alpha decay.                                                                |
| 2020StZV | N.Stone - INDC(NDS)–0816 (2020).                                                                                                          |
|          | Table of Recommended Nuclear Magnetic Dipole Moments: Part II, Short-Lived States.                                                        |
| 2021Ge07 | M.S.M.Gerathy, A.J.Mitchell, G.J.Lane, A.E.Stuchbery et al Phys.Lett. B 823, 136738 (2021).                                               |
|          | Emerging collectivity in neutron-hole transitions near doubly magic <sup>208</sup> Pb.                                                    |
| 2021Hu19 | W.Hua, Z.Zhang, L.Ma, Z.Gan et al Chin, Phys.C 45, 044003 (2021).                                                                         |
|          | $\alpha$ -decay study of <sup>218</sup> Ac and <sup>221</sup> Th in <sup>40</sup> Ar+ <sup>186</sup> W reaction.                          |
| 2021Ko07 | F.G.Kondev, M.Wang, W.J.Huang, S.Naimi, G.Audi - Chin.Phys.C 45, 030001 (2021).                                                           |
|          | The NUBASE2020 evaluation of nuclear physics properties.                                                                                  |
| 2021Ta01 | M.P.Takacs, K.Kossert - Appl.Radiat.Isot. 167, 109425 (2021).                                                                             |
|          | Half-life determination of $^{213}$ Bi and $^{209}$ Pb by means of Cherenkov counting and detection with a NaI detector.                  |
| 2021Va03 | J.J.Valiente-Dobon, A.Gottardo, G.Benzoni, A.Gadea et al Phys.Lett. B 816, 136183 (2021).                                                 |
|          | <i>Manifestation of the Berry phase in the atomic nucleus</i> <sup>213</sup> <i>Pb.</i>                                                   |
| 2021Wa16 | M.Wang, W.J.Huang, F.G.Kondev, G.Audi, S.Naimi - Chin.Phys.C 45, 030003 (2021).                                                           |
|          | The AME 2020 atomic mass evaluation (II). Tables, graphs and references.                                                                  |
| 2021Zh24 | H.B.Zhou, Z.G.Gan, N.Wang, H.B.Yang et al Phys.Rev. C 103, 044314 (2021).                                                                 |
|          | Lifetime measurement for the isomeric state in $^{213}$ Th.                                                                               |