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Abstract of the Dissertation

Spatial-Temporal Branching Point Process

Models in the Study of Invasive Species

by

Earvin Balderama

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2012

Professor Frederic R. Paik Schoenberg, Chair

Earthquake occurrences are often described using a class of branching models

called Epidemic-Type Aftershock Sequence (ETAS) models. The name derives

from the fact that the model allows earthquakes to cause aftershocks, and then

those aftershocks may induce subsequent aftershocks, and so on. Despite their

value in seismology, such models have not previously been used in studying the

incidence of invasive plant and animal species. Here, we apply a modified version of

the space-time ETAS model to study the spread of an invasive species red banana

trees (Musa velutina) in a Costa Rican rainforest. One challenge in this ecological

application is that fitting the model requires the originations of the plants, which

are not observed but may be estimated using filed data on the heights of the plants

on a given date and their empirical growth rates. The formulation of the triggering

density function, which describes the way events cause future occurrences of events

is based on plots of inter-event times and distances for the red banana plants. We

characterize the estimated spatial-temporal rate of spread of red banana plants

using a space-time ETAS model. We then assess the triggering density more

carefully using a non-parametric stochastic declustering method based on Marsan

and Lengliné (2008). When the algorithm is applied to the red banana data,

the results indicate similar temporal and spatial structure, compared to previous
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estimates, as well as triggering of offspring running primarily to the northwest and

the southeast from each parent. Non-parametric results are also used to obtain

estimates of the most likely targets where immigration of red banana plants may

be occurring.

iii



The dissertation of Earvin Balderama is approved.

Philip W. Rundel

Hongquan Xu

Qing Zhou

Frederic R. Paik Schoenberg, Committee Chair

University of California, Los Angeles

2012

iv



To my mom . . .

for all your love and support

I could never have done any of this without you

v



Table of Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Red Banana Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Included variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Models for Invasive Species . . . . . . . . . . . . . . . . . . . . . . 10

3.1 Non-spatial models . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Spatially implicit models . . . . . . . . . . . . . . . . . . . . . . . 11

3.3 Spatially explicit models . . . . . . . . . . . . . . . . . . . . . . . 12

3.4 Spatial point processes . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Spatial point pattern analysis over time . . . . . . . . . . . . . . . 14

4 Branching Point Process Models . . . . . . . . . . . . . . . . . . . 16

4.1 Spatial-temporal point processes . . . . . . . . . . . . . . . . . . . 16

4.2 Self-exciting point processes . . . . . . . . . . . . . . . . . . . . . 17

4.3 Epidemic-type aftershock sequence models . . . . . . . . . . . . . 18

5 Adjusting the Triggering Function . . . . . . . . . . . . . . . . . . 20

5.1 Temporal clustering . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5.2 Spatial clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5.3 Magnitude and productivity . . . . . . . . . . . . . . . . . . . . . 24

5.4 Model summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

6 Analysis of Parametric Model . . . . . . . . . . . . . . . . . . . . . 28

vi



6.1 Maximum likelihood estimation . . . . . . . . . . . . . . . . . . . 28

6.2 Errors in estimated birth times . . . . . . . . . . . . . . . . . . . 30

6.3 Residual Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3.1 Thinned residuals . . . . . . . . . . . . . . . . . . . . . . . 31

6.3.2 Super-thinned residuals . . . . . . . . . . . . . . . . . . . . 32

6.4 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.5 Future range expansion . . . . . . . . . . . . . . . . . . . . . . . . 35

7 Non-parametric Methods . . . . . . . . . . . . . . . . . . . . . . . 40

7.1 Stochastic declustering . . . . . . . . . . . . . . . . . . . . . . . . 40

7.2 Non-parametric stochastic declustering . . . . . . . . . . . . . . . 40

7.3 Modified non-parametric algorithm for invasive plant species . . . 42

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

vii



List of Figures

2.1 Top: Map of observed red bananas with larger circles indicating

taller plants. Bottom: Latitude and Longitude each plotted against

height. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2 (a) Distribution of heights of observed plants. (b) A plot of the

cumulative number of plants against height. (c) A plot of latitude

against height. (d) A plot of longitude against height. We notice

that the taller plants occurs in the area of high latitude and low

longitude. This is apparent in the map in Figure 2.1. . . . . . . . 9

5.1 Running medians of length 21 plants of the rate of growth of a plant

is plotted (as gray dots) against the mean height of the plant. The

function r(h) (solid green curve) is estimated by a kernel smoother. 21

5.2 Histogram of estimated birth times. . . . . . . . . . . . . . . . . . 22

5.3 Histogram of estimated inter-event times (black), obtained by tak-

ing the differences in estimated birth times between pairs of plants

that are less than 100 meters apart. The exponential density curve

(red) has rate λ = 0.0354, fitted by maximum likelihood. . . . . . 23

5.4 Survival function of estimated inter-event times (black). The sur-

vival curve of the fitted exponential density curve (red) has rate

λ = 0.0354. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.5 Map of observed red banana plants in the transformed coordinate

plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.6 Histogram of the inter-event distances of plants estimated to have

originated within six weeks of each other (black). The exponential

density curve (red) has rate λ = 1.44, fitted by maximum likelihood. 26

viii



5.7 A survival plot for the inter-event distances (black). The survival

curve of the fitted exponential distribution function (red) has rate

λ = 1.44. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

6.1 Estimated proportion of background events over time. . . . . . . . 30

6.2 Estimated background rate µ̂(x, y) obtained by kernel smoothing,

along with all observed plants (black points). . . . . . . . . . . . . 31

6.3 Left: One realization of super-thinned residuals with rate λ = 40.

Right: Ripley’s K-functions; dotted lines represent 95% interval

bounds for homogeneous Poisson processes and shaded region rep-

resents 95% interval bounds for super-thinned residuals. . . . . . . 34

6.4 Left: Original data points. Right: Simulated points based on

model (5.7). Darker circles correspond to more recent points. . . . 35

6.5 Invasion within space window over time. Darker blocks indicates

earlier mean time of first invasion. . . . . . . . . . . . . . . . . . . 37

6.6 Mean number of weeks of first invasion occurrence in a cell. The

space window is divided into a 20× 20 grid of cells. Cells without

a number indicates an average first invasion time of greater than

100 years. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

6.7 Cumulative number of blocks invaded over time. The horizontal

axis indicates the number of years after the first simulated plant

birth. The space window is divided into a 20 × 20 grid shown in

Figure 6.5, for a total of 400 possible invasions. . . . . . . . . . . 39

ix



7.1 Log-survival function of inter-event times between pairs of plants.

The solid blue curve represents the cumulative sum of the proba-

bilities ρij for the specified inter-event time after applying the non-

parametric method discussed in Section 7.3. The red Hawkes/ETAS

curve is the exponential decay function with rate 0.0761, obtained

from the parametric estimate of the branching model. The dashed

blue curve corresponds to an exponential distribution, fitted to the

non-parametric estimates, with rate 0.0734. . . . . . . . . . . . . 44

7.2 Log-survival functions of inter-event distances between pairs of plants.

The solid blue curve represents the cumulative sum of the probabili-

ties ρij for the specified inter-event distance, after applying the non-

parametric model discussed in Section 7.3. The red Hawkes/ETAS

curve is the exponential decay function with rate 0.0292, obtained

from the parametric estimate of the branching model. The dashed

blue curve corresponds to an exponential distribution, fitted to the

non-parametric estimates, with rate 0.0265. . . . . . . . . . . . . 45

7.3 Locations of triggered plants relative to their parents, weighted by

the likelihood of the parent-offspring relationship estimated by the

non-parametric estimator. The center coordinate (0,0) marks the

location of a parent, and a darker red cell indicates a higher density

of first-generation offspring in that cell. Each cell is 100×100 square

meters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7.4 Locations of immigrant plants, weighted by the likelihood of each

plant being an immigrant as estimated by the non-parametric esti-

mator. Darker green cells indicate a higher probability of observing

an immigrant plant. Each cell is 100× 100 square meters. . . . . 48

x



7.5 Histogram of inter-event times from one realization of a declustered

sequence of red banana plants, using the triggering probabilities ρij

obtained from the non-parametric method discussed in Section 7.3. 49

7.6 Histogram of inter-event distances from one realization of a declus-

tered sequence of red banana plants, using the triggering proba-

bilities ρij obtained from the non-parametric method discussed in

Section 7.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

xi



List of Tables

6.1 Summary statistics of estimated parameters after giving random

errors to the original estimated birth times. . . . . . . . . . . . . 32

xii



Acknowledgments

First and foremost, I would like to thank my advisor, Rick Schoenberg, for being

the best advisor one could hope for. Thanks for being so patient and understand-

ing through the years. I have really learned a lot about being a good teacher and

researcher, and also a good poker player!

Thank you to my committee members Hongquan Xu, Qing Zhou, and Phil

Rundel for all your helpful suggestions and comments. Phil, I would still really

love to visit Costa Rica someday!

I also want to thank Nicolas Christou for being a wonderful professor and

friend. We should definitely plan another dinner at some ethnic restaurant! Also,

thank you Glenda Jones for making all the paperwork and logistics easy for me,

and thanks for all those funny conversations.

To my officemates at 8105C, thank you for being there when I needed help or

just when I needed to talk. I am grateful for being part of such an awesome office!

To my classmates during my first couple of years, thanks for all the homework

and studying help, and thanks for all those fun nights out!

Finally, to all my closest friends and family, in particular my sisters Shella and

Karen, and my sister and brother from other mothers, May and Brian, thank you

for constantly asking me when I will be done with grad school. Here you go!!!

xiii



Vita

2004 B.S. (Applied Mathematics), San José State University, San
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CHAPTER 1

Introduction

The establishment of alien (invasive) plant and animal species outside of their

natural range of distribution present a major challenge to the structure and func-

tion of natural ecosystems as well as a major economic cost through impacts on

ecosystem services. Pimentel et al. (2005, 2007) estimates the financial impact

of invasive species in the United States at over 120 billion dollars per year, and

Colautti et al. (2006) estimates the cost of eleven invasive species in Canada at up

to 34 billion canadian dollars per year. Understanding the nature and dynamics of

such invasions represents a major environmental challenge (Pejchar and Mooney

2009).

There have been very few attempts at modeling alien plant spread in the liter-

ature (Higgins and Richardson 1996), despite the devastating effects alien plants

have on natural ecosystems. For ecologists and statisticians alike, the motivation

comes from the unique opportunity to develop new methods offer insight into

ecological theory from studying the expansion of alien organisms in a new range.

In Costa Rica, an alien Musa velutina (red banana, Musaceae), has recently

spread from areas where it is cultivated into secondary forests and to a lesser degree

into primary tropical rainforests at La Selva Biological Station near Puerto Viejo

in Sarapiqùı Province. The establishment of these plants has been monitored by

researchers, and exact locations for each observed plant have been recorded using

a global positioning satellite (GPS).

The study of the detailed spatial-temporal pattern of the spread of invasive
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species such as red bananas is typically fraught with difficulty, for two major rea-

sons. First, data on such species are rarely recorded with sufficient precision, even

locally, to warrant the precise estimation of parameters governing the spatial-

temporal dispersal of the species. Second, the detailed estimation of spatial-

temporal spread has proven to be a difficult and somewhat non-standard statis-

tical problem. Ecological researchers have typically found it more convenient to

organize the data into counts of observations within predefined grid cells and to

use standard grid-based spatial statistics methods, including the application of

simple birth-and-death models, though such analyses obviously result in a loss of

crucial information for the study of spread on small scales (Keeling et al. 2001;

Peters 2004).

Fortunately, both of these hurdles may be overcome in the present application.

In the case of red bananas in Costa Rica, the precise locations of the plants have

been recorded by researchers, and because the plants have only recently been iden-

tified in Costa Rica, their numbers are sufficiently small and the records sufficiently

careful to warrant a detailed analysis of their spread. Regarding the problem of

statistical analysis, one can appeal to modern innovations in the statistical anal-

ysis of earthquakes, which have led to substantial gains in the characterization

of aftershock activity. As with lists of red banana plant sightings, catalogs of

earthquakes include detailed estimates of the spatial location associated with the

origin of each event, and point process methods have been used to characterize

the spread, or aftershock activity, associated with each event. In fact, prevail-

ing methods in seismology involve the use of so-called epidemic branching point

process models, where one earthquake may trigger aftershocks, those aftershocks

trigger further aftershocks, and so on. Space-time versions of these models and

methods for their estimation have recently become sufficiently robust to describe

seismicity on various different space-time scales, and thus may also be used to

describe other phenomena such as invasive species. The potential advantage of
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the use of such methods, as opposed to grid-based methods, is improved precision

in the characterization of the spatial-temporal spread of the events being studied.

The spatial distribution of the plants can be thought of as a point process,

where each individual plant is represented by a point on the surface of the Earth.

The invasive nature of the plant leads to the assumption (as well as observation)

that each plant can spread its seeds and initiate the growth of more plants around

it, and each of those plants will spread its own seeds at smaller or larger distances,

creating multiple nodes of invasion (Pysek and Hulme 2005). The spread of seeds

can be attributed to a variety of different mechanisms, from animals consuming

the fleshy fruits and dispersing the seeds (Begon et al. 2006; Gosper et al. 2005),

as well as by fruits floating in frequent flood events.

Studies of invasive plants are usually concerned with the environmental im-

pact and harmful effect of the particular species of plants on local biodiversity

and ecosystem processes, and much less on the detailed spatial-temporal patterns

of the plant occurrences (Higgins and Richardson 1996; Peters 2004). Simple de-

mographic models have been proposed for plant spread, including exponential,

logistic, and logistic-difference equation models, which have no spatial component

and predict the total number of individuals in a population over time. As noted in

Higgins and Richardson (1996), early spatial models for plant spread only modeled

the total area of coverage, rather than the detailed locations of the observations:

regression models, for instance, attempt to quantify the amount of area invaded

over time (Thompson 1991; Lonsdale 1993; Perrins et al. 1993; Pysek and Prach

1993; Delisle et al. 2003; Peters 2004). Related models include reaction-diffusion

models, which use the spatial locations and the contagious behavior of the species

in modeling invasion (Peters 2004). Reaction-diffusion models use partial differen-

tial equations to characterize the rate of spread and expansion range but require

good estimates of the rate of population growth and diffusivity, and like regression

models, are typically applied over spatial grids (Higgins and Richardson 1996);
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as a result, detailed spatial information is typically lost, relative to point process

methods. Studies that do treat such epidemic-type data as a point process are

usually of diseases in animal populations, and typically use grid-based birth-and-

death rather than branching point process models (Keeling et al. 2001; Keeling

2005; Diggle and Zheng 2005; Diggle 2006; Riley 2007), essentially ignoring de-

tailed information on the spatial locations.

More recent studies have looked into distributions of seed dispersal (Marco

et al. 2011; Wang et al. 2011a) which may give more insight into the spatial dis-

tribution of the spread of plants after invading new territory. However, these

studies generally analyze spread through either a purely spatial or a purely tem-

poral model, essentially ignoring spatial-temporal interdependence, rather than

modeling the entire spatial-temporal evolution of the process.

The process by which plants spread seeds naturally lends itself to spatial-

temporal self-exciting point process analysis. As noted by Law et al. (2009), unlike

grid-based studies on area occupation, where the surface of study is divided into

an array of pixels on a grid, point process methodology over time and space allows

for greater precision when taking exact times and locations into account, and can

offer plant ecologists a more detailed and precise account of spatial heterogeneity

and clustering.

In this disseration, we propose the use of a class of branching point process

models called epidemic-type aftershock sequence (ETAS) models to characterize

the spatial-temporal spreading patterns of the red banana plants. We then ex-

plore a completely non-parametric method of estimating the components in such

a model. Such a non-parametric estimate is useful for two reasons: first, the

components when estimated non-parametrically will offer superior fit to the data

when the exponential model does not fit perfectly; second, such non-parametric

estimates can be used to verify whether the exponential model seems to be an

appropriate approximation. In order to estimate the spatial-temporal spread of
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plants non-parametrically, we focus mainly on the branching structure which in-

dicates the triggering process of events.

The remainder of this dissertation is organized as follows. The red banana

data invasive to Costa Rica are described in Chapter 2. Previous models of inva-

sive species are summarized in Chapter 3. Branching point processes, including

ETAS models, are reviewed in Chapter 4. We characterize the spatial distri-

bution and estimate the birth time of each plant to characterize the temporal

structure in Chapter 5. Maximum likelihood is used to estimate the parameters

of our adjusted ETAS model for red banana plants in Chapter 6.1. The model is

assessed in Chapter 6.3 using an extension of the thinned residual analysis tech-

nique of Schoenberg (2003). Chapter 6.4 shows how simulations of the model can

be used to forecast future spread. Chapter 7 describes non-parametric point pro-

cess methods that may be used to study invasive plant spread, and the application

of a non-parametric algorithm to characterize the spread of the red banana plants.

A discussion is provided in Chapter 8.
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CHAPTER 2

Red Banana Data

2.1 Data collection

Data on the red bananas were collected at La Selva Biological Station in Costa

Rica over a 15-month period beginning in late 2006. Although highly diverse

rainforest communities are often considered to be strongly resistant to the estab-

lishment of invasive species, red banana has become established in large numbers

in secondary forest stands less than 2 km from rural farms where red banana has

recently been planted widely as an ornament. Red banana is native to Southeast

Asia but is an attractive plant in tropical gardens because of its foliage and clus-

ters of small pink bananas. Because of their rapid range extension into La Selva

forests and the potential for red banana to compete with and possibly replace

native species in disturbed habitats, there is an active management program to

remove plants as they are found.

Field data on the establishment of red banana included 1008 individual plants

observed and mapped with globing positioning satellite (GPS) between Decem-

ber 2006 and January 2008. The coordinates of observed plants ranged between

83.996◦ and 84.017◦ West longitude, and 10.421◦ and 10.445◦ North latitude. Fig-

ure 2.1 shows a map of the observed plants. The general NorthWest-SouthEast

trend observed in Figure 2.1 is mainly due to a small tributary stream running

diagonally just south of the points.

To provide data on the relative growth rates of individual plants at various

6
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Figure 2.1: Top: Map of observed red bananas with larger circles indicating

taller plants. Bottom: Latitude and Longitude each plotted against

height.

life history stages, 318 plants were allowed to continue to grow and measured

weekly over a span of 49 weeks for height, leaf number, and reproductive condition

(flowers or fruits). In practice, plants were individually monitored for an average

of 20 weeks (median of 15 weeks) because of their death or rapid growth rate that

led to a need to remove plants before mature fruits were dispersed. Nevertheless,

286 of these plants provided useful data to establish growth rates in relation to

plant size. Height measurements to the uppermost leaf height provided the most

useful indication of continuing growth, although height measurement in bananas

is somewhat subjective depending on leaf condition.
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2.2 Included variables

The variables measured on each plant include the height in centimeters, the num-

ber of leaves, the number of fruits, the number of seedlings surrounding the base

of the plant, and the day it was observed. Figure 2.2 offers information on the dis-

tribution of observed heights. Not all plants had complete measurements. Some

were missing GPS coordinates, while others had missing height values, simply

because they were too short to be considered a full grown herb. The 788 plants

with complete GPS and height data were used in the subsequent estimation and

model fitting analyses.
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Figure 2.2: (a) Distribution of heights of observed plants. (b) A plot of the

cumulative number of plants against height. (c) A plot of latitude

against height. (d) A plot of longitude against height. We notice

that the taller plants occurs in the area of high latitude and low

longitude. This is apparent in the map in Figure 2.1.
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CHAPTER 3

Models for Invasive Species

Models previously applied to invasive plants fall into one of several categories,

discussed here. This categorization is based on the model’s input requirements,

its data sources and its output variables (Higgins and Richardson 1996). Although

there are many models that fall into each category, only a few of the more popular

models are used as examples. In general, model complexity increases as we move

from non-spatial models to more spatially explicit models, where the occurrence

of events depends on spatially dependent random variables. But as Peters (2004)

notes, a parameter-heavy model may not necessarily provide better results.

3.1 Non-spatial models

Models that do not contain spatial information are sometimes referred to as demo-

graphic models because they tend to estimate population growth over time. They

assume that population density is simply related to area invaded. Typically, these

models are characterized by the differential dN
dt

, where N is the population size

at time t. The functional form of the differential equation depends on the nature

of population growth. The exponential model is a simple, yet popular, model for

population growth, although it assumes an infinite population density potential.

Because a finite amount environmental resources may be available that limits the

size of the population, a logistic model may be more appropriate.

Other models include the logistic-difference model, which discretizes the pop-
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ulation size N and time t, and stochastic models, which allow the invasion rate

to vary with respect to a random variable.

This class of models is not usually considered “invasion” models due to the

absence of a spatial component. Non-spatial models are useful for population den-

sity estimation and serves as a theoretical foundation for actual invasion models

(Higgins and Richardson 1996). Although invasion rates of spread can be esti-

mated from non-spatial models, these estimates are usually inaccurate in plant

populations. As noted in Higgins and Richardson (1996), population growth does

not easily translate into a rate of spread. For example, empirical rates of spatial

spread, as in Perrins et al. (1993); Pysek and Prach (1993), is an order of mag-

nitude lower than population increase. Thus, most studies of invasion rates and

patterns require spatial information.

3.2 Spatially implicit models

To investigate and forecast the amount of area being invaded over time, spatially

implicit models are used. These models combine spatial information with non-

spatial models and attempt to estimate the invasion rate of spread.

For example, regression models are commonly used to find the relationship

between the amount of area invaded and time, and predict potential range distri-

butions of invasive trees (Peters 2004). The slope of regression equations is used

as an estimate of the rate of spread (see e.g. Lonsdale 1993; Perrins et al. 1993;

Pysek and Prach 1993). Since regression, as well as multiple regression, models

are fitted to empirical data, they can be used as a comparative tool and help

develop further models and theory.

Other spatially implicit models include the geometric model and the Markov

model, both of which have theoretical modeling potential, but have not been ap-

plied to invasive plants (Higgins and Richardson 1996). The geometric model uses
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a regression approach to investigate invasions with multiple focus points. Markov

models incorporates birth and death state transition probabilities in discretized

time and space to estimate population densities.

3.3 Spatially explicit models

When spatial information is considered in the formulation of the model, spatially

explicit models are used. This is a large category of models where the invasion

rate of spread is affected by explicit spatial information, such as seed dispersal

distribution, spatial environmental heterogeneity, spatial arrangement of invasion

focus points, and local neighborhood interactions (Peters 2004; Perry et al. 2006;

Marco et al. 2011; Wang et al. 2011a). For example, simulation models may

use seed dispersal information and other spatial covariates to show environmental

heterogeneity and variability of population density.

Reaction-diffusion models assume that the rate of spread is a function of the

rate of population increase and the rate of movement of individuals in the popula-

tion (Higgins and Richardson 1996). These models are characterized by a partial

differential equation that gives the population density at some spatial location

(x, y) with respect to time t. Typically used to predict range expansion of in-

vasive animals and disease, reaction-diffusion models have rarely been applied to

plant invasions (Skellam 1951; Higgins and Richardson 1996). This may be due

to the underlying model assumption that seed dispersal distances are normally

distributed, although many wind- and animal-dispersed plants have more of a lep-

tokurtic dispersal distribution (Howe and Westley 2009). The reaction-diffusion

model further predicts that plotting the graph of the square root of invaded area

against time should be a straight line, and that the slope should correspond to

the mean rates of expansion. Lonsdale (1993) concluded that the model was in-

adequate for plant spread data, after showing that these predictions failed to be

12



true.

Metapopulation models and individual-based cellular automata models con-

sider space and time as discrete variables, and typically adopt a simulation ap-

proach. A metapopulation model of plant spread divides the space into discrete

local population sites of varying degrees of invasion susceptibility, and each local

site experiences some population rate of growth, i.e. exponential. As the simula-

tion progresses, populations eventually emigrate to other sites. Cellular automata

models also divides the space into local sites, or grid of cells, where each cell takes

on one of a number of states. Transition probabilities are used to define the state

of the system, where the current state of a cell depends on the previous state of

the cell and the states of nearby cells.

3.4 Spatial point processes

The models described above do not use the exact locations of individual observa-

tions. When exact locations are given, point process methods may provide more

detailed spatial analyses of the data (Law et al. 2009).

Each point is sometimes referred to as an event, with spatial coordinates (x, y).

A point processes is typically characterized by its intensity, λ(x, y), which repre-

sents the expected number of events per unit area at the location (x, y). A spatial

point process with constant intensity λ is termed spatially homogeneous or sta-

tionary in space, and is said to exhibit complete spatial randomness (CSR). If the

process is CSR, then the number of events inside a region of area A follows a Pois-

son distribution of rate λ, and the events inside that region are positioned inde-

pendently and uniformly (Cressie 1993; Moller and Waagepetersen 2004). Testing

the null hypothesis of complete spatial randomness (CSR) is usually one of the

main goals (Wiegand and Moloney 2004; Perry et al. 2006; Law et al. 2009). If

the null hypothesis is rejected, the process is spatially inhomogeneous.
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Point process methods became popular in the fields of ecology, geography and

archaeology beginning in the 1950s and 1960s (Gatrell et al. 1996). Cluster point

processes is still widely used in Forestry and other applications in plant ecology

(Stoyan and Penttinen 2000).

However, these point pattern analyses are purely spatial. Such models only

analyze a single temporal snapshot of an underlying process. In a way, these mod-

els simply replace the location of points in time with locations in space. However,

ecological situations naturally come with spatial components, so analysis is in-

complete without a spatial dimension (Law et al. 2009). Without a temporal

component, one should proceed with caution when inferring process from pattern,

since multiple processes may be able to explain the same observed pattern (Perry

et al. 2006). Hence, stronger inferences about ecological processes require the

combination of temporal and spatial analyses.

3.5 Spatial point pattern analysis over time

Incorporating time in the analysis of spatial pattern poses challenges in the eco-

logical setting, as many factors may be involved in the estimation of plant ages

(Rice et al. 2012) and the collection of temporal data.

One way to assess the spatio-temporal relationships among plants, without the

need for age estimation or extra data collection, is to consider snapshots of the

data at several different times, and treat each snapshot as a different point pattern

(Wiegand and Moloney 2004). An analysis using a bivariate K-function or O-ring

statistic can investigate any changes in the behavior of the process. (Halpern et al.

2010) also used a series of stem maps to quantify the spatio-temporal pattern of

a conifer invasion.

Rice et al. (2012) attempts to show the nature and strength of tree interactions

over time, by analyzing snapshots of a tree species at different time lags. Nearest-
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neighbor distances between trees were analyzed, beginning with a 20-year gap

from 1935-1955, then gradually decreasing the time interval to 2-year gaps ending

in 1997.

In a sense, these models are still purely spatial. Each snapshot is analyzed

independently as its own spatial point process. Furthermore, the quantification

of a time component is given to the pattern as a whole, at specific time intervals,

but the occurrence of events may be continuous in time. Better spatio-temporal

models may incorporate more specific time information, such as individual plant

ages, into a model that makes estimates based on space and time simultaneously.
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CHAPTER 4

Branching Point Process Models

4.1 Spatial-temporal point processes

A spatial-temporal point process is a random collection of points, where each point

represents the time and location of an event. Typically the spatial locations are

recorded in three spatial coordinates, though sometimes only one or two spatial

coordinates are available or of interest. For example, earthquake occurrence loca-

tions may be specified by longitude, latitude, and depth. In the case of the births

of invasive plant species, such as the red bananas, only longitude and latitude

dimensions are of interest. Much of the theory of spatial-temporal point processes

carries over from that of spatial point processes. However, the temporal aspect

enables a natural ordering of the points that does not generally exist for spatial

processes. Indeed, it may often be convenient to view a spatial-temporal point

process as a purely temporal point process, with spatial marks associated with

each point. Mathematically, the spatial-temporal point process N is defined as

a σ-finite random measure on a region S ⊆ R × R3 of space-time. Denote N(A)

as the number of points inside a subset A of S, taking values in the non-negative

integers Z+ or infinity. The spatial region of interest is often rectangular, but can

sometimes have an irregular boundary due to geographical constraints such as

city limits or shorelines. Attention is typically restricted to to points inside some

time interval [T0, T1], and to processes with only a finite number of points in any

compact subset of S.
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Point processes with temporal components are typically characterized by their

conditional intensity functions, which represent the infinitesimal rate at which

events are expected to occur around time t, based on the prior history Ht of events

prior to time t (see e.g. Daley and Vere-Jones 2003). In general, the conditional

intensity λ(t, x, y, z), at any point (t, x, y, z) associated with the spatial-temporal

process N may be defined as the limiting conditional expectation

λ(t, x, y, z) = lim
∆→0

E[N(B∆)|Ht]

|∆|
(4.1)

where B∆ is the set (t, t+ ∆t)× (x, x+ ∆x)× (y, y+ ∆y)× (z, z+ ∆z), and ∆ is

the vector (∆t,∆x,∆y,∆z). For a more comprehensive overview, please see e.g.

Cressie and Wikle (2011); Ripley (1981); Vere-Jones (2009).

4.2 Self-exciting point processes

In the study of branching point processes, Hawkes’ linear self-exciting point pro-

cess model (Hawkes 1971) is a birth process with immigration and triggering, such

that each event may trigger subsequent events, which may in turn trigger future

subsequent events, and so on. The model characterizes a sequence of earthquakes

and aftershocks over space and time via a conditional intensity, specified by

λ(t, s|Ht) = µ(t, s) +
∑
ti<t

g(t, s; ti, si), (4.2)

where s is additional information that may include a spatial component (x, y)

and/or a mark or magnitude M , Ht is the history of the process up to time

t, µ(·) is the mean rate of a Poisson-distributed background process that may

depend on time, space and magnitude, and g(·) is the “triggering function” which

indicates how previous occurrences contribute, depending on their spatial and

temporal distances and marks, to the intensity λ(·) at the location and time of

interest. The individual intensities of each prior point i, {i : ti < t} is summed

and contributes to the total conditional intensity λ(·) at time t. Thus, every past
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event has an additive (linear) influence on the present conditional intensity of the

system.

4.3 Epidemic-type aftershock sequence models

Ogata (1988) introduced the Epidemic-Type Aftershock Sequence (ETAS) model,

based on Hawkes’ mutually exciting model (a multivariate extension of the linear,

self-exciting model (Hawkes 1971)) to study the temporal pattern of earthquake

and aftershock activity. The ETAS model of Ogata (1988, 1998) is aptly named

because of the epidemic nature of how events are created, and is widely used to

describe earthquake occurrences (see e.g. Helmstetter and Sornette 2003; Ogata

et al. 2003; Sornette and Werner 2005; Vere-Jones and Zhuang 2008; Console et al.

2010; Chu et al. 2011; Wang et al. 2011b; Werner et al. 2011; Zhuang 2011; Harte

2012; Tiampo and Shcherbakov 2012).

For a temporal ETAS process, the conditional intensity is given by

λ0(t|Ht) = µ+
∑
{i:ti<t}

gi(t;Mi), (4.3)

where

gi(t) =
K0

(t− ti + c)p
· eα(Mi−M0) (4.4)

is the triggering function describing the contribution to the rate at time t at-

tributed to an event at a prior time ti of size Mi. K0, α, c and p are parameters,

and M0 is some cutoff magnitude typically based on the earthquake catalog’s com-

pleteness threshold. Ogata (1998) extended (4.3) and (4.4) to accommodate the

spatial pattern of earthquake occurrences. The ETAS model naturally extends to

λ(t, x, y|Ht) = µ(x, y) +
∑
{i:ti<t}

g(t− ti, x− xi, y − yi;Mi), (4.5)

where µ(x, y) is a non-homogeneous background rate and g(·) is the triggering

18



function defined in the earthquake context, for instance, by

g(t, x, y;M) =
K0

(t+ c)p
· eα(M−M0)

(x2 + y2 + d)q
, (4.6)

where K0, α, c, p, d and q are parameters to be estimated. Other formulations

of the triggering function were considered in Ogata (1998), but all are written

typically as a product of a temporal density, a spatial density and a cluster size

factor (Ogata 1998). The power law decay of aftershock activity over time is

known as the modified Omori law (Utsu 1961). The spatial component, typically

a power law decay function as in (4.6), is based mostly on empirical studies of

aftershock clustering with some speculative hypotheses, and takes the remote

triggering phenomena into account (Ogata 1998). While each of these terms

should be adjusted to fit red banana data rather than earthquake occurrences,

the overall structure of the ETAS model seems to be a sensible approach for the

description of data on invasive species.

Note that the background rate µ(x, y) accommodates the spatial inhomogene-

ity obvious in seismology, since earthquakes occur primarily along existing faults,

and similar spatial inhomogeneity may be present in the case of red banana plants

in Costa Rica due to external factors such as land use, topography and meteoro-

logical conditions which vary spatially. In the case where the model must accom-

modate temporal non-stationarity, the background rate µ can be extended to a

function of space and time, µ(t, x, y), and if a vector Z(t, x, y) of spatial-temporal

covariates are available for each location and time, then one may incorporate them

by extending the background rate to a function µ(t, x, y|Z).
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CHAPTER 5

Adjusting the Triggering Function

5.1 Temporal clustering

While earthquake catalogs typically contain precise estimates of earthquake oc-

currence times, similar estimates of the origin times of red banana plants are

generally unavailable. Thus, we propose estimating these birth times using the

heights of the plants. The data on the 318 red banana plants that were measured

weekly over a span of 49 weeks provides information on the rate of height increase

over time.

The rate of growth ri(h) for each red banana plant i, {i = 1, 2, ..., 318}, is the

change in height with respect to time, and may be calculated as follows:

ri(h) =
(maximum height)i − (initial height)i

# weeks
. (5.1)

The denominator in equation (5.1) is the number of weeks between the initial

height measurement and the maximum height measurement of plant i. To estimate

a rate function

r(h) =
dh

dt
, (5.2)

that generalizes the rate of growth of a red banana plant at any stage of its life,

we plot (5.1) against the mean heights over all observed weeks of each plant, and

smooth the resulting graph by taking running medians of length 21 plants (see

Figure 5.1).

From the rate function (5.2), we can extract the current age of any plant by

taking the integral of the inverse rate function from 0 (height at birth) to hi
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Figure 5.1: Running medians of length 21 plants of the rate of growth of a plant

is plotted (as gray dots) against the mean height of the plant. The

function r(h) (solid green curve) is estimated by a kernel smoother.

(current observed height):

ai =

∫ hi

0

1

r(h)
dh, (5.3)

where ai is the (estimated) age of plant i and r(h) is the (estimated) rate of growth

function of the plant with respect to height, using the fitted kernel regression curve

in Figure 5.1. The age of the plant can then be converted to a birth time of the

plant, where the oldest plant is given a birth time of 0. From these estimated ages,

the youngest plant is given a birth time of 194.6 weeks. A histogram of estimated

birth times, shown in Figure 5.2, reveals an increasing number of plants up to 160

weeks, with a slower rate of younger plants thereafter. The median birth time is

152.2 weeks and the inter-quartile range is between 130.1 and 164.0 weeks.

One may examine the inter-event birth times in order to model the temporal

component of the triggering function g in (4.5). Figure 5.3 shows a histogram of

the differences in estimated birth times between pairs of plants that are within

100 meters of each other. These inter-event times appear to be approximately
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Figure 5.2: Histogram of estimated birth times.

exponentially distributed.

5.2 Spatial clustering

To assess the structure of the spatial component of the triggering function, one

may examine the inter-event distances between pairs of plants. For computa-

tional ease and interpretability, we convert plant locations from the geographical

longitude-latitude coordinate system to the Cartesian plane. We construct a rect-

angular spatial window surrounding the observed data, setting an arbitrary origin

with x-coordinate equal to the minimum of all observed longitude values and

y-coordinates equal to the minimum of all observed latitude values. Using the

fixed length of one latitudinal degree, and the variable length of one longitudinal

degree conditioned on latitude, we systematically transformed the geographical

plant locations to Cartesian coordinates. Figure 5.5 shows the plot with the new

transformed coordinate system.

Distances between pairs of plants were calculated by utilizing the haversine
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Figure 5.3: Histogram of estimated inter-event times (black), obtained by taking

the differences in estimated birth times between pairs of plants that

are less than 100 meters apart. The exponential density curve (red)

has rate λ = 0.0354, fitted by maximum likelihood.

formula for the central angle between two points with geographical longitude and

latitude coordinates (Sinnott 1984). Given two points, i and j, with geographical

coordinates (ϕi, ψi) and (ϕj, ψj), respectively, the central angle between them is

φij = 2 · arcsin

(√
sin2

(
∆ϕ

2

)
+ cosϕi cosϕj sin2

(
∆ψ

2

))
(5.4)

where ∆ϕ and ∆ψ are the differences between the longitude and latitude coordi-

nates, respectively. Assuming a spherical Earth, the arc length (distance) between

i and j is then given by dij = rφij, where r is the radius of the Earth. Variation in

Earth radii make estimates correct to within 0.5%, but the error is less if applied

to a limited area (Sinnott 1984). Nevertheless, since measurements from GPS

were only accurate to within approximately 6 meters, we jitter the point locations

(by moving each point a distance of mean 0 and standard deviation 3) to maintain

a simple point process (Daley and Vere-Jones 2003).
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Figure 5.4: Survival function of estimated inter-event times (black). The sur-

vival curve of the fitted exponential density curve (red) has rate

λ = 0.0354.

In the ETAS model of Ogata (1998), the spatial component of the trigger-

ing function has a power law form. However, the inter-event distances of plants

that are estimated to have originated within six weeks of each other suggests an

approximately exponential spatial decay, as shown in Figure 5.6 and Figure 5.7.

Indeed, Figures 5.6 and 5.7 suggests replacing the spatial component of the

triggering function in (4.6) with an exponential function of the squared distance,

i.e. g(t, x, y) ∝ exp{−β(x2 + y2)}.

5.3 Magnitude and productivity

In the earthquake context, the frequency of events of a certain magnitude is ob-

served to depend on the magnitude in question, with a magnitude frequency dis-

tribution posited to follow an exponential distribution (Gutenberg and Richter

1944), and furthermore events of large size are thought to induce more after-

24



●
●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●
●

●
●

●

●

●
● ●●●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●●

●

●

●●●● ●●
●●●●

●

●

●

●

●

●●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

●●●
●●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

● ●

●●

●

●

●

●

●●

●●●

●

●

●

●

●

●●

●●
● ●●

●●

●

●
●

●

●● ●

●

●●

●●●●●●
●●

●

●
●

●
●

●●●

●
●

●

●

●

●●

●

●

●

● ●

●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●●●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●
●

●

●

●●●●

●

●

●●

●

●

●

●

●●●●●●●●●

●

●●

●

●●

●

●
● ●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●
●

●● ●

●

●

●

●

●

●

●
●●●●

●
●

●

● ●

●

●●
●

●●

●

● ●

●

●

●

●●

●
●

● ●●

●
●

●
●

●

●

●

●●●

●
●

●

●●

●
●

●

●

●

●

●
●●●●

●

●
●

●●●

●

●●● ●

●●

●

●●

●
●

●●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●
●

●●●●●●●●●●●●●●●●●●●

●

●●

●

●

●
●●●

●
●●●●●

●●●●●

●

●

●

●
●●

●

●●

●●

●
●

●

●

●●

●
●

●
●

●
●

●●●●
●●

●●

●●●●●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●

●

●

●

●
●

●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●●●

●

●●

●
●

●
●

●

●

●●

●

●●
●

●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

●

●

●●
●●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●●●●●●●●●●

●

●●●

● ●
●●

●
●

●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●

●

●
●●

●

●

●

●●
●●

●●

●

●

●

●

●●●●●

●●
●

●

●

●
●●

0 500 1000 1500 2000

50
0

10
00

15
00

20
00

25
00

x

y

Figure 5.5: Map of observed red banana plants in the transformed coordinate

plane.

shocks, also according to an exponential law (Ogata 1988). The magnitude of

an earthquake is a measure of the amplitude of ground motion recorded by a

seismograph which affects the speed and overall coverage of aftershock sequences.

There does not seem to be one obvious corresponding analogue for plants,

however. Some studies analyze the reproduction and spread of invasive plants

using only general traits of the species, such as habitat preference, climate reliance

or viability of seeds (Delisle et al. 2003; Pysek and Prach 1993; Thompson 1991).

In some purely spatial point pattern analyses, categorical marks (mi) are often

used (such as species, sex, age class, or health) but may also be continuous (such

as plant size), especially where representing temporal phenomena (e.g. time of

establishment) (Law et al. 2009; Perry et al. 2006). In our analysis, we were

already able to estimate the temporal structure of the data by using height to

estimate occurrence times. A mark characteristic in our model should have a

profound effect on the triggering probabilities of future occurrences. The number

of leaves, the number of flowers, or the height at maturity may have potential for
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Figure 5.6: Histogram of the inter-event distances of plants estimated to have

originated within six weeks of each other (black). The exponential

density curve (red) has rate λ = 1.44, fitted by maximum likelihood.

being a useful measure of productivity for plants, and this is a subject of ongoing

research. For this analysis, we assume uniform productivity of the plants in our

proposed model.

5.4 Model summary

In the previous sections, we argued, after close examination of inter-event dis-

tances and inter-event times between pairs of plants, that the process by which

plants trigger the occurrence of new plants may be modeled as exponentially dis-

tributed over time and space. Let α and β be the parameters of the temporal

and spatial clustering components, respectively, of the model. For the purpose

of data summary and description, it is useful to introduce a further parameter p

governing the proportion of plants that are direct descendants of previous plants

and those plants that are part of the background immigration. The result is a
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Figure 5.7: A survival plot for the inter-event distances (black). The survival

curve of the fitted exponential distribution function (red) has rate

λ = 1.44.

conditional intensity function

λθ(t, x, y) = (1− p)µ(x, y) + p
∑
{i:ti<t}

g(t− ti, x− xi, y − yi) (5.5)

where the triggering function g is given by

g(t, x, y) =
αβ

π
· e−αt−β(x2+y2), (5.6)

where αβ
π

is a normalizing constant so that g integrates to unity. One may thus

write out the full model as

λ(t, x, y|Ht) = (1− p)µ(x, y) +
pαβ

π

∑
{i:ti<t}

e−α(t−ti)−β{(x−xi)
2+(y−yi)

2}, (5.7)

where p represents the expected proportion of events attributed to triggering by

other events, rather than occurrences attributable to background immigration.
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CHAPTER 6

Analysis of Parametric Model

6.1 Maximum likelihood estimation

For estimation, we proceed in much the same manner as Musmeci and Vere-Jones

(1992). We first estimate the non-homogeneous background rate µ(x, y) via a two-

dimensional Guassian kernel smoother over all plant locations, using the default

normal reference bandwidth based on Silverman (1986) and described in Venables

and Ripley (2002).

The parameters θ = {α, β, p} are estimated simultaneously by maximizing the

log-likelihood

logL =
n∑
i=1

logλ(ti, xi, yi)−
∫∫

A

∫ ∞
0

λ(t, x, y)dtdxdy (6.1)

where standard errors of the parameters may be obtained in standard fashion,

via the square root of the diagonal elements of the inverse Hessian of the log-

likelihood function (Ogata 1978, see e.g.). The integral in the right side of the
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equation simplifies to∫∫
A

∫ ∞
0

λ(t, x, y)dtdxdy

=

∫∫
A

∫ ∞
0

[
(1− p)µ(x, y) +

pαβ

π

n∑
i=1

e−α(t−ti)−β||x−xi,y−yi||2
]
dtdxdy

=

∫∫
A

∫ ∞
0

(1− p)µ(x, y)dtdxdy +

∫∫
A

∫ ∞
0

pαβ

π

n∑
i=1

e−α(t−ti)−β||x−xi,y−yi||2dtdxdy

= (1− p)T
∫∫

A

µ(x, y)dxdy + p

n∑
i=1

∫∫
A

∫ ∞
0

αβ

π
e−α(t−ti)−β||x−xi,y−yi||2dtdxdy

= (1− p)T
∫∫

A

µ(x, y)dxdy + pN, (6.2)

where T represents the entire time window, A is the space window, and N is the

total number of observed plants. The log-likelihood equation becomes

logL =
n∑
i=1

logλ(ti, xi, yi)− (1− p)T
∫∫

A

µ(x, y)dxdy − pN. (6.3)

We obtain the estimates θ̂ = {α̂ = 0.0761, β̂ = 0.0292, p̂ = 0.5767}, with corre-

sponding asymptotic standard errors 0.0045, 0.0022 and 0.0193, respectively.

The estimate of p suggests that about 58% of observed plants are triggered

by other observed plants while the rest are immigrants triggered by unobserved

plants or by other unknown sources. The estimated proportion of background

events over time is shown in Figure 6.1; not surprisingly, this proportion is initially

very high, as the initial events are necessarily attributed to immigration, rather

than triggering, according to the model (5.7).

Note that the estimate of the parameter β governing the exponential spatial

decay is very small, suggesting that the clustering nature of these plants is much

more uniform and less dramatically clustered and long-tailed compared to the

approximately power-law spatial decay of earthquakes and their aftershocks.
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Figure 6.1: Estimated proportion of background events over time.

Although there are no strict rules in choosing an appropriate bandwidth pa-

rameter h, the user must find a balance between a value that is too high or too

low. This is important as it affects the kernel estimates. If h is chosen too low,

the estimate may be too noisy and capture too much information of meaningless

clusters that do not generalize well to a random realization of the data. If h is

chosen too high, the estimate may be too smooth and information on important

features of the data may be lost. The estimated spatial background rate µ̂(x, y),

shown in Figure 6.2, shows the general trend of plants attributed to immigration

by model (5.7).

6.2 Errors in estimated birth times

Errors in the birth time estimates appear to have relatively minimal impact on the

parameter estimates. For instance, after adding iid normally distributed random

errors with mean 0 and standard deviation 4 weeks to the estimated birth times,

the estimates of the parameters in model (5.7) remained quite robust. One hun-
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Figure 6.2: Estimated background rate µ̂(x, y) obtained by kernel smoothing,

along with all observed plants (black points).

dred new sets of birth times were simulated and the parameters were re-estimated

after each set. Table 6.1 shows summary statistics of the distribution of these

parameter estimates, given as θ̃ = {α̃, β̃, p̃}. The estimates α̃ are expectedly less

than α̂ because of the increased variability in estimated birth times.

6.3 Residual Analysis

6.3.1 Thinned residuals

To assess the goodness-of-fit of the parametric point process model, one may

perform a residual analysis such as the random thinning procedure described in

Schoenberg (2003). If the model fits well to the data, the output are thinned

residuals that should closely follow a homogeneous Poisson process inside the

observation window.

Unfortunately, simple thinning typically has low power when the estimated
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α̃ (plants
week

) β̃ (plants
m2 ) p̃

Minimum 0.06578 0.02854 0.5751

1st Quartile 0.06830 0.02909 0.5778

Median 0.06900 0.02932 0.5787

Mean 0.06906 0.02931 0.5787

3rd Quartile 0.06986 0.02952 0.5800

Maximum 0.07192 0.03006 0.5821

sd 0.00118 0.00033 0.0016

Table 6.1: Summary statistics of estimated parameters after giving random er-

rors to the original estimated birth times.

conditional intensity is volatile, as is the case here, because few points remain

after thinning (Clements et al. 2011). Inversely, a method consisting of superpo-

sition alone may have the adverse affect of too many remaining points. A more

powerful approach than either thinning or superposition is via an approach that

blends both thinning and superposition, where one thins observed points in ar-

eas of high intensity and superposes simulated points in areas of low intensity,

resulting in a homogeneous point process if the model for λ used in the thinning

and superposition is correct. With this hybrid method, called super-thinning

by Clements et al. (2011), the user may specify the overall rate of the resulting

residual point process.

6.3.2 Super-thinned residuals

In super-thinning, if one wishes the resulting residual process to be Poisson with

rate k under the null hypothesis that the estimated conditional intensity of the

original process is correct, then one first keeps each observed point (t, x, y) in

the catalog independently with probability min{k/λ̂(t, x, y), 1} and subsequently
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superposes a simulated Poisson process with rate max{0, k−λ̂(t, x, y)}. The result

is a homogeneous Poisson process with rate k if and only if the model λ̂ for the

conditional intensity is correct, and hence the resulting super-thinned residuals

can be assessed for homogeneity as a way of evaluating the model. In particular,

any clustering or inhibition in the residual points indicates a lack of fit. The

parameter k is chosen by the user and governs the extent to which the original

points in the data are thinned. If the threshold k is too high, then too many of

the super-thinned points are simulated, and thus the resulting residual plot has

low power. Similarly, if the threshold is too low, then too few residual points

remain after super-thinning, so that again the resulting residuals have low power

at detecting deficiencies in the model. Clements et al. (2011) suggest the median

of λ as an appropriate choice of k.

The spatial homogeneity of the residual points may be assessed for instance

using Ripley’s K-function (Ripley 1981), which is the average number of points

within r of any given point divided by the overall rate λ, and is typically estimated

via

K̂(r) = AN−2
∑

i<j, ||xi−xj ||<r

s(xi,xj),

where A is the area of the observation region, N is the total number of observed

points, and s(xi,xj)
−1 is the proportion of area of the ball centered at xi and

passing through xj that falls within the observation region (see Ripley (1981) or

Cressie (1993)). For a homogeneous Poisson process in R2, K(r) = πr2, and hence

one expects similar behavior for the residuals under the null hypothesis that the

model used in rescaling the points is correct.

Figure 6.3 shows the super-thinned residuals from one iteration of the super-

thinning procedure. In this particular iteration, 22 newly generated points were

superposed while 18 of the original observed points were retained during thinning.

Figure 6.3 also shows a summary of the K-functions for 1000 sets of residuals.
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The shaded region captures the middle 95% for K-functions corresponding to 1000

realizations of super-thinned residuals, and the dotted lines indicates the middle

95% for K-functions corresponding to 1000 realizations of a true homogeneous

Poisson process of the same rate. The shaded region matches closely with the

dotted lines, indicating that the model fits well to the data.
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Figure 6.3: Left: One realization of super-thinned residuals with rate λ = 40.

Right: Ripley’s K-functions; dotted lines represent 95% interval

bounds for homogeneous Poisson processes and shaded region rep-

resents 95% interval bounds for super-thinned residuals.

6.4 Simulations

Using the parameters estimated by maximum likelihood, the ETAS model (5.7)

for red bananas may be simulated repeatedly. One sample simulation shown in

Figure 6.4, along with the observed data, is a realization over the identical spatial

range as the data and the same 194-week temporal window. The simulation

consists of 783 plants, while the data contain 788 observed plants. Simulations
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such as that in Figure 6.4 appear to be consistent with the observed data.
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Figure 6.4: Left: Original data points. Right: Simulated points based on

model (5.7). Darker circles correspond to more recent points.

6.5 Future range expansion

Simulations of model (5.7) may also be used for forecasting future spread of the

red banana plants. From 100 simulations of model (5.7), the mean amount of

time of the first occurrence of a red banana plant in each block (or cell) of a

20×20 grid is illustrated in Figure 6.5, with each simulation spanning 100 years.

Figure 6.6 gives these values in weeks for each cell. Cells without a value were

never invaded during any of the simulations, and thus have mean initial invasion

times greater than 100 years (about 5200 weeks). Figure 6.7 shows the mean

number of blocks (or pixels) invaded by the plants over time, according to these

100 simulations. One sees from Figures 6.5 and 6.7 that, after the initial explosive

burst, the spread becomes more gradual over succeeding years, according to the

fitted model. Although simulations are only observed inside the 20×20 grid, in

reality, invasion may spread into blocks outside of the observed space window after

many years. These figures simply illustrate spread within the observed space, and
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the fixed space window may explain the flatter part of the curve to the right of

50 years in Figure 6.7.
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Figure 6.5: Invasion within space window over time. Darker blocks indicates

earlier mean time of first invasion.
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Figure 6.6: Mean number of weeks of first invasion occurrence in a cell. The

space window is divided into a 20× 20 grid of cells. Cells without a

number indicates an average first invasion time of greater than 100

years.
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indicates the number of years after the first simulated plant birth.

The space window is divided into a 20×20 grid shown in Figure 6.5,

for a total of 400 possible invasions.
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CHAPTER 7

Non-parametric Methods

7.1 Stochastic declustering

In seismology, the important problem of distinguishing mainshocks from after-

shocks has led to the development of numerous methods of declustering earth-

quake catalogs (e.g. Reasenberg 1985). The stochastic declustering method of

Zhuang et al. (2002; 2004) uses the fitted ETAS model as a starting point, and

subsequently computes the probabilities ρij, according to the ETAS model, that

event j (in the case of Zhuang et al., each event is an earthquake) was triggered

by event i, for all i, j with i < j. Using this probabilistic branching structure,

one may simulate iid Bernoulli draws with the corresponding probabilities ρij and

assign a branching structure. Some events will not be assigned a trigger and

will be labelled background events in such an assignment, and the collection of

these events represents a declustered catalog. Using the method of Zhuang et al.

(2002, 2004), one could in principle construct numerous realizations of declustered

catalogs.

7.2 Non-parametric stochastic declustering

Marsan and Lengliné (2008) introduced a stochastic declustering algorithm that

requires no a priori model parameterization. This iterative procedure converges

quickly to assign triggering probabilities ρij, indicating the probability that event

i is the actual parent of event j. To review the method of Marsan and Lengliné
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(2008), the algorithm may be outlined as follows:

Given a linear conditional intensity function in space-time-magnitude,

λ(x, t,m) = µ+
∑
ti<t

λi(|x− xi|, t− ti,mi), (7.1)

and assuming that the mean-field response solely depends on magnitude, initialize

the algorithm with guesses for the triggering rates λi(|x− xi|, t− ti,mi) and the

uniform background rate µ. Then repeat the following two steps until convergence

is reached:

I. Estimate the triggering weights (triggering probabilities)

ρ̂ij =


ajλ(|xj − xi|, tj − ti,mi), if ti < tj

0, otherwise

(7.2)

and the background weights (background probabilities)

ρ̂0j = ajµ (7.3)

where the normalization coefficients aj are such that

ρ̂0j +

j−1∑
i=1

ρ̂ij = 1 (7.4)

II. Update the “a posteriori” triggering rates by computing

λ(|∆x|,∆t,m) =
1

Nm · δt · S(|∆x|, δr)
∑
i,j∈A

ρ̂ij (7.5)

where A is the set of pairs such that |xj − xi| = |∆x| ± δr, mi = m ± δm,

and tj − ti = t ± δt, with discretization parameters δr, δt, δm. Nm is the

number of events such that mi = m±δm, and S(|∆x|, δr) is the spatial disk

of radii |∆x| ± δr.

Update the “a posteriori” background rate by computing

µ =
1

T · S

N∑
j=1

ρ̂0j (7.6)

where T · S is the space-time window containing all N events.

41



7.3 Modified non-parametric algorithm for invasive plant

species

A non-parametric method is especially beneficial to the problem of declustering a

sequence of invasive species, since different species may have very different branch-

ing patterns. Here, we apply the non-parametric stochastic declustering method

of Marsan and Lengliné (2008) to the red banana data and compare the estimated

triggering function with that of the parametric ETAS model. The general algo-

rithm of Marsan and Lengliné (2008) must be modified in two ways, however, in

order to accommodate the red banana data. First, since the analysis of the spread

of red bananas contains no magnitude information, all dependencies on magnitude

are removed. Second, since the background rate is spatially inhomogeneous, the

background term µ is given as the product of a constant term µt and the local

density µs(x), conditioned on position relative to the background events.

Given a linear conditional intensity function in space-time,

λ(x, t) = µ(x) +
∑
ti<t

λi(|x− xi|, t− ti), (7.7)

and initial guesses for the triggering rates λi(|x− xi|, t− ti) and the background

rate µ(x), the following two steps are repeated until convergence is reached:

I. Estimate the triggering probabilities

ρ̂ij =


ajλ(|xj − xi|, tj − ti), if ti < tj

0, otherwise

(7.8)

and the background probabilities

ρ̂0j = ajµ(xj) (7.9)

where the normalization coefficients aj are such that

ρ̂0j +

j−1∑
i=1

ρ̂ij = 1 (7.10)
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II. Update the “a posteriori” triggering rates by computing

λ(|∆x|,∆t) =
1

δt · S(|∆x|, δr)
∑
i,j∈A

ρ̂ij (7.11)

where A is the set of pairs such that |xj−xi| = |∆x|±δr and tj−ti = t±δt,

with discretization parameters δr and δt. S(|∆x|, δr) is the spatial disk of

radii |∆x| ± δr.

Update the “a posteriori” background rate by computing µ(x) = µt · µs(x)

using the following substeps:

Compute

µt =
1

T

N∑
j=1

ρ̂0j (7.12)

and

µs(x) =
N∑
j=1

hj(|∆x|)ρ̂0j (7.13)

where

hj(|∆x|) =

∑
i,j∈A ρ̂0iρ̂0j

S(|∆x|, δr)
∑

i,j ρ̂0iρ̂0j

(7.14)

where T is the duration of the time series containing all N events, and A is

the set of pairs such that |xj − xi| = |∆x| ± δr.

7.4 Results

Compared with parametric estimates, the non-parametric estimate of (7.7) ap-

pears to be similar in both temporal and spatial branching structures. The simi-

larity in temporal clustering is apparent in Figure 7.1, which compares the survival

plots of the distribution of parent-child inter-event times obtained from both the

non-parametric and parametric models. The branching structure obtained from

the non-parametric model follows the parametric model quite closely up to about

a 26-week time distance between pairs of plants, during which approximately 84%

of first-generation triggered events occur. The triggering becomes slightly more
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Figure 7.1: Log-survival function of inter-event times between pairs of plants.

The solid blue curve represents the cumulative sum of the proba-

bilities ρij for the specified inter-event time after applying the non-

parametric method discussed in Section 7.3. The red Hawkes/ETAS

curve is the exponential decay function with rate 0.0761, obtained

from the parametric estimate of the branching model. The dashed

blue curve corresponds to an exponential distribution, fitted to the

non-parametric estimates, with rate 0.0734.

intense for offspring occurrences beyond 26 weeks of the parent, resulting in an

accelerated decay in the temporal distribution of pair distances. More than 99%

of first-generation triggered events occur within 43 weeks of the parent according

to the non-parametric model, compared to 60 weeks from the parametric model.

The spatial clustering estimated by the non-parametric estimates of the trig-

gering function indicate a higher degree of clustering at smaller inter-event dis-

tances, compared with the histogram of inter-event distances of observed pairs of

plants used for the parametric model formulation. According to the parametric

estimates, approximately 60% of first-generation triggered events occur within 30
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Figure 7.2: Log-survival functions of inter-event distances between pairs of

plants. The solid blue curve represents the cumulative sum of the

probabilities ρij for the specified inter-event distance, after apply-

ing the non-parametric model discussed in Section 7.3. The red

Hawkes/ETAS curve is the exponential decay function with rate

0.0292, obtained from the parametric estimate of the branching

model. The dashed blue curve corresponds to an exponential distri-

bution, fitted to the non-parametric estimates, with rate 0.0265.

meters from the parent and over 99% occur within 158m. On the other hand,

our non-parametric model estimates 60% of triggered events occur within just 15

meters away from the parent, and 99% within 170m. Figure 7.2 shows this slightly

slower decay in the spatial distribution of pair distances after an initial burst of

triggering at very small distances.

The non-parametric estimates indicate that the clustering of the red banana

plants is relatively more confined to smaller spatial scales. Indeed, the non-

parametric estimates identify 31% (standard error = 1.97%) of the data as back-

ground events and 69% (standard error = 2.97%) as triggered events, compared to
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42% and 58% for background and triggered events, respectively, according to the

parametric estimates of the modified ETAS model. Since the total rate, integrated

over the entire space-time window, is approximately n, the standard error is com-

puted by assuming that the total number of triggered events is approximately a

Poisson random variable with mean 0.69n and standard deviation
√

0.69n. The

standard error for the triggering rate is thus
√

0.69n/n or
√

0.69/n. Similarly,

the standard error for the background rate is computed as
√

0.31/n.

The probabilities ρij, giving the probability that event i triggered event j,

can be used to infer, probabilistically, the location of events relative to their

parent. From Figure 7.3, triggered events are more likely to occur very close to the

parent’s location, and have an overall tendency to appear towards the northwest

and southeast directions. The anisotropy exhibited here is likely attributed to

the Rio Puerto Viejo running along this direction, which is an obvious potential

mechanism for seed dispersal.

The probabilities ρ0j, giving the probability that event j is a background event,

can be used to find the most likely locations of background, or immigrant, events.

Figure 7.4 particularly highlights several distinct locations of high background

activity, especially in the northwest and central portions of the observation re-

gion. These are high likelihood targets for where the red banana plants may be

immigrating into the region, most likely transported by birds and other animals;

this is consistent with previous observations in Figure 6.2.

Figures 7.5 and 7.6 show histograms of the inter-event times and inter-event

distances, respectively, when the non-parametric estimator described in Section 7.3

is used to decluster the data probabilistically. That is, according to these non-

parametric estimates, each observed plant is assigned some probability of being

an immigrant as well as a probability of being triggered by plant i, for each plant

i originating before it, and one may translate these probabilities into a sequence

of immigrant and triggered plants as in Zhuang et al. (2002). When one limits
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Figure 7.3: Locations of triggered plants relative to their parents, weighted by

the likelihood of the parent-offspring relationship estimated by the

non-parametric estimator. The center coordinate (0,0) marks the

location of a parent, and a darker red cell indicates a higher density

of first-generation offspring in that cell. Each cell is 100×100 square

meters.
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Figure 7.5: Histogram of inter-event times from one realization of a declustered

sequence of red banana plants, using the triggering probabilities ρij

obtained from the non-parametric method discussed in Section 7.3.

attention purely to the sequence of immigrant plants in one such realization, the

inter-event times and distances are clearly far less clustered than the raw data, as

evidenced in Figures 7.5 and 7.6.
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bilities ρij obtained from the non-parametric method discussed in

Section 7.3.
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CHAPTER 8

Discussion

While there have been many attempts to model invasive plant spread, methods

treating the data as a spatial-temporal point pattern have been elusive. The

advantage of point pattern analysis is that it allows one to analyze and simulate

the exact locations of individual plants, and to estimate conditional intensities

and branching structure in greater detail.

The ETAS model has been widely used to study the spatial and temporal

spread of earthquakes and aftershocks. In this dissertation, we were able to use

ETAS in an ecological setting and apply the model to an invasive species of red

banana plants. The ETAS model is a branching point process model that requires

the exact locations of the points, as well as the origin times of the points. Unlike

earthquakes, however, the origin or birth times of the red banana plants considered

here are generally unknown. While they may be estimated using the weekly height

measurements of the plants, the birth times of the plants are likely estimated with

substantial error, and the improved estimation of these birth times is an important

topic for future consideration. We showed, however, that the parameter estimates

remained quite robust even after adding a random error with mean 0 and standard

deviation 4 weeks to the estimated birth times.

Maximum likelihood estimates are commonly used due to their nice asymp-

totic properties (Ogata 1978), but sometimes can be very difficult to calculate if

there is no closed form solution to the likelihood equation. Thus, one must typ-

ically use numerical optimization methods. However, there can be convergence
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problems in the estimation of the parameters if the log-likelihood is extremely

flat. Veen and Schoenberg (2008) showed that the EM-type algorithm may be

more stable and robust than Newton-Raphson methods in the face of extreme

flatness of the log-likelihood function, which may occur when estimating models

with large numbers of parameters and when data are sparse. In the present study,

the dataset appears to be sufficiently large to estimate the three parameters in

the given model stably, but in the future, if more complex models are desired, the

EM-method of estimation may be of interest.

After specifying the model (5.7) and presenting the model parameters from

the likelihood estimation, we were able to simulate point patterns that appear to

agree with the original data. Note that the background rate and clustering den-

sity estimates reported here may be slightly underestimated because of missing

data. In particular, since missing plants are potentially more likely to occur dis-

proportionately in locations further away from those where plants were observed,

one may conjecture that in particular the parameters β and p may be slightly

overestimated in the present study. The result of the super-thinning procedure

and analysis of the K-functions, however, implies that the model may be slightly

under-predicting the clustering in the data. Further development of the model

and comparison to other models of invasive species, in terms of estimation and

predictive power, will be examined in future work.

It is important to note that the ETAS model attributes all clustering of the red

banana plants in space and time to a birth mechanism where one plant essentially

causes another to occur nearby. However, it is plausible that much of the clustering

is due to spatial inhomogeneity, since the plants are more likely to occur in some

locations than others due to the compatibility with the plant’s survival needs, or

due to environmental covariates excluded from the model such as distance from

rivers, sunlight, soil quality, elevation, and temperature. More realizations of

the process would need to be observed in order for one to discriminate between
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the clustering due to the red banana plants reproducing and that due to spatial

inhomogeneity and excluded variables, and the measurement and inclusion of some

of these excluded variables into an ETAS model is also another important subject

for future research. Unlike earthquakes, red banana plants are affected greatly

by human interactions, since human decisions are not only responsible for the

sighting and recording of the plants, but also the decisions about the termination

of plants and about ecological and forest management decisions that may affect

the reproduction and longevity of the plants, and this further complicates the

interpretation of the fitted parameters in the ETAS model. Note also that the

ETAS model is by assumption stationary in time, meaning that while clusters of

plants (or earthquakes) can occur, in the long run the process is neither explosive

(with a number of occurrences per spatial-temporal unit approaching infinity)

nor does the process terminate entirely. This seems reasonable in the case of

earthquakes, but is perhaps objectionable in the case of a particular species of

plant, especially one that spreads as robustly as the red banana plant. A more

plausible model for red banana plants might possibly have a variable or even

finite immigration process and may have a triggering density that is explosive

in the short-term and that decays over time, ultimately becoming sub-critical,

since otherwise these plants would be located everywhere. On the other hand,

estimating such a model using observations over only a short time span may be

difficult. The extension to non-stationary point process models that alternate

between sub- and super-criticality is an important subject for future research.

While the model presented here seems to adequately describe the behavior of

the red banana plant over the time period considered, non-stationary models

might be preferable given observations over longer time spans. Methods for the

estimation of non-stationary or covariate-influenced versions of ETAS models are

important methods for future research, as such methods appear to be lacking in the

literature at present. Nevertheless, for the space-time window considered here, our

53



results can perhaps be interpreted as reasonable summaries of the spatial-temporal

spreading characteristics of the red banana plant in Costa Rica.

The space-time model presented here for invasive plants does not contain marks

or magnitude information, unlike the ETAS model commonly used to describe

earthquakes. Recorded covariates for each plant, including number of flowers,

amount of sunlight, distance from a main water source, soil quality, elevation and

temperature were excluded from model formulation mainly due to the very large

amount of missing data or poor quality measurements. The inclusion of such

covariates into branching models is important for future research, however. In

the present analysis, we consider purely the branching structure of invasive plants

using only the precise locations and estimated origin times of the plants, and our

focus is mainly on comparing the behavior and performance of current parametric

and non-parametric estimates.

One purpose of such a non-parametric approach is that it may possibly give in-

sight to or justify an underlying parametric model previously used to study plant

spread activity and seed dispersal. Here, however, we find important differences

between the non-parametric estimates and the parametric conditional intensity

estimates. In particular, the clustering appears to be stronger and sharper, i.e.,

more intense at smaller spatial-temporal scales, compared with the parametric

estimates used previously. Such parametric estimates were based largely on ex-

amination of histograms of inter-event times and distances between all observed

plants. The current results show that such histograms can result in a significant

underestimation of clustering. We also find that red banana plants not only occur

predominantly along the diagonal running from the northwest to the southeast

portion of the observation region, but that in addition, the triggering of offspring

appears to run predominantly in this direction as well. The results here make

sense in light of the Rio Puerto Viejo running along this direction, and also may

be used to obtain estimates of the most likely targets where immigration of red
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banana plants may be occurring.

Note that the model (4.2) assumes that the triggering function g contributes

linearly to the total conditional intensity λ. Multiplicative and other non-linear

forms may be important considerations in future work.
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