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Cognitive Differences in Human and AI Explanation
Robert A. Kaufman (rokaufma@ucsd.edu)

University of California, San Diego, Department of Cognitive Science

David J. Kirsh (kirsh@ucsd.edu)
University of California, San Diego, Department of Cognitive Science

Abstract
How do humans explain and cognize visual information? Why
do AI explanations in radiology, despite their remarkable ac-
curacy, fail to gain human trust? In a study of 13 radiology
practitioners, we found that AI explanations of x-rays differ
from human explanations in 3 ways. The first concerns vi-
sual reasoning and evidence: how humans get other humans
to see an interpretation’s validity. Machine learned classifica-
tions lack this evidentiary grounding, and consequently XAI
explanations like heat maps fail to meet many users’ needs.
The second concerns the varying needs of interlocutors. Pre-
dictably, explanations suitable for experts and novices differ;
presuppositions on explainee knowledge and goals inform ex-
planation content. Pragmatics matter. The third difference
concerns how linguistic terms and phrases are used to hedge
uncertainty. There is no reason XAI might not satisfy these
human requirements. To do so, however, will require deeper
theories of human explanation.
Keywords: Explainable AI; Explanation; Radiology; Visual
Reasoning

Introduction
How do humans explain and cognize visual information?
Here, we present findings derived from observation and
ethnographic study of 13 expert (attending) radiologists and
radiology residents explaining their findings and impressions
to end practitioners such as other attending radiologists, radi-
ology residents who are midway through residency, and med-
ical students doing a rotation in radiology.

We found that Explainable AI (henceforth XAI) explana-
tions of COVID-19 x-rays differ from human explanations in
three ways that teach us something generalizable about the
joint activity of explaining how to interpret an image.

The first concerns visual reasoning and evidence. Humans
get other humans to see the validity of an interpretation by
explaining why they see what they see. That is, they are fa-
miliar with the process of directing attention to relevant de-
tails, providing evidence for claims, and linking what they see
to why it matters. Machine learned classifications lack this
evidentiary understanding, with the consequence that popu-
lar visualizations such as heat maps do not meet many users’
explanatory needs. Language plays an important role in di-
recting how a listener visually inquisitions an x-ray, how they
move from heat map to x-ray and back again, and how they
attribute meaning to what they see. Even the best XAI image
classifiers fail in this regard.

The second way XAI explanations differ from those of hu-
mans concerns their sensitivity to the needs of different inter-

locutors. When an explainee receives an explanation, they are
engaged in a conversation and bound by rules for cooperative
conversation (Grice, 1975), which put constraints on what
should be said and how. Predictably, an explanation suitable
for an expert is not suitable for a novice, and vice versa. The
common ground (Clark, Schreuder, & Buttrick, 1983) be-
tween groups is different. Accordingly, the Gricean maxims
of quantity and relevance would predict briefer exchanges be-
tween experts. A more surprising observation, however, is
that two explainees often need different types of explanations
because the more novice of the two will typically see the con-
text of explanation as an educational moment that goes be-
yond visual interpretation of a particular image. They want
more generalizable knowledge; they may even want knowl-
edge unconnected to the specific case, an ‘explanation’ that
tells them about x-ray interpretation or reporting itself. The
pragmatics of explanation matters.

The third difference concerns hedging—how an explainer
conveys uncertainty. Linguistic hedges like ‘sometimes’ or
‘likely’ may convey uncertainty throughout an explanation to
provide a comprehensive reliability measure. All this mat-
ters for a theory of human visual interpretation and visual
explanation, but it also has a practical side: AI systems in
Radiology, despite their remarkable accuracy, currently fail
to gain human trust because their explanations are inadequate
(Holzinger, Biemann, Pattichis, & Kell, 2017; Holzinger,
Langs, Denk, Zatloukal, & Müller, 2019). This paper is about
the ways current XAI in radiology fail, and how they can be
improved by modeling them after humans.

Background: XAI in Radiology
Current diagnostic AIs for radiology classify images by ap-
plying dozens of statistical measures over a full grayscale
image. Radiologists forming diagnostic interpretations are
also sensitive to grayscale changes, but they tend to focus on
edges, blobs, areas of major contrast, and textures describ-
able in natural language. Machines are sensitive to changes
within convolution windows of arbitrary size (Ribeiro, Singh,
& Guestrin, 2016; Lapuschkin, Binder, Montavon, Müller, &
Samek, 2016; Selvaraju et al., 2017) regardless of whether
these correspond to attributes describable in natural language.
The implication is that subtle shading or textural changes that
are statistically informative to the machine may be uninfor-
mative to humans. This makes it challenging to explain the
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evidentiary basis of a machine’s classification.
The most common way radiology XAI systems attempt

to explain an image interpretation, such as an x-ray with a
‘COVID-19’ classification, is by providing another image – a
heat map. This is meant to help users understand what regions
(specific pixels) the machine regards as of greater or lesser
importance. Common examples include LIME (Ribeiro et
al., 2016), GradCAM (Selvaraju et al., 2017), and LRP
(Lapuschkin et al., 2016). These are generally paired with
an overall classification label, such as COVID-19 pneumo-
nia, and a probability measure for certainty. Figure 1 shows
a heat map explanation for x-ray interpretation using Grad-
CAM from Chexpert, a classification system for chest x-rays
(Irvin et al., 2019).

Figure 1: A heat map visual explanation for chest x-rays pro-
duced by Chexpert using GradCAM (right) and the original
x-ray image (left) it is laid over. Paired with the visualiza-
tion is an accompanying classification and probability mea-
sure “Pulmonary edema, p = 0.824” (Irvin et al., 2019).

Chexpert is impressive in its interpretative accuracy, as are
many other classification systems using similar techniques
(Rajpurkar et al., 2017; Karim et al., 2020). We argue that
these ‘explanations’, however, fall short of those given by hu-
man radiologists. First, they fail to draw attention to the vi-
sual evidence in the radiograph in the way human explainees
need in order to understand the basis for the interpretation.
Further, they fail to form a set of logical premises that connect
the visual information to a clinically-meaningful radiological
impression using steps of justification.

Explainees need to know what to look at, and in what order.
XAIs fail in this regard: they do not direct the temporal order
of attention. A novice might look anywhere in a heat map and
fail to contextualize what they see because they do not see the
connections between different regions correctly.

In a human-human explanation, by contrast, one person
calls attention to specific regions, and within those regions to
specific features. As an explainer moves through an image,
focusing on what is deemed relevant at each step, they cre-
ate an argument that constitutes a chain of evidence similar to
step-by-step reasoning in language (Schwartz, Panicek, Berk,
Li, & Hricak, 2011). The primary difference is that when rea-
soning in language, it is necessary to identify attributes using
descriptions, whereas in a visual explanation, descriptors are

replaced by reference to visual regions displaying those at-
tributes. This assumes the explainee has enough background
knowledge to recognize what is salient. If they do not, they
can ask in language what they should be seeing.

When this temporal ordering of joint attention is success-
ful and paired with enough information to derive meaning,
the explainee should understand the grounds for an image’s
classification. In radiology this classification process is called
an interpretation, the conclusion being an impression. When
the sequence is wrong, or an explainer and explainee lack the
requisite common ground to jointly attend to the salient at-
tributes and make meaning of them, the two are misaligned.
Common ground fails to build up in the right way. As the two
move apart neither can be certain they know what the other
expects them to know.

The most obvious way to improve XAI for image under-
standing is to rely on language or some visual highlighting
mechanism to call attention to attributes one assumes the ex-
plainee knows. Indeed, there have been efforts to group pix-
els based on perceptual factors like continuity and similarity
and tie these to named shapes (Koontz & Gunderman, 2008).
Pattern-recognition of these shapes might then be meaning-
fully related to radiological concepts drawn from memory and
built through expertise (Wood, 1999). Connecting visual fea-
tures to an overall impression could then be assisted with.

Assuming the question of temporal order has also been re-
solved, such efforts may one day improve XAI for image
classification. Provided, of course, the system is appropri-
ately calibrated to the features different users can actually
recognize. This is no small proviso. Experts see many more
attributes than simple features like blobs, edges, and a few
describable textures. Calibration is a hard and very human
problem. When two people talk they soon determine what
they can assume the other knows. They also have methods for
recognizing what they do not share in common. A real ques-
tion, therefore, is whether an XAI can adapt and calibrate to
common ground.

Method
To explore the key factors impacting how radiologists explain
their impressions to colleagues, we a) ethnographically ob-
served how radiologists and radiology residents interpret and
explain radiographs; b) interviewed and administered a sur-
vey to further assess factors which affect human to human
explanations in radiology. Study procedures occurred in 90
minute sessions over video conference.

Participants
Thirteen (n = 13) participants took part in the study and each
participant completed all study aspects. Seven participants
were attending radiologists and six were radiology residents.
Participant experience ranged from a first-year radiology res-
ident to an attending radiologist with 25 years of experience.
All participants were employed within large hospital systems
dispersed throughout the United States.
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Observation: X-ray Interpretation
During the x-ray interpretation task, participants were ob-
served interpreting and explaining chest radiographs of po-
tential COVID-19 patients via video conference.

Explanations were performed orally, as if the given ex-
plainee presented the participant with a radiograph and asked
them for a second opinion - one of the most common contexts
within which explanations occur. Participants were told that
each patient was presenting clinical symptoms of COVID-19
such as cough, fever, and shortness of breath.

Explanations were unidirectional and the participants were
never face-to-face with the receivers; instead, they were told
before each image to which receiver they should tailor their
explanation. This allowed explanations to match current radi-
ology XAI systems that do not allow for interactive dialogue.
Even though participants were not interacting with explainees
themselves, they reported that the study setup felt natural to
them and they didn’t have issues tailoring each explanation.

Each participant saw approximately 12 radiographs to in-
terpret and explain; images were randomized and half were
repeated to multiple explainee types. By repeating images
we are able to examine how explanations differ when given
to different explainees. For repeat images, participants were
asked to explain as if they were seeing the image for the first
time. Given that the interpretation itself is not the basis of
inquiry, we do not believe that repeating biased the explana-
tion given. This was confirmed by participants during inter-
view. Pairwise comparisons were performed to ensure that
there were no differences between explanations of images
that were and were not repeated and any differences between
participants or images were controlled for during analysis.

The x-rays interpreted by our subjects came from one of
the large COVID-19 open datasets pairing radiological im-
ages and diagnostic information (Chowdhury et al., 2020).
Our video observations closely match the natural patterns of
communication employed at the time of collection (Matalon
et al., 2020).

Explanation Coding and Nomenclature
Participant explanations were transcribed and broken into
segments to reflect different types of information conveyed
during the interpretation explanation process. Codes were as-
signed based on how certain types of words and phrases cor-
responded with each segment. Content was analyzed to re-
flect the information communicated within each segment and
how the segments unfold over time. This allowed us to eval-
uate how thoroughly each level was covered by explanations
to different receiver groups, and by what means.

For codes relating to radiology terminology, we used the
Fleischner Society’s Glossary of Terms (Hansell et al., 2008)
along with contemporary references to COVID-19 image
findings (Ng et al., 2020) and the Radlex Radiology lexicon
(Langlotz, 2006).

We conform to the standard definition of radiological ‘find-
ings’ as those statements that describe observations - what is

seen in an image using theory-based jargon (Hall, 2000). For
instance, a ‘ground-glass opacity’ is a radiological finding.
Radiological ‘impressions’ are theoretical conclusions; they
communicate what the findings mean in terms of pathology,
like COVID-19 pneumonia.

Codes relating to the expression of uncertainty, or linguis-
tic hedging, were taken with permission from the collection
of terms and phrases used by Hanauer et al. in their analysis
of uncertainty in clinical documents (Hanauer et al., 2012)
as well as the certainty descriptors in the Radlex Radiology
lexicon (Langlotz, 2006).

Results
We elaborate upon the content of an explanation in radiology
and illustrate how this content changes by end practitioner.

The Role of Presuppositions
The background knowledge and expertise of an explainee is
one of the more obvious factors a radiologist takes into ac-
count when tailoring an explanation. We measured partici-
pants’ presuppositions of x-ray interpretation (process) and
radiology terminology (terms) expertise by asking them to
rate each group on a 1-7 likert scale (no expertise to super
expert).

Table 1: Presuppositions of Explainee Expertise

Attending Resident Student
Mean SD Mean SD Mean SD

Terms 6.2 0.3 4.7 0.3 2 0.2
Process 5.8 0.3 3.9 0.3 1.7 0.2

Results follow the expected trend: the higher a receiver’s
role in the healthcare system, the more expertise they are pre-
supposed to have (Table 1). Presupposition rates given by
attending radiologists and radiology residents did not differ
significantly. These results provide the foundational evidence
underlying the assumption that more ground needs to be cov-
ered in explanations to explainee groups who are presupposed
to have less expertise. Past work has noted differences in end
practitioner domain expertise, but to our knowledge no radi-
ology XAI systems have been implemented which take into
account these differences.

Explanation Content as Segments
To analyze content, we break human multimodal explana-
tions into linguistic segments that can be counted. These
segments are linguistic units (words or short phrases) which
combine to form the full explanation (Passonneau & Litman,
1997). Segments were determined by identifying the cate-
gories of information which explanations progressively cover,
from low-level visual features to abstract impressions using
domain-specific radiology jargon. We also measure ‘elab-
orations’, which are segments that are categorized by their
function in the explanation, such as providing additional in-
formation or next steps. Once segments were determined,
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associated words and phrases were quantitatively measured.
We posit that explanations themselves do not need to cover
all of the segments explicitly. Instead, presuppositions about
a receiver’s knowledge and needs dictate what information
should be included. Figure 2 presents a simplified example
with segments highlighted.

“This blob1 might be5 a ground glass opacity2

by the hazy shape2a. This makes me
think there’s an infection3 like COVID3.
Given the pandemic this would be my impression3a

and I’d order a follow-up CT4. If it’s an artifact6,
I would check their lung apices for signs of...7”

Figure 2: A simplified example explanation with segments
highlighted. The segments are: 1.) Identifying a ROI, 2.)
Abstracting the ROI features to radiological ‘finding terms’,
2a.) If needed, assist with this connection through ‘finding
elaboration’, 3.) Inferring ‘impression terms’ from findings,
3a.) If needed, assist with this through ‘impression elabora-
tion’, and 4.) Contextualize the inferences and add ‘orders’
as next steps. Throughout, the segments are modified to
include 5.) Certainty via ‘hedging’ terms and phrases, and
6.) Alternative conclusions via counterfactuals. 7.) The
x-ray interpretation process is expanded upon via ‘process
elaborations’ if needed.

The first segment in Figure 2 establishes a visual reference
point, a region of interest (ROI), on the image. Identifying a
ROI enables joint attention to visual attributes if the explainee
has the ability to recognize the attributes. Typically a ROI is
pointed out by using a gesture and a simple linguistic descrip-
tor or two with indexical, as in “this blob”.

Second, the visual attributes of the ROI are connected to ra-
diological finding terms, such as “ground glass opacity”. This
allows the ROI to be further identified using domain-specific
language that may help the practitioner understand what they
are seeing. Some explainees have difficulty connecting ROIs
to finding terms. In these instances, an explainer may include
a ‘finding elaboration’ - a pedagogical extra - where informa-
tion is included to help them understand how they know they
are seeing a particular finding.

Next, impressions are induced from the constellation of
findings identified in the image. This is important for clin-
ical sensemaking, as impressions are the primary information
that helps other providers identify next steps and form a treat-
ment plan (Hall, 2000). Forming impressions from findings
does not occur in a vacuum; the clinical context, patient his-
tory, and alternative interpretations of findings may iteratively
inform the likelihood of different impressions. Sometimes a
single impression cannot be identified and instead a differ-
ential is communicated (Dahnert, 2017). Similar to finding
elaborations, ‘impression elaborations’ include extra infor-

mation given by an explainer to help a particular receiver un-
derstand what a particular finding means in terms of an im-
pression. They help with the inferential process and may not
be required for all receivers.

Fourth, impressions are contextualized within the clinical
context and ‘orders’, or next steps, may be included in expla-
nations to help the receiver know what should be done once
the interpretation process has concluded. This may include
information such as orders for additional images or instruc-
tions to other physicians.

Fifth, indicators of uncertainty - hedges - are vitally im-
portant in medical settings. The weight or confidence an ex-
plainer has in their finding, impression or interpretation has
been shown to impact medical decision making (Hanauer et
al., 2012; Khorasani et al., 2003). In our data, we found
the use of linguistic hedging in all stages of an explana-
tion. Their inclusion as a fifth segment carries no information
about when they may appear in an explanation.

Sixth, if-statements and alternatives are another type of lin-
guistic segment that may appear at any point in the interpre-
tation process. They offer a differential or other way of inter-
preting the image. These often take the form of contrastive or
counterfactual explanations, such as “if the shape were more
precise it would have been a B, but since it is not it must be
an A” (Miller, 2019; Wang, Yang, Abdul, & Lim, 2019).

The seventh type of segment - process elaboration - is an-
other form that may appear at any point in an explanation.
These elaborations are included to assist explainees on any
of the component tasks involved in the interpretation process,
from reading a radiograph to understanding what to do when
certain findings or impressions are identified.

We found that explanations of decisions tend to be commu-
nicated in a linear fashion via these segments, however, this
is not always the case. Explanations may sequentially follow
the explainer’s process of discovery which may be implicit
and nonlinear. For example, one participant described their
deductive (top-down) discovery process “forming a hypothe-
sis based on the clinical context ... searching for evidence to
confirm or reject the hypothesis, and then assessing for [alter-
natives]”. Another described an inductive (bottoms-up) pro-
cess of looking for “areas that seem off,” forming a hypnosis
based on what they find, and then gathering further evidence
to test the hypothesis. We refer to the Select and Test model
of medical reasoning for how radiological impressions may
be concluded upon (Ramoni, Stefanelli, Magnani, & Barosi,
1992).

Explanations Change With End Practitioner
There was a clear and intuitive difference in the way explana-
tions were presented to attending radiologists, radiology res-
idents, and medical students. Overall differences manifest in
nearly all segments of an explanation, providing evidence that
explanation content changes by end practitioner.

Analysis was done using linear mixed-effects models in or-
der to account for individual participant differences and for
the effect of individual x-ray stimuli used in the study (Bates,
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Mächler, Bolker, & Walker, 2014). Comparisons between a
model with random effects for these variables and that same
model with a fixed-effect for end-practitioner type are shown.
This fixed effect of end practitioner type was added to mod-
els omitting only that variable to assess for significant dif-
ferences between explainee type. There were no statistically
significant differences between explanations produced by at-
tending radiologist and radiology resident participants, thus
these explainers are presented conjointly.

Unique terms for each segment are counted to accu-
rately represent content coverage and control for repeat ut-
terances. As some words convey more uncertainty than oth-
ers, a weighted total was calculated for hedging to reflect the
amount of uncertainty conveyed. Elaborations were counted
as it relates to their corresponding segment descriptions. The
corresponding descriptive statistics are reported in Table 2
and test statistics are reported in Table 3. In Table 3, ‘Att-
Res’ should be read as ‘Attending Radiologist explaining to a
Radiology Resident’, and so on.

Table 2: Explanation segment counts by end practitioner.

Attending Resident Student
Mean SD Mean SD Mean SD

Total
words

110.26 12.71 151.25 16.46 280.28 25.91

Findings
(terms)

1.72 0.18 2.13 0.21 2.64 0.35

Findings
(elab)

0.23 0.07 0.78 0.15 1.85 0.27

Impress.
(terms)

3.21 0.37 3.53 0.26 4.31 0.47

Impress.
(elab)

1.59 0.21 2.00 0.23 2.64 0.24

Orders
(elab)

0.36 0.09 0.38 0.09 0.67 0.13

Hedging
(weighted)

7.95 1.57 10.40 1.58 12.72 2.05

Process
(elab)

0.31 0.10 0.53 0.11 2.67 0.44

Overall, we find that information was included within all
segments of an explanation to all groups – albeit at different
levels of frequency. This implies that a baseline level of in-
formation exists that is necessary to connect visual findings
with impressions regardless of prior expertise. This does not
imply that all segments should be explained at all times; some
contexts and some end practitioners may require certain types
of information to be added or omitted to achieve common
ground and fulfill additional goals.

We also find clear evidence that explanations to different
end practitioners contain different amounts and types of in-
formation. In general, the amount of content within each ex-
planation segment increases as we move from end practition-
ers with more presupposed expertise (attending radiologists

Table 3: Comparing end practitioner segment counts.

Chi-
sq

df Overall Att -
Res

Att -
Stu

Res -
Stu

Total
words

50.10 2 *** trend *** ***

Findings
(terms)

8.40 2 * ns ** trend

Findings
(elab)

35.88 2 *** * *** ***

Impress.
(terms)

5.81 2 trend ns * ns

Impress.
(elab)

10.84 2 ** ns ** *

Orders
(elab)

5.59 2 trend ns * *

Hedging
(weighted)

8.78 2 * ns ** ns

Process
(elab)

38.34 2 *** ns *** ***

‘***’ p <0.001, ‘**’ p <0.01, ‘*’ p <0.05, ‘trend’ p <0.1
Overall: Pr(>Chi-sq), Group Differences: Pr(>| t |)

and radiology residents) to those with less (medical students).
This supports the principle tenets of common ground theory.
Crucially, content differences were segment-dependent, im-
plying that in order to meet the explanatory needs of each
group, different information will need to be presented.

We found few significant differences between explanations
to radiology residents and attending radiologists, though we
observe clear trends. We believe this is due to the near-
expert status of radiology residents and the high prevalence
of COVID-19 at the time of the study. With a less common
clinical case we may see more pronounced differences.

We know more information was provided to some groups,
but what role does this additional information play? In some
cases, additional information may be included to point out
content that may be missed or misunderstood by those with
less expertise. We believe this to be the case with hedging
and added elaborations. In other cases, such as the inclu-
sion of many finding and impression terms, counterfactuals
were used to illustrate differences between fact and foil find-
ings and why some impressions were included in a differ-
ential over others. Contrastive explanation strategies, often
through counterfactuals, can be especially effective at estab-
lishing causal attribution (Miller, 2019).

Discussion

Our analysis reveals stark differences between human-given
and machine-derived explanations. These lead to several crit-
ical areas to be addressed for future XAIs that are viable for
real-world deployment.
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Visual Reasoning: Moving Beyond ROIs
We show that radiology practitioners move through their ex-
planations in segments of increasing abstraction, ascribing
meaning to visual elements of a radiograph at multiple lev-
els of the interpretation process, providing additional infor-
mation and adjusting information fluidly. These steps are im-
portant for establishing common ground and justifying the
interpretation in terms of a shared process. Common ground
builds up over time; it has a logic that relies on shared capac-
ities for inference and judgment. In the case of visual rea-
soning, this involves helping explainees see what they need
to and in the right order.

By contrast, heat maps and similar XAI techniques identify
potentially important ROIs but do not determine the logical or
temporal sequence an explainee should take when looking at
ROIs. Moreover, such techniques do not explain the reason
why certain pixels are important. There is no explanation of
the relation of one ROI to another or to the clinical case.

This is quite unlike the information conveyed by radiology
practitioners who have a near-linear approach to controlling
attention. Moreover, by using known terms when identifying
the findings in a region they encourage contextual thinking.
“Ground glass” for example, is understood as caused by med-
ical conditions, such as infection, chronic interstitial disease,
or acute alveolar damage (Hansell et al., 2008). Its semantics
is close to physiology and the meaning of pulmonary disease,
which invokes a constellation of inferences. Because it is not
just a measure of statistical importance, it is more intuitive
than statistical heat maps for someone trying to understand
what it is about a patient that reveals they have COVID-19
pneumonia. It makes it easier to cross-examine the x-ray to
look for meaningful connections.

A similar opportunity for sensemaking is created by elab-
orations, counterfactuals, and talking of next steps. All
these linguistic types provide guidance and contextualization.
Elaborations come in many forms depending on explainee
need, from helping form a diagnosis to passing along tacit
knowledge on how to go about the interpretation process it-
self. Once an impression or differential is decided upon, ra-
diology practitioners also help contextualize that information
within the clinical context as needed. Elaborations help to
structure joint attention and develop common ground.

Moving beyond highlighting potential ROIs, we believe
that XAIs should convey information at all levels of the
interpretation process. This can provide an intuitive jus-
tification for a diagnosis as well as enable an end practi-
tioner to cross-examine the XAI. Examples include identi-
fying features as findings using domain-specific terminology
like “ground glass”, visualizing how a constellation of find-
ings contributes to an impression, or suggesting possible next
steps given a case.

Explanation Pragmatics: Receiver Needs Vary
Radiology practitioners tailor their explanations to different
explainees and are sensitive to their specific needs. We ob-

served that human explainers vary the amount of informa-
tion within each segment based on explainee expertise and
thoughtfully choose what to elaborate.

Current XAIs provide no sensitivity, leaving more novice
end practitioners unsupported with the task of connecting the
meaning of different segments of information and how to uti-
lize information in the larger ecosystem of patient care. More
expert users, meanwhile, may be provided with unnecessary
information that is redundant or distracting.

Hedging Uncertainty
Finally, humans differ from XAI in radiology in the way they
convey uncertainty. Hedging is found at nearly all levels
of the interpretation process, including on the process itself
if necessary. This is important, as uncertainty attached to
different types of information has different implications on
how that information should be used. For example, if an ex-
plainer’s uncertainty stems from being unsure of the clinical
meaning of a finding it has drastically different implications
than uncertainty stemming from not knowing if the finding is
real or an artifact.

Most current XAIs only convey overall quantitative cer-
tainty - COVID with 90% probability. Research on hu-
man decision-making with probabilities illustrates that peo-
ple cannot meaningfully distinguish certainty quantifications
at fine granularity nor without conforming to heuristic biases
(Kahneman & Tversky, 2013). Reasoning is more qualitative,
and past work suggests that explanations with probabilities
tied to causal events are more useful (Miller, 2019).

More work needs to be done to understand the variety of
ways explainers have of marking uncertainty and the different
meanings they convey.

Conclusions
To understand the inadequacies of Explainable AI (XAI)
for radiological interpretations, we examined how radiology
practitioners explain their impressions to attending radiolo-
gists, radiology residents, and medical students. Through
ethnographic and quantitative analysis, we dissected their ex-
planations into seven types of linguistic segments. We found
that segments were presented in levels of increasing abstrac-
tion, directing attention and ascribing meaning to visual at-
tributes of an image to facilitate clinical sensemaking. Ex-
planations were sensitive to the knowledge, needs and goals
of the explainees and information was added or subtracted as
needed to achieve common ground.

XAI systems do not at present explain like humans. The
most popular forms rely on heat maps that give no guidance
on how to attend to features, how to make sense of the rela-
tions between features, and what features mean in the larger
clinical context. This XAI approach reflects a failure in three
areas: it fails to accommodate how humans reason and make
sense visually; how we hedge our uncertainty in a qualita-
tive manner, and how we are sensitive to the many needs and
goals our explainees may have.
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