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ABSTRACT OF THE THESIS 

Metastructure-enhanced terahertz magnon-polaritons  

by 

Yu Wu 

Master of Science in Electrical & Computer Engineering 

University of California, Los Angeles, 2020 

Professor Benjamin S. Williams, Chair 

Magnons, i.e. the quanta of spin waves, are considered to be promising information carriers. 

Unlike electric currents, magnon-based spin currents could be used to transport information co-

herently over long distance without generating any Joule heat. Magnons in antiferromagnetic 

materials exhibit resonance frequencies extending up to the THz frequency range, which promis-

es rapid response of magnon-based devices. However, it becomes difficult to control such rapid 

oscillations of magnetization using circuit-based electronic control. Instead, optical techniques 
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have been investigated for the generation and control of AF magnons – however most techniques 

have been based upon ultrafast near-IR pump-probe techniques. 

In this thesis, I investigate the feasibility of designing electromagnetic metastructures with 

subwavelength effective cavity volumes to realize strong light-matter coupling between suitable 

antiferromagnetic materials operating at over 1 THz. In these systems, light and material excita-

tions are strongly coupled and mixed into superposition states with hybrid dispersion relation, 

which are termed as polaritons. Such magnon-polariton systems are of interest as they enable 

coherent information transferring between distinct physical platforms. While polaritons have 

been demonstrated between GHz-frequency photons and ferromagnetic magnons, only limited 

reports have been found on antiferromagnetic magnon-polaritons. 

Moreover, as a potential application, the feasibility of THz magnon-polariton lasers is stud-

ied. In this thesis, I propose an idea which combines metal-metal waveguide with LC circuit- 

based microcavity, and introduce a design of metastructure with strong evanescent magnetic 

field, enabling the generation of magnon-polaritons even in a 200 nm thin antiferromagnetic film. 

Quantum cascade active region with intersubband transitions falling into THz frequency range 

can be applied into the metastructure, enabling direct amplification of magnon-polaritons. 

Magnon-polariton lasing becomes possible when this hybrid active metastructure/ antiferrom-

ganet is paired with an output coupler, building up a quantum cascaded vertical external cavity 

surface emitting laser (QC-VECSEL). The opportunity of magnon-polariton quantum cascade 

laser is also discussed when a thick antiferromagnetic slab is inserted in a standard VECSEL cav-

ity.  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Chapter 1: Introduction  

1.1 Polariton definition and applications 

Interaction between light and matter gives rise to a wide variety of physical phenomena and 

has been extensively studied for centuries. The intuitive description of light-matter interaction is 

related to a series of elementary processes in which photons are absorbed, emitted, or scattered 

by an ensemble of particles in the materials. Particles could interact with each other in the en-

semble, therefore any pattern of motion would be cooperative and affect the whole collection of 

particles in the system, which is called collective oscillations. Collective oscillations can be me-

chanical displacements, like lattice vibrations; they can also be electronic excitations among 

atomic energy levels. In either case, the whole system can be viewed as a giant harmonic oscilla-

tor contributed by all the particles in the system.

A straightforward mechanical illustration of the coupling system consists of two coupled 

springs (Fig. 1.1 (a)) [1]. Each single spring can be modeled as a simple harmonic oscillator. Its 

energy oscillates between the kinetic part and the potential part, at the same time dissipates to the 

environment through friction. Energy exchange between two springs becomes possible when 

they are connected through a third coupling spring whose elasticity coefficient decides the energy 

exchange rate. With the existence of the coupling spring, the oscillation modes no longer relate 

to the motion or position of either one of the single oscillators alone, instead, the normal modes 

become a hybrid of the original oscillating modes. Moreover, it’s clear that when the energy ex-

changes between two springs in a rate slower than the rate of energy dissipating to the environ-
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ment, only one-way energy transfer is observed before either one of the oscillators damps and 

stops moving. Only when the energy exchange rate becomes higher than the energy dissipation 

rate, energy oscillating between two oscillators back and forth can be observed.

This mechanical analogy intuitively shows that whether the phenomenon of reversible energy 

oscillation is significant depends on the strength of coupling compared to other relevant dissipa-

tion rates. Accordingly, at least two regimes can be defined: the weak coupling regime and the 

strong coupling regime. In terms of light-matter coupling, the criteria of strong coupling is often 

worded that the reversible rate of energy transfer between the photon mode and the material exci-

tation mode should be larger than the irreversible energy decay rate. In the strong coupling 

regime, the light and material excitations can not be viewed as separate entities, instead, two su-

perposition states with hybrid dispersion relation are generated, which can be described as quasi-

particles known as polaritons.

�2

Figure 1.1 (a) Two coupled springs (b) Electric dipole coupling between photon and a two-level elec-

tronic system.
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1.1.1 Classical description of strong coupling 

A classical Lorentzian model can be used to describe the light-matter coupling system. Here, 

we take the simplest case of light-matter interaction, namely, the electric dipole coupling be-

tween photon and a two-level electronic system, as an example (Fig. 1.1 (b)). Electronic transi-

tions between energy levels can be viewed as harmonic oscillation of electron clouds around 

their nucleus with oscillation frequency �  and relaxation rate � . The electromagnetic wave 

propagating in the medium has a wavelength much larger than the dimension of electric dis-

placement and is in the form of � . It drives the movement of electrons, i.e. 

� , resulting in an equation of motion: 

�  (1.1)

The steady-state solution of equation (1.1) is written as: 

�  (1.2)

The displacement of each electron gives rise to an electric dipole. For a medium consisting of 

N electrons, the macroscopic polarization in a volume of V is:

�  (1.3)

Thus the macroscopic electrical susceptibility is:

�  (1.4)

where �  is a parameter used to characterize the strength of material excitation 

contributing to Lorentzian-shaped susceptibility. In light-matter coupling system, the medium is 

ω0 γ

E(r, t) = E0e−iωt

r ∝ e−iωt

m (··r + γ ·r + ω2
or) = − eE(r, t) .

r = −
e
m

1
ω2

0 − ω2 − iγω
E0e−iωt .

P = −
Ner
V

=
Ne2

Vm
1

ω2
0 − ω2 − iγω

E0e−iωt .

χ =
Ne2

Vϵ0m
1

ω2
0 − ω2 − iγω

=
μrω2

0

ω2
0 − ω2 − iγω

,

μr =
Ne2

Vϵ0mω2
0

�3



polarized by the electromagnetic wave, while the polarization, in turn, will influence the electro-

magnetic field. After combing the above equation of electrical susceptibility with Maxwell’s 

equations, we obtain the hybrid dispersion relation as:

�  (1.5)

To get the information of a light-matter coupling system from its dispersion relation, first an 

extreme case is considered when there is no dissipation, i.e. � . Dispersion of light in free 

space is linear with the expression of � , while the electronic excitation in the medium is 

assumed to be dispersionless shown by the dotted lines in Figure 1.2. When the electromagnetic 

field is in resonance with the electronic transition, i.e. around the crossing point between two 

original dispersions, the dispersion relation can be simplified under several approximations 

�  as [2]: 

�  (1.6)  

β2c2 = ω2 (1 + χ (ω)) = ω2 (1 +
μrω2

0

ω2
0 − ω2 − iγω ) .

γ = 0

βc = ω

βc + ω ≈ 2ω0, ω0 + ω ≈ 2ω0

(βc − ω)(ω0 − ω) =
μrω2

0

4
.

�4

Figure 1.2. Hybrid dispersion of a strong light-matter coupling system in dissipationless case. Original 

dispersions of light and material excitation are represented by dotted lines. Frequency splitting at reso-

nance and forbidden band colored in grey are signatures of strong light-matter coupling.



This equation produces two solutions, corresponding to two polariton modes with different 

frequencies:

�  (1.7)

Either a large oscillator strength �  or closer resonance frequencies between light and elec-

tronic transition will lead to greater distortion of dispersion from the original ones, while as the 

two modes are far off-resonance, the original dispersions are recovered. The frequency splitting 

between normal modes at resonant point is an important parameter used to characterize the 

strength of coupling, and is named as Rabi splitting � . Rabi splitting derived from classical 

Lorentzian model is proportional to the square root of volume density of electric dipoles which is 

in agreement with the quantum theory.

Moreover, a forbidden band can be found from the hybrid dispersion, when the term 

�  becomes negative and only imaginary solutions of wave vector exist. The frequen-

cy range �  is named as the “polariton gap” which is also a signature of 

strong light-matter coupling.

In the case when both electronic damping and phenomenology dissipation rate of photonic 

mode are taken into consideration, i.e. � , the frequencies of normal modes 

at resonance are solved from equation (1.5) as:

�  (1.8)

ω± =
βc + ω0

2
± 1

2 (βc − ω0)2 + μrω2
0 .

μr

ΩRabi

1 +
μrω2

0

ω2
0 − ω2

ω0 < ω < ω0 1 + μr

γ ≠ 0, βc = βc − i
γph

2

ω± = ω0 − i
γ
4

− i
γph

4
± 1

2
μrω2

0 − ( γ
2

−
γph

2 )
2

.
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The complex frequencies can be understood as damped modes with identical linewidth which 

is an average of the photon and material excitation modes: � . In the experiments, 

to observe the frequency splitting between normal modes, the value of frequency splitting should 

be larger than that of the modal broadening, which leads to the relationship [2]: 

�  

� (1.9)

This equation points out the condition required for strong light-matter coupling and is often 

worded as ‘the splitting has to be larger than the widths of modes’. However, modal broadening 

may narrow the measured value of the splitting, and the actual measured splitting can be slightly 

smaller than the average width [3]. Therefore, another practical definition is usually used for the 

strong coupling regime which is termed as a regime with experimentally observable frequency 

splitting.

1.1.2 Quantum description of strong coupling 

The classical model clearly demonstrates the hybrid dispersion relation with Rabi splitting in 

a strong light-matter coupling system. In this section, quantum mechanical description of materi-

al excitations and electromagnetic waves is introduced to better illustrate the problem. 

Usually, a classical description of electromagnetic wave is used interacting with a quantum 

two-level system building up a semiclassical model. However, scientists found situations in 

which a free electromagnetic field exhibited properties and behaviors that could not be described 

Δω± =
γ
2

+
γph

2

μrω2
0 − ( γ

2
−

γph

2 )
2

>
γ
2

+
γph

2
,

μrω2
0 >

γ2 + γ2
ph

2
.
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by a classical field. Quantization of electromagnetic waves becomes necessary to build up a fully 

quantum framework for light-matter interaction systems, which requires the knowledge of many-

body quantum physics and the technique of second quantization. Here, only the final quantum 

model of electromagnetic waves and main physics of light-matter coupling systems are present-

ed, while the detailed derivation can be found in Chapter 4 of [4].

The Hamiltonian of a quantized electromagnetic wave is: 

�  (1.10)

where �  is the frequency of light, �  are the creation and annihilation operators whose 

product has an eigenvalue equals to the number of photons in the system. 

This Hamiltonian is in the form of a quantum harmonic oscillator whose eigen-energies are 

equidistant: � . Its eigenstate � is called the “Fock” state, where n is the 

number of photons in the system. The �  term exists only in quantum theory and shows that even 

when there is no photon in the system, “vacuum fluctuations” leads to non-zero ground energy.

Moreover, the electric field of a single EM mode propagating along z-axis within a resonator 

of volume V is then expressed in quantum description as:

�  (1.11)

Similar to a semiclassical model, the material excitation can be described as a quantum two-

level system (spin-half system) with Hamiltonian represented by Pauli matrix as [4]:

�  (1.12)

Ĥp = ℏωc ( ̂α†α̂ +
1
2 ),

ωc
̂α†, α̂

Ep = ℏωc (n +
1
2 ) |n >

1
2

E(z, t) =
ℏωc

2ϵ0V ( ̂α† + α̂) eikz .

̂Hm =
1
2

ℏω0 ̂σz,
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where �  is the frequency difference between the ground state and the excited state in the 

material.

Take the electric dipole coupling as an example, the interaction Hamiltonian can be repre-

sented as:

�  (1.13)

in which the electric dipole matrix �  in the quantum two-level system is further represented 

using Pauli matrices as � , where M is the electric dipole element between 

the ground and excited state: � , and Pauli matrices � , 

�  represent transitions between the ground and the excited state.

The final Hamiltonian of the whole system becomes:

�  (1.14)

This is the so-called quantum Rabi model introduced by Rabi around 80 years ago [5], and is 

considered to be one of the simplest and most fundamental models of light–matter interaction. In 

the strong coupling regime, rotating wave approximation can be applied considering the time 

evolution of operators � , the quantum Rabi model is further simplified as:  

�  (1.15)

which is called Jaynes-Cummings (JC) model, proposed by Jaynes and Cummings in 1963 

[6].

�  is chosen to be the vector basis under the assumption 

that only one photon is considered emitting or absorbing when a transition is made between the 

ω0

̂Hint = − ̂dE(z, t),

̂d

̂d = − (σ−M* + σ+M)
M = e < g | ̂x |e > σ− = |g > < e |

σ+ = |e > < g |

Ĥ =
1
2

ℏω0 ̂σz + ℏωc
̂α†α̂ + ℏ (α̂ + ̂α†) (gσ+ + c . c . ) .

α̂, ̂α†, σ+, σ−

Ĥ =
1
2

ℏω0 ̂σz + ℏωc
̂α†α̂ + ℏ (gσ+α̂ + c . c . ),

|e, n > = (1
0), |g, n + 1 > = (0

1)
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ground and the excited states in the medium, i.e. the Hamiltonian only couples the states �  

and � . 

Since the state of the light field may has a distribution of photon numbers, the Hamiltonian 

can be written as:

�

�  (1.16)

The interaction between photon and material excitation is represented by the off-diagonal 

term. After rediagonalizing the Hamiltonian, energy eigenvalues are obtained as:

�  (1.17)

The quantum Rabi model shows a similar dispersion relation as the classical Lorentzian 

model, while at resonance � , the frequency splitting is �  with eigenmodes 

acting as a superposition of photon and material excitation, giving the definition of polaritons:

�

�  (1.18)

If the system is initially in the electronic ground state with n + 1 photons, the initial state can 

be expressed as a superposition of the new eigenstates. Then the time-dependent wavefunction 

becomes:

|e, n >

|g, n + 1 >

Ĥn = ∑
n

Ĥn,

Ĥn = ℏ (n +
1
2 ) ωc (1 0

0 1) +
1
2

ℏ
−δ 2g n + 1

2g n + 1 δ
, δ = ωc − ω0 .

En,± = ℏ (n +
1
2 ) ωc ± ℏ

2
δ2 + 4g2(n + 1) .

δ = 0 ΩRabi = 2g n + 1

|ϕ−,n > =
1

2
( |g, n + 1 > − |e, n > ),

|ϕ+,n > =
1

2
( |g, n + 1 > + |e, n > ) .
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�

�

�  (1.19)

The probability that the system initially in the state � will transfer into state 

� after a time period �  under the influence of the resonant electromagnetic wave is 

represented as:

�  (1.20)

It then becomes clear that under the influence of the resonant electromagnetic wave, the 

eigenstates of the system are a hybrid of photon and material excitation, which means that the 

two-level system alternately emits photons and reabsorbs them in a rate equals to Rabi frequen-

cy. This energy exchange process between �  and �  states is therefore called 

Rabi oscillation. The criteria of strong coupling which requires the frequency splitting to be larg-

er than the linewidths of eigenmodes, now has a physical interpretation that the energy oscilla-

tion period should be smaller than the lifetimes of both photon and material excitation states.

In the above equations, only one emitter is taking into consideration, while in real many-body 

system, all the N two-level emitters in the system interacting with electromagnetic wave should 

be taken into consideration.

�  (1.21)

|ϕ(t0) > = |g, n + 1 > =
1

2
( |ϕ−,n > + |ϕ+,n > ),

|ϕ(t) > =
1

2 ( |ϕ−,n > e−i
En,−

ℏ t + |ϕ+,n >−i
En,+

ℏ t ) =
1

2
eiϕ ( |ϕ−,n > + |ϕ+,n >−iΩRabit )

= eiϕ′�(cos(
ΩRabi

2
t) |g, n + 1 > − isin(

ΩRabi

2
t) |e, n > ) .

|g, n + 1 >

|e, n > t0 − t

Pa→b(t0, t) = sin2 ( ΩRabi

2
(t − t0)) .

|g, n + 1 > |e, n >

Ĥ =
1
2

ℏω0 ∑
N

̂σz + ℏωc
̂α†α̂ + ℏ (g∑

N

σ+α̂ + c . c . ) .
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This is the so-called Dicke Hamiltonian which is also known as the Tavis–Cummings Hamil-

tonian. When only a few emitters in the system are excited, the contribution of single excited 

emitter can be viewed as the collective excitation of all the emitters in the system, while a quan-

tum harmonic oscillator can be introduced to describe this collective excitation, with another set 

of creation and annihilation operators �  . After Holstein–Primakoff transformation:

�

�

�  (1.22)

The final Hamiltonian is expressed as [4]:

�  (1.23)

This is the quantum equivalent of two coupled harmonic oscillators, with a Rabi splitting 

now shows a relationship proportional to the square root of number of emitters in the system, as 

well as the strength of electric field and electric dipole moment, where the �  dependence is 

exactly what we get using classical Lorentzian model if the overlapping between light and mater-

ial excitation modes are assumed to be unity.

�   (1.24)

̂β†, ̂β

∑
N

̂σ+ = ̂β† (N − ̂β† ̂β)
1/2

,

∑
N

̂σ− = (N − ̂β† ̂β)
1/2

̂β,

∑
N

̂σz = ̂β† ̂β −
N
2

.

Ĥ ≃ ℏω0 ( ̂β† ̂β −
N
2 ) + ℏωc

̂α†α̂ + ℏg N ( ̂α† ̂β + c . c . ) .

N
V

2ΩRabi = 2g N n + 1, g ∝ M
ω0

Vℏϵ0
.
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Moreover, in the special case when � , i.e. no photon in the system, vacuum fluctuations 

enable the emitter coupling with quantized electromagnetic field in an empty cavity. The fre-

quency splitting in this case is therefore called vacuum Rabi splitting with eigenstates named as 

cavity polaritons. According to the relationship �  in the vacuum state, the 

cavity is expected to have small volume and high quality factor to support strong light-matter 

coupling. The exploration of different kinds of electromagnetic resonators to modulate the cou-

pling strength between light and materials gives birth to a whole new field of research called cav-

ity quantum electrodynamics (QED).

In 1946, Purcell found that the strength of interaction can be modified by engineering the 

electromagnetic environment, i.e. putting the emitter in an electromagnetic resonator [7]. The 

existence of cavity could structure the optical density of states and lead to modified spontaneous 

emission rate, however, the emission frequency remaining unaltered.

Since then, the resonators have been developed with higher quality factors and lower energy 

losses. In 1983, Haroche experimentally demonstrated the vacuum Rabi oscillation, using a col-

lection of two-level Rydberg atomic systems coupling to a single mode electromagnetic wave in 

a high-Q millimeter-wave cavity [8].

Since this first observation, strong light–matter coupling was soon realized experimentally 

between single atom and a microwave cavity [9] as well as in the optical range both for several 

atoms [10] and for a single atom [11]. Following these pioneering experiments, cavity QED has 

been further developed using artificial atoms, such as quantum dots or superconducting qubits. 

Quantum dots have much smaller mode volumes compared with Fabry–Perot optical resonators 

and have been strongly coupled to the field of photonic-crystal-slab nanocavity [12], micropillar 

[13], and micro-disk [14]. Superconducting two-level system has been experimentally demon-

n = 0

1
2

ϵ0E2
vacVcav =

1
2

ℏωc
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strated coupling to an on-chip cavity consisting of a superconducting transmission line resonator. 

This system is expected to promote possible applications in quantum information and computa-

tion [15].

Today, strong coupling can be achieved in much simpler systems and offers the possibility of 

a wide range of practical applications, such as modifying and controlling the chemical reaction 

rate [16],  boosting conductivity in organic semiconductors [17], enhancing high-harmonic gen-

eration efficiency by modifying nonlinear optical susceptibility [18], enabling room-temperature 

Bose–Einstein condensate and novel coherent light sources [19, 20], etc. [21].

So far, the cavity-enhanced strong coupling has been realized between light and a diverse 

range of material excitations including excitons [22], plasmons [23], phonons [24], magnons 

[25], intersubband transition dipoles [26], etc. In this thesis, the focus will be on the generation 

of THz magnon-polaritons using carefully designed electromagnetic structures, and the possible 

application of novel THz magnon-polariton lasers going through intersubband transitions will be 

exploited.

1.2 Overview and introduction of magnon-polariton 

1.2.1 Definition of magnon 

In the past century, semiconductor based electronics have been developed rapidly in informa-

tion science and technology. However, the scaling trends which have driven these advances are 

slowing down as small size of transistor introduces quantum limitation, and the huge Joule heat 

generated by flowing electrons prevents the improvement of integrated level. As scientists work 

to break the bottleneck, they surprisingly find that only one of the fundamental properties of elec-
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tron was used, i.e. its charge. Spin, another inherent property of electron, has been almost ne-

glected and is expected to be a promising option to power the next wave of electronics. Spin cur-

rent carried by magnons is therefore considered to be a promising information carrier which is 

free from the drawbacks inherent to modern electronics, such as dissipation of energy due to 

ohmic losses.

Magnons are the collective excitation states of magnetic material. To understand the physical 

picture of magnon, a simple ferromagnet is taken as an example with all the N spins aligned in 

their ground states [27]. Only exchange interaction between the nearest neighbor spins is taken 

into consideration with a Hamiltonian written as:

�  (1.25)

where J is the nearest-neighbor exchange integral of the wave functions between atoms at 

lattice point i and j with spin angular momentum operators � . The �  factor is introduced be-

cause the interaction between the same two spins is counted twice in the summation.

If one of the spins is flipped over, the system gains energy and enters the first excited state. 

Due to the exchange interaction between neighboring spins, the deviation of one spin from its 

equilibrium state will lead to the deviation of all the adjacent spins, giving rise to a so called spin 

wave throughout the whole lattice. Therefore, instead of only one spin flips over while all the 

other spins stay unchanged, the real microscopic picture includes all the spins in the crystal pre-

cessing along the original orientation but with a phase shift. The energy of spin wave is quan-

tized with the unit of energy called magnon, which is similar to the definition of phonon describ-

ing all the atoms vibrating as a lattice wave throughout the whole crystal. 

̂Hint = −
1
2

2J
N

∑
i, j

̂Si
̂Sj ,

̂Si, ̂Sj
1
2
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In the above simplified one-dimensional model, all the spins are assumed to be lined up. But 

in a real crystals, there is another energy term which directs the magnetization along certain crys-

tallographic axis, i.e. the direction of easy magnetization, which ensures that the crystal is mag-

netized with lowest energy. The directional dependence of magnetic properties is known as mag-

netic anisotropy.

Since the first concept of magnon was introduced by Felix Bloch in 1930 [28], its properties 

have been widely studied, promoting various range of potential applications [29, 30]. For exam-

ple, (1) a spin wave has both amplitude and phase which enables operations with vector variables 

rather than scalar variables. If instead of an electron, a spin wave is used as a data carrier, an ad-

ditional degree of freedom can be introduced in data processing process with fewer processing 

elements needed, which benefits the idea of magnonic logic circuits [31, 32]. (2) The magnon 

spectrum covers the GHz frequency range used nowadays in communication and radar systems 

[33], and it reaches into the very promising THz range [34, 35]. This inherent frequency enables 

�15

Figure 1.3 (a) Spin alignment in one-dimensional ferromagnet at ground and excited state. (b) Sketch of 

spin wave [27].

(a)
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high clock rate and computing speed of magnon-based devices which could respond very rapidly 

to external stimuli. (3) Ultrafast coherent control of magnons using external electromagnetic field 

has been experimentally demonstrated, enabling the development of magnon spintronics not only 

in magnetic metals or semiconductors but also in magnetic dielectrics [36, 37].(4) Spin waves 

have a wavelength limited by the lattice constant of a magnetic material, which is orders of mag-

nitude smaller than electromagnetic waves at the same frequency. A shorter wavelength enables 

the design of micro- or even nanometer-sized elements for data processing or spintronics [38, 

39].

1.2.2 Previous studies on ferromagnetic/antiferromagnetic magnon-polari-

tons  

Systems with strong light-matter interaction enable coherent information transfer between 

distinct physical platforms – a concept at the core of quantum information processing. In contrast 

to electrical dipole coupling, magnetic coupling between photon and spin system has been most-

ly ignored, due to typically much weaker magnetic component of the electromagnetic field, be-

fore scientists found out the significance of magnon in quantum information processing .

Strong light-matter interaction between ferromagnets and light was predicted theoretically in 

2010 [40, 41] while the experimental demonstrations were soon after reported around 2013 using 

microwave cavity photons and magnons in yttrium iron garnet (YIG) [25, 42]. Rabi-like oscilla-

tion was observed through vector network analysis, demonstrating the generation of cavity 

magnon-polaritons. YIG is one of the prime platforms for studying FM magnon-polaritons due to 

its long magnon lifetime, high spin density and flexibility in fabrication. Its magnon frequency 

can be tuned from a few hundred MHz to GHz frequency range with the applied external mag-

�16



netic field. Many interesting dynamic features including Rabi oscillation, magnetically induced 

transparency, Purcell effect and ultrastrong coupling have been demonstrated using YIG, promot-

ing the development of ferromagnetic magnon-polariton study [43].

The earliest experimental demonstration for the existence of magnon-polaritons in antiferro-

magnets was reported by Sanders et al. in 1978 [44] using iron fluoride (FeF2) with magnon 

mode resonant at 1.58 THz. More recently, scientists have turned their attention to antiferromag-

netic spintronics attracted by its high-frequency nature of spin waves and the wide array of anti-

ferromagnetic insulators [45]. In 2010, Kampfrath et al. used ultrashort THz pulses to exert di-

rect control over antiferromagnetic magnons in nickel oxide coherently [36].  There have also 

been demonstrations of the inverse Faraday effect [46, 47] and nonlinear spin control [48, 49] 

based on THz antiferromagnetic magnons. However, the study of antiferromagnetic spintronics 

and antiferromagnetic magnon-polaritons is still in its infancy compared with ferromagnetic 

based research. One of the major challenges comes from a lack of appropriate THz sources and 

detection techniques. Also, generally, magnons in antiferromagnets couple more weakly to mag-

netic fields compared with that in ferromagnets, which makes them harder to excite and detect. 

Moreover, a cavity-enhanced version is harder to achieve due to the additional requirement of a 

highly confining THz cavity. So far, only a few reports have been found on magnon-polaritons 

using antiferromagnetic rare-earth orthoferrite materials at a sub-THz frequency [50-52].
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1.2.3 Approach to THz antiferromagnetic magnon-polaritons 

In this thesis, we will focus on antiferromagnetic magnons, not only to compensate for the 

lack of studies in this area, but also for the following benefits provided by antiferromagnetic ma-

terials [53]:

1) It’s easier to achieve an antiferromagnetic order in semiconductors than a ferromagnetic 

order, which is compatible to both electronics and spintronics devices.

2) The absence of net angular momentum makes antiferromagnets more insensitive to exter-

nal magnetic field. It results in orders of magnitude faster antiferromagnetic spin dynamics, and 

characteristic frequency of antiferromagnetic resonance operating beyond GHz frequency range 

(as ferromagnets) and reaching THz range. 

Here, several antiferromagnetic insulators are taken into consideration with magnon frequen-

cy falling into THz frequency range.

Iron(Ⅱ) fluoride FeF2 is a classic uniaxial antiferromagnet with rutile-structure (Fig. 1.4 (a)). 

Below its Neel temperature  = 78 K, the transition-metal-ion Fe2+ spins align along the (001)-

axis of the crystal with those at the cell corners antiparallel to those on the body-centered to pro-

duce overall antiferromagnetic arrangement of spins. The antiferromagnetic magnon located 

around 1.6 THz has been observed experimentally using far-infrared transmission spectroscopy, 

Raman scattering, or inelastic neutron scattering [54-56] at liquid helium temperature, and the 

signal decays as well as the linewidth broadens rapidly with the increase of temperature. 

As I have discussed in Section 1.1, a classical Lorentzian oscillator model is introduced to 

describe the magnon-photon coupling system. Here, I provide a detailed derivation of a model 

TN
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for magnon-polaritons in simple uniaxial antiferromagnets, like MnF2 or FeF2, which was first 

introduced by C. Manohar [57].

Starting with the Hamiltonian:     

�  (1.26)

where � , the subscripts i and j label the spins on the two sublattices pointing to an-

tiparallel directions respectively.

The first term in the equation describes the exchange interaction between the adjacent spins. 

The second term accounts for the magnetic anisotropy, where �  denotes the anisotropic 

field which directs spins along z axis, i.e, (001)-axis of the uniaxial crystal. The last term de-

scribes the interaction between magnetic moment and external magnetic field.

H = − J
N

∑
i, j

SiSj − γ
N

∑
i

Siz −
N

∑
j

Sjz HA − γ ∑
i

Si + ∑
j

Sj Hext,

γ =
gμB

ℏ

HA = HAz
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Figure 1.4 (a) Crystal structure of uniaxial antiferromagnet FeF2 showing antiferromagnetic spin 

arrangement [54] and (b) easy-plane antiferromagnet NiO with antiferromagnetic spin alignments in 

three S domains belonging to the T1 domain [60].



The Hamiltonian can be rewritten in the form of � , where the 

overall effects of the second sublattice on the first sublattice can be summarized into an effective 

magnetic field: 

�  (1.27)

where n is the number of nearest neighbors for any � . Spins on each set of sublattice can be 

further expressed by the macroscopic magnetization defined as the volume density of magnetic 

moments associated with spins, i.e. � . Then equation (1.27) can be rewritten as:

� (1.28)

where � .

To excite a magnon from its equilibrium state, this external magnetic field should have a 

component perpendicular to z axis, i.e. � . Excited spin fluctuations asso-

ciated with spin waves are of small amplitude, therefore �  is assumed to be fixed which rep-

resents the saturation magnetization of each sub lattice � . �  is then the ex-

change field in the equilibrium state, and is denoted as � , similarly, �  considering 

antiparallel magnetization direction.

The equation of motion for spins on each sublattice is written as:

 �  (1.29)

H = − μiBeff = − γ∑
i

SiBeff

Beff =
J
γ

n

∑
j

Sj + HA + Hext,

Si

M1,2 =
γ∑N

i, j Si, j

V

Beff =
JnV
γ2N

M2 + HA + Hext = λ M2 + HA + Hext,

λ =
JnV
γ2N

Hext = Hext,x x + Hext,y y

M1,2;z

Ms = − M1z = M2z λ M2z

HE λ M1z = − HE

d M1

dt
= − γM1 × (λ M2 + HA + Hext),
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�  (1.30)

which can be decomposed in component form as:

�  (1.31)

� (1.32)

� (1.33)

� (1.34)

�  (1.35)

� (1.36)

Excited by the external electromagnetic field, all the magnetization components are in the 

form of � , where in the long-wave approximation i.e. the wavelength of light is much 

larger than the dimension of spin fluctuations, all the spins are assumed in phase.

Sum equation (1.31) and (1.34), while subtract equation (1.32) and (1.35), we get:

� (1.37)

�

(1.38)

Substitute the equation (1.38) into equation (1.37), we get the magnetic response of an anti-

ferromagnetic material to external electromagnetic field as:

� (1.39)

d M2

dt
= − γM2 × (λ M1 − HA + Hext),

·M1x = − γ [M1y(HE + HA) + Ms(λ M2y + Hext,y)],

·M1y = − γ [−M1x(HE + HA) − Ms(λ M2x + Hext,x)],

·M1z = 0,

·M2x = − γ [−M2y(HE + HA) − Ms(λ M1y + Hext,y)],

·M2y = − γ [M2x(HE + HA) + Ms(λ M1x + Hext,x)],

·M2z = 0.

∝ ei(kr−ωt)

−iω (M1x + M2x) = − iωMx = − γ (M1y − M2y) HA,

−iω (M1y − M2y) = − γ [−(M1x + M2x)(HE + HA) − Ms(λ(M1x + M2x) + 2Hext,x)] .

Mx =
2γ2MsHA

ω2 − γ2HA (2HE + HA)
Hx,

�21



where the resonance frequency of antiferromagnetic magnon is therefore: 

�  (1.40)

With  = 200 kOe,  = 540 kOe in FeF2 [54], magnon frequency calculated from the 

Lorentzian model is 1.59 THz, which is in good agreement with experimental results.

Considering phenomenological magnon decay term, the final expression for magnetic sus-

ceptibility is:  

� (1.41) 

Even though FeF2 shows antiferromagnetism at a really low temperature and the magnon 

frequency is slightly lower than the working frequency of common THz quantum cascade laser, 

it is considered to be a good platform to study strong light-matter coupling benefited by its large 

spin density, or equivalently saturation magnetization �  = 560 Gauss. The existence of magnon-

polaritons has been demonstrated in Ref. [44] with the experimental observation of “polariton 

gap”.

The second material taken into consideration is the easy-plane antiferromagnet NiO, in which 

anisotropic field aligns Ni2+ spins in parallel within {111} planes with adjacent planes oppositely 

magnetized, and pointing along the ⟨11-2⟩ axes. There are four diagonals in the unit cell which 

defines four equivalent easy-planes and divides the crystal in to four twin (T) domains. These 

micrometer-order domains are randomly distributed. In each T domain, there are further three 

possible ⟨11-2⟩ directions and is defined as S domains (Fig. 1.4 (b)). 

ωAFMR = γ HA (2HE + HA) .

HA HE

χx = χy =
2γ2MsHA

ω2 − ω2
AFMR − iω

τmagnon

, χz = 1.

Ms
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NiO has been widely used in THz spintronics benefited by its room-temperature antiferro-

magnetism ( �  = 523 K) [36], with a magnon resonance around 1 THz [58, 59], which is, how-

ever, too low for any intersubband transition. Moreover, the overall magnetic response in poly-

crystal NiO becomes isotropic but weaker, considering the coherent superposition and averaging 

over twelve variant domains with spins pointing to different equilibrium directions [60].

CoO is another kind of easy-plane antiferromagnet with positive and negative spins aligning 

alternatively on every other {111} planes and pointing to ⟨11-7⟩ directions. Its magnon mode has 

been experimentally demonstrated both far-IR [61] and Ramen active [62] around 4.3 THz at 

liquid helium temperature. Even though the Neel temperature of CoO approaches room tempera-

ture with �  = 289 K, the intensity and lifetime of its magnon mode decrease rapidly and become 

unobservable when temperature approaches 200 K [63], which makes the properties of magnon 

and magnon-photon interaction much less exploited in CoO, compared with room-temperature 

antiferromagnet NiO. However, the high magnon frequency of CoO makes it compatible with 

intersubband transition-based THz sources and is therefore considered to be a promising antifer-

romagnetic material for the study of THz magnon-polariton quantum cascade laser. 

Orthoferrite RFeO3 is another kind of antiferromagnetic materials, where R can be any rare-

earth element, such as Y, Tm, Dy, Gd, Ho, Er, Tb. Orthoferrite is classified as weak ferromagnet 

because the antiferromagnetically ordered spins cant toward one direction leading to a macro-

scopic magnetization. This unique spin orientation generates two optically-active magnon modes 

in the sub-THz frequency region [64]. The polarization and temperature dependences of magnon 

modes, as well as room-temperature antiferromagnetism make orthoferrite an attractive candi-

date in the study of sub-THz spintronics [46-48] and sub-THz magnon-photon coupling system 

[50-52].

TN
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Some of the properties of different antiferromagnetic materials are summarized in Table 1.1 

which will be further discussion in the main text. �  and �  are the oscillator strength and quality 

factor used to characterize the intensity and lifetime of magnon mode in a classical Lorentzian 

mode, as derived in equation (1.4): � .

1.3 Introduction of polariton lasers 

 

1.3.1 Introduction of Bose-Einstein condensation and polariton laser 

Polaritons, as quantized quasi-particles used to describe the strong light-matter coupling sys-

tem, are bosons, which exhibit unique properties and potential applications other than fermions, 

e.g. electrons. One of the potential applications is a novel type of coherent light source—polari-

μr Qm

χ =
μrω2

AFMR

ω2
AFMR − ω2 − iωAFMRω /Qm
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Table 1.1 Properties of different antiferromagnetic materials.

FeF2 NiO CoO [61] DyFeO3 [64]

Permittivity (THz) 5.2 10 [111] 14.44 24

Absorption coeffi-
cient (THz)

Neglected in thin 
film

8 cm-1 [111] 11 cm-1

1.58 THz 1.1 THz 4.44 THz 510 GHz

0.011 0.0197 [110] 0.00045 0.0007

230 [44] 100 [110] 20 48

78 K 523 K 289 K 645 K

Availability Thin film grown 
by MBE

Commercial thick 
crystal

Commercial thick 
crystal

Commercial thick 
crystal

�ωAFMR /(2π)

�TN

�ϵ′�′� = 0.20

�Qm

�μr



ton laser, which has raised great attention due to its ultra-low lasing threshold and has been stud-

ied in various polariton systems. 

The fundamental of polariton laser lies on the coherent nature of Bose condensates of boson-

ic polaritons. As given in equation (1.42), once the separation between each particle becomes 

smaller compared with their thermal de Broglie wavelengths, their wavefunctions will overlap 

and indistinguishabily become relevant, making the ensemble of particles looks like a single enti-

ty with all the particles staying in the same state.

 �  (1.42)

To achieve the condition of Bose-Einstein condensation, either the density of particles has to 

be increased to decrease their separation, or the temperature has to be decreased, so the momen-

tum of particle deceases with increased de Broglie wavelength. 

In solid-state systems, excitons in semiconductors have been considered promising candi-

dates for Bose-Einstein condensation, since excitons are light-mass bosons which enable the re-

alization of BEC at lower density or equivalently higher temperature. For the same reason, exci-

ton-polaritons are also widely studied, because compared with excitons, the mass of exciton-po-

laritons is dominated by its photon part which results in a polariton mass orders of magnitude 

lighter than the exciton one. Therefore, polaritonic condensates can exist at much higher temper-

atures (few hundreds of Kelvin) than excitonic ones and have been observed in several material 

systems. 

In contrast to thermal equilibrium Bose-Einstein condensates, systems are driven far from 

equilibrium in matter lasers or polariton lasers. In 1996, Imamoglu et al. proposed such a novel 

nv > λ−3
dB , λdB =

2π2ℏ2

m*kBT
.

�25



type of exciton-polariton laser, bridging the relationship between a thermal equilibrium BEC and 

a nonequilibrium traditional photon laser which requires electronic inversion [19]. A polariton 

laser works mainly via two processes: first, a large number of bosons condense into a macroscop-

ically occupied coherent quantum state via stimulated scattering, e.g. acoustic and optical 

phonon scattering or polariton-polariton scattering; then, the condensate of polaritons goes 

through spontaneous radiative decay and provides coherent emission of light. The working 

mechanism of polariton laser is different compared with conventional laser device, which does 

not rely on population inversion but on bosonic final-state stimulation. Bosonic final-state stimu-

lation describes that, in a bosonic system, the probability of transition toward a final state is pro-

portional to the population of said state [65]. This property is in contrast to the behavior of 

fermions, whose scattering is Pauli blocked by final-state occupation. Polariton lasing happens 

when the stimulated scattering time toward the coherent ground state, i.e. state of condensates, is 

shorter than the lifetime of the final state. In this case, the population is built up abruptly, with 

the output power expressed as [66]:

�  (1.43)

where �  is the frequency of radiation, �  is the sheet density of polaritons in the final state, 

�  is the radiative lifetime of the final state, and �  is the device surface area. 

Owing to its working mechanism, a polariton laser promises a more energy-efficient laser 

operation. The low lasing threshold is inherited from the light mass of polaritons, which allows 

the formation of condensates at modest particle densities, while the actual threshold is deter-

mined by the details of device dynamics, such as pumping schemes or polariton decay rates in-

Pout =
ℏωN
τrad

S,

ω N

τrad S
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cluding cavity decay rate of photon mode and the excitonic spontaneous emission to all other 

radiation field modes. Another pronounced advantage of polariton laser is based on the one-to-

one correspondence between polaritons and the spontaneously emitted photons which carry di-

rect information of the polaritons. Therefore, the quantum statistical properties of the emission 

intensity provide a direct insight into the instantaneous polariton distribution. What’s more, the 

half-matter nature makes polariton laser a unique platform to study many-body theories and cavi-

ty quantum electrodynamics, especially in the system with high density polaritons.

An early experimental demonstration of exciton-polariton laser was performed by Hui Deng 

et al. in 2003 using optical pumping at a temperature of 4 K, where the threshold pump intensity 

was proven one or two orders of magnitude lower than that needed for a normal photon laser in 

the same structure [67]. In order to further promote the practical use of energy-efficient polariton 

lasers, there are several requirements have to be taken into consideration. The first essential is the 

coherence of the emitted radiation which is inherited in Bose condensates based polarton lasers. 

The second requirement is the room-temperature operation, which has been demonstrated in 

2007 in an optically pumped polariton laser [20], benefited by the high exciton binding energy of 

GaN which stabilizes the quasi-particles beyond the thermal energy of 25 meV at 300 K. Finally, 

a laser that is driven by another pump laser is limited in its applicability, which makes electrical 

pumping become necessary. And the electrically pumped polariton laser was demonstrated until 

2013, using GaAs-based quantum well microcavity diode at cryogenic temperature [68, 69]. Fur-

ther implementing such electrically pumped devices into material systems with large exciton 

binding energies, such as GaN, ZnO, promotes the development of electrically pumped polariton 

�27



lasers for room temperature applications, and has been observed in a bulk GaN-based microcavi-

ty diode at a wavelength around 365 nm [70].

1.3.2 Intersubband-polariton and intersubband-polariton laser 

As a limitation of exciton-polariton lasers, the density of exciton-polaritons cannot be chosen 

at will and is limited by the so called Mott transition density. Above that density, excitons or ex-

citon-polaritons, cannot be considered as bosons anymore since the interparticle distance be-

comes comparable to the Bohr radius of the exciton ( � ). As the exciton character of the polari-

ton becomes negligible, an exciton–polariton laser is expected to continuously transform to a 

standard photon laser with electronic inversion in requirement again [71]. Mott transition density 

of excitons is decided by different material systems and thus puts an intrinsic upper limit to the 

maximum operating temperature, via equation (1.42), and also to the output power of polariton 

laser as indicated by equation (1.43). 

Intersubband-polaritons, whose material component is the intersubband transition dipole, are 

also considered to be promising platforms. Intersubband transitions are supported by semicon-

ductor heterostuctures with periodic series of well and barrier materials of only a few monolayers 

thicknesses. The alternatively varying material composition forms a electric potential varying 

spatially along the growth direction, which acts as one-dimensional quantum wells. Electronic 

motion is therefore confined by these quantum wells with eigen-energies quantized into discrete 

electronic subbands. 

Compared with exciton-polaritons, intersubband-polaritons have much more design flexibili-

ty benefited by the tailorable intersubband transition energy over a broad frequency range just by 

aB
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engineering layer thicknesses, which enables the realization of coherent mid-IR and promising 

THz semiconductor light source. What’s more important, the upper density limit is not fixed by 

Mott density as excitons. Instead, it can be engineered to a large extent by electronic doping. In 

fact, the maximum doping level is limited by the sheet electronic doping concentration at which 

the higher energy state of intersubband transition starts to be filled with electrons, which natural-

ly increases with the transition frequency.

Intersubband-polaritons with hybrid dispersion were first observed in the mid-IR range using 

a resonator based on total internal reflection [72], while the realization of ISB polaritons in THz 

frequency range is enabled by metal-dielectric-metal microcavity supporting high confinement 

optical mode [26]. Potential applications of ISB polaritonic devices working in strong light-mat-

ter coupling regime have been widely studied, including mid-IR ISB polariton light-emitting de-

vices (LED) [73], optically and electrically pumped THz polariton emitters [74, 75], midinfrared 

photodetectors [76, 77] and ultrafast optical modulation [78, 79]. Highly doped ISB polariton 

systems also offer the access to ultrastrong light-matter coupling regime, where new quantum 

phenomena and applications would occur [80, 81]. 

The roadmap towards the development of ISB polariton lasers was introduced by R. 

Colombelli in 2015 [66], where ISB polariton lasers are expected to be able to operate at room 

temperature and become relatively high output power devices benefitted by high doping level. 

Optical pumping is preferred over electrical pumping, because the presence of dark states which 

do not couple to electromagnetic field will dramatically reduce the quantum efficiency of an elec-

trical injection process, leading to only a small fraction of electrons injected into the bright po-

laritonic states since a narrow spectral-width injector which selectively injects electrons to the 
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bright polariton states is hard to achieve. Dispersive metal-dielectric-metal resonator with posi-

tive, parabolic dispersion is depicted in Fig. 1.5 (a). Such microcavities, supporting mid-IR and 

THz electromagnetic waves, are extremely practical due to their compatibility with both optical 

pumping and electrical injection, as well as pump-probe measurement. 

The working principle of ISB polariton lasers is based on several processes depicted in Fig. 

1.5 (b). First, a polariton is optically pumped resonantly into the upper polariton branch. Then, it 

scatters into a final state in the lower polariton branch with the assistance of a longitudinal opti-

cal phonon which is typically the most important scattering channel affecting semiconductor in-

tersubband transitions. The generation of polariton condensates is the key process of a polariton 

laser, and has been carefully studied both theoretically based on bosonic final-state simulation 

[82] and experimentally [83], followed by spontaneous radiative decay of lower branch polari-

tons, giving out coherent radiation. An estimate polariton lasing threshold intensity on the order 
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Figure 1.5 (a) Schematic view of grating based metal-active region-metal resonator [82]. (b) Hybrid dis-

persion of intersubband-polaritons with the solid lines represent the two polariton states, and the dashed 

lines are the bare cavity and ISB modes. The various loss channels as well as the LO phonon assisted scat-

tering mechanism are symbolized by arrows, which are relevant to the operation of a bosonic laser. [66]



of 70 kW/cm2 was predicted by R. Colombelli [83], which is an important step towards the hope-

fully forthcoming demonstration of an intersubband-polariton laser.

1.3.3 Idea of phonon-polariton quantum cascade laser 

Just recently, J. Faist’s group has invented the first electrically pumped phonon-polariton 

laser which instead of photons, phonon-polaritons are emitted coherently in the quantum cascade 

structure [84]. 

In the system, both cavity photons and intersubband transition dipoles are carefully designed 

in resonance with transverse optical phonons within the semiconductor material, therefore, a 

unique tripartite coupling is achieved and is indicated in Figure 1.6 [85]. Optical cavity modes 

strongly couple with TO phonons and create phonon-polaritons, while phonon-polaritons only 

weakly interact with the ISB transitions. Optical gain is provided through ISB transitions mainly 
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Figure 1.6 Schematic microscopic picture of phonon-polariton laser involving an unique tripartite cou-

pling, where the red arrow symbolizes the strong coupling between cavity photons and TO phonons 

which generates phonon-polaritons, and the green arrow symbolizes the weak interaction between the 

phonon-polaritons and the ISB transitions that provides the laser gain [85].



into the photon component of the phonon-polaritons, leading to lasing of phonon-polaritons with 

a phonon fraction up to 65%. 

One of the promising features of intersubband systems carried by semiconductor quantum 

well heterostructures is that it can be electrically pumped to provide optical gain. Electrons going 

through intersubband transitions could tunnel along the growth direction under external bias into 

the next module, causing the emission of multiple photons with the injection of a single electron. 

Once population inversion between two subbands is built up through suitable design of layer 

thicknesses, compositions and doping, optical gain can be achieved in the intersubband system, 

giving rise to the so-called quantum cascade active region and quantum cascade laser, which 

have been widely studied with a much higher quantum efficiency and thus higher output power 

compared with semiconductor laser diodes based on interband transitions.

In the implementation of the intersubband transition based phonon-polariton laser in Ref. 

[84], a quantum cascade active region composed of InGaAs/AlInAs is designed based on a 

bound-to-continuum transition scheme to provide gain for intersubband transition at a wave-

length of 26.3 � m (11 THz); phonon excitation is naturally confined within the AlInAs layers and 

the phonon mode participating in the strong coupling is the TO phonon of AlAs; the photonic 

part of polariton is guided along metal-insulator-metal waveguide which has been widely used 

for quantum cascade lasers [86]. High conductivity metal layers both on top and bottom of the 

active region enable the confinement of light in a resonator with very small effective cavity vol-

ume, resulting in high overlapping integral and low waveguide loss.

The realization of electrically pumped phonon-polariton quantum cascade laser has been ex-

perimentally demonstrated though the direct observation of the photon, phonon, and polariton 

signatures of the emission. Compared with exciton-polariton and intersubband-polariton lasers, 

μ
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where the coherent emission of light is based on an effect closely related to Bose-Einstein con-

densation, this kind of phonon-polariton laser works in a way similar as traditional photon lasers, 

in which case population inversion among electronic states is still required, and coherent radia-

tion of phonon-polaritons is achieved.

Moreover, the idea of phonon-polariton quantum cascade laser can be applied and extended 

to any other types of designs and material systems, for example, magnetic materials with mag-

netic excitations. In this thesis, I will seek the possibility of a similar magnon-polariton quantum 

cascade laser based on the novel realization of tripartite intersubband-magnon-photon coupling. 

Specifically, antiferromagnetic insulators supporting magnon modes with resonance frequency 

falling into QCL working frequency are carefully chosen, while a special design of hybrid anti-

ferromagnetic/electromagnetic structure is exploited for the realization of strongly-coupled 

magnon-polaritons.
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Chapter 2: Electromagnetic structure supporting 

magnon-polariton: Split ring resonator 

2.1 Introduction of split ring resonator 

Considering the light-matter interaction, magnetic contribution is usually neglected, because 

the effect of light on the magnetic permeability is orders of magnitude weaker than the electric 

permittivity. To enhance the magnetic response, artificially structured materials with assemblies 

of meta-atoms called metamaterials have been introduced to provide new electromagnetic prop-

erties not available in naturally found materials, like negative refractive index [87]. Similarly, 

metasurfaces are artificially designed two-dimensional metastructures with subwavelength thick-

ness. An array of split ring resonators (SRR) is one typical example of magnetic metasurface 

which provides artificial magnetic response built from nonmagnetic conducting elements [88, 

89]. 

A SRR consists of a high-conductivity metal ring that acts as an effective inductor, and a gap 

introduced into the metal ring that acts as an effective capacitor. This makes SRR equivalent to a 

LC circuit that shows a resonant magnetic response at � . If the electromagnetic wave 

illuminating the SRR array has an electric field component perpendicular to the metal gap or a 

magnetic field component perpendicular to the metasurface plane, the resonant LC mode can be 

excited. At resonance, induced current flows circularly around the metal ring, which in turn, gen-

ω0 =
1

LC
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erates an enhanced electric field within the metal gap, and a magnetic field along the horizontal 

direction. The enhanced field decays rapidly away from the SRR plane. In the THz frequency 

range, this near field extends only several microns in the horizontal direction, which provides a 

small effective cavity volume and highly-confined photon mode. 

The resonant field enhancement and subwavelength field localization provided by split ring 

resonators enable the realization of strong or even ultrastrong light-matter coupling when the di-

electric containing material excitations is put in proximity. The choice of SRR geometry plays an 

important role in engineering the LC resonance frequency, coupling strength and radiative decay 

rates, makes it a good platform to investigate the hybrid dispersion relation and criteria of strong 

light-matter coupling system. SRR-enhanced light-matter strong coupling has been demonstrated 

in a wide range of material systems, such as two-dimensional electron gas (2DEG) with cy-

clotron transitions [90, 91]; intersubband dipoles in quantum wells [92, 93]; infrared active 

phonons in SiO2 film [94]; ferromagnetic magnons in yttrium iron garnet (YIG) films [95, 96]. 

Moreover, SRR arrays have also been investigated in antiferromagnetic systems, where the reso-

nantly-enhanced magnetic field enables the study of antiferromagentic magnon excitation and 

nonlinear magnetization dynamics [97, 98].

In this chapter, strong light-matter coupling between SRR-enhanced THz cavity photons and 

antiferromagnetic magnons are exploited using thin-film of antiferromagnetic FeF2 with AF 

magnon mode at 1.6 THz. First, the geometry of high conductivity SRR array is carefully de-

signed and its effects on LC resonance frequency, quality factor and light-matter coupling 

strength are characterized theoretically, followed by the fabrication and experimental measure-

ments of SRR array with the optimum geometry. Rabi splitting observed in simulated transmis-
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sion spectra demonstrates the realization of strong coupling between highly-confined THz pho-

tons and AF magnons in hybrid SRR/FeF2 structure.

2.2 HFSS simulations and characterization  

Strong light-matter interaction enhanced by metallic U-shaped SRR has already been demon-

strated to provide increasing quality factor and near-field enhancement with decreasing gap 

width between two metal arms at near-infrared frequency range [99]. Here, the geometry depen-

dence of quality factor as well as the light-matter coupling strength are theoretically studied at 

THz frequency range, and the optimum design parameters are carefully chosen.

Numerical simulations are performed based on a commercial finite element method solver 

(HFSS). The computational space is separated by SRR array into two parts, vacuum on one side 

and substrate on the other side. The coordinate is chosen so that SRR array is located in the x-y 

plane with y-axis pointing along the metal arms. The simulation unit contains a single SRR ele-

ment, while considering the tradeoff between quality factor and signal strength or signal-to-noise 

ratio (SNR), the dimension of each unit is chosen to be 40 µm × 25 µm in order to reduce the 

effects of mutual coupling between neighboring elements and also avoid any lattice surface mode 

[93].

The SRR array is modeled by 200 nm thick gold whose electrical permittivity is described by 

Drude model:

�  (2.1)σ (ω) =
ne2τ

m*(1 − iωτ)
, ϵ(ω) = ϵcore + i

σ
ω

,
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where �  is the effective carrier mass, �  is the core permittivity excluding free carrier 

contributions, �  and �  are the free carrier density and relaxation time respectively. In the simula-

tion, the doping concentration of high conductivity gold is assumed to be  cm-3 with 

relaxation time of 39 fs.

The SRR array is deposited on top of dielectric substrate consisting of 200 nm thick antifer-

romagnetic FeF2 film and around 500 m thick MgF2 substrate. The dielectrics are assumed to be 

frequency and temperature independent with optical properties fitting the room-temperature THz 

experimental results shown in section 2.3 as  = 5.2;  = 4.71,  = 6 cm-1, which are 

close to the optical properties obtained experimentally in Ref. [100, 101]. Periodic boundary 

conditions are applied to the four sidewalls of simulation unit under the assumption that the THz 

spot size is much smaller than the dimension of metasurface. Electric field pointing perpendicu-

lar to the metal arm, i.e. x-polarized, is incident from the top boundary, while the reflection from 

the back facet is neglected to get rid of extra dispersion brought by FP oscillations.

m* ϵcore

n τ

5.6 × 1022

μ

ϵFeF2
ϵMgF2

αMgF2
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(a)

Figure 2.1 (a) Schematic view of a U-shaped split-ring resonator and the incident field polarization con-

figuration. (b) Electric field, magnetic field and current distributions at the resonance frequency for SRR 

with dimension of �  = 28 � m, �  = 2 � m, �  = 2 � m.ly μ dgap μ w μ

x

z y

(b)
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The metallic U-shaped SRRs with defined geometry parameters are schematically depicted in 

Fig. 2.1 (a). While the electric field, magnetic field and current distributions within SRR at reso-

nance frequency are plotted in Fig. 2.1 (b), demonstrating circulating current along the metallic 

split ring, which excite electric field strongly confined between the tips of metal arms, and sur-

rounding magnetic field mainly in z and x directions.  

The geometry parameters determine the resonance frequency and quality factor of the LC 

resonant mode carried by SRR. First, the effect of gap width between two metal arms ( � ) is 

investigated. The gap width is varied in the simulation, while the SRR arm length ( � ) is changed 

correspondingly to maintain the resonance frequency at 1.6 THz, i.e. �  = 1 � m, �  = 28 � m; 

�  = 2 � m, �  = 27 � m; �  = 4 � m, �  = 26 � m; �  = 8 � m, �  = 24.5 � m, and the arm width 

is fixed in all the simulations as �  = 2 � m.

Transmission spectra are plotted in Fig. 2.2 (a), which show that in the case when there is no 

magnon mode excited at room temperature, the increasing gap width between two metal arms 

dgap

ly

dgap μ ly μ

dgap μ ly μ dgap μ ly μ dgap μ ly μ

w μ
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Figure 2.2 (a) The simulated transmission spectra of U-shaped SRRs with different gap widths but the 

same LC resonance frequency around 1.6 THz. (b) Different damping rates with respect to gap width.

(a) (b)



results in the full width half maximum (FHWM) of transmission dips to be 92 GHz, 84 GHz, 102 

GHz, 178 GHz respectively, contributed by absorption loss in metal and lossy substrate as well 

as radiative loss. In order to distinguish the relative value of each damping rate, the metallic ar-

ray is further modeled as perfect electrical conductor (PEC) and the substrate is also assumed to 

be lossless, in which case only the radiative loss is included in the FHWM. Fig. 2.2 (b) plots the 

radiative loss and non-radiative loss with respect to gap width, with their values summarized in 

Table 2.1. It is now clear that, as the separation between two metal arms increases, the radiative 

loss dramatically increases while the non-radiative loss, which is mostly contributed by the 

metallic absorption, keeps decreasing, leading to the optimum quality factor at a gap width 

around 2 � m.

The reason can be explained as that the anti-parallel currents in two SRR arms cancel each 

other, giving rise to nearly no electric dipole radiation and thus the net electric dipole moment is 

mainly contributed from the SRR base-line, i.e. � . Therefore, SRR with larger gap width or 

equivalently longer base-line, will contribute to more radiative loss [99]. Also, as the gap width 

between two SRR arms becomes super narrow, like in the case of �  = 1 � m, the highly con-

μ

lx

dgap μ
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Table 2.1 Different damping rates of the LC resonant mode and the Rabi splitting of hybrid system with 

respect to gap width between SRR arms.

92 GHz 18 GHz 74 GHz 65 GHz

84 GHz 30 GHz 54 GHz 58 GHz

102 GHz 56 GHz 46 GHz 53 GHz

178 GHz 142 GHz 36 GHz 47 GHz

�dgap �γtot

8 � mμ

�γrad

4 � mμ

�γnr

2 � mμ

1 � mμ

�Ωr



fined subwavelength optical field will be forced penetrating into the lossy metallic regions, re-

sulting in higher metallic loss. 

Then, the gap width �  is fixed at 2 � m, while the width and length of metal arms are 

changed as �  = 1 � m, �  = 26.5 � m; �  = 2 � m, �  = 27 � m; �  = 3 � m, �  = 27.5 � m; �  = 4 � m, 

�  = 28 � m, maintaining the resonance frequency at 1.6 THz. Transmission spectra are plotted in 

Fig. 2.3 (a). The radiative and non-radiative losses of the LC resonant mode in each geometry are 

obtained in the similar way. The values are summarized in Table 2.2 and their dependences on 

the arm width are plotted in Fig. 2.3 (b).

dgap μ

w μ ly μ w μ ly μ w μ ly μ w μ

ly μ
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Figure 2.3 (a) The simulated transmission spectra of U-shaped SRRs with different arm widths but the 

same LC resonance frequency around 1.6 THz. (b) Different damping rates with respect to arm width.

(a) (b)

Table 2.2 Different damping rates of the LC resonant mode and the Rabi splitting of hybrid system with 

respect to SRR arm width.

84 GHz 14 GHz 70 GHz 64 GHz

84 GHz 30 GHz 54 GHz 58 GHz

96 GHz 46 GHz 50 GHz 57 GHz

116 GHz 74 GHz 42 GHz 54 GHz

�w �γtot

4 � mμ

�γrad

3 � mμ

�γnr

2 � mμ

1 � mμ

�Ωr



As the width of SRR arms increases, the radiative loss as well as the total damping rate in-

creases, resulting in decreasing quality factor. This relationship agrees with the expression of 

quality factor in a series LC resonant circuit which is proportional to � , as the inductance car-

ried by a metallic strip will decrease with the increase of its width. Also, the metallic loss coming 

from the metallic inductor is proportional to �  and will decrease with increasing arm width, 

which is in agreement with the simulated non-radiative damping rate.

Once the system is cooled down to liquid helium temperature, the antiferromagnetic magnon 

modes in FeF2 film beneath the SRR array become active and will interact with the highly-con-

fined cavity photons resonant at the same frequency. A Lorentzian-shaped magnetic excitation is 

therefore included to describe the optical property of FeF2 film in HFSS simulations. The equi-

librium magnetization direction of FeF2 points to y-axis, in parallel with SRR arms, in order to 

interact with the induced magnetic field in x and z directions.

� (2.2)

Where  = 1.6 THz is the AF magnon frequency in FeF2,  characterizes the life-

time of magnon mode and is assumed to be �  [44], �  = 560 Gauss, �  = 200 kOe 

are provided by [54].
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Figure 2.4 plots the transmission spectra of hybrid SRR/FeF2 system in the case when the 

arm width is fixed and gap width is varied (Fig. 2.4 (a)), and when the gap width is fixed and arm 

width is varied (Fig. 2.4 (b)). Frequency splitting between two resonant modes shown in the 

spectra demonstrates the realization of strong coupling between AF magnons and cavity photons 

even in the SRR designed with low quality factor. The values of Rabi splitting provided in the 

tables show downtrend with respect to the increase of gap width and arm width, which are sup-

posed to be determined by the overlapping factor between LC resonant mode and antiferromag-

netic film in each SRR design, and also slightly affected by the values of damping rates. The 

highest achievable Rabi splitting between photons and AF magnons in FeF2 is around 166 GHz, 

decided by the equation (1.6) and the oscillator strength of magnon mode in FeF2. However, the 

simulated Rabi splitting in the hybrid SRR/FeF2 system is around 50-60 GHz, implying that the 

overlapping factor with the ultra-thin FeF2 film is no more than 15%.  

�42

Figure 2.4 The simulated transmission spectra of U-shaped SRRs with different gap widths (a) and 

arm widths (b) but the same LC resonance frequency around 1.6 THz when magnon modes are ex-

cited in FeF2 film and couple with strongly-localized photon modes.

(a) (b)



2.3 Fabrication 

Following the analyses above, both metal gap width and SRR arm width are chosen as small 

as possible to enlarge the light-matter coupling strength. While considering the photolithography 

limitation, the geometry of SRR is designed to have a gap width and arm width of 2 � m with arm 

length tuned from 25 � m to 28 � m. Each design shows slightly different LC resonance frequency 

which enables the exploration of hybrid dispersion relation around the resonance point.

Negative photoresist nlof 2020 is used in the photolithography process, followed by 200 nm 

Ti/Au layer deposited through e-beam evaporation. The final metallic SRR pattern under micro-

scope is depicted in Figure 2.5. During the photolithography process, there is more diffracted 

light around the corners and tips of the SRR pattern, which strengthens the negative photoresist 

μ

μ μ
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Figure 2.5 Metallic split ring resonator pattern under microscope. The designed pattern has a gap width 

of 2 µm and arm length of 28 µm, while the inset shows the exact dimension.



there and leads the weird shape and shorter effective arm length compared with the designed pat-

tern. This deviation can be improved by carefully controlling the exposure time and development 

time during photolithography process or deliberately compensating for the light diffraction dur-

ing photomask design.

2.4 Experimental results 

First, the optical properties of MgF2 substrate are characterized through its transmission spec-

tra plotted in Fig. 2.6 (a). The blue line is measured using house-made THz time-domain spec-

troscopy (TDS) with a resolution of 4 GHz by Nezih Tolga Yardimci from professor Mona Jar-

rahi’s lab, while the orange line shows the experimental result measured by Nicolet Fourier 

Transform Infrared (FTIR) spectrometer with a resolution of 0.5 cm-1 (15 GHz), a liquid helium 

cooled bolometer is used as the detector which is required to obtain sufficient detectivity at a fre-

quency around 1.6 THz, and the obtained spectra are averaged over 30 scans. Both experiments 

are done at room temperature, with the incident electric field perpendicular to the (001) axis of 

(110)-oriented MgF2 crystal. The transmission spectrum measured by FTIR reveals a low signal-

to-noise ratio below 1 THz due to the lack of power intensity of light source at low frequency 

range, which is in opposite to the TDS measurement, while around the target frequency of 1.6 

THz, both measurements give out similar spectra. Fig. 2.6 (b) provides the FTIR experimental 

spectrum zoomed in 1.2 THz ~ 2 THz frequency range, and an analytical fitting is applied with 

the expression:

�  (2.3)t =
4n

(n + 1)2e−in ω
c d−α/2d − (n − 1)2ein ω

c d+α/2d
, T = | t |2
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The room temperature optical properties of MgF2 substrate around 1.6 THz are therefore ob-

tained as 4.71,  = 6 cm-1, considering the thickness of MgF2 slab mea-

sured to be d = 523 µm using micrometer. As the frequency increases, the transmission signal 

keeps decreasing, demonstrating an increasing absorption coefficient of MgF2 with respect to 

frequency.

The transmission spectra of U-shaped SRRs deposited on bare MgF2 substrate are measured 

by both TDS and FTIR at room temperature as shown in Fig. 2.7 (a) with the dimension of SRR 

as �  = 28 � m, �  = w = 4 � m. The experimental results roughly fit, while TDS measurement 

provides higher SNR.

Thin antiferromagnetic FeF2 films used in the experiments have a thickness around 200 nm 

and is grown on thick commercial MgF2 substrate by Professor Jing Shi’s research group from 

UC Riverside using molecular beam epitaxy. Both FeF2 film and its substrate are (110)-oriented, 

n2
MgF2 = ϵMgF2

= αMgF2

ly μ dgap μ
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Figure 2.6 (a) Transmission spectra of MgF2 slab measured by TDS (blue) and FTIR (orange) at room 

temperature and (b) spectrum zoomed in 1.2 THz~2 THz frequency range (dotted box). Blue line is the 

analytic fitting of orange FTIR experimental result. 



and the metallic SRR array is deposited directly on top of FeF2 with metal arms pointing to its 

(001)-direction, i.e. y-axis in the coordinate defined in Fig. 2.1 (a). The incident wave has a po-

larization perpendicular to the metal gap, which induces the LC resonant mode and the excited 

localized metamaterial plasmons then radiate SRR-enhanced evanescent magnetic field perpen-

dicular to the (001)-axis. We have discussed in Section 1.2.3 that the external magnetic field with 

a component perpendicular to the orientation of Fe2+ spins in their equilibrium state could excite 

AF magnon mode in FeF2. However, all the spectra provided in this thesis are measured at room 

temperature—well above the Neel temperature of FeF2—therefore, no spin fluctuation can be 

observed and the absorption dips belong to metasurface resonant modes. As plotted in Fig. 2.7 

(b), the transmission spectra of SRR array deposited directly on MgF2 substrate is compared with 

that deposited on FeF2 film supported by MgF2 substrate, while the SRR arrays have the same 

dimension: �  = 28 � m, �  = w = 2 � m. Even though there is no signature of AF magnons in ly μ dgap μ

�46

(a) (b)

Figure 2.7 (a) Transmission spectra of hybrid U-shaped SRR/FeF2 measured by TDS (blue) and FTIR (or-

ange) at room temperature. (b) Transmission spectra of U-shaped SRRs with the same dimension deposit-

ed directly on top of MgF2 substrate (blue) and on FeF2 film grown on MgF2 substrate (orange).



FeF2, the redshift of LC resonance frequency in the same sized SRR arrays indicates the effect 

coming from ultra-thin FeF2 film simply due to the modified index of refraction of the thin film.

In order to study the dispersion relation of hybrid system, SRR arrays designed with different 

metallic arm lengths, i.e. �  = 25 � m, 26 � m, 27 � m, 28 � m, are fabricated, leading to the fre-ly μ μ μ μ
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Figure 2.8 Transmission spectra of hybrid SRR/FeF2 with SRR arm lengths changing from 25 µm to 28 

µm ((a)~(d)). Blue lines are the experimental results measured by FTIR at room temperature, while or-

ange lines are obtained from HFSS fitting, with determined permittivity of FeF2 as .ϵFeF2
= 5.2

(a) (b)

(c) (d)



quency shift of LC resonant mode. The transmission spectra in Figure 2.8 exhibit resonance 

peaks at different frequencies ranging from 1.48 THz to 1.7 THz. Bare MgF2 slab without any 

SRR pattern is used as a reference during transmission measurements, in order to get rid of the 

effects coming from multiple reflections within the thick substrate. Experimental results demon-

strate frequency shift of LC resonant mode with respect to lithography tuning, and is fitted 

through HFSS simulation with the permittivity of FeF2 set to be . 

However, there seems to be so many random fluctuations in the transmission spectra. And the 

relative strength of these fluctuations, i.e. noise level, is obtained by taking the ratio of the trans-

mitted signals measured through two sequential scans. While a comparison between noise level 

and one of transmission spectra of SRR/FeF2 sample is provided in Fig. 2.9 (a) which attributes 

these small fluctuations to high detection noise and therefore results in small SNR. The reason 

leading to this low SNR is multifold, while some possible causes can be 1) loss introduced by the 

polarizer; 2) the source used in FTIR instrument is the glo-bar, a resistively heated filament that 

ϵFeF2
= 5.2
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Figure 2.9 (a) Comparison between noise level (blue) and transmission spectrum of SRR with arm length of 

26 � m (orange). (b) Experimental setup aims to focus the beam spot and increase the SNR. μ

(a) (b)



emits black-body radiation, which only provides low power intensity within the frequency range 

of 1 ~ 2 THz; 3) the size of each SRR design is 5 mm by 5 mm which is smaller than the spot 

size of incident THz wave, so that most of the incident power is blocked. Further experimental 

plan includes building up an extra setup to focus the beam spot and increase SNR (Fig. 2.9 (b)), 

and put the sample into a cryostat cooled down to 4 K to study the properties of AF magnon and 

magnon-photon interaction in FeF2.
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Chapter 3: Design and simulation of inductor-capaci-

tor (LC) circuit-based metal-metal waveguide 

3.1 Introduction of LC circuit-based microcavity 

In order to seek the possibility of intersubband transition based magnon-polariton laser, opti-

cal cavity modes supported by well-designed electromagnetic structures should maintain both 

high overlapping factor between its electric field component and the intersubband active region, 

as well as strong magnetic coupling to the antiferromagnetic materials. What’s more, the effec-

tive cavity volume is expected to be as small as possible to enhance strong light-matter coupling. 

The inductor-capacitor (LC) resonant circuit-based microcavity introduced by Wather et al. 

in 2010 becomes a promising approach [102]. It is similar to the commonly used THz metal-

metal waveguide made of two high-conductivity metal plates with semiconductor layer sand-

wiched in between, where the use of metal enables smaller effective cavity volume and higher 

overlapping factor. What’s different is that the top metal and semiconductor layer are further 

shaped into two half-circular–shaped capacitors connected by a narrow line acting as an inductor. 

The whole resonator can be viewed as an electronic lumped LC circuit, with resonance frequen-

cy determined by the dimension of its capacitive and inductive part (Figure 3.1). In this way, the 

effective cavity volume can be reduced almost at will, since the reduction in the capacitance can 

be compensated by an increase of the inductance, while the resonance frequency is kept constant. 

Moreover, LC circuit-based resonator enables spatial separation of the electric field and magnetic 
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field components of optical mode. Electric field is highly confined uniformly between capacitor 

plates, while the magnetic field is mainly concentrated around the inductor, which enables an ef-

ficient overlapping with adjacent antiferromagnets.

Highly subwavelength mode volume and strongly confined optical mode make LC circuit-

based microcavity a good platform studying light-matter interaction and cavity QED in THz fre-

quency range. Purcell effect [103], strong coupling [104] and ultrastrong coupling [105] between 

cavity photons and THz intersubband transition dipoles have been experimentally demonstrated, 

when the intersubband transitions carried by multiple quantum wells are inserted between the 

capacitor plates. Moreover, amplification of the electric field confined in the capacitors can be 

realized once the quantum wells are well designed into quantum cascade active region. With the 

external electrical pumping applied between the metallic capacitors which builds up the optical 

gain among the active region, a self-sustained LC cavity-based quantum cascade laser has been 

experimentally demonstrated in the presence of external magnetic field [102]. Other than tradi-

tional quantum cascade lasers which work in weak coupling regime, LC cavity-based polariton 
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(a) (b)

Figure 3.1 (a) Scanning electron micrograph picture of the LC circuit-based microcavity provided in 

Ref. [102] (b) Schematic of equivalent LC resonant circuit made of a wire connecting two capacitor 

plates put on a ground plane.



emitters have also been explored whose electroluminescence spectra with anticrossing between 

two polariton peaks have been observed experimentally even at room temperature [75]. These 

kinds of electroluminescent polaritonic devices working in the THz frequency range are consid-

ered to be promising proof-of-concept devices for more powerful THz sources.

As has been discussed above, the LC resonant mode of LC circuit-based microcavity is de-

termined by the geometry of its capacitive and inductive components. Therefore, in order to tune 

the resonance frequency and study the hybrid dispersion of a strongly coupled light-matter sys-

tem, multiple microcavities designed with different dimensions need to be fabricated which bring 

much more inconvenience. In contrast, the fact that metal-metal waveguides support a dispersive 

mode within the light cone provides the ability to tune the resonance frequency simply by chang-

ing the incidence angle during a reflectance measurement.. 

In this section, I propose the idea of combining metal-metal waveguide with the concept of 

LC circuit-based microcavity by etching holes along the ridge waveguides (as depicted in Fig. 

3.2), and introduce a design of metasurface array with strong magnetic fringing field, enabling 

the generation of magnon-polaritons once an antiferromagnetic material is put in proximity to the 

metasurface. The properties of this LC circuit-based metal-metal waveguide (LC MM wave-

guide) will be first characterized using HFSS simulation, after which the antiferromagnetic FeF2 

film with magnon mode located around 1.6 THz is assumed on top of it and strongly couples 

with the induced surrounding magnetic field. The signatures of strong light-matter coupling, i.e. 

Rabi splitting between polariton states and hybrid dispersions, will be demonstrated using reflec-

tion spectroscopy. Furthermore, to realize a tripartite intersubband-magnon-photon coupling, the 

magnon-polariton system will be further coupled to another "matter" part - intersubband transi-

tion dipoles by inserting semiconductor quantum wells between metal plates of capacitors. Once 
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semiconductor quantum wells are well-designed into quantum cascade gain medium, amplifica-

tion and lasing of metasurface-confined magnon-polaritons become possible, and will be discus-

sion into detail in the end of this section.

3.2 HFSS simulations and characterization 

Numerical simulations are preformed based on a commercial finite element method solver 

(HFSS). The simulation unit cell is shown in Fig. 3.2 (a) with a length equals to the distance be-

tween periodic inductors along the ridge and width equals to period between ridges. Periodic 

boundary conditions are applied to the four sidewalls of simulation unit, so the unit cell repeats 

in two dimensions and forms a metasurface array as shown in Fig. 3.2 (b). The coordinate is cho-

sen with z-axis perpendicular to the metasurface array and y-axis pointing along the MM wave-

guides. Electric field polarized along x-axis is incident from the top boundary.
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(a) (b)

Figure 3.2 (a) Schematic view of LC circuit-based metal-metal waveguide unit cell. Arrows point out 

the direction of induced current (green), magnetic field (blue) and electric field (red) at resonance. (b) 

Bird’s-eye illustration of the metasurface array consisting multiple LC MM waveguides, while the 

dashed box points out a single simulation unit as shown in (a).
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Similar as the simulations on split ring resonators, both the patterned top metal and ground 

plane are modeled by 200 nm thick high conductivity gold whose electrical permittivity is de-

scribed using Drude model with the doping concentration assumed to be  cm-3 and re-

laxation time to be 39 fs. I first assume the semiconductor layer sandwiched between two metal 

plates to be purely GaAs, in which case no intersubband transitions within quantum wells are 

taken into consideration yet. The free electron absorption in GaAs is also modeled by Drude 

model, with doping concentration of  cm-3 and relaxation time of 0.5 ps. Its relative 

permittivity is �  at THz frequency range.

Design parameters are labelled in Figure 3.2 describing the geometry of LC circuit-based 

metal-metal waveguide, which includes the length and width of the inductive metal strip: 

� ; the length of capacitor plates, or equivalently, the distance between metal strips along 

the waveguide: � ;  the width of capacitor plates: � ; the thickness of semiconductor layer 

sandwiched between metal plates: � , and the period of LC MM waveguides spaced along x 

direction. All these parameters work together contributing to the resonance frequency and quality 

factor of cavity-enhanced LC resonant mode, which can be exploited through reflectance spec-

troscopy. And in order to realize the strong coupling between cavity photons confined in LC MM 

waveguides and AF magnons carried by antiferromagnetic FeF2 film, the design parameters have 

to be carefully chosen so that the LC resonance frequency is located around AF magnon frequen-

cy at 1.6 THz, and the quality factor is large enough for the system entering strong light-matter 

coupling regime.

To characterize the effect of each design parameter to the overall quality factor, first, I fix the 

dimension of inductive metal strip to be �  = 15 � m, �  = 1 � m, as well as the width of capac-

itor plates: �  = 6 � m, and increase the distance between two capacitor plates �  from 1 � m 

5.6 × 1022

5 × 1015

ϵGaAs = 12.9

lind, wind

lcap wcap

hcap

lind μ wind μ

wcap μ hcap μ
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to 10 � m, at the same time reducing the length of capacitor plates correspondingly to fix the res-

onance frequency. The reflectance spectra are plotted in Fig. 3.3 (a) indicating that, as the values 

of �  are set to be 1 � m, 3 � m, 5 � m, 8 � m, 10 � m, the full width half maximum (FHWM) of 

reflectivity dips are 128 GHz, 124 GHz, 148 GHz, 194 GHz and 230 GHz respectively. 

In order to analyze how the design parameters determine the quality factor of LC resonant 

mode, all the damping rates contributing to the overall quality factor are taken into consideration 

and analyzed separately, which includes both radiative damping �  and non-radiative damping �  

consisting of metallic loss and free carrier absorption in doped semiconductor � . In 

μ

hcap μ μ μ μ μ

γr γnr

γnr = γm + γsc
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Figure 3.3 Reflectance spectra as the distance between capacitor plates are changed while the resonance 

frequency is fixed at 1.6 THz by changing the value of �  in the case when (a) both metal plates and 

GaAs layer are modeled using Drude model; (b) metal plates are modeled as PEC; (c) GaAs layer is 

assumed to be undoped with constant permittivity.

lcap

(a)
(b)

(c)



the reflectance spectra shown in Fig. 3.3 (a), both high conductivity gold plates and doped GaAs 

layer are described using Drude model, while the damping rates obtained from FHWM are there-

fore a summation of radiative and non-radiative losses: � . 

If now, the metal plates are modeled as perfect electrical conductor (PEC) or the GaAs layer 

is replaced by undoped GaAs, the term of metallic loss or free carrier absorption in GaAs will be 

removed from total damping rate. Such simulations are done with exactly the same geometry, 

whose bandwidths shown in the reflectance spectra provide the values of �  (Fig. 3.3 (b)) 

and �  (Fig. 3.3 (c)) respectively. Comparing damping rates shown in these sets of simula-

tions, the values of radiative damping rate � , metallic loss � , absorption loss �  at each distance 

between two capacitor plates are obtained and summarized in Table 3.1 and Fig. 3.5 (a). More-

over, the radiative loss can also be obtained through the phase shift of reflection coefficient in the 

simulation excluding all the non-radiative losses, i.e. using both PEC and undoped GaAs layer. 

After an analytical fitting of the simulated phase shift (Figure 3.4), the radiative damping rates 

are very close to the values shown in Table 3.1, demonstrating the reliability of data.

γtot = γm + γsc + γrad

γsc + γrad

γm + γrad

γr γm γsc
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Table 3.1 Different damping rates in LC MM waveguide designed with varies distances between capaci-

tor plates.

128 GHz 59 GHz 44 GHz 25 GHz

124 GHz 27 GHz 48 GHz 49 GHz

148 GHz 21 GHz 50 GHz 77 GHz

194 GHz 15 GHz 51 GHz 128 GHz

230 GHz 13 GHz 52 GHz 165 GHz

�hcap

10 � mμ

�γtot

8 � mμ

�γm

5 � mμ

�γsc

3 � mμ

1 � mμ

�γr



It’s now clear that as the distance between two capacitor plates increases, free carrier absorp-

tion in doped GaAs layer only slightly increases while the radiative loss increases rapidly as 

thicker semiconductor layer increases the radiation scattering regions, which explains the de-

creasing quality factor in thicker LC MM waveguides, except at �  = 1 � m, where the extreme-

ly high metallic loss leads to overall low quality factor. The metallic loss decreases with �  be-

cause in a thinner MM waveguide, where the optical field confinement factor is lower, the long 

wavelength radiation is forced into the lossy metallic regions resulting in larger penetration 

length and therefore higher metallic loss. 

Another feature obtained from the spectra in Fig. 3.3 (a) is that the reflectance at resonance 

frequency decreases with the increase of �  before it reaches 5 � m, while as �  keeps increas-

hcap μ

hcap

hcap μ hcap
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!  = 125 GHz
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Figure 3.4 Reflection phase shifts in the case when metal plates are modeled as PEC and GaAs layer is 

assumed to be undoped with constant permittivity in the HFSS simulation (red lines). Blue lines are the 

analytical fittings with the obtained radiative damping rates labeled in the graphs.
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ing, the reflectance at resonance frequency increases. This phenomenon can be understand as a 

situation called critical coupling. As discussed in Ref. [106, 107], structures like the LC MM 

waveguide metasurface can be described as one port systems whose electromagnetic coupling to 

the free space is described by its radiative damping rate � , while the losses coming from the sys-

tem is characterized by the non-radiative rate � . Critical coupling is realized when the two 

damping rates are matched, i.e. � , in which case all the incoming photons are coupled and 

confined into the resonant cavity mode with the reflectance at resonance frequency equals to 

zero. In our simulations, as the distance between two capacitor plates is increased, the radiation 

decay rate is increased dramatically and compared with the relative value of non-radiative decay 

rate which also changes correspondingly, the system transits from the under-coupling regime (

� ) to the over-coupling regime ( � ). While at a thickness around 5 � m, the critical 

coupling condition has been realized, as shown by the intersection between radiative and non-

radiative damping rates in Fig. 3.5 (b).

γr

γnr

γr = γnr

γr < γnr γr > γnr μ
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(a) (b)

Figure 3.5 (a) Different damping rates at different � ; (b) Radiative and non-radiative damping rates 

plotted at different � .

hcap
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After fully analyzing how the distance between two capacitor plates influences various damp-

ing rates, the effects of width and length of the capacitor plates �  are studied by changing 

�  from 5 � m to 20 � m while decreasing �  corresponding with other design parameters fixed 

i.e. �  = 15 � m, �  = 1 � m, �  = 3 � m. The simulation results are plotted in Fig. 3.6 (a) 

which demonstrate that capacitor plates designed with longer length but shorter width are ex-

pected to provide a higher quality factor, as well as larger reflectance minimum. That is different 

from a traditional parallel plate capacitor whose capacitance is only related to the area, but not 

the shape of capacitor plates. Different kinds of damping rates are obtained in the same way dis-

cussed above whose values are summarized in Table 3.2. And by plotting the capacitor length 

dependence of each damping rate (Fig. 3.6 (b)), the possible reason of increasing quality factor 

with respect to �  can be attributed to lower radiative damping rate.

wcap, lcap

lcap μ μ wcap

lind μ wind μ hcap μ

lcap
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(a) (b)

Figure 3.6. (a) Reflectance spectra as the shape of capacitor plates are changed in the case when both 

metal plates and GaAs layer are modeled in Drude model; (b) Different damping rates with respect to 

� .lcap



What’s more, the relative values of inductance and capacitance of a LC circuit-based struc-

ture will also affect the quality factor. The overall geometry of LC MM waveguide is in analogy 

to an electronic lumped LC resonant circuit, where the inductor is implemented as a wire con-

necting two capacitor plates which are situated above a ground plane. The electric fields excited 

within two capacitors have opposite directions which lead to zero potential in the middle of the 

inductive metal strip, and build up a parallel LC resonant circuit together with the ground plane. 

The circuit representation is shown in Fig. 3.7 (a). In a parallel LC resonant circuit, the quality 

factor of resonant mode is proportional to � , and to demonstrate this relationship in the LC 

MM waveguide, two geometries designed with different relative values of inductance and capac-

itance are simulated with fixed resonance frequency, i.e. the products of inductance and capaci-

tance are the same. The reflectance spectra are plotted in Fig. 3.7 (b) with design parameters pro-

vided in the caption. The geometry designed with relatively larger inductance has a FWHM of 

125 GHz, while the one with larger capacitance has a FWHM of 94 GHz, following the expres-

sion of quality factor in a parallel LC resonant circuit. And the reason can be explained as, with 

the metal strip designed to be longer but narrower, its inductance is higher but the metallic loss 

C
L
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Table 3.2 Different damping rates in LC MM waveguide designed with varies length of capacitor plates.

128 GHz 48 GHz 27 GHz 53 GHz

117 GHz 45 GHz 35 GHz 37 GHz

106 GHz 44 GHz 37 GHz 25 GHz

101 GHz 41 GHz 41 GHz 19 GHz

�lcap �γtot

20 � mμ

�γm

15 � mμ

�γsc

10 � mμ

5 � mμ

�γr



coming from the inductor, which is proportional to � , is also increased, leading to lower qual-

ity factor of LC resonant mode.

As many other metastructures, the period between MM waveguides will also affect the quali-

ty factor. Period defines the Bragg diffraction modes, in which case radiation coming from peri-

odic units interfere with each other constructively, and at the frequency � , where �  repre-

sents the period, the diffracted light is confined and travels among the metasurface plane, which 

reduces the radiative loss in the perpendicular direction and therefore increases the quality factor. 

If the optical cavity mode supported in LC MM waveguide is in resonance with surface Bragg 

mode when the period is set to be � , hybridization between these two modes is realized 

and higher quality factor LC mode is achieved. However, the propagating surface wave in a finite 

lind

wind

ν =
c
Λ

Λ

Λ = λcav
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(a) (b)

Figure 3.7 (a) Circuit representation of the LC circuit-based MM waveguide. (b) Reflectance spectra of 

two geometries, one has relatively larger inductance with �  = 15 � m, �  = 1 � m, �  = 6 � m, anoth-

er one has relatively larger capacitance with �  = 6 � m, �  = 3 � m, �  = 24 � m. The other parame-

ters are set to be the same.

lind μ wind μ lcap μ
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metasurface will also lead to diffraction loss through the edges. As the cavity resonant mode be-

comes closer to the surface Bragg mode, the degree of hybridization will increase the diffraction 

loss, which indicates that the metasurface period should be kept less than ≈ 80% of the resonance 

wavelength. If light is not radiating into free space, as I will discuss later, in the case when an 

antiferromagnetic layer is put on top of the metasurface, the ideal period in this case should be 

modified by the effective wavelength in the dielectric, i.e. �   and is chosen to 

be 60 � m with �  in all the above simulations.

3.3 Strong coupling with AF magnons in thin FeF2 film 

Considering all the design parameters contributing to the quality factor of LC resonant mode 

in LC circuit-based MM waveguide, the inductive metal strip is designed with a length of 6 � m 

and a width of 3 � m to keep the inductance relatively small. The distance between capacitor 

plates is chosen to be 3 � m, considering both metallic loss and radiative loss. The width and 

length of the capacitors are set to be 4 � m and 28 � m respectively, so the quality factor is large 

enough for the system entering strong light-matter coupling regime, while the signal strength, i.e. 

minimum reflectance at resonance frequency is also strong, which ensures a large signal-to-noise 

ratio during further experimental measurements. Generally, once the quality factor of electro-

magnetic structure enables the strong coupling between cavity photons and material excitations, 

light-matter coupling strength is determined by the volume density of material excitations and 

overlapping factor, and will only slightly affected by the damping rates. Therefore, the quality 

factor of LC circuit-based metal-metal waveguide is not designed to be as high as possible, in 

order to reach relatively stronger reflection signal and easier fabrication process.

Λ ≈ 80% × λcavnd

μ nMgF2
≈ 2.2

μ

μ

μ

μ μ
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Fig. 3.8 (a) shows the reflectance spectrum of such a LC MM waveguide with LC resonant 

mode. MgF2 substrate with optical properties of  = 4.71,  = 6 cm-1 is applied in re-

placement of the air box, simulating light incident from the thick substrate into the metasurface 

instead of free space. The LC resonant mode in existence of MgF2 substrate is design with a fre-

quency of 1.6 THz, around the resonance frequency of AF magnons in FeF2, while its quality 

ϵMgF2
αMgF2
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(b)

Figure 3.8 (a) Reflectance spectrum of bare LC resonant mode. Inset shows the electric and magnetic field 

distributions on the plane crosscutting the LC MM waveguide. (b) Schematic view of the LC circuit-based 

MM waveguides and an antiferromagnetic FeF2 film grown on MgF2 substrate, which are put together indi-

cated by the grey arrow. (c) Reflectance spectrum of hybrid metasurface/antiferromagnet system. (d) Re-

flectance spectra at different incidence angles show the hybrid dispersion relations of magnon-polaritons.
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factor is lower due to absorption in MgF2 with a total damping rate increases from 84 GHz with 

free space radiation to 96 GHz. The inset plots the z-component electric field as well as y- and z- 

component magnetic field distributions on the plane crosscutting the LC MM waveguide, which 

demonstrates the spatial separation of electric and magnetic fields within the capacitive and in-

ductive components of LC MM waveguide respectively.

In order to realize strong light-matter coupling, antiferromagnetic FeF2 film grown on MgF2 

substrate is put in proximity to the metasurface and strongly couples with the induced surround-

ing magnetic field. This hybrid system is sketched in Fig. 3.8 (b). Similar as the simulations of 

split ring resonators, a Lorentzian-shaped magnetic excitation is used to characterize the optical 

properties of FeF2 film used in HFSS simulations, while its frequency-independent permittivity is 

 = 5.2. The easy axis of FeF2 is set aligned with the x-axis of the coordinate system consid-

ering the direction of circulating magnetic field around the inductive metal strip. The reflectance 

spectra are plotted in Fig. 3.8 (c), with a Rabi splitting around 40 GHz, demonstrating the system 

entering strong light-matter coupling system. As the incident light is tilted resulting in in-plane 

wave vector along the MM waveguide, the frequency of cavity resonant mode is shifted with re-

spect to AF magnon mode fixed at 1.6 THz, revealing the hybrid dispersion relation of magnon-

polaritons as shown in Fig. 3.8 (d). 

3.4 Intersubband-magnon-polariton 

Electromagnetic resonators made of metal-dielectric-metal structures have been considered 

as ideal systems to study the generation of cavity intersubband-polaritons in mid-infrared or ter-

ahertz frequency range, benefited by their convenience of combination with quantum well inter-

subband transitions and highly confined optical cavity modes between metallic plates. Strong and 

ϵFeF2
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even ultrastrong coupling between intersubband transition dipoles and cavity photons have been 

demonstrated both in traditional metal-dielectric-metal microcavities [26, 81] and LC circuit-

based microcavities [104, 105] with a theoretical coupling strength in terms of Rabi frequency 

given as [81]:

�  (3.1)

where �  is termed as plasma frequency and �  is the overlapping factor between optical cav-

ity mode and intersubband dipoles. �  is the refractive index of semiconductor layer, �  is the 

effective electron mass, �  is the oscillator strength of intersubband transitions, �  are the elec-

tron populations of the initial and final subbands during the intersubband transitions and �  is 

the thickness of quantum well and barrier in one module.

Multiple quantum wells with intersubband absorption can be modeled through a Drude-

Lorentz dielectric tensor. Electrons move freely among the plane perpendicular to the growth di-

rection and are describe by Drude model:

�  (3.2)

while the intersubband transitions occurring only along the growth direction due to selection 

rule are described by a Lorentzian oscillator similar as any other material excitations, in the form 

of:

�  (3.3)

2Ωr = fwωP, ω2
P =

e2

ϵ0n2
r m*
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ϵxx = ϵyy = ϵcore −
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,

ϵzz = ϵcore −
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12 + i ω

τ )
.
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It is a phenomenological model bridging the relationship between intersubband and free car-

rier absorption, while in the limit of � , a Drude-like expression for the permittivity is re-

covered. �  is a phenomenological relaxation time of intersubband transitions chosen to agree 

with the momentum relaxation time �  of free electrons in Drude model, and is assumed to be �  

= �  = 0.5 ps in the simulations, i.e. the corresponding FWHM of the intersubband transition is 

around 640 GHz.

In the HFSS simulation, each quantum well with intersubband transition is assumed with an 

oscillator strength of �  = 0.96 and thickness of �  = 50 nm. The overlapping between inter-

subband dipoles carried by quantum wells and optical mode confined in the metal-metal wave-

guide which is designed to be 3 � m thick is characterized by the overlapping factor  � . The in-

tersubband transition �  is targeted at the frequency of 2 THz, so the lower branch of generated 

ω12 = 0

τ

τm τ

τm

f12 LQW

μ fw
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Figure 3.9 Reflectance spectra of LC MM waveguide with multiple quantum wells sandwiched between 

metallic capacitors at different doping levels. While the frequency splitting demonstrates the strong cou-

pling between intersubband transition dipoles and cavity photons.



intersubband-polaritons is located around 1.6 THz, in resonance with the AF magnons in FeF2. 

And the length of capacitor plates in the LC MM waveguide design is reduced to 18 � m in order 

to obtain an optical cavity mode in resonance with intersubband transitions at 2 THz. According 

to equation (3.1), coupling strength is proportional to the square root of volume density of popu-

lation difference between subbands, i.e. � . As the sheet density used in the HFSS simula-

tion increases from  cm-2,  cm-2,  cm-2 to  cm-2 , 

the frequency splitting between polariton states shown in the reflectance spectra in Fig. 3.9 in-

creases from 0.55 THz, 0.79 THz, 0.98 THz to 1.13 THz, generally follows the square root rela-

tionship. And compared with the analytical values calculated from equation (3.1), the overlap-

ping factor is obtained around � . 

With a doping concentration of  cm-2, the polariton states are located at frequencies 

of �  with the lower polariton branch around 1.6 THz and the upper polariton 

μ

N1 − N2

LQW

N1 − N2 = 2.5 × 1010 5 × 1010 7.5 × 1010 1 × 1011

fw ≈ 0.7

5 × 1010

ω± = ω12 ± Ωr
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Figure 3.10 Reflectance spectra of LC resonant mode with various period in the case when bulk GaAs 

layer with Drude loss is inserted between capacitor plates.



branch around 2.41 THz at which frequency Bragg diffraction modes will be excited with a peri-

od of 60 � m. In order to avoid the hybridization between Bragg modes and higher polariton 

branch, the period between waveguides is deliberately made smaller with a value of 50 � m and 

the Bragg diffraction now starts from 2.78 THz. However, the quality factor of LC resonant 

mode is also decreased with smaller period. As simulated in Figure 3.10 in the case when quan-

tum well heterostructure is replaced by bulk GaAs layer with Drude loss, as the period is set to 

be 60 � m, 50 � m, 40 � m, the linewidth of LC resonant mode is 118 GHz, 131 GHz and 149 GHz 

respectively. As will be shown later, this reduced quality factor still enables the system reaching 

strong light-matter coupling regime.  

Other than period and length of the capacitor plates, the rest of the design parameters used in 

the geometry of the LC MM waveguide are the same as discussed in the previous sections. And 

other materials used in the HFSS simulations, i.e. high conductivity metal layers, antiferromag-

netic FeF2 film with its lossy MgF2 substrate, are still modeled using the same optical properties. 

The optical cavity mode of LC MM waveguide with modified design parameters and bulk 

GaAs layer sandwiched between capacitor plates is simulated, whose reflectance spectrum is 

plotted in Fig. 3.11 (a), with LC resonance frequency around the intersubband transition frequen-

cy at 2 THz. Once the bulk GaAs is replaced by intersubband transition based quantum wells, the 

Rabi splitting between intersubband-polariton states shown in Fig. 3.11 (b) demonstrates the 

strong coupling between intersubband transition dipoles and cavity photons confined in LC MM 

waveguides.   

Then, antiferromagnetic FeF2 film is put in proximity on the metasurface, with Lorentzian-

shaped magnetic excitations in resonance with the lower-branch intersubband-polaritons, and the 

μ

μ

μ μ μ

�68



lower intersubband-polariton state is further splitted into two with frequency splitting of 36 GHz, 

which reveals the strong coupling between intersubband-polaritons and AF magnons, leading to 

the generation of tripartite intersubband-magnon-polaritons. As the optical cavity mode is shifted 

by changing the dimension of LC MM waveguide, dispersion of hybrid intersubband-magnon-

polaritons is shown in Fig. 3.11 (d).
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Figure 3.11 (a) LC resonant mode of LC MM waveguide with bulk GaAs layer. (b) Once the bulk GaAs 

layer is replaced by multiple quantum wells with intersubband transitions, Rabi splitting shown in re-

flectance spectrum demonstrates the generation of intersubband-polaritons. (c) The lower intersubband-

polariton branch located at 1.6 THz further strongly couples with AF magnons in FeF2. (d) Dispersion of 

hybrid system. 
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3.5 Approach to magnon-polariton quantum cascade laser 

To seek the possibility of magnon-polariton quantum cascade laser, semiconductor layer 

sandwiched between capacitor plates is well-designed into quantum cascade active region. Once 

the external electrical pumping is applied between top and bottom metallic plates, population in-

version is built up among electronic states and electron injection and extraction are realized 

across cascaded quantum wells, leading to intersubband transition based optical gain which 

makes amplification or even lasing of metasurface-confined magnon-polaritons possible.

The permittivity of quantum cascade active region is also described by Drude-Lorentzian 

model, with free electron absorption within epitaxial layers and intersubband absorption along 

the growth direction. The intersubband absorption in this case is attributed to transitions between 

the ground state |1⟩ and the higher energy states |2⟩, |3⟩ and |4⟩, since most of the doped electrons 

are assumed to reside on the ground state within the injection well. 

The quantum cascade active region considered for the approach to magnon-polariton quan-

tum cascade laser consists of four quantum wells with resonant LO-phonon depopulation mecha-

nism. The layer thicknesses are 50.9/ 108.8/ 19.8/ 103.1/ 36.7/ 87.6/ 39.6/ 177.4 A starting with 

the injector barrier, where the Al0.15Ga0.85As barriers are indicated in bold font. Band structure of 

the investigated design is plotted in Fig. 3.12 (a) simulated using shooting method under an ap-

plied bias of 45.2 mV per module, at which the injection state |1’⟩ aligns with the upper lasing 

state |5⟩. Optical transition between levels |5⟩ and |4⟩ gives out the radiation at around 2 THz, 

whereas the intersubband absorption is contributed by transition from level |1⟩ to |2⟩ with energy 

difference nearly in resonance with the LO-phonons of GaAs, i.e. �  = 29.73 meV, and the cal-

culated oscillator strength of �  = 0.31, as well as level |1⟩ to |3⟩ with �  = 33.77 meV,  �  = 

0.25 and level |1⟩ to |4⟩ with �  = 36.78 meV,  �  = 0.42. The sheet doping concentration is as-

E21

f21 E31 f31

E41 f41
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sumed to be  cm-2, and considering the thickness of one module which is 62.3 

nm, the averaged bulk electron concentration is  cm-3. Substituting all these parame-

ters into the Drude-Lorentzian permittivity tensor provided by equation (3.2) and (3.3), the ab-

sorption losses in this kind of quantum cascade active region are characterized. While optical 

gain provided by the electrically pumped active region is represented by a simplified frequency 

independent gain coefficient, considering usually broadband intersubband transitions.

ns = 4.4 × 1010

7.1 × 1015
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Figure 3.12 (a) Band structure of four-quantum-well resonant LO-phonon design quantum cascade active 

region. Each of the electronic states is labeled. (b) The anticrossings between subbands at different biases. 

While the energy separation between injection state |1’⟩ and upper lasing state |5⟩ reaches its minimum at a 

bias of 45.2 mV/mod and is indicated by the dotted line . (c) Oscillator strength and (d) energy difference of 

each intersubband transition with respect to applied bias using one module simulation.
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For comparison, traditional active metasurface made of metal-metal waveguides is modeled. 

Its resonance frequency is determined by the ridge width as � , and to obtain the 

resonance frequency at 1.6 THz, the width of ridge waveguides is chosen to be w = 25.5 � m 

while the thickness of gain medium is 3 � m, the period between waveguides is 60 � m, the same 

as optimized LC MM waveguide design. As the uniform gain coefficient provided by quantum 

cascade active region increases, the reflectance at resonance frequency increases and becomes 

positive, enabling light amplification as shown in Fig. 3.13 (a). From the spectra, the trans-

parency gain coefficient of traditional metal-metal waveguides needed to balance optical losses is 

around  cm-1 indicated by the dotted lines in Fig. 3.13 (b). A commonly used analytic 

model of the metasurface can be represented by:

�  (3.4)

ν =
c

2nGaAsw

μ

μ μ

gtr = 15

RMS = R1G = eξ(ν)(g − gtr),
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Figure 3.13 (a) Reflectance spectra of traditional metal-metal single-ridge metasurface with different gain 

coefficients, whose ridge width is designed to be 25.5 � m, thickness of gain medium is 3 � m and the spac-

ing between waveguides is 60 � m. (b) Simulated reflectance (blue line) plotted in log scale with respect to 

gain coefficients, while red dotted line is the analytic fitting.
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where �  is the passive (unbiased) reflectance of the metasurface, and �

is the intensity gain with g to be the intersubband gain coefficient. The spectral properties of the 

metasurface are reflected by the frequency dependent fitting factor � , and after fitting the sim-

ulated reflectance using equation (3.4), which is depicted by the red dotted line in Fig. 3.13 (b), 

the fitting factor at resonance frequency is �  = 0.095 cm. 

When LC circuit-based metal-metal waveguides are fabricated by etching holes along the 

traditional metal-metal waveguides, gain profile as well as transparency gain coefficient become 

different, and are studied through reflectance spectra at different gain coefficients. The structure 

applied in the simulation has the same design parameters as discussed in Section 3.3, except the 

slightly reduced length of capacitor plates in order to compensate for the frequency shift caused 

by the change of properties of GaAs layer. Light is first assumed to incident from free space, in 

which case, no optical absorption coming from MgF2 substrate is taken into consideration yet, 

R1 = e−ξ(ν)gtr R1 = eξ(ν)g

ξ(ν)

ξ(νr)
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Figure 3.14. Reflectance spectra of LC circuit-based metal-metal waveguides with different gain coeffi-

cients in the case when no MgF2 substrate is put above. The dimension of the LC MM waveguide is: 

�  = 28 � m, �  = 4 � m, �  = 6 � m, �  = 3 � m, �  = 3 � m and the period is 60 � m. The inset 

shows the side-view diagram of the simulation unit cell. 
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and the resonance frequency is therefore shifted from 1.6 THz in absence of the substrate. The 

spectra depicted in Fig. 3.14 (a) indicate that as gain coefficient increases, the LC resonant mode 

shows smaller bandwidth with lower minimum reflectance, before the reflectance increases and 

exceed unity. That is because, the passive LC MM waveguides work in under-coupling regime, 

i.e. � , as gain provided by semiconductor layer increases, it will first compensate for 

the material losses and transits the system to critical coupling condition, then into over-coupling 

regime, before the gain coefficient becomes large enough to build up an active metasurface. This 

is different from traditional metal-metal single-ridge metasurface which works in over-coupling 

regime with large radiative damping rate and therefore broadband reflectance and much lower 

quality factor. As gain coefficient increases in metal-metal single-ridge metasurface, the re-

flectance at resonance frequency keeps increasing (Fig. 3.13(b)), and the transparency gain coef-

ficient is lower compared with that of LC MM waveguides which is  cm-1 as shown in 

Fig. 3.14 (b).  

If lossy MgF2 substrate is assumed on top of the active metasurface, extra optical absorption 

in the 500 � m thick substrate increases the transparency gain. Simulated reflectance at resonance 

frequency with respect to gain coefficient provided by the active region is plotted in Fig. 3.15 (b) 

in log scale, where the reduction of reflectance around gain coefficient of 15 cm-1 demonstrates 

the system reaching critical coupling condition as the non-radiative damping rate is compensated 

by the optical gain. The transparency gain coefficient of LC MM waveguides is indicated by the 

dotted lines and is increased to  cm-1 in the existence of lossy MgF2 substrate. After fit-

ting the simulated reflectance in the range of gain coefficient higher than 30 cm-1 using equation 

(3.4), the fitting factor at resonance frequency is �  = 0.16 cm (red dotted line in Fig. 3.15 (b)) 

γr < γm + γsc

gtr = 30

μ

gtr = 41

ξ(νr)
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which is higher than that of a metal-metal single-ridge metasurface, leading to higher lasing 

threshold. 

Finally, the antiferromagnetic FeF2 film is added between the active metasurface and MgF2 

substrate. Rabi splitting is observed between strongly coupled AF magnons and metasurface-en-

hanced photons, while the transparency gain coefficient keeps increasing till  cm-1 due to 

resonant absorption in FeF2. The reflectance spectra are plotted in Figure 3.16 with respect to 

gain coefficient.

After the study of hybrid active metasurface/antiferromagnet system, several challenges to-

wards the realization of magnon-polariton quantum cascade laser are concluded. First, compar-

ing all the simulation results above, the lasing threshold of LC circuit-based metal-metal wave-

guide metasurface in existence of antiferromagnetic FeF2 film grown on lossy MgF2 substrate is 

gtr ≈ 48
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Figure 3.15 (a) Reflectance spectra of LC circuit-based metal-metal waveguides with different gain co-

efficients in the existence of lossy MgF2 substrate, whose dimension is:  = 28 m,  = 4 m,  

= 6 � m, �  = 3 � m, �  = 3 � m and the period between waveguides is 60 � m. The inset shows the 

side-view diagram of the simulation unit cell. (b) Simulated reflectance (blue line) plotted in log scale 

with respect to gain coefficients, while red dotted line is the analytic fitting.
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dramatically increased compared with traditional metal-metal single-ridge metasurface working 

at the same lasing frequency. The possible reason may be that the extremely small effective cavi-

ty volume supporting strongly coupled hybrid system leads to increasing metallic loss, which 

also explains the fact that LC resonators barely lase—most of achievable polaritonic applications 

based on LC MM microcavities are polariton emitters. Second, it is hard to design a quantum 

cascade laser working at a frequency as low as 1.6 THz because the intersubband energy separa-

tion between upper and lower lasing states becomes comparable with subband widths, which de-

creases the injection selectivity and therefore reduces population inversion. While in the simula-

tions above, the lower frequency tail of broadband gain profile centered at 2 THz is assumed to 

enable light amplification at 1.6 THz. Third, only part of the thick MgF2 substrate is included in 

the simulations, while in the full cavity simulation, a total thickness of 500 m lossy MgF2 sub-μ
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Figure 3.16 Reflectance spectra of LC circuit-based metal-metal waveguides at different gain coeffi-

cients. A 200 nm thick antiferromagnetic FeF2 film with its MgF2 substrate is put in proximity to the 

metasurface. The dimension of the LC MM waveguide is: �  = 28 � m, �  = 4 � m, �  = 6 � m, �  

= 3 � m, �  = 3 � m and the period is 60 � m. The inset shows the side-view diagram of the simulation 

unit cell.
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strate will result in more absorption loss as light bouncing back and forth in the laser cavity, lead-

ing to even higher lasing threshold. What’s more, dispersion of light oscillating in the thick sub-

strate will introduce FP fringes into the reflectance spectra and may overlap with the signals of 

magnon-polariton states. 
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Chapter 4: Nested Fabry-Pérot cavity approach to 

magnon-polariton 

4.1 Background of nested Fabry-Pérot cavity 

To reach the strong light-matter coupling regime, the energy coupling rate between the pho-

ton mode and the material excitation mode should be larger than the irreversible energy decay 

rate, therefore the electromagnetic resonators supporting vacuum states are expected to have a 

high quality factor. In a traditional Fabry-Pérot (FP) cavity, optical fields can pass through the 

cavity only when they are in resonance with it, and cavity eigenfrequencies are expressed as 

� . According to the definition of quality factor, i.e. 2π times the ra-

tio of the stored energy to the energy dissipated per oscillation cycle, a high quality cavity can be 

achieved by using high reflectivity surfaces to reduce the optical loss per round trip. A high qual-

ity factor FP cavity then becomes a good platform to study strong light-matter coupling system. 

Material excitations, such as magnon modes carried by antiferromagnetic insulators, can be in-

troduced into the FP cavity and strongly couple with optical cavity modes once the criterion of 

strong coupling is satisfied. Frequency splitting, as a signature of strong coupling, can be demon-

strated through transmission or reflection spectroscopy. One of the advantages of FP cavity is 

that it is easy to tune the cavity eigenfrequencies by changing the cavity length using a piezoelec-

tric stage. The resonance frequencies of cavity photon modes can be tuned in resonance or off 

v = m
c

2ndLcav
, m = 1,2,3…
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resonance with respect to intracavity material excitations, revealing hybrid dispersion relation of 

cavity polaritons once the system enters strong light-matter coupling regime. 

This section will start with a model describing how optical cavity modes are affected by the 

intracavity dielectric slab compared with a traditional FP cavity. Then, I will introduce several 

antiferromagnetic insulators and theoretically study their behaviors in tunable FP cavities based 

on the knowledge of their optical properties and AF magnon properties. The dispersion of hybrid 

magnon-photon systems is recorded by tuning the cavity length. A discussion on possible 

magnon-polariton quantum cascade laser will be provided in the end.

4.2 Analytical model of nested FP cavity   

When a dielectric slab is inserted into a traditional two-mirror FP cavity, the interfaces be-

tween air and dielectric act as additional mirrors which make the resonance condition of FP cavi-

ty more complicated since all multiple reflected beams among all individual mirrors have to be 

taken into account. A general theory for this kind of multimirror FP cavity or nested FP cavity 

problems has been developed using matrix method [108, 109] as suggested by the analysis of 

multilayer thin films. While in this chapter, the dielectric slab is supposed to be bonded with one 

of the mirrors and the combination of them can be viewed as an equivalent mirror showing dif-

ferent reflection and transmission coefficients at its front and back faces (Figure 4.1). In this way, 

the system is simplified as a traditional two-mirror FP cavity.

The effective reflection and transmission of the equivalent mirror are therefore not symmetric 

as light incident from different sides. If light is incident from air towards the dielectric side of the 

equivalent mirror, the reflection and transmission coefficients are:
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�  (4.1)

If light is incident from air towards the mirror side, the reflection and transmission coeffi-

cients are:

� (4.2)

where �  are the reflection coefficients of light illuminating from dielectric 

towards air and mirror respectively, while the reflection coefficients with reverse incident direc-

tion obtain an extra �  phase shift.  �  is the effective wave vector of light propa-

gating in the dielectric with index of refraction �  and absorption coefficient of � . �  is the thick-

ness of the dielectric slab. 

ref f,l = − rd + (1 − rd) (1 + rd) rm2e2ikd L

1 − rm2rde2ikd L
, tef f,l = (1 − rd) (1 + rm2) eikd L

1 − rm2rde2ikd L
.

ref f,r = − rm2 + (1 − rm2) (1 + rm2) rde2ikd L

1 − rm2rde2ikd L
, tef f,r = (1 − rm2) (1 + rd) eikd L

1 − rm2rde2ikd L
,

rd =
nd − 1
nd + 1

, rm2

π kd = nd
2π
λ

+ i
αd

2

nd αd L
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Figure 4.1 (a) Sketch of a nested FP cavity with dielectric slab inserted into a traditional two-mirror FP 

cavity, and the combination of dielectric slab and one of the mirrors acts as an equivalent mirror (b).  

(a) (b)



The reflection coefficient of the whole system is in the same form as a traditional two-mirror 

FP cavity, while the reflection and transmission coefficients of one of the mirrors are now re-

placed by that of the equivalent mirror obtained from above equations (4.1-4.2):

� (4.3)

where �  and �  are the wave vector of light in free space and length of cavity filled by air. �  

is the reflection coefficient of another mirror consisting the FP cavity, which can be larger than 

unity if, instead of a traditional mirror, an active metasurface is used. 

Figure 4.2 shows Matlab simulation results on cavity eigenfrequencies of a FP cavity at dif-

ferent cavity lengths in the case when the cavity is entirely filled by air (a) or consists both air 

and dielectric slab (b). The reflectances of two mirrors ( � ) are supposed to be as high as 

97% to achieving high quality factor. The thickness of dielectric slab is fixed at 500 � m with fre-

quency-independent index of refraction �  = 3.8, while the total length of the FP cavity is tuned, 

R =
E−

r

E+
inc

= ref f,r +
tef f,rtef f,lrm1e2ik0l

1 − ref f,lrm1e2ik0l
,

k0 l rm1

r2
m1, r2

m2

μ

nd
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Figure 4.2. Cavity eigenfrequencies vs. cavity length for a traditional two-mirror FP cavity with (a) and 

without (b) intracavity dielectric slab.
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resulting in the shift of cavity eigenfrequencies. Compared with traditional two-mirror FP cavity, 

the optical cavity modes in the existence of an intracavity dielectric slab are not equidistant and 

show different cavity length dependences. 

4.3 Strong coupling between FP cavity eigenmodes and AF magnon 

mode 

If the dielectric slab inserted into the FP cavity is an antiferromagnetic insulator with excited 

magnon modes, the index of refraction �  used in the above model is no longer a constant due to 

the frequency dependence of material excitations. As introduced in Section 1.2, material excita-

tions like AF magnons can be characterized using a classical Lorentzian model with a magnetic 

susceptibility expressed as:

� (4.4)

where �  is the resonance frequency of AF magnon mode, �  and �  are the oscillator 

strength and quality factor used to characterize the intensity and lifetime of magnon mode re-

spectively. The index of refraction used in the equations (4.1-4.3) is then modified by the 

Lorentzian shaped magnetic susceptibility as: � .

Several potential antiferromagnetic insulators have been briefly introduced in Section 1.2, 

while a detailed Lorentzian model characterizing their AF magnon modes will be provided be-

low. CoO is one of the promising candidates with experimentally demonstrated magnon modes 

falling into THz frequency range. The easy-plane magnetic anisotropy makes it difficult to derive 

the analytical magnetic susceptibility from its complicated spin dynamics. However, a numerical 

nd

χm =
μrωr

ω2 − ω2
r − iωωr

Qm

,

ωr μr Qm

nd = ϵd (1 + χm(ω))
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expression can be obtained from experimental data. Figure 4.3 (a) shows the experimental far 

infrared absorption spectra of a (001)-oriented CoO single crystal measured at different tempera-

tures provided in Ref. [110]. The overall absorption coefficient is contributed by both back-

ground absorption increasing with temperature and frequency, and resonant AF magnon absorp-

tions, where the absorption peaks located around 146 cm-1 are attributed to the single magnon 

excitations. By fitting the experimental absorption coefficient at 2 K with a Lorentzian function 

(Fig .4.3 (b)), the unknown parameters used in the expression of magnetic susceptibility given in 

equation (4.4) are: �  = 4.44 THz, �  = 0.00045, �  = 20. The background ab-

sorption coefficient around magnon resonance frequency at 2K is obtained as  = 11 cm-1, while 

the permittivity of CoO is  = 3.82.

ωAFMR /(2π) μr Qmagnon

αd

ϵd
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Figure 4.3 (a) Far infrared absorption in (001)-oriented CoO single crystal at different temperatures, 

while the value of curve 7 has been reduced by a factor of 3 for clarity. (b) Lorentzian fitting of one-

magnon absorption in CoO at 2 K, i.e. curve 7 in (a), around 146 cm-1.
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Substituting the magnetic susceptibility of CoO into the expression of reflection coefficient 

given in equation (4.3), the reflectance spectrum of nested FP cavity with intracavity CoO slab is 

simulated by Matlab and is shown in Fig. 4.4 (a). The thickness of CoO slab is assumed to be 

500 � m while the total thickness of the whole cavity is 825 � m. The short cavity length requires 

carefully designed mechanical mounts and high resolution piezoelectric stepper in future exper-

iments, but also enables high overlapping between optical cavity modes and AF magnons, which 

promotes strong light-matter coupling.  

In the case when the whole system is put at room temperature, there is no magnon mode ex-

cited in CoO and the reflectance spectrum with bare FP cavity eigenmodes is depicted by the 

blue line in Fig 4.4(a). When AF magnons are excited in CoO at liquid helium temperature, the 

linewidth of optical cavity eigenmodes located around magnon resonance frequency are slightly 

broadened and FP oscillations are decreased due to increasing round trip loss. However, no fre-

μ μ
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Figure 4.4. (a) Reflectance of nested FP cavity with intracavity CoO slab. Blue line and orange line rep-

resent spectra in the case when no magnon mode is excited in CoO and when magnon modes are excit-

ed. (b) Reflectance of nested FP cavity when the intracavity CoO has an artificial quality factor as high 

as 80.
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quency splitting is observed. The possible reason is that a low quality factor and a small oscilla-

tor strength of the AF magnon mode in CoO obtained from the experimental datas lead to high 

energy decay rate but small light-matter coupling strength, which prevents the hybrid system 

from entering the strong light-matter coupling regime. As I artificially increase the quality factor 

used in the simulation from 20 to 80, frequency splitting of cavity eigenmodes occurs around the 

magnon resonance frequency, demonstrating the strong coupling between magnons and cavity 

photons in this case.

NiO is another promising antiferromagnetic material whose magnon properties as well as co-

herent interaction with light have been widely studied. Its parameters in the Lorentzian shaped 

magnetic susceptibility are obtained from Ref. [111] using a (111)-cut NiO single crystal, with 

the value of magnon frequency, oscillator strength and quality factor demonstrated to be  

�  = 1.1 THz, �  = 0.0197,  �  = 100. The permittivity and absorption coefficient of 

NiO are assumed to be constants which are obtained from Ref. [112] around the values of: �  = 

10,  = 8 cm-1. 

In knowledge of the optical properties of NiO, the reflectance spectra of nested FP cavity 

consisting 500 � m thick NiO and 330 � m long air can be obtained through equation (4.3) and are 

plotted in Figure 4.5. The left graph shows bare optical cavity modes when frequency-indepen-

dent index of refraction with no magnon mode included, i.e. � , is used in the simulation, 

and one of the cavity modes is designed around magnon resonance frequency in NiO, i.e. 1.1 

THz. While the right graph plots the reflectance spectrum when Lorentzian shaped susceptibility 

is introduced into the expression of index of refraction � , and as the cavity 

ωAFMR /(2π) μr Q

ϵd

αd

μ μ

nd = ϵd

nd = ϵd (1 + χm(ω))
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eigenfrequency is in resonance with the magnon frequency, the single reflection dip shown in 

Fig. 4.5 (a) splits, resulting in multiple new cavity eigenmodes and a reflectance around 97%, i.e. 

the reflectance of mirror 2, around magnon resonance frequency. 

To better understand the behavior of cavity eigenmodes near magnon resonance frequency, 

the dispersion relation of magnon-polaritons which has been derived in Section 1.1 is provided, 

while no decay term is included for simplicity (equation (1.6)):

�

Oscillator strength in this model is further scaled by an overlapping factor between optical 

mode which fills the entire cavity, including air and antiferromagnet, and magnon mode which is 

carried by the antiferromagnetic slab, i.e. � . The dispersion relation is plotted in 

Figure 4.6, where the x-axis labels the frequencies of incident EM wave while y-axis labels the 

(βc − ω)(ω0 − ω) =
μ′�rω2

0

4
,

μ′�r = μr
L

L + l

�86

(a) (b)

Figure 4.5 Reflectance of nested FP cavity with intracavity NiO in the case when no magnon excitation 

is considered (a) and when magnon excitations are included in the simulation (b).

1.1 THz
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frequencies of hybrid magnon-photon system. When optical field is in resonance with magnon 

mode, magnon-polaritons are generated revealed by the anticrossing and hybrid dispersion rela-

tions. Dashed lines point out the uncoupled cavity eigenfrequencies shown in Fig. 4.5 (a), while 

their intersections with hybrid dispersions (red dots) are new eigenmodes in the hybrid magnon-

photon system. 

If a single optical mode strongly interacts with AF magnon mode, two hybrid magnon-polari-

ton states �  separated by the Rabi splitting at resonance point are expected to be observed 

in transmission or reflection measurements. However, in a FP cavity supporting multiple optical 

modes, extra modes both above and below the “polariton gap” occur, which come from the 

strong coupling between magnon mode and off-resonant optical cavity modes. These modes 

ωup, ωlp
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Figure 4.6 Dispersion relation of strongly coupled magnon-photon system. Vertical dashed lines and 

horizontal dotted line point out the uncoupled cavity eigenmodes and magnon mode respectively. Blue 

lines are the hybrid magnon-polariton modes. �  and �  label the upper and lower polariton modes at 

resonance point.
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show lower intensity as the optical cavity modes are getting more and more off-resonant with 

respect to the magnon mode, and result in multiple small reflection dips between �  ≈ 

1.15 THz and �  ≈ 1.05 THz shown in Fig. 4.5 (b), while as the incident frequency falls 

into the “polariton gap”, no light could propagate through the antiferromagnetic slab, leading to 

flat reflectance with a value equals to the reflectance of the second mirror ( � ). Rabi 

splitting obtained from the reflectance spectrum is around 0.1 THz which generally fits the ana-

lytical splitting derived from equation (1.6) in the case of no decay term, i.e. 

�  GHz.

 

Hybrid dispersion relation of magnon-polaritons can be obtained by changing the cavity 

length using a piezoelectric stage which leads to the shift of cavity eigenfrequencies as well as 

the magnon-polariton modes correspondingly. Figure 4.7 provides the relationship of cavity 

ωup /(2π)

ωlp /(2π)

r2
m2 = 97 %

Ωr = μ′�rωAFMR ≈ 120 × (2π)
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Figure 4.7 Cavity eigenfrequencies vs. cavity length. Blue dots represent uncoupled optical cavity 

modes, while red dots represent hybrid dispersion when strong coupling is realized between optical cav-

ity photons and AF magnons in 500 � m NiO (a) and 250 � m NiO (b) respectively.μ μ

(a) (b)



eigenfrequencies with respect to cavity length. Blue dots are plotted as a reference in the case 

when no magnon mode is included, while red dots represent hybrid dispersion in the existence of 

magnon-polaritons. The size of dots is set to be proportional to the relative signal strength of the 

reflection dips, where numerous small dots between �  and �  are attributed to extra modes 

coming from coupling between off-resonant cavity eigenmodes and magnon mode. Fig. 4.7 (a) 

shows the hybrid dispersions in the nested FP cavity consisting 500 � m NiO, while the thickness 

of NiO simulated in Fig. 4.7 (b) is reduced to 250 � m in order to reduce the total cavity length 

and increase the free space ranging. Sparser cavity eigenmodes then make it clear to distinguish 

the anticrossings between magnons and different ordered cavity modes. 

4.4 Discussion on possible lasing behavior based on nested FP cavity 

If one of the reflective mirrors used in the nested FP cavity is replaced by an active reflector 

with a reflectivity larger than unity, amplification and even lasing of intracavity polaritons is pos-

sible. A quantum cascade active region with intersubband transitions falling into THz frequency 

range could be inserted between metal-metal waveguides, and a array of metal-metal ridge 

waveguides would make up an active metasurface once population inversion is realized through 

external bias. If the active metasurface is further paired with an output coupler, a quantum cas-

cade vertical external cavity surface emitting laser (QC-VECSEL) is built up, which shows the 

same geometry as a nested FP cavity if an antiferromagnetic slab is bonded with the output cou-

pler. In this case, QC-VECSEL based magnon-polariton laser becomes possible once the inter-

subband gain in QC active region is large enough to compensate for the reflection loss from out 

coupler and light absorption in thick antiferromagnetic slab.

ωup ωlp

μ

μ
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In general, the far-infrared AF properties of CoO are not well characterized, with only a few 

reports in the literature, and little understanding of the relationship between material quality and 

crystal growth techniques. However, if we simply consider the extracted parameters for CoO dis-

cussed in this section, the quality factor of CoO provided in Ref. [110] is too low to realize 

strong light-matter coupling; further experimental demonstrations of magnon mode in CoO crys-

tal with different spin orientations or different growing methods are required. The AF magnon 

mode in NiO shows much higher quality factor and oscillator strength, and the phenomena of 

strong magnon-photon coupling have been theoretically predicted to be observable using THz 

spectroscopy. However, its magnon resonance frequency of 1.1 THz is too low for any intersub-

band transition based quantum cascade laser at this time. 

Generally, in order to realize the novel magnon-polariton quantum cascade laser, several re-

quirements have to be considered in choosing antiferromagnetic materials. First, AF magnons 

should have suitable quality factor and oscillator strength to enable the system entering strong 

light-matter coupling regime; second, magnon frequency should fall in the common QCL work-

ing frequency range, which is between 1.2 THz and 5.6 THz; third, the absorption coefficient in 

thick antiferromagnetic slab should be as low as possible to reduce the optical round trip loss in 

the FP cavity; moreover, existing growth technology has to be taken into consideration, since the 

thickness of antiferromagnetic slab should be comparable to the length of the FP cavity to ensure 

a large overlapping factor between the photon and the magnon modes. Once a suitable material is 

found, the possibility towards VECSEL-based magnon-polariton laser as well as polariton lasers 

based on other types of material excitations will be open.  

�90



Chapter 5: Conclusions  

In this thesis, I have reviewed the basic definition of strong light-matter coupling in great de-

tail with both classical and quantum mechanics descriptions, which has been realized in a wide 

range of material systems. Our study focuses on the exploitation of strong coupling between cav-

ity photons and antiferromagnetic magnons, in order to compensate for the lack of study in the 

area of antiferromagnetic magnon-polaritons, as well as evaluate the feasibility of potential po-

laritonic devices working up to THz frequency. The application of polaritons on a novel type of 

laser source is highlighted, which has raised great attention nowadays. Based on our knowledge 

of quantum cascade THz laser sources, we are seeking the possibility of building a magnon-po-

lariton quantum cascade laser.

The key components of this project are the selection of suitable antiferromagnetic materials 

and the special design of electromagnetic structures supporting magnon-polaritons. FeF2 is con-

sidered to be one of the more promising candidates due to its magnon mode resonant at 1.6 THz 

and large magnon-photon interaction strength. Furthermore, it is possible to grow thin films of 

FeF2 by molecular beam epitaxy, which opens the promise of integration with microfabricated 

devices. However, at this time only FeF2 films of up to 200 nm thick are available which sets ad-

ditional limitations on highly confining THz resonators. Metastructures, including split ring res-

onators and LC circuit-based metal-metal waveguides, are considered to be good approaches, 

which benefit from the strongly-confined evanescent magnetic field. In this thesis, I have pro-

posed several candidate metasurface geometries, and the signatures of strong light-matter cou-
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pling have been observed in numerical simulations of hybrid antiferromagnet/metastructure sys-

tems, while further experimental demonstrations are under progress. 

The compatibility of LC circuit-based metal-metal waveguides with semiconductor quantum 

well heterostructures makes the unique tripartite intersubband-magnon-photon coupling possible, 

which is demonstrated theoretically by the Rabi splitting between AF magnon mode and the low-

er branch of intersubband-polaritons.

When population inversion is further achieved via electrical pumping among the semicon-

ductor quantum wells, magnon-polaritons confined in hybrid antiferromganet/metastructure are 

expected to get amplified or even lase. However, the predicted lasing threshold is much higher 

compared with that of a commonly used metal-metal single-ridge metasurface. The possible rea-

son is that the geometry of LC MM waveguide was chosen with the goal of maximizing the qual-

ity factor of the metasurface - this condition is beneficial for the realiation of strong light-matter 

coupling. In this case, the radiative loss decreases dramatically, however, the metallic absorption 

increases in the highly confined subwavelength cavity and results in the increased lasing thresh-

old as a trade-off. Further work is needed to fully optimize designs for both the observation of 

strong coupling and reduced lasing threshold.

Other promising antiferromagnetic materials with THz magnon resonances are also consid-

ered, e.g. CoO and NiO, for which bulk crystals are commercially available. A nested FP cavity 

concept has been developed integrating with these antiferromagnetic slabs to study their proper-

ties of magnon-phonon interaction. Finally the possibility of a QC-VECSEL based magnon-po-

lariton laser is discussed, which will require suitable antiferromagnetic materials with high quali-

ty factor magnon modes falling into QCL working frequency as well as low absorption loss.
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