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ARTICLE

Quantifying the contribution of dominance
deviation effects to complex trait variation
in biobank-scale data

Ali Pazokitoroudi,1 Alec M. Chiu,2 Kathryn S. Burch,2 Bogdan Pasaniuc,3,4,5

and Sriram Sankararaman1,4,5,*
Summary
The proportion of variation in complex traits that can be attributed to non-additive genetic effects has been a topic of intense debate.

The availability of biobank-scale datasets of genotype and trait data from unrelated individuals opens up the possibility of obtaining

precise estimates of the contribution of non-additive genetic effects. We present an efficient method to estimate the variation in a com-

plex trait that can be attributed to additive (additive heritability) and dominance deviation (dominance heritability) effects across all

genotyped SNPs in a large collection of unrelated individuals. Over a wide range of genetic architectures, our method yields unbiased

estimates of additive and dominance heritability. We applied our method, in turn, to array genotypes as well as imputed genotypes

(at common SNPs with minor allele frequency [MAF] > 1%) and 50 quantitative traits measured in 291,273 unrelated white British in-

dividuals in the UK Biobank. Averaged across these 50 traits, we find that additive heritability on array SNPs is 21.86%while dominance

heritability is 0.13% (about 0.48% of the additive heritability) with qualitatively similar results for imputed genotypes. We find no sta-

tistically significant evidence for dominance heritability (p < 0:05=50 accounting for the number of traits tested) and estimate that

dominance heritability is unlikely to exceed 1% for the traits analyzed. Our analyses indicate a limited contribution of dominance her-

itability to complex trait variation.
Introduction

Variation in complex traits can be partitioned into varia-

tion due to additive, dominance, and epistatic effects.1

Despite decades of theoretical and experimental efforts,

the quantification of non-additive genetic variation in

outbred populations such as humans remains chal-

lenging.2–6 One approach to estimate non-additive sources

of heritability in humans have been focused on comparing

phenotypic similarity between close relatives.7 These esti-

mates, however, can be biased by confounding due to

shared environmental factors. Further, the limited sample

sizes of family and twin studies lead to large standard errors

in estimates of non-additive effects. An alternative

approach relies on the analysis of unrelated individuals.

The relatively small estimates of non-additive sources of

heritability from prior studies3,8 suggest that achieving

sufficient power will require the analysis of large numbers

of unrelated individuals and methods that can be run on

these large sample sizes. To this end, we extend our previ-

ously proposed variance components method9 to jointly

estimate the heritability due to additive and dominance

deviation effects attributed to SNPs genotyped across hun-

dreds of thousands of individuals. Additive variance refers

to the variance in genotypic value (the conditional mean

of phenotype given genotype) explained by regression of

the genotypic value on an additive representation of the
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genotype while dominance variance denotes the residual

variance that is not explained by a model with only addi-

tive effects. Using this definition, the additive variance

component captures the variance attributed to breeding

values and includes both additive and dominant genetic

effects.10,11 The additive (dominance) heritability refers

to the ratio of the additive (dominance) variance to the

phenotypic variance. Our method can jointly fit multiple

additive and dominance variance components, thereby al-

lowing it to provide unbiased estimates of heritability for

genetic architectures in which SNP effect sizes vary as a

function of minor allele frequency (MAF) and linkage

disequilibrium (LD).

Our method obtains unbiased estimates of additive and

dominance heritability under a range of MAF and LD-

dependent architectures while controlling the false posi-

tive rate of rejecting the null hypothesis of no dominance

heritability under genetic architectures that assume no

dominance. Analyzing a total of 50 continuous traits

measured in 291,273 unrelated white British individuals

in the UK Biobank, we find that additive heritability is

21.86% on average while dominance heritability is

0.13% on average (about 0.48% of the heritability attrib-

uted to additive effects) across common array SNPs (M ¼
459,792 SNPs, MAF > 1%). Analyzing common imputed

SNPs (M ¼ 4,824,392, MAF > 1%), we find that additive

heritability is 22.83% on average while dominance
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heritability is 0.06% on average (about 0.47% of the herita-

bility attributed to additive effects). We find no evidence

for traits that have non-zero dominance heritability after

correcting for multiple testing ðp < 0:05 =50Þ. Based on

our power estimates, we estimate that dominance herita-

bility is unlikely to exceed 1% for the traits analyzed.
Material and methods

Variance components model with additive and

dominance components
We are interested in estimating how much extra genetic variance

can be explained by dominance variation on top of a model

with only additive effects. To this end, we fit a variance compo-

nents model that relates phenotypes y measured across N individ-

uals to the additive values and dominant deviations over M SNPs

(while allowing for multiple additive and dominance

components).

y ¼
XK
i¼1

Xibi þ
XL
j¼1

Djaj þ ε

e � D 0;s2
e IN

� �

bi � D 0;
s2
A;i

Mi

IMi

 !
; i˛ 1;.;Kf g

aj � D 0;
s2
D;j

Mj

IMj

 !
; j˛ 1;.;Lf g

Here D m;Sð Þ is an arbitrary distribution over a random vector

with mean m and covariance matrix S. SNPs are partitioned into

K additive categories and L dominance categories where Xi and

Dj are the N 3 Mi and N 3 Mj matrices consisting of standardized

additive and dominance deviation encodings of SNPs belonging to

additive category i and dominance category j, respectively; s2e is

the residual variance, and s2A;i and s2D;i are the variance compo-

nents of the ith additive and dominance categories, respectively.

Our encoding captures dominance deviation, which is different

from the dominance effect of markers.11 We encode additive and

dominance deviation effects using a representation that leads to

uncorrelated variance components.8,11 For alleles A and B at a

SNP with the frequency of allele B denoted by fB, the additive

and dominance deviation encodings of the genotypes are defined

as follows:

vA AAð Þ ¼ 0; vA ABð Þ ¼ 1; vA BBð Þ ¼ 2

vD AAð Þ ¼ 0; vD ABð Þ ¼ 2fB; vD BBð Þ ¼ 4fB � 2ð Þ

The proportion of phenotypic variance explained by additive

variation (additive heritability) at all SNPs is defined as:

h2
A ¼

PK
i¼1s

2
A;iPK

i¼1s
2
A;i þ

PL
j¼1s

2
D;j þ s2

e

(Equation 1)

The proportion of phenotypic variance explained by dominance

deviation (dominance heritability) at all SNPs is defined as:
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h2
D ¼

PL
j¼1s

2
D;jPK

i¼1s
2
A;i þ

PL
j¼1s

2
D;j þ s2

e

(Equation 2)

The proposed model extends previous models by introducing

the component corresponding to dominance deviation effects in

addition to the additive effects.9 Further, the proposed model al-

lows for the joint estimation of multiple additive and dominance

components, e.g., corresponding to SNPs with varying minor

allele frequency (MAF) and linkage disequilibrium (LD) annota-

tions that have been previously shown to lead to relatively unbi-

ased estimates of SNP heritability.9,12

The key inference problem in this model is the estimation of the

variance components: ðs2A; s2D; s2e Þ where s2A ¼ ðs2A;1; ::; s2A;KÞ and

s2D ¼ ðs2D;1; ::; s
2
D;LÞ. We use a scalable method-of-moments esti-

mator, i.e., finding values of the variance components such that

the population moments match the sample moments.13–17 Our

method uses a randomized algorithm that avoids explicitly

computing genetic relatedness matrices. Instead, it operates on a

smaller matrix formed by multiplying the input genotype matrix

with a small number of random vectors allowing it to scale to large

samples. We estimate standard errors (SE) using an efficient block

Jackknife over SNPs with 100 blocks.
Method-of-moments for estimating variance

components
To estimate the variance components, we use a method-of-mo-

ments (MoM) estimator that estimates parameter values so that

the populationmoments are close to the samplemoments.18 Since

E[y] ¼ 0, we derived the MoM estimates by equating the popula-

tion covariance to the empirical covariance. The population

covariance is given by:

cov yð Þ ¼ E yyT
� �� E y½ �E yT

� � ¼X
i

s2
A;iKA;i þ

X
j

s2
D;jKD;j þ s2

e IN

(Equation 3)

Here KA;k ¼ XkX
T
k =

�
MkÞ (KD;k ¼ DkD

T
k =Mk) is the additive

(dominance) genetic relatedness matrix (GRM) computed from

all SNPs of kth category. Using yyT as our estimate of the empirical

covariance, we need to solve the following least-squares problem

to find the variance components.

~s2
A;

~s2
D;

~s2
e

� �
¼ argmin

s2
A
;s2

D
;s2eð ÞkyyT �

�X
i

s2
A;iKA;i þ

X
j

s2
D;jKD;j

þs2
e IN

	 k 2

F

(Equation 4)

For simplicity, we denoteKi ¼ KA,i for i ¼ 1,., K, KKþj ¼ KD,j for

j ¼ 1,., L, and J ¼ K þ L. The MoM estimator satisfies the

following normal equations:

T b
bT N


 � ~s2

~s2
e

" #
¼ c

yTy


 �
(Equation 5)

Here ~s2 ¼
~
s2
A

~
s2
D

" #
, T is a J3 Jmatrix with entries Tk;l ¼ tr KkKlð Þ;k;

l˛ 1;.; Jf g, b is a J-vector with entries bk ¼ tr(Kk) ¼ N (because Xks

and Dks are standardized), and c is a J-vector with entries ck ¼ yT

Kky. Each GRM Kk can be computed in time OðN2MkÞ and

OðN2Þ memory. Given J GRMs, the quantities Tk,l, ck, k; l˛f1;.;
2021



Jg, can be computed in OðJ2N2Þ. Given the quantities Tk,l, ck, the

normal Equation 5 can be solved in OðJ3Þ. Therefore, the total

time complexity for estimating the variance components is

OðN2M þJ2N2 þJ3Þ.

Randomized estimator of multiple variance components
The key bottleneck in solving the normal Equation 5 is the

computation of Tk,l, k; l˛f1;.; Jg, which takes OðN2MÞ. Instead
of computing the exact value of Tk,l, we use an unbiased esti-

mator of the trace19 based on the following identity: for a given

N 3 N matrix C, zTCz is an unbiased estimator of tr(C)

(E zTCz
� � ¼ tr C½ �), where z is a random vector with mean zero

and covariance IN. Hence, we can estimate the values Tk;l, k; l˛
f1;.; Jg as follows:

Tk;l ¼ tr KkKlð ÞzdTk;l ¼ 1

B

1

MkMl

X
b

zT
bEkE

T
k ElE

T
l zb (Equation 6)

whereEimatrix canbe standardizedadditiveXiordominanceDima-

trix.Herez1,.,zBareB independent randomvectorswithzeromean

and covariance IN. We draw these random vectors independently

froma standardnormal distribution.ComputingTk,lusing theunbi-

ased estimator involves four multiplications of sub-matrices of the

genotypematrix with a vector, repeated B times. Therefore, the total

running time for estimating the matrix T is OðNMBþJ2NBÞ.

Simulations
We simulated phenotypes from UK Biobank genotypes consisting

of M ¼ 459,792 array SNPs and N ¼ 291,273 unrelated white

British individuals (see section on UK Biobank data). We simulated

phenotypes from genotypes using the following model:

s2
A;m ¼ Scmw

b
m

�
fm
�
1� fm

��a
ðb1; b2; ::; bmÞT � N

�
0; diag

�
s2
A;1; s

2
A;2;.;s2

A;m

��

s2
D;m ¼ S0c0m

ða1;a2; ::;amÞT � N
�
0; diag

�
s2
D;1; s

2
D;2;.;s2

D;m

��

yjb;a � N XbþDa; 1� h2
A � h2

D

� �
IN

� �
(Equation 7)

where h2
A;h

2
D˛½0;1�, a˛f0;0:75g, b˛f0;1g. Here S and S0 are normal-

izing constants chosen so that
PM

m¼1s
2
A;m ¼ h2

A,
PM

m¼1s
2
D;m ¼ h2

D.

Additive and dominance deviation effect sizes are denoted by b

and a, respectively. fm and wm are the minor allele frequency

and LDAK score of mth SNP, respectively. In this model, cm; c
0
m˛

f0;1g are indicator variables for the causal status of SNP m. The

LDAK score of a SNP is computed based on local levels of LD

such that the LDAK score tends to be higher for SNPs in regions

of low LD.20 The above models relating genotype to phenotype

are commonly used in methods for estimating SNP heritability:

the GCTA model (when a ¼ b ¼ 0 in Equation 7), which is used

by the software GCTA,21 and the LDAK model (where a ¼ 0.75,

b ¼ 1 in Equation 7) used by software LDAK.20 Moreover, under

each model, we varied the proportion and minor allele frequency

(MAF) of causal variants (CVs). Proportion of causal variants were

set to be either 100% or 1%, andMAF of causal variants drawn uni-

formly from [0, 0.5] or [0.01, 0.05] or [0.05, 0.5] to consider genetic

architectures that are either infinitesimal or sparse as well genetic
The Ame
architectures that include a mixture of common and rare SNPs as

well as one that includes only common SNPs. We generated 100

sets of simulated phenotypes for each setting of parameters.

In experiments to assess the false positive rate, the additive her-

itability was set to 0.5 while the dominance heritability was set to

0. Let h2
DðiÞ be the estimate of h2

D whilecSEi is the jackknife estimate

of standard error on the ith replicate for i˛f1;::;100g. We computed

the p value of the two-tailed test of the null hypothesis of no h2
D on

the ith replicate from the Z score defined as h2
DðiÞ =cSEi for

i˛f1; ::;100g. To test the bias of the estimator, for every simulation

setting, first we compute meanðch2
DÞ and SEðch2

DÞ from all replicates,

then we reported p values of the two-tailed test of no bias from the

Z score defined as mean
bh2
D

� �
�h2

D

SE bh2
D

� �
=10

.

Power
To assess the power of our method to detect dominance heritability,

we considered simulations under different genetic architectures

with a non-zero dominance heritability. Across 16 different genetic

architectures, we vary the additive and dominance heritabilities and

proportion of causal dominance variants. We simulated 100 repli-

cates for every genetic architecture. Let h2
DðiÞ be the estimate of h2

D

while cSEi is the jackknife estimate of standard error on the ith repli-

cate for i˛f1; ::;100g. We computed the p value of a test of the null

hypothesis of no h2
D on the ith replicate from the Z score defined as

h2
DðiÞ =cSEi for i˛f1; ::; 100g. Finally, we reported the percentage of

replicates with p value < t as the power of our method on a given

simulated genetic architecture for a p value threshold of t.

UK Biobank data
We applied our method to UK Biobank data. We restricted our

study to self-reported British white ancestry individuals that are

>3rd degree relatives, which are defined as pairs of individuals

with kinship coefficient< 1=2ð9=2Þ.22 Furthermore, we removed in-

dividuals who are outliers for genotype heterozygosity and/or

missingness. We removed SNPs with greater than 1% missingness

and minor allele frequency <1% and that fail the test of Hardy-

Weinberg equilibrium at significance threshold 10�7. Finally, we

obtained a set of N ¼ 291,273 individuals and M ¼ 459,792

SNPs to use in the real data analyses. We included age, sex, and

the top 20 genetic principal components (PCs) as covariates in

our analysis for all traits. We used PCs precomputed by the UK Bio-

bank from a superset of 488,295 individuals. Additional covariates

were used for waist-to-hip ratio (adjusted for BMI) and diastolic/

systolic blood pressure (adjusted for cholesterol-lowering medica-

tion, blood pressure medication, insulin, hormone replacement

therapy, and oral contraceptives). Further, we also analyzed M ¼
4,824,392 imputed SNPs with MAF > 1% minor allele frequency

(excluding SNPs with missingness >1% and SNPs that fail the

Hardy-Weinberg test at significance threshold 10�7) across N ¼
291,273 unrelated white British individuals.
Results

Accuracy of estimates of dominance heritability in

simulations

Previous studies estimate a relatively small contribution of

dominance heritability for complex traits,8 so we wanted
rican Journal of Human Genetics 108, 799–808, May 6, 2021 801



to test the false positive rate of a test of the hypothesis of

no dominance heritability. To assess the false positive

rate of our method, we performed simulations in the

absence of dominance deviation effects (M ¼ 459,792

SNPs, N ¼ 291,273 individuals). Since additive SNP effects

tend to vary as a function of MAF and LD patterns at the

SNP12,23 and SNP heritability estimates tend to be sensitive

to these assumptions, we simulated phenotypes according

to 16 MAF and LD-dependent architectures by varying the

additive heritability, the proportion of variants that have

non-zero effects (causal variants or CVs), the distribution

of causal variants across minor allele frequencies (CVs

distributed across all minor allele frequency bins or CVs

restricted to either common or low-frequency bins), and

the form of coupling between the SNP effect size and

MAF as well as LD. The key parameter in applying RHE-

mc is the number of random vectors B. We have performed

a set of experiments to explore the choice of B. We simu-

lated 100 phenotypes based on M ¼ 459,792 array SNPs

and N ¼ 291,273 individuals where h2
A ¼ 0:25 and h2

D ¼
0:02, pcausal(A) ¼ 1, and pcausal(D) ¼ 0.02. We observe that

the Pearson’s correlation coefficients (r) between estimates

with B ¼ 10 and estimates with B ¼ 100 are 0.94 (additive

heritability) and 0.91 (dominance heritability). Therefore,

B ¼ 10 is sufficient for the applications considered

(Figure S2). To obtain unbiased estimates, we also do not

constrain the estimates of the variance components (al-

lowing for negative estimates).

Recent studies have shown that methods that fit a single

additive variance component yield biased estimates of SNP

heritability due to the LD- and MAF-dependent architec-

ture of complex traits,12,23,24 while models that allow for

SNP effects to vary with MAF and LD obtain relatively un-

biased estimates.9,12,23 Thus, we ran our method using 24

bins for additive effects (based on 6 MAF and 4 LD bins)

and a single bin for dominance deviation effects (although

our method allows for fitting multiple dominance bins).

Across the range of genetic architectures, we obtained ac-

curate estimates of h2
A when we jointly fit additive and

dominance heritability: biases range from �2 3 10�3 to

2 3 10�3 where h2
A ¼ 0:5 (Figure 1). We also obtain unbi-

ased estimates of h2
D with biases ranging from �5 3 10�5

to 6 3 10�4 where h2
D ¼ 0:0 (Figure 1). Importantly, the

false positive rate of rejecting the null hypothesis of no

dominance heritability across 16 diverse genetic architec-

ture is controlled at level 0.05 (see Table 1). We performed

additional simulations that demonstrate accurate herita-

bility estimates for a smaller sample size of N ¼ 10,000 in-

dividuals (Figure S1 and Table S1).

Next, we considered simulations under genetic architec-

tures with a non-zero dominance heritability. We evalu-

ated the accuracy of additive and dominance heritability

estimates across 16 different genetic architecture where

we vary the additive and dominance heritabilities and pro-

portion of causal dominance variants. We ran our method

using 24 bins for additive effects (based on 6MAF and 4 LD
802 The American Journal of Human Genetics 108, 799–808, May 6,
bins) and a single bin for dominance deviation effects.

We obtained accurate estimates of h2
A and h2

D when

we jointly fit additive and dominance heritability:

biases range from �1.6 3 10�3 to 2.7 3 10�4 where

h2
D˛f0:05;0:02;0:01; 0:001g for dominance heritability

while the biases range from �2.3 3 10�3 to 1.4 3 10�4

where h2
A˛f0:5; 0:25g for additive heritability (Figure 2).

In addition, we observe high power (>95% for a p value

threshold of 0.05) to detect dominance heritability as low

as 1% in a sample size of z300; 000 (Table 2). A more real-

istic assessment of power would consider the multiple

testing burden incurred when testing a collection of phe-

notypes with the goal of discovering traits with significant

dominance heritability. Assuming we test 50 phenotypes

(matching our analyses of the UK Biobank), we estimate

100% power to detect h2
D ¼ 2% and >50% power to detect

h2
D ¼ 1% in a sample of z300;000 individuals

�
p < 0:05

50

	
.

We performed simulations to compare the accuracies of

RHE-mc to REML and HE regression implemented in the

GCTA software. For computational reasons, we simulate

phenotypes from a subsampled set of 10,000 genotypes

across M ¼ 459,792 array SNPs from the UK Biobank data.

We simulated 100 phenotypes where h2
A ¼ 0:25 and h2

D ¼
0:05, pcausal(A) ¼ 1, and pcausal(D) ¼ 0.05. All three methods

obtain unbiased estimates of additive and dominance heri-

tability. The standard error of RHE-mc is 3% and 12% larger

than REML(GCTA) for additive and dominance heritability,

respectively. The standard error of RHE-mc is same as

HE(GCTA) for additive heritability and 3% less than

HE(GCTA) for dominance heritability (Table S8).

Further, we evaluated the accuracy of the jackknife esti-

mate of standard error in simulations (N ¼ 291,273 unre-

lated individuals, M ¼ 459,792 array SNPs) across diverse

genetic architectures. We observe that the jackknife SE

yields estimates with relative bias �1.7% on average over

13 genetic architectures (Table S5).

Finally, we performed experiments to measure the extent

to which we are able to capture additive and dominance

variation of causal SNPs when only a subset of causal

SNPs are observed due to imperfect tagging. In the first set

of experiments, we simulated phenotypes based on array

SNPs (N¼ 291,273 unrelated individuals,M¼ 459,792 array

SNPs) where h2
A ¼ 0:25 and h2

D ¼ 0:02, the proportion of

causal variants in the additive component is varied between

1% and 100%while the proportion of causal variants in the

dominance variance component is set to 1%. We ran RHE-

mc on genotypes with varying proportions of observed

causal SNPs, pobserved˛f0%; 50%; 75%; 100%g. While esti-

mates of additive heritability remain relatively unbiased, es-

timates of dominance heritability are biased downward

with the magnitude of the bias being proportional to the

percentage of observed causal SNPs (Table S6). These exper-

iments suggest that dominance heritability ismore sensitive

to imperfect tagging than additive heritability (although

this sensitivitymight also be partly explained by the smaller
2021



A

B

Figure 1. The accuracy of estimates of dominance and additive heritabilities in simulations with no dominance heritability
We plot estimates from our method in the absence of dominance deviation effects under 16 different genetic architectures (N¼ 291,273
unrelated individuals,M¼ 459,792 array SNPs).We varied theMAF range of causal variants (MAF of CV), the coupling ofMAFwith effect
size (a), and the effect of local LD on effect size (b¼ 0 indicates no LDAKweights and b¼ 1 indicates LDAKweights.We ran 100 replicates
where the true additive and dominance heritabilities of the phenotype are 0.5 and 0.0, respectively. We ran our method using a single
dominance bin and 24 additive bins formed by the combination of 6 bins based onMAF as well as 4 bins based on quartiles of the LDAK
score of a SNP. Black points and error bars represent the mean and52 SE, respectively. Each boxplot represents estimates from 100 sim-
ulations. Boxplot whiskers extend to the minimum andmaximum estimates located within 1.53 interquartile range (IQR) from the first
and third quartiles, respectively.
magnitudes of the dominance heritability in our simula-

tions). To further explore this issue, we repeated this exper-

iment usingM¼ 4,824,392 imputed genotypes withMAF>

1% with the same genetic architecture used in the analysis

of array SNPs. We observe that both additive and domi-

nance heritability estimates are relatively unbiased even

when the percentage of observed causal SNPs is as low as

0% (Table S7). These observations likely reflect the better

tagging of SNPs that encode additive and dominance geno-

types in the imputed data.

Estimates of additive and dominance deviation effects in

the UK Biobank

We applied our method to estimate additive and

dominance heritability for 50 quantitative traits in the
The Ame
UK Biobank22 by partitioning the additive component

into 8 bins (based on two MAF bins [MAF % 0.05,

MAF > 0.05] and quartiles of the LD-scores) and a single

dominance bin. We restricted our analysis to N ¼
291,273 unrelated white British individual and M ¼
459,792 SNPs (MAF > 1%) that were present in

the UK Biobank Axiom array. Further, we chose a

subset of 50 traits out of a total of 57 traits that

have evidence for non-zero additive heritability (Z score

> 3).

Across the 50 traits, we observe that the average additive

heritability ðh2
AÞ is 21.86% (standard deviation of 9.21%

across traits) (Figure 3). On the other hand, we estimate

average dominance heritability ðh2
DÞ to be 0.13% (SD ¼
rican Journal of Human Genetics 108, 799–808, May 6, 2021 803



Table 1. Calibration of tests of dominance heritability

Genetic architecture P(rejection at p < t) Test of bias

% of causal SNPs MAF of causal SNPs MAF and LD coupling t ¼ 0.05 t ¼ 10�3 p value

0.01 [0.01,0.05] a ¼ b ¼ 0 6% 0% 0.192

0.01 [0.01,0.05] a ¼ 0,b ¼ 1 5% 0% 0.006

0.01 [0.01,0.05] a ¼ 0.75,b ¼ 0 6% 1% 0.011

0.01 [0.01,0.05] a ¼ 0.75,b ¼ 1 8% 0% 0.187

0.01 [0.0,0.5] a ¼ b ¼ 0 4% 0% 0.388

0.01 [0.0,0.5] a ¼ 0,b ¼ 1 8% 0% 0.415

0.01 [0.0,0.5] a ¼ 0.75,b ¼ 0 4% 0% 0.593

0.01 [0.0,0.5] a ¼ 0.75,b ¼ 1 2% 0% 0.367

0.01 [0.05,0.5] a ¼ b ¼ 0 7% 0% 0.046

0.01 [0.05,0.5] a ¼ 0,b ¼ 1 4% 0% 0.813

0.01 [0.05,0.5] a ¼ 0.75,b ¼ 0 6% 1% 0.105

0.01 [0.05,0.5] a ¼ 0.75,b ¼ 1 1% 0% 0.855

1.0 [0.0,0.5] a ¼ b ¼ 0 2% 0% 0.196

1.0 [0.0,0.5] a ¼ 0,b ¼ 1 5% 0% 0.298

1.0 [0.0,0.5] a ¼ 0.75,b ¼ 0 7% 0% 0.522

1.0 [0.0,0.5] a ¼ 0.75,b ¼ 1 2% 0% 0.130

We assess the false positive rate of tests of dominance heritability based on our method in the absence of dominance deviation effects under 16 different genetic
architectures. We varied the MAF range of causal variants, the coupling of MAF with effect size (a), and the effect of local LD on effect size (b¼ 0 indicates no LDAK
weights and b¼ 1 indicates LDAK weights). Probability of rejection is computed from 100 replicates. We report p value of a test of the null hypothesis of no bias in
the estimates of h2

D.
0.39%). On average, we observe that dominance heritabil-

ity is about 0.48% of additive heritability. We find no evi-

dence for traits that have statistically significant non-zero
A

Figure 2. The accuracy of estimates of dominance and additive he
We plot estimates from our method under 16 different genetic arch
SNPs). We varied the additive heritability h2

A, dominance heritability
Black points and error bars represent themean and52 SE, respectivel
whiskers extend to the minimum and maximum estimates located w
tiles, respectively.
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dominance heritability after correcting for multiple testing�
p < 0:05

50

	
.

B

ritabilities in simulations with non-zero dominance heritability
itectures (N ¼ 291,273 unrelated individuals, M ¼ 459,792 array
h2
D, and the proportion of dominance causal variants (causal ratio).

y. Each boxplot represents estimates from 100 simulations. Boxplot
ithin 1.53 interquartile range (IQR) from the first and third quar-
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Table 2. Accuracy and power to detect dominance heritability in simulations

Genetic architecture Power bh2

D Test of bias

Additive component Dominance component t ¼ 0.05 t ¼ 10�3 Mean SE p value

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 1, h2

D ¼ 0:05 100% 100% 0.05 0.003 0.432

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:05 100% 100% 0.049 0.003 0.596

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 1, h2

D ¼ 0:02 100% 100% 0.02 0.002 0.351

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:02 100% 100% 0.02 0.002 0.869

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 1, h2

D ¼ 0:01 97% 68% 0.01 0.002 0.901

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:01 98% 67% 0.0099 0.002 0.730

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 1, h2

D ¼ 0:002 11% 2% 0.0018 0.0025 0.738

pcausalðAÞ ¼ 1, h2
A ¼ 0:5 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:002 10% 1% 0.0019 0.0027 0.590

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 1, h2

D ¼ 0:05 100% 100% 0.049 0.003 0.434

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:05 100% 100% 0.048 0.003 2.5e-06

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 1, h2

D ¼ 0:02 100% 100% 0.02 0.002 0.889

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:02 100% 100% 0.02 0.002 0.476

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 1, h2

D ¼ 0:01 93% 73% 0.01 0.002 0.744

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:01 93% 66% 0.0098 0.002 0.632

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 1, h2

D ¼ 0:002 9% 0% 0.0017 0.0024 0.373

pcausalðAÞ ¼ 1, h2
A ¼ 0:25 pcausalðDÞ ¼ 0:01, h2

D ¼ 0:002 12% 1% 0.0017 0.0026 0.292

We assess power, bias, and SE of our method in the presence of dominance and additive heritability under 16 different genetic architectures (N ¼ 291,273 un-
related individuals,M¼ 459,792 array SNPs). Power, mean, and SE are computed from 100 replicates. We report p value of a test of the null hypothesis of no bias
in the estimates of h2

D . Here, pcausal(A) and pcausal(D) denote proportion of additive and dominance causal variants, respectively. h2
A and h2

D denotes total additive
and dominance heritabilities. For both components we assumed the GCTAmodel, which is defined as setting a¼ b¼ 0 in Equation 7. Power is reported for p value
threshold of t˛f0:05;0:001g.
Applying our method with a single additive component

(no MAF/LD partitioning), we obtain an average h2
A ¼

27:72% (SD ¼ 12.14%) and average h2
D ¼ 0:17% (SD ¼

0.42%) across 50 traits with no evidence for statistically

significant non-zero h2
D(Table S4).

To assess the effect of population stratification on our re-

sults, we repeated our analyses retaining the first 10 PCs

and 40 PCs.While our original results with first 20 PCs sug-

gested that average h2
D ¼ 0:13% (SD ¼ 0.39%), we observe

average h2
D ¼ 0:13% (SD ¼ 0.38%) with the first 10 PCs

while average h2
D ¼ 0:11% (SD ¼ 0.42%) with the first 40

PCs. Across these analyses, none of the traits show evi-

dence for non-zero h2
D estimates that are statistically signif-

icant (Table S9).

To explore the impact of imperfect tagging of causal var-

iants on our results, we analyzed M ¼ 4,824,392 imputed

genotypes with MAF > 1%. We observed average h2
A ¼

22:83% (SD ¼ 9.49%) across the 50 traits (Figure 4;

Pearson’s correlation between the point estimates of h2
A

across array and imputed genotypes is 0.998) with no sta-

tistically significant differences between the h2
A estimates�

p < 0:05
50

	
. On the imputed genotypes, we estimated

average h2
D to be 0.06% (SD ¼ 0.19%) with the dominance

heritability being about 0.47% of additive heritability. We

also did not observe any statistically significant differences
The Ame
between the h2
D estimates across array and imputed geno-

types suggesting that imperfect tagging of common causal

SNPs (MAF > 1%) is unlikely to explain our results.

Although we did not find evidence for statistically signifi-

cant non-zero h2
D after correcting for multiple testing, we

found suggestive evidence for non-zero dominance herita-

bility for blood biochemistry traits: aspartate, basal meta-

bolic rate, blood reticulocyte count, glucose, and calcium

(p < 0.05).
Discussion

The contribution of non-additive genetic effects to com-

plex trait variation has been intensely debated.2,3,5,8,25

Here, we have extended our previously developed variance

components method9 to jointly estimate multiple additive

and dominance variance components on biobank-scale ge-

notype-trait data. We find that our method accurately esti-

mates additive and dominance heritability across a range

of MAF and LD-dependent genetic architectures. While

tests for the existence of a dominance component have

well-controlled false positive rates, our method has high

power to detect dominance components with h2
D >¼ 1%

in a sample ofz300K unrelated individuals. In application

to 50 quantitative traits in the UK Biobank with genotypes
rican Journal of Human Genetics 108, 799–808, May 6, 2021 805
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Figure 3. Estimates of additive and dominance heritability from array SNPs for 50 quantitative phenotypes in the UK Biobank
We ran our method partitioning the additive component into 8 bins defined based on two MAF bins (MAF % 0.05, MAF > 0.05) and
quartiles of the LD-scores and a single dominance bin. We summarize the estimates of additive and dominance heritability across the
50 phenotypes (N ¼ 291,273 unrelated white British individuals, M ¼ 459,792 common array SNPs [MAF > 1%]). Black error bars in
(A) mark52 standard errors centered on the estimated heritability. In (B) and (C) we plot the histogram of h2

A and h2
D, respectively. Point

estimates and SE’s are reported in Table S2.
measured across 459,792 array SNPs (MAF > 1%) as well as

genotypes measured across 4,824,392 imputed SNPs (MAF

> 1%), we observe substantial additive heritability (21.86%

on average for array SNPs, 22.83% on average for imputed

SNPs). On the other hand, estimates of dominance herita-

bility tend to be low (0.13% for array and 0.06% for

imputed SNPs) so that we do not find any trait with statis-

tically significant evidence of dominance heritability.

While a previous study8 estimated a 3% dominance

heritability (point estimate averaged across 79 traits),

we estimate a dominance heritability of 0.13% (point es-

timate averaged across 50 traits). The differences in the

point estimates could be due to the differences in the

set of phenotypes and individuals analyzed as well as

methodology used. However, our results are concordant

with Zhu et al.8 in that we find no statistically significant

estimate of dominance heritability across the traits

analyzed. Further, Zhu et al.8 analyzed 7,000 individuals,

which leads to larger SEs than our results based on 300K

individuals. The authors of Zhu et al.8 note that the po-

wer to estimate a dominance heritability of 0.05 with a

sample size of 7,000 is only about 12%. On the other

hand, our power calculations indicate that it is unlikely

that h2
D is larger than 1% at the traits analyzed. Taken

together, our results suggest that systematic identification

of dominance heritability will require analysis of even

larger sample sizes than the z300K individuals that we
806 The American Journal of Human Genetics 108, 799–808, May 6,
analyzed here. While the growth of biobank-scale data-

sets will facilitate such estimates, such analyses will also

require the development of novel methods that can

analyze data at scale.

We discuss several limitations of our study as well as di-

rections for future work. The analysis of dominance vari-

ance that we have undertaken relies on a specific encoding

of dominance and additive effects that leads to uncorre-

lated components.8 Due to the choice of this representa-

tion, the additive variance component that we estimate in-

cludes a contribution from dominant genetic effects while

the dominance variance component quantifies the extra

genetic variance that can be explained by dominance devi-

ation on top of the additive-only model. Alternative en-

codings might be associated with different statistical and

biological interpretation.5 Second, while our analysis has

focused primarily on common SNPs (MAF > 1%), previous

work has shown that dominance deviation effects tend to

decay faster due to imperfect tagging relative to additive ef-

fects leading to a larger bias in estimates of these effects.8

The concordance of our results across array and imputed

genotypes suggests that our estimates of dominance herita-

bility attributed to common SNPs are likely to be robust

although we would still underestimate the contribution

from low-frequency SNPs. The scalability of ourmethod al-

lows for the exploration of alternative encodings and low-

frequency variants at scale. Finally, while our current work
2021
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Figure 4. Estimates of additive and dominance heritability from imputed SNPs for 50 quantitative phenotypes in the UK Biobank
We ran our method partitioning the additive component into 8 bins defined based on two MAF bins (MAF % 0.05, MAF > 0.05) and
quartiles of the LD-scores and a single dominance bin. We summarize the estimates of additive and dominance heritability across the
50 phenotypes (N ¼ 291,273 unrelated white British individuals, M ¼ 4,824,392 common imputed SNPs [MAF > 1%]). Black error
bars in (A)mark52 standard errors centered on the estimated heritability. In (B) and (C) we plot the histogram of h2

A and h2
D , respectively.

Point estimates and SE’s are reported in Table S3.
focuses on quantitative traits, methods that have previ-

ously proposed to estimate heritability in case-control

studies16,26 can be extended to estimate dominance herita-

bility for binary traits.
Data and code availability
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Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.ajhg.2021.03.018.
Acknowledgments

This researchwas conducted using the UK Biobank Resource under

applications 33127 and 33297. We thank the participants of UK

Biobank for making this work possible. This work was funded by

NIH grants R01HG009120 (B.P. and K.S.B.), T32HG002536

(A.M.C.), and R35GM125055 (S.S.), an Alfred P. Sloan Research

Fellowship (S.S.), and NSF grants DGE-1829071 (A.M.C.) and III-

1705121 (A.P. and S.S.).
Declaration of interests

The authors declare no competing interests.
The Ame
Received: November 11, 2020

Accepted: March 18, 2021

Published: April 2, 2021
References

1. Fisher, R.A. (1918). The correlation between relatives on the

supposition of mendelian inheritance. R. Soc. Edinburgh

Trans. Soc. 52, 399–433.

2. Cheverud, J.M., and Routman, E.J. (1995). Epistasis and its

contribution to genetic variance components. Genetics 139,

1455–1461.

3. Hill, W.G., Goddard, M.E., and Visscher, P.M. (2008). Data and

theory point to mainly additive genetic variance for complex

traits. PLoS Genet. 4, e1000008.
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