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Abstract 

The study of epithelial morphogenesis is fundamental to increasing our understanding of 

organ function and disease.  Great progress has been made through study of culture 

systems such as EMT6/Ro mouse mammary tumor spheroids and Madin-Darby canine 

kidney (MDCK) cells, but many aspects of even simple morphogenesis remain unclear.  

For example, are specific cell actions tightly coupled to the characteristics cell 

environment or are they more often cell state dependent?  Our objective was to discover 

plausible representations of the operating principles realized during characteristic growth 

of EMT6/Ro mouse mammary tumor spheroids and MDCK cells in culture.  To reach 

that objective we engineered and iteratively falsified agent-oriented analogues of EMT6 

spheroid growth (Chapter 2) and MDCK cystogenesis (Chapters 3 and 4).  An approach 

to understanding how individual cell behaviors contribute to system behaviors is to 

discover a set of principles that enable abstract agents to exhibit closely analogous 

behaviors using only information available in an agent’s immediate environment.  EMT6 

spheroids and MDCK cysts display consistent and predictable growth characteristics, 

implying that individual cell behaviors are tightly controlled and regulated. We listed key 

attributes of EMT6 spheroid growth and MDCK cystogenesis, which became our 
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behavioral targets. 

To understand the in vitro systems we created analogues made up of quasi-

autonomous software agents and an abstract environment in which they could operate.  

The EMT6 analogue was designed so that upon execution it could mimic EMT6 cells 

forming spheroids in culture.  Each agent used an identical set of axiomatic operating 

principles.  In sequence, we used the list of targeted attributes to falsify and revise these 

axioms, until the analogue exhibited behaviors and attributes that were within 

prespecified ranges of those targeted, thereby achieving a level of validation.  For the 

analogue of MDCK cystogenesis we tested our hypotheses through in vitro 

experimentation and quantitative validation.  We observed novel growth patterns, 

including a cell behavior shift that began around day five of growth. 

We posit that the validated analogues’ operating principles are reasonable 

representations of those utilized by EMT6/Ro and MDCK cells during morphogenesis.  

Simulations provide an observable theory for cystogenesis based on hypothesized, cell-

level operating principles. 
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1. Introduction 
Extensive study of epithelial cells grown in culture has provided useful insight 

into important aspects of cell growth and tissue organization.  The behaviors of epithelial 

cells in culture fall reliably within narrow ranges, as if cell behavior and thus the 

underlying mechanisms are tightly choreographed.  Those actions can be thought of as 

being constrained and guided by a set of genetically specified biological operating 

principles.  Can we discover and attribute a small, robust set of operating principles that 

combine to create the system level phenomena that characterize epithelial cell growth in 

vitro?  How can we represent and challenge those operating principles?  What 

organization of the subcellular molecular biology enables the operating principles to 

emerge, and be sustained at the cellular level?  Before addressing the last question, we 

need answers to the first two, which has been the objective of the projects described 

within this document.  We created two distinct analogues of epithelial cell behavior and 

organization.  The first, specified in Chapter 2, was an analogue of in vitro multicellular 

tumor spheroid growth.  The second, specified in Chapters 3 and 4, was an analogue of 

MDCK cell cytogenesis within embedded Matrigel or collagen culture. 

An approach to understanding how individual cell behaviors can contribute to a 

diverse set of system level attributes is to discover a set of simple yet sufficient principles 

that enable abstract, cell mimetic agents, using only locally available information, to 

exhibit behaviors closely analogous to cells in culture.  For this context, we define a 

biological operating principle to be an abstract, inferential representation of an action 

within a reliably behaved cell system.  To discover these principles, we created quasi-

autonomous computer analogues comprised of individual cell mimetic agents (CELLS) 
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that adhered to a common, small set of axiomatic operating principles.  We use axiom as 

commonly defined [1] and to emphasize that the analogue, unlike epithelial cells in 

culture, is a formal mathematical system and its execution is a form of deduction from the 

axioms within the analogue.  Hereafter, we use AXIOM to emphasize that we refer only to 

the computational analogues.  An AXIOM specified a behavior that depended on the local 

environment perceived by the CELL, given its internal state.  Individual AXIOMS were 

implementations of in silico, axiomatic operating principles.  Each axiomatic operating 

principle was derived from a postulated in vitro counterpart as described in the Methods 

sections.  The combined actions of an expanding population of CELLS, each adhering to 

the same set of operating principles, were sufficient to produce unique systemic 

behaviors.  The systems underwent several rounds of iterative refinement and parameter 

tuning.  When measured, the resulting behaviors provided a set of systemic attributes that 

matched observed in vitro attributes closely for both systems.  Once that was achieved, 

we could postulate that the axiomatic operating principles may have in vitro counterparts, 

as illustrated in Figure 1.1.  To date, such principles have been arrived at piecemeal by 

induction following experimentation.  Experimental cell biology has been successful at 

discovering isolated cell level operating principles, but progress has been slow in 

providing a unified understanding of autonomous cellular behavior.  We anticipated that 

iterative analogue refinement would lead to improved insight into cell level operating 

principles and plausible mappings to their biological counterparts. 
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Figure 1.1.  Relationships between simulated multicellular tumor spheroids (SMS) and EMT6 
spheroids.  
An SMS is comprised of quasi-autonomous cell components interacting with adjacent cells and 
factors in their environment by adhering to a set of axiomatic operating principles.  A clear 
mapping exists between SMS components and EMT6 counterparts.  Following execution, the 
interacting components cause local and systemic behaviors.  Measures of cell and system 
behaviors provide a set of attributes—the SMS phenotype.  Validation was achieved when SMS 
attributes were measurably similar to a targeted set of EMT6 attributes.  When that was 
accomplished, we could hypothesize that a semiquantitative mapping exists between in silico and 
in vitro events.  We could also hypothesize that the set of axiomatic operating principles has a 
biological counterpart. 

A cohesive set of operating principles (as distinct from isolated principles) can 

provide a framework into which more detailed, subcellular and molecular level 

information can be connected directly to system level phenotype.  The plan was to work 

backward from a targeted set of in vitro observations of cell and system level phenomena 

to a plausible set of analogue AXIOMS, which would be necessary and sufficient to 

generate in silico counterparts of the targeted phenomena.  With that vision, these projects 

have been motivated by three expectations: 1) Understanding hypothesized mechanisms 

in vitro would be facilitated by successfully building and studying analogous mechanisms 

in silico.  2) Achieving and refining validated analogues would offer a scientific, 

experimental approach to discovering and studying cohesive sets of operating principles.  
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3) Knowledge of axiomatic operating principles would facilitate exploration of their 

biological counterparts.  This dissertation reports on the design and implementation of 

two analogues, and the results of their execution. 

1.1. Previous modeling efforts 
1.1.1. Tumor spheroid modeling 

Efforts to model tumor spheroid growth characteristics have been extensive, 

informative, and successful (see [2], two recent reviews [3, 4], and references therein).  

However, no one has proposed a cohesive set of cell level operating principles.  Only 

recently, due to advances in computer processing power and advance software modeling 

techniques, has it become feasible to design and instantiate quasi-autonomous, cell 

mimetic analogues, [5-7] capable of exhibiting a rich phenotype of their own.  The focus 

of most modeling and simulation efforts has not been in that direction.  It has been 

primarily to provide precise, mostly mathematical descriptions of growth dynamics in 

terms of measured biochemical and physical factors combined with detailed descriptions 

of essential cell processes [8-12].  Casciari et al. expanded on previous work to produce a 

differential equation-based model that addressed the effect of nutrient and ionic diffusion 

on tumor spheroid growth.  The model specifically considered the gradients in the 

concentration of oxygen, glucose, lactation, carbon dioxide and hydrogen ions.  It was 

hypothesized that the gradients in oxygen, glucose, and pH contribute to the 

heterogeneity of EMT6 growth.  The model successfully predicted EMT6 growth rates at 

under certain conditions, but could not predict the onset of necrosis or the stabilization is 

EMT6 size.   

Detailed modeling of the metabolic processes underlying tumor spheroid growth 
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has also been attempted.  Chignola et al. [10] developed a computational model to study 

tumor spheroid growth that involved a number of Michaelis-Menten-like equations 

describing glucose metabolism.   The model includes parameters that describe the activity 

of glucokinase, glucose transporters, and glucose phosphorylation, among others.  In 

addition they modeled the cell cycle of tumor cells in such a way that it depends on cell 

metabolism.  Various energy checkpoints must be met in order for cells to proliferate, 

slowing growth within the inner layers of the spheroid.  In order to validate the model 

simulations were run with individual simulated cells.  Researchers were able to mimic 

aspects of in vitro metabolism including changes in the rate of oxygen consumption when 

environmental glucose levels were changed and the relationship between the cell cycle 

and levels of ATP. 

The resulting models have been successful in explaining the time course and 

limits of spheroid growth in terms of nutrient depletion [8], increased acidity near the 

spheroid’s center [9], and the dynamics of tumor spheroid metabolism [10].  Jiang et al. 

combined these features into a comprehensive model that separately considered each cell 

and spanned three levels of mechanistic resolution [2].  Other modeling efforts such as 

[11, 12] have used hybrid mathematical and individual based approaches that have shown 

initially promising qualitative results. 

1.1.2. Modeling epithelial cell cystogenesis 
There are a number of existing analogues of epithelial cystogenesis, but only two 

specifically model MDCK cell cytogenesis.  Single cell-based models of epithelial 

morphogenesis are reviewed in [13].  More recently, Rejniak developed a model of 

epithelial cell cystogenesis [14] that mimicked the growth of MCF-10A cells in culture.  
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It could be argued that  [14] could be adapted to mimic aspects of MDCK cell behavior, 

but to do so would require carefully revalidating the model against phenotypic data from 

MDCK epithelial cystogenesis.  The underlying assumptions that led to the creation of 

the model would have to be rechecked, and any differences in MCF-10A and MDCK cell 

growth would have to be addressed.  In addition, a new set of targeted attributes and 

measures of similarity would have to be assembled and the model revalidated against 

these different lists.  If data used to create the original model were not available for 

MDCK cell cystogenesis that data would have to be produced through in vitro 

experimentation. 

The existing models of MDCK cystogenesis include the work by Grant et al. [5] 

and the updated version [15].  Both of these works used a similar approach as the current 

work, but there were a number of significant differences in the implementation.  Briefly, 

Grant et al. constructed their model using Mason 

(http://cs.gmu.edu/~eclab/projects/mason), an agent-based modeling software technology 

on a hexagonal grid with polarized and unpolarized cells, luminal space, and extra 

cellular matrix.  Each cell, luminal space, or matrix took up exactly one space within the 

grid.  The model used axioms to dictate cell behavior, but these axioms were entirely 

controlled by the neighborhood in which the cell resided.  The list of targeted attributes 

was primarily qualitative, based on mimicking MDCK cell behavior in a number of 

different culture environments, including embedded culture, suspension culture, overlay, 

and sandwhich culture.  The analogue was the first to successfully mimic MDCK cell 

behavior in these different culture conditions.  In a follow-on work, Kim et al. [15] 

modified the model so that each axiom could be applied probabilistically and then tested 
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the results of relaxing certain axioms to measure in silico cell behavior when axioms 

were not followed stringently.  Significantly, they discovered that certain behaviors, such 

as the orientation of cell division, could be relaxed without affecting cyst growth in a 

qualitative manner, but others, like simulated anoikis, would dramatically alter cyst 

growth when not followed.  Although successful in many ways, these analogues had a 

number of drawbacks.  One example is that they could not mimic the commonly 

observed multiple lumen phenotype.  In addition the models were not validated against 

quantitative data.  The models would saturate in cyst size and area relatively quickly and 

not continue to proliferate.  Also, because each cell only occupied a single location on the 

grid, cell shape and size played no part in the model and cell division was not strictly 

biological. 

1.2. Executable cell biology 
The analogues described herein are examples of a class of simulation models 

referred to as executable biology [16, 17].  Our simulations share some similarities with 

[18] and are closely related to [19], though the systems under study and the simulation 

frameworks are distinct.  Executable biological analogues are poorly suited for precise 

prediction, but are ideally suited for testing hypotheses about mechanisms.  The basic 

method requires building mechanisms at the functional unit level closest to the targeted 

phenomena.  Here, that unit is the cell.  Our analogues are comprised of quasi-

autonomous agents.  Each maps to an EMT6 or MDCK cell.  The initial limit for SMS 

resolution was the CELL, while the MDCK analogue used a more detailed level of 

resolution that allowed for shape change and more realistic CELL division.  If achieving 
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the list of targeted attributes required doing so, the resolution of the SMS could be 

increased.   

1.3. Iterative Refinement Process 
Once a set of targeted attributes had been specified, parameter tuning and 

analogue validation became closely linked.  When seeking fundamental necessary and 

sufficient in silico mechanisms, we incremented the complexity upwards.  We started 

with the simplest possible system and used an iterative falsification process, beginning 

with the first of the targeted attributes listed in Table 1.1 (for the SMS) and Table 2.2 (for 

the ISMA).  That iterative refinement method, of which parsimony is a factor, has been 

used successfully in addressing other simulation goals [20].  For the SMS, while 

exploring early AXIOM specifications and the in silico conditions needed to achieve the 

first attribute, we mostly ignored our larger knowledge of EMT6 spheroid biology.  At 

that stage, the analogue had one and only one goal: achieve the targeted attribute.  Once 

that was achieved, that early SMS was valid for that one targeted attribute.  In this 

context, an analogue was considered valid if it exhibited attributes that matched the 

targeted set according to some prespecified similarity measure. We executed that same 

protocol for each of the other attributes in Table 1.1.  Following each expansion of the 

attribute list, we reconsidered all AXIOMS, revising and merging parsimoniously where 

needed.  We initially coarse-tuned parameter values and subsequently fine-tuned them. 

Our explicit process of iterative falsification contrasts to most prior work in executable 

biology, including [18, 19], which describe the completed models and predictions, but do 

not list the attributes targeted for reproduction or the order in which they were achieved.  

We believe added transparency will allow others to build on the work described here. 
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Table 1.1.  Targeted attributes. 
Attribute Description 

1 Cells consume resources, change state, proliferate, lose adhesion, die, shed, and move. 

2 Cells proliferate throughout the duration of growth of the EMT6 spheroid. 

3 Cells behave autonomously and locally. 

4 The EMT6 spheroid develops an inner necrotic core, a middle quiescent layer, and an 
outer proliferating layer. 

5 The EMT6 spheroid initially grows exponentially, then linearly, and then stabilizes. 

6 The EMT6 spheroid has different growth characteristics at different levels of nutrient. 

7 Necrosis onset occurs when the EMT6 spheroid has an area of roughly 0.2 mm2 at 
high nutrient and 0.02 mm2 at low nutrient. 

8 The viable rim has a width of roughly 240 µm at high nutrient and 60 µm at low 
nutrient. 

9 The measured initial doubling times are roughly 22 hours at high nutrient and 26 
hours at low nutrient. 

10 The mean error percentage between EMT6 spheroid and SMS growth is within 15% 
at high and low nutrient levels. 

Attributes of in vitro growth targeted during development and refinement of the SMS. 

1.4. Summary 
The work described within this dissertation documents an evolving process.  The 

model of tumor spheroid growth described a complex process in a straightforward 

manner, successfully increasing our knowledge of the underlying biological system.  As 

new knowledge was gained, it became clear that continued development of the model 

would require increased in vitro data, not available at the time of execution.  The existing 

collaboration established during the preparation of [5] (which modeled MDCK 

cystogenesis) provided a good starting point for the development and iterative refinement 

of a new analogue, however.  Expanding the targeted attribute list for MDCK 

cystogenesis to encompass cell size and shape change quickly falsified the earlier 

analogue, requiring the development of the new analogue described in Chapter 3.  

Through a cooperative process we executed in silico and in vitro experiments that 
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allowed the ISMA to closely mimic data from in vitro experiments.  Further knowledge 

was gained when the ISMA was expanded to encompass results from MDCK 

cystogenesis within collagen, as discussed in Chapter 4.  The steady improvement of the 

underlying method of refining in silico analogues allowed us to gain an increased 

understanding of analogue development and of the events that occur during epithelial cell 

morphogenesis.  
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2. Essential operating principles of tumor 
spheroid growth 

2.1. Background 
The objective of this project has been different: we aimed to discover a somewhat 

minimalist set of essential axiomatic operating principles that would enable the system 

level growth characteristics produced by CELLS to match a targeted set of tumor spheroid 

growth attributes, based on measures of similarity.  Given that constraint, we identified 

nine axiomatic operating principles.  To narrow the scope and to achieve one of the key 

targeted attributes, we insisted that CELLS only acquire and use information available 

locally.  We designed the system so that systemic properties were a consequence of only 

local CELL interactions.  We made it easy to revise CELL AXIOMS so that we could 

sequentially expand the set of targeted attributes achieved.  The targeted attributes 

achieved (Table 1.1) include those that are most characteristic of in vitro tumor spheroid 

growth: development of a stable size; a three-layered structure that maps to outer, 

proliferating cells and a core of inner, necrotic cells, with quiescent cells in between; the 

ability of cells to shed; and realistic growth curves under two different growth conditions.  

To achieve the targeted attributes, it was not necessary to simulate the release of growth 

inhibitory substances.  Our objective is to understand the behavior of early-stage 

avascular cancers, and as a result we chose to model the EMT6 cell line.  Though it is 

tumor-derived it has proven stable and exhibits reliable behaviors.  For the purposes of 

this research, we can treat EMT6 cells as being in a healthy, not diseased state.   

2.1.1. In vitro system: historical context 
Because cancer is such a complex and heterogeneous disease, researchers develop 
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and study model systems.  One is the in vitro EMT6/Ro multicellular tumor spheroid 

system.  Freyer and Sutherland used the system to study avascular cancers in the 1970s 

and 1980s [21-26].  Their initial goal was to create a system that would allow many 

EMT6 spheroids to be grown in the same flask under identical, controlled conditions.  

Study of that model was expected to improve our understanding of how early stage 

cancer forms and improve our ability to treat it when the cells have not reached total 

genomic instability and still have much in common with normal cells [27]. 

In order to obtain adequate numbers of spheroids for measuring growth curves, 

experiments employed spinner flasks containing hundreds of spheroids.  The cultures 

were initiated in monolayer and then grown in dishes until small spheroids were present 

(95-100 hours).  These spheroids (usually 400-600 cells) were sorted and transferred to 

flasks, which contained a solution of glucose-free Eagle’s Basal Medium, Fetal Bovine 

Serum, and varied concentrations of glucose.  Oxygen was bubbled through the flask, and 

glucose was replenished roughly every 10-14 hours [21].  Most early experiments were 

designed to characterize the system and its behavior.  Eventually, however, many 

researchers shifted to using the system as a tool rather than studying the system itself.  

The seminal studies describing the behavior and characteristics of EMT6 spheroids were 

primarily completed by 1992.  Important work continued nevertheless.  There was an 

effort [28] to identify a potential necrotic inhibitor, and confocal microscopy was used to 

assess growth fractions [29].   

2.2. Methods 
2.2.1. Targeted attributes describe in vitro EMT6 spheroid growth 

Although there is variation in EMT6 spheroids’ growth, it reliably follows the 
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same well-defined pattern [23].  EMT6 spheroids initially grow exponentially without 

constraint from nutrient or other cells.  This gives way to linear growth as cells become 

quiescent due to nutrient depletion within the spheroids.  Eventually the spheroids begin 

stabilizing, both in volume and cell number, though cells continue to reproduce on the 

outer edge.  They develop a concentric layered structure: an outer layer of actively 

proliferating cells, a middle layer of quiescent cells, and a core of necrotic cells and 

cellular debris.  The material released by dying cells is thought to inhibit cellular 

proliferation [30], but it is not clear if this material actually affects cells in the rim and 

thus spheroid growth rates.  During growth, an EMT6 spheroid maintains a generally 

spherical shape, but neither shape nor relative EMT6 spheroid stability have been 

quantified, which makes shape validation difficult.  Additionally, though the width of the 

viable rim has been measured for different cell types, only one group has attempted to 

quantify the ratio of proliferating and quiescent cells [29].  Wartenburg and Acker 

performed these measurements on human glioma spheroids.  They do form spheroids 

with concentric layers, but have quantitative growth characteristics (such as initial 

doubling time and saturation size) that are different from those of EMT6 spheroids.  We 

elected to falsify and validate our experimental results using data from Freyer and 

Sutherland [21], because they performed the most thorough and complete analysis of 

EMT6 spheroid growth, including measuring growth curves, the width of the viable rim, 

and the size at the approximate time of necrosis onset. 

2.2.2. Analogue construction within an agent-based paradigm 
SMS construction used agent-based methods available in the simulation toolkit 

MASON [31].  This framework was used for data generation, scheduling, and 
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visualization. To distinguish clearly in silico components and processes from 

corresponding components and processes within EMT6, we use SMALL CAPS when 

referring to the former.  Variable names are in italics, and each is defined in the order it is 

introduced.  CELLS interact with each other and their environment during each simulation 

cycle within a two-dimensional, hexagonal grid.  Earlier versions used a square grid, but 

in addition to requiring a higher order implementation of discrete diffusion, it also 

generated artifacts that are not present with the hexagonal grid.  We tested different 

orders of discrete diffusion to verify that the diffusion algorithm did not cause artifacts.  

CELL actions are mandated by AXIOMS [5, 7]: when a specified condition is met, a 

specified action occurs.  Together, these AXIOMS are a CELL’s operating principles.  A goal 

has been to improve the variety of SMS attributes that are similar to corresponding EMT6 

spheroid attributes: the expectation being that with increasing phenotypic similarity, the 

higher the likelihood SMS AXIOMS will map to corresponding EMT6 operating principles 

(Figure 1.1).  As the list of targeted attributes expands, analogue resolution can be 

adjusted as needed. 

A second grid, adjacent to the CELL’S grid contains a diffusible substance called 

NUTRIENT.  NUTRIENT adjacent to each CELL is detected by and available to that CELL for 

consumption.  During each simulation cycle, each CELL uses AXIOMS to select actions 

based on how its local environment has changed since the last simulation cycle.  

Examples of actions include move, change state, create a new CELL, DIE, and shed.  

AXIOMS are implemented by algorithms that utilize the parameter values listed in Table 

2.1.  AXIOMS are listed in Table 2.2.  Where appropriate, parameter values intentionally 

mirror values measured in vitro.  The remaining parameters were tuned using an iterative 
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process: change parameter value, execute, evaluate relative to referent observables, 

cogitate, change again, etc.   

Table 2.1. Parameter names, values, units and sources. 
Parameter In silico value In vitro value Source 

Proliferating NUTRIENT critical level (proNut)  3.0 x 10-3 3.0 x 10-19 mol / µm3 Tuned parameter 

Quiescent NUTRIENT critical level (quiNut) 8.0 x 10-4 8.0 x 10-20 mol / µm3 Tuned parameter 

Proliferating CELL’S NUTRIENT uptake (proConsumeRate) 5.0 x 10-4 / SEC 5.0 x 10-17 mol / (cell s) {{;50 Casciari,J.J. 
1992 }}] 

Quiescent CELL’S NUTRIENT uptake (quiConsumeRate) 1.0 x 10-4 / SEC 1.0 x 10-17 mol / (cell s) Tuned parameter 

Delay before dead CELL is removed (removeDelay) 3.6 x 104 SEC 1.8 x 104 s {{;74 Harris,L.K. 
2006 }} 

Movement bias (moveEmptyBias) 1.0 — Tuned parameter 

Delay between CELL creation events (prolifDelay) 800 SEC 800 s Tuned parameter 

Proliferation bias (proBias) 2.25 — Tuned parameter 

NUTRIENT diffusivity (diffusionRate) 0.28* 105 µm2 / s {{;50 Casciari,J.J. 
1992 }} 

Initial NUTRIENT concentration (initialVal) 0.165 or 0.008  16.5 mM or 0.8 mM [26] 

    

Time step 1.0 SEC 1.0 s Calculated 

CELL diameter 1 grid space 10 µm [25] 

Average cell cycle** ~4.24 x 104 SEC ~4.24 x 104 s Calculated 

Average time of removal after cell death** 1.8 x 104 SEC 1.8 x 104 s Calculated 

Sourced parameters were obtained from literature.  Tuned parameters were adjusted to allow the 
analogue to mimic in vitro data.  Calculated parameters depended on sourced or tuned 
parameters.  All parameters were fixed, except initialVal, which was set to high (equivalent to 
0.28 mM oxygen and 16.5 mM glucose) or low (equivalent to 0.07 mM oxygen and 0.8 mM 
glucose) in different simulations.  *: The value of diffusionRate is related to the simulation cycle 
and CELL diameter, as described within the text.  **: The mean value observed during simulation. 
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Table 2.2.  SMS axioms. 
AXIOM Environment Action Parameters used In vitro source 

1 NUTRIENT > proNut Switch to PROLIFERATING 
state 

proNut Cell quiescence is regulated by the 
glucose and oxygen supply [32]. 

2 NUTRIENT < quiNut Switch to NECROTIC state quiNut Cell death is regulated by the glucose and 
oxygen supply [32]. 

3 quiNut < NUTRIENT < 
proNut 

Switch to QUIESCENT state proNut, quiNut Cell quiescence is regulated by the 
glucose and oxygen supply [32]. 

4 State = PROLIFERATING or 
QUIESCENT 

Consume NUTRIENT equal 
to proConsumeRate or 
quiConsumeRate 

proConsumeRate, 
quiConsumeRate 

Cells consume oxygen and glucose at 
varied levels {{;50 Casciari,J.J. 1992 }}. 

5 State = NECROTIC; 
removeCounter < 0 

Remove CELL removeDelay Necrotic cells eventually break up and 
are consumed [33]. 

6 Inside CELL adjacent to 
empty space 

Move into empty space  Cells move and mix with other cells 
within the spheroid [34]. 

7 Outside CELL adjacent to 
empty space 

Move into empty space 
with prob. pm 

moveEmptyBias Cells move and mix with other cells 
within the spheroid [34]. 

8 Outside CELL with 0 
neighbors 

Randomly move in space  Cells can be shed from the exterior of the 
spheroid [35]. 

9 State = PROLIFERATING; 
prolifCounter  
< 0; CELL has empty 
neighbors 

Create new CELL with prob. 
pb 

prolifDelay, 
proBias 

Cells create new cells within the SMS, 
causing it to increase in size [32]. 

In each time step a CELL will execute one or more of these AXIOMS based on the environment the 
CELL is exposed to and its internal variables.  Random numbers for probability functions are 
generated from a uniform distribution in [0,1), except as noted in the text.   

2.2.3. Tuning parameter values improves the analogue’s ability to 
survive falsification 

To achieve the specified targeted attributes, we used the IR Protocol, beginning 

with the first of the targeted attributes listed in Table 1.1.  As shown in Table 2.2, during 

the process of achieving Attributes 1 and 2 individual AXIOMS were qualitatively 

validated against their in vitro counterparts.  For instance, we verified that individual 

CELLS did not create new CELLS more frequently than is observed in vitro.  Once the SMS 

was validated for that attribute, we added a new attribute, such as no. 2 in Table 1.1, to 

the targeted list.  Doing so often (but not always) immediately falsified that SMS, which 

was the case with the addition of attribute no. 2. 

To revise the construct and form a new, more valid SMS with the expanded set of 

targeted attributes, we found it essential to introduce a volume loss mechanism and a 
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mechanism to stabilize SMS growth and shape: we added CELL shedding and STRESS 

states along with AXIOMS to manage those new states.  The new AXIOMS necessitated 

adding new parameters: moveEmptyBias and proBias.  Following a period of iterative 

refinement, these additional mechanisms enabled the SMS to survive our attempts to 

falsify it with the expanded attribute list. We continued that process for all attributes 

listed in Table 1.1, until the SMS was able successfully mimic growth curves from EMT6 

growth.  That same iterative refinement method can be used to further improve SMS 

behaviors, and—presumably—bring SMS principles of operation into closer alignment 

with those of EMT6 cells.   

Some in silico parameters, such as the diameter of a CELL, mapped directly to 

measured observations of in vitro EMT6 quantities.  These are noted by their source in 

literature within Table 2.1.  One exception was the mean value of the in silico interval 

between when a CELL entered the NECROTIC state and when it was removed (creating an 

empty space).  A value of five HOURS (18,000 SECONDS) was used.  Doing so required 

three assumptions.  The first was that the experimental setup used by Harris et al. to 

obtain these measurements did not contribute excessively to the measured apoptosis 

duration [33].  The second was acceptance of the authors’ assumptions about apoptosis: 

apoptosis begins when apoptotic morphology was observed and ended when the cell 

began to fragment.  The final and most significant was that we could map these values to 

EMT6 cells undergoing necrotic cell death induced by nutrient depletion.   

The actual number of simulation cycles that elapsed from when a CELL became 

NECROTIC and when it disappeared depended on the value of removeCounter, a pseudo-

random number (PRN) drawn from a uniform distribution over the interval [0–
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removeDelay).  RemoveCounter was decremented each cycle that a CELL was in the 

NECROTIC state, resulting in its removal when the value reached 0.  Setting removeDelay 

to 36,000 SECONDS (SEC), resulted in a mean removeCounter = 18,000 SEC, which 

mapped directly to the reported mean duration of apoptosis [33].   

In order to achieve the targeted attributes, it was sometimes necessary to select 

parameters that mapped to values that were toward the extreme end of an observed, 

referent range.  For instance, in order to avoid excessive NUTRIENT consumption resulting 

in premature appearance of NECROSIS, CELLS consumed NUTRIENT at a rate of 5.0 x 10-17 

MOL/CELL/SEC.  Observed glucose consumption rates were between 5.5 x 10-17 and 36.0 x 

10-17 mol/cell/s [36].   

Once a subset of parameter values had been set to map to in vitro counterparts, the 

remaining parameter values were tuned empirically so that the similarity between SMS 

and in vitro attributes achieved a specified measure of similarity.  Previous agent-based 

simulation projects demonstrated that the empirical tuning approach is an effective 

strategy for locating biologically relevant regions of an analogue’s parameter space [5, 7, 

33].  Initially, parameter values were varied extensively to discover ranges for which 

qualitative SMS behavior could be mapped to a corresponding biologically plausible 

behavior.  For instance, if prolifNut (the value that must be exceeded for a CELL to remain 

in the PROLIFERATING state) was higher than initialVal, proliferation did not occur.  

Similarly, we found that moveEmptyBias had to be higher than 0.5 to prevent fissure 

formation and eventual SMS destabilization.  Following empirical tuning to the in vitro 

doubling times of 18 to 24 hours [21], we selected a value of 2.25 for proBias and 800 

SEC for prolifDelay.  Each CELL had its own individual prolifCounter that specified the 
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number of SEC that must pass before it attempted to create a new CELL.  We calculated 

prolifCounter using the method in Walker et al. [37]: prolifCounter = prolifDelay/2 + RG, 

where RG was a pseudo-random number drawn from a Gaussian distribution having mean 

= prolifDelay/2 and standard deviation = prolifDelay/10 [37].  Consequently, the average 

prolifCounter value was roughly equal to prolifDelay.  Once parameter ranges were 

identified that achieved the targeted measure of similarity, each parameter was adjusted in 

sequence over a narrow range, and the consequences for SMS properties were recorded.  

Values that brought simulated behaviors closer to targeted values were retained.  The 

parameter values obtained following that protocol are identified in Table 2.1.  Note that 

with the possible exception of the critical NUTRIENT levels, none of these tuned parameter 

values map directly to measurable in vitro counterparts, and it would be problematic to 

obtain such values through experimentation. 

2.2.4. Measuring in silico and in vitro values 
In vitro doubling time is the time required for an average EMT6 cluster to grow 

from 600 to 1,200 cells [21].  These numbers corresponded to an SMS expanding from 

8.6 x10-3 mm2 to 1.35 x 10-2 mm2, which we used to determine SMS doubling time.  Both 

high and low NUTRIENT VIABLE rim values were calculated by averaging the VIABLE rim 

width at NECROSIS onset and at the end of the simulation.  Individual values of VIABLE 

rim width were found by counting the number of CELLS between the SMS center and the 

edge in three directions: from right of center, above the center, and diagonally left of the 

center.  These three values were averaged to obtain the final width.  Because the initial 

occurrence of NECROSIS was not necessarily stable (during early growth NECROSIS could 

appear and later vanish), we estimated the time of NECROSIS onset by moving backward; 
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we specified it to be the latest time at which no NECROTIC CELLS were present.  The 

method is similar to the one used by wet-lab researchers to estimate necrosis onset [21].  

As done with EMT6 spheroids, the maximum SMS size reached was estimated by fitting 

the Gompertz equation to growth data and taking the maximum size predicted by the 

equation.   

Growth rates in vitro were based on mean measures of spheroid diameter [21].  

We converted those values into cross-sectional area in order to compare them with our in 

silico results.  To establish a measure of SMS cross-sectional area we followed the 

method used in vitro, adding to the explicit phenomenological mapping between the SMS 

and its referent.  We assumed SMS are roughly circular, which our observations 

demonstrated was the case.  We first calculated the X and Y extents defined as follows: 

largest X (east-west or left-right) and Y (north-South or up-down) differences between 

CELLS at the edge of the SMS, ignoring detached, isolated CELLS.  Those two values were 

averaged to obtain the measure of SMS diameter used to calculate area.  This 

measurement adequately described the trends in SMS growth and remained quite close to 

the actual area occupied by all CELLS.   

2.2.5. Analogue environment on a hexagonal grid 
The width of each grid location mapped to 10 µm.  Each location was either 

empty or held a single CELL.  A second, identical sized hexagonal grid was overlaid on 

the first.  It contained the NUTRIENT consumed by CELLS, and its value was specified 

using a floating-point value from 0 to 1.  The NUTRIENT within the system mapped 

primarily to glucose, but other medium components, such as diffusible growth factors, 

were conflated into the referent.  At this early stage, the targeted attributes selected did 
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not include a requirement for glucose and oxygen being separate components.  The single 

NUTRIENT factor was deemed sufficient.  NUTRIENT diffusion used a discretization of the 

two-dimensional continuous diffusion equation du/dt = D∇2u, where D is the diffusion 

constant and u is the amount of diffusible material.  NUTRIENT moved from high to low 

density areas.  In a given simulation cycle, each location in NUTRIENT space calculated a 

new value based on the values of itself and its neighbors during the previous cycle using 

a method adapted for the hexagonal grid from [38].  The new value was unew= u (1 – λ) + 

λ ( uNE + uSE + uS + uSW + uNW + uN)/6, where λ is the discretized diffusion value and uNE, 

uSE, etc. are the NUTRIENT values at the neighboring locations.  

CELLULAR actions, such as NUTRIENT consumption and creating new CELLS 

(proliferation), occur on larger timescales than diffusion, so for convenience, the 

NUTRIENT space underwent ten steps for each SEC in CELL space.  Having multiple time 

scales allowed for model accuracy without wasting computation time.  Physical and 

temporal resolutions were purposefully mapped to specific values obtained from the 

EMT6 system in order to improve simulation realism and help ensure that observed SMS 

behaviors were not artifacts of unrealistic scaling.  The desired time step (∆t) for 

diffusion within the analogue was related to the unit distance (∆x), D, and λ, such that ∆t 

= 3∆x 2  λ/8 D  [39].  For the purposes of the simulation, λ = 0.28 was chosen in order to 

allow a ∆t of 0.1 SEC when ∆x is 10 µm and D is 105 µm2/SEC [36]. 

The NUTRIENT space was replenished by an algorithm that detects which empty 

locations lie outside the SMS and which lie inside.  Empty locations outside the SMS 

were replenished to initialVal every ten SEC.  We replenished during a simulation more 

frequently than was done in vitro in order to simulate the effect of stirring within EMT6 
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cultures: diffusion is not responsible for moving glucose and oxygen toward the EMT6 

spheroid during growth, only through it [36].  In order to calculate which depleted spaces 

resided inside and which were outside, the replenishment algorithm completes multiple 

passes from the top left corner of the grid to the bottom right and back.  On each pass any 

empty space that is adjacent to an outside empty space is labeled as outside the SMS, 

sequentially replenishing deeper and deeper fissures.  The algorithm used a multiple-pass 

approach rather than a recursive approach to avoid memory overflow errors.  This 

algorithm was capable of replenishing fissures that extend relatively deep into the SMS.   

2.2.6. Analogue is local based 
Cells within biological systems evaluate their surroundings through direct 

interaction with their environment.  Most information is transmitted through diffusible 

signals (which can travel long distances but require contact with a receptor to be 

recognized), cell environment, or cell-cell interactions.  In order to mimic that important 

biological reality and to preserve a clean separation between mechanism and phenomena 

we added a key targeted attribute to the list: CELLS must use only local mechanisms (the 

third attribute in Table 1.1).  Each CELL can query the level of NUTRIENT in its local 

neighborhood along with the characteristics of each neighboring location.  In order to 

locally control SMS surface irregularities and prevent fissure formation the STRESS based 

movement and proliferation algorithms were developed.  They only required CELLS to 

query their immediate neighbors.  Requiring that all mechanisms must be a consequence 

of local events would falsify some existing individual based models of tumor spheroid 

growth, such as [39], where an artificial gradient toward the center of the simulated tumor 

spheroid is created that uses global knowledge. 
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2.2.7. Initial analogue state 
Execution begins with a single CELL that grows unrestricted to 50 CELLS.  At that 

stage, the AXIOMS are implemented.  This simplification creates a slight, negligible shift 

in the growth curves.  It should be noted that the initial growth rate of EMT6 spheroids 

was not clear because EMT6 cells were first grown in a monolayer, and then transferred 

to cultures dishes until cluster size reached about 400 cells.  Only then were they placed 

in the spinner flasks [21].   

2.2.8. CELLS in context 
CELLS follow axiomatic operating principles that determine state change, 

movement, proliferation, and resource consumption.  The flow chart in Figure 2.1 

demonstrates the full range of actions CELLS can take.  CELLS exist in three states: 

PROLIFERATING, QUIESCENT, and NECROTIC.  CELL state is determined by the amount of 

NUTRIENT to which CELLS are exposed.  PROLIFERATING and QUIESCENT CELLS consume 

NUTRIENT equal to proConsumeRate and quiConsumeRate, while NECROTIC CELLS do not 

consume NUTRIENT. 
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Figure 2.1.  Flow chart of action options for an individual CELL.   
During each simulation cycle, a CELL begins by checking its state (green diamond).  It then 
checks the conditions of its local environment, as well as values of internal variables to determine 
intermediate actions (blue diamonds), final actions (yellow diamonds) or CELL death (red 
diamond).  CELLS that move into an empty space will do so deterministically if they are inside the 
border of the SMS, but stochastically if they are on the outside of the SMS.  CELLS that have no 
neighbors will randomly move outside of the SMS. 

Within a simulation cycle, when a CELL finds itself adjacent to an empty space, it 

will move into that space, simulating random cell movement and churning.  That action 

has the net effect of causing spaces vacated by NECROTIC CELLS to move randomly within 

the SMS, eventually merging with the external space.  The process is illustrated in Figure 

2.2.  When a CELL is on the outer edge, it will stochastically determine if it moves into an 

adjacent internal space.  The probability of doing so is adjusted based on the CELL’S 
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STRESS and is biased by the value of moveEmptyBias.  The higher the STRESS, the greater 

the likelihood the CELL will move into the empty space, smoothing the local SMS edge.  

An outside CELL adjacent to an interior space will move into an adjacent space if PRN < 

pm.  The PRN is drawn from [0,1), and pm is specified by an empirically derived 

exponential function of moveEmptyBias and STRESS, as detailed below.  At constant 

STRESS, increasing moveEmptyBias decreases the likelihood of movement, while if 

moveEmptyBias is constant, increased STRESS will increase the likelihood of movement. 

PROLIFERATING CELLS decrement prolifCounter during each cycle.  When this 

value drops below zero, the CELL will have an opportunity to create a new CELL.  If the 

CELL is adjacent to empty spaces, it will select one randomly, and then be given an 

opportunity to place a daughter CELL (a copy) at that location.  A CELL given an 

opportunity to proliferate will do so if PRN < pb.  The PRN is drawn from [0,1), and pb is 

specified by an empirically derived exponential function of proBias and STRESS, as 

detailed below.  At constant STRESS, the likelihood of proliferation will decrease as 

proBias is increased, and at constant proBias increasing STRESS causes qualified CELLS to 

be less likely to proliferate.   

After an attempt at creating a new CELL, prolifCounter is reset regardless of 

whether or not the attempt was successful.  A daughter CELL has the same parameter 

values as the parent, except for prolifCounter and removeCounter, which are set to unique 

random values.  For simplicity, we specify that CELLS are subject to contact inhibition: 

only CELLS adjacent to empty space can create new CELLS.  Although it is not clear to 

what extent contact inhibition occurs in vitro, LaRue et al. [28] observed that only the 

outer two or three cell layers proliferate at the same rate as exponentially growing cells.  
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Proliferation beyond the SMS surface was not necessary to achieve the targeted attributes 

(i.e., to survive falsification with the current set of targeted attributes).  

 
Figure 2.2.  Relocation of empty spaces.   
Random CELL movement into an adjacent empty space produces the net movement of spaces over 
time.  During each simulation cycle, any CELL adjacent to an internal empty space move into that 
space.  Consequently, empty spaces move randomly (black line) within the SMS until they exit at 
the outside edge.  Spaces may be moved multiple times during a single simulation cycle. 

2.2.9.  Stochastic cell movement and proliferation  
When a CELL on the outside of the SMS is adjacent to an empty space it will move 

into that space if a PRN < pm, where PRN is a pseudo random number in the interval 

[0,1).  The value of pm is determined by the function , where S is the 

STRESS experienced by the CELL and m is the value of moveEmptyBias.  This function has 

the effect of skewing the distribution of pm based on moveEmptyBias.  The higher the 

value of moveEmptyBias the more extreme the skewing will be, so that CELLS with a low 

STRESS and a high moveEmptyBias will almost never move into adjacent empty spaces, 

while CELLS with a high STRESS will do so regardless of the value of moveEmptyBias. 
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CELLULAR proliferation is biased in a similar fashion, except that in this case 

CELLS with a high STRESS will be less likely to create new CELLS.  CELLS will proliferate 

if PRN < pb, with PRN being between [0,1).  The equation used to determine the value of 

pb is , with S being the STRESS of the CELL and b being the value of 

proBias.  The skewing effect is similar, but the influence of STRESS is reversed, so CELLS 

with a high STRESS and high proBias will almost never create new CELLS, while CELLS 

with low STRESS will be very likely to create new CELLS regardless of the value of 

proBias. 

2.2.10. METABOLISM requires a single source of NUTRIENT 
An SMS differs significantly from the individual based models of Chignola et al. 

[10] and Schaller et al. [6], especially in its simple representation of metabolism.  The 

main similarities are that SMS use a diffusible NUTRIENT and CELLS DIE when insufficient 

NUTRIENT is available.  There was no need to represent a particular type of metabolism 

(aerobic or anaerobic), only that CELLS consume NUTRIENT equal to proConsume or 

quiConsume and change state based on NUTRIENT level.  We achieved the targeted 

attributes without being forced to add additional METABOLIC complexity.  Because we 

achieved those attributes using a simple representation, we can achieve the same 

behaviors using a more complicated representation of metabolism.   

2.2.11. Fissure formation is related to STRESS 
Early SMS versions had no means to control shape, either directly or indirectly, 

leading to fissure formation similar to that seen in [40].  SMS fissures were induced by 

diffusion-limited aggregation (DLA).  DLA is a phenomenon that occurs when objects 
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move randomly in space until they encounter and adhere to each other, forming structures 

with crystalline appearance [41].  SMS fissures form as the empty spaces move about 

because of CELL movement, and adhere when another space is encountered.  Empty 

spaces, even though they are not actively moving objects, are subject to DLA rules 

because they effectively walk randomly through the SMS.  Fissures form as spaces 

connect to each other.  The inner extreme of a fissure is the closest outside spaces to the 

NECROTIC core, where spaces are generated.  In order to prevent fissure formation, we 

developed the STRESS-based proliferation algorithm.  It helps prevent fissure 

development.  CELLS at the inner extreme of any fissure will have low STRESS values, 

leading to preferential proliferation at that location.  

In order to avoid extreme, abiotic SMS surface irregularities, each CELL creates 

new CELLS and moves based on its STRESS value.  STRESS maps somewhat to the adhesion 

mechanisms used in [2, 6].  It also maps to a combination of surface tension and 

adhesion.  However, it was only necessary to have it operate at the SMS surface.  CELLS 

having smaller STRESS values will be more likely to create new CELLS and less likely to 

move inward into empty spaces.  To calculate STRESS, a CELL uses a two-pass algorithm 

in each cycle.  First, it determines its initialStress: it subtracts two from the number of 

empty spaces in the neighborhood.  During the second pass, a CELL counts the number of 

CELLS in its neighborhood that are on the SMS edge (outsideNeighbors).  As illustrated in 

Figure 2.3, CELLS then calculate their final stress depending on outsideNeighbors.  If 

outsideNeighbors ≠ 2, finalStress = initialStress + 1.  If outsideNeighbors = 2, the CELL 

queries these two neighbors and sums their initialStress, and if that sum < 0, finalStress = 

initialStress – 1.  If the sum is > 1, finalStress = initialStress + 1, and if the sum is 0 or 1, 
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finalStress = initialStress.  This algorithm has the effect of transmitting the STRESS felt by 

one CELL to its neighbors, enabling CELLS to have different final STRESS values even if 

their neighborhoods are identical.   

 
Figure 2.3.  Illustration of a CELL determining its level of STRESS.   
(A) InitialStress is calculated based on the number of empty spaces.  (B) The change in STRESS is 
calculated based on number of outside neighbors and their initialStress values, with some CELLS 
increasing in STRESS (black values), some decreasing (red values) and others staying the same 
(gray values).  (C) STRESS is calculated by summing the value of initialStress and the change in 
the value of STRESS. 

Figure 2.4 shows sequential screen shots of the stress felt by CELLS in a growing 

SMS and demonstrates the preferential nature of proliferation. Figure 2.4A shows the 

initial arrangement.  In Figure 2.4B, the starred CELL has moved to fill an empty space, 

changing the local CELL arrangement and each CELL’S resulting STRESS value.  

Consequently, the starred CELL has a very low STRESS value and a corresponding higher 

chance of proliferating.  When its prolifCounter reaches zero, the starred CELL creates a 

new CELL, as illustrated in Figure 2.4C, returning that portion of the SMS to its original 

arrangement. 
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Figure 2.4. Illustration of CELLS responding to STRESS at low NUTRIENT.   
(A-C) Illustrations of STRESS levels at sequential time steps.  Only CELLS at the surface are color-
coded.  STRESS levels: dark blue = –2, light blue = –1, green = 0, yellow = 1, orange = 2, and red 
= 3.  (A) During one simulation cycle, the empty space below and to the left of the starred (*) 
CELL is adjacent to that CELL; the CELL then moves inward to fill that empty space.  (B) During 
the next simulation cycle, the starred CELL has a low STRESS and so becomes likely to create a 
new CELL.  The stress algorithm allows CELLS that have equivalent immediate neighborhoods, 
such as the CELLS labeled 1 and 2, to have different STRESS values.  Because the neighbors of 
CELL 1 have higher initialStress values than the neighbors of CELL 2, CELL 1 will have a higher 
STRESS and be more likely to create a new CELL during the simulation.  (C) During the third 
simulation cycle the starred CELL creates a new CELL, places it in the adjacent space, resulting in 
a return to initial conditions.  (D-F): CELL state view at equivalent TIME steps.   

2.2.12. Shedding of cells from the SMS surface 
An occasional CELL will become isolated near the SMS surface because of normal 

AXIOM operation.  In order to prevent their local accumulation, we implemented an 

algorithm that simulates shedding and the consequences of shear force caused by stirring.  

Any CELL that has no CELL neighbors will move randomly, selecting one of its six 

immediate neighbors using a uniform distribution, stopping when it encounters another 

CELL.  Most CELLS reattach to the SMS or form small clusters.  An occasional CELL will 

move far enough to exit the grid; it is then removed from the simulation.  The number of 

CELLS shed currently is significantly smaller than that reported in [35].  Shedding was not 

deemed a sufficiently important attribute to target at this stage.  Should it be targeted, it 
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will be straightforward to add a shedding AXIOM and then adjust parameter values to 

reestablish matching behaviors.  As an example, a similar modification was carried out 

between an earlier version of the analogue [42] and the current one.  Cells in [42] 

consumed the same quantity of NUTRIENT regardless if they were in the QUIESCENT or 

PROLIFERATING state, but in the current analogue the amount consumed is different. 

2.3. Results  
CELL growth leads to formation of Simulated MULTICELLULAR Spheroids (SMS).  

Measurements of SMS attributes during execution mimic characteristics of EMT6 

spheroid growth.  Figure 2.5 shows an example qualitative measurement of the SMS as a 

two dimensional cross-section.  It shows that SMS displayed the characteristic layered 

structure of EMT6 spheroids.  The PROLIFERATING layer appears thicker than is often seen 

in EMT6 spheroids, but note that while the majority of CELLS in the VIABLE rim are in the 

PROLIFERATING state, only the CELLS on the outer layer of the SMS are actively creating 

new CELLS.  Figure 2.6 shows that SMS growth curves were similar to reported EMT6 

spheroid growth curves when CELLS used the parameters listed in Table 2.1 and the nine 

axiomatic operating principles listed in Table 2.2.  AXIOM application was rigid in the 

sense that when a precondition was met, the appropriate AXIOM was always applied.  

AXIOMS 7 and 9 were stochastic.  During a simulation cycle, a CELL could subsequently 

apply more than one AXIOM, such as 1, 4, 7, and 9 for a PROLIFERATING CELL or 3 and 5 

for a NECROTIC CELL. 
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Figure 2.5.  SMS cross-sections at 17 DAYS.   
Scale bar: 100 µm.  Parameter values were those listed in Table 2.1.  White circles: proliferating 
CELLS; light gray circles: quiescent CELLS; dark gray circles: NECROTIC CELLS.  The background 
gradient (from red to black) represents NUTRIENT levels relative to the maximum value in red.  
(A) Growth occurred at high NUTRIENT, which maps to 0.28 mM oxygen and 16.5 mM glucose.  
(B) Growth occurred at low NUTRIENT, which maps to 0.08 mM oxygen and 0.8 mM glucose.  

 
Figure 2.6.  EMT6 and SMS growth curves.   
In vitro growth values (gray diamonds) were adapted from [21] by calculating spheroid diameters 
from measured volumes, assuming a circular cross-section.  SMS values were obtained by 
specifying that CELL diameter maps to 10 µm, measuring the greatest X, Y extents, excluding 
isolated CELLS, and assuming a circular cross-section.  Parameter values were those listed in 
Table 2.1.  (A) SMS growth at high NUTRIENT.  Values are means of ten runs.  EMT6 spheroid 
values were from [21] at 0.28 mM oxygen and 16.5 mM glucose.  (B) SMS growth was under 
low NUTRIENT.  Values are means of ten runs.  EMT6 spheroid values from [21] at 0.07 mM 
oxygen and 0.8 mM glucose.  

2.3.1. In silico growth curves matched in vitro growth curves 
For the parameter values listed in Table 2.1, SMS growth curves were 

quantitatively similar to those of EMT6/Ro spheroids for both high and low nutrient 
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conditions.  CELLS within an SMS proliferated initially at an exponential pace.  Growth 

then slowed and became linear because only CELLS near the outer SMS rim could 

reproduce.  The increase in cross-sectional area was linear until CELLULAR NECROSIS 

began.  Thereafter, SMS growth rate began decreasing toward zero.  A stable size was 

reached when CELL creation was balanced by CELL removal.  Plots of SMS cross-

sectional area over time (Figure 2.6) closely mirrored EMT6 spheroid growth [21] for 

both high and low levels of NUTRIENT.  For simplicity, as discussed under Methods, we 

conflated measured concentrations of glucose and oxygen, along with the other in vitro 

nutrients, and represented the entire collection using the factor NUTRIENT.  High 

NUTRIENT level mapped to 16.5 mM glucose and 0.28 mM oxygen.  Low NUTRIENT level 

mapped to 0.8 mM glucose and 0.07 mM oxygen.  The reported coefficient of variation 

of mean cross-sectional EMT6 spheroid area between multiple in vitro experiments was 

roughly 29% at 7 days, increasing over time [28].  Given that, and the fact that EMT6 

spheroids increase their size by many orders of magnitude during growth, we judged that 

having simulated values within 15% of referent values would be reasonable, and made 

that a targeted attribute (Table 1.1).  The mean percent error between in silico and in vitro 

data was 12% for high and 8% for low NUTRIENT, which was within the targeted 15% 

range.  The only parameter changed between the two conditions was initialVal, the level 

of NUTRIENT present outside the SMS during the simulation.  For both conditions, CELLS 

used the same Table 2.2 set of operating principles.  Under Methods, we describe that 

only minimal tuning of the indicated subset of the parameters in Table 2.1 was needed to 

achieve these matching growth characteristics. 
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2.3.2. In silico doubling times were similar to in vitro doubling times 
The measured doubling times for SMS and EMT6 spheroids were similar at high 

NUTRIENT levels, but quite different at low NUTRIENT levels, as shown in Table 2.3.  At 

low nutrient levels, EMT6 cell number doubled every 17 hours, whereas the SMS 

required 40 HOURS.  This apparent discrepancy was initially difficult to explain, 

considering that the growth curves were very similar.  Some explanatory factors may 

include the high variability of the in silico results at small SMS sizes, as well as the 

experimental variability between in vitro trials.  In addition, initial doubling times were 

calculated [21] using a best fit of the Gompertz equation [43] to data from multiple 

experiments.  The Gompertz equation describes an exponential curve with an 

exponentially decreasing growth rate.  It can be fit to many types of in vitro animal and 

tissue growth data.  The equation used was y = ae–e
(b-ct)

, where t is time, y is cross-

sectional area, and a, b, and c, are the parameters of the equation.  When we fit the in 

vitro results (from the single experiment we used for validation) to the Gompertz 

equation, we obtained an initial doubling time of 21.6 hours at high nutrient levels and 

26.4 hours at low, as compared to 19.2 HOURS for in silico simulations at high and low 

NUTRIENT, as shown in Table 2.3.  These results are more consistent, which is not 

surprising, as we tuned prolifDelay and proBias to generate in silico doubling times that 

could be mapped approximately 1:1 to wet-lab doubling times.  ProlifDelay, a stochastic 

parameter, is the average TIME interval that a CELL must wait before it has the option to 

create a new CELL.  The value of prolifCounter specifies the interval for each CELL.  Each 

prolifCounter value is calculated from prolifDelay as described under Methods.  To 

enable a successful proliferation event, a pseudo-random number must exceed a specified 
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value.  The variable proBias specifies the probability distribution from which that value is 

drawn, as described under Methods.  The larger the proBias value, the more extreme that 

distribution, making it increasingly difficult for a new CELL to be created. 

Table 2.3. Comparison of in vitro and in silico growth characteristics. 
Condition Initial doubling time Viable rim 

width 
Necrosis onset 
time 

Necrosis onset 
size 

Maximum area 

In silico      

High NUTRIENT* 21.4 HOURS / 19.2 HOURS‡ 245 µm 11.4 DAYS 0.253 mm2 1.61 mm2 ‡ / 1.46 mm2‡ 

Low NUTRIENT* 40.0 HOURS / 19.2 HOURS‡ 62 µm 4.4 DAYS 0.0266 mm2 0.0645 mm2‡ 

In vitro      

16.5 mM glucose & 
0.28 mM oxygen 

23.0 hours† / 21.6 hours‡ 240 µm N/A 0.209 mm2 3.25 mm2 † / 2.79 mm2‡ 

0.8 mM glucose & 
0.07 mM oxygen 

17.0 hours† / 26.4 hours‡ 60 µm N/A 0.0181 mm2 0.221 mm2 †/ 0.0725 mm2‡ 

*: Values for mean of ten runs. †: From Gompertz fit by Freyer and Sutherland.  ‡: From 
Gompertz fit by authors.   

2.3.3. Measured viable rim widths were similar 
Viable cell rim widths, eighth in Table 1.1, have been characterized, and were 

used to further validate SMS attributes.  The data in Table 2.3 show that VIABLE SMS rim 

widths were close to in vitro values.  Because the coefficient of variation of EMT6 

spheroid areas was at least 29%, the corresponding value for radius was roughly 15%.  

We specified that any SMS radius within 15% of a referent radius would be acceptably 

similar because that radius would be experimentally indistinguishable from a repeat 

EMT6 experiment, had one been preformed.  We observed a mean SMS rim width under 

the high NUTRIENT condition that mapped to 245 µm, compared to 240 µm in vitro, a 

difference of 2%.  At low NUTRIENT, mean SMS rim width mapped to 62 µm, compared 

to 60 µm in vitro, a 3.3% difference.  Although we performed some tuning of the critical 

levels required to remain in the PROLIFERATING or QUIESCENT state, these similarities are 

still noteworthy.  They reinforce the likelihood that the principles of operation used by 

SMS CELLS may map to a corresponding set of operating principles used by EMT6 cells.   
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2.3.4. NECROSIS onset and final saturation size were similar  
Under high NUTRIENT, measures of SMS diameters at NECROSIS onset, listed in 

Table 2.3, achieved the targeted similarity measure; they were within 15% of those 

observed by Freyer and Sutherland [21].  Following SMS execution under high 

NUTRIENT, mean diameter at which the SMS first underwent NECROSIS mapped to roughly 

530 µm, compared to 516 µm for the EMT6 spheroids under comparable conditions, a 

2.7% difference.  Under the low NUTRIENT condition, SMS underwent NECROSIS when the 

system reached a diameter corresponding to approximately 180 µm, compared to 152 µm 

for EMT6 spheroids, an 18.4% difference.  

The maximum sizes attained by SMS were not similar to those predicted by 

Freyer and Sutherland [21], (Table 2.3).  Freyer and Sutherland did not measure 

maximum sizes, but instead inferred them by fitting data to the Gompertz equation and 

then using the fitted equation to predict an expected maximum size.  The data fit were 

averages of results from experiments on different batches of EMT6 spheroids.  Because 

the SMS were being compared to data from a single experiment, we fit the Gompertz 

equation to that referent data (Figure 2.6).  Table 2.3 shows that the new result did not 

differ significantly from the one originally reported at high nutrient levels: the moderate 

in silico–in vitro discrepancy remained.  However, the maximum fit size was smaller at 

low nutrient concentrations, down from 0.221 mm2 to 0.0725 mm2.  The maximum size 

reached by the SMS at low nutrient mapped to 0.0645 mm2, a difference of 11%.  That 

was judged acceptably similar to our Gompertz equation fit.  A reasonable conjecture for 

the discrepancy at high nutrient levels is that the set of operating principles used by cells 

in maturing EMT6 spheroids were somewhat different than the set used earlier, during 

spheroid expansion.  Our goal was to seek one set of SMS operating principles that would 
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enable validation for both high and low NUTRIENT conditions.  It would be 

straightforward to relax that requirement and achieve improved similarity at high 

NUTRIENT levels.   

2.3.5. SMS shape and stability were controlled by proBias 
How important are the quantitative aspects of the AXIOMS in controlling spheroid 

shape and stability?  AXIOMS 7 and 9 in Table 2.2 play critical roles in controlling SMS 

shape and stability.  The consequences of their application in concert with the other seven 

depend to a large degree on the value assigned to the parameter proBias, which, as 

explained under Methods, influences the likelihood of stressed CELLS to proliferate.  We 

conducted experiments at varied levels of proBias.  Results are shown in Figure 2.7.  

Increasing proBias improved an SMS’s ability to fill in fissures that formed after growth 

stabilization.  Low levels of proBias enabled fissures to reach toward the SMS center, 

destabilizing the structure and causing chaotic, uncontrolled growth.  We have found no 

evidence that this destabilizing mechanism maps to in vitro counterparts.  However, it 

may demonstrate a principle: surface irregularities can affect a spheroid’s growth rate.  

An SMS that has elongated to form a rod-like structure could not easily increase its width 

because of limited NUTRIENT availability.  However, absent other constraints, nothing 

would prevent it from elongating further.  Clearly, there are other factors and forces 

involved in maintaining the stability and shape of large spheroids in vitro.  However, they 

are beyond the SMS’s current scope.  SMS are capable of maintaining stable shapes for a 

specified TIME within certain parameter ranges, outside of which new AXIOMS and/or non-

local constraints would be required. 
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Figure 2.7.  SMS cross-sections at varied proBias values and low NUTRIENT.   
All images were recorded at 18 DAYS.  Scale bar: 100 µm.  Other parameter values were as listed 
in Table 2.1.  (A)–(G) proBias values are shown.  *: proBias value in Table 2.1.  

2.3.6. SMS long-term shape changes lead to instability  
The AXIOMS used to manage CELL STRESS were effective at maintaining stable 

small and medium sized SMS.  However, when growth was extended beyond 50 DAYS 

under high NUTRIENT, SMS began to lose their circular shapes.  The 67-DAY old SMS in 

Figure 2.8 is an example.  Because of the stochastic nature of the events involving each 

CELL, the growth trajectories, shapes, and sizes of separate SMS executions can be 

different under identical conditions.  For the same reason, small regional differences in 

large, mature SMS can gradually become amplified, resulting in large subregions having 

measurably different characteristics.  This leads to an unstable system.  Measures of SMS 

long-term growth at high and low NUTRIENT are provided in Figure 2.9.  EMT6 spheroids 

do exhibit varied shapes during growth.  However, we are not aware of in vitro 

observations that can be used to validate this SMS behavior, possibly because it is 

challenging (and expensive) to maintain large EMT6 spheroids in culture for 50 days or 

more (although Chignola et al. have maintained Rat 9L spheroids to 70 days [30]).  If 

maintenance of generally circular shapes beyond 50 days under high NUTRIENT were to 

be added to the targeted attributes list, the current SMS would be falsified.  Inclusion of 

additional mechanisms would be needed to reestablish validation. 
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Figure 2.8.  An SMS cross-section at 67 DAYS at high NUTRIENT level.   
SMS shape is no longer circular.  Scale bar 100 µm.  Parameter values were those listed in Table 
2.1. 

 
Figure 2.9.  Results from three extended SMS experiments.   
Gray circles: in vitro data as in Figure 2.6.  Parameter values were those listed in Table 2.1.  (A) 
SMS growth at high NUTRIENT for 67 DAYS.  SMS growth at low NUTRIENT for 67 (B) and 230 
(C) DAYS.  Eventual maximum size before destabilization for both (A) and (B) is similar to that 
predicted by fitting the growth of multiple runs to the Gompertz equation, as observed in Table 
2.3.  In (C) the SMS remains stable in size for an extended period of time, but eventually 
destabilizes.   
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2.3.7. Varying parameters changed growth curve and SMS shape 
We conducted experiments in which we varied parameter values and observed the 

effect on measures of SMS growth and morphology.  The results, summarized in Table 

2.4, indicate whether increasing a parameter increased, decreased, or did not affect a 

specific measure (such as maximum size reached).  In addition, we examined the 

consequences of changing parameter values in more detail.  Changing moveEmptyBias 

had a limited but significant effect on SMS morphology (Figure 2.10) and growth (Figure 

2.11).  The parameter moveEmptyBias influenced movement of CELLS exposed to the 

outside surface of the SMS or adjacent to a fissure.  The larger the value of 

moveEmptyBias, the less likely a CELL at the edge experiencing low STRESS (defined 

under Methods) would move into an adjacent empty space when given the opportunity.  A 

larger moveEmptyBias value hindered fissure elongation.  MoveEmptyBias was tuned 

empirically to control SMS shape but still allow CELL-free spaces to exit the SMS rather 

than be trapped inside for an extended duration.  CELLS with larger moveEmptyBias 

values experiencing low STRESS rarely moved into adjacent empty spaces, whereas CELLS 

under high STRESS are likely to do so.   
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Figure 2.10.  SMS cross-sections at varied moveEmptyBias values and low NUTRIENT.   
All images were recorded at 21 DAYS.  Scale bar: 100 µm.  Other parameter values were as listed 
in Table 2.1. (A)–(F) moveEmptyBias values are shown.  *: moveEmptyBias value in Table 2.1.  
Cross-sections at moveEmptyBias = 0 are not shown because they grew too quickly and filled the 
available space before 21 DAYS elapsed.  As moveEmptyBias increased, more empty spaces were 
visible within the SMS.  

 
Figure 2.11.  Influence of moveEmptyBias on SMS growth.   
Gray diamonds: in vitro data as in Figure 2.6.  Other parameter values were those listed in Table 
2.1.  Colored lines are results of single experiments for the indicated values of moveEmptyBias 
from 0 to 1.5 (moveEmptyBias = 0 plus the same values as in Figure 2.10).  (A) high NUTRIENT; 
(B) low NUTRIENT. *: moveEmptyBias value in Table 2.1. 
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As demonstrated by Figure 2.11, when moveEmptyBias was set to zero, SMS 

grew linearly at a high rate in low NUTRIENT conditions and failed to saturate.  Fissures 

appeared, which caused the SMS to destabilize and grow chaotically.  Increasing 

moveEmptyBias by as little as 0.25 resulted in almost complete SMS saturation.  Further 

increasing moveEmptyBias did not significantly affect growth rates or stability, but small 

changes were evident at both low and high NUTRIENT levels.  While moveEmptyBias does 

not directly map to an in vitro quantity, these results indicate that there may be threshold 

values for shape maintenance mechanisms, below which an EMT6 spheroid would 

generally become unstable. 

Table 2.4. Effects of increasing parameters on in silico measures. 
Parameter Maximum 

size 
Viable rim 

width 
Quiescence 

onset 
Necrosis 

onset 
Growth 

rate 
Doubling 

time 
Stability Necrotic 

core size 

diffusionRate ↑ ↑ ↑ ↑ — — ↔ ↔ 

initialVal ↑ ↑ ↑ ↑ ↓ ↓ ↔ ↑ 

proConsumeRate ↓ ↓ ↓ ↓ — — — ↔ 

quiConsumeRate ↓ ↓ — ↔ — — — ↔ 

prolifDelay ↔ — ↑ ↑ ↓ ↓ — ↔ 

removeDelay ↑ — — — — — ↔ ↑ 

proNut ↔ / — — ↓ ↓ — — ↓ ↔ 

quiNut ↓ ↓ — ↓ ↓ — — — / ↓ 

proBias ↓ ↑ ↑ ↑ ↓ ↓ — / ↑ ↓ 

moveEmptyBias ↔ ↓ / ↑ — — ↑ — ↑ ↑ 

↑: Positive effect.  ↓: Negative effect.  ↔: Effect limited or not easily determined. —: No effect.  
Cells with two values (e.g. — / ↑ ) indicate different effects at high nutrient (left) and low nutrient 
(right).  Cells with one value indicate similar effect at high and low nutrient.  Quiescence onset 
and necrosis onset are the measured times of onset. A positive effect indicates that the time of 
quiescence or necrosis onset increased, thus they occurred later in the simulation. 

The value of quiConsumeRate determined the amount of NUTRIENT per SECOND 

consumed by each quiescent CELL.  The value was tuned between zero and 

proConsumeRate.  Varying quiConsumeRate produced consistent and dramatic results.  

Increasing the amount of NUTRIENT consumed by QUIESCENT CELLS reduced the number 

of QUIESCENT CELLS capable of existing within the SMS.  The consequences are clearly 
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visible in Figure 2.12: as quiConsumeRate increased, the width of the viable rim 

decreased, as did the number of QUIESCENT CELLS in the system and overall SMS size.  

Figure 2.13 shows that the growth rate and saturation size steadily decreased.  

ProConsumeRate specified the amount of NUTRIENT per SECOND consumed by 

proliferating CELLS.  For simplicity, PROLIFERATING CELLS consumed the same amount of 

NUTRIENT regardless of whether they were actively creating a new CELL, waiting for an 

opportunity to do so, or were unable to do so because other CELLS surrounded them.  

ProConsumeRate’s value in Table 2.1 was purposefully selected to be within the range of 

glucose consumption rates reported in [36].   

 
Figure 2.12.  SMS cross-sections at varied quiConsumeRate and low NUTRIENT.   
All images were recorded at 13 DAYS.  Scale bar: 100 µm.  Except for quiConsumeRate, 
parameter values were those listed in Table 2.1.  (A)–(H) quiConsumeRate values are shown.  *: 
quiConsumeRate value in Table 2.1. 
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Figure 2.13.  Influence of quiConsumeRate on SMS growth.   
Gray diamonds: in vitro data as in Figure 2.6.  Other parameter values were those listed in Table 
2.1.  Colored lines are results of single experiments for the indicated values of quiConsumeRate 
from 0 to 8.0 x 10-4 (same values as in Figure 2.12).  (A) high NUTRIENT; (B) low NUTRIENT. *: 
quiConsumeRate value in Table 2.1.   

A CELL switched from PROLIFERATING to QUIESCENT state when the amount of 

NUTRIENT at its location dropped below the value of the parameter proNut.  If NUTRIENT 

later increased above proNut, the CELL returned to the PROLIFERATING state.  Changing 

the value of proNut changed the amount of NUTRIENT that CELLS required to remain in the 

PROLIFERATING state.  When set to 8.0 x 10-4, CELLS transitioned directly from the 

PROLIFERATING to the NECROTIC state, as shown in Figure 2.14.  We do not distinguish 

between simulated necrotic and apoptotic cell death, instead conflating both into removal 

of NECROTIC CELLS.  When referring to in vitro research we defer to the original 

documents for terminology.  CELL growth at that setting under low NUTRIENT (Figure 

2.15) was low, as PROLIFERATING CELLS consume more NUTRIENT than QUIESCENT CELLS.  

Increasing proNut to 2.0 x 10-3 produced little change in morphology or growth rate, but 

both measures changed dramatically when proNut was raised to 3.0 x 10-3.  At that value, 

a population of QUIESCENT cells became clearly evident, and the growth rate and stable 

maximum size was noticeably larger.  That trend did not continue, however.  As proNut 
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increased further, first to 4.0 x 10-3 and then to 5.0 x 10-3, only small changes in 

morphology and growth curves were evident.  The population of QUIESCENT CELLS was 

only slightly larger.  Another sharp change was evident as proNut reached 6.0 x 10-3: the 

SMS destabilized (Figure 2.14G) and the growth curve did not plateau (Figure 2.15B).  

The results suggested that a window existed within which the number of PROLIFERATING 

CELLS, having higher consumption rates, balanced the number of QUIESCENT CELLS, 

which had lower consumption rates.  When the level of NUTRIENT within a location 

dropped below the value quiNut, the CELL switched irreversibly to the NECROTIC state.  

As is evident from Figure 2.16 and Figure 2.17, varying quiNut had less complex effects.  

As quiNut was increased, the growth rate, saturation size, and viable rim width all 

decreased.   

 
Figure 2.14. SMS cross-sections at varied proNut and low NUTRIENT.   
All images were recorded at 18 DAYS.  Scale bar: 100 µm.  Other parameter values were those 
listed in Table 2.1.  (A)–(H) proNut values are shown.  *: proNut value in Table 2.1.  Note that 
while size increased initially with increasing proNut (a consequence of increased numbers of 
lower-consumption rate quiescent CELLS), larger proNut values caused the proliferating rim to 
become so thin that the SMS destabilized.  The more quickly CELLS that are incapable of 
proliferating transition to the (lower-consumption) QUIESCENT state, the larger the size of the 
stable SMS. 
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Figure 2.15.  Influence of proNut on SMS growth.   
Gray diamonds: in vitro data as in Figure 2.6. Other parameter values were those listed in Table 
2.1.  Colored lines are results of single experiments for the indicated values of proNut from 8.0 x 
10-4 to 7.0 x 10-3 (same values as in Figure 2.14).  (A) high NUTRIENT; (B) low NUTRIENT. *: 
proNut value in Table 2.1. 

 
Figure 2.16.  SMS cross sections at varied quiNut values and low NUTRIENT.   
All images were recorded at 21 DAYS.  Scale bar: 100 µm.  Except for quiNut, parameter values 
were those listed in Table 2.1.  (A)-(G): quiNut values are shown.  Stabilization size and VIABLE 
rim widths decreased as quiNut increased, but all experiments achieved stability.  *: quiNut value 
in Table 2.1.  
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Figure 2.17.  Influence of quiNut on SMS growth.   
Gray circles: in vitro data as in Figure 2.6.  Except for quiNut, parameter values were those listed 
in Table 2.1.  Colored lines are results of single experiments for the indicated values of quiNut 
from 0 to 3.0 x 10-3 (same values as in Figure 2.17).  (A) high NUTRIENT; (B) low NUTRIENT.  *: 
quiNut value in Table 2.1. 

The consequences of changing proBias at low NUTRIENT were potentially 

confusing, because there were two dramatic and different effects on SMS growth and 

morphology.  The first effect, clearly observable in Figure 2.18B, was an increased 

growth rate when proBias was decreased from the default validation value of 2.25.  

CELLS that used smaller proBias values were able to create new CELLS even when their 

stress was higher.  As a result, they created new CELLS more frequently, increasing the 

overall growth rates.  The increase in growth rate confounded our ability to analyze the 

changing stability of the SMS, which was the second major effect of changing proBias.  

At very low values of proBias, individual CELLS proliferated quickly, and the SMS grew 

to the edge of the space within a few DAYS (images not shown).  Consequently, it was not 

possible to determine whether the SMS was more or less stable at these values without 

adjusting other parameters, such as prolifDelay.  At values of 1.0 and 1.25, the growth 

rate decreased, and the SMS was relatively unstable.  As proBias increased further (1.5, 
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2.0, 2.25), the SMS became stable once again, though the growth rate decreased as the 

value was raised further (2.5, 3.0).  We believe that if prolifDelay were adjusted in 

concert with proBias, maintaining the same initial doubling rate, the SMS would become 

unstable at low values of proBias.  At high NUTRIENT levels, shown in Figure 2.18, the 

SMS growth rate decreased as proBias increased, but the relative SMS stability did not 

change. 

 
Figure 2.18.  Influence of proBias on SMS growth.   
Gray diamonds: in vitro data as in Figure 2.6.  Other parameter values were those listed in Table 
2.1.  Colored lines are results of single experiments for the indicated values of proBias from 0 to 
3.  (A) high NUTRIENT; (B) low NUTRIENT. *: proBias value in Table 2.1. 

2.4. Discussion 
SMS events and mechanisms were not intended to be exact replicas of the actual 

physical or chemical events ongoing in vitro during EMT6 spheroid growth.  Nor were 

predictions of specific events part of the intended SMS use.  Rather, the intent behind our 

method has been, given a set of EMT6 spheroid attributes, to discover SMS 

computational mechanisms that might map logically and intuitively to in vitro 

counterparts.  This has been accomplished by exploring the inverse map from phenomena 

to mechanism.  The primary functional unit of an SMS—a CELL—does map 1:1 to an 
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EMT6 cell.  Because an EMT6 cell is autonomous, we designed SMS CELLS to be quasi-

autonomous.  SMS CELLS currently have no internal components.  As atomic software 

objects, they needed operating principles to function.  Most of the principles that cause an 

EMT6 cell to act in a particular way when faced with specific circumstances in culture 

were unknown.  Consequently, we needed to discover and implement operating principles 

that each SMS would use, evaluate those mechanisms through simulation and 

observation, and modify them based on the results.  Following [5, 7], CELL operating 

principles were formulated as AXIOMS.  Their specifications were tightly guided by 

available knowledge of EMT6 behaviors in culture [22, 34-36].  By iteratively following 

the diagram in Figure 1.1, we narrowed and refined early candidate AXIOMS to nine.  

These AXIOMS were refined further so that measures of SMS growth characteristics would 

match prespecified, iteratively expanded, targeted sets of EMT6 spheroid growth 

characteristics according to specific similarity measures.  Having achieved that objective, 

we suggest that the resulting SMS operating principles (Table 2.2) can stand as an 

abstract representation of EMT6 operating principles under comparable growth 

conditions.  We posit that the larger the targeted set of EMT6 attributes satisfactorily 

matched, the more realistic the mapping between SMS and EMT6 operating principles.   

It is significant that within a simulation cycle one CELL can apply more than one 

AXIOM.  This reflects the complexity inherent in even the simplest interpretation of a 

biological system.  The amount of nutrients or growth factors in the environment, for 

example, can be independent of whether a cell is surrounded by other cells or isolated. 

Use of AXIOM 8 in combination with the others resulted in an extreme degree of 

contact inhibition: CELLS that were surrounded by other CELLS did not create new CELLS.  
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That was a purposeful simplification.  Nevertheless, the targeted attributes were achieved.  

The evidence indicates that some cell proliferation does occur throughout EMT6 

spheroids [28], but that the frequency decreases dramatically with distance from the 

surface.  If those observations were to be added to the list of targeted attributes, it would 

falsify the current SMS.  Validation against that expanded attribute set would require 

increasing SMS complexity, possibly revising, as well as extending the list of AXIOMS.  

Relative to the current SMS, the fraction of CELL creation events occurring at the surface 

would be reduced and counterbalanced by division events occurring elsewhere. 

The current set of abstract, axiomatic operating principles is believed to be the 

source of the discrepancy between in silico and in vitro growth at high NUTRIENT (Figure 

2.6).  The SMS can be parameterized so that simulated growth more closely matches the 

higher NUTRIENT data (not shown), but at the expense of achieving a much poorer match 

to the low NUTRIENT data.  Note that the differences in growth properties at low and high 

concentrations of oxygen and glucose are more extreme for the referent data than is seen 

with other available sets of growth data, such as the data used by [2].  Achieving a tighter 

match would require adding more detail.  

Whereas Freyer and Sutherland described the inhibitory actions of a tumor extract 

on proliferating cells [22], they did not separate the components to identify the source of 

inhibition.  LaRue et al. [28] observed cyclin-dependent kinase inhibitors that are 

associated with cell-cycle arrest, but they did not demonstrate a causative role.  

Researchers have speculated that a factor in spheroid growth stabilization may be cell 

inhibition caused by some material being released from necrotic cells [22, 28].  We did 

not include such an attribute among those targeted, in part because it had not been 
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confirmed.  Nevertheless, the current SMS successfully produced stable spheroids 

without the production and action of such a factor, effectively establishing that one is not 

required for growth stabilization at biologically realistic SMS parameter settings.  Of 

course, we cannot conclude from this in silico evidence that a necrotic inhibitor is absent 

in vitro.  It is instead evidence that EMT6 spheroid growth stabilization need not require 

the presence of such an inhibitor.  It is also useful to contrast the modeling approach used 

here with that used by [18, 44].  Longo et al., having achieved some degree of satisfaction 

about the mechanisms implemented, focused on replication and prediction of referent 

results from particular AXIOMS in an exploration of the forward map from generator to 

phenomenon.  Our approach focused on discovering appropriate AXIOMS, such as the 

need for a potential inhibitor or a particular arrangement of neighboring components, and 

which were necessary and/or sufficient.  We relied on falsification to select from the 

plausible generators. 

CELLS that experienced a high STRESS were likely to move to reduce STRESS, 

while CELLS experiencing low STRESS were likely to proliferate and create more CELLS.  

As shown in Figure 2.8, some large SMS destabilized during long-term growth.  We 

determined that this behavior was caused by the probabilistic, local nature of the STRESS 

based movement and proliferation algorithms.  At small SMS sizes, all deviations from 

the minimum-STRESS, convex curvatures are corrected by the movement and proliferation 

algorithms within a small number of simulation cycles.  For much larger sizes, however, 

local curvature can be within the variability of the STRESS algorithm, yet the shape that 

emerges can be non-circular and irregular.  That is because all AXIOM preconditions used 

only local information.  When SMS are very large, the surface adjacent to every surface 
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CELL can be relatively flat (the CELLS are experiencing low STRESS), yet the overall SMS 

can be non-circular.  If needed, the effect could be minimized in several ways, all of 

which would require increasing SMS complexity.  The simplest for the current SMS 

design would be to enable sharing information about each CELL'S current STRESS with a 

larger cluster of neighbors.  

Although other models have not explicitly controlled spheroid shape, they have 

nevertheless done so implicitly.  For example, by placing an adhesion term in their 

models, Schaller et al. and Jiang et al. caused CELLS to cling together, thus minimizing 

surface irregularities [2, 6].  In fact, Schallar et al. noticed differences in overall shape 

when they used different values for the adhesion parameter.  Anderson et al. found that 

changing the EXTRACELLULAR MATRIX structure in a simulated model of tumor invasion 

produced dramatic differences in tumor morphology [44].  Our analogue did not initially 

contain a mechanism to control SMS shape, but we found that the analogue could not 

mimic the targeted attributes without one.  Although the SMS did not explicitly define 

and implement cellular adhesion like [2, 6], stress based movement and proliferation 

produced a similar effect. 
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3. Modeling MDCK epithelial morphogenesis 
3.1. Introduction 

Epithelial morphogenesis is fundamental to the development and functional 

specialization of tissues and organs.  Tight regulation of tissue size, shape and 

polarization is critical for normal organ development and function.  Disruption of these 

regulatory mechanisms leads to an array of diseases including autosomal dominant 

polycystic kidney disease, stenosis, and cancer.  Epithelial cells, such as Madin-Darby 

canine kidney (MDCK) cells, cultured in a 3D matrix of natural basement membrane 

components, can recapitulate in vitro many of the in vivo growth characteristics of 

epithelial organs.  They are thus valuable model systems for studying the cellular 

mechanisms of in vivo epithelial morphogenesis.  Their phenotypic simplicity coupled 

with accumulated knowledge of their molecular biology provide excellent case studies 

for gleaning needed insight into how molecular events and environmental feedback 

pathways at subcellular levels lead to cell- and cyst-level phenotype.  These model 

systems lend themselves to computational analysis and modeling as the means to gain 

that insight and improve our understanding of organogenesis.  

To achieve that goal, we must first develop explanatory and easily challenged 

computational, mechanistic models.  In biological research, explanatory mechanistic 

models generally precede predictive mechanistic models.  The operating principles of 

explanatory mechanistic models of the type described herein are hypotheses about how 

we think phenomena are generated.  The models are part of frameworks for generating 

and testing mechanistic hypotheses, as shown in [15, 45]. 

While many aspects of MDCK cyst formation are well understood, quantitative 
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data for cystogenesis has been lacking.  The most recent computational models [5, 15, 45] 

relied on previously published quantitative data that described a few aspects of MDCK 

cyst growth in collagen cultures [46].  There is limited data available on the dynamics of 

cell number, cyst and lumen size, and mean cell size in Matrigel cultures.  That caused 

previous models to assume that cell size remains constant.  The presented data 

demonstrate that cell size varies during the course of cyst growth. 

An objective of the project was to couple in vitro and in silico model systems to 

achieve a deeper understanding of cell behavior during MDCK cystogenesis within 3D 

Matrigel cultures.  Of specific interest were the roles played by, and the timing of 

polarization, apoptosis, and lumen expansion.  In order to improve our understanding of 

the link between individual cell behavior and cystogenesis, we proceeded in parallel on 

two fronts.  We undertook new in vitro experiments designed to provide a more 

temporally and spatially fine-grained record of cell-level events during the first ten days 

of MDCK cystogenesis.  These experiments and their results are described in this report.  

A thorough quantitative analysis of these results revealed a third stage of cyst growth 

after cyst initiation and lumen creation and expansion.  That stage was characterized by 

the presence of a new cell state marked by a decrease in cell division rate and a cessation 

of the decrease in cell size observed in previous stages.  We refer to a cell in that state as 

being “stabilized”.   

We also developed and iteratively refined abstract, spatially fine-grained, multi-

attribute, mechanistic, in silico, MDCK cell analogues (ISMAs) capable of cystogenesis.  

To create and validate ISMAs, we merged two modeling techniques while introducing 

several novel features.  Following rounds of iterative mechanism refinement (including 



 

 55 

falsification and validation), time-dependent measures of several in silico cystogenesis 

phenomena, including the sizes of cells, cysts, and lumens, cell number, and lumen 

number, became quantitatively indistinguishable from corresponding in vitro measures.  

The process led to two successful ISMAs that had similar operating principles but relied 

on different mechanistic hypotheses for how cells stabilized.  In one, cells relied on 

information about the lumen.  In the other, transition to the stabilized state was a simple 

timed event.  Independent in vitro experiments [47], which used molecular interventions 

to alter the axis of cell division in two different ways, provided data that challenged 

ISMA mechanisms and the predictions of the cytogenic consequences of such 

interventions.  ISMA mechanisms survived the falsification challenge: measures of 

cystogenesis during simulation experiments mimicking both interventions were 

quantitatively similar to in vitro data.  This further supported our hypothesis that the 

cause-and-effect relationships (mechanisms) occurring within ISMAs during in silico 

cystogenesis (and thus their morphogenic agenda) have in vitro counterparts, both in the 

presence and absence of mechanistic interventions.  By challenging these in silico 

mechanisms we better understand their in vitro cellular counterparts.   

3.2. Methods 
3.2.1. In vitro methods 

A single cell suspension of MDCK cells was plated in duplicate on a layer of 

100% Matrigel basement membrane (BD Biosciences) in the presence of 2% Matrigel in 

the media.  Cysts were allowed to grow for the indicated duration then fixed with 4% 

paraformaldehyde.  The cells were then stained as described in [48, 49].  Briefly, cells 

were stained with a monoclonal antibody against gp135/podocalyxn, and a polyclonal 
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antibody against b-Catenin.  F-actin and nuclei were stained with Alexa-labeled 

phalloidin and Hoechst 33342 respectively.  Each day, 20 cysts from the duplicate plates 

were selected at random and imaged using a Zeiss 510 laser scanning confocal 

microscope (Carl Zeiss Inc.).  Images were acquired sequentially in four separate 

channels.   

Cell number was determined by counting the nuclei, when visible, and actin 

borders when not.  Cyst and lumen perimeter were traced using ImageJ and the size of 

the cyst and lumen within each cross section was calculated using the analyze tool.  

Cellular area was found by subtracting lumen area from cyst area; mean cell area was 

found by dividing cellular area by the number of cells; and the ratio of cellular area to 

cyst area was found by dividing cellular area by cyst area.  Standard deviations and 

Similarity Measure values (defined in Results) were calculated using R.  The number of 

lumens in each cyst was found by counting the discrete spaces within the cyst bordered 

by gp135/podocalyxn and actin.   

The data generated by the in vitro experiments was quantitatively consistent with 

results from previous studies [47, 50, 51], as well as being internally consistent.  The goal 

of conducting the in vitro experiments was to provide a particular quantitative perspective 

on MDCK cystogenesis.  We sought an abstract mechanistic explanation of one set of 

cytogenic trajectories.  Repeated in vitro experiments using a different batch of cells 

could result in distinct cytogenic trajectories, which might not be explained by the current 

ISMAs.  Understanding and simulating such different trajectories is outside the scope of 

this project. 
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3.2.2. ISMA uses 
An early task in any modeling effort is to state near- and long-term uses; one must 

then strive to follow a model development path intended to achieve those uses.  When 

dealing with biology, having explanatory mechanistic models necessarily precedes having 

predictive mechanistic models.  This project is an important, early step in developing 

explanatory mechanistic models of cystogenesis.  A truly useful explanatory mechanistic 

model is one in which we can observe putative cause-effect events at several layers as 

they unfold.  Given those considerations, we envisioned six near-term ISMA uses.  1) 

Instantiate and challenge hypotheses about mechanisms of cystogenesis by MDCK cells 

under different culture conditions.  2) Make it easy to follow mechanistic processes and 

trace cause-effect relationships.  3) Achieve measures of CYSTOGENESIS during ISMA 

executions of increasingly autonomous CELLS that are quantitatively similar to referent 

measures (i.e., they achieve targeted SMs).  4) Achieve increasing overlap of an MDCK 

cell culture’s phenotype by an ISMA phenotype.  5) For validated ISMAs, explore the 

consequences of mechanistic interventions on measures of CYSTOGENESIS.  6) Expose 

possible gaps in our knowledge of MDCK cell cystogenesis. Implicit in these uses is the 

ability of ISMA behaviors under different conditions to stand as predictions of MDCK 

cell and cyst behaviors under comparable conditions. 

The preceding are prerequisites for achieving six long-term ISMA uses.  1) Enable 

replacing ISMA operating principles with concrete mechanisms composed of interacting 

components.  So doing is required to enable hierarchical linkage of molecular level details 

with specific phenotypic attributes.  2) Execute in silico experiments that test the effect on 

ISMA CYSTOGENESIS of simulated chemical and genetic interventions that affect CELL 

behaviors.  3) Enable continuous refinement of increasingly trustable, complex, 
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biomimetic mechanisms that stand as plausible explanations for increasingly large sets of 

multi-attribute, multi-source wet-lab data.  4) Represent uncertainty at multiple levels, 

including uncertainty in mechanistic hypotheses; provide plausible representations of 

sources of variability in referent data and phenomena.  5) Enable straightforward 

redeployment and adaptation of ISMA components to represent other cell types and their 

behaviors; examples include MCF-10A and primary mouse breast organoids.  6) Enable 

concrete translations between in vitro knowledge and epithelial diseases such as 

autosomal dominant polycystic kidney disease and cancer. 

3.2.3. In silico methods 
Components and mechanisms mapped as closely as possible to components and 

mechanisms in the referent system.  ISMAs were composed of CELLS, LUMINAL space, 

and EXTRACELLULAR MATRIX.  We set parameters such as the rate of CELL DIVISION and 

the initial size of CELLS to map to quantities within the in vitro system.  Simulation began 

with 2-4 CELLS (to mimic the observed number of initial cells in vitro) on a 2D 100 x 100 

hexagonal grid.  CELLS expanded in size and divided using the CompuCell3D [52] 

cellular Potts model architecture and customized code.  Each CELL occupied multiple 

locations on a hexagonal grid, thus allowing CELLS to expand, DIVIDE, change shape, and 

move in a realistic manner (Rejniak et al. [53] used an alternative method for enabling 

cell shape change).  We coupled that with features of the agent-oriented modeling 

approach used successfully by [7, 54-56]. 

Each cycle, CELLS stepped through the same decision flow (Figure 3.1 and Figure 

3.2); they applied the operating principles described below to change shape, DIVIDE, 

change state, create LUMENS, and DIE.  Logic design and implementation was constrained 
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by the specifications in Table 3.1.  Note that CELLS are atomic objects: they have no 

internal parts.  All of their micromechanisms are in the form of axioms.  Some axioms 

add behavior variability to ISMAs, as noted in Table 3.2. 

 
Figure 3.1.  Key features of ISMA logic and decision control flow.   
During a simulation cycle, each CELL steps through five logic modules sequentially to decide 
which actions to take based on its local environment and internal state.  A LUMEN’S target area is 
adjusted; LUMENS can merge with each other.  CELLS that are not DYING may begin to do so.  
CELLS adjust their area based on their state and the state of neighboring CELLS; they stabilize if 
the LUMEN has reached a critical size.  CELLS can create new LUMENS.  Under specified 
conditions they can divide to form new CELLS.  Future versions of ISMA logic may randomize 
action control order to simulate the parallel nature of event occurrence both within MDCK 
cultures and within each cell.  See Figure 3.2 for complete details of the logic within each of the 
five modules. 
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Figure 3.2.  Full ISMA logic and control flow.   
Shown are the details of the five components of Figure 3.1. 
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Except as noted, simulations ran using the parameter values in Table 3.3.  A 

simulated DAY mapped to an in vitro day and consisted of 48 simulation cycles, 

equivalent to 30 minutes per cycle.  Drawing on several years of prior experience 

experimenting on MDCK cultures, we specified that when SM1 (defined in Results) > 

0.5 for nine of ten days, the results can be considered to be within the range of 

experimental and biological variability.  Specifically, when SM1 was achieved, 

simulation results were taken to be experimentally indistinguishable from values obtained 

from an independently repeated in vitro experiment.  Empirical parameter tuning was 

used to obtain frequencies of SLSL CYSTS comparable to that observed in vitro.  When 

SM targets were not achieved, that specific mechanism was falsified.  SMs also allowed 

for ISMA validation and falsification when new attributes were added to the target list 

(discussed below).  
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Table 3.1. Targeted attributes and specifications. 
1. A: An initial small cluster of 1-4 cells divides and increases in cell number.  
 S: The ISMA begins with 2-4 CELLS, which DIVIDE after cycleCounter reaches 0.   
2. A: All cells polarize by the second day of growth. 
 S:  CELLS change state to POLARIZED after polarCounter reaches zero. 
3. A: One or more lumens develop by the second day of growth.  
 S: CELLS within CYSTS form LUMENS after CELLS POLARIZE.  
4. A: A multilayer of cells separates multiple lumens.  
 S: CELLS only form LUMENS when they and their neighbors do not already contact LUMEN. After 

a LUMEN has formed, all neighboring CELLS contact a single LUMEN.  
5. A: Cells can undergo apoptosis whether or not they contact the extracellular matrix.  
 S: CELLS DIE with specified probability.  That value is larger for CELLS not in contact with MATRIX.  
6. A: The increase in cell number over time is similar that shown in Figure 2, leveling off at day 6.  
 S: When LUMEN size reaches a critical value, a mechanism causes CELLS to stabilize. 
7. A: The increase in cyst size over time is similar to that shown in Figure 2.  
 S: CYST size is a function of CELL area, CELL number, and LUMEN size. 
8. A: The increase in lumen size over time is similar to that shown in Figure 2.  
 S: LUMEN size is a function of CELL number, CYST perimeter, CELL stretch, and TIME. 
9. A: Mean cell area decreases over time as shown in Figure 2, and levels off at day 6.  
 S: CELLS have distinct mechanisms for calculating TA before and after stabilization. 
10. A: The decrease in the ratio of cellular to cyst area over time is similar to that in Figure 2, 

decreasing faster during days 2-6.  
 S: CELL area, LUMEN size, and CYST size must be measurable and if these quantities validate, 

then so must the ratio of CELLULAR to CYST area. 
11. A: The percentage of single-lumen, multiple lumen, and SLSL cysts each day is similar to that in 

Figure 3.  
 S: When CELLS lack LUMEN contact, they can create new LUMENS.  LUMEN creation occurs at the 

site of previous CELL DIVISION.  LUMENS can expand and merge.  CELLS that have stabilized 
cannot create a new LUMEN. 

12. A: The percentage of cysts with apoptotic cells each day is similar to that observed in [51]. 
 S: CELLS shrink after beginning to DIE.  The percentage of CYSTS with DYING CELLS is calculated 

as in vitro. 
13. A: When the orientation of the cell axis of division is disrupted or reversed, the percentage of 

normal cysts is reduced as observed in [47]. 
 S: CELLS orient their axis of DIVISION toward the center of prior DIVISION or toward the center of 

the LUMEN.  Axis orientation can be randomized and reversed. 
MDCK cells and cysts are the referent.  The model system is called an in silico MDCK analogue 
(ISMA).  A: a targeted attribute; S: an ISMA specification.  All listed attributes were achieved. 
The early version of the ISMA achieved TAs 1-4, but was falsified by the quantitative data.  The 
refined ISMA achieved all TAs except 11, which was achieved by both the LS and the TS 
ISMAs.  
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Table 3.2.  Sources of stochasticity within ISMAs. 
Description Event or 

variable 
assignment 

Range / Conditional Parameters used 

CELLS set 
cycleCounter if it is 
null 

Variable r[0.75 x cellCycle, 1.25 x cellCycle] cellCycle 

At simulation cycle 
5, CELLS lower 
cycleCounter 

Variable r[1 – clusterProb x cellCycle, 
cellCycle] 

cellCycle, 
clusterProb 

Sets initial 
polarCounter 

Variable r[0.75 x  polarDelay 1.25 x 
polarDelay] 

polarDelay 

Child CELL sets 
polarCounter 

Variable 1. pVal = polarDelay – 
parent.pCounter 
2. r[0.5 x pVal, 1.5 x pVal] 

polarDelay, 
parent.pCounter 

CELL selects random 
angle of DIVISION 

Variable r(0,1) x π / 2  

Stable CELL 
decreases 
cycleCounter 

Event If r[0,1] < (1 – stableCycleDelay) shiftedCycleDelay 

CELL with MATRIX 
contact DIES 

Event If r[0,1] < deathRateLumen deathRateLumen 

Cell without MATRIX 
contact DIES 

Event If r[0,1] < deathRateEpi deathRateEpi 

Location changes 
index based on G 

Event If r[0,1] < AcceptanceProbability() Many 

The listed events or variable assignments provide behavior variability during CYSTOGENESIS.  
Note that index changes, which are random, contribute to many CELL-level events, including 
shape change and LUMEN expansion. 
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Table 3.3.  Primary ISMA parameters. 

Parameter Description Default value Range used 

wedgeArea W: target area of UNPOLARIZED CELLS and 
ideal wedge area for POLARIZED CELLS 82 grid points 30-150 

lambdaArea Multiplier controls how quickly CELLS change 
size to reach their individual target areas 5 grid points 0.5-20 

stableTargetArea Target area of stabilized CELLS 48 grid points 30-150 

cellCycle Used to calculate cycleCounter, the number of 
simulation cycles before a CELL DIVIDES 70 simulation cycles 20-100 

lambdaPerim Multiplier controlling how quickly CELLS 
change size to reach their target perimeter 2.5 0.5-10 

polarDelay 
Used to calculate polarCounter, the number 
of simulation cycles elapsing before an 
UNPOLARIZED CELL POLARIZES 

42 simulation cycles 0-400 

shiftDelay 
In the TS ISMA, used to calculate 
shiftCounter, the number of simulation cycles 
elapsing before a POLARIZED CELL stabilizes 

140,000 simulation 
cycles 0-300 

doublingArea When divided by 2, the minimal area a CELL 
must have to DIVIDE 41 grid points 20-100 

divisionReg How the axis of DIVISION is calculated 1 0, 1, 2, 3 
multiplier Used to calculate target perimeter of CELLS 0.6 0-1 

lumenGrowthRate Multiplier controlling rate of LUMEN 
expansion 0.003 0-1 

deathRateLumen Likelihood of CELLS to DIE when not touching 
MATRIX 0.02 0-1 

deathRateEpi Likelihood of CELLS to DIE when touching 
MATRIX 0.0004 0-1 

clusterProb Probability initial two CELLS will set 
cycleCounter to zero at simulation cycle 1 0.8 0-1 

lgrSubtract Multiplied by CELL stretch to reduce LUMEN 
expansion 27 0-300 

dyingShrinkRate Amount subtracted from target area of DYING 
CELLS each simulation cycle 9 grid points 0-100 

stableRatio Critical LUMEN size (multiplied by 1000) at 
which CELLS will stabilize 0.5 grid points 0.1-1 

stableCycleDelay (1 – x) = probability a stabilized CELL will 
decrement cycleCounter 0.85 0-1 

Parameters critical to the operation of the ISMA are listed along with descriptions, default value 
used for simulation, and the range of values explored.  To switch between the LS ISMA and the 
TS ISMA the values of shiftDelay and stableRatio are changed from 140,000 and 0.5 to 200 and 
1000.  All units are relational (e.g., grid points instead of µM, simulation cycles instead of hours). 
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3.2.4. Iterative Refinement Protocol 
The Iterative Refinement Protocol (IR Protocol), described in [7, 54, 57, 58], 

provided the foundation of our methods.  Based on the results of prior experiments and 

literature review, we selected an initial group of qualitative attributes to target and 

simulate (the first few in Table 3.1).  We implemented a simple ISMA that mimicked 

them, thus achieving an initial degree of validation.  We then added new data, expanding 

the set of targeted attributes.  So doing falsified the simple analogue. That judgment was 

based on observation (for qualitative attributes) and values of the prespecified SMs (for 

quantitative attributes).  The manner in which the first analogue was falsified informed us 

how to develop an improved version that would survive falsification. During subsequent 

cycles, we added new data or features from Table 3.1 to the targeted set.  So doing often 

resulted in falsification of the then-current ISMA.  On some occasions, it was clear that 

an incrementally more fine-grained set of mechanisms and/or components would be 

needed to achieve specified SMs.  On other occasions, we undertook an empirical search 

of parameter space to find new sets of parameter values that would reestablish validation.  

When that search failed, new mechanisms, sometimes more fine-grained, were 

developed.  That iterative process ended with the attributes in Table 3.1 and the 

corresponding in silico specifications. 

The IR Protocol has a number of benefits.  Chief among them is that once an 

ISMA is validated against targeted data, additional data can be added and the analogue 

reengineered without invalidating existing mechanisms.  The new data will falsify the 

current ISMA by design, but a successful revision will survive falsification by both new 

and existing data.  Because in silico components and mechanisms map to their in vitro 

equivalents, it is often the case that only a subset of ISMA components and/or operating 
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principles must be modified to mimic both new and original phenomena.  Examples 

include adding a new CELL state and replacing one axiom with two more specific axioms.  

Because of the networked nature of all mechanistic details, each ISMA change requires 

some retuning of the parameterizations of several already existing (unmodified) ISMA 

features.   

The IR Protocol consists of the following steps: first, specify a list of targeted attributes, 

which forms the basis for experimental hypotheses.  Devise a specification that maps in 

silico components and operating principles to cell culture counterparts.  The operating 

principles are expected to enable CELLS to exhibit behavior that is closely analogous to that 

observed in vitro.  Implement the analogue in code and execute it to deduce predictions 

about the in silico and in vitro system.  As stated in [54], analogue execution is a form of 

deduction, where the behavior of the analogue follows logically from the premises 

embodied by its initial conditions and input data.  In some cases, this deduction will yield 

obviously invalid results, which falsifies the current list of operating principles and 

prompts the modification of mechanistic hypotheses.  Once the analogue cannot be 

falsified by data specific to the current list of targeted attributes, add one or more new, 

targeted attributes and repeat the IR Protocol.  The process facilitates mechanism 

exploration, leading toward deeper insight into biological counterparts.  Undertaking a 

series of tightly coupled in silico and in vitro experiments further increases the 

confidence that the results of ISMA intervention experiments can stand as useful 

predictions of MDCK counterparts.  When there is sufficient ISMA and MDCK 

cystogenesis similarity, we hypothesize there is corresponding mechanistic similarity.  

Consequently, results of ISMA intervention experiments will stand as predictions of in 
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vitro phenomena following corresponding in vitro interventions.  Some of those 

predictions will merit in vitro follow-up. 

3.2.5. Agent-oriented approach 
An advantage of using targeted attributes and specifications is the flexibility of 

their implementation.  We chose to implement the ISMAs using an agent-oriented 

approach as explained below and described in [57], but their key aspects include object-

orientation, component mapping, spatial orientation, relational grounding and striving for 

component autonomy. Agent-oriented models are frequently implemented using object-

oriented programming techniques, which allow the designer to create individual 

computational objects corresponding to agents and components within the specification.  

Components and mechanisms are mapped to analogous components and mechanisms 

within the referent.  So doing makes translating in vitro and in silico observations back 

and forth more intuitive and less complex.  Individual agents can serve as analogues for 

in vitro components.  Agents are quasi-autonomous and they possess their own internal 

control flow and execute actions independent of enclosing agents. Grounding is defined 

as the units, dimensions, and/or objects to which a variable or model constituent refers.  

When grounding is relational, variables, parameters, and I/O are in units defined by other 

model components.  When grounding is absolute, variables, parameters, and I/O are in 

real-world units like seconds and µg/ml.  One advantage of using an agent-oriented 

approach with relational grounding [57] is that fewer assumptions are required to create 

or validate the ISMA, and those that are must be clearly specified.  

The ISMA contains five agents: 

1. The experiment agent calls the MDCK plug-in agent and the Potts agent.  



 

 68 

2. The MDCK plug-in agent cycles through CELL agents each simulation cycle.   

3. The Potts agent executes the index change step: pseudorandom index change 
attempts and energy calculations. 

4. The CELL agents change their state and perform other actions. 

5. The screenshot agent, called in a separate thread, records a screen shot at the end 
of the execution of the simulation cycle. 

These agents were implemented using computational objects, the most significant of 

which are listed below: 

• Point: a grid location. 

• CELL: contains variables like targetArea. 

• MCell: contains a pointer to a CELL, a list of points that the CELL occupies, and 

internal variables. 

• CellInventory: contains a list of CELLS. 

• CellField: contains a list of all points and maps points to CELLS. 

• CellMap: maps a CELL to each MCell. 

3.2.6. The cellular Potts model 
ISMAs were developed using the CompuCell3D (CC3D) architecture [59, 60], an 

implementation of the Glazier-Graner-Hogeweg [61] or cellular Potts model (CPM).  A 

CPM “cell” is not limited to a one-to-one correspondence between objects and grid 

locations.  The CPM extends cellular automata so that each grid location contains an 

index specifying which simulation object contains that location.  A CPM with 100 grid 

locations can contain anywhere from 1 to 100 CELLS.  This modification allows 

simulations to address CELL size, shape change, and CELL-CELL adhesion.  During a 

simulation cycle, the Potts agent calls a pseudorandom index change algorithm that 

randomly selects a user-specified number of locations and evaluates whether each will 

remain indexed to its current CELL or change to be indexed to another CELL.  If the 

location remains indexed to the current CELL, the grid remains unchanged.  When a 
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location’s index changes, that location and the “energy” of the system are updated. 

To calculate whether a location changes index from one CELL to another, ΔG is 

calculated; it is the change in “energy” if that location changes its index to the new CELL.  

An acceptance function generates a probability p based on the value of ΔG, and then 

checks if the pseudorandom number r[0,1] < p.  When r < p, the change is accepted and 

the location is assigned to the new CELL, and if not the change is rejected.  When 

accepted, the energy of the system changes.   

For ISMA CELLS, ΔG = Gnew – Gold. 

It calculates the value of Gnew and Gold using a Hamiltonian equation:  

Gi = EnergySurfacei + EnergyPerimeteri + EnergyAdhesioni + EnergyConnectivityi. 

Each of these terms is calculated through a separate equation, detailed below.   

3.2.7. Surface area and perimeter 
The energy calculation for EnergySurface depends on LambdaArea (λA) and the 

difference between the target surface area (TA) and the current surface area (A):  

EnergySurface = λA x (A – TA)2 

The larger LambdaArea is the more changes in TA will affect the overall energy 

of the system and the faster these changes will be reconciled.  LambdaArea for CELLS is a 

user-set parameter, while for LUMEN it is fixed at 20 to represent the large outward force 

of the expanding lumen. 

The calculation of EnergyPerimeter is similar:  

EnergyPerimeter = λP x (P – TP)2 

3.2.8. Adhesion, connectivity, and TIGHT JUNCTIONS 
The “energy” of adhesion depends on the CELL type and its location.  For location 
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(i, j), the energy is the sum of values calculated between (i, j) and all neighboring points 

residing in separate CELLS.  If, for example, two of the six neighboring points reside in 

another CELL, then the energy of adhesion would be 2·X1-2, where X1-2 is a parameter 

controlling the adhesion energy between CELLS of type 1 and type 2.  Separate adhesion 

energy parameters are specified for each pair of CELL types (Table 3.4). 

The “energy” of connectivity is generally 0, but if changing the CELL index of a 

location results in a location being isolated from the rest of the CELL, an energy penalty is 

assessed by setting EnergyConnectivity to be very large.  As a result, CELLS cannot split 

into pieces except when they undergo CELL DIVISION. 

In addition to maintaining connectivity between all points in a CELL, an ISMA 

maintains integrity between TIGHT JUNCTIONS, preventing them from being remodeled in 

the index change step during a simulation cycle.  If the ISMA detects that the change in a 

point would result in a TIGHT JUNCTION being remodeled, it assesses an energy penalty by 

setting EnergyConnectivityi to be very large.  A detailed explanation of TIGHT JUNCTION 

remodeling is provided in below. 
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Table 3.4. Additional ISMA parameters. 
System  
parameters Description 

Current 
value 

Practical 
range 

simNumber Simulation number  0-N 
folderName Location of data stored for this experiment  0-N 
dimX Size of simulation window in X direction 100 50-300 
dimY Size of simulation window in Y direction 100 50-300 
anneal Number of post-ending simulation cycles 50 10-100 
steps Number of simulation cycles in ISMA run 481 200-1000 
temperature Likelihood an index change will be accepted 30 5-100 
flip2DimRatio Number of index changes attempted is equal to 

dimx * dimy * flip2dimratio 3 1-10 
neighborOrder Radius of neighbor grid used to calculate energy 

for index change attempts 1 1-3 
spindleRandom Random value added to axis of DIVISION when 

CELLS DIVIDE 0 0-100 
    
Adhesion parameters    
polarcell_polarcell Energy generated by this type of interaction. 

Higher energy is less favorable to contact. 5 0-105 
polarcell_cell As above 20 0-105 
polarcell_lumen As above 120 0-105 
polarcell_matrix As above 40 0-105 
polarcell_stablecell As above 5 0-105 
cell_cell As above 20 0-105 
cell_lumen As above 5x105 0-105 
cell_matrix As above 15 0-105 
cell_stablecell As above 20 0-105 
lumen_lumen As above 150 0-105 
lumen_matrix As above 5x105 0-105 
lumen_stablecell As above 120 0-105 
matrix_matrix As above 150 0-105 
matrix_stablecell As above 40 0-105 
stablecell_stablecell As above 5 0-105 

Parameters used for the ISMA system and for the adhesion plug-in are listed along with 
descriptions, default values used for simulation, and parameter ranges that are expected to give 
normal results. 

3.2.9. CompuCell3D and custom code 
CC3D is designed from a system-based perspective.  Each simulation cycle, each 

aspect of the system is executed, from the index change step that selects random points, 

to the plug-ins that update aspects of the system.  CC3D was not designed from an agent-

oriented perspective, so it was necessary to expand it to gain required capabilities.  MCell 

objects were added to CELL objects to create a bi-directional mapping between individual 
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points and the CELLS that contained them.  These objects and their control flow were 

executed in sequence by the MDCK plug-in to grant full agency to CELLS, which 

previously only executed after a location within the CELL boundary changed its index.  

Every simulation cycle all points in the grid are surveyed to assess which CELL they are 

indexed to and a reference is stored in an MCell object corresponding to that CELL, as 

shown in Figure 3.3.  Thereafter that MCell can be queried to find out what points are 

located within its corresponding CELL object. 

 
Figure 3.3.  MCell point assignment flow chart.   
An MCell point has no specific cystogenesis counterpart.  Once per simulation cycle, each point 
is assigned to the MCell agent associated with the CELL enclosing that point.  MCell point lists are 
initialized during each simulation cycle.  Additionally, surrounding CELLS engulf isolated points.  

The version of CompuCell3D used to develop this project has been superseded by 

the current available version.  The capabilities provided by the current version were not 

judged necessary for the ISMA, especially due to the significant addition of custom code.  

The project was not adapted to the updated version.  

3.2.10. CELLS compute their target size using a value of ideal area 
As shown in Results, we observed that prior to cells stabilizing in vitro, their size 

correlated with the size of the cyst and its cell number.  We hypothesized that operation of 
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yet-to-be identified micromechanisms provides each cell with a target size.  We 

speculated that a cell might use information such as the tension between it and 

neighboring cells, lumen pressure, and the ratio of lumen and matrix contact area in order 

to update its target size.  To mimic the decrease in mean cell area observed in vitro, we 

developed and used an algorithm that is a placeholder for yet-to-be-designed, concrete 

micromechanisms that can be implemented in a future ISMA.  Each individual CELL 

adjusted its size and shape so that a target area W, the projected wedge area (a wedge that 

includes the portion of the perimeter in contact with MATRIX and terminates at the CYST 

center), would move toward or equal an ideal value.  The parameter wedgeArea was a 

value based on the early  (pre-stabilization) 169 µm2 area observed in vitro.  An ISMA 

calculated W using the following formula:  

 

 

A is the area of the CELL, M is one-half the number in CELL grid edges in contact 

with MATRIX, and L is one-half the number in cell grid edges in contact with LUMEN.  This 

formula assumes that CYSTS are somewhat circular.  Variations in actual CELL size caused 

by non-circular CYSTS resulted in variance in CELL area similar to that observed in vitro.  

The CELL subtracted W from wedgeArea and set its target change in area to the resulting 

value (with a final maximum value of wedgeArea).  Use of this algorithm during early 

simulation cycles caused mean CELL area to decrease and CYST area to increase, 

mimicking observed in vitro data.   

Once CELLS stabilized, they no longer used the above equation.  Instead, CELLS 

strove to maintain an area that increased only slightly as contact with the LUMEN 

€ 

W = A +
M 2A

(L + M)(L −M)
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increased.  We speculated that cells within cysts in vitro must maintain a minimal cell 

height even as they are stretched by the expanding lumen.  We specified that ISMAs use a 

similar guideline. 

3.2.11. CELLS compute a target perimeter  
From in vitro observations, it seems likely that cells have genetic and 

environmentally imposed targets for the areas occupied by different surfaces (cell-cell 

interfaces, basal, and apical).  We specified that 2D CELLS have a target perimeter value 

(TP) that is computed using the CELL’s current area.  For simplicity, we specified that a 

CELL compute TP using the perimeter P of a circle having an area A equal to its own: 

 

K is a scaling factor and multiplier is user-specified.  Two CELLS having identical 

areas will have identical TP values, so if one has a larger P the difference between P and 

TP will also be larger, causing that CELL to move toward circularity faster. 

3.2.12. CELL POLARIZATION and stabilization 
The value of polarCounter was set to equal a pseudorandom value r[polarDelay · 

0.75, polarDelay · 1.25] when a CELL first contacted MATRIX.  Thereafter, it decreased by 

one each simulation cycle.  Upon reaching 0, CELL state changed from UNPOLARIZED to 

POLARIZED.  Consequently, polarCounter is the CELL’S counterpart to a cell, having 

established matrix contact, changing and moving around its components in a process that 

ends when tight junctions have formed and the apical surface is isolated and complete.   

A correlation was observed between mean cell size and the rate of cell division in 

vitro, but a causal link was not apparent.  Individual cells may sense the area of matrix 

contact in part through β1-integrin signaling [49].  They may sense the area of lateral 
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cell-cell contact in part using catenins and cadherins [62].  That information may 

influence whether a cell divides or not. As stated in Discussion, tension transduced by the 

subapical F-actin network could allow cells to sense the size of the lumen.  Such 

information supported our decision to use LUMEN size as a signal for CELL stabilization.  

Each simulation cycle, a CELL bordering MATRIX and LUMEN queried the LUMEN for its 

size.  When that value ÷ 1000 was greater than the parameter stableRatio, the CELL 

changed to the stabilized state.  

3.2.13. Cell division 
Decrementing cycleCounter is a CELL’s counterpart to moving through the phases 

of the cell cycle.  CycleCounter is a variable that is initialized based on cellCycle (a user-

specified parameter that controls the duration of the CELL cycle) and decremented 

thereafter.  CELLS implemented the following method of CELL DIVISION.  For the first 

CELL and for daughter CELLS after DIVISION, the value of cycleCounter was set to a 

pseudorandom value r[0.75·cellCycle, 1.25·cellCycle] and then decremented in each CELL 

in every simulation cycle in which the CELL had an area > doublingArea / 2.  When 

cycleCounter reached zero, a CELL DIVIDED (Figure 3.4), splitting its area in half on an 

axis, and using the parameter divisionReg to determine the method of calculating the axis 

of DIVISION.   

When divisionReg = 0, CELLS chose the axis of DIVISION randomly.  If it was 1, 

CELLS used oriented DIVISION, finding their axis of DIVISION as shown in Figure 3.4.  

CELLS recorded the location of their MIDBODY as a point.  When DIVIDING, the CELL 

connected the MIDBODY and the centroid with a line.  The CELL assigned all points above 

the line to a new CELL and all points below to the old CELL.  It then set the MIDBODY of 
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the both CELLS to the centroid of the just-divided CELL.  When divisionReg = 2, CELLS 

divided randomly until they reached the POLARIZED state and then used oriented DIVISION.  

DivisionReg = 3 specified reversed DIVISION, where CELLS would find the axis of 

DIVISION as stated above, but then add 90 degrees, reversing DIVISION orientation. 

After a CELL divided the value of cycleCounter for both daughter CELLS was reset 

to a new random value as detailed above.  Its value of polarCounter did not change.  The 

new CELL inherited all values from the parent CELL, except polarCounter, which was set 

to r[0.5·polarDelay, 1.5·polarDelay] – polarDelay + polarCounter(parent).  So doing 

made the newly created CELL have a polarCounter value close to but not identical to that 

of the parent CELL. 

 
Figure 3.4.  ISMA CELL DIVISION.   
CELL DIVISION depends on the CELL neighborhood.  Single isolated CELLS (top) that have not 
DIVIDED have no MIDBODY and DIVIDE with a random axis of DIVISION.  When CELLS DIVIDE 
they find their centroid and store it as the MIDBODY of their daughter CELLS.  CELLS that have 
previously DIVIDED and have a MIDBODY utilize it for subsequent DIVISIONS.  For these organized 
DIVISIONS (top), the axis of DIVISION is determined by a line drawn from a CELL’s current 
centroid to the stored MIDBODY.  CELLS in contact with a LUMEN will also DIVIDE in an organized 
fashion (bottom), using a line between their centroid and that of the LUMEN to determine the axis 
of DIVISION.  When the axis of DIVISION is determined, all points on one side of the line are 
assigned to a new CELL while all points on the other remain assigned to the original CELL. 
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3.2.14. CELL clustering and CELL DEATH 
In vitro data analysis revealed that when the cultures began growing, the mean in 

vitro cell number was about 2 (Table 3.5), indicating that a small amount of clustering 

took place after the cells were plated.  That was expected because in Matrigel culture 

suspended cells settle on the layer of 100% Matrigel and thus most cysts grow in the 

same plane.  Accordingly, simulations began with a single CELL, but at simulation cycle 

1, the cycleCounter of that CELL was reduced to 1, causing it to DIVIDE during the 

following simulation cycle.  In addition, since in vitro cells are not always at the 

beginning of their cell cycle when plated, the value of cycleCounter for the two CELLS 

was changed to equal a pseudorandom number r[(1 – clusterProb) × cellCycle, 

cellCycle].  So doing allowed the amount of clustering to be increased without changing 

the CELL DIVISION rate, simply by increasing clusterProb.   

Table 3.5. Mean cell number per day for cysts grown in Matrigel. 

 
Projected 
from day 1 

Projected 
from day 2 

Projected 
from day 3 

Projected 
from day 4 

Day 0 2.15 2.09 2.44 2.14 
Day 1 3.35 3.27 3.80 3.35 
Day 2 5.23 5.1 5.93 5.22 
Day 3 8.15 7.956 9.25 8.14 
Day 4 12.72 12.41 14.43 12.7 

Numbers in bold italic are measured, mean values and non-bold numbers are projected values.  
Projected values were found by multiplying or dividing the measured mean values by the scaling 
factor of 1.56.  During the first four days of growth, the number of cells increased by a constant 
factor of 1.4 to 1.8 per day, with a value of 1.56 minimizing the percent error between projected 
and measured mean values.  Using that scaling factor, the number of cells at day 0 was estimated 
to be 2.1, indicating that some clustering took place within the Matrigel culture.  To reflect this 
observation, ISMAs implemented CELL clustering. 

Cell death is an important factor in MDCK cystogenesis.  However, it is not clear 

that it is required for cyst formation.  In order to validate that CYSTS did not ignore or 

excessively rely on CELL DEATH for normal LUMEN formation, the amount of CELL DEATH 

observed in silico was quantified and compared to that observed in vitro.  In vitro 
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analysis of cell death was conducted in [51]: MDCK cysts were cultured as in this report 

and fixed and stained with an antibody for activated caspase-3 (cleaved in apoptotic 

cells). 

Within the ISMA, a CELL began DYING when a pseudorandom number r[0, 1] was 

less than deathRateEpi if the CELL contacted MATRIX or deathRateLumen if it did not.  

Once a CELL entered the DYING state it shrank until its area reached zero.  It was then 

removed from the simulation.  Each DAY, the number of CYSTS with DYING CELLS was 

recorded and the percentage calculated (Chapter 3 Results).  The data was separated 

based on whether CELLS were in contact with the MATRIX or not.   

Drawing on literature evidence [63-65] and expert opinion we estimated the 

average time between apoptotic bodies first being visible and a dying cell breaking up 

into pieces to be roughly five hours.  We specified that the average duration between a 

CELL initiating DEATH and it disappearing to be ten simulation cycles, which maps to five 

hours.  The value of the parameter dyingShrinkRate specified the amount that the TA of a 

DYING CELL was lowered each simulation cycle (Table 3.3).  Mean DYING time ranged 

from 6.5 to 13 simulation cycles, with an overall mean value of 9.2, which maps to 4.6 

hours, when one simulation cycle is grounded to 30 minutes.  

3.2.15. LUMENS and their creation 
POLARIZED CELLS create a new LUMEN when two conditions are met.  1) The CELL 

contacts MATRIX, but is not in contact with an existing LUMEN.  2) The location chosen for 

LUMEN creation is adjacent to another POLARIZED CELL also not in contact with an 

existing LUMEN.  The point chosen for LUMEN creation is the CELL’S MIDBODY (Figure 

3.4), which was the centroid of the parent CELL that previously DIVIDED to create the 



 

 79 

current CELL.   

Lumen formation involves cells creating and secreting fluid.  Having CELLS create 

and release units of LUMEN content could simulate that.  One unit could correspond to a 

single grid space.  Those units could merge with other units or with an existing LUMEN 

object.  However, absent validation evidence for the other ISMA mechanisms, 

implementing such a fine-grained (somewhat complicated, multi-parameter) mechanism 

simply because it seems biomimetic would have been contrary to the IR Protocol’s strong 

parsimony guideline.  We took advantage of CC3D capabilities and elected to use a more 

abstract, simpler approach.  There is no disadvantage in doing so because a strength of 

this class of analogues is that a simple mechanism that achieves a degree of validation 

can later be replaced with a more detailed and realistic counterpart.  Using cross-model 

validation [57], this can be done without compromising other ISMA mechanisms that 

have also achieved degrees of validation [7]. 

Within ISMAs, LUMENS are a different class of “CELL” object.  Their only action 

options are to expand and merge.  After a LUMEN is created, it expands using the 

following axiom.   

TA = lumenGrowthRate × estimatedArea × totalNeighbors – lgrSubtract 

LumenGrowthRate is a user-specified parameter; estimatedArea is the area of 

CELLS in contact with the LUMEN added to the LUMEN's area; totalNeighbors is the 

number of CELLS in contact with the LUMEN; and lgrSubtract is a quantity based on a 

user-specified parameter and the degree CELLS are stretched.  CELLS that are more 

stretched have a larger lgrSubtract value, reducing the rate of LUMEN expansion.  A 

LUMEN does not have a target perimeter value—its perimeter is determined entirely by the 
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perimeter of the CELLS surrounding it.  LUMENS can merge when their TIGHT JUNCTIONS 

are reorganized. 

3.2.16. Tight junction maintenance 
TIGHT JUNCTIONS (TJs) were implemented in order to simulate aspects of MDCK 

lumen expansion.  TJS exist where two CELLS contact each other and a LUMEN.  A TJ is 

two points—one in each neighboring CELL—adjacent to a point within a LUMEN (Figure 

3.5).  TJS control LUMEN expansion and merging, and prevent CELLS from contacting 

multiple LUMENS.  TJs are counted around a point in two ways (Figure 3.5A).  1) If the 

location is within a LUMEN then the surrounding points are surveyed and any two adjacent 

points in different CELLS are indexed as TJs.  2) If the location is within a CELL then the 

surrounding points are surveyed and if any two adjacent points are in a different CELL and 

a LUMEN, then the point within the other CELL and the current point indexed as TJs.  

During index change, any index change that would change the number of TJs 

surrounding that location will be rejected (Figure 3.5B).  Also, any index change from a 

CELL to a LUMEN where there are two TJs before and after the index change will be 

rejected.  The latter axiom is included because in rare cases when a DYING CELL is 

shrinking it is possible for a neighboring CELL that contacts a LUMEN to come into contact 

with a second LUMEN without the number of TJs changing. 

During the execution of individual CELL logic, LUMEN merging and expansion 

through TJ reorganization may occur.  All indexed TJs are surveyed and the first possible 

merge or accepted expansion is executed.  Only a single merge or expansion can be 

executed during a simulation cycle because after merging or expansion there are new TJs 

and the current TJ list becomes incorrect.  The process then ends and is begun again 
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during the next simulation cycle. 

LUMEN merging will always happen if possible.  For this to occur an indexed 

point in a TJ must be neighboring another point within a TJ that is in contact with a 

different LUMEN (Figure 3.5C).  If that occurs two of the points, each contacting a 

different LUMEN, will each change their index to that of one of the LUMENS, and then the 

two LUMENS, now in contact with each other, will merge to form a single LUMEN.  

Essentially, when four CELLS contacting two different LUMENS are in close proximity to 

each other then the two LUMENS will merge. 

LUMEN expansion through TJ reorganization only occurs if it is energetically 

favorable as in the index change step detailed in the text, except that the TJ changing 

penalties are not assessed.  For a point within a TJ to change its index into LUMEN, it first 

checks that no neighboring points are TJs contacting other LUMENS, that no neighboring 

points are contacting other LUMENS, and that no neighboring points are MATRIX or 

UNPOLARIZED CELLS (Figure 3.5D).  Then the point will check to see if any of the 

neighboring points satisfy the conditions that will allow this point to change into a 

LUMEN.  At least one neighboring point must be in a POLARIZED or stable CELL that is not 

already in a TJ and is not the same CELL as the current point.  If this is the case the 

location will calculate the energy change generated by converting from CELL to LUMEN 

and find the resulting probability p by running the result through the acceptance function.  

If a pseudorandom number r[0,1] is less than p the change will be accepted and the 

simulation updated accordingly (Figure 3.5E).  This code allows LUMENS to expand as 

they would normally without the possibility of CELLS contacting multiple LUMENS.  It 

also allows LUMENS separated by a single-location-wide area of CELLS to merge together 
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into a single LUMEN. 
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Figure 3.5. TIGHT JUNCTION reorganization.   
TIGHT JUNCTIONS (TJs) prevent CELLS from contacting multiple LUMENS. A) TJ counting when a 
point is within a CELL (left) or LUMEN (right).  B) During the index change step, index changes 
that result in a different number of TJs before and after the change will be rejected.  C) When 
pairs of TJs are adjacent and meet requirements, LUMENS will merge together.  D) TJ 
reorganization cannot occur if it will result in a CELL contacting multiple LUMENS.  E) Allowed 
TJ reorganization results in LUMEN expansion.  

3.2.17. Scaling observations from 2D to 3D 
We recorded aspects of in vitro cyst growth by obtaining cross-sectional images 

taken through the center of cysts.  These images were necessarily a 2D representation of a 

3D structure.  Based on the symmetry observed within the cross section, in addition to 

separate analysis of 3D structures, we believe that cysts were roughly symmetrical in 3D.  

Using this information, we extrapolated 3D values for total cell number, cyst volume, and 

lumen volume from the measured values of cross-sectional cell number, cyst area, and 

lumen area.  We found that the trends observed for cell number and mean cell area held 

when the system was projected into 3D.  If future targeted attributes required specific 

modeling in 3D, we could take advantage of the 3D capabilities of CompuCell3D. 

3.2.18. Timed shift and geometrical mechanism ISMAs 
The IR Process required the creation of intermediate ISMAs during analogue 

development and refinement, including a geometrical mechanism (GM) ISMA and a 

timed stabilization (TS) ISMA.  The GM ISMA contained a number of differences in its 

implementation.  The foremost was the method used to determine when CELLS stabilized.  

In the GM ISMA the following differences existed: 1) CELLS stabilized when their wedge 

area was more than twice their actual area instead of relying on LUMEN size.  2) CELL 

clustering was calculated in a different fashion, in which two random number calculations 

were performed instead of one.  3) LUMEN target area was calculated based on 

lumenGrowthRate, LUMEN perimeter, CELL stretch, and the number of stable CELLS 
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bordering the LUMEN.  4) CELLS had an increased likelihood of DYING if they did not 

contact the MATRIX but did contact stabilized CELLS. 

The TS ISMA used an internal clock to determine when a CELL would stabilize.  

The internal clock was based on the variable shiftCounter, which was initialized to equal 

shiftDelay after a CELL POLARIZED.  ShiftCounter was decremented at each simulation 

cycle, and when it reached zero the CELL would change to the stabilized state. 

3.2.19. Technical specification and data storage 
CC3D functions in either 2D or 3D and lets users choose between a square and 

hexagonal grid.  It provides architecture for calculating changes in energy and accepting 

or rejecting changes in grid locations.  The architecture is designed from a system-based 

perspective.  Each simulation cycle, each aspect of the system is executed, from the index 

change step that selects random points, to the plug-ins that update aspects of the system.  

The CPM is straightforward and mathematically simple, making it easy to understand and 

its execution fast.  The ISMAs were constructed using CompuCell3D 3.2.1 and custom 

code, as described above.  Simulation code and user manual are available at 

<http://biosystems.ucsf.edu/research_mdckcyst.html>.  All simulations were executed on 

a Dell Poweredge 1900 server with 2 4-core 2.33GHz 64 bit Intel Xeon processors.  The 

system had 8 GB of RAM and a 450 GB hard drive.  The system software was Ubuntu 

8.04 LTS (Linux kernel 2.6).  Data from simulations was captured in a MySQL 5.0 

database using MySQL++ <http://tangentsoft.net/mysql++/> 3.2 to bridge between 

CompuCell3D <http://www.compucell3d.org/> and the database. 
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3.3. Results  
3.3.1. Quantitative in vitro results   

In order to study the process of cyst development in detail, MDCK cells were 

grown and observed in 3D Matrigel culture for one to ten days and analyzed 

quantitatively each day.  As shown in Figure 3.6, cysts developed in a manner consistent 

with previous observations [51, 66, 67].  A suspension of mostly single MDCK cells 

divided to form small clusters during the first 24 hours.  Most cells polarized (defined by 

podocalyxin localization at the nascent apical surface of the cell) during the first two days 

of growth and all cells polarized by day 3.  Cysts developed single (11 of 20) or multiple 

(9 of 20) lumens by the end of day 2.  Most cyst cross-sections appeared circular.  The 

deviation from an ideal circle ranged between 2 and 5%. 
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Figure 3.6.  In vitro MDCK cyst cross-sections.   
Culture conditions were as described in the text.  Confocal images were recorded on the indicated 
day during cystogenesis.  Colors reflect component staining as follows: red: actin; green: 
gp135/podocalyxn; yellow: red and green colocated; blue: nuclein; black: Matrigel. 

We measured and recorded cyst and lumen area and perimeter, cell number, the 

number of single and multiple lumen cysts, and the number of single-lumen, single-(cell) 

layer (SLSL) cysts.  Results are graphed in Figure 3.7 and Figure 3.8.  From these results 

we calculated mean cell area and the ratio of total cellular area to total cyst area.   

Cell number increased exponentially through day 5.  It slowed and increased at a 

constant rate after day 6.  Coincident with that shift, the variance in cell number per cyst 
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increased (Figure 3.7A).  Cyst and lumen area increased monotonically (Figure 3.7B).  

Mean cell size decreased at a constant rate through day 6 (Figure 3.7C) and then leveled 

off at roughly the same time that cell division slowed.  Mean cell size increased slightly 

following the shift.  Cell size variance was smallest on days 5–8.  We did not find a 

strong correlation between mean cell size and other cyst measurements, including cell 

number, lumen size, lumen number, or lumen perimeter/cell number.  The ratio of total 

cellular area to cyst area (Figure 3.7D) indicated that the portion of cyst occupied by cells 

decreased as cysts expanded (and thus the portion occupied by lumen increased).  The 

ratio decreased quite steeply between days 5 and 6 with very little overlap; the majority 

of cysts at day 5 had a ratio higher than 0.6 and the majority of cysts at day 6 had a ratio 

lower than 0.6. These observations taken together indicated a shift in cell behavior 

occurred at approximately day 5 (referred to hereafter as simply the shift).  The data also 

supports the idea that cell compression during lumen expansion may be a factor 

triggering cell entry into the stabilized state.  
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Figure 3.7.  Quantitative measures of in vitro and in silico cystogenesis.   
Mean values and standard deviations for (A) cell number per cyst, (B) cyst and lumen area, (C) 
mean individual cell area and (D) ratio: cellular to cyst area.  Blue: in vitro data taken each day 
for ten days from 20 cysts.  Red: data taken from 50 CYSTS over ten DAYS using the parameter 
values in Table 3.3.  Gray boxes: noted changes in behavior.  Blue lines: slope of in vitro growth 
illustrating changes in rate.  SSM1: Self -Similarity Measure of in vitro growth; SSM1 indicates 
the percentage of in vitro values each day that fell within ± 25% of the mean in vitro value for 
that day.  SM1: Similarity Measure for ISMA growth.  SM1 indicates the percentage of ISMA 
values each day that fell within ± 25% of the mean in vitro value for that day.  The target was that 
SM1 > 0.5 for nine of ten DAYS.  When the target was met, we posited that ISMA measures were 
experimentally indistinguishable from in vitro measures.  Gray SM values did not achieve 
targeted values. 

3.3.2. Lumen percentages in vitro 
During the first day of growth some cysts developed lumens, while others had no 

visible lumen.  From days 2-10 all cysts had at least one lumen (Figure 3.8A).  Multiple 

lumens appeared in a number of cysts, but their frequency decreased over time.  Previous 
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studies [47] considered cysts to be “normal” if they contained a single layer of actin and 

apical membrane markers surrounding a single lumen.  We distinguished between single-

layer single-lumen (SLSL) cysts, in which all cells contact both extracellular matrix and 

lumen; cysts with a single lumen where some cells did not touch the extracellular matrix 

or the lumen; and cysts with multiple lumens (Figure 3.6).  After day 2, the percentage of 

SLSL cysts ranged between 55% and 85% (Figure 3.8B), in rough agreement with the 

80% of cysts observed by Zheng et al. to be “normal” [47].  In cases where single-lumen 

cysts did not have a single layer of cells, usually only one or two cells did not contact the 

lumen or extracellular matrix.  These data indicate that the percentage of cysts with 

multiple lumens decreases over time, likely as smaller lumens merge together into larger. 

It is possible that a few cysts might increase their lumen number over time even as mean 

lumen number decreased, but that behavior would only be observed using time-lapse 

microscopy of individual cysts. 
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Figure 3.8.  Percentage of cysts with different numbers of lumens.   
(A) Percentage of cysts that have single (solid circle) or multiple (open circle) lumens.  (B) 
Percentage of SLSL (single-layer, single-lumen) cysts.  Blue: in vitro data for 20 cysts taken each 
day for ten days.  Red: in silico data for 50 CYSTS using parameters values from Table 3.3.  
Black: mean and standard deviation for “normal” MDCK cysts observed by Zheng et al. [47] as 
described in the text.  Solid lines represent continuous growth of ISMA CYSTS.  Dotted lines 
represent discrete growth of MDCK cysts.  

3.3.3. ISMAs capable of cystogenesis 
In order to create and validate ISMAs, we used a number of modeling techniques 

and approaches, detailed in Methods.  To avoid confusion between in vitro and ISMA 

components and mechanisms with similar names, we use SMALL CAPS when referring to 

the latter.  Following the Iterative Refinement Protocol (IR Protocol) led to two 
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specifications of CELL behavior that achieved all targeted attributes in Table 3.1 and all 

prespecified Similarity Measures (SMs; described below).  They are the lumen stabilized 

ISMA (LS ISMA) and the timed stabilization ISMA (TS ISMA).  There are only three 

CELL states: UNPOLARIZED, POLARIZED, and stabilized.  Both LS and TS ISMAs have a 

common morphogenic agenda.  It is a consequence of their operating principles, which 

are a networked consequence of CELL state and micromechanisms.  The latter are 

primarily axiom-dependent, and the axioms, in turn, depend on particular local and 

temporal conditions.  The axioms are placeholders for even more fine-grained 

micromechanisms. 

The only difference between the LS and TS ISMAs is the mechanism used by 

POLARIZED CELLS to shift to the stabilized state.  Within the LS ISMA, POLARIZED CELLS 

use information about the LUMEN to decide when to stabilize.  Within the TS ISMA, 

transition to the stabilized state is a simple timed event (each CELL used its own internal 

clock).  We did not discover any in vitro observations that would provide a basis for 

selecting one micromechanism over the other.   

CELL operating principles require each CELL to have knowledge of its internal 

state and immediate environment, including the size of the neighboring LUMEN (for the 

LS ISMA).  CELL DIVISION is based on factors other than CELL size.  Early in the process, 

CYST size can be independent of LUMEN size.  The orientation of CELL DIVISION is 

extremely important in influencing the formation and number of LUMENS within a CYST.  

We explored alternative mechanistic variations, but failed to find others of 

comparable simplicity capable of achieving all targeted attributes and prespecified SMs.  

For simplicity we present and discuss measures from LS ISMA simulations within the 
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text (Figure 3.7 and Figure 3.8) and provide the same simulation measures for TS ISMAs 

in Figure 3.9 and Figure 3.10.  Results from earlier ISMA that were falsified because they 

failed to achieve one or more SMs are also presented in Figure 3.11 and Figure 3.12.   

 
Figure 3.9.  CYSTOGENESIS measures for TS ISMA.   
Experiments followed the same experimental design as described in the text.  Measures (red) 
were taken during CYSTOGENESIS.  In vitro data are provided (blue) comparison.  Designations 
and symbols are the same as in Figure 3.7.  TS ISMA used the parameter values in Table 3.3, 
except for stableRatio, which was set to 1000 and shiftDelay, which was set to 200. 



 

 93 

 

Figure 3.10.  Percent of CYSTS with different numbers of lumens for TS ISMA.   
The experiments are the same as in Figure 3.9.  Designations and symbols are the same as in 
Figure 3.8. 
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Figure 3.11.  CYSTOGENESIS measures for GM ISMA.   
Experiments followed the same design as in Figure 3.7 except that GM ISMAs were used.  
Measures, designations, and symbols are also the same as for 6.  Top: note the large variances 
after DAY 5. 
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Figure 3.12.  Percent of CYSTS with different numbers of LUMENS for GM ISMA.   
The experiments are the same as in Figure 3.11.  Designations and symbols are the same as in 
Figure 3.  

3.3.4. Quantitative results in silico 
ISMA CYSTS were similar to cysts grown within Matrigel (Figure 3.13).  CYSTS 

began with 1-3 CELLS at DAY 0.  CELLS POLARIZED and formed LUMENS within the first 

two DAYS (Figure 3.7 and Video S1).  LUMENS and CYSTS expanded at a rate 
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indistinguishable from that observed in vitro. In general, a cyst formed with a single 

LUMEN surrounded by a single layer of POLARIZED CELLS (Figure 3.8 and Video S1). 

Occasionally multiple LUMENS formed, each separated by an independent layer of CELLS, 

such that no CELL contacted more than one LUMEN (Figure 3.13 and Video S2).  The ISMA 

successfully achieved all qualitative and quantitative targeted attributes listed in Table 3.1.   

ISMA CELL number also exhibited two growth phases, with the rate of CELL 

DIVISION decreasing at day 6 (Figure 3.7).  LUMEN and CYST size increased at rates 

similar to those observed in vitro, but standard deviations were smaller.  CELL size also 

decreased at a rate comparable to in vitro, and its standard deviations were also smaller.  

As indicated by the values of Similarity Measure 1 (discussed below) in Figure 3.7 and 

Figure 3.8, ISMAs produced quantitative results similar to in vitro values. ISMAs were 

executed using the parameter settings in Table 3.3, and CYST and LUMEN area were scaled 

by 2.25 µm2 and perimeter by 0.75 µm. 
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Figure 3.13.  In silico MDCK analogue CYST cross sections.   
Note that a regular hexagon in hexagonal space maps to a circle in continuous space.  Images are 
from a single simulation run using parameter settings from Table 3.3.  CELLS are UNPOLARIZED 
(green), POLARIZED (gray) or stabilized (orange).  CELL-CELL and CELL-MATRIX borders are red; 
CELL-LUMEN borders are yellow; LUMENS are blue.   

3.3.5. Lumen percentages in silico  
Simulations produced single and multiple LUMEN CYSTS at frequencies 

comparable to those observed in vitro (Figure 3.8A), though the percentage of CYSTS with 

single LUMENS was slightly higher than observed in vitro.  The percentage of SLSL CYSTS 
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(Figure 3.8B) leveled off between days 2 and 6 and then increased steadily to day 10 as 

LUMENS merged.  CELLS that stabilized were not allowed to create new LUMENS, but 

could contribute to LUMEN expansion.  If this restriction were to be removed and CELLS 

were allowed to create new LUMENS after they stabilized, the percentage of SLSL CYSTS 

might remain steady or decrease. 

3.3.6. Similarity Measures 
To provide a validation target for ISMA CYSTOGENESIS and to compare ISMA and 

in vitro results, we developed SMs [68], which quantified the similarity within and 

between the in silico and in vitro data.  We posit that if in silico data satisfied the SMs, 

then they would be indistinguishable from data produced by a repeated in vitro 

experiment. 

SM1 compared results from individual simulations to in vitro mean values, 

indicating the similarity of in silico and in vitro results.  SM1 is the percentage of in silico 

observations that fell within ± 25% of the mean in vitro value for a given measure.  SM1 

values are listed in Figure 3.7.  To survive falsification, > 50% of simulations must 

achieve the SM1 target for nine of ten DAYS, as detailed in Methods.  For example, the ± 

25% range for in vitro cell number at day 3 was 6.7 to 11.1 with a mean of 8.9.  Seventy-

two percent of simulations had CELL numbers within that range at DAY 3.  SM1 values for 

CELL number, CYST size, mean CELL area, and the ratio of CELLULAR to CYST area 

exceeded 50% at all DAYS, so a degree of validation was achieved. The SM1 value for 

LUMEN size exceeded the 50% cutoff for nine of ten DAYS, although the values were 

lower.   

To facilitate assessing SM1 values and comparing in vitro and in silico data, we 
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specified and used Self-Similarity Measure 1 (SSM1).  It measured the similarity 

between the in vitro mean value and individual in vitro values and thus how closely 

grouped around the mean the individual in vitro values were.  Similar to SM1, SSM1 is 

the percentage of individual in vitro cyst measures each day that fall within a specified 

range.  SSM1 can be used to evaluate corresponding SM1 values.  Large SSM1 values are 

a characteristic of measures having a small variance.  Values of SSM1 were larger than the 

target for all measures except lumen size, indicating that lumen size in vitro varied more 

extensively about the mean than other quantities. 

SM1 did not consider the variance of the data.  To address variance, we specified 

SM2.  It compared the coefficient of variance of in silico and in vitro experiments.  SM2 

measured the absolute value of the difference between the in vitro and in silico each DAY.  

ISMAs survived falsification if SM2 < 0.15 for nine of ten DAYS (strong validation) or < 

0.25 for eight of ten DAYS (medium validation).  The current ISMA achieved strong 

validation for CELL number, mean CELL area and the ratio of cellular to cyst area (Table 

3.6).  It achieved medium validation for CYST size and LUMEN size, comparable to SSM1 

values.   
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Table 3.6.  SM2 values for the ISMA. 

Day Cell number Cyst area Lumen 
area 

Mean cell area Ratio: cellular to cyst area 

1 0.06 0.15 0.77 0.10 0.03 
2 0.13 0.20 0.25 0.14 0.00 
3 0.14 0.16 0.44 0.09 0.04 
4 0.05 0.01 0.16 0.09 0.05 
5 0.04 0.03 0.04 0.01 0.00 
6 0.09 0.14 0.19 0.03 0.04 
7 0.11 0.17 0.16 0.11 0.00 
8 0.13 0.21 0.24 0.08 0.09 
9 0.06 0.18 0.18 0.16 0.03 
10 0.13 0.18 0.21 0.14 0.07 
An SM2 value is the absolute value of the coefficient of variance (for a specific measure) 
subtracted from the in vitro coefficient of variance.  Values over 0.25 (black) did not achieve the 
validation target described in the text.  Values between 0.15 and 0.25 (gray) achieved the 
moderate validation target.  Values less than 0.15 (white) achieved the strong validation target. 

3.3.7. Cell death 
Cell death is relatively uncommon during in vitro MDCK cyst development [51]: 

on a given day, no more than 15% of cysts had one or more apoptotic cells within the 

lumen and no more than 10% of cysts had one or more apoptotic cells with matrix 

contact.  Cell death did occur during ISMA executions, but at slightly lower frequencies 

than observed in vitro (Figure 3.14).  In Methods, we specified that the average duration 

between a cell initiating death and being removed from the simulation to be ten 

simulation cycles, which maps to five hours.  The actual in vitro duration will affect the 

number of visible apoptotic cells observed each day.  When we caused cells to shrink 

somewhat slower, the cell death values in Figure 3.14B increased.  The results of such an 

experiment, provided in Figure 3.15, demonstrate that decreasing the value of 

dyingShrinkRate from 9 to 4.5 increased the mean duration of cell death (from 4.6 to 7.4 

hours) and increased the percentage of dying cells.  It is noteworthy that all validation 

targets were achieved without requiring stabilized cells to die more frequently than 

polarized cells.  Based on current knowledge, the ISMA accurately mimics in vitro 
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quantitative data, but the duration of apoptosis within MDCK cells in vitro has not been 

quantitatively established.  In order to be certain about the role played by cell death, time-

lapse movies using a caspase-3-GFP will be required.    

 
Figure 3.14.  Percentage of cysts with dying cells. 
(A) In vitro data reproduced from [51].  (B) ISMA data from 50 CYSTS over ten DAYS.  Blue bars: 
percentage of cysts observed to have apoptotic cells without matrix contact.  Red bars: percentage 
of cysts observed to have apoptotic cells with matrix contact.  

 
Figure 3.15.  Percentage of CYSTS with DYING CELLS when dyingShrinkRate was reduced.   
(A) In vitro data reproduced from [51].  (B) ISMA data from 50 CYSTS over ten DAYS using 
parameter settings from Table 3.3, except for dyingShrinkRate, which was changed from 9 to 4.5.  
Blue bars: percentage of cysts observed to have apoptotic cells without matrix contact.  Red bars: 
percentage of cysts observed to have apoptotic cells with matrix contact. 
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3.3.8. Altering CELL DIVISION orientation in silico dramatically alters 
CYST morphology 

After the ISMAs achieved the above, targeted attributes, Zheng et al. [47] 

reported measuring the consequences of disrupting cell division orientation on MDCK 

cyst morphology.  Knocking down LGN, which plays a role in spindle orientation during 

cell division, caused cell division orientation to become random instead of aligning with 

the axis perpendicular to the cellular plane.  The frequency of “normal” cysts decreased 

from roughly 80% to 20-30%.  We added those observations to our targeted attributes list 

and then explored the degree to which CYST morphology following a comparable ISMA 

intervention would mimic the in vitro results, thus surviving the challenge.  We altered 

CELL DIVISION so that all CELLS divided with a random orientation.  The results (Figure 

3.16A) were similar to those of Zheng et al.  The altered ISMA produced less than 20% 

SLSL CYSTS and more than 30% multi-LUMEN CYSTS at DAYS 2 through 9.  Additional 

details are available in Figure 3.17. 

 
Figure 3.16.  Percentage of ISMA CYSTS with varied LUMEN number when the axis of CELL DIVISION 
is abnormal.   
Shown are the percentages of CYSTS that have single (solid red circles) or multiple (open red 
circles) LUMENS when the axis DIVISION is (A) random or (B) reversed (rotated 90°) along with 
the percentage of CYSTS that are SLSL (purple circles) when the axis of CELL DIVISION is (A) 
random or (B) reversed.  Black (A and B): mean and standard deviation for “normal” MDCK 
cysts observed by Zheng et al. [47].  The in vitro control data are shown in Figure 3.8. 
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Figure 3.17.  CYSTOGENESIS measures when the axis of CELL division is random.   
Experiments followed the same design as in Figure 3.7.  Measures, designations, and symbols are 
also the same.  ISMAs used the parameter values in Table 3.3, except for divisionReg, which was 
set to 0.   

In a second experiment, Zheng et al. targeted LGN to the apical membrane.  So 

doing rotated the axis of division by 90°, thus reversing cell division orientation.  The 

procedure reduced the frequency of normal cysts to roughly 10%.  We conducted a 

similar experiment by modifying ISMAs so that the axis of DIVISION was parallel, rather 

than perpendicular to the LUMEN edge.  That intervention produced SLSL CYSTS less than 

10% of the time (Figure 3.16B and Figure 3.18).  ISMAs survived both challenges; in 
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both cases, altering the orientation of CELL DIVISION decreased the percentage of single 

LUMEN and SLSL CYSTS to a degree similar to that observed within in vitro experiments. 

 
Figure 3.18.  CYSTOGENESIS measures when the axis of CELL division is reversed.   
Experiments followed the same design as in Figure 3.7.  Measures, designations, and 
symbols are also the same.  ISMAs used the parameter values in Table 3.3, except for 
divisionReg, which was set to 3. 

3.3.9. In silico CYST growth with no LUMINAL CELL DEATH 
Cell death contributes to cystogenesis, but it remains unclear to what extent it is 

essential.  In order to explore the consequences of decreased CELL DEATH frequency, we 

executed simulations in which we reduced deathRateLumen from 0.02 to 0.0.  We did not 
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alter the probability of CELL DEATH in CELLS contacting MATRIX.  We noted no significant 

difference in CELL number during the first six DAYS of growth, but during days 7 through 

10 mean CELL number was 10-15% higher than observed during control ISMA growth 

(Figure 3.19A).  The observed standard deviations also increased.  We observed a smaller 

percentage of SLSL CYSTS than in control simulations, especially during DAYS 6 to 10 

(Figure 3.20B).  Values for CYST area, LUMEN area, CELL size, and the ratio of CELLULAR 

to CYST area were similar to control values (Figure 3.19), while the percentage of single 

LUMEN CYSTS decreased slightly (Figure 3.20).  
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Figure 3.19.  CYSTOGENESIS measures with no LUMINAL CELL DEATH.   
Experiments followed the same design as in Figure 3.7.  Measures, designations, and 
symbols are also the same.  ISMAs used the parameter values in Table 3.3, except for 
deathRateLumen, which was set to 0. 
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Figure 3.20.  Percent of CYSTS with different numbers of LUMENS with no LUMINAL CELL DEATH.  
The experiments are the same as in Figure 3.19.  Designations and symbols are the same as in 
Figure 3.8. 

3.3.10. Simulated CYST growth with delayed CELL POLARIZATION 
Delayed cell polarization is believed to contribute to the differences in cyst 

growth in Matrigel and collagen [51], although it is possible that a lower initial rate of 

cell clustering and a slower growth rate might be factors as well.  To explore the effect of 
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delayed POLARIZATION on ISMA CYSTOGENESIS, we increased the value of polarDelay 

from 42 (equivalent to 21 hours) to 130 (equivalent to 65 hours).  Relative to controls, 

CELL number increased at an equivalent rate during the first six DAYS, but was larger 

during DAYS 7–10 (Figure 3.21A).  CELL POLARIZATION (data not shown) and LUMEN 

formation occurred later than in controls (Figure 3.21B).  The area taken up by CELLS 

remained roughly constant, but the delay in LUMEN formation and resulting smaller 

LUMENS caused the ratio of CELLULAR area to total CYST area to be significantly larger 

than control values during DAYS 2-8 (Figure 3.22).  Not surprisingly, there were fewer 

single and multiple LUMEN CYSTS during the first three DAYS.  When LUMEN formation 

began, however, it often resulted in multiple LUMENS (> 80% for DAYS 4–6); SLSL CYSTS 

were observed infrequently.  As LUMENS expanded and merged during the later stages of 

growth, the frequency of SLSL CYSTS increased.  The percentage of DYING CELLS not 

contacting the MATRIX was significantly larger at DAYS 4–10, indicating that many of 

these CELLS DIED as LUMEN expansion occurred (data not shown).  Some of these in silico 

results reflect those observed within growth in collagen, but it seems unlikely that 

delayed cell polarization in vitro is solely responsible for those differences. 
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Figure 3.21.  CYSTOGENESIS measures and percentages when CELL POLARIZATION was delayed.   
ISMA simulations executed with the parameters values from Table 3.3 except that CELL 
POLARIZATION was delayed as described in the text.  Left: Mean values and standard deviations 
for CELL number per CYST (top panel) and ratio of CELLULAR to CYST area (bottom panel).  Right: 
Percentage of CYSTS with single, multiple, and SLSL LUMENS.  Designations and symbols are the 
same as in Figure 3.8.  
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Figure 3.22.  CYSTOGENESIS measures when CELL POLARIZATION was delayed.   
Experiments followed the same design as in Figure 3.7.  Measures, designations, and symbols are 
also the same.  ISMAs used the parameter values in Table 3.3, except for CELL POLARIZATION, 
which was delayed as described in the text. 

3.4. Discussion 
3.4.1. In vitro observations 

Observations reported herein about in vitro MDCK cystogenesis are consistent 

with those made previously [47, 48, 51].  There is no evidence of behavioral differences 

between cells within single and multiple lumen cysts.  We could not establish a causative 

connection between the slowing of cell division and the change in cell size.  The evidence 
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indicates that initial lumen expansion is somewhat isochoric: early lumen expansion is 

primarily a consequence of cell shrinkage.  After an interval of lumen expansion and cell 

shrinkage lasting about six days, cell behavior changes: cell size stabilizes and cells begin 

to stretch as the lumen continues to expand (Figure 3.6); cell division slows dramatically; 

the expanding lumen becomes the primary driver of cyst size; and the variance in both 

cell area and cyst size increases.   

3.4.2. Iterative process 
Iteratively constructed ISMAs quantitatively mimicked a targeted set of in vitro 

data and cell behaviors.  Measures of ISMA CYSTOGENESIS matched corresponding 

measures of MDCK cystogenesis over ten days.  The pathways and proteins that play 

influential roles in cell behavior during MDCK cystogenesis are objects of active 

research and are increasingly well understood.  However, knowledge of how specific cell 

actions and events are choreographed during cystogenesis is still limited.  The latter 

knowledge is needed to begin establishing causal linkages between molecular level 

events and systemic phenotype.  

Previous analogues [5, 15] used a simple representation of a cell: each CELL 

occupied a single 2D hexagonal grid space.  They were falsified when we added 

qualitative observations about changes in cell size and shape to our targeted attributes list 

(Table 3.1).  To mimic these newly targeted attributes, we needed CELLS to be more fine-

grained.  To generate the current ISMA, we began with an in silico analogue that had 

achieved a degree of validation and then conducted in vitro experiments designed to 

challenge and possibly falsify it.  We then reengineered the in silico system to reflect, 

explore, and challenge new insight provided by the fresh in vitro data.  We engineered 
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new analogues using the CPM method, which provided several capabilities, including 

enabling CELL size and shape change.  To slow the increase in CELL number after DAY 6, 

we introduced a stable CELL state.   

We envision the above in silico-wet-lab cycle continuing indefinitely.  It is 

straightforward to explore the consequences of in silico mechanistic interventions.  If 

these interventions result in altered system behaviors (predictions), it may suggest new in 

vitro experiments designed to test them.  Examples include the effect of delayed 

polarization on cyst phenotype, the lack of noticeable changes when cell death is 

inhibited, and the causal link between lumen size and cell stabilization.  Furthermore, we 

expect a change in cell state (cell stabilization at day 6) to be accompanied by measurable 

changes in gene expression profiles and biochemical signaling.   

3.4.3. Improved analogue 
The ISMA illustrated in Figure 3.13 achieved all targeted attributes.  It was 

preceded by two earlier versions.  These ISMAs differed in the mechanism used to 

initiate CELL stabilization. We hypothesized that in vitro cells might use knowledge of 

their internal geometry to sense their perceived stretch and subsequently stabilize.  The 

geometrical mechanism ISMA (GM ISMA) directly tested this hypothesis; each CELL 

used measures of its area and geometry to determine when to shift to the stabilized state.  

To achieve a degree of validation required the use of an axiom specifying that stabilized 

CELLS would be more likely than POLARIZED CELLS to DIE when not in contact with 

MATRIX.  This axiom was implemented in order to decrease the number of CELLS within 

the LUMEN and thus increase the number of SLSL CYSTS.  The GM ISMA was falsified 

when targeted SMs for the percentage of single LUMEN, multiple LUMEN, and SLSL 
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CYSTS were strengthened to those achieved in Figure 3.7, as shown in Figure 3.11 and 

Figure 3.12.  It was falsified because the time at which CELLS stabilized was too variable; 

some CELLS stabilized early, others much later, resulting in very few SLSL cysts (data not 

shown). 

A second version of the ISMA, called the timed stabilization ISMA (TS ISMA), 

used an internal clock to signal CELL stabilization, resulting in a uniform stabilization 

time and reducing the variance in CYST size.  The TS ISMA survived falsification (Figure 

3.9), providing evidence that stabilization time influences SLSL CYST percentages.  The 

GM ISMA axiom specifying that stabilized CELLS would be more likely than POLARIZED 

CELLS to DIE when not in contact with MATRIX was not needed.  The TS ISMA was 

capable of generating high percentages of SLSL cysts even without this axiom, and so the 

axiom was removed in that and subsequent ISMAs. 

Although the TS ISMA survived falsification, we were not aware of any in vitro 

evidence suggesting existence of an equivalent internal clock-based mechanism.  If such 

a mechanism did exist, it might be molecularly equivalent to that of cell polarization.  

Genes that regulate cellular senescence can suppress the cell cycle, and the sirtuin protein 

SIRT1 is involved in cellular senescence [69, 70].  It is possible a cell-autonomous timing 

mechanism could exist that depends on the regulation of SIRT1 and its downstream 

targets, as detailed below.  We hypothesized that a mechanism that used the geometry of 

the LUMEN instead of the geometry of individual CELLS to signal CELL stabilization might 

bridge that gap and still produce a low variance in stabilization times.  We developed the 

lumen stabilized ISMA (LS ISMA) described within this report to test that hypothesis and 

discovered that in addition to surviving falsification (Figure 3.7) it generated stabilization 
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variance between the GM and TS ISMAs.  We can surmise a mapping between the 

LUMEN-based stabilization mechanism and a functionally equivalent in vitro mechanism 

in which apical sensory input to each cell provides it with information that correlates to 

lumen size.  Current evidence supports the hypothesis that cells in the cyst wall can sense 

lumen size.  One mechanism by which cells achieve this is by the tension generated at the 

luminal membrane by membrane stretching.  This tensional information is transduced by 

the subapical F-actin network, which acts both as a scaffold for maintaining luminal 

integrity, as well as a region for aggregation of recycling endosomes that regulate the 

protein and lipid composition of the apical plasma membrane.  Thus regulators of this F-

actin network can regulate lumen and cyst size.  Potential molecular mechanisms are 

detailed below. 

We should seek additional, in silico mechanisms that are equally effective in 

enabling ISMAs to achieve validation targets.  Given phenomena, what hypothetical 

generators (and measures) might generate them?  Studying an inverse mapping requires 

multiple, seemingly plausible hypotheses, which then compete against each other during 

simulation experiments as done here.  After falsification and validation using the IR 

Protocol, those that survive spawn additional, more refined hypotheses.  Furthermore, 

having multiple mechanistic options for realizing the same behaviors may be biomimetic 

in that it marginally increases system robustness. An example of a potential additional in 

silico mechanism is that of time-dependent dynamic parameters, which might assist in the 

exploration of finer-grained, intracellular molecular behaviors.  The current ISMA 

contains a small number of implicitly dynamic parameters (such as the time that elapses 

between CELL DIVISION events), which effectively change when CELLS change state, but in 
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general all parameters are fixed for the duration of the simulation.  If in vitro data were 

targeted that demonstrated, for example, the build-up of certain proteins along the plasma 

membrane, dynamic variables could be implemented that controlled the amount of that 

PROTEIN within the analogue. 

We note that the standard deviations of quantitative in silico values were generally 

lower than those observed in vitro (Figure 3.7), though still acceptably similar.  The most 

likely reason for this difference is that although inherently varied, the in silico simulation 

is computational and follows a set series of steps.  If some in vitro cysts developed along 

different trajectories it might not be observed due to the somewhat small number of cysts 

observed.  This could be addressed through additional in vitro experimentation, in which 

groups of divergent cysts would be noted.  We did note that the TS ISMA exhibited very 

similar standard deviations for cyst and lumen area (Figure 3.9), suggesting that the close 

link between CELL number and LUMEN size implied by the LS ISMA may not fully 

explain the observed growth phenomena. 

3.4.4. Potential molecular counterparts to TS and LS ISMA mechanisms 
The sirtuin protein SIRT1, a protein deacetylase, has been shown to be involved 

in cellular senescence, the early phases of which are reversible [70].  This is associated 

with downregulation of SIRT1 and an increased function of cyclic AMP-regulated kinase 

(AMPK) [71].  SIRT1 downregulation increases the stability of the AMPK regulator 

LKB1 and thus inhibits cell proliferation [72].  A possible cell autonomous timing 

mechanism that could cause cell stabilization might involve downregulation of SIRT1 

and upregualtion of LKB1. 

Evidence suggests is possible that the tension generated at the luminal membrane 
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is transduced by the subapical F-actin network.  It maintains luminal integrity and allows 

recycling endosomes to aggregate, regulating the protein and lipid composition of the 

apical plasma membrane.  By regulating this F-actin network, cells can control lumen and 

cyst size. The Rho family small GTPhase Cdc42 is an ideal candidate for such a 

regulatory role [73].  Cdc42 is recruited to the apical plasma membrane by the 

Posphatidylinositol (4,5) bisphosphate (PI(4,5)P2) binding protein Annexin 2, and the 

loss of Cdc42 disrupts MDCK lumen formation ([74].  The GTPase exchange factor Tuba 

activates Cdc42 at the apical membrane, allowing it to control apical exocytosis and thus 

expand and maintain the apical plasma membrane [75].  Cdc42, in concert with 

PI(4,5)P2, also helps to polymerize actin by regulating N-Wasp and Arp2/3, thus 

maintaining the subapical F-actin network [76].  Cdc42 also prevents excessive apical 

constriction by antagonizing the GTPase RhoA through p190RhoGAP [77, 78].  Through 

the multiple regulatory roles of apical vesicle exocytosis, F-actin scaffold maintenance 

and regulation of apical constriction, Cdc42 is in a central position to control lumen size.   

Cdc42 depletion early in MDCK cystogenesis leads to a loss of central lumen 

formation, further supporting its central role in this process [74].  Overexpressing a WT 

Cdc42 in drosophila pupal eye cells increases the apical membrane area [78], possibly 

reducing luminal tension.  This lower tensions and higher surface area allows more fluid 

to be pumped into the luminal space by transmembrane pumps, increasing lumen size 

until the apical membrane tension is restored.  This molecular mechanism presents one 

potential explanation for how MDCK cells could sense luminal tension and react 

accordingly. 
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3.4.5. Challenging ISMA predictions 
ISMAs had already achieved all targeted attribute when the work of Zheng et al. 

[47] was published.  Results from their studies provided an independent challenge to 

ISMA mechanisms and their robustness.  The red simulation results in Figure 3.17 are a 

consequence of two different simulation interventions: making the CELL axis of DIVISION 

random (Figure 3.16A) and reversing the CELL axis of DIVISION (rotating it 90°)(Figure 

3.16B).  These predictions are fully consistent with the in vitro results of Zheng et al.  As 

stated previously they defined a normal cyst as one with actin staining at the apical cell 

surfaces surrounding a single lumen.  Included in that definition are our SLSL CYSTS and 

CYSTS with a single LUMEN.  In Zheng et al., when cell division was randomized, the 

percentage of cysts with single lumens at day 4 dropped from 81.9% to 21.5%, a different 

of 60.4%.  In ISMA simulations, when divisionReg was changed from 1 (ordered 

DIVISION) to 0 (random DIVISION) the percentage of CYSTS with a single LUMEN dropped 

from 94% to 46%, a difference of 48%, which is quite similar to the decrease observed in 

vitro (Figure 3.17A).  As seen in Figure 3.16B, when the axis of division was reversed, 

the percentage of cysts with a single lumen dropped from 81.9% to 11.5%, a difference of 

70.4%.  Within the ISMA, when divisionReg was changed from 1 to 3 (reversed 

division), the percentage of CYSTS with a single LUMEN dropped from 94% to 14%, a 

difference of 80%.  In addition, the in silico results provide a prediction of in vitro 

behavior that could be challenged through in vitro experimentation.  When DIVISION is 

reversed within the LS ISMA (Figure 3.18) CELL number continues to increase after day 

6, most likely because the numerous small LUMENS do not reach a sufficient size to cause 

CELL stabilization.  In strong contrast, when DIVISION is reversed within the TS ISMA 

(Appendix 1, Figure 2) CELL number stops increasing at day 5 and remains stable 
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thereafter.  Future experiments of the type conducted by Zheng et al. that quantify 

cytogenesis over longer intervals would provide evidence supporting one or the other 

mechanistic hypothesis. 

If the results of the experiments of Zheng et al. had falsified the ISMAs, we 

would have had to look into simulation details during execution to see where and how 

failure occurred.  Because we designed the analogues to make mechanism change 

straightforward, it would have been simple to discover a new set of mechanisms that 

achieved all the targeted attributes described herein, as well as the new attributes from the 

challenge experiments.  The results of these experiments demonstrated two important 

uses for this class of in silico models.  1) They can be used to execute in silico 

experiments designed to test hypotheses based on the expected consequences of a 

mechanistic outcome.  Our experience has been that aspects of expected outcomes are 

typically wrong in one or more ways. 2) The results of simulations can be used to stand 

as hypotheses about outcomes of similarly designed in vitro experiments.  The first use 

exercises our understanding of the networked relations between ISMA mechanisms and 

phenotype, including systemic behaviors, and that in turn facilitates thinking more deeply 

about MDCK cell biology.  The phenotypes of descendents of current ISMAs will cover 

increasingly complex behaviors of MDCK cyst cultures.  At that stage, it may become 

standard practice to conduct many exploratory intervention experiments in silico in order 

to better focus the design of in vitro experiments, marking a fundamental transition from 

reverse engineering to forward engineering of complex biological systems. 

3.4.6. CELL-level and INTRACELLULAR events 
A CELL-level event is one that is visible at the current level of resolution.  An 
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event that maps to an intracellular process (referred to as INTRACELLULAR) can occur 

without causing a visible change; it is below the current level of resolution.  Of the events 

listed in Table 3.7, the two marked (*) only exist within the in silico system and have no 

specific in vitro counterpart. 

Beyond simply modeling cystogenesis, a purpose of this research has been to 

instantiate an in silico system in which CELLS, MATRIX, and LUMEN have in vitro 

counterparts, and when executed the ISMA produces a variety of measurable phenomena 

that quantitatively mimic MDCK cystogenesis.  At the systemic level, we have excellent 

cystogenesis similarity over ten days for multiple measures.  Further analogue 

improvement will, following additional cycles of the IR Protocol, allow INTRACELLULAR 

events to become concretized and increasingly fine-grained, thus enabling quantitative in 

silico-to-in vitro mappings at multiple levels.   

Table 3.7. CELL and INTRACELLULAR events that can occur within a simulation cycle. 
CELL-Level Events  Map to Intracellular Events 

CELL state (& color) changes  MCell point assignment* 
CELL DIVISION  CellCycle updating at simulation cycle 1 
LUMEN creation  CELL initiates DYING  
LUMEN merging through TJ 
reorganization 

 DEATH advances; CELL TA decreases 

LUMEN expansion through TJ 
reorganization 

 Polarity counter (polarCounter) begins  

LUMEN expansion without TJ 
reorganization 

 Decrement cycleCounter 

Isolated point engulfed*   Decrement polarCounter 
CELL perimeter (but not TJs) 
changes  

 Decrement shiftCounter (TS ISMA only) 

DYING complete: CELL disappears   Compute MATRIX and LUMEN contact length, A, TA, & TP  
MATRIX removal  Compute G for a potential index change 
CELLS change shape   
All CELL events produce a visible change within the ISMA visualization.  Events that map to 
intracellular events result in a change within a CELL, but do not produce a visible change within 
the ISMA.  CELL-level events map to equivalent events between in vitro MDCK cells, lumen, and 
matrix, while INTRACELLULAR events map to events (less well understood) within in vitro MDCK 
cells.  *: This event exists only within the ISMA system and has no specific cystogenesis 
counterpart.   
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All specified events were necessary and essential for achieving targeted SMs.  For 

CELL-level events, the mappings are clear: they are direct and quantifiable.  

INTRACELLULAR events, axioms, and protocols are below the current level of resolution.  

There is no requirement that a specific INTRACELLULAR event, axiom, or protocol has a 

cell-level counterpart.  We simply hypothesize that the set of INTRACELLULAR events, 

axioms, and protocols—a CELL’S operating principles—has an in vitro counterpart, as 

illustrated in Figure 1.1.  For some INTRACELLULAR events, conceptual mappings are 

clear.  Examples include CELL initiates DYING, DEATH advances, and decrement 

polarCounter.  For others, conceptual mappings are less clear.  Examples include 

decrement shiftCounter (in the TS ISMA), compute TP, and compute G.  The expectation 

is that, in moving forward, as axioms are replaced by concrete, interacting components 

(see [7] and the future experiments subsection below) clear mappings will be easier to 

establish and quantify.   

A good example of a project in which INTRACELLULAR events are incorporated 

and to some degree mapped back to those in vitro, is the IBCell model [14, 53].  It is a 

biomechanical model of MCF-10A cell cystogenesis in which proteins on the outer cell 

membrane and the extracellular matrix are specifically simulated.  The IBCell model 

successfully mimicked some aspects of cystogenesis, but it remains unclear whether the 

INTRACELLULAR details are necessary or could be replaced by coarse-grained 

components.  The quantitative data used to validate the model lacked the level of 

resolution necessary to falsify the intracellular mechanisms.   

3.4.7. Cell death and the timing of cell polarization 
Surprisingly, CYSTS with little or no CELL death can still be well organized with a 



 

 121 

single LUMEN.  Reducing CELL DEATH rates (Figure 3.19) altered CYSTOGENESIS details 

only marginally, primarily because CELL DEATH frequency was already low (Figure 

3.14B).  Lin et al. [79] hypothesized that apoptosis is crucial for lumen formation in 

MDCK cysts, but they reached that conclusion based on observations of cystogenesis in 

collagen culture only. Martín-Belmonte et al. [51] observed that apoptosis within 

Matrigel cultures is less frequent than within collagen cultures.  Within ISMA 

simulations, earlier LUMEN formation results in more organized CYST growth and fewer 

CELLS that DIE after losing contact with the MATRIX once LUMENS have formed.  It is 

possible that apoptosis acts simply as a cleanup mechanism within MDCK cysts, but the 

degree to which it is utilized depends on the environment, the rate of cell growth, and the 

timing of polarization.  Our experiments reducing the rate of CELL DEATH showed that 

although the rate of CELL DEATH within CYSTS during growth is normally quite low, CELL 

DEATH still contributes to controlling CELL number and maintaining SLSL CYSTS.  It is 

possible that environmental adjustments may provide conditions in which MDCK cell 

cystogenesis produces normal SLSL cysts without requiring cell death, as occurs in 

human alveolar type II epithelial cells [58, 80].   

Relative to cystogenesis in Matrigel, cells grown in collagen produce smaller 

cysts with fewer cells and delayed polarization.  That delay might play a role in formation 

of smaller cysts.  However, ISMA experiments showed that delaying POLARIZATION 

(Figure 3.21) increased cell number and decreased the percentage of CYSTS with single 

LUMENS.  We take those observations as strong evidence that delayed cell polarization 

alone is insufficient to account for that difference in cystogenesis within collagen and 

Matrigel cultures. 
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3.4.8. Future in vitro experiments 
As illustrated in Figure 1.1, a goal is to build, expand, and validate in silico 

mechanistic networks that map to plausible causal linkages between intracellular details 

and features of MDCK cell phenotype in culture.  A prerequisite is to have CELLS capable 

of achieving increasingly fine-grained and expanding coverage of MDCK cell, cluster, 

and cyst behaviors under different conditions.  Advances in imaging technology have 

made doing so easier.  Similar coverage will be needed of intracellular (subcellular) 

dynamics, including the behaviors of cell components under different conditions.  We 

anticipate that studies of in vitro MDCK cell cystogenesis using high-resolution, time-

lapse microscopy will reveal new behavioral details at each level.  Recent studies have 

employed confocal time-lapse microscopy to understand lumen formation, but only 

imaged cells for eight hours [81].  Ewald et al. [82] set the standard for long-term time-

lapse microscopy in their work on the elongation of mouse mammary ducts, in which 

they captured individual images every 15 minutes for five days, using high-sensitivity 

cameras to avoid phototoxicity.  

There is ample evidence that tension within the extracellular matrix influences 

epithelial cell behaviors [83, 84].  Paszek et al. [83] demonstrated that increasing matrix 

stiffness resulted in tumorigenic behavior in MCF-10A cells.  It seems reasonable to 

expect changes in MDCK cell, cluster, and/or cyst behaviors as Matrigel stiffness, 

density, and additives are changed.  Experiments similar to those within [83], conducted 

with MDCK cells and for longer durations are needed to expand ISMA coverage of 

MDCK phenotype in important ways.    

Although the underlying in vitro molecular mechanisms to which the TS and LS 

ISMA map remain unclear, in vitro experiments may indicate one mechanism as being 
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more plausible.  Careful analysis of images generated through time-lapse microscopy is 

expected to be informative.  If the elapsed time between individual cyst polarization and 

stabilization of division rate or mean cell size are similar between cysts, that would be 

supportive of the the internal clock mechanism.  However, if the interval varied between 

cysts, that would falsify such a mechanism.  If mean lumen size when division rate and 

cell size have stabilized are similar between cysts, that would support the shift 

mechanism based on lumen size.   

An additional experiment that could validate the LS ISMA would involve 

disrupting other regulators of luminal tension.  Depletion of key regulators of apical 

tension such as Cdc42 and its partner Protein kinase C zeta/lambda using RNA 

interference should decrease lumen size.  Increasing Cdc42 activity, either by 

overexpression of WT Cdc42 or a constitutively active form (Cdc42-G12V) would be 

predicted to increase lumen size.  In addition, depletion of RhoA and its effectors ROCK 

I and ROCK II, which regulate myosin contractility, should also decrease lumen size, 

since there will be insufficient luminal tension to support lumen expansion.  In addition 

to potentially validating the molecular mechanisms, if disrupting Cdc42 causes cysts to 

develop multiple lumens and these cysts with smaller lumens fail to stabilize, it will 

indicate that stabilization is not caused by a timing-dependent mechanism, and is instead 

caused by a lumen or geometry dependent mechanism. 

An ectopic increase in SIRT1 by stable overexpression or knockdown in LKB1 by 

RNA interference should prevent cysts from stabilizing and promote continued cyst 

growth.  Thus, if cysts grown with cells with overexpression of SIRT1 or LKB1-KD 

displayed higher cell number at later time points, it would suggest that the molecular 
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mechanism of cell stabilization was linked to SIRT1 and LKB1. 

3.4.9. Future in silico experiments 
Five directions for in silico experiments present themselves.  The first two require 

seeking contradictory or supportive literature evidence of in silico experiments.  1) 

Exploring the consequences of parameter changes will provide insight into ISMA’s 

mechanism-phenotype relationships for which there may be biological counterparts [45].  

A full suite of parameter change experiments was conducted using the LS-ISMA; results 

are presented in Appendix 1.  One example is to explore the consequences of changing 

deathRateEpi and deathRateLumen (Figure 3.19 and Appendix 1, Figures 61-68), 

including setting both to 0.  Another is to vary lumenGrowthRate to explore the effect of 

increased or decreased LUMEN expansion on in silico CYSTOGENESIS (Appendix 1, Figures 

53-60).  Addition of any of several compounds to the culture media in vitro will stimulate 

cyst expansion.  Examples include cholera toxin and forskolin.  2) Modify axioms and 

operating principles to simulate targeted mechanistic interventions.  One example (see 

Results) is to modify the way in which CELLS calculate their axis of DIVISION.  Another is 

to modify how MATRIX is represented in order to explore consequences of altered MATRIX 

properties on CYSTOGENESIS.  Currently, MATRIX is simply a grid space state.  Matrix 

could be represented using a CPM “cell” that offers resistance to CELL advancement.  So 

doing opens the door to exploration of a variety of MATRIX-CELL interactions that can map 

to proteins altering local matrix properties.  3) Systematically expand the targeted 

attributes while keeping CELLS atomic.  Movies, such as Video S1 from [51] along with 

the current literature, contain examples of many behaviors beyond the scope of the 

current ISMAs.  Adding any one of the following to the list of targeted attributes will 



 

 125 

falsify the current ISMAs.  At the cell level: when cells undergo mitosis, they enlarge 

temporarily and then return to a smaller size; some cells (and cysts) move around during 

the early stages of cystogenesis; some cells migrate toward each other and cluster 

together before initiating division; typically, when cells die in contact with matrix, they 

are flushed into the luminal space where they shrink and disappear.  At the cyst level: 

cysts spin.  The process was described by [81] and recently modeled by [85].  Cyst 

growth may have an additional later stage characterized by significantly slowed 

expansion, rather than continuing to grow steadily as predicted by the ISMA.  The 

dynamics of lumen merging are more complex than the merging events that occur during 

simulations.  Also, lumens change shape and move within cysts during the initial stages 

of growth.  

4) Increase realism by transforming CELLS from atomic to composite objects.  The 

axioms used by CELLS are placeholders for more fine-grained micromechanisms.  The 

latter can be instantiated in future ISMA descendents.  Before we can our turn attention to 

intracellular processes, we need new ISMAs in which CELLS are composite (and 

eventually hierarchical) analogues that can achieve essentially the same, targeted SMs as 

the current ISMAs.  Previous reports [7, 57, 58] explained that an in silico analogue (such 

as the current ISMA) that quantitatively mimics many cell-level phenomena can be used 

to begin the sequential process of drilling down and establishing plausible, causal 

linkages between phenotype and molecular level details.  Using cross-model validation 

procedures, the atomic CELL is replaced by a composite CELL where phenomenal axioms 

are replaced by concrete micromechanisms involving interacting objects that map to 

subcellular processes and/or components in the referent.  5) Once we have the preceding 
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composite CELLS, we can expand the list of targeted attributes to include subcellular and 

intracellular behaviors.  Alternatively, expanding the list of targeted attributes can require 

transforming CELLS from atomic to composite objects.  Examples of subcellular and 

intracellular behaviors include the amount and location of polarization proteins, organelle 

movement, the organization of the mitotic spindle, formation of a pre-apical patch, 

location-dependent lipid compartments within the membrane, etc.  During cell polarization 

(as detailed in [67]), PTEN moves to the apical membrane, where it converts PIP3 to PIP2, 

which binds to Anx2 and assists in the recruitment of Cdc42 to the apical membrane.  The 

task at this stage, while adhering to a strong parsimony guideline, is to add new 

mechanisms and details that enable validation against the new, targeted attributes, while 

retaining all of those mechanisms and behaviors that enabled validation during earlier 

cycles of the IR Protocol.  So doing will enable the in silico exploration, falsification, and 

validation of increasingly complex in vitro MDCK cell behaviors, which will ultimately 

correlate to in vivo phenotypes of developing epithelial organs.   

We hypothesize that the local cause-and-effect relationships (mechanisms) 

occurring in ISMAs during execution, and thus their morphogenic agenda, have in vitro 

counterparts.  Challenging these alternative hypotheses can be a focus for future in vitro 

experiments and ISMA refinements.   

3.4.10. Conclusion 
Through careful application of the IR Protocol, analogues of MDCK cystogenesis 

in cultures (ISMAs) were developed, falsified, refined, and validated against novel, 

multi-attribute quantitative data.  ISMAs were based on software specifications that 

enabled in silico behaviors during simulation to achieve degrees of validation: to be 
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mapped quantitatively to measures of cystogenesis (targeted attributes).  Those 

specifications also enabled hypothesizing that ISMA operating principles, axioms, 

components, events, and mechanisms have in vitro counterparts.  Predictions of 

substantive mechanistic changes were verified by independent experiments.  ISMAs were 

used to explore and test hypotheses about CELL and CYST dynamics. .  The above, coupled 

in vitro and in silico experiments led to four insights.  1) The axis of CELL DIVISION 

significantly affects LUMEN number without changing CELL number or CYST size.  2) 

Reducing the amount of LUMINAL CELL DEATH had limited effect on CYSTOGENESIS.  3) 

Later stages of cystogenesis, marked by a decrease in the rate of cell division and 

cessation of the decrease in mean cell size, can be explained by the presence of a new cell 

state (called stabilized), which differs in a few key behaviors.  4) The same, multi-

attribute phenotype can be a consequence of two fundamentally different mechanisms 

that, in silico, only alter the mechanism of CELL stabilization.  By providing a new way of 

thinking about cystogenesis, ISMA simulations have provided an impetus to explore 

novel aspects of epithelial morphogenesis. 
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4. Challenging the ISMA using in vitro collagen 
data 

4.1. Introduction 
4.1.1. Differences between collagen and Matrigel in vitro 

As noted in [51], MDCK cells exhibit similar qualitative patterns of growth in 

Matrigel and collagen, with distinct quantitative trajectories.  Cells in both culture 

systems polarize, form expanding lumens, and undergo cell death, but at different rates.  

Many of these differences can be attributed to the presences of laminin with Matrigel, 

which causes faster cell polarization and other downstream events.  Cysts in collagen 

have fewer cells, are smaller, develop lumens later, and exhibit more cell death than in 

Matrigel [51].  In addition, increased cell death is thought critical to lumen formation and 

expansion.  What remains unclear, however, is whether the two systems are the result of 

cells following a single set of operating principles within different environmental 

conditions, or if two distinct sets of operating principles are required to generate observed 

behaviors. 

4.1.2. Reasons for undertaking the creation of the ISMA-C 
The previously created ISMA, called the ISMA-M within this chapter, 

successfully survived falsification against quantitative data for MDCK cystogenesis 

within Matrigel culture.  In order to explore how MDCK cystogenesis within Matrigel 

and collagen differed, additional data was generated that challenged the existing ISMA-

M.  MDCK cells were embedded in collagen culture and the resulting cysts fixed and 

imaged as in Matrigel.  The resulting quantitative data falsified the existing ISMA-M, 

necessitating the generation of a new ISMA, called the ISMA-C.  This second ISMA 
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differed only in the parameter settings chosen before conducting experiments—the 

underlying code was unchanged.  Thus, the hypothesis embodied by the ISMA-C is that a 

single set of operating principles could generate differently parameterized ISMAs that 

would survive falsification through two distinct data sets. 

The process of analyzing the in vitro data, falsifying the existing analogue, and 

validating a new analogue could lead to new insights about the process of MDCK 

cystogenesis.  The new in vitro data could shed light on the quantitative similarities and 

differences between MDCK cystogenesis in different culture conditions, including 

whether cell size ceased to decrease at a similar time as in Matrigel, whether cell number 

followed a similar trend, and whether the percentage of cysts with multiple lumens would 

be significantly different.  By analyzing whether ISMAs could survive falsification by 

data from collagen and Matrigel when parameterized differently, we could gain an 

understanding of the underlying patterns in growth.  In addition, analyzing which 

parameters required changing and which could remain static could offer insight into the 

specific differences and similarities between the two ISMAs and by proxy their in vitro 

referents. 

4.1.3. Summary of results achieved 
The ISMA-C survived falsification through a number of in vitro challenges.  The 

in vitro data was not as robust as that obtained from Matrigel and so the SMs used were 

less restrictive.  Results from the ISMA-C validated for cell number, cyst size, lumen size 

(during days 5-10), the ratio of cellular to cyst area, and mean cell size.  The percentage 

of CYSTS with single or multiple LUMENS was empirically similar to that observed within 

the referent in vitro system.  In addition CYSTS generated by the ISMA-C showed 
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increased levels of CELL DEATH, though not as high as that observed within in vitro 

collagen culture.  To create the ISMA-C, parameters influencing CELL number, 

POLARIZATION time, and CELL DEATH required changing, while those influencing CELL 

size and LUMEN expansion did not.  Based on these results we hypothesize that the 

mechanisms influencing cell polarization and cell division are different within collagen 

and Matrigel, but that those influencing lumen expansion and cell size are not.  Finally, it 

seems possible that the differences observed within in vitro cystogenesis in Matrigel and 

collagen may be the consequences of the same set of operating principles acting within 

different environmental conditions. 

4.2. Methods 
4.2.1. In vitro methods 

Established protocols for collagen culture of MDCK cyst growth were followed 

[86, 87].  A single-cell-suspension of MDCK cells was suspended in a solution of 

buffered, liquefied collagen I (Invitrogen).  Three-hundred µl of a 6000 cells/ml 

suspension was added to each well of an 8-well chambered coverglass-bottom slide 

(Nunc), resulting in a final cell density of 2500 cells/cm3, low enough to prevent 

significant cell clustering.  The final concentration of collagen I in the solution was 2 

mg/ml, allowing the collagen I to form a gel by incubation in a 37 °C humidified tissue 

culture incubator before the further addition of 300 µl medium above the gel.  One slide 

of cyst cultures was fixed each day with 4% paraformaldehyde over a ten-day period.   

Cysts were stained for immunofluorescence by blocking and permeabilizing the 

cells with PBS+ containing fish skin gelatin (0.7 w/v) and saponin (0.25% w/v).  The 

plates were next incubated with primary antibodies against GP135 and β-Catenin 
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overnight at 4 °C.  After removal of excess primary antibodies by washing, Alexa-dye 

conjugated secondary antibodies (Invitrogen) were added and the plates incubated again 

overnight at 4 °C.  Cysts were washed several times with PBS and the samples were 

stored in PBS containing 0.05% Sodium Azide to prevent microbial growth.  Cysts were 

imaged using a Zeiss 510 laser-scanning confocal microscope (UCSF Helen Diller 

Family Comprehensive Cancer Center).  Images were quantified using empirical image 

analysis.  The number of cells and the areas and perimeters of lumens and cysts were 

recorded for ten cysts for each day.  Isolated cells and cells without either matrix or 

lumen contact were also counted. 

4.2.2. In silico methods 
The methods used to create the ISMA-C were to the same as those used to create 

the ISMA-M.  In accordance with the Iterative Refinement Protocol, the existing ISMA 

was first falsified by the introduction of new quantitative data, in this case from MDCK 

cystogenesis in collagen.  Initial empirical parameter tuning produced an ISMA-C that 

survived falsification for most quantitative measures, which is described in Appendix 2. 

This early ISMA-C was falsified when challenged with the observation that cell death is 

significantly higher in collagen than in Matrigel.  Further refinement resulted in the 

current ISMA-C, which was created through more in-depth parameter tuning and in silico 

experimentation.  

To adjust for the decreased number of cells observed during early cyst 

development, the value of clusterProb was lowered from 0.8 to 0.7.  Even with fewer 

CELLS at DAY 1, the overall CELL number remained too high, and thus cellCycle was 

adjusted down from 100 to 70.  Following that, polarDelay was tuned so that 
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POLARIZATION times were analogous to those observed in vitro, which resulted in 

reasonably similar LUMEN and CYST sizes.  At that point CELLS stabilized later than 

observed because the size of the LUMENS was much smaller than for the ISMA-M, so the 

value of stableRatio was lowered to make CELLS stabilize earlier.  The value of 

stableCycleDelay was adjusted to fine-tune the observed CELL number after stabilization.  

Achieving increased CELL DEATH proved challenging and required adjusting 

deathRateLumen, and spindleRandom, as well as fine-tuning other parameter values.  

Decreasing the value of cellCycle caused increased CELL DIVISION but also increased CELL 

DEATH, for instance.  Altered parameters are shown in Table 4.1. 

Table 4.1.  Parameters changed for simulation of collagen results. 

Parameter Reason parameter changed Original value 
New 
value 

cellCycle Cells divide less frequently in collagen 70 simulation 
cycles 100 

polarDelay Cells polarize later in collagen 42 simulation 
cycles 120 

shiftDelay Reduced to allow CELLS in TS ISMA to 
stabilize at the observed time 

200 simulation 
cycles 190 

clusterProb Less cell clustering occurs in collagen 0.8 0.7 

dyingShrinkRate More dying cells are observed within 
collagen 9 grid points 4 

stableRatio Lumens in collagen are smaller 0.5 grid points 0.35 

stableCycleDelay Cell division does not decrease as much 
after stabilization in collagen 0.85 0.8 

deathRateLumen More apoptotic cells without matrix 
contact are observed in collagen 0.02 0.03 

spindleRandom 
More apoptotic cells without matrix 
contact are observed in collagen after 
stabilization 

0 40% 

    
Parameters that were changed in order to allow the ISMA-C to mimic growth in collagen, along 
with the in vitro observation that justified that change, and the before and after values.  For the LS 
ISMA shiftDelay and stableRatio were set to 140,000 and 0.35, while for the TS ISMA 
shiftDelay and stableRatio were set to 190 and 1000.  All units are relational (e.g., grid points 
instead of µM, simulation cycles instead of hours). 



 

 133 

Because fewer cysts were analyzed in collagen culture than in Matrigel (10 versus 

20), the data represented a less accurate sample of quantitative measures of MDCK 

cystogenesis.  As a result, the validation targets were relaxed, especially for lumen area.  

Accordingly, to survive falsification via SM1, ≥ 50% of simulations must achieve the 

validation target (±25% of the in vitro mean value) for 8 out of 10 days, or for 5 of the 

final 6 days for lumen area.  In order for an ISMA to surfive falsification when evaluated 

using SM2, the value of SM2 must be ≤ 0.25 for 7 of 10 days. 

In addition to executing experiments that demonstrated that the ISMA-C is 

capable of surviving falsification when challenged with in vitro data from MDCK 

cystogenesis in collagen, other experiments were undertaken.  In order to evaluate 

whether a timed shift ISMA would generate similar results when parameterized to mimic 

cystogenesis in collagen as when parameterized to mimic cystogenesis in Matrigel, a TS 

ISMA-C was created.  This was achieved through raising stableRatio to 1000 to prevent 

LUMEN size-based stabilization and then tuning the value of shiftDelay until the ISMA 

survived falsification.  Additional experiments were conducted with the ISMA-C that 

followed a similar protocol as the ISMA-M.  Notably, the axis of DIVISION was 

randomized or reversed and LUMINAL CELL DEATH was eliminated.  The large-scale 

parameter sweeping performed on the ISMA-M was not judged necessary in this case, 

because the additional knowledge gained for the ISMA-M was not significant, and 

because during the process of empirically tuning ISMA-C parameters to achieve 

similarity, many of these settings were explored.  It would be expected that parameter 

sweeping would result in similar results for the ISMA-C and ISMA-M. 
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4.3. Results 
4.3.1. Quantitative results in vitro 

To understand the differences between cyst development within Matrigel and 

collagen culture, MDCK cells were grown and observed in 3D collagen culture for one to 

ten days and analyzed quantitatively each day.  Cysts developed consistent with previous 

observations [51].  Cells suspended in collagen formed small clusters during the first 24 

hours, and cells polarized during days 2-4.  Lumens formed later than within Matrigel, 

but all cysts had lumens by the end of day 4.  The deviation from an ideal circle ranged 

between 3 and 8% at day 3, slightly higher than within Matrigel. 

As with Matrigel, we measured and recorded cyst and lumen area and perimeter, 

cell number, the number of single and multiple lumen cysts, and single lumen single (cell) 

layer cysts (SLSL).  The results are graphed in Figure 4.1 and Figure 4.2.  From these 

results we calculated mean cell area and the ratio of total cellular area to total cyst area. 

Cell number increased exponentially through day 6, and then leveled off and 

increased at a constant rate.  The variance in cell number per cyst differed compared to 

Matrigel, perhaps because of the smaller number of cysts measured (Figure 4.1A).  Cyst 

and lumen area increased monotonically (Figure 4.1B), except during day 6.  Mean cell 

size decreased unevenly through day 6 (Figure 4.1C) and then leveled off at roughly the 

same time that cell division slowed.  Cell size variance decreased sharply after day 5.  As 

in Matrigel, we did not find a strong correlation between mean cell size and other cyst 

measurements, including cell number, lumen size, lumen number, or lumen perimeter/cell 

number.  The ratio of total cellular area to cyst area (Figure 4.1D) indicated that the 

portion of cyst occupied by cells decreased as cysts expanded (and thus the portion 



 

 135 

occupied by lumen increased).  As in Matrigel the ratio decreased quite steeply between 

days 5 and 6 with even less overlap; almost all cysts at day 5 had a ratio higher than 0.75 

and almost all cysts at day 6 had a ratio lower than 0.7.  These observations taken 

together indicated a shift in cell behavior occurred at approximately day 6 in collagen, 

similar to the timing of the shift observed in Matrigel, but slightly later. 

 
Figure 4.1.  Quantitative values for in vitro and in silico cystogenesis in collagen. 
Mean values and standard deviations for (A) cell number per cyst, (B) cyst and lumen area, (C) 
mean individual cell area and (D) ratio: cellular to cyst area.  Gray: in vitro data taken each day 
for ten days from 10 cysts.  Black: data taken from 50 CYSTS over ten DAYS using specified 
parameter settings. 
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4.3.2. Lumen percentages in vitro 
During the first two days of growth in collagen some cysts developed lumens, 

while others had no visible lumen, but all cysts had lumens by day four.  Multiple lumens 

appeared in a number of cysts, with the percentage fluctuating between 10% and 50% 

from days 4 to 10 (Figure 4.2A).  After day 3, the percentage of SLSL cysts ranged 

between 50% and 80% (Figure 4.2B), similar to that observed in Matrigel.  As in 

Matrigel, in cases where single-lumen cysts did not have a single layer of cells, usually 

only one or two cells did not contact the lumen or extracellular matrix.  Unlike in 

Matrigel, the percentage of cysts with multiple lumens did not decrease over time, but the 

small sample size (ten cysts at each time point) makes generalizations difficult. 
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Figure 4.2.  Percentage of cysts with specified types of lumens. 
(A) Percentage of cysts with single (solid circle) or multiple (open circle) lumens.  (B) Percentage 
of cyst with a single lumen surrounded by a single layer  (SLSL) of cells.  Gray: in vitro data for 
10 cysts taken each day for ten days.  Black: in silico data for 50 CYSTS using specified parameter 
settings.  Solid lines: continuous ISMA-C CYST growth.  Dotted lines: discrete MDCK cyst 
growth in collagen. 

4.3.3. Quantitative results in silico 
ISMA-C CYSTS were structurally similar to cysts grown within collagen.  CYSTS 

began with 1-3 CELLS at DAY 0.  CELLS POLARIZED and formed LUMENS within the first 

three DAYS (Figure 4.2).  LUMENS and CYSTS expanded at a rate similar to that observed 

in vitro.  In some CYSTS, a single LUMEN surrounded by a single layer of POLARIZED 
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CELLS formed within the first four DAYS (Figure 4.2).  In other CYSTS, multiple LUMENS 

formed, each separated by an independent layer of CELLS, such that no CELL contacted 

more than one LUMEN. 

As in collagen, ISMA-C CELL number also exhibited two growth phases, with the 

rate of CELL DIVISION decreasing after day 6 (Figure 4.1).  LUMEN and CYST size 

increased at rates similar to those observed in vitro, but standard deviations were smaller.  

CELL size also decreased at a rate comparable to in vitro, and its standard deviations were 

also smaller during the first five days of growth.  The values of Similarity Measure 1 and 

2, as well as SSM1 are shown in Table 4.2, Table 4.3, and Table 4.4.  As indicated by the 

values of SM1 and SM2, ISMA-Cs produced quantitative results similar to in vitro 

values.  ISMAs were executed using the parameter settings in Table 4.1 where changed, 

and Table 3.3 where unchanged.  CYST and LUMEN area were scaled by 2.25 µm2 and 

perimeter by 0.75 µm as in the ISMA-M. 

4.3.4. Lumen percentages in silico 
Simulations using ISMA-Cs produced single and multiple LUMEN CYSTS at 

frequencies comparable to those observed in vitro, (Figure 4.2A), though the rate of 

multiple lumen cysts was somewhat higher.  The percentage of SLSL CYSTS (Figure 

4.2B) was lower than observed in vitro, though it increased steadily over time as LUMENS 

merged. 

4.3.5. Similarity measures 
The ISMA-C achieved the required SM1 values for cell number, cyst and lumen 

area, mean cell area, and the ratio of cellular to cyst area.  The values of SSM1 are 

included in Table 4.3, and illustrate the high level of variance within the in vitro results.   
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ISMA-Cs achieved similarity for SM2 measure for cell number, cyst size, mean cell area, 

and the ratio of cellular to cyst area.  Due to the high variance of luminal size within 

collagen culture, the ISMA-C did not achieve SM2 for lumen size. 

Table 4.2. SM1 values for the ISMA-C. 

Day Cell number Cyst area Lumen 
area 

Mean cell area Ratio: cellular to cyst area 

1 0.74 0.72 0.0 0.98 1.0 
2 0.0 0.1 0.0 1.0 1.0 
3 0.7 0.54 0.18 1.0 1.0 
4 0.25 0.1 0.2 0.98 1.0 
5 0.68 0.76 0.38 1.0 1.0 
6 0.9 0.82 0.5 0.38 0.74 
7 0.84 0.9 0.72 0.86 0.94 
8 0.88 0.96 0.78 0.96 0.94 
9 0.92 0.94 0.86 0.98 0.94 
10 0.96 0.96 0.9 1.0 0.96 
Values in black did not achieve the validation target. 

Table 4.3.  SSM1 values for MDCK cystogenesis in collagen. 

Day Cell number Cyst area Lumen 
area 

Mean cell area Ratio: cellular to cyst area 

1 0.4 0.6 0.0 0.7 1.0 
2 0.2 0.7 0.0 0.8 1.0 
3 0.5 0.9 0.3 0.5 1.0 
4 0.3 0.7 0.4 0.8 1.0 
5 0.6 0.5 0.4 0.8 1.0 
6 0.6 0.6 0.5 0.9 0.9 
7 0.7 0.6 0.4 0.9 0.9 
8 0.4 0.2 0.3 0.9 1.0 
9 0.9 0.8 0.6 0.9 0.9 
10 0.89 0.22 0.22 0.89 1.0 
Values in black would not have achieved the validation target if they were from simulation 
experiments. 
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Table 4.4.  SM2 values for MDCK cystogenesis in collagen. 

Day Cell number Cyst area Lumen 
area 

Mean cell area Ratio: cellular to cyst area 

1 0.18 0.04 0 0.23 0.02 
2 0.38 0.33 1.14 0.21 0.01 
3 0.04 0.01 0.36 0.18 0.04 
4 0.16 0.05 0.08 0.12 0.0 
5 0.15 0.22 0.6 0.13 0.04 
6 0.07 0.12 0.06 0.02 0.05 
7 0.12 0.22 0.30 0.02 0.08 
8 0.23 0.31 0.29 0.05 0.01 
9 0.07 0.12 0.13 0.1 0.08 
10 0.08 0.32 0.35 0.17 0.04 
Values in black did not achieve the validation target. 

4.3.6. TS ISMA in collagen 
To further explore the mechanisms behind CELL stabilization and the differences 

in MDCK growth in collagen and Matrigel, we changed the parameters shiftDelay (from 

140,000 to 190) and stableRatio (from 0.35 to 1000) to create a TS ISMA-C.  The 

quantitative results of the TS ISMA-C were very similar to those generated by the LS 

ISMA-C (Figure 4.3 and Figure 4.4).  The value of shiftDelay used to generate these 

results was found through empirical tuning, and we noted that the best value (190) for the 

TS ISMA-C was quite close to the best value for the TS ISMA-M (200), resulting in a 

mean CELL stabilization time of 6.6 DAYS for the ISMA-C versus 5.25 DAYS in the TS 

ISMA-M. 
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Figure 4.3.  CYSTOGENESIS measures for TS ISMA-C. 
Experiments followed the same experimental design as described in the text.  Measures (black) 
were taken during CYSTOGENESIS.  In vitro data are provided (gray) for comparison.  
Designations and symbols are the same as in Figure 3.7.  TS ISMA used the parameter values in 
Table 3.3 and Table 4.1 except for stableRatio, which was set to 1000 and shiftDelay, which was 
set to 190. 
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Figure 4.4.  Percent of CYSTS with different numbers of lumens for TS ISMA. 
The experiments are the same as in Figure 4.3.  Designations and symbols are the same as in 
Figure 3.8. 

4.3.7. Cell death 
Cell death is commonly observed within the lumen of MDCK cysts during 

cystogenesis in collagen [51].  One of the challenges when developing the ISMA-C was 

to increase the amount of cell death observed in order to mimic that observed in vitro.  

CELL DEATH did occur during ISMA-C execution, but at somewhat lower frequencies 

than observed in vitro (Figure 4.5).  As noted in Chapter 4 Methods, we increased the 
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average duration between a CELL initiating DEATH and disappearing to be 19 simulation 

cycles, equivalent to 9.5 HOURS.  This was considered an acceptable interference because 

the duration of apoptosis within MDCK cells in vitro has not been quantitatively 

established.  Although the ISMA-C did not fully mimic the level of cell death observed 

within MDCK cystogenesis in collagen, it did exhibit higher CELL DEATH than the ISMA-

M. 

  
Figure 4.5.  Percentage of cysts with dying cells in collagen. 
(A) In vitro data reproduced from [51].  (B) ISMA data from 50 CYSTS over ten DAYS.  Dark gray 
bars: percentage of cysts observed to have apoptotic cells without matrix contact.  Light gray 
bars: percentage of cysts observed to have apoptotic cells with matrix contact. 

4.3.8. Altered CELL DIVISION orientation in silico 
In Chapter 3 we discussed the results of Zheng et al. [47], who measured the 

consequences of disrupting cell division orientation on MDCK cyst morphology.  We 

executed similar experiments using both the ISMA-M (see Chapter 3) and the ISMA-C.  

We first altered CELL DIVISION so that all CELLS divided with a random orientation, 

though it is worth noting that the ISMA-C has a default spindleRandom value of 40 rather 

than 0, meaning that the increase in randomness was less compared to the equivalent 

experiment with the ISMA-M.  The results (Figure 4.6) were similar to those observed 

with the ISMA-M, although the percentage of single LUMEN and SLSL CYSTS was lower 
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for the ISMA-C.  The altered ISMA-C produced less than 10% SLSL CYSTS and more 

than 30% multi-LUMEN CYSTS at DAYS 3 through 9.  The quantitative aspects of CYST 

growth were not significantly altered. 

In a second experiment, Zheng et al. targeted LGN to the apical membrane.  So 

doing rotated the axis of division by 90°, thus reversing cell division orientation.  We 

conducted a similar experiment on the ISMA-C by modifying CELL DIVISION so that the 

axis of DIVISION was parallel, rather than perpendicular to the LUMEN edge.  During this 

experiment spindleRandom was set to 0.  The results were very similar to those produced 

by the ISMA-M, with many multi-LUMEN and very few SLSL cysts.  Randomizing or 

reversing the axis of CELL DIVISION for the ISMA-C decreased the percentage of single 

LUMEN and SLSL CYSTS in a similar fashion as for the ISMA-M (Figure 4.6). 

The result of altering CELL DIVISION within the ISMA-C provides an additional 

prediction about cell division and growth within MDCK cystogenesis in vitro.  Based on 

these results, we would expect that LGN-KD and LGN-apical cells grown in collagen 

would exhibit similar behaviors as those grown in Matrigel, though with a lower 

percentage of cysts with single lumens. 
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Figure 4.6.  Percentage of ISMA-C CYSTS with varied LUMEN number when the axis of CELL DIVISION 
is abnormal. 
Top panels: the percentages of CYSTS that have single (solid black circles) or multiple (open 
black circles) LUMENS when the axis DIVISION is (A) random or (C) reversed (rotated 90°).  The 
dotted and dashed lines are the corresponding control in vitro values from Figure 4.4.  Bottom 
panels: the percentage of CYSTS that are SLSL (solid black circles) when the axis of CELL 
DIVISION is (B) random or (D) reversed.  The dotted lines are the corresponding control in vitro 
values from Figure 4.2. 

4.3.9. In silico CYST growth with no LUMINAL CELL DEATH 
Cell death contributes to cystogenesis, but simulations of cystogenesis using the 

ISMA-M indicate that it is not required for cystogenesis in simulated Matrigel culture.  In 

order to explore the consequences of decreased CELL DEATH frequency in simulated 

collagen culture, we executed ISMA-C simulations in which we reduced 

deathRateLumen from 0.03 to 0.0.  We did not alter the probability of CELL DEATH in 

CELLS contacting MATRIX.  We noted no significant difference in CELL number during the 
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first six DAYS of growth, but thereafter the number of CELLS per CYST increased much 

more than in vitro (Figure 4.7), as did CYST size.  The observed standard deviations also 

increased.  We observed a smaller percentage of single LUMEN and SLSL CYSTS than in 

control ISMA-C simulations, especially during DAYS 6 to 10 (Figure 4.8).  Values for 

LUMEN area, CELL size, and the ratio of CELLULAR to CYST area were similar to control 

values (Figure 4.7).  Reducing LUMINAL CELL DEATH to 0 had a significant effect on the 

growth of many ISMA-C cysts, more so than for the ISMA-M.  This lends support to the 

existing hypothesis that cell death plays an important role in the development and 

maintenance of lumens during cystogenesis within collagen culture. 

 
Figure 4.7.  CYSTOGENESIS measures with no LUMINAL CELL DEATH. 
ISMA simulations executed with the parameter values from Table 4.1 and Table 3.3, except that 
LUMINAL CELL DEATH was not allowed.  Measures (black) were taken during CYSTOGENESIS.  In 
vitro data are provided (gray) comparison.  Designations and symbols are the same as in Figure 
3.7. 
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Figure 4.8.  Percentage of CYSTS with different numbers of lumens with no LUMINAL CELL DEATH.   
(A) Percentage of cysts with single or multiple lumens.  (B) Percentage of SLSL cysts.  Black: in 
silico data from CYSTS with no LUMINAL CELL DEATH.  Gray: in vitro control data. 
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4.4. Discussion 
4.4.1. In vitro observations 

The in vitro data presented in this report demonstrates that MDCK cystogenesis in 

Matrigel and collagen is qualitatively similar and follows similar trends, but differs 

quantitatively.  Cysts form using the same basic cellular behaviors and exhibit a similar 

trajectory of events: cell division followed by polarization, lumen creation, and cyst and 

lumen expansion.  In both systems single and multiple lumens are present, and cell death 

is observed in cells with and without matrix contact.  The percentages of cysts with single 

and multiple lumens are quite similar over time.  Finally, the difference in lumen size 

may primarily be the result of later lumen initiation time.  Cells in collagen appear to 

stabilize slightly later than in Matrigel, coinciding with a cessation of mean cell size 

decrease.  It is clear that cells grown in collagen polarize and form lumens later, contain 

fewer cells, have smaller cyst and lumen sizes, and that more cell death is observed [51].  

What is not as readily apparent, but was revealed during quantitative analysis during this 

project, is that MDCK cysts grown in collagen begin with fewer cells that divide slower. 

It seems possible that these similarities are the result of MDCK cells following the same 

operating principles, but in different environmental conditions. 

4.4.2. Iterative process 
The process of refining the ISMA to mimic MDCK cystogenesis in collagen is an 

example of the Iterative Refinement Process.  After creating an analogue that could 

survive falsification by qualitative and quantitative data from MDCK cysts grown in 

Matrigel, we challenged that ISMA with similar data from MDCK cysts grown in 

collagen.  The parameterized ISMA-M did not survive the challenge and was falsified by 
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these new data.  It remained unclear whether the ISMA-M could be reparameterized to 

survive this challenge, or whether new operating principles would be required to create 

the ISMA-C.  We hypothesized that it would be possible to create an ISMA-C that 

survived falsification from the new challenge data simply by changing certain key 

parameters within the ISMA-M.  The information gained by analyzing which parameters 

required changing and which could be left intact would provide useful information about 

how the two ISMAs differed, and by proxy how MDCK cystogenesis is different within 

Matrigel and collagen culture. 

The first version of the ISMA-C, explained in detail in Appendix 2, achieved a 

degree of similarity when compared to the quantitative results generated by MDCK 

cystogenesis in collagen.  This early ISMA-C was somewhat similar in cell number, cyst 

and lumen size, mean cell size, and the ratio of cellular to cyst area.  In addition, the 

percentages of single and multiple lumen cysts appeared similar to those in vitro.  

However, this ISMA-C displayed very little CELL DEATH, which caused its falsification 

when qualitatively challenged by the observation that during MDCK cystogenesis in 

collagen, significantly more cell death is observed than in Matrigel [51].  As a result, the 

current ISMA-C was developed, which required additional changes to ISMA parameters, 

as shown in Table 4.1.  This version of the ISMA-C did not match the percentages of cell 

death observed in vitro, but it did demonstrate that it is possible to create an ISMA that 

has a significant amount of cell death later in growth and still survives qualitative and 

quantitative falsification. 

The current ISMA-C develops fewer SLSL cysts than observed within in vitro 

culture (Figure 4.2).  We believe this is due to the inexact nature of the CPM architecture.  
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Because the LUMEN develops later the likelihood of CELLS not contacting LUMEN or 

MATRIX increases.  It may also indicate that the current specification does not fully 

describe the underlying biology.  As described below, further refinement of the ISMA-C 

should produce an analogue that better survives the challenge presented by in vitro data 

from MDCK cystogenesis in collagen.  That refinement, whether it is restricted to 

parameter tuning or requires modification of ISMA mechanisms, will inform us further of 

the similarities and differences of the two analogues, and also of the in vitro systems. 

4.4.3. Parameters changed from the ISMA-M to the ISMA-C 
In order to assess the differences between the ISMA-M and the ISMA-C, we 

analyzed which parameters were changed and which were allowed to remain the same.  

As stated in Chapter 4 Methods, it was clear from the results of the quantitative analysis 

of in vitro growth that both initial cell number and the rate of cell division are different.  

We found that changing only one of clusterProb or cellCycle would not allow the ISMA-

C to validate, but changing both would.  We can conclude that the lower value of 

clusterProb reflects the lower number of initial cells observed in collagen cystogenesis, 

and that the lower value of cellCycle implies that cells in collagen may divide more 

slowly than in Matrigel.  Because cells are suspended within 3D collagen culture, as 

opposed to within Matrigel where they grow on a single layer, clustering is less likely, 

thus it follows that clusterProb would be lower within the ISMA-C.  It is unclear why the 

rate of cell division seems to be lower within collagen.  It is important to note that the 

rate of cell death observed in the two culture systems during the first three days of 

cystogenesis is similar, indicating that it is unlikely that cells divide at a similar rate in 

both systems, since the only factors that control cell number are cell division and cell 
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death.  If cells divided at the same rate and died at the same rate, then only initial cell 

number could generate the observed difference in cell number, and mathematical 

modeling demonstrated this was not the case (results not shown).  The results of 

parameter tuning supported this conclusion; we were unable produce an ISMA-C that 

validated for cell death and cell number during the first three days of growth without 

changing the value of cellCycle.   

As observed in [51], cell polarization is significantly delayed within collagen 

culture, likely due to the lack of laminin within collagen culture.  To produce an ISMA-C 

that survived falsification by this observation, we increased the value of polarDelay 

significantly.  We could not create an ISMA that survived falsification against these 

observations of delayed cell polarization and lumen initiation without changing 

polarDelay.  This delayed POLARIZATION resulted in smaller LUMENS and necessitated 

reducing the value of stableRatio to prevent CELLS from stabilizing much later during 

growth.  Because stableRatio does not directly map to a known biological component this 

observation does not falsify the ISMA-C.  We did note that although the mean value of in 

vitro lumen size observed at day 6 was much lower in collagen than in Matrigel (857 µm2 

versus 1638 µm2), the value of the ratio of cellular to cyst area (0.6 versus 0.55) was 

similar.  This observation indicates that while a lumen-size based mechanism of cell 

stabilization required changing stableRatio, a sensing mechanism based on the value of 

the ratio of cellular to cyst area might potentially validate without changing that 

parameter setting. 

It was particularly challenging to validate against the rate of cell death for cells 

not in contact with the matrix, which was significantly higher in collagen culture [51].  
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Simply increasing the value of polarDelay did have an effect, because more CELLS did 

not have contact with the MATRIX after LUMEN initiation and DIED as a result.  However, 

this effect was primarily noticed during days 5 and 6.  A key improvement was attained 

by lowering the value of dyingShrinkRate, which caused DYING CELLS to survive longer.  

The value of dyingShrinkRate corresponds to the amount of time before apoptotic cells in 

vitro disappear, and as stated in Chapter 3, this is not clearly established.  This difference 

was first noticed during the development of the ISMA-M (Figure 3.15) and it is 

interesting to note that the rate of CELL DEATH was the only significant observed 

difference when dyingShrinkRate was decreased.  We found that increasing 

deathRateLumen did cause the rate of CELL DEATH to increase, but at values higher than 

0.03 fewer CELLS were observed to DIE during DAYS 6-10.  This result was surprising, but 

upon consideration does make sense, as if more CELLS DIE earlier, they will not be able to 

produce new CELLS later, thus the number of CELLS that can DIE at later time points will 

be lower.     

We also changed the value of spindleRandom in order to produce CYSTS with a 

higher rate of CELL DEATH during days 6-10.  When spindleRandom was set to 0 as in the 

ISMA-M, very few CELLS lost MATRIX contact, and thus the percentage of CELLS 

observed to DIE without MATRIX contact was very small.  It is quite likely that having 

some degree of random CELL DIVISION more closely mimics the biological reality.  

Finally, we observed that if the value of stableCycleDelay was left unchanged the rate of 

increase of CELL number was too low.  Thus, stableCycleDelay was lowered to allow for 

more CELL DIVISION and more CELL DEATH.  It is possible that further empirical tuning of 

cellCycle, deathRateLumen, and stableCycleDelay could produce results that attain a 
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higher degree of similarity than reported above. 

For the TS ISMA-C the value of shiftDelay that produced the greatest similarity 

was quite close to that for the TS ISMA-M (190 versus 200).  However, because 

POLARIZATION is delayed in the ISMA-C, this value resulted in CELL stabilization at a 

later point in the TS ISMA-C versus the TS ISMA-M (6.4 DAYS versus 5.24 DAYS).   

4.4.4. Parameters unchanged from the ISMA-M to the ISMA-C 
We also reflected on the parameters that did not require changing to create the 

ISMA-C.  These included lumenGrowthRate and lgrSubtract, deathRateEpi, and 

variables associated with mean CELL size.  One of the most significant observations made 

within this report is that the variables that directly control the rate of LUMEN expansion 

(lumenGrowthRate) and the effect of CELL stretching on LUMEN expansion (lgrSubtract) 

are the same in the ISMA-M and ISMA-C, yet the two ISMAs mimicked the dramatically 

different lumen sizes observed in vitro.  We believe this result is due to a combination of 

the later LUMEN initiation time and smaller number of CELLS within the ISMA-C, which 

allows for smaller LUMENS using the same operating principle and parameters. 

We also noted during parameter tuning that it was not strictly necessary to alter 

the value of deathRateEpi to obtain an increased rate of CELL DEATH in the ISMA-C, 

likely due to the decreased value of dyingShrinkRate.  Finally, we did not alter the 

variables that control mean CELL size, but the values within the ISMA-C were very 

similar to the values of mean CELL size observed in collagen.  It does make sense that this 

would be the case, since cell size is similar over time in Matrigel and collagen, but mean 

cell size is somewhat different during the first three days of growth, a trend mimicked by 

the ISMA-M and ISMA-C. 
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4.4.5. Conlusion 
The iterative process of modifying the ISMA to survive falsification by data from 

MDCK cystogenesis in collagen informed our understanding of the similarities and the 

differences in MDCK cystogenesis in Matrigel and collagen.  While the qualitative 

aspects of cystogenesis are similar, including cell number increase, the formation of one 

or more lumens, and cyst expansion, the quantitative aspects are different.  Cell 

polarization and lumen initiation occur later, cell number increases at a different rate, and 

cyst and lumen size are different.  Cell size is similar within both systems, and 

stabilization occurs in both at around day 6, though slightly later in collagen. 

The ISMA-C, which survives falsification against qualitative and quantitative data 

in collagen, provides additional evidence of the shared operating principles exhibited 

during MDCK cystogenesis in different culture systems.  The two versions of the ISMA 

contain identical operating principles and computer code, differing only in a limited 

number of parameters.  The ISMA-C demonstrates that delayed CELL POLARIZATION, 

which does contribute to the in silico phenotype, is only one aspect of the changes 

required to shift the ISMA to mimic MDCK cytogenesis in collagen.  It also shows that it 

is not necessary to alter the rate of LUMEN expansion to achieve a reasonable measure of 

similarity, and that the differing lumen sizes observed in the different in vitro culture 

conditions are likely due to differences in lumen initiation time and cell number. 

The ISMA-C provides a testable prediction of the behavior of MDCK cells in 

collagen when their axis of division is altered.  According to the results of ISMA-C 

experiments, when the axis of cell division is randomized or reversed, overall quantitative 

cyst behavior will not change significantly, but only a tiny percentage of cysts will 

develop single lumens.  The most important conclusion that can be derived from the 
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development and validation of the ISMA-C is that it further validates the ISMA and the 

specification used to achieve the targeted attributes.  The ISMA-C survived falsification 

from a number of new quantitative measures of data, almost doubling the quantitative 

measures of similarity achieved.  It provides significant evidence that MDCK cells in 

vitro follow the same set of operating principles in varied environmental conditions. 
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5. Summary 
We presented an idea: under the conditions of epithelial cell growth in culture, 

molecular cell biology manifests at the cell level in what can described as a small set of 

operating principles that are responsible for the characteristic in vitro phenotypic 

attributes.  We anticipated needing to identify and understand the operating principles in 

order to better understand how specific, detailed subcellular events may be linked to 

attributes of systemic EMT6 spheroid growth or MDCK cell cystogenesis.  Our method 

and approach are diagrammed in Figure 1.1.  We designed, refined, and tuned quasi-

autonomous software components that, upon execution, formed abstract analogues.  We 

showed that measures of behaviors during simulated growth were similar to available 

wet-lab data using quantitative similarity measures.  We submit that our analogue 

mechanisms, with emphasis on the explicit AXIOMS, may stand as a plausible, abstract 

hypothesis for what was observed during in vitro growth experiments.  

Because analogue components are quasi-autonomous, when the current set of 

targeted attributes is expanded one at a time, it is relatively straightforward to revise 

analogues to match each new, expanded set.  We achieved the targeted attributes with 

SMS and ISMA CELLS that exist in three states (though the ISMA required LUMEN and 

MATRIX components as well).  When the attribute lists are expanded (even to include 

pathological attributes of drug treatments), it is straightforward to add new cell states that 

possess different axiomatic operating principles.  A future challenge will be to build a 

parallel system in which each (or some) atomic CELL component and its operating 

principles are replaced with a composite CELL object containing a set of interacting 

components intended to map to modular components within epithelial cells.  During 
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INTRACELLULAR interaction, specific internal components would each use a portion of the 

same local environment information to act on other internal components such that actions 

are essentially identical to the current events that occur in vitro.  The resulting growth 

characteristics would be indistinguishable from those described herein.  The two systems 

could be iteratively advanced in parallel as new information and data were added to the 

set of targeted attributes. 

While many avenues for further exploration using both the SMS and ISMAs 

present themselves, the most important may yet be undiscovered.  This report 

demonstrated that agent-oriented models of disparate systems could be developed using a 

unified approach; build a list of targeted attributes describing a referent system, create a 

specification that might achieve those attributes, implement analogues that execute that 

specification, and then iteratively refine the analogues (potentially with new in vitro 

validating data).  The resulting analogues and the process by which they are achieved can 

increase our knowledge of the underlying referent system and also of the process of 

modeling creation in and of itself.  These analogues can be independent of modeling 

framework, programming language, in vitro referent, resolution and dimensionality, as is 

readily apparent when the SMS and ISMA are compared, which have almost none of 

these in common.  Yet due to the similar approach taken, the lessons learned in the 

creation of the SMS could be successfully applied during the development of the ISMA.   

Although the underlying approach evolved during the process, it was not 

necessary to begin, philosophically, from scratch.  It is our hope that future modeling 

efforts, whether seeking to mimic behaviors of tumor spheroids, MDCK cystogenesis, or 

other novel phenomena, can utilize the approach detailed herein to significantly reduce 
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the time required for analogue creation and refinement.  In addition, we anticipate that the 

clear contribution to the success of the ISMA from our active wet-lab collaboration will 

encourage readers to pursue similar collaborations.  This report should provide ample 

evidence of the benefits to the wet-lab researcher of increased understanding, quantitative 

robustness, and efficient and economical hypothesis testing and generation.  Whether the 

reader is focused on cell biological processes, morphogenesis, or other phenomena, we 

are confident that these techniques and results provide a strong philosophical foundation 

for the creation and revision of cell biological analogues. 
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7. Appendix 1. 
Parameter sweeping results.   
Experiments followed the same design as in Figures 2 and 3.  Designations are the same 

as in Figures 2 and 3.  Parameters changed from settings in Table 2 are listed within each 

Figure.  Figure 1 to 5 used the TS ISMA.  Figure 6 through 80 used the LS ISMA. Except 

for S11-1 to S11-5, all parameters were fixed except the single parameter being varied.   

 

 

Figure 1 to 5: TS ISMA. 

Figure 6 to 9: varied wedgeArea.   

Figure 10 to 13: varied lambdaArea.   

Figure 14 to 17: varied stableTargetArea.   

Figure 18 to 23: varied cellCycle.   

Figure 24 to 27: varied stableCycleDelay.   

Figure 28 to 31: varied lambdaPerim.   

Figure 32 to 35: varied polarDelay.   

Figure 36 to 39: varied shiftDelay with high stableRatio.   

Figure 40 to 44: varied lgrSubtract.   

Figure 45 to 48: varied doublingArea.   

Figure 49 to 52: varied multiplier.   

Figure 53 to 60: varied lumenGrowthRate.   

Figure 61 to 64: varied deathRateLumen.   

Figure 65 to 68: varied deathRateEpi.   

Figure 69 to 72: varied dyingShrinkRate.   

Figure 73 to 76: varied clusterProb.   

Figure 77 to 80: varied stableRatio. 
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Appendix 1, Figure 2. TS ISMA with reversed DIVISION
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Appendix 1, Figure 3. TS ISMA with no LUMINAL CELL DEATH
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Appendix 1, Figure 4. TS ISMA with polarDelay = 130
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Appendix 1, Figure 5. TS ISMA with polarDelay = 130 and shiftDelay = 140
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Appendix 1, Figure 6. Varied wedgeArea: w = 20
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Appendix 1, Figure 7. Varied wedgeArea: w = 40
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Appendix 1, Figure 8. Varied wedgeArea: w = 120
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Appendix 1, Figure 9. Varied wedgeArea: w = 160

0 2 4 6 8 10

0
20

00
40

00
60

00
80

00

Days

Cy
st

 a
re

a 
in

 u
m

2

B.

● ●
●

●
●

●
●

●
●

●

●
●

●

●
● ●

●
●

●
●

● ● ● ●
●

●
●

●
●

●

● ● ●
●

●
●

●
●

●
●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

Days

M
ea

n 
ce

ll a
re

a 
in

 u
m

2

C.

● ●

●
●

●
● ● ● ● ●

●
●

●

●

●

● ● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Ra
tio

 o
f c

el
lu

la
r a

re
a 

to
 c

ys
t a

re
a

D.

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●
● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

● ●
● ●

●

●
●

●

●

●

● ●
● ●

●

●
●

●

● ● ● ●
● ● ● ● ●

●

● ● ● ●
● ● ● ● ●

E.
0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

●

●
●

●

●

●

●

●

● ●
●

●
●

● ● ● ●

F.
175



0 2 4 6 8 10

0
5

10
15

20
25

30

Days

Ce
ll n

um
be

r

A.

●
●

●

●

●

● ●
● ●

●

●
●

●
●

●

●
● ● ● ●

Appendix 1, Figure 10. Varied lambdaArea: la = 0.5
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Appendix 1, Figure 11. Varied lambdaArea: la = 2.5
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Appendix 1, Figure 12. Varied lambdaArea: la = 7.5
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Appendix 1, Figure 13. Varied lambdaArea: la = 10
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Appendix 1, Figure 14. Varied stableTargetArea: sta = 12
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Appendix 1, Figure 15. Varied stableTargetArea: sta = 24
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Appendix 1, Figure 16. Varied stableTargetArea: sta = 72
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Appendix 1, Figure 17. Varied stableTargetArea sta = 96
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Appendix 1, Figure 18. Varied cellCycle: cc = 35
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Appendix 1, Figure 19. Varied cellCycle: cc = 50
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Appendix 1, Figure 20. Varied cellCycle: cc = 60
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Appendix 1, Figure 21. Varied cellCycle: cc = 80
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Appendix 1, Figure 22. Varied cellCycle: cc = 100
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Appendix 1, Figure 23. Varied cellCycle: cc = 140
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●Appendix 1, Figure 24. Varied stableCycleDelay: scd = 0.5
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Appendix 1, Figure 25. Varied stableCycleDelay: scd = 0.7
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Appendix 1, Figure 26. Varied stableCycleDelay: scd = 0.9
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Appendix 1, Figure 27. Varied stableCycleDelay: scd = 0.95
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Appendix 1, Figure 28. Varied lambdaPerim: lp = .5
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Appendix 1, Figure 29. Varied lambdaPerim: lp = 1.25
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Appendix 1, Figure 30. Varied lambdaPerim: lp = 5
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Appendix 1, Figure 31. Varied lambdaPerim: lp = 10
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Appendix 1, Figure 32. Varied polarDelay: pd = 10
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Appendix 1, Figure 33. Varied polarDelay: pd = 21
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Appendix 1, Figure 34. Varied polarDelay: pd = 84
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Appendix 1, Figure 35. Varied polarDelay: pd = 200
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Appendix 1, Figure 36. Varied shiftDelay with stableRatio = 100000: sd = 50
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Appendix 1, Figure 37. Varied shiftDelay with stableRatio = 100000: sd = 100
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Appendix 1, Figure 38. Varied shiftDelay with stableRatio = 100000: sd = 250
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Appendix 1, Figure 39. Varied shiftDelay with stableRatio = 100000: sd = 300
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Appendix 1, Figure 40. Varied lgrSubtract: lgrs = 14
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Appendix 1, Figure 41. Varied lgrSubtract: lgrs = 20
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Appendix 1, Figure 42. Varied lgrSubtract: lgrs = 40
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Appendix 1, Figure 43. Varied lgrSubtract: lgrs = 54
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Appendix 1, Figure 44. Varied lgrSubtract: lgrs = 75
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Appendix 1, Figure 45. Varied doublingArea: da = 20
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Appendix 1, Figure 46. Varied doublingArea: da = 30
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Appendix 1, Figure 47. Varied doublingArea: da = 50
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Appendix 1, Figure 48. Varied doublingArea: da = 80
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Appendix 1, Figure 49. Varied multiplier: m = 0.3
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Appendix 1, Figure 50. Varied multiplier: m = 0.5
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Appendix 1, Figure 51. Varied multiplier: m = 0.7
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Appendix 1, Figure 52. Varied multiplier: m = 0.8
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Appendix 1, Figure 53. Varied lumenGrowthRate: lgr = 0
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Appendix 1, Figure 55. Varied lumenGrowthRate: lgr = 0.002

0 2 4 6 8 10

0
20

00
40

00
60

00
80

00

Days

Cy
st

 a
re

a 
in

 u
m

2

B.

● ●
●

●
●

●
●

●
●

●

● ●
●

●

●

● ●
●

●
●

● ● ● ●
●

●
●

●
●

●

● ● ● ● ●
●

●
●

●
●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

Days

M
ea

n 
ce

ll a
re

a 
in

 u
m

2

C.

● ●

●
●

●
● ● ● ● ●

● ●
●

● ●

●
● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Ra
tio

 o
f c

el
lu

la
r a

re
a 

to
 c

ys
t a

re
a

D.

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●
●

●
●

● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

● ●
● ●

●

●
●

●

●

●

● ●
● ●

●

●
●

●

●
● ●

●
●

●
●

●
●

●

●
● ●

●
●

●
●

●
●

E.
0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

F.
221



0 2 4 6 8 10

0
5

10
15

20
25

30

Days

Ce
ll n

um
be

r

A.

●
●

●

●

●

● ●
● ●

●

●
●

●

●

●

● ● ● ● ●

Appendix 1, Figure 56. Varied lumenGrowthRate: lgr = 0.0025
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Appendix 1, Figure 57. Varied lumenGrowthRate: lgr = 0.0035
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Appendix 1, Figure 58. Varied lumenGrowthRate: lgr = 0.004
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Appendix 1, Figure 59. Varied lumenGrowthRate: lgr = 0.005
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Appendix 1, Figure 60. Varied lumenGrowthRate: lgr = 0.006

0 2 4 6 8 10

0
20

00
40

00
60

00
80

00

Days

Cy
st

 a
re

a 
in

 u
m

2

B.

● ●
●

●
●

●
●

●
●

●

● ●
●

●
●

●
●

●

●

●

● ● ● ●
●

●
●

●
●

●

● ● ●
●

●
●

●
●

●

●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

Days

M
ea

n 
ce

ll a
re

a 
in

 u
m

2

C.

● ●

●
●

●
● ● ● ● ●

●

●
●

●
● ● ● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Ra
tio

 o
f c

el
lu

la
r a

re
a 

to
 c

ys
t a

re
a

D.

●
●

●
●

●

●
● ●

●
●

●

●

●

●

●
●

● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

● ●
● ●

●

●
●

●

●

●

● ●
● ●

●

●
●

●

● ● ● ● ● ● ● ● ●

● ● ● ● ● ● ● ● ● ●

E.
0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

●

●
●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

F.
226



0 2 4 6 8 10

0
5

10
15

20
25

30

Days

Ce
ll n

um
be

r

A.

●
●

●

●

●

● ●
● ●

●

●
●

●

●

●
●

● ● ● ●

Appendix 1, Figure 61. Varied deathRateLumen: drl = 0.01
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Appendix 1, Figure 62. Varied deathRateLumen: drl = 0.03

0 2 4 6 8 10

0
20

00
40

00
60

00
80

00

Days

Cy
st

 a
re

a 
in

 u
m

2

B.

● ●
●

●
●

●
●

●
●

●

● ●
●

●

●
●

●
●

●

●

● ● ● ●
●

●
●

●
●

●

● ● ● ●
●

●
●

●
●

●

0 2 4 6 8 10

0
50

10
0

15
0

20
0

Days

M
ea

n 
ce

ll a
re

a 
in

 u
m

2

C.

● ●

●
●

●
● ● ● ● ●

●
●

●
●

●

● ● ● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Ra
tio

 o
f c

el
lu

la
r a

re
a 

to
 c

ys
t a

re
a

D.

●
●

●
●

●

●
● ●

●
●

●
●

●
●

●

●
●

● ● ●

0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

● ●
● ●

●

●
●

●

●

●

● ●
● ●

●

●
●

●

● ● ● ● ● ● ●
● ●

●
● ● ● ● ● ● ●

● ●

E.
0 2 4 6 8 10

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Days

Pe
rc

en
ta

ge
 o

f c
ys

ts
 w

ith
 lu

m
en

 n
um

be
r

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●

●
●

F.
228



0 2 4 6 8 10

0
5

10
15

20
25

30

Days

Ce
ll n

um
be

r

A.

●
●

●

●

●

● ●
● ●

●

●
●

●

●

●
● ●

●
● ●

Appendix 1, Figure 63. Varied deathRateLumen: drl = 0.04
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Appendix 1, Figure 64. Varied deathRateLumen: drl = 0.1
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Appendix 1, Figure 65. Varied deathRateEpi: dre = 0.0
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Appendix 1, Figure 66. Varied deathRateEpi: dre = 0.0002
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Appendix 1, Figure 67. Varied deathRateEpi: dre = 0.0008
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Appendix 1, Figure 68. Varied deathRateEpi: dre = 0.0016
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Appendix 1, Figure 69. Varied dyingShrinkRate: dsr = 1.75
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Appendix 1, Figure 70. Varied dyingShrinkRate: dsr = 4.5
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Appendix 1, Figure 71. Varied dyingShrinkRate: dsr = 13.5
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Appendix 1, Figure 72. Varied dyingShrinkRate: dsr = 18
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Appendix 1, Figure 73. Varied clusterProb: cp = 0
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Appendix 1, Figure 74. Varied clusterProb: cp = 0.4
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Appendix 1, Figure 75. Varied clusterProb: cp = 0.9
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Appendix 1, Figure 76. Varied clusterProb: cp = 1
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Appendix 1, Figure 77. Varied stableRatio: sr = 0.125
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Appendix 1, Figure 78. Varied stableRatio: sr = 0.25
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Appendix 1, Figure 79. Varied stableRatio: sr = 1.0
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Abstract 
Madin-Darby canine kidney (MDCK) cells undergoing cystogenesis in vitro is a scientifically useful model 

of epithelial morphogenesis.  The cysts formed in collagen and Matrigel are qualitatively similar, consisting 

of a single layer of epithelial cells surrounding a hollow lumen.  However, differences in key quantitative 

measures of cyst growth, including cell number and cyst and lumen size, indicate that some cell behaviors 

are different within the two culture systems.  We recently described an agent-oriented, agent-directed ana-

logue of MDCK cystogenesis in Matrigel.  It utilized a cellular Potts model and achieved qualitative and 

quantitative validation targets using empirical parameter tuning.  Within this report we highlight steps taken 

to convert the cellular Potts model framework to one based upon an agent-oriented approach.  If measures 

of cell death are ignored, the only parameters that required adjustment to allow the analogue of cystogene-

sis in Matrigel to mimic MDCK cystogenesis in collagen were those controlling cell division and polariza-

tion.  These data indicate that in addition to delayed cell polarization, cell division in collagen is likely 

slower than in Matrigel.  The reported results support the hypothesis that MDCK cells use the same basic 

operating principles to create cysts when cultured in Matrigel or collagen.  

1.  INTRODUCTION 

In vitro cystogenesis by MDCK cells is a useful model of epithelial morphogenesis and organogenesis.  

Growth of cysts in culture mimics many behaviors known to occur during epithelial organ development.  

When MDCK cells are cultured in Matrigel or collagen their behavior follows the same qualitative pattern, 

with cell division leading to cell polarization, lumen creation, and lumen expansion [1].  However, some 
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features, including cyst size and the onset of lumen formation, are obviously different, as documented in [1].  

Available evidence from in vitro experimentation does not indicate whether the differences are the result of 

cells following similar operating principles within different environments, or whether events within colla-

gen cultures are a consequence of operating principles having one or more fundamentally different features. 

The development, study, and challenge of agent-oriented analogues of in vitro systems are a new approach 

to achieving an improved understanding of cell biology.  Once properly validated, such analogues provide 

valuable new insight into mechanisms that may be responsible for referent system behaviors.  An in silico 

MDCK analogue of cell growth within Matrigel cultures (called ISMA-M) was recently reported [2], along 

with novel quantitative data used for validation.  The focus of this report is new in vitro data for MDCK 

cystogenesis in collagen.  The ISMA-M was iteratively refined so that simulation results mimicked most of 

that data: the resulting analogue is called an ISMA-C.  Only parameters influencing cell number and the 

timing of lumen initiation were altered, yet the new ISMA-C survived strong falsification challenges.  

Measures of events during simulations provided values for ISMA-C cell number, cyst and lumen size, 

mean cell area, the ratio of cellular to cyst area, and lumen number percentages that were acceptably similar 

to those observed in vitro.  Within ISMA-C, cyst and lumen size are linked to cell number and onset of lu-

men formation.  We hypothesize that the same is true in collagen cultures. This paper demonstrates that a 

single in silico analogue, when parameterized differently, can mimic in vitro results generated using differ-

ent culture systems.  It also serves to illustrate the usefulness of the Iterative Refinement Protocol [2-5] and 

sets the stage for future modeling and simulation efforts. 

2.  METHODS 
Hereafter, to avoid confusing wet-lab with simulated features and behaviors, we use SMALL CAPS when re-

ferring to the latter.  To generate quantitative data for ISMA-C validation, MDCK cells were grown sus-

pended within collagen (2 mg/ml) for ten days.  Daily samples were fixed and imaged using confocal mi-

croscopy, as done previously for Matrigel cultures [2].  Although a higher cell density was used for 

collagen relative to Matrigel cultures, the frequency of cell clustering was lower.  That was because clusters 

and cysts in Matrigel form on top of a layer of 100% Matrigel as opposed to being fully suspended, as was 

the case in collagen.   

The detailed descriptions in Engelberg et al. [2] for the ISMA system, parameters, and computational 

methods apply here.  A considerably abridged description follows.  The ISMA-C was constructed so that 

components and mechanisms map to in vitro counterparts.  The system included CELLS, LUMINAL space, 

and EXTRACELLULAR MATRIX.  Components existed on a 2D hexagonal grid in which CELLS and LUMEN 

occupied multiple grid locations with the remaining space classified as MATRIX (Fig. 1).  ISMA-C was im-

plemented using the CompuCell3D [3] cellular Potts model framework and custom code (as described be-

low).  Individual CELLS could expand, DIVIDE, change shape, create LUMENS, move, or change state de-

pending on their internal variables and external environment (Fig. 2).  CELLS applied operating principles 

from specifications developed from a set of targeted in vitro MDCK cystogenesis attributes.  Some of these 
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operating principles, such as CELL DIVISION, were modeled on the mechanisms observed within in vitro cul-

ture. 

 
An Iterative Refinement Protocol [4-7] was used to adjust CELL behaviors. The IR Protocol is as follows: 

select a set of targeted attributes that describe behaviors of the referent in vitro system; specify and then 

implement an analogue to mimic these targeted attributes; falsify the analogue using Similarity Measures 

(SMs) based on in vitro data specific to the selected targeted attributes; modify the analogue code and/or 

parameters until it survives falsification.  When this is complete, the analogue is validated for that set of 

targeted attributes.  To increase the behavior space captured by the analogue the IR Process is continued; 

expand the list of targeted attributes so that the current analogue is falsified by SMs based on in vitro data 

specific to the new targeted attribute; refine the code and/or parameters until the analogue survives falsifi-

cation.  The new collagen data provided a strong challenge to ISMA-M, which was falsified when using the 

parameter settings in [2].  To obtain an ISMA-C that would survive falsification, ISMA-M parameter set-

tings were iteratively modified until a satisfactory match to in vitro data was achieved.   

In order to mimic the observed smaller cell numbers during the first four days, clusterProb was reduced to 

0.7 from 0.8 and cellCycle was increased from 42 to 100 (the latter maps to 50 hours).  Following that re-

finement the ISMA-C achieved some similarity targets, but LUMENS formed too early.  The value of po-

larDelay was adjusted until LUMEN formation in silico matched that in vitro.  Surprisingly, no additional 

changes to parameter settings were required.  The underlying code was not modified to produce these re-

sults.   

The cellular Potts model is a modified cellular automata containing one or more CELLS, each occupying 

multiple locations on a grid, allowing for the simulation of CELLS with varied size and shape [8, 9].  During 

a simulation cycle, individual locations on the borders of a CELL can become contained to a neighboring 

CELL according to probabilistic rules.  One rule is that each CELL has an ideal size (number of grid loca-

 
Figure 1.  In silico MDCK analogue CYST cross sections.  Note 
that a regular hexagon in hexagonal space maps to a circle in 
continuous space.  Images are from a single simulation run using 
parameter settings for growth in simulated Matrigel.  Growth in 
simulated collagen produces similar qualitative results.  CELLS are 
UNPOLARIZED (green), POLARIZED (gray) or stabilized (orange).  
CELL-CELL and CELL-MATRIX borders are red; CELL-LUMEN borders 
are yellow; LUMENS are blue.  
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tions), and any grid location change that brings the CELL closer to that ideal is favorable.  The Com-

puCell3D framework implements the CPM, and allows users to simulate biological processes, automating 

things such as CELL size and shape change, CELL ADHESION, CELL DIVISION, and graphical visualization. 

The ISMAs used agent-oriented, agent-directed methods.  The system contained CELL and LUMEN agents, 

as well as an agent that executed the underlying cellular Potts model (cellular Potts models are detailed in 

[8, 9]).  CELL DIVISION and CELL state change occurred during the execution of CELL agents, while changes 

to individual grid locations occurred during the execution of the Potts agent.  During the latter process, a 

random set of grid locations was evaluated to see if their index should change from being contained within 

a specified CELL to being contained within a neighboring CELL or LUMEN.  That protocol controlled behav-

iors such as CELL size and shape changes, LUMEN expansion, and CELL shrinkage after initiating DEATH.  To 

calculate whether a point would change its index, the Potts agent evaluated the resulting energy change, 

weighing the changes in CELL area and perimeter, the change in configuration of CELLULAR neighbors, and 

whether CELLS would be separated or internal rules violated.  The latter resulted in an energy penalty.  Spe-

cial rules governing LUMEN expansion prevented CELLS from coming into contact with multiple LUMENS.  

Each CELL had ideal area and perimeter targets.  Changes that created deviations from those targets resulted 

in higher energies and thus were less likely to occur. 

CELLS executed operating principles that dictated when they would change state, DIVIDE, create a LUMEN, 

or DIE.  CELLS had three states: UNPOLARIZED, POLARIZED, and stable.  CELL POLARIZATION and DIVISION 

occurred after a set amount of time elapsed, while LUMEN creation occurred when a POLARIZED CELL con-

tacted other CELLS and the MATRIX, but did not contact a LUMEN.  CELLS stabilized when they sensed that 

their neighboring LUMEN had reached a critical size, controlled by the parameter stableRatio.  CELL DEATH 

occurred at random, with CELLS being more likely to DIE when not in contact with the MATRIX. 

The stock implementation of CompuCell3D was designed using a grid-based and system-based approach.  

Individual CELL state change was often initiated after index change events during the Potts execution step.  

CELLS were not aware of the points contained within them, and there was no way for an individual CELL to 

execute DIVISION directly.  In order to make the process more biomimetic, we developed a custom plug-in 

that allowed the simulation to be executed from the perspective of individual CELLS.  When this plug-in 

was called, it stepped through each CELL and allowed it to evaluate its internal state and external environ-

ment, changing variables such as the target area or polarization state as a result.  In addition an MCell ob-

ject was added to each CELL to create a bidirectional mapping between CELLS and grid points.  Each CELL 

was mapped to an MCell, which contained references to the grid points contained within that CELL.  These 

modifications allowed the analogue to execute using a perspective that was more intuitive, and that mim-

icked understanding of intracellular biology, where the cell acts as the fundamental functional unit. This 

made modifications significantly easier to implement.  For example, CELL DIVISION was implemented in an 

agent-based manner so CELLS had access to information about the points contained within them, thus it was 

straightforward to randomize or invert the axis of CELL DIVISION. 
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In order to validate the quantitative results of ISMA-M and ISMA-C, similarity measures were developed 

for cell number, lumen and cyst size, mean cell area, and the ratio of cellular to cyst area [2].  Similarity 

Measure 1 (SM1) measured the percentage of in silico simulations at a given day that were within ± 25% of 

the mean in vitro value at that day, thus finding a measure of similarity between in silico and in vitro obser-

vations.  Based on knowledge of the in vitro system and previous experience designing similarity measures, 

we judged that if 50% or more simulations fell within that 25% of the in vitro mean (and thus the SM1 

value was > 0.5) for 8 out of 10 days, the simulation survived falsification for SM1.  The variance of in vi-

tro results can have a significant effect on how stringent the SM1 cutoff should be, so to measure in vitro 

variance in a way that could be directly compared to SM1, Self-Similarity Measure 1 (SSM1) was devel-

oped.  SSM1 was exactly the same as SM1, except it measured the similarity between individual in vitro 

runs and the mean value generated by these runs.  Observations with high values of SSM1 had high vari-

ance.  To directly compare the variance of in silico and in vitro results, rather than simply using the in vitro 

variance as a guide, Similarity Measure 2 (SM2) was developed. SM2 equaled the absolute value of the dif-

ference between the coefficients of variation of the in vitro data and the in silico data at each day.  A 

smaller value of SM2 at a given day indicated that the coefficient of variation was similar for in vitro and in 

silico data.  A simulation survived falsification for SM2 if the value of SM2 was less than 0.25 for 9 out of 

10 days for a given measure. 

 
Figure 2. ISMA logic and decision control flow.  CELLS step 
through five logic modules during a simulation cycle, executing 
actions according to their current state and external environment.  
Actions include the adjustment of LUMEN target area, CELL DEATH,  
adjustment of CELL area and state, creation of new LUMENS, and the 
creation of new CELLS. 
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3.  EXPERIMENTS AND RESULTS 
Cyst growth within collagen was similar to that observed during previous experiments [1].  Suspended cells 

divided to form clusters, polarized after two to three days, and formed single or multiple lumens by day 3.  

Lumens and cysts expanded in size thereafter.  Within Matrigel cultures, a change in the rate of cell divi-

sion and cell size was observed at day 6.  A similar change was observed within collagen cultures.  Growth 

slowed at roughly day 6, and mean cell size, which had decreased between days 2 and 6, leveled off.  After 

empirical parameter turning, ISMA-Cs successfully mimicked those qualitative behaviors.  Measures of 

ISMA-C simulations also mimicked quantitative measures of growth within collagen.  Prespecified similar-

Table 1.  Glossary 

Biological terminology 
Collagen.  A cell culture medium consisting of the collagen I 
extracellular matrix protein. 
Cystogenesis.  The process by which cells divide and organize 
into a hollow cyst consisting of a single (usually) layer of cells. 
Epithelial cells.  Cells that make up epithelial organs (such as 
the skin, lung, kidney), provide a barrier function, and are often 
polarized, expressing different proteins on either side. 
Extracellular matrix (ECM).  The protein component sur-
rounding cells that acts as a scaffold for cellular structure. 
Lumen  Any hollow space, often inside a cyst or duct. 
Madin-Darby canine kidney (MDCK) cell.  A particular type 
of dog kidney cell used in cell culture experiments.  Capable of 
surviving in cell culture but lacking most cancerous behaviors. 
Matrigel.  A complex cell culture medium secreted by Engel-
breth-Holm-Swarm (EHC) mouse sarcoma cells containing a 
number of extracellular matrix proteins. 
Morphogenesis.  The general process of cellular organization 
into simple or complex structures. 
Polarization.  The process or state in which cells express varied 
proteins in opposite sides, while adjacent sides are in contact 
with neighboring cells. 

Modeling terminology 
Biomimetic.  Something that imitates biology. 
Cellular Potts model (CPM).  A cellular automata in which 
CELLS can occupy multiple locations to model cell size and 
shape change. 
CompuCell3D.  A CPM-based framework that automates cell 
size change and visualization. 
ISMA.  In Silico MDCK Analogue 
ISMA-M.  An ISMA parameterized to mimic MDCK cysto-
genesis within Matrigel culture. 
ISMA-C.  An ISMA parameterized to mimic MDCK cysto-
genesis within collagen culture. 
MCell.  An ISMA object that allows CELLS to access the points 
contained within them. 
Operating principle.  A rule or set of rules that translates in-
ternal state and environmental cues into observable actions. 
Iterative Refinement (IR) process.  The process by which the 
ISMA is refined and improved over time. 
Similarity Measure.  A numerical measure of the similarity be-
tween in vitro and in silico data. 
Stabilized.  An in silico CELL state in which CELL DIVISION is 
slowed and other operating principles change.  Hypothesized to 
have an in vitro equivalent. 
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ity measures (SM1 and SM2) were achieved for CELL number, CYST size, mean CELL area, and ratio of 

CELLULAR to CYST area, but not for LUMEN size.  In order to achieve similarity for CELL number, the pa-

rameters clusterProb and cellCycle were altered so that in silico growth matched in vitro growth during 

days 1-5 (Fig. 3A).  ISMA-C simulations produced CELL growth numbers similar to in vitro during days 6-

10 without additional tuning.  However, CELL stabilization occurred at day 8 instead of at day 6 as observed 

in vitro. 

 
Cells within collagen polarize and initiate lumens somewhat slower than did their counterparts within Ma-

trigel (Fig. 3B).  In order to mimic that behavior, the variable polarDelay (which controls the delay before 

CELLS change to the POLARIZED state) was empirically tuned until mean LUMEN formation time was similar 

to that observed in vitro.  Doing so required increasing polarDelay from 42 (which maps to 21 hours) to 

120 simulation cycles (which maps to 60 hours).  With that parameter setting, simulations produced mean 

CYST and LUMEN sizes that were remarkably similar to those observed in vitro (Fig. 3B).  It is important to 

note that variables controlling LUMEN expansion, the effect of CELL stretching on LUMEN expansion, and 

the mean size of CELLS were not altered, yet ISMA-C results closely mimicked those observed in vitro, in-

dicating that polarDelay was the primary driver between these varied simulation results. 

 
Figure 3. Quantitative values for in vitro and in silico cystogenesis 
in collagen.  Mean values and standard deviations for (A) cell 
number per cyst, (B) cyst (solid circles) and lumen (open circles) 
area, (C) mean individual cell area and (D) ratio: cellular to cyst 
area.  Gray: in vitro data taken each day for ten days from 10 cysts.  
Black: data taken from 50 CYSTS over ten DAYS using specified 
parameter settings.  
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Mean cell size within collagen did not differ significantly from that within Matrigel.  The good quantitative 

match between mean ISMA-C and in vitro cell sizes (Fig. 3C) was evidence that the ISMA-C analogue was 

functioning as intended.  Lumen size within in vitro Matrigel and collagen culture differed significantly, 

especially at later stages of growth.  It was thus encouraging to observe that the ratio of CELLULAR to CYST 

areas during ISMA-C simulations were quite similar to those observed in vitro. 

In collagen, the percentage of cysts with multiple lumens was larger than in Matrigel.  The percentage of 

ISMA-C CYSTS with multiple LUMENS was similar to that observed within collagen (Fig. 4A).  In addition, 

the percentage of CYSTS with a single lumen surrounded by a single layer of CELLS (ideal cysts) was also 

quite similar to in vitro percentages (Fig. 4B).  Delaying the formation of ISMA-C LUMENS caused the per-

centage of CYSTS with multiple LUMENS to increase sufficiently to match in vitro percentages without fur-

ther parameter adjustments. 

Cells within cysts in collagen are more likely to undergo apoptotic cell death than are counterparts in Ma-

trigel [1].  The percentage of ISMA-C CYSTS in which DYING CELLS were observed (results not shown) did 

not significantly differ from earlier, published ISMA-M percentages and thus failed to match percentages 

observed in collagen.  Future ISMA-C experiments are needed to explore the consequences of altering pa-

rameters that control CELL DEATH in order to obtain frequencies that better match in vitro, while retaining 

the already achieved attribute similarities.   

In order to mimic the differences in cell number and onset of lumen formation observed within collagen 

cultures, three ISMA-M parameters were altered.  The resulting ISMA-C not only mimicked quantitative 

measures for cell number and lumen initiation in collagen cultures, it also mimicked behaviors for cyst size, 

 
Figure 4. Percentage of cysts with specified types of lumens.  (A) 
Percentage of cysts with single (solid circle) or multiple (open 
circle) lumens.  (B) Percentage of cyst with a single lumen 
surrounded by a single layer  (SLSL) of cells.  Gray: in vitro data 
for 10 cysts taken each day for ten days.  Black: in silico data for 
50 CYSTS using specified parameter settings.  Solid lines: 
continuous ISMA-C CYST growth.  Dotted lines: discrete MDCK 
cyst growth in collagen.  
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lumen size, mean cell size, the ratio of cellular to cyst area, the percentage of cysts with single and multiple 

lumens, and the percentage of single lumen, single layer cysts. 

5.  DISCUSSION  
In this report we demonstrate use of the Iterative Refinement Protocol.  ISMA-M, an analogue developed 

previously to mimic quantitative measures of MDCK cell growth in Matrigel, was falsified by addition of 

measures of cystogenesis in collagen to its targeted attribute list.  Parameters within the ISMA-M were 

modified to allow the resulting ISMA-C to survive falsification by most of the new data.  Measures taken 

during ISMA-C simulations quantitatively mimicked corresponding measures within collagen.  We believe 

it is informative to note which parameters had to be altered in order to produce ISMA-C, and which could 

be left unchanged.  To mimic cell numbers, parameters controlling both the initial CELL number and CELL 

DIVISION rate were altered.  With further refinement, we may learn that a higher rate of CELL death will 

produce later stage numbers that match the lower in vitro cell numbers.  However, it is unlikely to be the 

case during the first four days of growth.   

In order to mimic observed values for the onset of lumen formation, the ISMA-M value of polarDelay was 

increased.  So doing was in agreement with the hypothesis proposed in [1]: the primary difference between 

cyst growth in Matrigel and collagen is due to delayed polarization (although our simulation also predicts a 

decrease in the rate of cellular division).  We noted that values of CYST and LUMEN size generated during 

ISMA-C simulations were remarkably close to values observed within collagen, even though ISMA-C were 

not modified specifically to achieve that result.  That evidence supports our hypothesis that ISMA-C 

mechanisms have in vitro counterparts.   

ISMA-C simulations achieved other validation targets without further modification.  We take this as addi-

tional evidence that ISMA-C operating principles do have in vitro MDCK counterparts.  The percentages of 

CYSTS with single or multiple LUMENS were remarkably similar to in vitro percentages.  Although ISMA-C 

CELLS POLARIZED and formed LUMENS later than in ISMA-M simulations, the number of ISMA-C CELLS 

within clusters when LUMENS first appeared was similar to that observed in ISMA-M simulations.  It may 

be that the timing of the onset of lumen formation in vitro is primarily a function of cell number. 

In order to implement these simulations using agent-oriented modeling techniques, it was necessary to 

reengineer and expand certain aspects of the modeling framework.  Cellular Potts models are useful be-

cause they can simulate aspects of cell biology like cell size and shape change, but they are not fundamen-

tally agent-oriented.  By expanding the CompuCell3D framework to allow direct execution of the CELL 

agents, we changed the perspective used to create the underlying analogue.  Using a perspective consistent 

with prior simulation efforts allowed concepts and techniques such as the Iterative Refinement Protocol to 

be fully utilized.  It also allowed for the direct mapping from in vitro to in silico operating principles and 

from in silico observations to in vitro hypotheses.  By executing individually and only requiring informa-

tion about their immediate neighbors, CELLS maintain a degree of autonomy.  Increasing the quasi-
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autonomous nature of agents within simulations will encourage good modeling practices and make map-

ping from in silico to in vitro more natural and direct. 

ISMA-C CELLS stabilize later, at roughly day 8, rather than at day 6 as observed in vitro.  This difference 

indicates that either the ISMA-C mechanisms are a flawed representation of in vitro counterparts, or that a 

different value of LUMEN size is needed.  Further, ISMA-C simulations do not mimic the increased rate of 

cell death observed in vitro.  Additional iterative refinement is needed to discover an ISMA-C that does not 

exhibit those discrepancies.  Modification of stableRatio is expected to cause CELLS to stabilize earlier.  

Changes in the parameters influencing CELL DEATH will increase the frequency of CELL DEATH, but that 

change will impact those features that currently validate.  Further successful refinement will expand ISMA-

C’s phenotype so that it covers a larger portion of the MDCK culture system’s in vitro phenotype.  The cur-

rent results support the hypothesis that in achieving cystogenesis, MDCK cells use the same basic operating 

principles when cultured in Matrigel or collagen.  

6.  IMPLEMENTATION TOOLS 
The model was implemented using CompuCell3D v 3.2.1 (http://compucell3d.org/) and custom code.  

CompuCell3D is a grid-based cellular Potts model simulation framework.  Simulation data was stored in a 
MySQL v 5.0 (http://www.mysql.com/) database and analyzed using R v 2.10.1 (http://www.r-project.org).  
Simulations were executed using a Dell Poweredge 1900 server with two 4-core 2.33 GHz 64 bit Intel 
Xeon processors, 8 GB of RAM and a 450 GB hard drive.  The system software was Ubuntu 8.04 LTS 
(Linux kernel 2.6). 

ACKNOWLEDGMENTS 
We would like to thank members of the UCSF BioSystems group and the Mostov lab for helpful sug-

gestions and discussion.  We gratefully acknowledge research funding provided by the CDH Research 
Foundation. 

REFERENCES 
[1] Martín-Belmonte, F.; W. Yu; A.E. Rodríguez-Fraticelli; A.J. Ewald; Z. Werb; M.A. Alonso; K. Mostov. 2008. 

“Cell-Polarity Dynamics Controls the Mechanism of Lumen Formation in Epithelial Morphogenesis.” Curr Biol 
18:507-513. 

[2] Engelberg, J.A.; A. Datta; K.E. Mostov; C.A. Hunt. 2011. “MDCK Cystogenesis Driven by Cell Stabilization 
Within Computational Analogues.” PLoS Comput Biol (submitted). 

[3] Cickovski T.M.; C. Huang; R. Chaturvedi; T. Glimm; H.G. Hentschel, et al. 2005. “A Framework for Three-
Dimensional Simulation of Morphogenesis.” IEEE/ACM Trans Comput Biol Bioinform 2(4): 273-288. 

[4] Kim, S.H.; J. Debnath; K. Mostov; S. Park; C.A. Hunt. 2009. “A Computational Approach to Resolve Cell Level 
Contributions to Early Glandular Epithelial Cancer Progression.” BMC Syst Biol 3:122. 

[5] Hunt, C.A.; G.E. Ropella; T.N. Lam; J. Tang; S.H. Kim; J.A. Engelberg; S. Sheikh-Bahaei. 2009. “At the Biologi-
cal Modeling and Simulation Frontier.” Pharm Res 26(11):2369-2400. 

[6] Tang, J.; C.A. Hunt. 2010. “Identifying the Rules of Engagement Enabling Leukocyte Rolling, Activation, and 
Adhesion”. PLoS Comput Biol 6(2):e1000681. 

[7] Engelberg, J.A.; G.E.P. Ropella; C.A. Hunt. 2008. “Essential Operating Principles for Tumor Spheroid Growth.”  
BMC Sys Biol 2:110. 

[8] Glazier J.A.; A. Balter; N.J. Poplawski. 2007. “Magnetization to morphogenesis: A brief history of the Glazier-
Graner-Hogeweg model. In: Rejniak KA, editor. Single-Cell-Based Models in Biology and Medicine. Basel: 
Birkhäuser. pp. 79-106. 

[9] Graner F.; J.A. Glazier. 1992. “Simulation of Biological Cell Sorting Using a Two-Dimensional Extended Potts 
Model.” Phys Rev Lett 69(13): 2013-2016. 
 






