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NONPERTURBATIVE THEORY. OF SINGLE/MULTIPHOTON PROCESSES 

* IN ATOMS AND MOLECULES INDUCED BY INTENSE LASER FIELDS 

Albert M. F. Lau 

Department of Physics and Lawrence.Berkeley Laboratory 
University of California, Berkeley, California 94720 

April 21, 1975 

ABSTRACT 

A quantum nonperturbative theory is given for the problem of a 

general n discrete-level atomic/molecular system interacting with a 

strong single-mode/multimode radiation field. The atomic/molecular 

~l) energy-level structures are modified due to interaction with the laser 

-..0 field. These energy level shifts are derived in the rigorous solution. 

~\1 to the adiabatic eigenvalue problem of the charge~field system, involv-

ing a simple iterative procedure. The task of solution is simplified 

C) by recurrence relations between matrices connecting probability amplt-

) 

0 

tudes of successive photon numbers. New formulae for ealculating prob-

ability of single/mul tiphoton transitions ( i ) between three resonant 

shifted levels and ( ii) between some cases of two near-resonant shifted 

levels are derived. This general formalism can be applied to calculate 

transition probabilities of various atomic/molecular photo processes 

of interest. Numerical values are obtained for the inelastic cross 

section of the slow-collisional process Li + H(xiE+) ~ Li + H(A1E+ or 

B1~) induced by a A = 0.826 ~ field of intensities 109-1012 W/cm2 

and for dissociation (via B1~) cross section of LiH molecule by 

absorption of 4 photons in a YAG:Nd3+ (A= 1.0648 ~) laser field 

over intensities 109-8 x 1011 W/cm2• The transition probabilities of 

-2-

Na (3s + 5s by absorption of two photon of .A = 0.60233~ - 0.602,396 ~) 

and of Li (2s ~ ,3s by absorption of eight photons of A = 2.9406 ~-

2.945 ~) irradiated by a strong pulse are calculated. These transition 

probabilities per pulse can be optimized to be ~ by varying parameters 

of a (say) Gaussian pulse. Finally a parametric study is carried out 

for the process where a molecular system is interacting with two intense 

radiation fields of different wavelengths. Owing to potential barrier 

shift due to the much more intense field, the molecular system penetrates 

into an otherwise-inaccessible region in the potential le.vel where it . 

is allowed to radiate to a lower level by emitting photons at a second 

wavelength. 
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I. INTRODUCTION 

To our knowledge, all the previous nonperturbative (or "exact") 

solutions1 of the quantum mechanical problem describing discrete-level 

atomic systems interacting with the electromagnetic field of finite 

number of modes are restricted to cases where all antiresonant terms 

are neglected a priori (rotating wave approximation) and where only 

single-photon transitions between a pair of levels are considered. As 

such they are inapplicable to multiphoton (of the same mode) transition 

between a pair of atomic levels. With the above restriction removed, 

Kroll and Watson2 have studied the problem of multiphoton transitions 

between a 2-level atomic/molecular system interacting with a single-

mode high-intensity fieid. In this part of the work, we investigate the 

problem further by considering single/multiphoton processes in any n-

level atomic/molecular system interacting with a single-mode intense 

field, where n ~ 3. 

Since our present work is similar in spirit to that of Kroll 

and Watson (thereafter referred to as I), it serves as introduction here 

to briefly describe their work. They consider the problem mainly in 

the context of slow atomic3 collision in an intense radiation field. 

Because of the near-adiabatic motion, the atoms effectively form a 

molecule--a quasimolecule. In their work, the relative motion of the 

atoms is. approximated by classical orbits along quasimolecular potential 

curves. The adiabatic eigenvalue problem for the field-charge system 

is then solved rigorously by a simple iterative procedure. Level 

shifts due to radiative interaction arise naturally. Multiphotonic 

transition between two resonant/near-resonant levels at certain inter-

nuclear separation can be calculated by formulae similar to the 

Landau-Zener formula. 

-4- ··.........--

Our present work differs from theirs in treating the more 

general n (~3)-level atomic/molecular system (interacting with a 

single-mode field). We derive new formulae for calculating transition 
1 

probability between three resonant levels and between two near-resonant 

levels of certain nature. We give a dctai.led analysis of transition 

between shifted levels due to power variation, though the idea andla 

rough estimate have been given in I. We also apply the analysis to 

a different process--themultiphoton dissociation of molecules. 

With multilevel systems, several as well as two levels can be 

in one- or mul tiphoton resonant t:ransition with each other. After 

setting up the Schrodinger equation appropriate to our problem (Sec. II), 

we detail the solution of the adiabatic eigenvalue problem for these 

cases (Sec. III) and derive some new'transit1on formulae (Sec. IV). The 

dependency on orbit of the photon-electronic coupling is considered in 

Sec. V, where we also present the results of calcualtions on the colli-

sional cross section of the Li + H system over a range of field 

intensity 9 12 2 ( 10 - 10 watt/em ). 

The general formalism is not limited to treating collisional 

processes of atoms/molecules. For example, with slight modification, 

we can apply it to one- or multiphoton dissociation of molecules, where 

the internuclear vibrational motion take the place of the collisional 

motion (Sec. VI) and to transition between shifted levels of an atom 

irradiated by a strong laser pulse, whose temporal variation of 

intensity gives rise to nonadiabatic transition (Sec. VII). For the 

former case, we apply it to the 4-photon dissociation of LiH molecule 

from the ground state xlE+ via the BlTI state. The molecule is in 

an intense radiation field of wavelength A = 1.0648~ (YAG:Nd3+). The 
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thermal averaged cross section over the range of intensities 

109 - 8.0 x 1011 W/cm2 is presented. In the latter case, we consider 

the 2-photon transition in sodium atom ( Js -+ 5s) and 8-photon 

transition in lithium ( 2s -+ 5s) over a range of wavelengths. The 

transition probability may be considered to have pulse-independent 

and pulse-dependent factors. For'a given pulse-independent factor, 

one may optimize the pulse such that maximum transition probability 

of 1/2 is achieved. We have done such analysis for gaussian pulses, 

with numerical results presented for the above-mentioned atomic 

transitions. 

II. THE TIME-DEPENDENT EQUATIONS 

For concreteness, let us discuss the general theory in the 

context of slow atomic collision in an intense laser field first. 

The Schrodinger equation for a system of atoms interacting with a 

radiation field is 

ih~ = (K + H)'!' ( 2.1) 

where K is the kinetic energy operator for the atoms and 

H :: ~ + hp + h 1 • Here, ~ is the adiabatic molecular hamiltonian 

for the colliding atoms at a given internuclear separation R. Besides 

the electronic terms, hR includes in particular the Coulomb repulsion 

between the nuclei and their Coulomb interaction with the atomic 

electrons. The molecular electronic state <P c/ ~; R) and "potential 

curve" ua.(R) are given by the eigenvalue problem 

-6-

where ~ denotes the set of atomic electron coordinates, R being 

considered as a parameter. 

The Hamiltonian hp for the free radiation field with m 

number of modes excited is 

in the usual notations. Finally the interaction hamiltonian is 

h' - -L {m~ic 
i ~ 

2 } 
q. 

p. ·A(r.) -~ A(r. )·A(r.) 
....~ "' '"'~ 2m .:. .... .\;~ """' .MQ 

ic 
( 2.2) 

where i is summed over all the electrons as well as the nuclei. As 

usual in the Schrodinger picture and in plane wave modes, 

A(r) 
IWIN'I 

where V is the cavity volume .. A unitary equivalent interaction 

hamiltonian well suited for systems of bound charges like atoms and 

molecules is4 

h' 

where 

E( r) 

""" 

-L: 
i 

q. r.·E(O) +higher multiple terms , 
~~""' 

1 a 
--~A(r) cat..,..., 

( 2.3) 

Since only matrix elements of h' between two orthogonal electronic 

states (<Pa.'s) will appear in our theory, the leading nonzero matrix 

elements from the A·A term in Eq. (2.2) for intense radiation field 
~N'I . 

' 
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( N » 1) are the dipole terms (for one charge) 

while those from the A·p term are 
... jjNl 

I API 

A conservative estimate of the relative magnitude of the two kinds of 

dipole matrix elements can be obtained by considering the ratio 

which takes account of the fact that IA2
1 ( IAPI) connects states whose 

photon numbers differ by 2 (1). The numerical value is obtained with 

the assumed typical values for ua - ua to be 1iw and 

I (alr·Eia) I 
"""" 

I { al;:jJa) - a
0

• Thus we may neglect the -i·~ 

term. 

Therefore the dipole5 interaction hamiltonian we will use 

from Eq. (2.2) is 

h' L ~ p. •A(O) 
mi c .,.1. 110\ 

i 

and that from Eq. (2.3) is 

h' + I 
i 

q.r. ·E(O) 
l...U """ 

-8-

Depending on the problem there are different merits of these two forms 

of the dipole interaction hamiltonian. In particular, for treatment 

of systems in which higher levels are neglecte~ as we will do, the 

form h! makes it a better approximation. 6 We therefore would prefer 

h!. Howeve~for solving the adiabatic eigenvalue problem below, h' + 

may for some systems (e.g., the alkaline atoms) give rise to a singular 

coupling matrix (.!{+ below) while it is formally required for algebraic 

convenience to be nonsingular. Then we would use h' instead. 

For the slow collision of atoms in an intense radiation field, 

the physical situation we have in mind is as follows. The atoms are 

in collision with each other in the region of intense radiation 

field (e.g., in an open laser cavity~ Therelative motion of the atoms 

is much less than that typical of atomic electrons 

(~ ac ~ 108 em/sec). They form therefore in the adiabatic approxima-

mation a "quasimolecule." In the presence of the radiation field, all 

u (R)'s will be shifted relative to each other. The atoms collide a 

together initially along the shifted electronic energy level u~(R) 

corresponding to the molecular electronic state a. At some R's 

there will be multiphotonic resonant transition between the shifted 

electronic energy levels. And as they separate after the collision, 

the atoms have certain probability being in an excited state. We will 

assume either the intensity profile of the intense radiation is uni-

form over the collisional region and smooth and gradual in its spatial 
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boundary, so that we do not have to/consider transtion due to intensity 

variation as the atoms enter or leave the region of intense radiation 

field. 

We shall treat the near-adiabatic motion of the atomic nuclei 

classically. It has been shown in I how one may make the transformation 

from quantum picture to the corresponding approximate classical orbits. 

Instead of Eq. (2.1), one may then consider, 

= H (t)'l'' c ( 2.4) 

where H ( t) is obtained from H by replacing the operator R with c 

the classical orbit R(t). 

To solve Eq. (2.4), we let 

'1' 1 = 2:: c
13
(p,t) <jl(3(!;!R(t)) , 

(3 

where p is any coordinate representation of the photon field. 

Substituting this expansion into (2.4) we obtain 

Hie ex = u c + h c + 'cxcx pcx L ( <Pcx,h' <Pe )cf3 - Hi 
(3 

The last term on the right corresponds to collisional transition due 

to nonadiabatic motion of the nuclei. It has been treated elsewhere7 

and is negligible when the electronic energy levels are not very close 

together. We assume such are the cases we consider. The secular term 

(cpcx,h'<jlcx) in the third term on the right is in general nonzero for 

unlike atoms. It is related to the permanent dipole moment of the 

molecule in the electronic state <Pcx' and is responsible for 

radiative transition between molecular nuclei states for the same 

<Pa· Therefore, consistent with the classical orbit approximation for 

-10-

internuclear motion, we neglect the radiative transitions within the 

same electronic state and drop this term. 8 Hence 

ucxccx + hpccx + L (<Pcx,h'~e)c(3 
f3tcx 

( 2.6) 

We restrict ourselves to cases of one mode of radiation with linear 

polarization E. Let n( N - \)) be the photon-number state of the 
"" 

radiation field where N is the initial number of photons and v 

the number of photons absorbed by the quasimolecule. Since we are 

interested in intense radiation field, N is very much larger than the 

maximum v of interest. Thus we will make the excellent approximatio~ 

N-v+l:::: N-v:::. N 

Defining the probability amplitude b (a) by v 

.It \ -k (u1+nwN)dt 
ca L ivbv(cx) e 11l(N 

v 

- v) 

and making the change to dimensionless time variable 

y -

where v is any convenient constant speed, a
0 

the Bohr radius, we 

obtain from Eqs. (2.6) 

where 

wv(a) bv(cx) + ~ G±(a,e)(?v_1(f3) ± bv+lce)) 
(3 

( 2. 7) 
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F 
ao 

- .rv1lw 

1 

G±(a,e) •a (m)' ~ - E '<iit•s)i - 1tv c cpa' 
u - u i a e 

.fiw 

corresponding to the dipole5 interaction h~, and 

G±{a,a) - 0 • 

Here I laiw is the power flux or field intensity. - cT 

If hR is real, a set of the real cpa can be chosen. Then the 

matrix G+ (G_) is real and symmetric (anti symmetric). 

III. THE ADIABATIC EIGENVALUE PROBLEM 

Since we will make use of the adiabatic eigenstates of the 

whole system in the calculation of transition probabilities, we consider 

in this section the solution of the eigenvalue problem of Eqs. (2.7) 

in the adiabatic limit. Let 

b (a) -
\) 

( 3.0) 

where ~(y),,!!i) is the "adiabatic eigensolution" to be found. 

the adiabatic limit, 

da (a) 
\) 

"dY 0 

In 

-12-

Substituting these expressions into Eqs. ( 2. 7), we obtain 

= W)a) a)a) + L G±(a,e>(~v-1(8) ± av+l(e)). (J.l) 

e 

The quantities Wv(a) correspond to the photon-electronic 

We ( v, a) eigenlevels of the noninteracting hamiltonian he + hp. 

shall call them the "noninteracting eigenlevels." In absence of 

interaction, these levels may cross each other (Fig. 1). In such case 

G±(a,B) = 0 in Eq. (2.7), then 

where cv( a) are constant and hence no transit'i·on occurs. But with 

the interaction "on", 

Eq. {3.1) would yield 

G (a,B) t 0, the adiabatic eigensolutions of ± 

E's which are in general different from 

Wv(a)'s. In particular, near where there was a crossing between the 

Wv(a)'s, due to the now-present interaction between them, the Wv(a)'s 

"repel each other." As a result, the corresponding E's form a 

pseudocrossing (PC). In the adiabatic limit, the quasimolecule fol­

lows 9i particular E (a solid line in Fig. 1), at each PC all 

throughout the collision and no transition occurs. (This is related 

to the fact that for each PC at -y < O, there is a corresponding 

PC at y.) But in the nonadiabatic situation where dR/dt f O, 

transitions can occur at the PC's. 

Following I, we shall label the adiabatic eigensolution 

(E,a) by that set of index (v,a) such that at each Y .... 

Thus the same (E,;;,) switch indlc~s at each PC as indicated in 
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Fig. 1 • In the rest of the paper, we shall drop this adiabatic 

eigenindices on (E,a) whenever no confusion results. 
,... A a 

We observe that at any y if a particular (E). a'~ 0 

~ (A +/. )) o 
found, then \E(A +).)a'~ 0 for the same a but any A 

0 

are 

can be 

generated from it by 

and, 

().+).)a 
av o ( 8) for all v,8 

This can be shown simply by substitution into Eqs. ( 3.1 ). Thus we need 

only to find the (A a) adiabatic eigensolution for one ). in order 
0 0 

to know all other ().a) eigensolutions for the same a. 

In principle the sum over 8 runs over all quasimolecular 

electronic states of the pseudomolecule. However, if we are interested 

in the low-lying electron eigenlevels only, we may restrict the sum to 

an appropriate set of discrete electronic states (see examples below). 

The higher lying states may be negligible because the coupling with 

states of interests, G±( a, 8), are relatively much smaller than those of 

states included in the sum; or because their contributions are of 

higher orders. Thus restricting ourselves to a finite number n(~3) 

of discrete electronic states, we now proceed to solve Eqs. (3.1). 

It is convenient to convert at this point to matrix notation. 

Let ,2± be the 

diagonal matrix 

n x n matrix [G±(a,8)). 

((E- wv(a))oa8); and ~ 
Let D be the n x n 

""' 
be the n x 1 column 

matrix. Then Eq. (3.1) can be rewritten as, for all v 

-14-

We shall call the above n equations of a given v "the vth set of 

equations 11 and specify an individual equation in Eqs. ( 3. 2) by "the 

(v,a) equation." 

In the above equations, Rv and M± (and therefore ~v) are 

a function of R (and therefore of y). In a given quasimolecular 

system, we encounter no, two-level, and/or multilevel PC of the 

noninteracting electron-photon levels Wv(a) at different R (see 

Figs. 1 and 2). The exact procedure we follow depends on the kind of 

PC. Therefore we shall treat the no-PC, 2-level PC and 3-level PC 

cases separately below. 4nY higher-than-3-level PC cases are 

straightforward extension of the 3-level case. 

A. The No-PC Case 

Suppose we are interes·ted in finding the adiabatic eigensolution, 

say ( v = 0, a), at y. (Recall that from this we can generate all 

other (v,a) of the same a.) For not too high an intensity, we 

expect that the noninteracting eigensolution (v = O,a) will be 

dominant. Therefore we let 

( 3. 3) 

for all v,8. This implies d
0
(a) = 1. Substituting Eqs. (3.3) 

into Eqs. (3.2) and factorizing out a
0
(a), we obtain 

D d 
101\l M\V 

( 3.4) 

.r 
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-0 
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Barring unusual coincident, Dv-1 exist, then 

+ 
d = u-( d + d ) 

fi'IV NIIV MV-1 - NI\V+l 

where 

u± = D -l r. • 
.-i\v ""'V ""'i± 

For v > 0, we define H such that d = U± H d • Then Eqs. 
"""' HI\V "'IV Nil\) ""'V-1 

(3.4) can be written as 

± H Jt "'V .S.v-1 

If the inverse of W exist (which is the case if G -l exists), 
""'J """± 

then the above equations can be simplified to give 

[ 
+ +]-1 H c = I ~ u- H u- c 

I"'V 11\V-1 '\'\ NIIV+l JOlV+l Hll\1 HfiV-1 

Since this is to be satisfied for a general ~v-l' we have 

H = [I+ u± H u±]-
1 

(3.5) 
"''V ""' 1111\V+l "''V+l "''V 

In particular, 

and 

Since 

H = 
~1 [ 

+ + ] -1 
~ + 22ll2 ~ ' 

n -l .. o 
loil\1 

as v .. c:o 

then H .. I in this limit. 
NIIV "'' 

For v < 0, let 

+ 
d ...,v u- H' d 

II'.V /f\V ""v+l 

-16-

Substituting into Eqs. (3.4) and after manipulations similar to those 

leading to Eqs. ( 3. 5 ) , we obtain 

H' +[I-u± H' u±]-1 
(3.6) 

"''V - "" ... v-1 ""V-1 ""1\1 

AgaJ.·n D-l (hence u-+) 0 th f H' I I .. as v .. -oo, ere ore .. ± • n -v -v ..... v ,_ 
particular 

and 

H' 
~~~~-1 

A-1 

+ + ) -1 
+ I - u- H' u-
-["'"' -w~-2 "'-2 ""-1 

+ u- H' d 
"'1-1 .... -1 1"\0 = ~2 ~0 

Since d (cr) = 1, we obtain the following set of (n- 1) 
0 

inhomogeneous equations from Eqs. ( 3. 4) with v = 0, and ex = 1, 2, • · • , 

a- l,cr + l,···,n, 

L [ (E- W
0

(cx>)ocxy- L G±(cx,s(x2(6,y)±JS_(6,y))]d
0
(y) 

yjcr 6 

L G±(cx,6)(~C6,cr) ± ~(6,cr)) 
a 

If the above equations are.represented in matrix form, then 

where 

p d' 
"''10\0 £' 

( 3. 7a) 
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and ~ is the ( n ... 1) x ( n - 1) coefficient matrix while ~~ is 

the (n - 1) x 1 known right-hand side. Barring unusual coincidence, 

P-l exist and the solution is 

"" 
dl 

JYW\0 
(3.7b) 

Thus in order to find all H 1s and H11 s (hence the 
~v ,.t~V 

dv( a) 1 s' , in principle we may start with H = I and H 1. = ±I J M\00 OW\ ;M-OO Mil 

( + corresponds to h~ hamiltonian while - corresponds to the h ~ 

hamiltonian). However, in actual numerical calculations, we may choose 

a cut-off M(-M ~ v ~ M) such that the error in the matrix elements of 

H1 and H~1 is negligible. An estimate of this error is given 

roughly by (G(a,~)/FM)M/2 • The actual choice of M depends on the 

particular system and field intensity of inteTest. In the examples we 

have done, a relative error of magnitude less than l0-15 can be 

achieved with M being around 10 even for the highest intensity 

considered. 

Thus starting with .!l:M+l = J' we find successive ~,~_1 , ... , 

M2,Jl1 according to Eqs. (3.5). 
+ 

Then ,g1 = Jli ~l So. Similarly 

starting with ~~M-l =±~,we find ~~M'~~M+l'···,~~2 ,~~l according 
+ 

to Eqs. (3.6). Then ~-l = ,l!:1 Jf~l ~o· Then we obtain j;~ as in 

Eqs. (3.7). 

E 

So far we have not used the (v = 0, a = cr) equation 

W
0

(cr) + L ~±(cr,e)~2Ce,y) ± ~(e,rD~0(y) 
e,r 

-18-

where d ( cr) = 1 has been used. The second term on the right may be 
0 

considered as the shift of level W
0

( cr) due to interaction. For low 

intensity, it agrees in value with that given by perturbation theory. 

We use this equation for successive iteration to find the adiabatic 

eigenvalues E
0
(cr), by starting with a trial E close to W

0
(cr). The 

number of iterations depends on the accuracy desired as well as the 

strength of coupling G(a,S). In all calculations we have done, values 

accurate to four or more significant figures are obtained with roughly 

2 (for I = 1 x 109 W/cm2 ) to 5 iterations (for I ~ 1012 W/cm2 ). 

The above procedure also yields the coefficients dv(e) of 

the adiabatic eigenvector ~' if needed. Normalization would fix 

the value of a (cr). 
0 

B. Two-level PC 

When two noninteracting photon-electronic levels, say (v2,cr2 ) 

and ( v
1

,cr1 ), are too close to each other (degenerate) at a certain 

R(y), we must modify the previous procedure in order to find the 

adiabatic eigensolutions. Suppose cr2 > cr1 and n = v2 - v1 > 0. 

At the y of interest, let 

( 3.8) 

for all v,a. It follows that 

1 ' 0 

= 0 ' 1 ( 3.9) 



) 
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-0 

-19-

To find dv(a)'s, which are independent of a (o2 ), we 
v2 

substitute dv(a)a~1(cr1 ) in place of av(a) in Eqs. (3.2) and obtain 

( 3 .lb) 

For v > v1, let d = U± H d l' where u± = D -l G Then 
'*'V "''V IIIIV IWo\1- NI\V - "'\V 1'0\±" 

after manipulations similar to those from Eqs. (3.4) to Eqs. (3.5), 

we obtain as before 

H = I + u- H · u-
[ 

- + +] -1 
JO'\V /'HI "''V+ 1 .... v+ 1 lt\V . 

(3.11) 

Now, however, among the v2th set of equations in Eq. (3.2), 

all the n- 1 equations with a I o2 , and d (o2 ) = 0 from Eqs. 
v2 

(3.9), can be satisfied to an arbitrary degree of accuracy if we 

write 

( 3.12a) 

where 

D" (a,a) a 0 , 
v2 a,~ 

and 

J/, being an ( 1) arbitrarily large but ( 2) finite number. Condition 

( 1) enables ~ ( o2 ) ::: 0 to be satisfied while condition ( 2) fulfills 
2 

the formal requirement that i5 -l exists. Then with 
"" 
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we obtain as before 

( 3.12b) 

and from the (v
2 

- l)th set, 

For v < v1 , with d :: u± H' n 1 , H' 
110\V No.V ""V ~<tv+ '*~V 

with v s v
1 

- 1 

are obtained the same way as in Eqs. (3.6). 

With the equations above, various d 1 s can be expressed in 
""oV 

terms of ~ • For use below, we write 
1 

$v
2
+1 - ,h ~vl 

d .... v
2
-1 - X d 

'*2 ""Vl 

~v1+1 - X d .-3 .. v1 

The explicit forms of X. 's 
""J. 

n ~ 2, 



-21-

+ -+ + 
~ = u- 1 ~ 1 u- !fv ... u- 1 !N 1 

""v2+ .;.. 2+ ""'v2 '*' 2 .... v1+ "" 1+ 

+ + 
12 u- !!v .. ·Jl- H "'\)2-1 .. 2-1 \)1+1 ..... \)1+1 

~3 lf H 
"'"1 +1""'"1 +1 

~4 i, H' \) -1 -M\1 -1 1 1 

When n = 1, 

k u± H ij± H 
-v2 +l-\12+1 ""'"2 -\)2 

~ "'" I 

~3 t!± H 
~~~4\)2 .-1\)2 

~4 t H' \)1-1 """1-1 
( 3.13) 

E!ru:l be found from the v1th set of Eqs. (3.10) with a= 1,2,···icr1 - 1, 

cr
1 

+ 1 ••• n and d (cr ) = 1, in a way similar to that of Eqs. (3.7). , , \)1 1 

To find the s\l(a)'s, which are independent of a\1 (cr1 ), we 
1 

substitute s (a) a (cr2 ) in place of av(a) into Eqs. (3.2) 
\) "2 

-M ~ v ~ M (3.14) 
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+ 
For \.1 > v2 , we define ~\.1 = .l{~ ~\1 ~\.1-l and obtain as before 

Comparing with Eqs. (3.11), we observe that, K\1 = Hv, for 

v2 < v ~ M, since the cut-off conditions (,!fM+1 = ,£; ~M+l = ~) are 

the same. • - ± ' ' For \) < "2' Wlth s" = u\) K s +1' K are found from -v M\ m-\) N<l\) ilhl) 

Eqs. (3.14) to be 

K' 

"'" 
+ I - K' u-

[ 
+ + ] -1 

- - ~-1 Nll\1-l Nil\) 

v = -M,-M + l,···,v1 - 1,v1 + 2,···\12 - 1 

Again since their cut-off conditions (H' "'1-M-1 

the same, ~~ = ,!t~ for M ::; v ::; v1 - 1. 

~~M-1 are 

The K' matrix is obtained in a way similar to obtaining 
Nl\\)1 

H in Eqs. (3.12). Now we use the 
.W.\12 

a= 1,2,···cr1 - 1, cr1 + l,···,n 

where 

and 

iS" (a,a) 
.... 1 

and 

v1th set of Eqs. (3.14) with 

s\1 (cr1 ) = 0 to write 
1 

R, being an arbitrary large but finite number. Then 

.. 



,.,.,ne 

~· 

) 

0 

-0 

-+ 1 where U- : i5- G+ 
"'\)1 ..,.,1 W.-

Defining !v2+1 

s 
"'\)2-1 

s .,.v1+1 

for n ~ 2, we obtain 
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From>the (v1 -l)th set of equations, we obtain 

- .lJ.1v2 

- y2 S. 
"" \W\\)2 

- y s 
.... 3 NA\)2 
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while for n = 1, we obtain 

I ... 

( 3.15) 

All s are thus expressed in terms of s • The 
/'Ill\) Nl\\)2 

s' : /sv (l),···,sv (cr2 - l),s (cr2 + l), ... ,s (n)) are found from 
~\)2 ~ 2 2 \)2 \)2 
the v2th set of equations with a.= 1,2,···,cr2 - l,cr2 +l,··•,n, and 

s (cr2 ) = 1 in a way similar to that of d 1 in Eqs. (3.7). 
\)2 M'\\)1 

Finally, we use the two remaining equations 

and 

to find the adiabatic eigenvalue E. Substitutions of 

given in Eqs. (3.8), (3.13), and (3.15) gives 

(

E - W1 (cr ) v
1 

1 

G21 
0 

a 1 s as v 



where 

-25-

1\1 - L G ± ( crl, y (x 4 ( y ,a ) ± X/y, rn) dvl ( s) 
y,S 

!J.2 -

L G±(cr1,y){!4(y,S) ± Y3(y,S})sv
2
(S) 

y,S 

G21 - - L G±(cr2 ,y(~(y,S) ± ~(y,S))dv1(S) y,S 

( 3.16) 

If the above calculations are valid, we expect our hamiltonian to 

remain hermitian, G12 = G21 . The quantity !J.. ( i = 1,2) may be 
~ 

viewed as shift of the level W (cr.) due to interaction with other 
vi ~ 

levels. We shall call W' (cr.) the "shifted (v.,cr.) level." 
vi ~ ~ ~ 

Solutions to the above equations exist for the adiabatic 

eigenvalues, 

E 
u 

(3.17) 
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can use one of these two equations for itera.tion to find (E ,au) and/ 
U""' 

R, 
or (Et'.! ). 

The level separation Eu - ER, 

+ 4G12G2J~ and the degeneracy is removed. The minimum of Eu - E.R. 

as a function of R(y) is the "point of closest approach" around which 

we calculate the transitional probability in Sec. IV. 

C. The 3-Level PC 

As more electronic states are included, the occurrence of 

3-level PC becomes more likely. This section also serves to show 

how the method in the previous sections may be extended to cases of 

multilevel PC. However, we will be brief wherever similarities with 

case of 2-level PC occur. 

Suppose we have a 3-level PC occurring among levels 

(v1 ,cr1 ), (v2,cr2 ), and (v3'cr
3

). At each R(y), we express all 

a (a) in terms of the three coefficients of the degenerate noninter­v 

acting states, as 

This implies immediately 

0 ' 

0 ' 

s ( cr1 ) 
vl 0 '. 

1 ' 

0 ' 

t ( cr1 ) 
vl 

-(3 .18) 

0 

0 

1 

.. 



) 

"0 
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Eqs. (3.2) are not used to find the unknown coefficients d's, s's, 

and t's. 

_T_o_f_i_n_d_th_e __ dv.;..<_a_)_'_s, which are independent of av
2 

( cr 2 ) 

a'V
3

(cr
3

), we substitute d\1(01.) a\1
1

(cr1 ) in place of a)a) in Eqs. 

(3. 2). Defining ~v = !J,.e !£v 2-v-l for v > v1 and 
+ 

d = u- H' d for 
'\) OW\ \I tNt.'V "''\I+ 1 v < v1 , we obtain, with ~+l I and 

H' = ±I, 
WI.-M-1 "" 

and 

H' 
\) 

Here, 

± [I -W H 1 rf ] -l 
"" 10\'V-1 IVI\\1-l '\) 

v = M,···,V + l,v3 - 2,···, 3 

and 

(3.19) 
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where 

R. being an arbitrarily large but finite number. For i = 2,3, the 

equations d\1 (cr
3

) = 0, 
3 

satisfied as desired. 

We define 

!v_,+l 
-' 

d ... v
3
-l 

d ... v2+1 

A, -1 
2 

~'\)1+1 

d 
"""\)1-1 

d\1 (cr2 ) = 0 and that i5 -l exist, are all 
2 rWI'Vi 

- k~l' 

- l2 ~'\)1 ' 

- X d -3 M'\)1 

- l4A,l 

- ~~1 ' 

- ~6 Svl 
(3.20a) 

While other cases may be written down as need arises, we have 

considered the following two typical cases: with n = v2 - v1 , 



case 

!.6 
K >2 , 11 > 2: 

u± H' 
lit\'\) -1 'ft/'1.) -1 

1 1 

While for case K = 1, n 2: 

u± H' 
JIII'V -1 .... v -1 

1 1 
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(3.20b) 

( 3.20c) 

Then dv (1 ), 
1 

-30-

are found from the v1th set of equations without the (v1,cr1 ) 

equation, but with dv (cr1 ) = 1, in a way si.milar to that of Eqs. 
1 

( 3. 7 ). 

To find tv(a)'s, we substitute tv(a) av
3

(cr
3

) 

a"(a) in Eqs. (3.2). Defining L and L' by 
v M'IJ Nfo.\) 

in place of 

and, 

t ... v 

+ 
1r T. t 
Nil'\) iil.'l) IWI'IJ-1 

+ u- L' t 
~<~ov 111\V ~v+l 

and starting with £M+l = J and ,.!(~M-l = ±j, we calculate all other 

L's and L' 's by the following equations 

[ - + +]-1 J- + ~+ 1 ~v+ 1 ~ ' 

L' 
t<M'J 

+ r - u- L' u- ' [ 
+ +]-1 

- Ill\ ... v-1 II'IIV-1 1'/11\V 
v = -M,-M + 1,v

1 
- l,v1 + 2, 

L' M\V.+l 
1 

[ 
+ -+ ] -1 

± I - u- L' ur , ,.... ,.nv.-1 ,...v.-1 '111\V. 
1 1 1 

~ -+ + ] -1 
± I - u~ L' ur , """ .... v. tj~.'l). Al'o'IJ.+l 

1 l l 

i 1,2 

i 1,2 

-+ 
where u- are defined as in Eqs. (3.19) in order to satisfy 

(10'\Ji 

tv (cr1 ) = 0 and tv (cr2 ) = 0. Note that 
1 2 



!.0 

) 

-a 

L ,.v H 
.w1V 

L' = H' ,.,v ,.,.v ' 

Defining .k (i = 1, ••• ,6) by 

t = J2lv
3 

II\4V -1 
3 

lv2+1 = J3lv
3 

t = ~l.v3 ,..v
2
-1 

~vl+l = z t ..._5 ..... v
3 

-31-

for case K ~ 2, n ~ 2, we obtain 

-32-

+ 
J5 ~1+1 ~l+l"""l4 

± r- -± 
;.6 U L' U L' Z wr.v

1
-l.,.v1-1 ~tt~v1 j\lf\1

1 
~>~~5 

for case K = 1 n = 2 

11 
+ .,t; L . 

· v3+1 ... vll 

~2 {it L' 
~NoV 2 vil-\1 2 

~ I .,.. 

+ 
J4 ~2-1 ~~2-1l2 

J5 J4 
+ -+ 

J6 tJ ~ U"" L' .i? ( 3.21) 
ffl\Vl-1 till 1-1 1\1\Vl M\Vl 

Thus all tv's are expressed in terms of ~v3 • But 

t ( cr
3

) = 1 while t ( 1), t ( 2), · · ·, t,. ( cr
3 

- 1), tv ( cr
3 

+ 1), • • ·, 
V3 V3 V3 v3 · 3 

t ( n) can be found by solving the n - 1 inhomogeneous equations 
"3 

labelled by (v
3

; 1,2, ... ,cr3 - 1, cr
3 

+ l, ..• ,n) as that leading to 

Eqs. (3.7). 
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To find s\)( a.)' s, we substitute s) a) a" ( cr2 ) in place of 
2 

into Eqs. (3.2). Defining K and K' by 
1M\) M'l \) 

and 

s 
IWI\) 

+ u- K' s 
~\) iM.\1 """+ 1 

we obtain with ~+l = ~ and .!-M-l ±J,, 

Again defining 

K 

""" 

yi' 

s 
\W\\l/1 

!v -1 
3 

s 
'"""2+1 

s 
""'"2-1 

s 
"""1+1 

s 
;W\\11-1 

For case K ~ 2, n ~ 

i 

H 
M\\) 

L' 
""'" 

1,2,···,6, 

y s 
~Ml """2 

y s 
..,;2 """2 

y s 
t.>~3 """2 

y s 
M4 'M\)

2 

y s 
... 5 ""'"2 

y s 
""16 """2 

2, we obtain 

by 
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and for case K = 1, n = 2: 

-+ 
y u- K 
""3 /fl\\}3 """3 

]12 1' 

!.1 
u± K -± K ril1\l /1 <Mv3 + 1 .l!v 3 .... \)3 

+ 
J4 u- K' 

W'l\12-1 WA\l 2-1 , 

~5 l4' 

+ -± 
.!6 ~- K' U K' Y 

"1 -1 Wfl\)1-1 "'"1 .... ,\ .¥.~5 
( 3.22) 



~ 

;--.... 

::\1 

0 

0 

-0 
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are found from the (v2 ; 1,2,···,a2 - l,a2 + l,···,n) equations and 

sv (a2 ) = 1 in the by-now familiar way. 
2 

Finally substitutions of Eqs. (3.18), (3.20), (3.21), and (3.22) 

into the three equations (v1 ,a1 ), (v
2
,a2 ), (v

3
,a

3
) of Eqs. (3.2) 

give 

E - w~ ( cr1 ) 
1 

Gl2 Gl3 av ( al) 
1 . 

G21 E - w~ (cr2 ) G23 ~2(cr2) 0 
2 

G31 G32 E - w~ (a
3

) 
3 

av(cr3) 
3 

·Where 

~h component of a vector a denoted by {a} , 
""' W>C1 

and with the 

Equation (3.23) continued next page 
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Equation (3.23) continued 

/:,.3 - {G+(z2 ± z1)t } 
1111- ..,. ""' IW'V3 

C13 

Gl2 - - {a+(Y6 ± Y5)s } 
Hf\_ ·lM · ""' i"\V2 

C11 

G31 - -{~±% ± .&, lSv
1
} 

C13 

G32 - - ~.% ± "'-'~"2} 
C13 

( 3.23) 

The !J.'s are shifts of the noninteracting levels due to their 

interaction with other states. The Gij's are coupling between the 

shifted photon-electronic states and,·by hermi tici ty we expect 

Gij; Gji. The characteristic equation is a cubic equation in E 

whose solution is well known. If we define 
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p _ -WI ( (J ) - WI ( (J ) _ WI ( (J ) 
v1 1 v

2 
2 v

3 
3 

q - w~ ( cr1 ) w~ ( cr2 ) + w 1 ( cr ) w 1 ( cr ) + w 1 ( cr ) w 1 ( cr ) 
1 2 v

2 
2 v

3 
3 v

3 
3 v1 1 

a = 1 2 
3(3q-p) 

b - ( J i ( 2p3 - 9pq + 27r ) 

and if the condition for existence of three real roots for the cubic 

equation, namely 

is satisfied, the three real roots are given by 
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E1 - 2 (- j) i cos'<P 

Any one of these equations can be used for iteration to find the 
v.cr. 

adiabatic eigensolutions (E , a ~ ~) , i = 1,2,3. In the next 
vicri 

section, we will consider nonadiabatic transition at the point where 

E2 - E1 and E
3 

- E1 are minimum as ftmctions of R( y). 

IV. TRANSITION PROBABILITIES 

In the previous section, we have solved the eigenvalue problem 

of Eqs. (2.7) in the adiabatic limit. Now we consider radiative 

transitions caused by the nonadiabatic relative motion of the atoms. 

Only transitions at the PC 1 s (i.e., between near-resonant levels) 

need be considered while those between off-resonant levels are 

negligible. 

A. Transition at A 2-Level PC 

Suppose we consider the transition at the PC between levels 

labelled by 1 :: (v1 ,cr1 ) and 2 :: (v2,cr2 ). Only the probability 

amplitudes b1 :: bv
1

(cr1 ) and b2 :: bv
2

(cr2 ) will change significantly. 

Therefore we may approximate all other bv(a) 1 s in the (v1 ,cr1 ) and 

(v2,cr2 ) equations in Eqs. (2.7) with their adiabatic cotmterparts 

given in the last section. We may use those of E~ or of E~. As 

will be shown below, the transition probability for formulae depend only 

on quantities evaluated at the point of closed approach of the PC. 



0 

0 

-0 
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At this point, the difference between E~ and E~ (hence a~ and 

a R.) is usually small and becomes smaller for lower intensity {see 

Eqs. (3.17)). 9 

Thus using Eqs. (3.0), (3.8), (3.13), and (3.15) in the Eqs. 

(2.7 ) with (v1 ,cr1 ) and (v2,cr2 ), we obtain two coupled linear 

equations in bi's, 

where G = G12 

(3.16). 

G21 , W! = W ' (cr. ) , ( i 
l. \)i l. 

(4.1) 

1,2) are given in Eqs. 

Equations (4.1) are to be solved with the boundary conditions 
.. 

that well before the PC is traversed (y negative and "sufficiently 

large" in magnitude), b2 -0 and lb1 l - 1. Then the value lb2 1
2 

for positive and sufficiently large y will give us the probability 

that photon-electron system has made a transition from the state with 

Wi to the state with W2· 

Around the small region of PC, we may approxima. te W 2 - W i 

. f t" f t• 10 as a l1.near unc l.On o 1.me 

W' - W' - -a.y 2 1 (4.2a) 

with y = 0 chosen at the point of crossing of W2 and Wl; and we 

ignore the small R-variation of G, 
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(4.2b) 

With these approximations, Eqs. (4.1) can be casted into the Weber's 

equation with well-known solutions. 11 The solution satisfYing above 

boundary conditions is 

where n = iG2 
/a., 

cylinder function. 

probability is 

.7T 
-l.-

- I I z =- YN!e 4 P= n, "" 

For large and positive 

-27Tp 
1 - e , 

(4.3) 

and D is the parabolic 

la.l! y, the transition 

(4.4) 

This formula is useful if Eqs. (4.2) remain approximately satisfied 

into the asymptotic domain of D_n_1(+iz), i.e., la.I!IYI large. 

When the two levels Wl, w2 do not cross each other, but are 

in close approach as depicted in Figs. 4a,b, and c, the formula 

derived above does not apply. The transition formula applicable to 

the case in Fig. 4a described by 

has been presented in I. 

2 
a+ by 

Their formW.a ia valid if exp ( K~ ))« 1. 

Now we present the formula applicable to cases in Fig. 3b and c where 

W2 - Wi are characterized by two well-defined slopes b(y ~ 0) and 

b'(y > 0). We make the approximation 
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W' - W' 2 1 
{

a- by 

a + b'y 

y ~ 0 

y > 0 

where (a~ 0; b, b' > 0) corresponds to case in Fig. 3b and 

(a~ 0; b, b' < 0) corresponds to case in Fig. Jc. In the case (c), 

a = 0 corresponds to the situation when a PC occurs at a classical 

turning point. 

The only drawback in the above approximation is the introduc-

tion of discontinuity of slope of w2 - Wl at y. However, the 

advantage is that without further approximation, a transition prob­

ability formula can be obtained rigorously and is applicable even when 

a = 0. 

We introduce, with k
1 

~ik -i!:.y 
b2(y) U(y) e 1 e 2 

into Eq. (4.3) and obtain 

iu 
-::2 + 
dy 

ib' b ' 2 
+--+--

2 4 

::JoY Wl(y' )dy', 

.b 2 
~-y 

e 4 

.b' 2 
-~-y 

e 4 

0 ' 

5 0 

for 

> 0 

y $ 0 

0, y > 0 . 

-42-

We need to find only the solution U(y; lal,lbl,lb'l ); for the 

solution U(y; -lal,-lbl,-lb'l) = u*(y,!al,lbl,lb'l) as can be shown 

easily from the above equations. 

Now with definitions 

z 

.7T 
.i -~­

- Y_ bz e 4 

.7T .7T 
11 -~-4 

b 2 e 
11. -~-

- Y+ b z e 4 

the above equations are reduced to the Weber's equations 

0 

d
2
U(z+) [ 1 z~J 

-..--- + n + - - - U( z ) dz+ · + 2 4 + 0 

where 

n -- ip n+ - ip' - 1 

G2 
p' 

G2 
p - b ' - '6" 

y 50 

y > 0 

For y < 0, the solution satisfying the boundary condition 

0 and lb1 l = 1 in the "remote past" ~.e., 
is 

U( z_) 

7T 

IGI e-;;P D (-iz ) "'J'" -n-1 -



) 

0 

-0 
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A general solution for y > 0 is 

where L and M are coefficients to be determined by demanding 

continuity of b2 and of its slope at y = 0. We obtain 

L N' L(Dl/D5)- (~IK3>J/[<D/D5)- (K2/K3)] 

M N'[(D1/D3)- (K1/K2 )J/((D5/D3)- (K3/K2 )] 

where 

N' -
.1# _:!!.t e 4 
b 2 

Dl - "-,lG-r .'~), 

~ •IT) ~-

D2 D a 4 
- -n:2 :;;T e 

' G .Jrr) -~-

D3 D a 4 
- -n+-1 bTf e 

.Jrr) -~-· a 4 
D4 - D_n+-2(:;;-rr e 

D5 - D a 4 ( i3rr 
n+ :;'f e )· 

For 
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.n .n 
~- ~-

Kl - ~ e 2 D1 + (n_ + 1) e 4 D2 2b 

rl. a 
lz+l = b 2 y + ~ >> 1, we obtain the asymptotic formula for 

b' 

{ -3: p' (2n)t -*p) 
biy) - \ e + M r(l _ ip') e 

W' 1 • a . a . p a [ ly 2 , G 2 2)~ 
x e:xp -i 0 . 2 dy + ~ 2 y - ~ 4b I - ~ 2 in b 'y + 'i)T" 

from which the transition probability is 

( 2n )! - :!!.p' 
+ M e 4 

2 
3TI 1 --p 

L e 4 
r( 1 - ip') 

( 4. 5) 

In the derivation of the above asymptotic formula, nothing is required 

of the magnitude of ..!;. and 4r . Usually in applications, we will 
b:! b 2 

be interested in ~ and ~ being not large. But from a 
b b 
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mathematical viewpoint, let us consider the extreme case a » 1 
~ 

a and :-rf » 1, then L and M can be simplified by asymptotic 
b 

expansion of the Di 's. The results are 

L 

.l.. (p+p' ~ 
N' (1 + (b/b' )2

) r(ip') e 4 
1T 

(21T)i(3 + e- 2 p';sinh Till') 

and 

M 

If furthermore p' is large, then 

~~ · c~fY .-2
'". 

while for p' << 1 

1r!Gl 2
( 1 + (~/ r 

8 b' 

We note that in the case ~ and ~ >> 1, the transition 
b~ b 2 

probability above does not diminish with larger ~ This is probably 

related to the sole drawback of our approximation mentioned above. 
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Therefore for large a, we Should not apply Eq. ( 4. 5) but revert to 

the formula given in I. 

B. Transitions at A 3-Level PC 

When multilevel systems are considered, we may encounter a 

3-level PC say between v1cr1, v2a
2

, and v
3

,a
3

, as depicted in 

Fig. 2. Then the coupled equations similar to Eqs. (4.1), are 

d bl 
i --- W' b 

dy 1 1 

d b2 
i --- W' b 

dy 2 2 

db 
· 3 W' b - G b + G b 1 
-- - 3 3 - 31 1 32 2 dy 

(4.6) 

where bi = bv.<cri)' W! = W~ (cr.), and the G .. 's are all defined 
1 1 i 1 1J 

in Eqs. (3.23). The boundary conditions for y negative and of 

sufficient magnitude are b1 - exp(-i Jy w1(y' )dy' ], b2 - O, b
3 

- 0. 

A formal solution is 

Equation (4.7) continued next page 

J 



,...., .. _. 

) 

0 

-a· 
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(4.?) 

where Ki(y) :: foy Wi(y' )dy 1
• Confining ourselves to cases where the 

G's are small, we obtain the solutions by an iteration procedure 

starting with the solutions for the 2-level PC transition. 

The solutions to Eqs. (4.1) for levels 1 and 2 can be written 

formally as 

b 1 
2 

and the corresponding solutions for level 1 and 3 are 

Substitution of these expressions into the right-hand side of Eqs. (4.7) 

gives 
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1 -iK (y) 1 y iK3(y') 1 
b3 (y)- i e 

3 -~ dy' e o32 b2 (y') 

1(2) . -iKl(y)LY iKl(y') 1 
b1 - 1 e dy' e G

13 
b

3 
(y') 

-co 

or 
1(3) - -iKl(y)lY i~(y') 1 

= b1 - 1 e dy' e G12 b2 (y') 
....co 

Further iteration would only add terms of second or higher order in 

G1s. The second terms on the right of the first two equations repre-

sent the contribution to the respective level due to presence of the 

third level. 

With the explicit expressions of b2
1 (and b

3
1 ) given in Eq. 

(4.3), we can find b2(y) and b
3
(y) in the region ja21 !~ y and 

ja31 !! y >> 1 by evaluating the integrals with the method of steepest 

descent. 

As before we assume the y-dependence of G's is negligible 

in the region of transition. For the case a21 < 0, a
31 

< 0, we 

obtain with Gij = Gji' 

IG2312 
27Tp21 + 1f --- + r 2 , to lowest order in 

la311 
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where 

3/2 IG13,G23 [~ 2 1 qJl PJl 
r 3 - 2 ~ i i cos 2 - p3l R.n q31 y + 2 p21 R.n - + 2 

q31 q21 q21 

- 0.577 p31- ~p21 R.n p21] 

are defined as 

W' i - W! 
J - -aij y 

2 

nij - i 
Gij 

aij 

and 

For sufficiently small G's (hence p's) and large but finite 

!ali y, ; is much greater than the rest of the terms in the cosine 

arguments in r 2 and r 3. Therefore 
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( 4.8) 

These last two expressions are expected to be true also for other 

< cases: (a21 > 0, a
31 

> 0), and (a21 > 0, a
31 

< 0). 

V. SLOW ATOMIC COLLISION IN AN INTENSE FIELD 

The orbit of the relative motion of the two colliding atoms 

enters into our calculations through the G±(a,S)'s and dR/dt in 

the a's in the transition formula Eqs. (4.4), (4.5), and (4.8). For 

the present application, it is convenient to express aij as 

d ~Wj_ - Wj) dR a- -
0 dR. v dt 

( 5.1) 

-1 2 -2 Since W! ~ v , and G ~ v , therefore p.. is independent of the 
~ ~J 

arbitrar,r v, as it should. 

Recall that G(a,S) ~ (<Pa' ~Sd <Pe) are usually evaluated 
~ 

with respect to the coordinates of the quasi-molecule (i,J,k in 

Fig. 4) while the linear polarization E is fixed in direction . ..,., 

Therefore for the geometry in Fig. 4, we need only to know 

k·£ in order to find G±(a,S). 

For a given orbit, let R
0 

denote the distance of closest 

approach between the two atoms.Let e-(R) and e+(R) denote respec-

tively the value of e at R before and after passing (R
0

, S(R
0

f). 
Then 



) 

0 

-0 
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The angles e-( R) are fonnd by the formula 

where b is the impact parameter, e: is the total energy and u( r ) 

the adiabatic potential energy of the molecule in the given (say 

gronnd) electronic state. And R
0 

is given by 

In evaluating the radial velocity dR/dt at the point of 

closest approach, which is needed in the transition probability 

formula, the shifted potential energy is used. For the gronnd 

electronic state, this is given by 

where u'(R) = u1(R) - u1(oo) .+ vflWv (l)/a
0 

+ v1-fiw is the shifted 
1 

potential energy. 

Evaluation of cross section: for a given orbit defined by b 

and e:, there is, after the collision, probability Pb (1) that the 
,e: 

quasi-molecule is in the state i. The cross section for transition 

to state i is then given by 

f
bmax. 

27T db b pb (i) ,e: 
0 
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where bmax is the maximum b 

given e:. 

value for which Pb (i) I 0 for a ,e: 

We obtain Pb ( i) as follows. Suppose we have included n ,e: 

electronic states in our calculations. Suppose for a given orbit, 

there are N PC's Before collision the quasi-

molecule is in the state 1, therefore the probability in electronic 

state 1, Q
0
(1), is 1, and those in any other states are zero i.e., 

Q (i) = 0 for i ~ 1 0 T • At Y~, let T~(i,j) (where it j) be the 

trans~tion probability from elect~onic state j to i and is given 

by e.g., Eq. (4.4); and T~(i,i) = 1- L T~(k,i) be the probability 
kll 

of remaining in state i. We let 

Let be the probability that the quasi-molecule 
v 

will be in the state i after passing the Y~ - PC. Then 

and !t, e: = .SN for the given orbit (b, e:). 

As example, we have considered the slow collision of Li with 

H in an intense radiation with A = 0.826~ in the geometry of Fig. 4 

for relative speed V
00 

= 5 x 105 em/sec. Values of 

~ ~4>e) for the lowest lying singlet states J2- [+, 
ua.(R) and (¢a.' 

AlL+' and B1
II 

~ 

are based on the values calculated by Docken and Hinze. 12 These three 

levels represent a fairly good approximation because according to the 

less accurate calculation of Bender and Davidson,13 the higher levels 

all lie at least about one-photon (nw ~ 1.5 ev) energy above the B1II 

l~vel, thus neglecting them would mean neglecting higher order 

processes. We assume the incoming atoms are initially in the electronic 

1 + singlet ground state X L . There are 1-, 2~pboton resonant 



-5.3-

transition to A1 L+ near internuclear separations 9.4 a
0 

and 

5.9 a
0 

and J.7 11
0 

respectively; while 2-1 J-photon resonant 

transitions to B1rr occur at 5.1 a
0 

and J.l a
0 

respectively. The 

resulting cross sections for transition to these two states are 

presented in Fig. 5. We observe that for weak enough coupling (low 

intensity), the collisional cross section is proportional to I and 

I 2 for transition to A1 l:+ and B1IT respectively, as expected from 

perturbation theory. But for strong coupling, the deviation from 

perturbation theory is considerable. 

VI. MULTIPHOTON DISSOCIATION OF MOLECULES 

The formalism can also be applied to obtain multiphoton 

dissociation cross section of a diatomic molecule. The previous 

collisional motion is replaced by the relative oscillation of the two 

atomic nuclei. In line with our classical approximation to the nuclear 

motion, we shall replace the quantum oscillator with the classical 

oscillator. A quantum mechanical treatment with the Franck-Condon 

assumption would attach a multiplicative factor to the dipole matrix 

elements that we use in our formalism; i.e., 

The ~ a include nuclear rotational as well as electronic wave­. a,.., 
functions. Our treatment is good when J "Xna. XmS dR "' 1. 

A rough estimate of the integral J Xn a. XmS dR can be obtained 

as follows. Since Coolidge, James, and Present14 haveshown that it 

is an extremeley good approximation in evaluating ~Xna. XmB dR to 
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a replace the repulsive eigenfuction X wit:1 const. o(R - R ) where 
c 

R is the classical turning point. 
c Th . f . . 15 ere ore assurrang const.::: 1, 

~ (Rc) will give us a fair indication of how good this approximation 

is. If the lower state is the "vibratibnless" (n = 0) state with 

equilibrium separation R
0

, 

For our example below, this quantity is 1.3. 

" Consider the internuclear axis k oriented at an angle ~ 

relative to the linear polarization vector. (Fig. 4.) We assume that 

the rotational motion is negligible in the sense that during one 

oscillation of the nuclei, ~~ is negligible. We have only two PC's 

per oscillation to consider; and if transitions to other levels are 

negligible, the final transition probability to the upper repulsive 

state per oscillation would be 

f - 2T( 1 - T) 

where T is given if valid, e.g., Eq. (4·.4). If 2'1Tp is small, 

then f = 2(2np). 

When the diatomic molecule irradiated has a permanent dipole 

moment .Ita (which is always either parallel or anti parallel to the 

internuclear axis) in the bound state ~a' it will experience a torque 

to orient the d parallel to E. Therefore in the thermodynamical 
"" "' 

equilibrium situation, the thermal-averaged transition probability per 

oscillation would be 



) 

'"""'t 
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I.l d( cos <P) f( <P) e -V( cp.)/kT 

-1 

I 
1 

d( cos <P) e -V( <P )/kT 

-1 

where V(<P) = -sgnl~lcos <P e:
0

, sgn being + (-) if 1 is parallel 

(
27T )i (anti parallel ) to the given internuclear k axis, and e: 

0 
= c I 

corresponding to the average classical E-field amplitude seen by the 

molecules. 

For diatomic molecules of like atoms (zero permanent dipole 

moment in any state), or when the gas of diatomic molecules is 

initially irradiated, we may have random orientation of molecules with 

respect to ~· In such case, 

where 

state. 

f 1
1 . 

~ d(cos 

1 

The averaged cross section for either process is then 

\1011 w-
-.-f 

I 

v is the vibrational frequency of the molecule in the bound 
0 

We have evaluated the averaged cross section for L.H from the 
~ 

ground vibrational state in x1z:+ electronic state, photodissociating 

via 4-photon (A = 1.0648~) transition to B1rr state. Since now we 

f 'al of x1"+ require greater accuracy o the potent~ curve ~ around the 

equilibrium separation and yet such values of Docken and Hinze's 
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calculations differ from experiment by about -1 37 em , we therefore 

use instead the best available empirical-fitted analytic expression 

16 for this ground electronic state taken from Crawford and Jorgensen. 

Since the potential curve of Docken and Hinze for excited state Al[ + 

seems to agree well in this domain of R with the RKR curve, we 

adopted Docken and Hinze's results for this state as well as those 

for Blrr and the dipole moments. 

We have evaluated the various quantities for a range of 

intensities. Since f( <P) may be needed directly for some other 

physical situation (e.g., a de E
0 

field is used to orient the 

molecule at an angle to <P to the electromagnetic field £ to 

optimize transition), we presented them for a few typical intensities 

in Table I. The cross sections for both thermal equilibrium 

( T = 300° K) and random orientations are calculated. For the same 

intensity, the former is smaller than the latter, as expected; but 

they differ by less than 1 in 1000 parts even for highest intensity 

calculated and therefore only the former is graphed in Fig. 6. For 

low intensity, we see that the cross section is proportional to I 3, 

in agreement with perturbation theory. 

VII. SINGLE ATOM/MOLECULE IRRADIATED BY LASER PULSES 

For an atom being irradiated by a practically monochromatic 

pulse,17 the theory is similar as before except now "hR" is the 

hamiltonian for the atomic electrons and ~s not a function of R. 

Sinc.e <Pa are not parametrically dependent on R( t) and have 

definite parities, therefore the last term and the term 
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(<Pn,h' <Pn) in Eqs. (2.5) vanishes automatically. For the change 

of variable y = vt , we may choose v = c. Again, the actual level 
ao 

shifts and transition probabilities are independent of this choice. 

With these slight modifications, the formalism can be applied 

to the calculation of the transition between levels of an atom 

irradiated by an intense laser pulse. The photon-electronic levels 

are shifted due to interaction with other levels. The amount of 

shift is a function of intensity of the pulse, which is in turn a 

function of time. For a parti~ular atomic system with proper choice 

of the laser A, one may get for example a PC (Fig. 7). Thus the 

nonadiabatic transition is due to the temporal variation in intensity 

of pulse, instead of the relative near-adiabatic motion of the colliding 

atoms in Sec. V. 

Now a may be written as 

a = 

(7 .1) 

Since 1 
a:-

v 
2 1 and G a: 2 , therefore the p's 

v 

in the transition probability formulae are independent of the 

arbitrary v. The quantity di/dt is the temporal slope of the 

pulse at the "critical intensity" I' at which the point of closest 

approach of the adiabatic eigenlevels occur. Thus through this 

quantity, the transition probability depends on the irradiating pulse. 
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The final transition probability per pulse peak, f, is 

given by 

f 2T( l - 1') 

1 which has a maximum value of 2 at 1 
T = 2. From Eq. (4.4) and 

Eq. (7.1), this means that the temporal slope of pulse for optimum 

transition is 

where 

where all quantities are evaluated at I'. 
-t2 /r2 

For gaussian pulse, I(t) = I e , 
0 

(7 .2) 

where I' (<I ) is the critical intensity. 
0 

According to Eq. 

(7.2), for given o and I', there is a pair of optimum values 

such that 1 
f = 2" They are related by 

1 (-tn 2) I' 1 

-~:-"!'-- ( tn I' - R-n I 1 
)" 

7T (5 0 
( 7. 3) 

If o is in atomic units, I' in wa~t/cm2 , T' in sec, then 



0 

) 

0 

-0 
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T' 
'IT 

The validity condition for applying the transition formulae, 

imposes restrictions on the pulse parameters (I0,T). 

pulses, this v~lidity condition can be expressed as 

2.41 X 105 0 I 1 I' )3/2 
!l.nr 

0 

>> 1 

For gaussian 

(7 .4) 

where o are in atomic units, I' I in watt I 2 d · ' 
0 

s em an T 1n sec. 

As examples, we have considered two atomic transitions: the 

transition from ground state Js to 5s state of sodium atom via 2~· 

photon absorption and the transition from the ground 2s state to 

the Js state via 8-photon absorption. Since Jz and parity are good 

quantum numbers with respect to H, only states of the 

coupled together. Therefore we need only to consider 

In each case, we have included only 24 states 

same m. are 
J 

1 mj = 2 states. 

1 
(mj = 2). 

These states are (i) the states between which transitions are cal­

culated; (ii) the states whose oscillation strengths with the states 

in (i) are among the fitst three to four leading order of magnitudes, 

(iii) states whose energy levels are between those of states in (i) 

and (ii); and finally (iv) states whose inclusion assures the non­

singu[arity of matrix [G±(a,e)) which is a formal requirement in 

our solution to the adiabatic eigenvalue problem. 

The energy levels are based on experimental spectral data. 18 

The magnitude of the dipole matrix elements are calculated from the 

oscillator strengths calculated by Anderson and Zilites19 and their 

.. ; 
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signs, from Bates and Damgaard. 20 However, we notice that with a 

different choice of phase of the wavefunctions, namely, 

where ~n!l.jm stands for the wavefunction used by Bates and Damgaard, 

then the dipole matrix elements (n!l.sjm.l L r •• £1n'!l. 1 s 1 j 1m') J ... 1 jiil. j 

have regularity (in relation to n !> n 1 or n > n 1 ) in their sign 

pattern (Table II). This is useful in deciding a few ambiguous and 

unimportant elements that may be needed for inclusion in a 

calculation. 

In the sodium case, the relative shifts in the Js and 5s level 

can be explained qualitatively as follows: we choose wavelengths 

such that level separation between the Js and 5s states are slightly 

less than 2-photon energy resonance (see Fig. 7). For the same 

wavelength, the Jp levels "push" the Js level down much strone:er than 

they "pull" the 5s level down, because E "' · · Jp - •>W 1s more nearly 1n 

resonance with Js than EJp + .fiw with 5s. As the intensity is 

increased, the gap between level 5s and Js becomes wider until a PC 

occurs at I' . 

In the lithium case, we choose wavelengths such that the level 

separation of 2s and Js states are "slightly larger" than the 8-photon 

energy. At these wavelengths, the Jp states 11push 11 the Js level down 

via first-order coupling while they "push" the 2s level down via ninth-

order coupling. Hence Js and 2s levels are shifted closer towards 

each other. At high enough intensity they hit the 8-photon resonance. 

In both cases, we have considered a range of wavelengths with 

which the above qualitative pictures are valid. For a given 
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wavelength, the 11critical intensity11 I' and the corresponding a 

in Eq. (7.2) are tabulated in Table III. (See also Figs. 8 and 9.) 

The pairs of parameters (I', -r') Eq. (7.3) of gaussian pulses are 
0 

presented in Table IV for transition in sodium (A. = 0.602396f.l). 

We have also calculated the final transition probabilities for 

a few nonoptiumum gaussian pulses. Results for one such pulse 

(I
0 

= 6.0 x 108 W/cm2, -r = 1 nsec) are presented in Table V. It 

is noticed from the Tables IV and V that·at A.= 0.602396f.l for the 

sodium case, we almost have the optimum gaussian pulse and the final 

transition is almost ~ And for fixed I~, f decreases as -r 

deviates from -r' (Fig. 10), so is the case for deviation from I' 
0 

for fixed -r' (Fig. 11). These shifts are also true for other A.'s 
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Table I. Photodissociation probability f(~) per oscillation of LiH molecule in ground state 

by absorption of four (A = 1.0648~) photons. ~ is angular orientation of nuclear axis 

relative to the linear polarization vector of the radiation field.a 

~ f(~)/2 at f(~)/2 at lf(~)/2 at f(~)/2 at f(~)/2 at f( ~ )/2 at 

( rad) 1109 W/cm2 15 x 109 W/cm2 
ho

10 W/cm2 15 x 10
10 W/cm2 

!10
11 W/cm2 b x 10

11 W/cm2 

~~oaoooe:=~o~ 

tJgzlgi;~l~ 
4.00000E-Ol 
5.00000E-01 
6.oooooe-o1 
7.00000E-Ol 
a.ooocioE_:Oi; 
r:-~zg-g§tgbj 
1.10000Et-v0 
l.ZOOOOE+OO 
l.30000E+OO 
T~ 4obOoe+oo 
t. 5COuOE+OO 
--r~6o5oOE+I,)o, 
1. 7COOCE+OO 
1.80000E+OO 
1. 90-)JOE+OO 

1.37~E-Zl 
s.o31E-21 
1.40,E-:-2 __ 0 
1. 51 •E-ZO 
5.30iE-"2l 
l.lOE-21 
3;47 E::2ci 
1. 35)E-19 
3.05E-19

1 

5.07 E-19 

_t_;_~j ~;~: 
6.4 7; E-19 
4.48E-19 
2.122-19 
4.001£-20 
b. 93'!:-211 
1.271E-l9 
-3·~-·4a 1·E.:.·i 9 
5.75£-19 

8•56 E-19 
3.141£-18 
8.75E-l8 
9.43'E-18 
3.31 E-18 

-6.87 e-::yq-
2.16/E-17 
8.42 E-17 
1. 89'E-16 
3.14'E-16 
4. 16 E-16 

-4-:-5T
1 

E=T6 
4.00 E-1o 
2. 76:£-16 
1.31 E-16 
2. 4 71E:..l 7 
4.Z7,E-18 

·:;:-£f7 E~fi 
2.15_E-16 
_3.,55 £-16 

1.3oE-17: 
5.03E-1i 
1.4o:E-1o) 
1. SOE-16

1

. 

5.30E-17 
1. 08 E-17· 
T:43E-16 
1.33!:-15 
3.ooc:-ts 
4.98E-15 
o.oOE-15 
7.17E-15 
6:3'5 E·:..Ts 
4.40,E-15 
z.oa·E-15 
3.93E-lo 

i-f~~~-=g 3.4ZE-15 I 5 • 6 4/E -l5 • 

I I 

fl. 5_4,E;.::! ?. 
3.14E-14 
a. n:E-14 
9~35E-14 
3.30E-14 
o.44E-15 

I • 
J. • o '!j~.::._U_ 
8.18,£-13 
1. 84IE-12 
3.o s'E-12 
4~04 E-12 
4.3 7 E-12 
3.87 E-12 
2.6-iE-:.12 
1.26'E-12 
2.3 8iE-l3 
4.13:E.-14 
7.60E-13 
:2. 08'E-12 -------1-- --
3.43E-12 

ld6 E-13 
5.01 E-13 
1~38E....:l2 
1.48£-12 
5.27E-13-
l.uOE-131 
-3. 29E-12 
l.28E-ll 
2.88!:-11 
4. 76 E-ll 
o.28E-ll 
6. 78E-ll 
5.9s'E=-rr 
4. l3.E-11 
1.95E-11 
3. 67E-12 
6.35E-l3 
1.17E-1l 
3.21E-11 
5~31E-ll 

aT In all-the- tables, the number nEm means n x J]JIII', 

Table I continued on next page. 

8.40E-ll 
3.06E-10 
a. 34 E-to 
8.95E-l0 
3-:zi l:-10 
4.90E-ll 
1.7&E-09 
o. 77 E-09 
1.48 E-08 
2.3 7 E-08 
3:oJ 'E::.-o8 
1.44 E-08 
l.lo E-08 
7. 53 E-09 
3.39 E-09 
6.23 E-10 
1.o7jE-10 
2. 0 l E-09 
-5·:-7 2 E- o9 
1.00E-08 

Table I continued. Photodissociation probability f(~) per oscillation of LiH molecule in 

ground state by absorption of four (A= 1.0648~) photons. ~ is angular orientation of 

nuclear axis relative to the linear polarization vector of the radiation Vield.a 

~ f(cJ>)/2 at f(~)/2 at I f(~)/2 at f(~)/2 at f(~)/2 at f(~)/2 at 

( rad) 1109 W/cm2 b x 109 W/cm2
l1o10 W/cm2 15 x 1010 W/cm2 

l1o11 W/cm2 15 x 1011 W/cm2 

__ t~~ggg~:g~ 1· ~: i~ ~=t~ 
i.Z.OOOOE+OO 5.85E-l9 

l.b30000_E+O_Q _2_!.8.~. E:-19 
2.4•JOOOE+OO 1.99E-19~ 
2.50000E+OO 6.75·E-20 ~ 

-z_----~- 6_o-_o_ ·oo_E_ ioo_ a. 4 9~- E -z 1 
11 

2· 7CQOOE+OO 1.24:E-21 
i.8<1000E+OO 1.18 E-20. 
2.900JOE+OO 1.5~2-20 
3-: OOOOOE+OO -8--:9TE-2fll 
-~:li~KZ~t~g I i:;~:~=~~ i 
~.14159E+OO 3.96E-301 

4.41E-l6 
4.41E-16 
3.o2E-lo 
2.412-16 
1. 23 E-lo 
-4.19E~l7 
5~27E-18 
7.77E-19 
7.42E-18 
9.97 E-18 
5.61 E-18 
5.97\ f. =:i<; 
9.oo:E-20 
2.4 7 E-27 

7.00/E-15 
7.00E-15 
5.74[-15 
3.8ZE-15 

1
- ·r: 96't:=-rs 
t-;~~=~~ 
t.24E-l7 
l.l8E-lo 
1.59E-l6 
a.·<raE=-17 1 9. 55E-18 · 
F. 54E-18 

I 3.96E-26 

I 
a) in all the tables the- nUmber nEm means n X DJI!f, 

4.27E-12 
4.27 E~l2 
3.51 E-12 
2. 34'E-12 
1.20 E-12 
4.·')7 E-0-
5.08 E-14 
7.89 E-15 
7.36E-l4 
9.90iE-l4 
5.59'£:-14 
5.96E-T5 
9 .&tt E-16 
2. 4 TE-23 

&.611E-ll 
6.64jE-ll 
5. 48E-ll 
3.661:-11 
1.88E-ll 
6.4oc-12 
7-:9tf§·:-i -3 
1.2bE-l3 
1.17E-12 
~.57E-12 
8.92t:-13 
9.52E-14 
1. 54E-i4 
3.95.E-22 

1.35E-08 
1. 50 E-08 
2 .o9 E-pa 
1.86 E-08 .. ----- ..... ___ - ·I 
9.83E-09 I 
3. 42 f-09 

4- .2_ 4 e-10 j 
8.14 E-ll 
1. .06 E-10 
9.48E-10 
s. 41 f..:Io 
5.86 E-ll 
9. 50 E'--12 
2.43 E-19 

I 
0'\ 
VI 
I 

I 
0\ 

'{I 
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Table II(a). Dipole matrix elements (ntsjmj IL ~ ·iJn' R.'s 1 j 'mj) (mj = mj = !> of 24 

states of sodium atom. 
--- --- - --

~ Jp! 3p2 1 4p2 1 5p2 . 2 2 4P2 2 5p2 2 

1 -1.455E + 0 -2.057E + 0 -1.310E - 1 -1.852E - 1 -4.803E - 2 -6.792E- 2 3s2 

1 1.428E + 0 2.019E + 0 -3.301E + 0 -4.669E + 0 I-J.B91E - 1 -5.502E - 1 4s2 

1 
5s- 3.043E - 1 4.304E - 1 3.420E + 0 4.839E + 0 -6.111E + 0 -8.642E + 0 

2 
1 1.571E - 1 2.222E - 1 6.459E - 1

1 
9.135E - 1 6.114E + 0 8.647E + 0 6s

2 

1 
1.533E + 0 I 7s2 1.024E - 1 1.448E - 1 3.217E - 1 4.549E - 1 1.084E + 0 

1 Bs2 7;452E - 2 1.054E - 1 2.071E - 1 2.929E - 1 5.260E - 1 7.439E- 1 

~ 3d.J 3d~ 4d2 4d~ 5d2 5d~ 
2 2 2 2 2 2 

I 

1 -2.731E + 0 0.0 -8.134E - 1 0.0 -4.123E - 1 0.0 3p2 J 
-1.150E - 1 I-8.453E - 1 3p1 -3.863E - 1 -2~838E + 0 -5.831E - 2 -4.285E - 1 

2 

1 4.415E + 0 0.0 -4.831E + o 1 0.0 -1.517E + 0 0.0 4P2 
'------

Table II(a) continued. Dipole matrix elements <nR.sjm.l2:r.·Ein'R.'s'j'm\) (m! = m. = -
2
1 ) 

J Mtl Nl J J J 

of 24 states of .sodium atom. 

~'R,'j'- 3 5 3 5 3 5 
lntj ~ 3d2 3d2 4d2 4d2 5d2 5d2 

4P~ 6.244E - 1 4.588E + 0 -6.832E - 1 -5.021E + 0 -2.146E - 1 -1.577E + 0 

5p~ 7.222E- 2 0.0 9.219E + 0 I 0.0 -7.600E + 0 0.0 

5p~ 1.021E- 2 7.506E - 2 1.309E + 0 9.581E + 0 -1.075E + 0 -7.898E + 0 . 

4f7 4f~ 5f7 5f~ 6f7 6f~ ~ 
.. 

n 2 2 2 2 2 2. 

I I I 

Jd~ o.o 4.928E + 0 I 0.0 I 1.629E + 0 o.o 8.8&\E - 1 

3d~ 6.346E + 0 2.874E - 1 I 2.098E + 0 I 9.504E- 2 1.144E + 0 5.181E - 2 

4d~ 0 ·0 -7.799E + 0 I 0.0 I 6.718E + 0 0.0 2.515E + 0 

4d~ ~-1.004E + 1 -4.548E - 1 8.651E + 0 3.918E - 1 3.238E + 0 1.467E - 1 

5d~ 0.0 8.861E- 1 I 0.0 I-1.473E + 1 0.0 8.818E + 0 

! 
5d~ 1.141E + 0 5.168E- 2 I-1.897E + 1 -8.592E- 1 1.130E + 1 5.143E- 1 

I 
0\ 
-l 
I 

I 
0\ 
OJ 
I 



Table II(b). Dipole matrix elements (n!/,sjm .1 L r. •E In 1 R. 1 s 1 j 1 m~> (with m ~ = m. = !.2 ) 
J 1'11 ... J J J 

of 24 states of lithium atom. 

~ 
1 2p1 1 3p1 1 4p2 2p2 2 .3p2 2 4P2 2 . 

1 
2s;z -1..359E + 0 -1.922E + 0 8.080E - 2 1.142E - 1 6.9,38E - 2 9.812E - 2 

1 
.3s2 1.012E + 0 1.4.32E + 0 -.3.478E + 0 !-4.918E + 0 -'2.760E - 2 -.3.904E - 2 

1 
4s2 2.611E - 1 ,3.69.3E - 1 2.447E + 0 ,3.460E + 0 -6 • .395E + 0 -9.045E + 0 

1 5s2 1.40.3E - 1 1.984E - 1 6.148E - 1 8.694E - 1 4.482E + 0 6.,3J8E + 0 

1 6s2 9 . .307E - 2 l.Jl6E - 1 J.25JE - 1 4.600E - 1 1.077E + 0 1.52JE + 0 

1 
7s;z 6.846E - 2 9.682E - 2 2.150E - 1 J.041E - 1 5.674E - 1 8.025E - 1 

~ . .3d2 2 Jd~ 2 4d2 2 4d~ 2 
5d2 

2 5d~ 
2 

1 
2p2 2.114E + 0 0.0 7.851E- 1 0.0 4.5JJE - 1 0.0 

2p2 2 2.989E - 1 2.196E + 0 l.llOE - 1 8.159E - 1 6.410E - 2 4.711E- 1 

1 ( 

3P;z -4.774E + 0 -0.0 ,3.185E + 0 0.0 l.JllE + 0 I 0.0 
• 

Table II(b) continued next page 

-Table. II(b) continued. Dipole matrix elements <nR.sjm.ll:r. ·~In 1 Jl, 1 s 1 j lm~) 
J ~1.... J 

(with m~ = m. =~ 2 ) 
J J 

of 24 states of lithium atom. 

~ .3d2 Jd~ 4d2 4d~ 5d2 5d~ 2 2 2 2 2 2 
' 

Jp2 
2 -6.751E- 1 -4.961E + 0 4.505E - 1 J.JlOE + 0 1.854E - 1 l.J62E + 0 

1 
4P;z 8.055E - 1 0.0 -9.81JE + 0 0.0 4.544E + 0 0.0 

4PJ 2 1.139E - 1 8.J71E - 1 -l.J87E + 0 -1.019E + 1 6.426E - 1 4.722E + 0 

~ 
7 4f~ 5f7 5f~ 6f7 6f~ 4fl-
2 2 2 2 2 2 . 

Jd2 2 0.0 4.987E + 0 0.0 1.6J6E + 0 0.0 8.721E- 1 

Jd~ 
2 6.422E + 0 2.908E - 1 2.106E + 0 9.542E - 2 1.123E + 0 5.086E - 2 

4d2 2 0.0 -7.781E + 0 0.0 6.826E + 0 0.0 2.5J9E + 0 

4d~ 2 -1.002E + 1 -4.538E - 1 8.790E + 0 J.981E - 1 J.270E + 0 1.481E - 1 

5d2 0.0 I 8.J04E - 1 0.0 -1.479E + 1 0.0 9.05JE + 0 2 

5d~ 1.069E + 0 j 4.84.3E - 2 -1.905E + 1 -8.629E - 1 1.165E + 1 5.279E - 1 2 

I 

$ 
I 

I 
-..;j 
0 
I 
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Table III. Values of critical intensity ( 11 ) and pulse.;.. independent 

factor ( o) in Eq. ( 7.2) for wavelengths ( :>..) considered in 

(a) 2-photon transition in sodium (3s -+ 5s); and (b ) 8-photon 

transition in lithium (2s-+ Js). 

(a) Na (b) Li 

:>..(ll) I '(W/Cli) o(a,u) :>..( ll) I '(W/cm2 ) o(a,U:) 

6.02J96E-Ol l.OOE+07 1.E51E-17 2.94060E+OO 1.9QE+07 J.414E-49 

6.02J95E-Ol 1.74E+07 5.605E-17 2.94075E+OO 5.JOE+07 1.264E-45 

6.02J94E-Ol 2.55E+07 1.204E-16 2.94100E+OO 1.10E+08 4.421E-4J 

6.02J9JE-Ol J.J2E-07 2.041E-16 2.94150E+OO 2.JOE+08 1.658E-40 

6.02J92E-Ol 4.00E+07 2.962E.,.l6 2.94200E+OO J.50E+08 4.920E-J9 

6.02J91E-Ol 4.85E-07 4.J55E-16 2.94250E+OO 4.70E+08 5.487E-J8 

6.02J90E-Ol 5.50E+07 5.601E-16 2.94JOOE+OO 6.00E+08 3.656E-37 

6.02389E-Ol 6.50E+07 7.824E-16 2.94J50E+OO 7.JOE+08 1.951E-J6 

6.02J87E-Ol 8.00E+07 1.185E-15 2.94400E+OO 8.65E+08 7.714E-36 

6.02J85E-Ol 9.50E+07 ·1.671E-15 2.94450E+OO l.OOE+09 2.560E-35 

6.02J80E-01 l.J5E+08 J.J75E-15 2.94500E+OO 1.14E+09 7.443E-35 

6.02J75E-Ol 1. 70E+08 5.354E-15 

6.02J70E-Ol 2.10E+08 8.171E-15 

6.02365E-01 2.50E+08 1.158E-14 

6.02J60E-Ol 2.90E+08 1.558E-14 

6.02355E-01 J.JOE+08 2.018E-14 

6.02350E-Ol J.75E+08 2.606E-14 

l 6. 02340E-01 4.50E+08 J.754E-14 

6.02330E-Ol 5.25E+08 5.111E-14 
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Table IV. Pair of optimum parameters (Ib 1 T 1 ) of gaussian pulses for 

the 2-photon transition (Js -+ 5s) in sodium a.t t. = 0.602396l!. 

The third column indicates how well the corresponding validity 

condition Eq. (7.4) is satisfied. 

I' T' I' T' 
0 0 

(W/cm2) (sec) Validity (W/cm2 ) (sec) Validity 

2.0E + 07 3.728E - 10 4.8E + 00 6.0E + 08 9.061E - 10 1.7E + 02 

3~0E + 07 4.693E - 10 1.2E + 01 8.0E + 08 9.374E - 10 1.9E + 02 

4.0E + 07 5.272E - 10 1.9E + 01 l.OE + 09 9.610E - 10 2.1E + 02 

5.0E + 07 5.681E - 10 2.6E + 01 1..5E + 09 1.002E - 09 2.5E + 02 

6.0E + 07 5.994E - 10 3.2E + 01 i 2.0E + 09 1.030E - 09 2.8E + 02 

8.0E + 07 6.457E - 10 4.3E + 01 2.5E + 09 1.052E - 09 J.lE + 02 

l.OE + 08 6.795E - 10 5.3E + 01 J.OE + 09 1.069E - 09 J.JE + 02 

1.5E + 08 7.369E - 10 7.4E + 01 4.0E + 09 1.096E - 09 J.6E + 02 

2.0E + 08 7.751E - 10 9.1E + 01 5.0E + 09 1.116E - 09 J.9E + 02 

2.5E + 08 8.034E - 10 l.OE + 02 6.0E + 09 1.132E - 09 4.1E + 02 

J.OE + 08 8.258E - 10 l.lE + 02 8.0E + 09 1.157E - 09 4.5E + 02 

4.0E + 0818.601E - 10 1.3E + 02 l.OE + 10 1.176E - 09 4.8E + 02 

5.0E + 08 i 8.857E - 10 1.5E + 02 



-7)-

Table V. Transition probability per pulse (f) in sodium (Js + 5s via 

2-photon absorption) at various wavelengths ().) for the input 

gaussian pulse (I = 6 x 108 W/cm3; T = 1 nsec.) which is nearly 
0 

optimum for X = 0.602396~. I 1 is the critical intensity; T is 

transition probability at the PC; and the last column is the valid-

ity condition Eq. (7.4). 

X(~) I' (W/cm2 ) T f Validity 

6.023960E - 01 l.OOE + 07 5.346374E - 01 4.976004E - 01 1.8E + 02 

6.023950E - 01 1. 74E + 07 7.610197E - 01 3.637373E - 01 2.6E + 02 

6.023940E - 01 2.55E + 07 8.915052E - 01 1.934473E - 01 3.2E + 02 

6.023930E - 01 3.32E + 07 9.512349E - Oi 9.277402E - 02 3.7E + 02 

6.023920E - 01 4.00E + 07 9.767802E- 01 4.536125E - 02 4.0E + 02 

6.023910E - 01 4.85E + 07 9.912079E - 01 1. 742953E - 02 4.3E + 02 

6.023900E - 01 5.50E + 07 9.959459E - 01 8.075151E - 03 4.6E + 02 

6.023890E - 01 6.50E + 07 · 9. 988287E - 01 2.339773E - 03 4.8E + 02 

6.023870E - 01 8.00E + 07 9.998375E - 01 3.247668E - 04 5.1E + 02 

6.023850E - 01 9.50E + 07 9.999802E - 01 3.942951E - 05 5 •. 3E + 02 

6.023800E - 01 . 1.35E + 08 9.999999E - 01 
l 
17.376713E- 08 5.5E + 02 

6.023750E - 01 1.70E + 08 9.999999E - 01 1.315072E = 10 5.4E + 02 

6.023700E - 01 2.10E + 08 9.999999E - 01 4.263256E - 14 5.1E + 02 

6.023650E - 01 2.50E + 08 9.999999E - 01 1.421085E - 14 4.6E + 02 

6.023600E - 01 2.90E + 08 · 9.999999E - 01 1.421085E - 14 4.0E + 02 

6.023550E - 01 3.30E + 08 1. OOOOOOE + 00 0. 3.4E + 02 

6.023500E - 01 3.75E + 08 1. OOOOOOE + 00 o. 2.7E + 02 

6.023400E - 01 4.50E + 08 1. OOOOOOE + 00 0. 1.5~ + 02 

6.023300E - 01 5.25E + 08 1. OOOOOOE + 00 o. 5.7E + 01 
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FIGURE CAPTIONS 

Fig. 1. A two-level pseudocrossing between levels 1 = (v1,cr1 ) and 

--- Noninteracting eigenlevels W., 
~ 

- adiabatic eigenlevels. b . is the probability amplitude 
~ 

that the photon-electron system is in state i. 

Fig. 2. A three-level pseudocrossing. Labels are defined similar to 

those in Fig. 1. 

Fig. 3. Three cases of two-level close approach. 

Fig. 4. Geometry for collision of two atoms in an intense radiation 

field. E is the linear polarization vector and k is the .,.., 

internuclear axis. 

Fig. 5. Cross section of 1i and H collision as function of inten­
sity of the radiation field (X = 0.826~); 
v(R = oo) = 5 X 105 em/sec. 

Fig. 6. Photodissociation cross section of LiH molecules at thermal 

equilibrium ( T = 300° K) as a function of field intensity. 

The_dissociative transtion is from the ground state of the 

molecule to Btrr by absorption of four photons (X = 1.0648~). 

Fig. 7. Illustration of the atomic energy level shifts as a function 

of the pulse intensity, resulting in a pseudocrossing (PC) 

between the shifted levels w2 and Wl at the critical 

intensity I'. For the 3s + 5s 2-photon transition of 

sodium, w2 = W2(5s), W1 = W
0
(3s) in the notations of the 

text. 

Fig. 8. Critical intensity at which PC occurs vs wavelength for 

2-photon transition from 3s to 5s state of sodium. 

Fig. 9. Critical intensity at which PC occurs vs wavelength for 

8-photon transition from 2s to 3s states of lithium. 
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Fig. 10. ·Transition probability per pulse, f, in the sodium case at 

several wavelengths fDr a few input Gaussian pulses of same 

peak intensity (6 x 108 W/cm2 ) but different temporal pulse 

widths. 

Fig. 11. Transition probability per pulse, f, in the sodium case at 

several wavelengths for a few input l·nsec. Gaussian pulses 

of different peak intensities. 
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Part B. 

INTERACTION WITH MULTIMODE FIELD 

(April 21, 1975) 

Notations 

Many notations areo used in a way to suggest the same meanings 

as in Part A and therefore will not be explained. By "Eq. (A.3.2)", 

we mean Eq. (3.2) in Part A. By "Eq. (3.2)", we mean Eq. (3.2) in 

this part of the dissertation. 

0 

-.o 

0 
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I. INTRODUCTION 

A mode of radiation field is characterized by w, k, £, 

respectively the angular frequency, unit propagation vector and the 

polarization vector. In the electric dipole approximation, modes 

differing by k only is essentially a one-mode problem (i.e., treat-

ment presented earlier is sufficient.) However, for modes differing 

in k in higher multipole approximation and for modes differing by 

w and/or E, the treatment given below is required. 

More often than not, the radiation field of physical 

processes consists of two or more modes. The second-harmonic genera-

tion and stimulated Raman emission are but two common examples from 

nonlinear optics. Choice of appropriate combination of modes can 

enhance a desired physical process. The atomic two-photon absorption 

is enhanced many orders of magnitude by choosing two appropriate 

frequencies to achieve near-resonance with an intermediate leve1.1 

Another illustration is provided by the stimulated emission of one 

mode in molecules by lowering of potential barrier due to another 

mode. This process is treated in Sec. III, based on the formalism 

presented in Sec. II. Whereas Part A of this work is applicable to 

an n discrete-level atomic/molecular system for n ~ 3, this part 

can be applied to cases with n ~ 2. 

II. THE TWO- AND MULTDA:ODE FIELD 

The Hamiltonian corresponding to H (t) in Eq. (A.2.4) for c 

the case of an atom/molecule interacting with a two-mode radiation 

field is 
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where 

Here hi denotes the free-field Hamiltonian of the ~th (i = 1,2) 

mode, whereas hi denotes the interaction Hamiltonian of that mode 

with the charges. As before, hR is the atomic or adiabatic 

molecular Hamiltonian. 

We expand the total wavefunction w' in terms of the 

v'v'S 1 2 

where up is a particular electronic energy level chosen for con­

venience of calculation later and other notations are similar to those 

in Sec. (A,II). The time-dependent Schrodinger equation gives the 

following set of equations for the probability amplitudes b\1 v (a), 
1 2 

i ! b\1 v (a) 
1 2 

( 2.2a) 
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or in another form more useful to us later 

d 
-b (a')o o 
dy v'v v v' aa' 1 2 1 1 

(2.2b) 

The coupling matrices G1(a,a 1 ) and G2(a,a'), defined as in Eq. 

(A.2.7), differ from each other because of difference in angular 

frequencies, polarization, intensities of the two modes and/or 

propagation directions of the modes (when higher-than electric dipole 

terms are important). 

Upon substitution of 

b'V 'V (a) 
1 2 \ 

d 
dy~'V(a) 0 

1 2 

into above equations, the adiabatic eigenvalue equations are obtained 



0 
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L 
v'a' 1 

( 2.3) ~ , +l(a' 0 , 
\)1\)2 ') 

E,_ I. cr' 
1 2 

Let us label the (A1A2y)th eigensolution at y as 
A1A2cr 

{av v (a)}. Then it can be shown.from the above equations 
1 2 

that 

These equations have the same significance as those following Eqs. 

?"). (A.3.1). 

If we define 

) component of the vector 

the matrix form 

0 
where 

a ( vJ..a 1 
) : a 1 f. r) as the ( vl a 1 )th v2 v1v?a 

~v , then the Eqs. (2.3) can be cast into 
2 

G (a ± a ) 
... ± ""\)2-1 " +1 ,..v2 

-92-

This is formally the same as Eqs. (A.3.2). Thus the method of 

solution of the adiabatic eigenvalue problem is formally similar to 

that of Sec. (A.III). In case of transitions where photon numbers 

of only one mode changes, that mode should be assigned the role of 

mode 2 here. It is necessary to consider v1 and v2 only in the 

range -11_ ~ v1 ~ ~ and -~ s; v2 s; M2• The best way to determine 

the smallest values needed for a desired accuracy is to run tests on 

the actual system under study. For the numerical study in Sec. III, 

Ml = ~ = 2 is sufficient for an accuracy of four or more significant 

figures. 

Two-level Pseudocrossing. With the above-mentioned similarity 

with Sec. (A.III) in mind, we shall briefly describe the most useful 

case: the two-level PC between say level (A1A2cr) and level 

C~.t1ll2 T). We let 

This implies 

d (ll
1

T) 
ll2 

0 1 

1 0 

With these known values, all other d's and s's are found as in 

Sec. (A.III). Note, however, D now are not diagonal. Therefore 
~\)2 

we should not use the artificial ploy in writing for example' JL 
2 

can be found by (i) letting its below Eq. (A. 3 .12a). Instead U 
""ll2 

~throw be all zeroes and (ii) directly inverting the ll2th set 
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of equations (without the (J.Illlir)th equation) to obtain other 

n( 2M:t_ + l ) - l rows. ' 
The two equations ( f.

1 
J..2cr) and ( )J

1
J.I2 T) which have not been 

used to find the d's and s's are used to express the adiabatic 

eigenvalues 

Here W 1 is the shifted ( 111112-r )-level, 
I11J.12T 

where 

Q(2) -
].1 

may be considered as the shifting of the (11
1

J.I2T)-level due to mode 1 

and mode 2 respectively. Correspondingly, for the other level, 

where 
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Finally, 

G -

is the effective coupling matrix element between the two shifted 

levels. The last equality is based on hermiticity. 

To calculate the transition probability between these two 

levels at a PC, we need to consider only the (J.I
1

112T)th and the 

(f.
1

)..2cr)th time-dependent equations from Eqs. (2.2a). These equations 

are reduced to 

( 2. 5) 

which are the same as those of Eqs. (A.4.1). The previous derived 

formulae for transition probability are directly useful. 



) 

0 
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An Alternative Approach is particularly advantageous in some 

circumstances. Here we expand the total wavefunction ~· in another 

representation, 

= I 
~'p'v' 2 

where,with H1 defined in Eq. (2.1), 

e cp~P 
~p 

( 2.6) 

and ep is a particular e~P chosen for convenience of calculation. 

The time-dependent equations for bv (~p)'s are 
2 

E~P v bv (~p) + ., , 2 2 

where (compare with Eqs. (A. 2. 7 )) 

\p,v2 
a 

0 ( - ep) - v 2F2 - - e "i!v ~p 

a 
y - ~t 

1iv 

and 

The adiabatic eigenvalue equations are 

( 2. 7) 
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X ( 2.8) 

where 

This approach may be interpreted as follows: the first-mode field 

interacts with the charge system, produces a modified energy level 

structure which then interacts with the second-mode field. 

The above approach entails the solutions of two single-mode 

adiabatic eigenvalue problems, Eqs. (2.6) and Eqs. (2.8). Formally 

it is related to the previous approach by the unitary transformation 

U connecting the two representations 

cp ~P = u n( N - ~) cp 
1 p 

By this transformation, Eqs. (2.2b) of the previous approach can be 

recovered from Eqs. (2.7) directly. 

If both modes are of the same high intensity, the previous 

approach has the advantage over this approach in calculating only 

those eigenvalues needed and requiring less computer memory. However, 

this approach has the advantage of inverting in general smaller 

matrices. 

When the second mode has low intensity such that level shifts 

due to it are negligible, one may solve Eqs. (2.6) and, for multiphoton 

transition of the second mode between two levels, treat the weak field 
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as perturbation. However, for single photon transition of the second 

mode, we can do better than perturbation method. Suppose we need to 

consider single-photon transition of second mode from v
2 

= ~2 to 

v2 = A2 = ~2 - 1 and the H1 -system from ~l' to Al cr, then from 

Eqs. (2.7) we consider 

which is in the form of Eqs. (A.4.1) with already known solutions. 

The Multimode Field. It should be clear on how one would 

extend the above two methods to the multimode case. 

III. STIMULATED EMISSION IN MOLECULE BY 

INTENSITY-DEPENDENT LOWERING OF POTENTIAL BARRIER 

We consider here the process in which atoms collide at thermal 

velocity with each other, forming a quasimolecule with potential 

curves and dipole matrix elements illustrated in Fig. 1. Initially 

the quasimolecule is in state 2, which has a potential barrier (e.g., 

due to avoided crossing) at Rb· For R > Rb• the dipole transition 

to the state 1 is forbidden, while for R < Rb it is allowed. However, 

at thermal velocities, the potential barrier is too high for the 

classical penetration (or too little quantum mechanical tunnelling) 

into region R < Rb· Therefore one way to make the desired process 

go is to lower the potential barrier by a sufficiently intense laser 

field at a photon energy smaller than the energy gap between level 2 
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and 3 in the neighborhood of ~· Once the molecule penetrates into 

the R < Rb region, it will most likely radiate at the classical 

turning point Rc at the second frequency. 

For diatomic quasimolecule, the initial state 2 is achieved by 

some sort of pumping. But for polyatomic quasimolecules, the potential 

surface 2 may represent ground state of one configuration of the 

molecular complex and no pumping is necessary. Potential sur:Cace 1 

corresponds to a rearranged configuration. For case depicted in 

Fig. 1, part of electronic energy upon photoemission is converted to 

relative kinetic energy of the colliding particles, producing heating 

of the gas of molecules. Thus the high-intensity laser may be needed 

only initially to make the process go. 

curves 

Mjk 

mass 

For numerical study, we consider the original potential energy 

ui(R) (in eV) and dipole matrix elements (in AU) 

(jl!: r.lk) for a diatomic colliding system (of reduced 
i ,.ol 

20 X proton mass and relative speed= 105 em/sec). 

-5(R-3) 1.5e 

2.9 + O.lQ 
2 e-1.6(R-3.75))2 + 0 .153 e-4.0(R-4.8) 

4.285 + 1.2 e-3(R-J), 

-2. 5(R-3) 
5 e , 

2 
4 

-0.738(R-4.85) 
e ' 

2.0 

, 
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These analytic representations are meant to be valid only for 

R ~ ).0 a
0

• They are graphed in Fig. 1. The maximum of the bump 

height of uiRl - u2(o>) is 0.12 eV at R = 4.85 a
0

• The relative 

kinetic energy at large R for the collidng diatomic is 0.104 eV, 

about 0.02 eV too low to overcome (classically) the potential barrier. 

We assume electronic state 2 and 3 to have the same A-quantum 

number while that of state 1 differs from theirs by 1. Then only 

those collisions whose plane of collision has a nonzero projection of 

£1 (the linear polarization of the intense laser field :: label 1) will 

have nonvanishing coupling between state 2 and 3. In our numerical 

example, we consider only those collisions whose collisional planes 

contain the £1 , as depicted in Fig. A.4. 

With high-intensity laser field chosen to be the available 

YAG:Nd3+ laser ( >.1 = 1.0648 ll), the bump is lowered by about 0. 04 eV 

12 2 at I1 = 10 W/cm • (The amount of shift is roughly proportional to 

I1 for this single-photon process.) The colliding atoms for certain 

range of impact parameter (b = 0 to b = 1. 97 a ) can now pene-max o 

trate into the R < Rb region. The system has certain probability 

PI (b ) to radiate near the classical turning point by stimulated 
2 

emission into the second mode ;.
2 

; 0.486 J.!, corresponding to the 

energy difference between the shifted levels 2 and 1 at R ~ 3.2 a0 

(g2 is chosen parallel to €1 ). 

The transition probability formula Eq.(A.4.5) is appropriate 

and valid for calculating PI (b) near R • The two methods repre-
2 c 

sented by Eq. (2.5) and Eq. (2.9) in the last section yield results in 

good agreement with each other. 

The cross section (in a
0

2 ) for stimulated emission into the 

second mode 
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rbmax 

21TJ, db b 
0 

are calculated for several intensities and are given in Table I.\ 

On a log-log plot of cri vs I 2, these eight points form a straight 
2 

line of slope 1. 

An interesting effect occurs which is related to the fact that 

the coupling between the second and third level depends on the angle 

between the internuclear axis of the colliding atoms and the space-

fixed linear polarization £1 • (see Sec. (A.V)) Thus collisional 

systems with impact parameter b = 1.46 to 1.97 a can get into the 
0 

region R < \ but cannot get out (i.e., bound) because the change 

of the above-mentioned angle on the outgoing trip. Values for cross 

section for such "trapping" 

1
.1.97 

21T db be::.- PI (b ~ 
1.46 2 

are given in Table I. It is not significantly sensitive to I 2. It 

is noticed that crt is large compared to the corresponding cri . The 
2 

trapped colliding system will become a "vibrating" molecule (that keeps 

on rotating,and translating as a whole). It is expected to radiate 

predominantly near R = 3.2 a
0

• This bapping will result in a great 

enhancement of the "observed 

We have assumed that transition to the third level near Rb 
is negligible, because the shifted levels 2 and 3 at Rb is off­

resonant by 0.06 eV. We should mention that raising the third level 

in our numerical example by 0.4 eV higher changes the amount of 
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potential barrier shifts by less than 10%. Thus the selection of the 

third level (or high intensity laser wavelength) is not severely 

restrictive. 
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Table I. Cross section of stimulated emission, 

I 

cri and cross section for trapping, crt 
2 

(see Sec. III of text). I 2 is the intensity 

of stimuJ.ated emission. 

I2(W/cm2 ) cri (a 2) 
2 0 

crt(ao2) 

1 X 107 1.14 X 10-3 I 
5.5 

4 X 107 4.54 X 10-3 5.5 

1 X 108 1.14 X 10-2 5.5 

4 X 108 4.54 X 10-2 5.5 

1 X 109 1.13 X 10-1 5.5 

4 X 109 4.51 X 10-l 5.5 

7 X 109 7.86 X 10-l 5.5 

1 X 1010 1.12 5.5 
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FIGURE CAPTION 

Fig. 1. Potential curves and dipole matrix elements of quasimolecule 

for parametric study of interaction with two-mode radiation 

field (Sec. III of text). 
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