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NONPERTURBATIVE THEQRY. OF SINGLE/MULTIPHOTON PRUCESSES
IN ATOMS AND MOLECULES INDUCED BY INTENSE LASER FIELDS

Albert M. F. Lau
Department of Physics and Lawrence Berkeley Laboratory
University of California, Berkeley, California 94720

April 21, 1975

ABSTRACT
A quantum nonperturbative theory is given for the proﬁlem of a
general n discrete-level atomic/molecular system interacting with a
strong single-mode/multimode radiation field. The atomic/molecular
energy-level structures are modified due to interaction with the laser

field. These energy level shifts are derived in the rigorous solution.

to the adiabatic eigenvalue problem of the charge-field system, involv- -

ing a simple iterative procedure. The task of solution is simplified
by recurrence relations between matrices connecting probability émpli-
tudes of successive photon numbers. New formulae for ealculating prob-
ability of single/multiphoton transitions (i) between three resonant
shifted levels and (ii) between some cases of two near-resonant shifted
levels are derived. This general formalism can be applied to calculate
transition probabilities of various atomic/molecular photo processes

of interest. Numerical values are obtained for the inelastic cross
gsection of the slow-collisional process Li + H(XlZ+) + Li+ H(AlZ+ or

Blr) induced by a A = 0.826 u field of intensities 10°-10™°

W/cm2
and for dissociation (via Blw) cross section of LiH molecule by
absofption of 4 photons in a YAG:Nd3+ (X = 1.0648 u) laser field

over intensities 109-8 X lO11 W/cmz. The transition probabilities of

-2-

Na (3s + 55 hy absorption of two photon of XA = 0.60233u - 0.602396 u)
and of ILi (28 = 3s by absorption of elght photons of A = 2.9406 u-
2.945 u) dirradiated by a strong pulse are calculated. These transition
probabilities per pulse can be optimized to be % by varying parameters
of a (say) Gaussian pulse. Finally a parametric study is carried oﬁt
for the process where a molecular system is interacting with two intense
radiation fields of different wavelengths. Owing to potential barrier
shift due to the much more intense field, the molecular system penetrates
into an otherwise-inaccessible region in the potential level where it
is allowed to radiate to a lower level by emitting photons at a second

wavelength.
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Part A.

INTERACTION WITH SINGLE-MODE
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I. INTRQODUCTION

To our knowledge, all the previous nonperturbative (or "exact!)
solutions1 of the quantum mechanical problem describing discrete-level
atomic systems interacting with the electromagnetic field of finite
number of modes are restricted to cases where all antiresonant terms
are neglected a priori (rotating wave approximation) and where only
single-photon transitions between a pair of levels are considered. As
such they are inapplicable to multiphoton (of the same'mode) transition
between a pair of atomic levels. With the above restriction removed,
Kroll and Watson2 have studied the problem of multiphoton transitions
between a 2-level atomle/molecular system interacting with a single-
mode high-intensity field. In this part of the work, we investigate the
problem further‘by considering single/multiphoton processes in any n-
level atomic/molecular system interacting with a single-mode intense
field, where n > 3.

Since our present work is similar in spirit to that of Kroll
and Watson (thereafter referred to as I), it serves as introduction here
to briefly deseribe their work. They consider the problem mainly in

3

the context of slow atomic” collision in an intense radiation field.
Because of the near-adiabatic motion, the atoms effectively form a

molecule--a quasimolecule. In their work, the relative motion of the

atoms is approximated by classical orbits along quasimolecular potential )

curves. The adiagbatic eigenvalﬁe problem for the field-charge system
is then solved rigorously by a simple iterative procedure. Level
shifts due to radiative interaction arise naturally. Multiphotonicl
transition between two resonant/near-resonant levels at certain inter-
nuclear separation can be calculated by formulae similar to the

Landau-Zener formula.

—ly

Our present work differs from theirs inbtreating the more
general n (23)-level atomlic/molecular system (interacting with a
single-mode field). We derive new formulae for calculating transition
probability between three resonant levels and between two near-resonant
levels of certain nature. We give a detailed analysis of transition
between shifted levels due to power variation, though the idea and.a

rough estimate have been given in I. We also apply the analysis to

. a different process--the multiphoton dissociation of molecules.

With multilevel systems, several as well as two levels can be
in one- or multiphoton resonant transitionwith each other. After
setting up the Schrodinger equation appropriate to our problem (Sec. II),
we detail the solution of the adiabatic eigenvalue prqblem for these
cases (Sec. III) and derive some new#ransition formulae (Sec. IV). The
dependency on orbit of the photon-electronic coupling is considered in
Sec. V, where we also present the results of calcualtions on the colli-
sional cross section of the Li + H 'system over a range of field

12 watt/cmz).

intensity (lO9 - 10
The general formalism is not limited to treating collisional
processes of atoms/molecules. For example, with slight modification,
we can apply it to one- or multipﬁoton dissociation of molecules, where
the internuclear vibrational motion take the place of the collisional
motion (Sec. VI) and to transition between shifted levels of an atom
irradiated by a strong laser pulse, whose temporal variation of
intensity gives rise to nonadiabatic transition (Sec. VII). For the
former case, we apply it to the 4-photon dissociation of LiH molecule

from the ground state xizt via the Blm state. The molecule is in

an intense radiation field of wavelength A = 1.0648y (YAG:Nd3+). The
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thermal averaged cross section over the range of intensities

1 . 8.0 x 1011 W/cm2 is presented. In the latter case, we consider
the 2-photon transition in sodium atom (3s + 5s) and 8-photon
transition in lithium (2s - 5s) over a range of wavelengths. The
transition probability may be considered to have pulse-independent
and pulse-dependent factors. For a given pulse-independent factor,
one may optimize the pulse such that maximum transition probability
of 1/2 1is achieved. We have done such analysis for gaussian pulses,
with numerical results presented for the above-mentioned atomic

transitions.

II. THE TIME-DEPENDENT EQUATIONS
For concreteness, let us discuss the general theory in the
context of slow atomic collision in an intense laser field first.
The Schrodinger equation for a system of atoms interacting with a

radiation field is

iy = (K +HN , (2.1)

where K is the kinetic energy operator for the atoms and
H= hR + hp + h'. Here, hR is the adiabatic molecular hamiltonian
for the colliding atoms at a given internuclear separation R. Besides

the electronic terms, h_, includes in particular the Coulomb repulsion

R
between the nuclei and their Coulomb interaction with the atomic
electrons. The molecular electronic state ¢a(£; R) and "potential

curve" ua(R) are given by the eigenvalue problem

ety = u,(R)y

-6
where £ denotes the set of atomic electron coordinates, R being
considered as a parameter.
The Hamiltonian hp for the free radiation field with m

number of modes excited is

m
+
h, = meaxax ,
=1

in the usual notations. Finally the interaction hamiltonian is -

2
ht = _Z el P A(r.) - ! ACr,)-Alr.) (2.2) ‘
= - me i mai ch?mxi i )
1 i

where 1 is summed over all the electrons as well as the nuclei. As

usual in the Schrddinger picture and in plane wave modes,

. |
3 ik 'z -ik, -z
- 2mh -\ + RIS
L) (&) Gxe fey e A
A

where V 1is the cavity volume. A unitary equivalent interaction

hamiltonian well suited for systems of bound charges like atoms and

molecules is4
h' = —Z qi};i-g.‘(o) + higher multiple terms , (2.3)
T .
where
- 1l 9
Xr) = - 3wy

Since only matrix elements of h' between two orthogonal electronic
states (¢a's) will appear in our theory, the leading nonzero matrix

eleménts from the .é'éi term in Eq. (2.2) for intense radiation field
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(N >> 1) are the dipole terms (for one charge)

2 .
12 = L (BPKax = 212(a - a)1xzle, 0] ,
while those from the A-p term are
-
= 9 ./ 2m L +y 2
lap] = [(oNz12ec —wv') (a+a )g'nguN” .

A conservative estimate of the relative magnitude of the two kinds of
dipole matrix elements can be obtained by considering the ratio

1 aR
A 1
_.L%—.. o ~ -EV

|A-p|“Auw

which takes account of the fact that IA?] (|Ap|) connects states whose
photon numbers differ by 2 (1). The numerical value is obtained with
the assumed typical values for uy - ug to be fw and

A A .
f (alz-gl8 21 ~ |{alz-k|g) ~ a,. Thus we may neglect the A.4
term.

5

Therefore the dipole” interaction hamiltonian we will use

from Eq. (2.2) is

- e
L = - Za‘iz}zi'.é(o)’
i

and that from Eq. (2.3) is
By = - ) arEO) .
i

Depending on the problem there are different merits of these two forms
of the dipole interaction hamiltonian. In particular, for treatment
of systems in which higher levels are neglected, as we will do, the
form h; makes it a better-approximation.6 We therefore would prefer
h}. However, for solving the adiabatic eigenvalue problem below, h!
may for some systems (e.g., the alkaline atoms) give rise to a singular
coupling matrix (£4 below) while it is formally required for algebraic
convenience to be nonsingular. Then we would use h' instead.
For the slow collision of atoms in an intense radiation field,

the physical situation we have in mind is as follows. The atoms are

in collision with each other in the region of intense radiation
field (e.g., in an open laser cavity). The relative motion of the atoms
is much less than that typical of atomic electrons
(~ ac = 108 cm/sec). They form therefore in the adiabatic approxima-~
mation a "quasimolecule." In the presence of the radiation field, all
ud(R)'s will be shifted relative to each other. The atoms collide
together initially along the shifted electronic energy level u&(R)
corresponding to the molecular electronic state o. At some R's
there will be multiphotonic resonant transition between the shifted
electronic enérgy levels. And as they separate after the collision,
the atoms have certain probability being in an excited state. We will
assume either the intensity profile of the intense radiation is uni-~

form over the collisional region and smooth and gradual in its spatial
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boundary, so that we do not have to consider transtion due to intensity
variation as the atoms enter or leave the region of intense radiation
field.

We shall treat the near-adiabatic motion of the atomic nuclei
classically. It has been shown in I how one may make the transformation
from quantum picture to the corresponding approximate classical orbits.

Instead of Eq. (2.1), one may then consider,

Ry = H (1) (2.4)

where Hc(t) is obtained from H by replacing the operator R with
the classical orbit R(t).

To solve Eq. (2.4), we let

Vo= ) eglen) dglEIR(E))
B

where p is any coordinate representation of the photon field.
Substituting this expansion into (2.4) we obtain

e, = uye, +hoy + ) (0n'gleg - H ) cgldnbg) . (2.5)

B B

The last term on the right corresponds to collisional transition due
to nonadisbatic motion of the nuclei. It has been treated elsewhere7
and is negligible when the electronic energy levels are not very close
together. We assume such are the cases we consider. The secular term
(¢a,h'¢a) in the third term on the right is in general nonzero for
unlike atoms. It is related to the permanent dipole moment of the
molecule in the electronic state ¢a’ and is responsible for
radiative transition between molecular nuclei states for the same

¢a' Therefore, consistent with the classical orbit approximation for

-10-

internuclear motion, we neglect the radiative transitions within the

same electronic state and drop this term.8 Hence

We restrict ourselves
polarization 'é. Let
radiation field where
the number of photons
interested in intense

maximum v of interes

N ~wv

+h ¢

Bfa

St Y (Bymiogleg (2.6)

to cases of one mode of radiation with linear

QN - V) be the

photon-number state of the

N is the initial number of photons and V

absorbed by the quasimolecule. Since we are

radiation field,

t. Thus we will make the excellent approximation,

+1 2 N-v =N

N is very much larger than the

.

Defining the probability amplitude bv(a) by

c = }: i'p
o

\Y

(@) e

.t
%f (1, +hul )dt

VAN - v)

and making the change to dimensionless time variable

where v is any convenient constant speed, a, the Bohr radius, we

obtain from Egs. (2.6)

where

M @) b(a) + ) G,(a,8)(, 1(8) £ b, (8)

B

(2.7)
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W(a) = 22 (u, -w) - VF
a
F = i%%dhu
Gi_(d,B) = 2111)( Z 1~1¢B>

corresponding to the dipole5 interaction hl, and

G, (a,0) = 0.

Here I = Ngﬂ is the power flux or field intensity.
If h, is real, a set of the real ¢a can be chosen. Then the

R
matrix G, (G_) is real and symmetric (antisymmetric).

ITI. THE ADIABATIC EIGENVALUE PROBLEM
Since we will make use of the adiabatic eigenstates of the
whole system in the calculation of transition probabilities, we consider
in this section the solution of the eigenvalue problem of Egs. (2.7)

in the adiabatic limit. Let

-1 7By )ay'
e

a (o) (3.0)

bv(u) v

where (?(y),g) is the "adiabatic eigensolution" to be found. In

the adiabatic limit,

d&v(a)
5 .

-12-

Substituting these expressions into Eqgs. (2.7), we obtain

Ea\)(a) = W (a) 8\,(0‘) * Z Gi(a,ﬁ)@v_l(S)
B

av+1(Bi). (3.1)

The quantities Wv(a) correspond to the photon-electronic
(v,a) eigenlevels of the noninteracting hamiltonian hc + hp. We -
shall call them the "noninteracting eigenlevels." 1In absence of
interaction, these levels may cross each other (Fig. 1). 1In such case

G (u,s) 0 in Eq. (2.7), then

-ifyw (a)dy’

bv(a) = cv(u) e v s
where cv(u) are constant and hence no transition occurs, But with
the interaction "on", Gi(a,B) # 0, the adiabatic eigensolutions of
Eq. (3.1) would yield E's which are in general different from
Wv(a)'s. In particular, near where there was a crossing between the
Wv(a)'s, due to the now-present interaction between them, the Wv(a)'s
"repel each other." As a result, the corresponding E's form a
pseudocrossing (PC). In the adiabatic limit, the quasimolecule fol-
lows @ particular E (a solid line in Fig. 1), at each PC all
throughout the collision and no transition occurs. (This is related
to the fact that for each PC at =y < 0, there is a corresponding
PC at y.) But in the nonadiabatic situation where dR/dt # O,
transitions can occur at the PC's.

Following I, we shall label the adiabatic eigensolution

(E,s) by that set of index (v,a) such that at each y
E, ~ Wv(a) , as all Gi(a,B) >0

Thus the same (E,gg switeh indices at each PC as indicated in
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Fig. 1 . In the rest of the paper, we shall drop this adiabatic
eigenindices on (Ehﬁ) whenever no confusion results.

Ao

a o-) are

We observe that at any y if a particuler (E, _,
(A +A) Aoa -~
found, then (?(A 'l ° %) for the same o but any A can be
o

generated from it by

%Agxh - AF

A o
o)
and,

(Ao+k)a

Aoa .
8, (B) = a,,(B), for all v,8

This can be shown simply by substitution into Egs. (3.1). Thus we need
only to find the (Aoa) adiabatic eigensolution for one Xo in order
to know all other (Aa) eigensolutions for the same «a.

In principle the sum over B runs over all quasimolecular
electronic states of the pseudomolecule. However, if we are interested
in the low-lying electron eigenlevels only, we may restrict the sum to
an appropriate set of discrete electronic states (see examples below).
The higher lying states may be negligible because the coupling with
states of interests, Gi(a,B), are relatively much smaller than those of
states included in the sum; or because their contributions are of
higher orders. Thus restricting ourselves to a finite number n{>3)
of discrete electronic states, we now proceed to solve Egs. (3.1).

It is convenient to convert at this point to matrix notation.
Let gt. be the n X n matrix [Gt(oz,B)]. Let D be the nxn
diagonal matrix [(i - Wv(a))éae];and 2, be the n x 1 colum

matrix. Then Eq. (3.1) can be rewritten as, for all v

R\) & &i('%\)-l i;ﬁ\)ﬂ.) . (3.2)

We shall call the above n equations of a given Vv "the vth set of
equations" and specify an individual equation in Egs. (3.2) by "the
(v,0) equation."

In the above equationms, and (and therefore ) are
+ 9&\)

2
a function of R (and therefore of y). In a given quasimolecular
system, we encounter no, two-level, and/or multilevel PC of the
noninteracting electron-photon levels Wv(a) at different R (see
Figs. 1 and 2). The exact procedure we follow depends on the kind of
PC. Therefore we shall treat the no-PC, 2-level PC and 3-level PC
cases separately below. Any higher-than-3-level PC cases are
straightforward extension of the 3-level case.
A. The No-PC Case

Suppose we are interested in finding the adiabatic eigensolution,
gay (v = 0,a), at y. (Recall that from this we can generate all
other (v,a) of the same o.) For not too high an intensity, we
expect that the noninteracting eigensolution (v = 0,0) will be

dominant. Therefore we let

a(B) = d/8)aa) , (3.3)

for all V,8. This implies do(a) = 1. Substituting Egs. (3.3)

into Egs. (3.2) and factorizing out ao(q), we obtain

Dydy = Gldyr ) - (3.4)

my=1 ~ wy+l
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-1

Barring unusual coincident, D v exist, then

+,
U-(/g\\)-l tdm) o

Ncﬁl\) my my+l
where

+ _ -1

/H\) = R\) ~'§i *

For v > 0, we define };‘u such that 3\) = Ui H 4 .. Then Egs.

MY My wy-1

(3.4) can be written as

+ J + +
Hm Ev 3\\)-1 R\) [cv-l * N['\I\_)'i-l n}-\[wl /yn\) E\) v?l\v-l] *

If the inverse of R‘: exist (which is the case if S -1 exists),

then the above equations can be simplified to give

-1
H 10 H Ui]

MV Rv-1 0 Law | vl muel av-1

Since this is to be satisfied for a general Sy-1’ Ve have

= [13v 4§ U*]-l
»I-\{v h [m Mmy+1 MU+l My

In particuler,

= [z ¢ Ui]
B [5\*»25{2»«1 ,

and

S
[}
S
sl
H
3n.
0
n
&
[ o8
o

Since
as vV +* o >

then H -+ I in this limit.
MY M

(3.5)

16~
For v < 0, let
= U
S T 'Hv mv awl *

Substituting into FEgs. (3.4) and after manipulations similar to those

leading to FEqs. (3.5), we obtain
— ot . +1-1
EVRIE FED w0) V) o I (3.6)

Again 'Q:i (hence WU_:':) +0 as v -+ -, therefore ﬁ\') +2I. In

particular

-1
- v i]
i L -SLHL 0

and
= U H'. 4 = X, d
3-1 M-l m~1mo ~ M2mo °
Since do(o) = 1, we obtain the following set of (n - 1)

inhomogeneous equations from Eqs. (3.4) with v =0, and o = 1,2,.-.,

o-1,0 +1,-+.,n,

> [@ ACH DY G,_L(a,B)(XZ(B,Y)_«:Xl(s,Y))]do(v)
8

Y#0
= Y (e, (8,0) £ X,(8,0)) . (3.72)
B

If the above equations are .répresented in matrix form, then

2% N

where
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45 = (@ (1,8(2), 00 05a(0 - 1),8 (0 + 1),0+4,d.(n)) 5

and 5; is the (n = 1) X (n - 1) coefficient matrix while 'R{ is
the (n - 1) x 1 known right-hand side. Barring unusual coincidence,

ﬁrl exist and the solution is

LIRS 5 U (3.70)

Thus in order to find all H 's and H!'s (hence the
d v(a)'s}, in principle we may start with H,=I end H', = £
(+ corresponds to h; hamiltonian while - corresponds to the hl
hamiltonian). However, in actual numerical calculations, we may choose
a cut-off M(-M Sv< M) such that the error in the matrix elements of
Hl and Hll is negligible. An estimate of this error is given
roughly by (é(a,s)/FM)Myz. The actual choice of M depends on the
particular system and field intensity of interest. In the examples we

have done, a relative error of magnitude less than 10_15

can be
achieved with M being around 10 even for the highest intensity
considered.

Thus starting with NI;IM+1 = &, we find successive }«{M’:&M—P”'"
H,H, sccording to Egs. (3.5). Then ¢ = 4 H; g, Similarly
starting with H'y o = #T, we find H',H'V.,
to Egs. (3.6). Then 44 = Ut1,§11 Jo- Then we obtain gé as in

-

LAY t 1 i
%E—Z’g—l according

Eqs. (3.7).

So far we have not used the (v =0, a =0) equation

E o= W(0)+ ) G(0,8)(X(8,7) £ X8,y (Y)
By

~18-

where dO(U) = 1 has been used. The second term on the right may be
considered as thé shift of level WO(U) due to interaction. For low
intensity, it agrees in value with that given by perturbation theory.
We use this equation for successive iteration to find the adiabatic
eigenvalues Eo(o), by starting with a trial E close to Wo(o). The
number of iterations depends on the accuracy desired as well as the
strength of coupling G(a,B). In all calculations we have done, values
accurate to four or more significant figures are obtained with roughly
2 (for T=1x10° Wen®) to 5 iterations (for T x 10°2 W/em?). ’

The above procedure alsoc yields the coefficients dv(B) of
the adiabatic eigenvector W2 if needed. Normalization would fix
the value of ao(c).

B. Two-level PC

When two noninteracting photon-electronic levels, say (v2,02)

and (vi,cl), are too close to each other (degenerate) at a certain

R(y), we must modify the previous procedure in order to find the

and n = v, -V, >0, i .

adiabatic eigensolutions. Suppose 0, > O - 1

2 1
At the y of interest, let

ay(a) = da) a\,l(ol) + s,(a) a\,z(oz) , (3.8)

for all v,a. It follows that

|
o
-

a_ (o) 1, s, (o)
v 1 vl

i

1
=

8, (05) = 0, s, (o) . 39)
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To find d _(o)'s, which are independent of a_ (0,), we ~t  _ =
v ! vV, 2 = D, G,
2 M\)2 mV, &
substitute dv( a)a\') (cl) in place of av(a) in Eqs. (3.2) and obtain
1 ' we obtain as before
R\) 4 - lﬁi(gv-l t'g\wl) , M<v<EsM . (3.10) ., . -1 |
_ . N -1 NV - [-I« * Hv2+1 Hvz"'l "%2] ’ (3.120)
For v > Vqs let Ndw = gv gv g\}-l’ where rH\) ErR\) NG\t' Then - N

after manipulati imil 1 Eqgs. . . . L
er pulations similar to those from Eqs. (3.4) to Egqs. (3.5), and from the ‘(‘)2 - 1)th set,

we obtain as before

~

H = [I gt g ¢t ]-l
u\\)z-l MMV, MY, "N2-1 )

-1
= ¥ t - + = ceo 2
l{-lw = [}«+Hv+1wl;lw+lg\)] s, V=M, ,\)2+1,v2..2,...,\)l+1 .
i = it 1 t -
(3.11) For v < Vys with ~(~i\\) = H;) ga\) 'g&v+1’ E\, with v ¢ vl 1

Now, however, 'amohg the vzth set of equations in Eq. (3.2), are obtained the same way as in Egs. (3.6).
St - ) ' .
all the n - 1 equations with o # Oys and d\) ( 02) = 0 from Egs. With the equations above, various ,9\\, S can be expressed in
2

(3.9), can be satisfied to an arbitrary degree of accuracy if we terns of ﬂ\)l' For use below, we write

write
= -1 m\)2+1 =k »Qvl ?
'9“)2 B nlo)\\)2 &t(g\)z—l ivg«vzﬂ) (3.12a)
d 4 = X d. ,
where “Vy 1 w2 wVy
b, (a,8) = D (a,a) 8 ., af o, ; d = X ,
\)2 \)2 OL,B 2 v\\)1+1 "‘3 M\)l
and
d . X, 4 .
) nvl-l = w4 "y
D\)2(G’2;B) E 4 d02 8
’ The explicit forms of &(i's depend on n (= v, = \)1). When
% being an (1) arbitrarily large but (2) finite number. Condition n > 2,

(1) enables 4, (02) X 0 to be satisfied while condition (2) fulfills
2

the formal requirement that ;I%'l exists. Then with
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+ -~ + +
= U = - > i = U i '
2‘[1 H\)z +1 ’}'I‘vz +1 £v2 3‘!\’2. ..Hvl +1 ,}«I\) a0 For Vv \)2, we define gy ° g v '}'{\\) Sv-1 and obtain as before
+ * K = [I iy ok U ]-1
3‘(2 = H—\-)z_ 1 &2_1. . 'R:)fl ﬁvl +1 MY M Myl W+l sy

Comparing with Eqs. (3.11), we observe that, K v " Hv’ for
+ . . . -
3‘(3 = :H:)lﬂ E\)fl , Vv, <V < M, since the cut-off conditions (§M+1 =5 Kui 5) are
1 = + 1 t
the same, For v < sz with Sy = H\) *{E\) Su+1’ 11&\) are found from
+
= 1
X 5 -1,51\) o Egqs. (3.14) to be
1 1
-1
1 = - * ] *
When n-= 1 '&\’ t["I" 'R;"l NII<\\)-1 "*[’I‘V ]
)
. Vo= MM+ 100,00 = 1,V 4 2,-0.v, =1 .
N0 alal & o P :
2 2 2 72
Again since their cut-off conditions (;»\ILM-I = i}} D S th‘\) are
2‘(2 =1, thesame,wlﬁ\')=~}n{\’) for Msvsvl—l.
The ﬁ\') matrix is obtained in a way similar to obtaining
~ 1
* . .
. %, 341\)2 , 55)2 in Egs. (3.12). Now we use the il-th set of Eqs. (3.14) with
o = 1’2""01 -1, 0, +1,-++,n and svl(cl) =0 +to write
= 1
& Rf)l-l M-l (3.13)
. |
Wy va g«’t(ﬁvl-l * «‘71\)1—1)
1 = s - o
The ndl\'\) = (d\) (1): ’d\) (01 - l)ydv (Gl + 1), ’d\)’(n))
1 1 1 1
¢an be found from the v th set of Egs. (3.10) with o = 1,2,...,0; - 1, where
o] +1,--,n and d, (cl) =1, in a way similar to that of Egqs. (3.7). B (0,8) = D (a,a) 8 for o #0.
1 v AVy a,B 1
To find the sv(a)'s » which are independent of a, (01), we
1
and

substitute sv(a) a, (02) in place of av(a) into Egs. (3.2)
2
D (g,,8) = &6
le 1’ 01’8

Do 8y = GulSy_g t8yey)» MSVEIM . (3.14)

% Ybeing an arbitrary large but finite number. Then
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. + , ~ 3 171
B gakad |

From:the (\):L -1)th set of equations, we obtain

~4
= + - =
_[N:E\ H\’l X

"
3
|10
<

[[]]
4
[

11}

<

0]
.

+

rla{v2+1 ~I§v2+l ’

o+

U K! s
n\)z-l m\)z-l

1

' K!
»M)l-l m\)l

s
-1 H\)l ulg\')

1

+ +
T 41 §\')l+1 Hv'1+2 5\'»1+2'

1

Ui
\m\\)2

] Ui -1
) nvl+1 *

+
U= X'
m)z—l M\)2-l

K! H
-1 M\\)Z—l

2

24~

while for n = 1, we obtain

g1 c H\_)2+1 §v2+1
~E
Y, = UT K! s
"2 mvl M\)l
a3 - Lo
LRI S S '
YA \)l-l m\’l-l m\)l ™\ 1
All Sy are thus expressed in terms of N The

' = {. se e - ' .o .
gvz z (svz(l), ’Sv2(°2 1),s\)2(02 +1), .,svz(n)) are found from

the \)zth_ set of equations with a = 1,2,--.,02 - 1,02 +1,...,n,

s (02) =1 in a way similar to that of d' in Egs. (3.7).
MV,

v
2
Finally, we use the two remaining equations

(z- (1) () = ;"‘z("rs)@vl-l(s) £ o, (8))
and

(CRANCR) RIS ; 0(08)(ay 1(8) * o, 1 (8))

10 find the adisbatic eigenvalue E. Substitutions of av's as

given in FEgs. (3.8), (3.13), and (3.15) gives

E-W (o) G a. (o)
vy o1 12 v, 1 |
G W' (o,) (0,) -0
21 E- v, %27 A%

(3.15)

and
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W' (o) = W (0,)+4,,
Vi 1 vy 1 1

Al = Z Gi(cl’Y)<X4(Y’B')i XB(‘Y:S)) d\)l(s) ;

Y,8
w\',z(oz) = Wv2(02)+A2;
4, = Z Gi(GZ:Y)CYZ(Y,B) + Y,(v,8)) s"z(s) ;
Y, 8 .
Gy = - ) G0, (v.8) £ 108 ]s, (8)

Ys8

\

) ei<oz,y>(x?_(y,e>ixlw,s))avl(m . (3.26)
Y,B

If the above calculations are valid, we expect our hamiltonian to

remain hermitian, G., = G,,. The quantity Ai (i =1,2) may be

12 21

viewed as shift of the level WV (oi) due to interaction with other

1

levels. We shall call W) (o,) the "shifted (v,,0;) Jevel."
5

Solutions to the above equations exist for the adiabatic

‘elgenvalues,

=3
n

=
n

1 ' £ W + ' _ Wt 2 + 3
5[(‘”\)2("2) wvl("l)) Qwvz("z) Wy, (o1)) 4G12G2;)] ’

1 ] + W ' ' _2 + 3
E[(wvz("z) Wvl("l)) - QW\,Z(%) - wvl("l)) 4G12G21) ] :

(3.17)
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Starting with a trial E, e.g., %(@v (02) + W (012), we
2 1

can use one. of these two equations for iteration to find (Eu,gg) and/
L
or (Ezag ).

. . 2
- - W
The level separation Eu E2 is then (Z@éz(cz) Wvl(olz)

+ 4G12G21>% and the degeneracy is removed. The minimum of Eu - Eg
as a function of R(y) is the "point of closest approach" around which
we calculate the transitional probability in Sec. IV.
C. The 3-Level PC

As more electronic states are included, the occurrence of
3-level PC becomes more likely. This section also serves to show
how the method in the previous sections may be extended to cases of
multilevel PC. However, we will be brief wherever similarities with
case of 2-level PC occur.

Suppose we have a 3-level PC occurring among levels
(vl,ol), (vz,oz), and (v3,03). At each R(y), we express all
av(a) in terms of the three coefficients of the degenerate noninter-

acting states, as

av(a) = dv(a) avl(cl) + sv(a) av2(02) + tv(u) av3(03) .
*(3.18)
This implies immediately

d (o,) = 1, s (g,) = 0, t. (o,) = 0;
vy 1 vl 1 . vl 1

d (o,) = 0, s (o,) = 1, t (0,) = 03
v2 2 v2 2 V2 2

d (o,) = 0, s (og,) = 0, t. (0,) = 1 .
Vg 3 ) 3 Vv, 3
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The three particular equations (\)1,01), (\)’2,02), and (\)3,0'3) in

Eas. (3.2) are not used to find the unknown coefficients

and t's.

To find the 4 v(a)'s ; which are independent of a v ( 02) and
2

d's,

av3(03), we substitute dv(u) avl(cl) in place of av(a) in Egs.

. s
(3.2). Defining & =U'H d4 . for v>v, and
+
= - ] R . -
d\) 'y\\) .I'Iw vg\ﬂ'l for v < \)l, we obtain, with 'ﬂl\/ﬂl I and
H! =+I
m-M-1
= = + -1 _ ‘
N:E\{\) - £\+f%+1o}}\\)‘f‘lg\; » \)—M,---,\).3+1,\)3-2’...’
V2 + 1,\)2 - 2,...,\)1 +1;
H . [1 s Ui " ot 1-1
- +1 +]1 . s
M\)B N M\)B NA\J3 M«NB ]
- ot + T -1
Hv_l=[I+U; H\)%-l ,
M 3 M L) 3 ™\ 3 3 ]
H = 17 ¢t H T -1
WMV T A m\)2+l v\)2+1 N ’
H = {I R N ]_l
M"g"l RV, WY, mv2—1 ’
and
' + ' U;L’ -1
By =t h-Haka® ’ Mgvev -1
Here,
~t - = -1
dv, = R, S (3.19)

s's,

where
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Qvi(a,ﬁ) S .Rvi(“’“)das' ) a #oy
D (o,,B)= &6
vyl oiB
% Ybeing an arbitrarily large but finite number. For 1i = 2,
- _ = -1
equations dv3(03) =0, d v2(02) 0 and that 3\)1 exist,
satisfied as desired. '
We define
v oAb
d 4 = 4y -
mv3 1 5@ mvl
lgl'\)z"'l = ”}E‘B fg\)l ?
S X, 9»1 ,
\
-‘-i\vl+1 = n}‘(\’j gvl ’
d. = X d .
uwl—l M6 uwl

While other cases may be

written down as need arises, we have

3, the

are all

(3.20a)

considered the following two typical cases: with n = Vs = Vs

K=V

3-\)

2,
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for case RK>2, n> 2:

= U— H' ) Then 4 (1): s} (2):"':d (o, - l); a (o, +1),---,4d (n)
M6 mvl-l wv, -1 v vy v, L vl vy

. are found from the v th set of equations without the (v »0y )
X, = U _H 1 1
m5 o, +1 ey, +1 :
1 1 equation, but with 4, (0 Yy =1, in a way 31m11ar to that of Egs.
1

X g * i (3.7).
= _ _ U _ H 5t H X )
méb e PR P R P To find tv(a)'s, we substitute tv(a) a, (03) in place of

3

. . . .
av(a) in Eqs. (3.2). Defining .««I;"v and NLA\) by

+ ~4

w3 T Ryt &y wu, B
;9&) B H:)MIR‘vnR\)-l’ v>v3
+
X, = H gt
w2 R_3-1 M\)B-l M\)2+2 ww2+2 m3 4 and,
+ ~t t. = UJ‘r L' ¢ v<wv
= . ’
Pl w% +1§\, . & X s (3.20p) ) MY RV RU+L 3
3 3 V3 w3
and starting with .«h/[ +1 N;\ and L'M 1= '; we calculate all other
while for case « =1, n =2: L's and L' 's by the following equations
-I$U:LUil M>v2v,+1 ;
- = 1 A&\) - M Mo+l M‘\\)*’l"&\\) ’ 2V 2 \)3 >
X = U H s
mb mv, =1 mv, =1 .
1 1
X, = U5 __H S P TR v oE MM Lv - Ly ¢ 2,
m5 wyp+1 \m\)1+1 ’ Y a wu=1 mu-1 wiv
...,\)2 - 1,v2 + 2’...,v3 -1
T X
e 7-1
1 = - i =
Y B, cEmanad ] e
X3=wU-;)§\)E\_)H\)X4’
- 3™z ™ V2
. -1
- & 1! = I-U_ L' U i=1,2
o 'H:)Z g"z ,3}4 s WV, +1 L\\ W WV A, +l] ’
~4
- where U~  are defined as in Egs. (3.19) in order to satisfy
'%‘(1 m\)3+l}}r\)3+l I}"('B . (3.20c) V. -

1
t\’l(ol) =0 and t"z(c‘?) = 0. Note that
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= H M>v >y, + - . TE
v wiv ’ - V3 . w2 Hvz-.-l vﬁ‘vz-l ‘H:’z in\vz '&3 ?
and
7. = ¢t 1 z
L= B, Mgvgv -1 . s Tl MR
Defining 2, (i =1 6) b * -5
. = vaes . = ' 1 .
e A T v 26 My, -1 k. -1 v, v, V25
1 1 1 1 .
3\,3& = 5 }\\,3 ’ : for case K=1; n=2:
| | v 2, = L
’ = . T + +] ?
3v3-1 =2 3\)3 ’ w1 V5l ol
_ 7z, = F L'
'}"2'*1 = »%3 3\)3 , _ . M2 w2 w2
t = Z, t “%B ) 3:'\ ’
- - P)
oy 1 MI.M\)B
. .
= [
| i = Ry d
t = Z. % R
jﬂ\’l*l w5 M\)B
W5 T M4
1 = 7, t
MV, -1 = M6 mv, + ~t+
1 = 1)
3 Bt Skl R b (321)
for case Kk 22, n > 2, we obtain
. Thus all tv's are expressed in terms of w‘l;‘N . But
= U 3
S 6, (0,) =1 while ) (1), t, (2),e-t (og = 1), b, oy + 1),-0r,
3 3 3 3 . 3
%, {(n) can be found by solving the n - 1 inhomogeneous equations
+ 3
G = »953-1 .1:\33-1 , labelled by (V33 1,2,--+,05 = 1, 03 + 1,---,n) as that leading to
Egqs. (3.7).
Z, = 0 L o8 -0 L
- = AR ‘.'vo- -] W - ’
a3 w~\)2+1 V 2+1 v2 5 v3 1 \)3 1
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To find s_(a)'s, we substitute s (o) a, (0,) in place of
Y v v, 2

, s ,
av(a) into Egs. (3.2). Defining K, and ‘a{v by

Sv T & S vV,

and
= vy <v

MY MY Y mul A
we obtain with }&Mﬂ =1 and .I«{-M—l = i-}‘,

M\)=J\I\), M>\)Z\)2+l

1 = 1 - -
NI«{\\) %\) , M< v < v, 1.,

Again defining Y., i = 1,2,---,6, by

wﬁv3+l B »¥\1 3\)2 ’
Aol a2 Rv,
m\)2+1 = w¥\3 »Sn\)2 ’
«?\\)2—1 = 54 s ’
f\vl+1 = ~X5 ufvz ’
So1 T e S,

For case k 22, n 2 2, we obtain

and for case Kk

LN

vsg«\)B-l Mv3-1"'3v +1 Kyl

+

2

AN 5\\) +1 H\)B Y

3

-3~

+1 ff{wzﬂ ’

K
2

~

K
3

- ]
»[ﬁ}\) -1 ﬁv -1’

+

+

Y

b

2

U K U~
+1 My +
.mv3 1«»\\;3 1 .m)BM

1

2

K

U K! R
Wﬁ\)z—l \,,A\)Z-l

M bl

~F
K! U K
~1 wwl—l vl\\)l V.

2

m

3

1 2
vtk Ut kY
M\)l-l m\)l-l My MV )
n=2:
~t
fg\) v,

3"™V3
Lo

b

3

Y
1m\5

+
' PP !
r}\I\)l*“l gv +1 wH\-) -1 ﬁvz—l ’

s

(3.22)
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Again s (l),S (2):"'3 (0 -1)JS (G +1);"'7S (n)
Vo Y, Vo R V' 2 V2
are found from the (v2; 1,2,---,02 - 1,02 +1,+++,n) equations and
s, (02) = 1 in the by-now familiar way.
2

Finally substitutions of Eqs. (3.18), (3.20), (3.21), and (3.22)

into the three equations (vl,ol), (v2,02), (v3,03) of Egs. (3.2)

give
—~ -1 r.
|E- w\')l(cl) Gy Gy, a, (olﬂ
1 .
G E'W\')z("z) Gy %2(02) =0
Gy | Gy E- W, (o)} a, (0;)
8 _ 3 7310 3 7]
“Where

W' (o,) = W (0,)+A
vy 1 vy, 1 1
W' (o,) = W_(0,)+aA

v2 2 v2 2 2

w¢3(03)

sz(oz) + A3

and with the oth component of a vector a denoted by {3}0,

B = (8% ¢ 355)2\,1 ,
o1
Ay = (8LY, * X3, ’
9o

Equation (3.23) continued next page
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Equation (3.23) continued
by = 1605 -.El)'}vB ’
93
G = - ﬁé}éi%?«?\vz} g
%

G5

Gy = - Gt(x t.X )d } s

%
Gyy = -4Gi(Z, 133)2\)3 ’
%
Gy = {8 ¢ )&L)Svl} ;
93
Gy = - ﬁt(xziyﬂ)ﬁv‘? . (3.23)
93

The A's are shifts of the noninteracting levels due to their

interaction with other states. The Gi.'s are coupling between the

J
shifted photon-electronic states and by hermiticity we expect

Gij = Gji' The characteristic equation is a cubic equation in E

whose solution is well known. If we define
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ko)
m

0, (0) = W, (05) = W, (0,)

3

3= W () W (05) + W, (0,) W (03) + W, () W (o)

- G12(}.21 - G23(“32 - G31G13

r = W' (o )W (o,)W' (0,)+ G, G, W (0,))
v, 1Y e el Tt 12 721 vy

Gyq Ggp w{)l("l) * G g Gy W\')2(°2) * Gy Gy Gy
Gy5 Gy Gy
a = %—( 3q - p°)

b = (%)3(21)3 - 9pq + 27r)

¢ = % cos™t (— % (— %>-3/2)

and if the condition for existence of three real roots for the cubic

equation, namely

3/2
b/2(--§-> < 0,

is satisfied, the three real roots are given by

-38-

) : cos ¢

w o

E, = 2(-
2= 2(3) (o0 B)
2 (- %)é cos‘@ - -231

Any one of these equations can be used for iteration to find the

V04
)

=
it

AWN)
1]

adiabatic eigensolutions (E , a , 1=121,2,3. In the next

V.0,
section, we will consider non;d;abatic transition at the point where
E, - E; and E3 - E, are minimum as functions of R(y).
IV. TRANSITION PROBABILITIES
In the previous section, we have solved the eigenvalue problem
of Egs. (2.7) in the adiabatic limit. Now we consider radiative
transitions caused by the nonadiabatic relative motion of the atoms.
Only transitions at the PC's (i.e., between near-resonant levels)
need be considered while those between off-resonant levels are
negligible.
A, Transition at A 2-Level PC
Suppose we consider the transition at the PC between levels

labelled by 1 = (vl,cl) and 2 = (vz,oz). Only the probability

amplitudes bl = bvl(cl) and b2 = bv2(02) will change significantly.

Therefore we may approximate all other bv(a)'s in the (vl,cl) and
(v2,02) equations in Egs. (2.7) with their adiabatic counterparts
given in the last section. We may use those of 2 or of El. As
will be shown below, the transition probability for formulae depend only

on quantities evaluated at the point of closed approach of the PC.
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At this point, the difference between Eu and E& { hence au and QE
dy
a'q') is usually small and becomes smaller for lower intensity "(see

= 0 . (4.2b)

With these approximations, Egs. (4.1) can be casted into the Weber's
Egs. (3.17)).9 ’

. . . 11 . . .
. equation with well-known solutions. The solution satisfying above
Thus using Egs. (3.0), (3.8), (3.13), and (3.15) in the Egs. 4

. . boundary conditions is
(2.7 ) with (\)1,01) and (v2,02), we obtain two coupled linear

. y
. equations in bi's, 3 --g-p -if Widy'd%yz N
) b(y) = p e D ,(Fiz)e ; a<0
db ;
) 1 . - (4.3)
] i F Wl bl = G b2 5 , 4T
where n =1G"/a, p = ||, =z = ya%e 4 and D is the parabolic
db2 cylinder function. For large and positive Ia]% ¥, the transition
i—==-W'Db, = GbD . 4.1)
dy 272 1’ ( probability is
N ‘ . 2 -2n >
where G =G, =G,,, W! =W (g,), (i=1,2) are given in Egs. Ibgl ~ 1. P ’ a<o0 . (4.4)
. 12 21 i vyl
3 .
(3.16). » This formula is useful if Egs. (4.2) remain approximately satisfied
Equations (4.1) are to be solved with the boundary conditions into the asymptotic domain of D___(¥iz), i.e., lo‘l%ly' large.
- that well before the PC is traversed (y negative and "sufficientiy When the itwo levels W l' , Wé do not eross each other, but are
fo’ : 2
?3- large" in magnitude), b2~0 and Ibll ~ 1. Then the value lb2| in close approach as depicted in Figs. 4a,b, and c, the formula
My for positive and sufficiently large y will give us the probability derived above does not apply. The transition formula applicable to
Ed that photon-electron system has made a transition from the state with the case in Fig. 4a described by
b W] to the state with W). ,
) ) W, -W! = a+by
g Around the small region of PC, We may approximate W) - W) 2 1 .
) X .10 2( a3
o as a linear function of time has been presented in I. Their formula is valid if exp \- nNT//< 1.
. Now we present the formula applicable to cases in Fig. 3b and ¢ where
Q Wy -W = -y (4.2a) P PP g 3
Wé - W]'_ are characterized by two well-defined slopes b(y < 0) and
with y = O chosen at the point of crossing of W! and W!; and we b'(y > 0). We make the approximation

2
ignore the small R-variation of G,
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a - by ysao
a+bly y>0

where (a 2 0; b, b' > 0) corresponds to case in Fig. 3b and
(a £ 0; b, b' < 0) corresponds to case in Fig. 3c. In the case (c),
a = 0 corresponds to the situation when a PC occurs at a classical
turning point.

The only drawback in the above approximation is the introduc-
tion of discontinuity of slope of Wé - Wi at y. However, the
advantage is that without further approximation, a transition prob-

ability formula can be obtained rigorously and is applicable even when

a = 0.
We introduce, with k; E_jgy Wi(y')dy',
i%y2
. e y<0
--ikl —igy
bo(y) = U(y)e e B2 » for
e 4 y>0

into Eq. (4.3) and obtain

0, y>0

&3
N
(=]
+
ren—
c}l\)
+
e
n|&
+
~%
N
Ch
+
T}e
N
L
(e
n
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We need to find only the solution U(y; |a},|b|,|b']); for the
solution U(y; -la|,~|p],-[p]) = U*(y;lal,]bl,]b‘l) as can be shown
easily from the above equations.

Now with definitions

i o7
3 ~i7 1 77
z_ = (: - %;) pfe 4 = y_b e 4

N
+
1]
<N
+
N
o
[V
[
]
H
B
i
]
+
o
i
(]
1
.
=
N

the above equations are reduced to the Weber's equations

u(z_) [ X zf](

—+t]ln +2-—=|Uz) = O y<O0
dzf -2 4 -

dzU(z ) 22

—_ n + L__* Uz, ) = 0 >0
iz, T + J

where

n_ = ip, n, = ip' -1,
:_Ci%_ 1 =G2

P = T’ P S~

For y < 0, the solution satisfying the boundary condition

by, =0 and [b

is

1
=1 in the "remote past" (é.e., b2y - & > %)
2

1l S

T

LG%L e4 D _(-iz)
b -n-1 -

U(z_)
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A general solution for y > 0 is

wz,)

where L and

continuity of

where

LD (-iz,) +MD_(-z )
-n -1 + n T+

M are coefficients to be determined by demanding

b‘2 and of its slope at y = 0. We obtain

v {(o,/m) - <K1m3)]/ [oym5) - (r )

N [(D/D;) - (K /K,)] / (057D, - (k7))

=
141
|

b

O
mn
=|3c:
]
H
W
[4/]
e
N3
N

N
m
o

%

N
g
[0]

[N
3

S|
AW )
[}
o
5
]
'—l
ZA
M:I’”
o
Lo
ENES

e,
I~
I
lU
=]
+
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For |z, | =b*y+ _ag >> 1, we obtain the asymptotic formula for
b!
b,(¥)

_21 ! 3 _EIﬂ
oly) - Ge C et

: 2
t
x exp | -1 W§Gy'+i%y—i4—?)-,-—i%-zn(bry2+%,.
O.

an T 2
- e D ! X —_———D!
|b2!2 = Le 4 P + M __igﬁl%___ e 4P .
(1 - ip')
(4.5)

In the derivation of the above asymptotic formula, nothing is required

of the magnitude of _ag and —?T . Usually in applications, we will
b b 2

be interested in - and —— being not large. But from a
b2 b3
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mathematical viewpoint, let us consider the extreme case f% >> 1
b
and —$§ >> 1, then L and M can be simplified by asymptotic
b
expansion of the Di's. The results are

N (p+p')-2-
Lo o (G eaotrip)e

(21T)J"(3 +e 2p/sinh ')

2
x exp[-i-aZ—GB‘-+t%> —ipznb%-ip' znl-)%} ,

and

% Ep-h.Blp'
N3 TP
M = I\,,(lv‘(b/b))e

21 + 3™ sinh mp')

2 2
x exp{i(%+%5+z%_r+p2nb%+p' Rn;?-;)] .

If furthermore p' 1is large, then

. é 2 '
(oo @))

2
b,

while for p' << 1

2. ﬂ|G|2<1+ (,é‘i,.)%)z .
g b’

We note that in the case < and —r >> 1, the transition
b b 2

probability above does not diminish with larger e This is probably

related to the sole drawback of our approximation mentioned above.
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Therefore for large a, we &hould not apply Eq. (4.5) but revert to
the formula given in I.
B. Transitions at A 3-Level PC
When multilevel systems are considered, we may encounter a
3-level PC say between e v202, and v3,03, as depicted in

Fig. 2. Then the coupled equations similar to Egs. (4.1), are

d by

. wt -

i LI Gy by ¥ Gl3 b3
dy
d b,

i -Wyb, = Gyy b, + G23 b3 (4.6)

dy
d bB

. o -

i po w3 b3 GBl b, + G32 b,

= T = 1 t -4
where b, = bv.(oi)’ e in(oi), and the Gij s are all defined
in Egs. (3.23). The boundary conditions for y negative and of

¥
sufficient magnitude are by ~ exp[—ijf Wl(y')dy'], b, ~0, b3 ~ 0.

A formal solution is

-1k, (y) | -iKy(y) J ik (y')
b, = e -ie dy'(G12 b, + Gl3 b3) e

b, = -ie dy'(GZI bl + G23 b3) e

0

Equation (4.7) continued next page
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Equation (4.7) continued

k) (Y K (y") |
ay (631 by + Gy b,) e » o (4.7)
0

where Ki(y)

y
[ Wi(y' Jy'. Confining ourselves to cases where the
0
G's are small, we obtain the solutions by an iteration procedure
starting with the solutions for the 2-level PC +transition.

The solutions to Eqs; (4.1) for levels 1 and 2 can be written

formally as

_s Yy . 1
b 1 = de 1K2(y) e1K2(Y ) G 1(2)
2 21 1 ’
-0

-1k (y) -k (y) 7 1K (")
bi(z) -t —ielly[ e1K1y C'lzbzl ;

and the corresponding solutions for level 1 and 3 are
-k (y) 7 1K)
1 . . 3 3 1(3)
b = -ie [ e 631 bl s
00

. -1 _'K (y) y iK (yl)
U3) . 1K1(y) . T N ! 1
bl = e -1ie e G13 b3 .

Substitution of these expressions into the right-hand side of Egqs. (4.7)

gives
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-1k (y) +K(y')

by(¥) = bMy) -ie 2 [ dy' e Goy 31(:)' )
-1K (y) iKB(y’) 1

b3(y) = b (Y) - dY' e G32 b2 (Y') ’

-iK,(y) 1K, (y")
by(y) = vl e / arte 1T G,

-1k (y) Y ik, (y')
b]i(B)-ie 1y[ d,y'elK1y

Further iteration would only add terms of second or higher order in

1
Gp b7 (31)

G's. The second terms on the right of the first two equations repre-

sent the contribution to the respective level due to presence of the

third level.
With the explicit expressions of b2l (and b31) given in Eq.
(4.3), we can find by(y) and b,(y) in the region lagllé v and

o : ¥y >> 1 by evaluating the integrals with the method of steepest
31

descent.

As before we assume the y-dependence of G's 1s negligible

in the region of tramsition. For the case o, < 0, o

51 < 0, we

31
obtain with Gij = G,.,

2
Gos |
2 _ » | 23
< = 21rp2l + 7

-1
. . %
+T, , to lowest order in (]aZII i)

oty |
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2
2 . 19l L4 : 3 )'
|b3| 2"P31 w Ta;IT_ + 3 to lowest order in ]aBll Y
where
Gy, |G a P
. 3/2 181018 . 31 21 P31
Ty 27w cos|z = Py 0 Ay y*'z‘%l”"‘a?_l*"z‘
D1 93
- 0.577 Py - 2 p.. fn P
. 21 -7 P31 31
G, |G q P
_ 32 1915183 n 3.1 5, P31
I‘B = 2 g cos 5~ p31 in qu y + ] p21 in az_- + —2—
31" 9
0.577 Py - = Do 4
= U2l Py = 3 Py A1 Py
where “ij’ pij’ nij are defined as

| B 14 = -
Wi Wj = aij Y
e 2
- . 1]
n.. = ] ee—m— »
iJj aij
qij = laijl ’
and
pij = lnijl

For sufficiently small G's (hence p's) and large but finite
|a|é Vs % is much greater than the rest of the terms in the cosine

arguments in F2 and PB. Therefore

=50~

2 2

2 2
[, ampgy + (7G50 /as) . (4.8)
These last two expressions are expected to be true also for other

<
cases: (o 0, a,, > 0), and (u21 >0, ay < 0).

21~ 21 3

V. SLOW ATOMIC COLLISION IN AN INTENSE FIELD
The orbit of the relative motion of the two colliding atoms
enters into our calculations through the Gi(cx,B)'s and dR/4dt in
the a's in the transition formula Egs. (4.4), (4.5), and (4.8). For

the present application, it is convenient to express aij as

a ' - w! R
= a1 Jya
% 5 a, T . = (5.1)

Since W{ « vt

, and R« v_2, therefore Py is independent of the
arbitrary v, as it should.

Recall that G{a,B) = (@x,z:ga ¢B) are usually evaluated
with respect to the coordinates of ihe quasi-molecule (3,3,% in
Fig. 4) while the linear polarization jé is fixed in direction.
Therefore for the geometry in Fig. 4, we need only to know f'é. and
ﬁgﬁ in order to find Gi(a,B).

For a given orbit, let RO denote the distance of closest
approach between the two atoms.Let 6 (R) and 8"(R) denote respec-
tively the value of 8 at R before and after passing (éo’ S(ROZ).

Then



A?:;'é ‘

U

00

5] -
8'(R) = 26(R) - 67(R) .

The angles 6 (R) are found by the formula

R

6(R) = 0, + [ b2 -ulr)e-2n?)F ar

1

e

where b 1is the impact parameter, e is the total energy and u(r)
the adiabatic potential energy of the molecule in the given (say

ground ) electronic state. And Ro is given by
2,02y _
1 - (uRy)/E) - (0°R°) = 0 .

In evaluating the radial velocity dR/dt at the point of
closest approach, which is needed in the transition probability
formula, the shifted potential energy is used. For the ground

électronic state, this is given by

%
ﬁ‘% = Vw[l - ui(R)/€ - (b/R)Z]

where u'(R) = u (R) - u (=) + vhiW._ (1)/a_ + v.fiw is the shifted
1 1 . vl o 1
potential energy.

Evaluation of cross section: for a given orbit defined by b

and €, there is, after the collisibn, probability P. (1) that the

b,e
quasi-molecule is in the state 1. The cross section for transition

to state 1 1is then given by
max.

oi(e) = 2n
0

db b Pb,e(l)
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where bma is the maximum b value for which Pb E(i) #0 for a
2

X

given E.

We obtain Pb,e(i) as follows. Suppose we have included n
electronic states in our calculations. Suppose for a given orbit,
there are N PC's at Yl,YZ,YB,---,YN. Before collision the quasi-
molecule is in the state 1, therefore the probability in electronic
state 1, Qo(l), is 1, and those in any other states are zero i.e.,

Qo(i)=0 for 1 #1. At Y,, let Tl(i,j) (where i # j) be the

2’,
transition probability from electronic state j to i and is given
by e.g., Eq. (4.4); and T,(i,i) =1 - X T (ki) be the probability
k#1
of remaining in state i. We let Tz(i,j) = Tz(j,i) for i # 3.
Let Qi) = T [b(1)|® be the probability that the quasi-molecule
v

will be in the state 1 after passing the YQ - PC. Then

Se T Ee S

and Eb,e = 9y for the given orbit (b,e).

As example, we have considered the slow collision of Li with

H in an intense radiation with X = 0.826u in the geometry of Fig. 4

5

for relative speed v_ =5 x 10° em/sec. Values of ua(R)_ and (¢a’

z_ ”I‘;-d)s) for the lowest lying singlet states Xlz+, Alz+, and BT
a;é based on the values calculated by Docken and Hinze.12 These three
levels represent a fairly good approximation because according to the
less accurate calculation of Bender and Davidson,13 the higher levels

1

all lie at least about one-photon (Hw = 1.5 ev) energy above the B
level, thus neglecting them would mean neglecting higher order
processes. We assume the incoming atoms are initially in the electronmic

singlet ground state Xl§:+. There are 1-, 2-photon resonant
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transition to. Al§:+ near internuclear separations 9.4 8 and

5.9 a, and 3.7 a respectively; while 2-, 3-photon resonant
transitions to Bin occur at 5.1 a, and 3.1 a respectively. The
resulting cross sections for transition to these two states are
presented in Fig. 5. We observe that for weak enough coupling (low
intensity), the collisional cross section is proportional to I and
12 for transition to A12:+ and B1H respectively, as expected from
perturbation theory. But for strong coupling, the deviation from

perturbation theory is considerable.

VI. MULTIPHOTON DISSOCIATION OF MOLECULES

The formalism can also be applied to obtain multiphoton
dissoclation cross section of a diatomic molecule. The previous
collisional motion is replaced by the relative oscillation of the two
atomic nuclei. In line with our classical approximstion to the nuclear
motion, we shall replace the quantum oscillator with the classical
oscillator. A quantum mechanical treatment with the Franck-Condon
assumption would aftach a multiplicative factor to the dipole matrix

elements that we use in our formalism; i.e.,

<tha X dR> bolR), ) iiiA “’B“"’)

The Ma 8 include nuclear rotational as well as electronic wave-
. >

functions. Our treatment is good when ] xna xme

dR = 1.
A rough estimate of the integral ‘/&na xmB dR . can be obtained
as follows. Since Coolidge, James, and Present14'haveshown that it

is an extremeley good approximation in evaluating ‘/3g;1 xme dR %o
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replace the repulsive eigenfuction xa witi const. 8(R - Rh> where
Rc is the classical turning peoint. Therefore assuming15 const. » 1,
Xn (Rc) will give us a fair indication of how good this approximation

is. If the lower state is the "vibratiomless" (n = 0) state with

equilibrium separation Ro’

.uwo : Uy 2
5 exp[- - (Rc - Ro) ] .

For our example below, this quantity is 1.3.

Consider the internuclear axis k oriented at an angle ¢
relative to the linear polarization vector. (Fig. 4.) We assume that
the rotational motion is negligible in the sense that during one
oscillation of the nuclei, A¢ is negligible. We have only two PC's
per oscillation to consider; and if transitions to other levels are
negligible, the final transition probability to the upper repulsive

state per oscillation would be

i)
1]

2T(1 - T)

where T 1is given if valid, e.g., Eq. (4.4). If 2mp is small,
then f = 2(2mp).

When the diatomic molecule irradiated has a permanent dipole
moment Qu (which is always either parallel or antiparallel to the
internuclear axis) in the bound state ¢u’ it will experience a torque
to orient the % parallel to é. Therefore in the thermodynamical
equilibrium situation, the thermal-averaged transition probability per

oscillation would be
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1
 d(cos ¢) £(¢) e VCOVET
= -1

d(cos ¢) e_V(M/kT

-1
where V(¢) = -sgnlg‘]cos ¢ €., sen being + (-) if 4 is parallel

3
(antiparallel) to the given internuclear k axis, and €, = <:%? IJ)

corresponding to the average classical E-field amplitude seen by the
molecules.

For diatomic molecules of like atoms (zero permanent dipole
moment in any state), or when the gas of diatomic molecules is
initially irradiated, we may have random orientation of molecules with

A
respect to £ In such case,

1 .
d(cos ¢) f(¢)

o)
[}
S

-1

The averaged cross section for either process is then

v A w _
G = = f
I

where Vo is the vibrational frequency of the molecule in the bound

state.

We have evaluated the averaged cross section for LiH from the
ground vibrational state in Xl§:+ electronic state, photodissociating

1H state. Since now we

via 4-photon (A = 1.0648u) transition to B
+
require greater accuracy of the potential curve of XIE: around the

equilibrium separation and yet such values of Dockenand Hinze's

. Since ¢a

~56-

calculations differ from experiment by about .37 cm-l, we therefore
use instead the best available empirical-fitted analytic expression
for this ground electronic state taken from Crawford and Jorgensen.16
Since the potential curve of Docken and Hinge for excited state Aﬁ§:+
seems to agree well in this domain of R with the BRKR curve, we
adopted Docken and Hinze's results for this state as well as those
for B and the dipole moments.

We have evaluated the various quantities for a range of
intensities. Since f(¢) may be needed directly for some other
physical situation (e.g., a de E  fleld is used to orient the
molecule at an angle to ¢ +to the electromagnetic field é to
optimize transition), we presented them for a few typical intensities
in Table I. The cross sections for both thermal equilibrium
(T = 300° K) and random orientations are calculated. For the same
intensity, the former is smaller than the latter, as expected; but
they differ by less than 1 in 1000 parts even for highest intensity
calculated and therefore only the former is graphed in Fig. 6. For
low intensity, we see that the cross section is proportional to 13,

in agreement with perturbation theory.

VII. SINGLE ATOM/MOLECULE IRRADTATED BY LASER PULSES

For an atom being irradiated by a practically monochromatic
pulse,17 the theory is similar as-before except now "hR" is the
hamiltonian for the atomic electrons and is not a function of R.

are not parametrically dependent on R(t) and have

definite parities, therefore the last term and the term
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(¢a,h' ¢a) in Egs. (2.5) vanishes automatically. For the change
of variable y = EE , we may choose v = c¢. Again, the actual level
shifts and transitgon probabilities are independent of this checice.

With these slight modifications, the formalism can be applied
to the calculation of the transition between levels of an atom
irradiated by an intense laser pulse. The photon-electronic levels
are shifted due to interaction with other levels. The amount of
shift is a function of intensity of the pulse, which is in turn a
function of time. For a particular atomic system with proper choice
of the laser )\, one may get for example a PC (Fig. 7). Thus the
nonadiabatic transition is due to the temporal variation in intensity
of pulse, instead of the relative near-adiabatic motion of the colliding
atoms in Sec. V.

Now o may be written as

) d@\"z(%) ) W"’i(dl)> ar a

Q
]

daI dv dy
1 _ Wt
a d@\) (o) -, (°1.D
- .22 1 a (7.1)
v at - -
dI
Since W' (0,) - W' (0,) = S and G2 « L, therefore the p's
v, 2 v 1 v’ ;Z ’

in the transition probability formulae are independent of the
arbitrary v. The quantity dI/dt is the temporal slope of the
pulse at the "eritical intensity" I' at which the point of closest
approach of the adiabatic eigenlevels occur. Thus through this

quantity, the transition probability depends on the irradiating pulse.
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The final transition probability per pulse peak, f, is
given by

f = 21(1 - T)

which has a maximum value of % at T = % . From Eq. (4.4) and

Eq. (7.1), this means that the temporal slope of pulse for optimum

transition is \

al - 27

'-d-?t-l -7 (_Q,n }- 6

2
where
t Wt
e, o o) w"l(cl))l
§ = G —_— (7.2)

M dI |

where all quantities are evaluated at I'.

2,2
For gaussian pulse, I(t) = I, et /T ,
al _ ' 3
'a? = 2I'(%n Io - fn I')/1
Il

where I (<IO) is the critical intensity. According to Egq.

(7.2), for given 8 and I', there is a pair of optimum values

(1', t') such that f = L They are related by
o] 2
(-R,n%:-) I 1
T = =S (I I - M ') . (7.3)

If § is in atomic units, I' in wa@t/cmz, 7' in sec, then
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(-0 3

Tt o= 7.516 x 1073 I'(fn I) - fn s .

T
The validity condition for applying the transition formulae,
imposes restrictions on the pulse parameters (IO,T). For gaussian

pulses, this validity condition can be expressed as

5 I 3/2
2.41 x107 § I' t{ - tn T > 1 . (7.4)
(o]

where § are in atomic units, I', Io in watts/cm2 and T in sec.
As examples, we have considered two atomic transitions: the

transition from ground state 3s to 5s state of sodium atom via 2«

photon absorption and the transition from the ground 2s state to

the 3s state via 8-photon absorption. Since JZ and pafity are good

quantum numbers with respect to H, only states of the same m. are

J
coupled together. Therefore we need only to consider mj =

ST TR T

In each case, we have included only 2/ states (mj ).
These states are (i) the states between ﬁhich transitions are cal-
culated; (ii) the states whose oscillation strengths with the states
in (i) are among the first three to four leading order of magnitudes,
(iii) states whose energy levels are between those of states in (i)
and (ii); and finally (iv) states whose inclusion assures the non-
singularity of matrix [Gi(a,B)] which is a formal requirement in
our solution to the adiabatic eigenvalue problem.

The energy levels are based on experimental spectral data.18
The magnitude of the dipole matrix elements are calculated from the

19

oscillator strengths calculated by Anderson and Zilites™’ and their

states.
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signs, from Bates and Damgaard.20 However, we notice that with a

different choice of phase of the wavefunctions, namely,
J = (2 n-%
njm (-1) ¢anm

where ¢nljm stands for the wavefunction used by Bates and Damgaard,

then the dipole matrix elements <n2,sjmj] Z si.slnvzvsvj_vm3>

have regularity (in relation to n <n' or n >n') in their sign

pattern (Table II). This is useful in deciding a few ambiguous and

unimportant elements that may be needed for inelusion in a

calculation.

In the sodium case, the relative shifts in the 3s and 5s level
can be explained qualitatively as folloﬁs: we choose wavelengths
such that level separation between the 3s and 5s states are slightly
less than 2-photon energy reéonance (see Fig. 7). For the same
wavelength, the 3p levels "push" the 3s level down much stronger than

they "pull" the 5s level down, because E, - fiw is more nearly in

3p
resonance with 3s than E3p +Hw with 58. As the intensity is
increased, the gap between level 5s and 3s becomes wider until a PC
occurs at I'.

In the lithium case, we choose wavelengths such that the level
separation of 2s and 3s states are "slightly larger" than the 8-photon
energy. At these wavelengths, the 3p states "push" the 3s level down
via first-order coupling while they "push" the 2s level down via ninth-
order coupling. Hence 3s and 2s levels are shifted closer towards
each other. At high enough intensity they hit the 8-photon resonance.

In both cases, we have considered a range of wavelengths with

which the above qualitative pictures are valid. For a given
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wavelength, the "eritical intensity" I' and the corresponding ¢
in Eq. (7.2) are tabulated in Table III. (See also Figs. 8 and 9.)
The pairs of parameters (Ié, ') Eq. (7.3) of gaussian pulses are
presented in Table IV for transition in sodium (A = 0.602396yu).

We have also calculated the final transition probabilities for
a few nonoptiumum gaussian pulses. Results for one such pulse
(IO = 6,0 % 108 W/cm2, T = 1 nsec) are presented in Table V. It
is noticed from the Tables IV and V that-at X = 0,602396y for the
sodium case, we almost have the optimum gaussian pulse and the final
transition is almost % . And for fixed Ié, f decreases as T
deviates from ' (Fig. 10), so is the case for deviation from Ié
for fixed T' (Fig. 11). These shifts are also true for other A's

as indicated in the figures.
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Table I.

by absorption of four (A =

relative to the linear polarization vector of the radiation fie1d.?

1.0648u) photons. ¢

Photodissociation probability f(¢) per oscillation of LiH molecule in ground state

is angular orientation of nuclear axis

] £(6)/2 at f($)/2 at [£(4)/2 at | £(¢)/2 at £(¢)/2 at £f(¢)/2 at
(rad) 10° W/cm2 5 % 109 W/cm2 0 W/cm2 5 x 10lo W/cm2 1 W/cm2 5 % 1011 W/cm2

: L3TE< 8456 E-19 1.36E-17}] 8.54E-15 1.36/E-13 8.40E~-11

1. oggagg 82 15?); e-gi 3.14E-18 5.03E-17| 3.14kE-14 5.01/E~13 3,06 E-10
2.00000E-Ql{| 1.40E-20| B8.75:E-18 1.40‘5-10[ 8.715-14 1.38/e-12 8.34E-10
3.00000E-01 1.51&5-20 9.43E-18 1.50E-16] 9.355-14 l.48E-12{ 8.95E-10
4, 00000E-01;] 5.30E=21| 3.31E-18 5.30E-17 3.30£5-14 5.27E-13 3,21 E-10
5.00000E-01}] 1.10€-21} 6, 87TE-19 | 1l.08E-17] ©6.44E-15 1.00E-13 4.90E-11
6.00000E-01}| 3.47E-20} 2.16/E-17 | 3. 43E-161 2.09E-13 | 329E-12| 1.76:5-09
7.00000E-01] 1.35/E-19| 8.42E-17 |1.335-15 B8.18€-13 1.28E-11 | 6.77E-09
8.0G000E-01)] 3.05/E-19] 1.89E-16 | 3.00E-15] 1.84f€-12 2.88E-11 1.48 €-08
9.00000E-01| 5.07€-19] 3.14E-16 | 4+98E-151 3,05E-12 4.76E-11 2.37 E-08
1.00000E+00l} 6.72/E-19) 4.16E-16 | 6.00E-15} 4.04E-12 6.28E-11 | 3IT03IE-GE
1.10000E+00|{ 7.30E-19% 4,51 E6-186 | 7.17E-15 4.37g-12 6.78E-11 1.44 E-08
T.20000E+00|| 6.4TE-1 4. oo';-u 6.35(E~15 3.87E-12 5.OB|ESTT 1.16 E-08
1.30000E+00[} 4.48E-19] 2.76E-16 | 4.40E-151 2.67E-12 4.13E-11| 7.53 E-09
1.4C000E+00]| 2.12E-19]] 1.31E~16 | 2.08E-15] 1.26€-12 | 1,95E-11| 3.39 E-09
1.5C000E+00|] 4.00E-20) 2.47E-17 {3.93E-161 2.38€-13 3.67E~12 6.23 E-10
1.60300E+00/| 6.93E-211 4.27E~-18 6.80E-17 4.13,E-14 6.35E-13 1. 07|: 10
1.7C0OCCE+00 | 1.2TE-19§ 7 B7TE-IT | 1.25€=15 7.60€E~-13 1.17E-11 2.01°E-09
1-B0000E+00| | 3.48/E-19} 2.15E-16 3,.42E-15 2.08E-12 3.21E~11 5.72 E-09
1.90300E+08{] 5. 75/E-19} 3,55E~16 5.64E~15 So43E=12 5.318-11 1.00 £-08

Table I continued.
ground state by absorption of four (A =

nuclear axis relative to the linear polarization vector of the radiation field.?

a) In all the tables, the number nbm means 10 X 1

Table I continued on next page.

1.0648u) photons.

Photodissociation probability f£(¢) per oscillation of ILiH molecule in

¢ 1is angular orientation of

¢ £f(¢)/2 at | £(¢)/2 at | £(¢)/2 at | £(¢)/2 at {£(¢)/2 at f(¢)/2 at
(rad) 107 W/en® {5 x 107 w/em? | 1010 w/em® |5 x 1080 w/en® | 10™ w/em® |5 x 10MT w/em?

2.00000E+00 | 7.13E~-19% 4.41E-16 | 7.00[E~15 4,27E=-12 6.61E~11 1.35E-08
2.10000E+00. 1 7,12E-19] 4.41E-16 | 7,00E-15 4.27E-i2 6.64E-11 1.50 E-08
2.20000E+00 | 5.85E-191 3+02E-16 | 5,74E-15 3.518-12 5.48E-11 2.9 E-08
2.30000E+00 | 3,895-19] 2.41E-16 | 3,82E-15] 2.34E-12 3.665-11 1§ 1.86E-08
2. 40000E+00 | 1.99E-19] 1e23E-lo6 | (T96E-151 1,20E-12 1.88E~-11 9.83 E-09
2.50000E+00 | 6,75E-20} 4«19E-17 | p.67E-16 | 4.97E-13 6.40E-12 | 3.42E-09
2.60000E+00 } 8.49E-214 5.2TE-18 { Br38E-17 5.08E-14 T.93E-13 4424 E-10C
2.TC0O0E+00 | 1,24E-21F 7.77E-19 1.24E-17 7.89 E-15 1.24E-13 8.14 £-11
2.80000E+00 | 1,18 E-20§ 7.42E-18 1 1,18E-16 7.36E-14 1.17E-12 ‘7.06 E-10
2,90000E+00 | 1,59£-20§ 9.97E-18 | 1,59E-16{ 9.90E-14 1.5TE-12 | 9.48 E-10
3.00000E+00 {8.99€E-21) S5.61E-18 | BU9BE-17 ] 5.59/c-14 8.92£~13 .41 E-10
3.,1C000E+00 | 9.56/E-22 | 5-97E~19 | 9.555~18{ 5.96E-15 | 9.52(E-14 '5 86 E-11
3.12500E+00 | 1.54E-22]] 9.60E-20 T 54E~18 9.64 E-16 1.54E-14 9. 50 E-12
3.14159E+00 |3.96E-30} 2.47E-27 3.96E-26 1 2.47g-23 3.95E-22 § 2.43E-19

a) in all the tables the number nkm means

n X 104,

_g9_
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Table II(a). Dipole matrix elements <nlsjnﬁIz:ﬁizéln'l's'j'm3> (m} = m, = %) of 24
states of sodium atom.
nt; 7 3P% 3p§ 4p% 4p§ 5p% 5p§
353 -1.455E + O | -2.057E ~1.310E ~ 1} -1.852E - 1} -4.803E - 2 | -6.792E - 2
4s% 1.428E + 0 | 2.019E -3.301E + O} -4.669E + O} -3.891E ~ 1 |-5.502E - 1
5si 3.043E - 1 | 4.304E 3.4208 + O 4.839E + 0 -6.111F + 0 |-8.642E + O
653 1.571E - 1 | 2.222E 6.459E - 17 9.135E - 6.1}4E‘+ 0| 8.647E + 0 A
753 1.024E - 1 | 1.448E 3.217E - 1} 4.549E - 1§ 1.084E + 0 | 1.533E + O '
g3 7.452E - 2 | 1.054E 2.071E - 1§ 2.929E - 1§ 5.260E - 1 | 7.439E - 1}
» % 363 383 4a3 443 503 543
3p5 -2.731E + 0 | 0.0 -8.134E - 1§ 0.0 -4.123E - 1 | 0.0
303 -3.863E - 1 |-2.838E + 0] -1.150E - 1 | -8.453E - 1 |~5.831E - 2 |-4.285E - 1
405 4.415E +.0 | 0.0 ~4.831E + 0| 0.0 -1.517E + 0 | 0.0
Table II{a) continued. Dipole matrix elements <nzsjmj|z‘1;i -éln'l's'j'mj) (mJ! =m = %-)
of 24 states of sodium atom.
g1t
ntj N 33 33 43 a3 50 543
403 6.244E - 1 | 4.588E + 0} -6.832E - 1 | ~5.021E + O | -2.146E - 1 | -1.577E + O
503 7.222F - 2 | 0.0 9.219E + 0 | 0.0 -7.600E + 0 | 0.0
5p3 1.021E -~ 2 | 7.506E - 2| 1.309E + O | 9.581E + O |-1.075E + 0 |-7.898E + O
343 0.0 4.928E + 0] 0.0 1.629E + 0 | 0.0 8.88.E - 1
383 6.346E + 0 | 2 874E - 1| 2.098E + 0 | 9.504E - 2 | 1.144E + 0 | 5.181E - 2
433 0.0 “7.799E + 0} 0.0 6.718E + 0 | 0.0 2.515E + 0
4dg ~1.004E + 1 [-4.548E - 1 | 8.651E + O | 3.918E - 1 | 3.238E + O | 1.467E - 1
503 0.0 8.861E - 1 | 0.0 “1.473E + 1 | 0.0 8.818E + O
503 1.141E+ O | 5.168E - 2 |-1.897E + 1 |~8.592E -~ 1 | 1.130E + 1 | 5.143F - 1




Table II(b). Dipole matrix elements <nﬂsjmj|25i-§|n'm's’5'm3> (with m3. = my= %
of 24 states of lithium atom.

‘;;;\Qlfiil\ 2p5 2p3 303 37 495 493
263 -1.359E + O §-1.922E 8.080E - 2 | 1.142E - 1 | 6.938E - 2 | 9.812E
3s% 1.012E + 0 | 1.432E “3.478E + O {-4.918E + 0 1-2.760E - 2 |-3.904F
453 2.611F - 1 | 3.693E 2.447E + O § 3.460E + O 1-6.395E + O |-9.045E

| 557 1.403E 1.984F 61488 - 1 | 8.694E - 1 | 4.482E + 0 | 6.336E
653 9.307E 1.316E 3.253E - 1 | 4.600E - 1 § 1.077E + O | 1.523E
755 6.846E 9.682E 2.150E - 1 | 3.041E - 1 | 5.674E - 1 { 8.025E

L L Bdg 303 4d§ 4dg Sdg 5d§
2p 2.114E + 0 | 0.0 7.851E - 1 | 0.0 4.533E - 1§ 0.0
2p3 2.989E - 1 | 2.196E 1.110E - 1 | 8.159E - 1 | 6.410E - 2 | 4.711E
303 -4 TUE + 0 |-0.0 3.185E + 0 | 0.0 1.311E + 0 | 0.0

Table II(b) continued next page

Table II(b) continued. Dipole matrix elements <n£sjmJ. lzfl -éln'l's'j'm3>
(with mj =my = % of 24 states of lithium atom.
o'ty 383 Bdg 4d§ 4d§ 5d§ 5dg

ngJ
BP% -6.751E -4, . 961E 4.505E - 1 | 3.310E + 0 | 1.854E - 1 | 1.362E
403 8.055E 0.0 -9.813E + 0 | 0.0 4.544E + 0 §0.0
403 1.139E 8.371E ~1.387E + O |-1.019E + 1 | 6.426E - 1 | 4.722E

» n'&'j 4% 43 5 5f§ 6fg 613
343 0.0 4.987E 0.0 1.636E + 0 | 0.0 8.721E
Bdg 6.422E 2.908E 2.106E + 0 | 9.542E - 2 | 1.123E + 0 ] 5.086E
403 0.0 -7.781F 0.0 6.826E + 0 | 0.0 2.5398
4dg -1.002E 4,.538E 8.790E + 0 | 3.981E - 1 | 3.270E + 0 | 1.481E
502 0.0 8.304F 0.0 “1.479E + 1 | 0.0 9.053E
5d§ 1.069E 4.843E - 2 |-1.905E + 1 |-8.629E - 1 | 1.165E + 1 | 5.279E

_69—

_OL-



b

U

&

it

-71-

Table III. Values of critical intensity (I') and pulse-independent
factor (8) in Eq. (7.2) for wavelengths ()A) considered in
(a) 2-photon transition in sodium (3s + 5s); and (b) 8-photon

transition in lithium (2s + 3s).

72w

Table IV. Pair of optimum parameters (Ié,r') of gaussian pulses for

the 2-photon transition (3s + 55) in sodium-at A = 0.602396y.

The third colum indicates how well the corresponding validity

condition Eq. (7.4) is satisfied.

(a) Na (b) 1i

AGp) I'(W/er?) | §(a,u) Au) 1'(W/en®) | 6(a,u)

6.02396E-01} 1.00E+07 §1.851E~17 || 2.94060E+00| 1.90E+07 § 3.414E-49

6.02395E-0L | 1.748+407 §5.605E-17 || 2.94075E+00] 5.308+07 | 1.264E-45
6.02394E-01 | 2.55E407 [1.204E-16 || 2.94100E+Q0} 1.10E+08 § 4.421E-43
6.02393E-01} 3.32E-07 {2.041E-16 || 2.94150E+00f 2.30E+08 | 1.658E-40
6.023925-01| 4.008+07 12.962E-16 | 2.94200E+00] 3.50E+08 }4.920E-39
6.02391E-01] 4.85E-07 §4.355B-16 || 2.94250E+00} 4.70E+08 | 5.4878-38
6.02390E-01¢ 5.50E+07 5.601E-16 2.94300E+00§ 6.00E+08 3.656E-37
6.02389E-01} 6.50E+07 7.824E-16 2.94350E+00} 7.30E+08 1.951E-36
6.02387E-01 8.00E+Q7 1.185E-15 2.94400E+00; 8.65E+08 7.714E-36
6.02385E-01; 9.50E+07 1.671E-15 2.94450E+00; 1.00E+Q9 2.560E-35
6.02380E-01| 1.358+08 |3.375E-15 || 2.945008+00 1.14E+09 | 7.443E-35
6.02375E-0L| 1.70E+08 |5.354E-15
6.02370E-01§ 2.10E+08 8.171E-15
6.023658-01] 2.50E+08 |1.158E-14
6.02360E-01 | 2.90E+08 | 1.558E-14
6.02355E-011 3.30E+08 2.018E~14
6.02350E-011 3.75E+Q8 2.606E-14
6.02340E-01} 4.50E+Q8 3.754E-14

6.02330E-01| 5.25E+08 | 5.111E-14

I T I T

(W/cmz) (sec) Validity (W/cmz) (sec) Validity
2.0E + 07 §3.728E - 10 | 4.8E + 00 | | 6.0E + 08 } 9.061E - 10} 1.7E + 02
3.0E + 07 §4.693E - 10| 1.2E + OL | §{ 8.0E + 08 | 9.374E - 10} 1.9E + 02
4.0E + 07 §5.272E - 10} 1,9E + 01 |} 1.0E + 09 | 9.610E - 10} 2.1E + 02
5.0E + 07 §5.681E - 10 § 2.6E + O | {1.5E + 09 { 1.002E ~ 09} 2.5E + 02
6.0E + 07 {5.994E - 10} 3.2E + 01 | { 2.0E + 09 { 1.030E - 09 | 2.8E + 02
8.0F + 07 §6.457E - 10} 4.3E + OL | | 2.5E + 09 | 1.052E - 09 } 3.1E + 02
1.0E + 08 } 6.795E - 10 { 5.3E + OL { { 3.0E + 09 § 1.069E - 09 | 3.3E + 02
1.5E + 08 | 7.369E ~ 10 | 7.4E + OL | { 4.0E + 09 { 1.096E ~ 09 | 3.6E + 02
2.0E + 08 { 7.751E ~ 10 9.iE + 01 {!5.0E+ 09 }1.116E - 09 | 3.9E + 02
2.5E + 08 {8.034E - 101 1.0E + 02 | | 6.0E + 09 } 1.132E ~ 09 | 4.1E + 02
3.0E + 08 { 8,258E - 10 | 1.1E+ 02 | | 8.0E + 09 | 1.157E - 09 | 4.5E + 02
4.0E + 081 8.601E - 10 | 1.3E + 02 | | 1.0E + 10 | 1.176E - 09 | 4.8E + 02
5.0E + 08 | 8.857E -~ 10 | 1.5E + 02 |
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Table V. Transition probability per pulse (f) in sodium (3s + 55 via FIGURE CAPTIONS

2-photon absorption) at various wavelengths (A) for the input Fig. 1. A two-level pseudocrossing between levels 1 = (vl,cl) and

gaussian pulse (Ib =6 x 108 W/cm3; T = 1 nsec.) which is nearly 2= (vz,oz). ==~ Noninteracting eigenlevels w.,

optimum for A = 0.6023%u. I' is the critical intensity; T is — adiabatic eigenlevels. b, is the probability amplitude

transition probability at the PC; and the last column is the valig- that the photon-eleetron system is in state 1.

ity condition Eq. (7.4). Fig., 2. A three-level pseudocrossing. Labels are defined similar to

5 . those in Fig. 1.
A(u) I'(W/em®) T £ Validity
Fig. 3. Three cases of two-level close approach.
6.023960E - OL ; 1.00E + 07 {5.346374E - 01 }4.976004E - O1 J1.8E + 02 Fig. 4. Geometry for collision of two atoms in an intense radiation
6.023950E - Ol § 1.74E + 07 {7.610197E - Q1 {3.637373E - 01 }2.6E + Q2 field. ¢ is the linear polarization vector and k is the
6.02394OE -~ 01§ 2.55E + 07 }8.915052E - 01 |1.934473E - Ol £ 3.2E + O2 internuclear axis.
6.023930E - 01§ 3.32E + 07 :9-512349E - 0l {9.277402E - 02 §3.7E + 02 Fig. 5. Cross seétion of Ii and H collision as function of inten~
sity of the radiation field (X = 0.826u);

6.023920F - 01 § 4.00E + 07 {9.767802E - 01 |4.536125E -~ 02 34.0E + O2 v(R = ®) = 5 x 10 cm/sec.
6.023910F - Q1 § 4.85E + Q7 19.912079E - OL |1.742953E ~ 02 §4.3E + 02 Fig. 6. Photodissociation cross section of LiH molecules at thermal
6.023900E - 01 § 5.50FE + 07 §9.959459E - 01 }8.075151E - 03 i4.6E + 02 equilibrium (T = 300° K) as a function of field intensity.
6.023890E -~ O1 | 6.50E + 07 §9.988287E - 01 {2.339773E - 03 14,88 + 02 The dissociative transtion is from the ground state of the
6.023870E - 01 § 8,00E + 07 §9.998375E -~ 01 }3.247668E - 04 15.1E + 02 molecule to Bl by absorption of four photons (A = 1.0648u).
6.023850E ~ 013 9.50E + Q7 19.999802E - 01 3.942951E - 05 §5.3E + 02 Fig. 7. Illustration of the atomic energy level shifts as a function
6.023800E - 01 § 1.35E + 08 £9.999999E - O1 }7.376713E - 08 {5.5E + 02 of the pulse intensity, resulting in a pseudocrossing (PC)
6.023750E - 01§ 1.70E + 08 19.999999E - 01 §1.315072E = 10 }{5.4E + 02 between the shifted levels Wé and Wi at the critical
6.023700E - 01 # 2.10E + 08 §9.999999E - 01 {4.263256E - 14 {5.1E + 02 intensity I'. For the 3s + 5s 2-photon transition of
6.023650E - 01 §{ 2.50E + 08 ¢ 9.999999E - 01 {1.421085E - 14 }4.6E + O2 sodium, w2 = w2(5s), wl = w0(3s) in the notations of the
6.023600E - O1 § 2.90E + 08 } 9.999999E - O1 {1.421085E - 14 |4.0E + 02 text.
6.023550E - O1 § 3.30E + 08 j 1.000C00E + 00 ;0. 3.4E + 02 Fig. 8. Critical intensity at which PC occurs vs wavelength for
6.023500E ~ Q1 § 3.75E + 08 { 1.0000Q0E + Q0 iO. 2.7E + 02 2-photon transition from 3s to 5s state of sodium,
6.023400E ~ Ol § 4.50E + 08 § 1.000000E + 00 10. 1.5E + 02 Fig. 9. Critical intensity at which PC occurs vs wavelength for
6.023300E - 0L § 5.25E + 08 | 1.000000E + Q0 |O. 5.7E + 01 8-photon transition from 2s to 3s states of lithium.




G

Fig. 10.

Fig. 11.
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‘Transition probabhility per pulse, f, in the sodium case at

several wavelengths for a few input Gaussian pulses of same
peak intensity (6 x 108 W/cm2) but different temporal pulse
widths.

Transition probability per pulse, £, in the sodium case at
several wavelengths for a few input 1-nsec. Gaussian pulses

of different peak intensities.
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Part B.

INTERACTION WITH MULTIMODE FIELD

(April 21, 1975)

Notations
Many notations greused in a way to suggest the same meanings
as in Part A and therefore will not be explained. By "Eq. (A.3.2)",
we mean Eq. (3.2) in Part A. By "Eq. (3.2)",.we mean Eq. (3.2) in

this part of the dissertation.

-88-
I. INTRQDUCTION

A mode of radiation field is characterized by w, k, &,
respectively the angular frequency, unit propagation vector and the
polarization vector. In the electric dipole approximation, modes
differing by i only is essentially a one-mode problem (i.e., treat-
ment presented earlier is sufficient.) However, for modes differing
in k¥ in higher multipole apprqximation and for modes differing by
w and/or €, the treatment given below is required.

More of'ten than not, the radiation field of physical
processes consists of two or more modes. The second-harmonic genera-
tion and stimulated Raman emission are but two common examples from
nonlinear optics. Choice of appropriate combination of modes can
enhance a desired physical process. The atomic two-photon absorption
is enhanced many orders of magnitude by choosing two appropriate
frequencies to achieve near-resonance with an intermediate level.l
Another illustration is provided by the stimulated emission of one
mode in molecules by lowering of potential barrier due to another
mode. This process is treated in Sec. III, based on the formalism
presented in Sec. II. Whereas Part A of this work is applicable to

an n discrete-level atomic/molecular system for n > 3, this part

can be applied to cases with n > 2.

II. THE TWO- AND MULTIMODE FIELD
The Hamiltonian corresponding to Hc(t) in Eq. (A.2.4) for
the case of an atom/molecule interacting with a two-mode radiation

field is

Ho = Hp*hy*hy
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where
H, = h

Here hi dgnotes the free-field Hamlltonian of the ith (i =1,2)
mode, whereas h{ denotes the interaction Hamiltonian of that mode
with the charges. As before, hR is the atomic or adiabatic
molecular Hamiltonian.

We expand the total wavefunction ¢' in terms of the

complete set of states, {Q(N1 - vy) Q(N2 - v2)¢6},

viwé -i f t@ (t')+hwlNl*hw2N2 dt !
yro= i b, (B) e p

x Ny - v1) AN, - vi)eg

where up is a particular electronic energy level chosen for con-
venience of calculation later and other notations are similar to those
in Sec. (A.II). The time-dependent Schrodinger equation gives the

following set of equations for the probability amplitudes bv v (a),
172

e
o
~~

Q
S
1]

4 = W ()b, . () + G, (a,a")
dy \)lv2 vy ViV »g 1*

5D w) wED. . ()
vl+lv2 2 2 vl 5

o
<
H|
=
<
N
Can
Q
SN
I

+ Z Gzi(a, ol ) b\)l\) l(ot ) hd bVl\)2+1(a'D ; (2.23)
a'

(2.1)
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or in another form more useful to us later

L ' -

Z day b\)i\)z(a ) (Svlviaowc' Z {w\) (a) 6\) V! Goca' bv 'v (a')
via

1

He

+

G a,u‘)(ﬁ te 26, >b (a')
if V1t T vt vy

1
2F2 6v1 2 6aa' bvivz(a )

* 6vlv' G2+(a,a 0o viv l(a ) £ bv1v2+1(a'2ﬂ ‘ (2.20)

The coupling matrices Gl(a,a') and Gz(u,u'), defined as in Eq.
(A.2.7), differ from each other because of difference in angular
frequencies, polarization, intensities of the two modes and/or
propagation directions of the modes (when higher-than electric dipole

terms are important).

Upon substitution of

-1 [VE(yt ey
) (a) = e g)v(a)
172

a
gy—a\,l\,z(a) = 0

into above equations, the adisbatic eigenvalue equations are obtained
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Z<E 6\)1\’]'_ § = {v OLIHi\)lou> *+ VF, 01‘), ) v \Jz(ot’)
vig!

= Z 6\) v! Géa,a') a\)l\) 1((1‘) x a\)q\) +1(Ct')> s (2-3)
gt 171 1
1
Let us label the (A A,y )th eigensolution at y as
A 12
EA Ao’ vle (a)}. Then it can be shown.from the above equations
172 172
that
B A0 T Pange T M T AR o
1 1yt
AJ*A sA5HA,,0 ~ A0
V.V (@) = 8, % o (o) -
1°2 . 171’72 "2

These equations have the same significance as those following Egs.
(A.3.1).
* tat )y = Tyt
If we define avz(vla ) = aviv430 as the (vla Jth
, then the Egs. (2.3) can be cast into

component of the vector a
Y

the matrix form

where

ES

sz(vla,Vid') vlvi aa"— (v aIHﬂ & > * v2 2 v vl 6&&'

Gi(vla,via')

nga,a') .

’
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This is formally the same as Egs. (A.3.2). Thus the method of

solution of the adiabatic eigenvalue problem is formally similar to
that of Sec. (A.III). In case of transitions where photon numbers
of only oﬁe mode changes, that mode should be assigned the role of
It is necessary to consider Vq and v, only in the
range -Mi <y < Mi and -Mé SV, < M2.

the smallest values needed for a desired accuracy is to run tests on

mode 2 here.

The best way to determine

the actual system under study. For the numerical study in Sec. III,

W =g =

figures.

2 1s sufficient for an accuracy of four or more significant

Two-level Pseudocrossing. With the above-mentioned similarity

with Sec. (A.III) in mind, we shall briefly describe the most useful
case: the two-level PC between say level (Alkzo) and level

(uluzr). We let

a, (v

a) = 4 (vi,a) a, (Ao)+s. (via)a (u,t) .
5 Vs, 1 A2 1 v, 1 ) 1

1

This implies

n
o
-

d (u1) s (u,t) = 1,
u21 uzl

dy (A,o) = 1 s, (A 0)
AZ 1 4 Az 1

With these known values, all other d's and s's are found as in

now are not diagonal. Therefore
2

we should not use the artificial ploy in writing for example' mu
2

Sec. (A.III). Note, however, E&

can be found by (i) letting its
2
(”;T)th roW be all zeroes and (ii) directly inverting the Egth set

below Eq. (A.3.12a). Instead gu
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of equations (without the (ulpzr')th equation) to obtain other
n(2M +1) -1 rows. ~
The two equations (Alkzc) and (uluzT) which have not been
used to find the d's and s's are used to express the adiabatic

eigenvalues

E = l[(wr £ Wt o) + th -w! )2 + 4GZ>§}
R ANCU- LT MpEaT o AA0

B, = %ﬁéﬁluzT * wi1A2;> h (zyulugr - w£1X20)2 * 4Gf)%] )
Here wﬁl”ZT is the shifted (uluzr)-level,
where Dfll) EZ; Gli(r,a')@ul_luza, + S“1+1“2d') ,
D’fxz) = § GZ;‘(T’G' )<Su1u2—la' * Sulu2+10°'> ’

may be considered as the shifting of the (u T)-level due to mode 1

1"2
and mode 2 respectively. Correspondingly, for the other level,
- (1) (2)
1 = - -
W =z W(o) >\1F1 )\2F2 + D)\ + DA s

Alxzc

1) E
where E]( G (c,a')(é + 4 ';> ,
A e P A -aget © Qs

(2)
Emk

ZG(O’,G')@ o td ,> .
- 2% N

94

Finally,

GE—ZG(T,CX,')G R D
= 1+ ul-luza u1+lu2a

- j{: G +(t,a')(é gt X4 E)
= 2% u1u2 la ulu2+la

= - G (G:QI)G - R |>
2; 1+ Al 1x2a Xl+1A2a

-ZG+(G;0")S gt ¥ 8 )
~ 2% AIAZ la lllz+lx

is the effective coupling matrix element between the two shifted
levels. The last equality is based on hermiticity.

To calculate the transition probability between these two
levels at a PC, we need to consider only the (uluZT)th and the
(X1A20)th time-dependent equations from Egs. (2.2a). These equations
are reduced to

' b = Gb
HpHoT HyHpT Aoy

. d
i—=">
dy UHsT

b -w b = Gb , (2.5)
Alxzo Alxzc Alkzo HiH,T

&la

which are the same as those of Egs. (A.4.1). The previous derived

formulae for transition probability are directly useful.
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An Alternative Approach is particularly advantageous in some

circumstances. Here we expand the total wavefunction ¢! in another

representation,
t
v} - -1] G (b )N at
Pro= 190, (E'0") Np- Vi) ¢ e p
E!pl\)é 2

where,with H, defined in Eq. (2.1),

&p - &p
H,¢ eEp¢ , (2.6)

and e_ is a particular egp chosen for convenience of calculation.

P
The time-dependent equations for bv (&p)'s are
2

d _ Tt
i Eb\)z(ip) * g, bvz(«ip) + G,(Ep,E"0")
. glp’
x @\,Z_l(s'p'ubvzﬂ(s'p")’) , (2.7)
where {compare with Egs. (A.2.7»
8
E‘Ep)\)z = ;H","(egp - ep) - \)2F2 3
&
y = ﬁt »

and
oEp,E'0") = (6%°,m10%'P") .

The adiabatic eigenvalue equations are
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Ea, (&) = E a (&p) + Z G, (&p,E'pt)
V2 EeaVy Y, ETpt :

x @\,2_1('5'0') t v2+l(£'p')) , (2.8)

where

1[5y )y

va(Ep) = e a\)z( £p)

This approach may be interpreted as follows: the first-mode field
interacts with the charge system, produces a modified energy level
structure which then interacts with the second-mode field.

The above approach entails the solutions of two single-mode
adiebatic eigenvalue problems, Eqs. {2.6) and Eqs. (2.8). Formally

it is related to the previous approach by the unitary transformation

U comnecting the two representations

6% = valn- ) ¢

By this transformation, Egs. (2.2b) of the previous approach can be
recovered from Eqs. (2.7) directly.

If both modes are of the same high intensity, the previous
approach has the advantage over this approach in calculating only
those eigenvalues needed and requiring less computer memory. However,

this approach has the advantage of inverting in general smaller

matrices.

When the second mode has low intensity such that level shifts
due to it are negligible, one may solve Egs. (2.6) and, for multiphoton

transition of the second mode between two levels, treat the weak field
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as perturbation. However, for gingle photon transition of the second
mode, we can do better than perturbation method. Suppose we need to
consider single-photon transition of second mode from Yy T Y, to

vy = A2 = U, - 1 and the H. -system from HyT to Alo, then from

1
Eqs. (2.7) we consider

d
1 Fy‘buz(”f) b (uir) + G (A 05u7) b>‘2( Ao) s

E
U1T1U2 UZ

d
— b ()\0') = E
dy AZ 1 Alo,A

i bxz(xic) *+ G, (A0, 1) buz(ulr) ,(2.9)

2

which is in the form of Egs. (A.4.1) with already known solutions.

The Multimode Field. It should be clear on how one would

extend the above two methods to the multimode case.

III. STIMULATED EMISSION IN MOLECULE BY
INTENSITY-DEPENDENT LOWERING OF POTENTIAL BARRIER
We consider here the process in which atoms collide at thermal
velocity with each other, forming a quasimolecule with potential
curves and dipole matrix elements illustrated in Fig. 1. Initially
the quasimolecule is in state 2; which has a potential barrier (e.g.,

due to avoided crossing) at Rb' For R > Hb’ the dipole transition

to the state 1 is forbidden, while for R < Rb it is allowed. However,

at thermal velocities, the potential barrier is too high for the
classical penetration (or too little quantum mechanical tunnelling)
into region R < Rb' Therefore one way to make the desired process
go is to lower the potential barrier by a sufficiently intense laser

field at a photon energy smaller than the energy gap between level 2
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and 3 in the neighborhood of Rb' Once the molecule penetrates into
the R < Rb region, it will most likely radiate at the classical
turning point Rc at the second frequency.

For diatomic quasimolecule, the initial state 2 is achieved by
some sort of pumping. But for polyatomic quasimolecules, the potential
surface 2 may represent ground state of one configuration of the
molecular complex and no pumping is necessary. Potential surface 1{
corresponds to a rearranged configuration. For case depicted in
Fig. 1, part of electronic energy upon photoemission is converted to
relative kinetic energy of the colliding particles, producing heating
of the gas of molecules. Thus the high-~intensity laser may be needed
only initially to make the process go.

For numerical study, we consider the original potential energy

curves ui(R) (in eV) and dipole matrix elements (in AU)

Mjk = <J| Z £i|k) for a diatomic colliding system (of reduced
i
mass = 20 x proton mass and relative speed = 105 cm/sec ).

1.5 e_5(R-3)

u,(R)
2
u(R) = 2.9+ 0.1Q - e ORBTINZ g 953 o4 OR4-E)T

uy(R) = 4.285 + 1.2 o3B3

M12(R) - 5 o~2:5(R-3) :

2
M R) = 4 670 738(R-4.85)"

M13(R) = 2.0 .
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These analytic representations are meant to be valid only for
R 2 3.0 a,. They are graphed in Fig. 1. The maximum of the bump
height of uZ(R) - uz(m) is O.i2 eVat R =4.85 a_. The relative
kinetic energy at large R for the collidng diatomic is 0.104 eV,
about 0.02 eV too low to overcome (classically) the potential barrier.

We assume electronic state 2 and 3 to have the same A-quantum
number while that of state 1 differs from theirs by 1. Then only

those collisions whose plane of collision has a nonzero projection of

El (the linear polarization of the intense laser field = label 1) will
have nonvanishing coupling between state 2 and 3. In our numerical
example, we consider only those collisions whose collisional planes
contain the El’ as depicted in Fig. A.4.

With high-intensity laser field chosen to be the available
YA.G:Nd3+ laser (Xl = 1.0648 u), the bump is lowered by about 0,04 eV
at I1 = 1012 W/cmz. (The amount of shift is roughly proportional to
I; for this single-photon process.) The colliding atoms for certain
range of impact parameter (b = 0 to bmax =1.97 ao) can now pene-
trate into the R < Rb region. The system has certain probability
PI2(b) to radiate near the classical turning point by stimulated
emission into the second mode A, 2 0.486 u, corresponding to the
energy difference between the shifted levels 2 and 1 at R = 3.2 a,
(€2 is chosen parallel to El).

The transition probability formula Eq.(A.4.5) is appropriate
and valid for calculating PIZ(b) near Rb' The two methods repre-
sented by Eq. (2.5) and Eq. (2.9) in the last section yield results in
good agreement with each other.

The cross section (in ao2) for stimulated emission into the

second mode
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bmax

2 db b PI (o)
2 2

Q
1]

are calculated for several intensities and are given in Table I.\

On a log-log plot of op Vs I2, these eight points form a straight
2
line of slope 1. _

An interesting effect occurs which is related to the‘fact that
the coupling between the second and third level depends on the angle
between the internuclear axis of the colliding atoms and the space-
fixed linear polarization gl‘ (See Sec. (A.V)] Thus collisional
systems with impact parameter b = 1.46 to 1.97 a, can get into the
region R < Rb but camnot get out (i.e.,.bound) because the change

of the above-mentioned angle on the outgoing trip. Values for cross

section for such "trapping"

1.97
o, = 21:/ dbe-PI (bD
1 2

.46

are given in Table I. It is not significantly sensitive to 12. It
is noticed that o4 is large compared fo the corresponding 012. The
trapped colliding system will become a "vibrating" molecule (that keeps
on rotating,and traﬁslating as a whole). It is expected to radiate

predominantly near R = 3.2 ag. This trapping will result in a great

enhancement of the "observed 012".

We have assumed that transition to the third level near Rb
is negligible, because the shifted levels 2 and 3 at Rb is off-
resonant by 0.06 eV. We should mention that raising the third level

in our numerical example by 0.4 eV higher changes the amount of
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potential barrier shifts by less than 10%. Thus the selection of the
third level (or high intensity laser wavelength) is not severely

restrictive.
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Table I. Cross-.section of stimulated emission, FIGURE CAPTION
GI2 and cross section for trapping, o, Fig. 1. Potential curves and dipole matrix elements of quasimolecule
(see Sec. III of text). 12 is the intensity for parametric study of interaction with two-mode radiation
of stimulated emission. : field (Sec. IIT of text).
I(W/cn®) Glz(aoz) o(a %)
1 x 10 1.14 x 107 5.5
4 x 107 4.54 x 1073 5.5
1 x 108 1.14 x 1072 5.5
4 x 108 4.54 x 1072 5.5
1 x 10° 1.13 x 107+ 5.5
4 x 10° 4.51 x 107 5.5
7 x 107 7.86 x 1071 5.5
1 x 10 1.12 5.5




~105-

T AL T
Dipole matrix elements

=4 7
= /\
3 3F —
L
£ 2
o
< & \_
o) |
6 | I
Poten'rlal curves
ES —
ugz
4 - _

W
|
c
N
e

> Re b
A
>2 - —
@
o
L

| —

Uy
| |
03 4q 5 6 7
Internuclear separation (Bohr)

XBL755-4892

Fig. 1.



v W S U2 9 4

e

LEGAL NOTICE

thezr emp]oyees makes any war nty, express or 1mpI1ed or assumes_\'f,
";,-aany legal 11ab111ty or respons1b111ty for the accuracy, completeness'f ‘
. or uséfulness of any information, : ‘
-.’V,-‘use Would not- 1nfr1nge prrvate]y SR
’ owned rzghts S i

:t/Th1s report ‘was prepared as, an account of work sponsored by the

Umted States Governmen Ne1ther the Umted States nor the Un1ted J,

“:pparatus product or  process
d1sc]osed or represents that i




TECHNICAL INFORMATION DIVISION
LAWRENCE BERKELEY LABORATORY
UNIVERSITY OF CALIFORNIA
BERKELEY, CALIFORNIA 94720





