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Systematicity and Specialization in Semantics:
A Computational Account of Optic Aphasia

Sean McGuire (sean @ roughy.psy.cmu.edu)

Department of Psychology
Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213-3890

Abstract

Optic aphasic patients are selectively impaired at naming visu-
ally presented objects but demonstrate relative intact compre-
hension of those objects (e.g., by gesturing or categorization)
and are able to name them when presented in other modalities
(e.g., via tactile input). This and other modality-specific nam-
ing deficits have been taken as evidence that semantics is or-
ganized into distinct modality-specific subsystems. We adopt
an alternative view in which semantics is a set of learned, in-
ternal representations within a parallel distributed processing
system that maps between multiple input and output modal-
ities. We account for the critical aspects of optic aphasia in
terms of the effects of damage to such a system, despite its
lack of modality-specific specialization. We show that the ro-
bustness of a task in such a system depends critically on its
systematicity, and that modality-specific naming deficits can
arise because naming is an unsystematic task.

Introduction

The lexical semantic system can be thought of as a set of rep-
resentations which mediates between multiple input and out-
put modalities. Perhaps the most immediately intuitive model
of semantics is what has been termed the unitary seman-
rics model (e.g., Caramazza, Hillis, Rapp, & Romani, 1990;
Hillis, Rapp, Romani, & Caramazza, 1990). A generic ver-
sion of this model is shown in Figure la. In such a model,
semantics takes input from any of several different modali-
ties, and generates output in one or more other modalities.
Shallice (1987) claimed that certain aspects of neuropsy-
chological data pose a serious challenge to unitary seman-
tics approaches. One problem comes from modality-specific
naming deficits, such as optic aphasia. Optic aphasia is a rel-
atively rare neuropsychological disorder, typically caused by
damage to the left medial occipital lobe (i.e., visual cortex
and the underlying white matter), in which patients exhibit
a selective impairment in naming visually presented objects
(see lorio, Falanga, Fragassi, & Grossi, 1992; Endo, Mak-
ishita, & Sugishita, 1996, for reviews of cases). For example,
patient JB (Riddoch & Humphreys, 1987) was substantially
impaired at naming visually presented objects, providing cor-
rect answers on only 46% of test trials. However, he was
75% correct on miming the uses of visually presented objects,
suggesting that his naming deficit could not be explained in
terms of a more fundamental visual recognition impairment.
Furthermore, he was 75% correct on naming objects from tac-
tile presentation, ruling out an explanation in term of a more
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Figure 1: Two general formulations of the organization of lexical
semantics.

general anomia. JB’s performance is typical of optic apha-
sics; he shows impaired naming from vision, with relatively
preserved gesturing from visual input and naming from other
modalities.

Notice that there is no location of damage in a box-and-
arrow version of the unitary semantics model that will give
rise to this pattern of performance. Damage between vi-
sion and semantics would result in visual agnosia, wherein
a visually presented object would not be recognized and so
its use could not be gestured. Damage between semantics
and phonology would lead to a modality-independent nam-
ing deficit. Finally, damage to semantics itself would degrade
performance on tasks in all modalities.

Shallice (1987, also see Beauvois, 1982) solved this prob-
lem by dividing semantics into multiple, modality-specific
subsystems (see Figure 1b). On this view, optic aphasia re-
sults from a disconnection of visual and verbal semantics.
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Thus, access to the verbal semantic representations needed
for naming is prevented only for visual input, and all other
tasks are unimpaired.

While it might seem that this model provides an adequate
account of the data, there are major problems with it. First
and foremost, it seems distinctly unparsimonious. The need
to develop several relatively independent modules in which
to store semantic information significantly increases the dif-
ficulty of learning about objects. Instead of forming a single,
amodal representation for a particular object, the brain would
have to learn a number of different representations. The pro-
cesses for maintaining consistency of these representations,
and other implementational factors, are unclear.

Moreover, while the multiple-semantics model provides a
convenient explanation for the major aspects of optic aphasia,
it does a poor job at accounting for other relevant factors. In
particular, performance on miming and on non-visual naming
are typically also impaired, although not to the same extent as
naming from vision. It is difficult to see how a single lesion to
the multiple-semantics model would result in minor impair-
ment of miming and tactile naming, and substantial impair-
ment of visual naming. In fact, this would seem to require
three separate lesions. Furthermore, optic aphasics’ ability to
discriminate between visually similar objects in a semantic
categorization task may also be mildly impaired (Riddoch &
Humphreys, 1987), suggesting difficulty in accessing seman-
tics from vision.

In light of these problems, Caramazza and colleagues
(Caramazza et al., 1990; Hillis & Caramazza, 1995; Hillis
et al.,, 1990) argue that the multiple-semantics model does not
provide an adequate explanation of the actual patient data.
Moreover, they argue that the unitary-semantics approach
can, in fact, account for optic aphasia if certain predictive
properties of the environment are taken into account. They
postulate that visual properties tend to be highly predictive
of functional properties. This is similar to Gibson's (1979)
notion of affordances—the fact that a cup has a handle and a
concave shape is highly (although not perfectly) predictive of
its function; it affords holding liquid, and the particular physi-
cal manipulations involved in drinking. However, these same
visual features provide no systematic information about the
object’s name. Thus, there are many objects which we could
call “cup” but only a few which afford drinking.

The predictiveness of a relationship can be recast in terms
of the systematicity of a mapping. A mapping is systematic
to the extent that it preserves similarity; that is, similar in-
puts map to similar outputs. Thus, an identity mapping is
completely systematic in that it preserves similarity exactly,
whereas a random mapping is completely unsystematic in
that input similarity is entirely unrelated to output similar-
ity. Another way to characterize systematicity is in terms of
how many input features are needed to predict each output
feature. In an identity mapping, each output feature is per-
fectly predicted by a single (corresponding) input feature; in
a random mapping, each output feature can be predicted only

by knowing the entire input. A highly predictive relation-
ship, such as that between vision and action, corresponds to a
highly systematic mapping, whereas a relationship with little
predictive value, such as that between vision and naming, can
be approximated by a random mapping.

If visual information is systematically related to ac-
tion/function, then it may be possible to determine functional
properties (and, hence, gesture accurately) from partially de-
graded information. On the other hand, such information
may be inadequate for supporting accurate naming given that
small differences in input must produce completely different
outputs. Thus, partial damage to the mapping between vi-
sion and semantics in a unitary-semantics model might be
expected to give rise to the overall pattern of performance
in optic aphasia (also see Riddoch & Humphreys, 1987).

This idea can be tested by implementing a system which
performs tasks similar to those performed by the semantic
system, and then examining the performance of that system
when it is damaged. We chose to implement such a system
using a parallel distributed processing (PDP) framework, for
a number of reasons. Primary among them is the fact that
the type of computations performed by a PDP system, al-
though not perfectly faithful to those performed by neurons,
nonetheless share certain fundamental properties with them.
As a result, it is natural to damage a PDP system to vary-
ing degrees. Moreover, such systems have been shown to be
sensitive to relative degrees of systematicity within a single
task, both in terms of rate of acquisition and in terms of the
effects of damage (Plaut, McClelland, Seidenberg, & Patter-
son, 1996; Seidenberg & McClelland, 1989). In this paper,
we explore whether optic aphasia can be accounted for by the
effects of damage to a PDP network in which multiple input-
output mappings of varying systematicity are mediated by the
same internal (semantic) representations.

Simulation 1: Basic Effects

As a first step to illustrate the basic effects of systematicity
in PDP systems, we trained a simple three-layer feedforward
network on either a systematic task or an unsystematic task,
and compared its performance on these tasks over the course
of learning and following damage.

Method

The network had 20 input units, 40 hidden units, and 20 out-
put units. Each hidden unit received a connection from each
input unit and sent one to each output unit. Weights on these
connections were initialized to random values uniformly dis-
tributed between —0.5 and 0.5 and were unconstrained during
learning. In addition, hidden and output units had bias con-
nections whose weights were initialized between —0.5 and 0
and were constrained to remain nonpositive during learning.
All units used the standard logistic activation function with
activations ranging from O to 1.

The input to the network consisted of 100 random patterns
over the input units, such that each unit had a probability of
0.5 of being active in each pattern. For the systematic task,
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Figure 2: Correct performance on the systematic and unsystematic

tasks as a function of the percent of input-to-hidden connections re-
moved in Simulation 1.
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the network was trained to regencrate the identical pattern
over the output units (i.e., an identity mapping). For the un-
systematic task, a new set of 100 random patterns were gener-
ated and paired randomly with the input patterns (i.e., an arbi-
trary mapping). Note that these mappings were not intended
to correspond in any direct way to the actual mappings in-
volved in visual naming and gesturing, but simply to capture
the basic distinction between a systematic versus unsystem-
atic task.

The network was trained with back-propagation (Rumel-
hart, Hinton, & Williams, 1986) using the cross-entropy error
function (Hinton, 1989), a learning rate of 0.1 and no weight
decay or momentum. If an output unit was within 0.1 of its
target, then it was counted as correct and no error was gener-
ated for that unit. Training was halted when, for each input
presented, all output units were within 0.1 of their targets.

After training, each version of the network was lesioned
by randomly selecting and removing a proportion of input-to-
hidden connections (ranging from 1% to 30%). At each level
of severity, 10 repetitions were run, wherein a new randomly
chosen set of connections was removed and the model’s per-
formance on all 20 patterns was determined (where, in this
context, an output was considered correct if all of the output
units had activations on the correct sides of 0.5).

Results and Discussion

Task systematicity had a dramatic effect both on rate of ac-
quisition and on robustness to damage. The systematic task
was mastered after only 50 epochs of training. By contrast,
the unsystematic task was at floor until 100 epochs. It reached
50% correct at epoch 277 and only achieved perfect perfor-
mance at epoch 392.

Similarly, performance on the systematic task was far more
robust to damage (see Figure 2). Removal of only 1% of
input-to-hidden connections left the systematic task unaf-
fected but reduced correct performance on the unsystematic
task to 78%. With a 10% lesion, performance on the sys-
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X 7)
C Semantics (500 Units) l
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Figure 3: The architecture of the network trained to map between
multiple input and output modalities in Simulation 2.

tematic task remained at 87% correct while the unsystematic
task was near floor at 3.7% correct. Even with 20% of input-
to-hidden connections removed, correct performance on the
systematic task was better than 50%.

In summary, although this first simulation is highly sim-
plified it serves to illustrate the powerful effect that task sys-
tematicity has on the performance of PDP networks, both in
learning and following damage.

Simulation 2: Multiple Modalities

Simulation 1 was simplified both in the extreme form of sys-
tematicity it employed and in the fact that the systematic and
unsystematic mappings were learned separately. In the sec-
ond simulation, we trained a network to map from multiple
input modalities (vision and touch) to multiple output modal-
ities (action and phonology), employing a more realistic for-
mulation of systematicity for the vision-to-action mapping.

Method

The network, depicted in Figure 3, consisted of five groups
of units: two input groups of 20 units each, named “Vision”
and “Touch"; one hidden layer of 500 units, named “Seman-
tics”; and two output groups of 20 units each, named “Action”
and “Phonology.” The large number of units in Semantics
is useful for helping the model learn multiple arbitrary map-
pings in a reasonable amount of time. (Qualitatively similar
results obtain with fewer hidden units, e.g., 100.). Seman-
tics received connections from both of the input groups, and
both of the output groups received connections from Seman-
tics. Weights and biases were initialized and constrained as
in Simulation 1,

The training environment consisted of 100 objects, divided
into 10 categories of 10 objects each. Each object consisted
of patterns for Vision, Touch, Action, and Phonology.

Vision input patterns were made to cluster into categories
using the following procedure. We first generated 10 random
prototype patterns, such that each of 20 features had a proba-
bility of 0.5 of being present and all prototypes differed from
each other by at least 5 features. For each prototype, we then
generated 10 exemplars by choosing two features of the pro-
totype and reversing them. We constrained all exemplars to
differ from each other by at least two features. Each exemplar
was used as a Vision input pattern.

Action output patterns were generated in the same way as
were Vision inputs, although different prototypes were used.
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Exemplars generated from a single prototype can be consid-
ered to form a category. In order to create a systematic map-
ping, we assigned Vision inputs to Action outputs such that,
if two objects had input patterns from the same Vision cat-
egory, then they would have output patterns from the same
Action category. Thus, membership in a visual category was
predictive of membership in an action category, but individ-
ual visual features were not perfectly predictive of individual
action features (see Figure 4).

Although these representations are by no means faithful to
actual visual and functional representations, they do capture
some basic aspects of their structure and relationship. People
categorize objects at least partially on the basis of visual fea-
tures (Rosch, Mervis, Gray, Johnson, & Boyes-Braem, 1976),
and there is evidence that our representations of actions have
a categorical structure (Klatzky, Pellegrino, McCloskey, &
Lederman, 1993). Thus, the use of an environment with vi-
sual and functional categories provides a sufficient setting in
which to test the implications of relative task systematicity.

Touch input patterns and Phonology output patterns were
generated by setting each feature of each pattern to 1 with
a probability of 0.5, with the additional constraint that no
two Touch patterns or Phonology patterns could be identi-
cal. This design results in a systematic relationship between
Vision and Action, and a random relationship between Vi-
sion and Phonology and between Touch and both of the out-
put modalities. Note that, in addition to being unstructured,
the Touch modality had an entirely unsystematic relationship
with both Action and Vision. Of course, in actuality, the do-
main of touch has a high degree of structure that is closely
related to the structure among visual and functional represen-
tations. However, we chose not to implement this structure
nor the relevant relationships because we were primarily in-
terested in the effects of the systematic relationship of vision
and action. In fact, by making all of the other relationships
random, we ensured that the network can take advantage only
of those regularities in the mapping from Vision to Action.

The model was trained using the same learning procedure,
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Figure 5: The proportion of Action versus Phonology outputs cor-
rect given Visual input, as a function of training epoch.

parameters, and stopping criteria as in Simulation 1.

Results

Acquisition. Figure 5 shows, as a function of training
epoch, the proportion of correct outputs in each modality for
Visual inputs. An output pattern was considered correct in
this context if all of the output units were within 0.1 of their
targets. As expected, the model learned the Vision-to-Action
mapping more quickly than the Vision-to-Phonology map-
ping, F(1,99)=112.0, p<.001, due to its greater systematicity.

Effects of Damage: Visual Naming versus Gesturing.
The trained network was lesioned by removing randomly se-
lected connections from the Vision layer to the Semantics
layer. Levels of lesion severity ranged from 1% to 30% of
connections removed. At each level, ten repetitions were run,
wherein a new randomly chosen set of connections was re-
moved. The model’s performance on all mappings was then
determined. An output in a particular modality was consid-
ered correct, for this task, if all of the output units were on
the correct side of 0.5. Average performance at each level of
severity is shown in Figure 6.

The model’s ability to map from Vision to both Action and
Phonology was impaired by the lesions, and, as expected, per-
formance decreased as lesion severity increased. However, at
low and intermediate severities, the model performed much
better at visual gesturing than at visual naming. Overall,
the advantage for the Vision-to-Action mapping was signif-
icant, F(1,99)=963.2, p<.001, as was the interaction of out-
put modality and lesion severity, F(13,1287)=64.76, p<.001.
Note that the model’s performance on mapping from Touch
to either of the output modalities remained unimpaired. Since
the model was feedforward, it is unsurprising that the removal
of connections from Vision to Semantics had no effect on the
model’s performance on Touch mappings.

Effects of Damage: Semantic Categorization. One
source of evidence in support of the claim that optic apha-
sic patients have an impairment in accessing semantics from
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Figure 6: Correct performance on tactile naming, visual gestur-
ing, and visual naming as a function of the percent of Vision-to-
Semantics connections removed.

vision rather than an impairment in semantics per se comes
from Riddoch and Humphreys (1987), who demonstrated
that their patient, JB, had difficulty performing categoriza-
tion tasks when fine-grained visual discrimination was re-
quired. Riddoch and Humphreys argued that, because the
semantic representation is formed from inaccurate and/or in-
complete information, it is generally sufficient to drive tasks
which do not require a high level of detail, but inadequate for
harder tasks. Accordingly, we examine the extent to which
our model exhibits similar behavior.

We implemented a forced-choice task by presenting the
model with three objects and determining which two it con-
sidered most similar. Similarity was judged by computing the
normalized dot product of the model’s Semantic representa-
tions generated by Visual presentation of two objects. The
larger the normalized dot product, the more similar the ob-
jects were considered to be.

We examined the model’s performance on two forced-
choice tasks. In the berween-categories task, it was presented
with two objects from the same category and a third object
from a different category. In the within-category task, it was
presented with three objects from the same category. When
testing a damaged model, we defined the correct response for
each comparison to be the response generated by the undam-
aged model. For both tasks, we presented the model with all
of the triples of objects relevant to that task. This resulted in
40,500 triples for the between-categories task (10 categories
x (9) pairs in each category x 90 objects from outside the
category) and 3600 triples for the within-categories task (10
categories x (19) triples in each category).

We acquired performance data for the model at twelve lev-
els of damage, ten ranging from one to ten percent of con-
nections from Vision to Semantics lesioned, one at fifteen
percent lesioned, and one at twenty percent lesioned. Only
one repetition was performed at each level, largely because
of the computational difficulty of performing dot products on
thousands of 500 element vectors.
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Figure 7 shows the model’s performance on each task for
each level of severity. At all levels, the model’s performance
on the between-categories task was nearly perfect. At 20%
of connections lesioned, the model still had a correct perfor-
mance rate of nearly 99.5%. By contrast, the model’s per-
formance on the within-categories task was very poor even
for extremely mild lesions. At a mere 1% of connections le-
sioned, the model’s correct performance was only about 58%.
This dropped to slightly less than 10% correct at 20% of con-
nections lesioned.

Our model, therefore, displays the expected behavior: it
performs much more poorly on a task that requires fine-
grained visual discriminations. However, JB’s error rate on
such a task was only about 8%, whereas our model’s error
rate starts at above 40%. This extremely high error rate is
an effect of the structure of our Visual domain. Members of
a Vision category do not differ enough to give the model a
good chance at performing the within-categories task. With a
more realistically structured environment, one would expect
the within-category error rates to decrease substantially,

Discussion

The simulation demonstrates that the category-based system-
aticity of the Vision-to-Action mapping provides an advan-
tage for both learning and performance under damage. As
a result, when damaged, the model exhibits the central char-
acteristics of optic aphasia: an impairment in visual naming
with relatively spared performance on visual gesturing and on
naming from other modalities (e.g., touch). The model also
accounts for preserved between-category discrimination with
impaired within-category discrimination.

The model even provides a fairly good quantitative match
to data from some specific optic aphasic patients. JB (Rid-
doch & Humphreys, 1987) was 75% correct at miming the
use of visually presented objects but only 46% correct at nam-
ing them. The graph indicates that the model matches this



fairly closely when 6% of Vision-to-Semantics connections
are lesioned (77% and 42% correct, respectively). Jules F.
(Lhermitte & Beauvois, 1973) was 72% and 77% correct and
visual naming of pictures and words, respectively, and was
flawless at visual gesturing. The model approximates this
with a 4% lesion: visual naming is 76% correct and visual
gesturing is 93% correct.

There are, however, some patients for whom the model
does not provide a good quantitative match. Coslett and Saf-
fran’s (1989) patient, for example, was 50% correct at visual
gesturing but failed to produce a single correct naming re-
sponse to the same objects. With a 10% lesion, the model is
48% correct at visual gesturing but remains 15% correct at
visual naming; with a 20% lesion, visual naming is reduced
to 3% correct but visual gesturing reaches only 16% correct.

Also note that, because it has a feedforward architecture,
the model does not account for cases in which tactile nam-
ing is less than perfect. Jules E, for instance, was only 91%
correct on naming from touch. In a recurrent version of the
current model, interactions across damaged Vision-Semantics
connections might lead to some naming errors for stimuli pre-
sented to the undamaged modality. It may also be the case
that some optic aphasic patients have additional mild damage
to the semantic system itself; such damage would be expected
to lead to a mild deficit in naming from other modalities and
to exacerbate the visual naming deficits.

Despite its limitations, the simulation does provide support
for the central claim of the current work, that optic aphasia
and other modality-specific naming deficits are not incom-
patible with a unitary-semantics account if one takes into ac-
count the robustness of tasks of differing systematicity.

Conclusions

Semantic knowledge for objects is standardly thought to be
represented within a single, amodal system. One challenge
to this point of view is that modality-specific naming deficits
such as optic aphasia are not easily explained on such an ac-
count. In this paper we have shown that a PDP implemen-
tation of a unitary semantic system can, in fact, account for
central characteristics of optic aphasia under the assumption
that input-output relationships vary in their systematicity.

It should be acknowledged, though, that the model does not
account for all of the data, including the quantitative magni-
tude of the difference between visual naming versus gesturing
performance in some patients (e.g., Coslett & Saffran, 1989).
This discrepancy may simply reflect limitations in the scale
of the simulation and in the sophistication of the representa-
tions. However, if anything, these simplifications may have
amplified the effect in the model. Thus, the current results
should be taken as indicating that systematicity is an impor-
tant contributing factor in understanding these deficits, but
may not provide a complete account. We leave it for future
research to determine whether it is possible to provide a fully
adequate account of optic aphasia and related disorders with-
out at least some graded degree of modality-specific special-
ization within the semantic system (also see Shallice, 1993).
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