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ARTICLE

XX sex chromosome complement promotes
atherosclerosis in mice
Yasir AlSiraj1, Xuqi Chen2, Sean E. Thatcher 1, Ryan E. Temel3,4, Lei Cai3,4, Eric Blalock1, Wendy Katz 1,

Heba M. Ali1, Michael Petriello5, Pan Deng 5, Andrew J. Morris 5, Xuping Wang6,7,8, Aldons J. Lusis 6,7,8,

Arthur P. Arnold2, Karen Reue8, Katherine Thompson9, Patrick Tso10 & Lisa A. Cassis1

Men and women differ in circulating lipids and coronary artery disease (CAD). While sex

hormones such as estrogens decrease CAD risk, hormone replacement therapy increases

risk. Biological sex is determined by sex hormones and chromosomes, but effects of sex

chromosomes on circulating lipids and atherosclerosis are unknown. Here, we use mouse

models to separate effects of sex chromosomes and hormones on atherosclerosis, circulating

lipids and intestinal fat metabolism. We assess atherosclerosis in multiple models and

experimental paradigms that distinguish effects of sex chromosomes, and male or female

gonads. Pro-atherogenic lipids and atherosclerosis are greater in XX than XY mice, indicating

a primary effect of sex chromosomes. Small intestine expression of enzymes involved in lipid

absorption and chylomicron assembly are greater in XX male and female mice with higher

intestinal lipids. Together, our results show that an XX sex chromosome complement pro-

motes the bioavailability of dietary fat to accelerate atherosclerosis.
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Sex chromosomes and sex hormones are the primary
determinants of biological sex. A plethora of research has
focused on the role of sex hormones as mediators of sex

differences in a variety of diseases, most especially cardiovascular
diseases1,2. Generally, results from these studies suggest that
estrogens have beneficial effects on circulating lipid profiles (e.g.,
increase HDL)3–6 and protect against coronary artery disease
(CAD)7–10, and that these benefits are typically lost in post-
menopausal females. Notably, some studies report that post-
menopausal females exhibit a pro-atherogenic lipid profile and an
increase in CAD to a level that not only catches up to, but exceeds
that of age-matched males11–13. This suggests that female gonadal
hormones, such as estrogens, are unlikely to be the only deter-
minant of sex differences in CAD risk.

In comparison to sex hormones, genes residing on sex chro-
mosomes have been relatively under-studied as causes of sex
differences in disease development. While the Y chromosome has
evolved to contain few genes, the X chromosome contains as
much as 5% of the human genome, and could thus potentially
mediate sex differences in a variety of factors and/or diseases14,15.
Unfortunately, many large-scale genome-wide association studies
(GWAS)16, including GWAS studies in subjects with CAD17,18,
have neglected analysis of genes residing on sex chromosomes.
Thus, the contribution of sex chromosome genes to CAD, and
other common diseases, is not well characterized.

We use the Four Core Genotypes (FCG) mouse model19–21,
which generates XX and XY female mice with ovaries, and XX
and XY male mice with testes, to define the role of sex chro-
mosome genotype on circulating lipids and atherosclerosis. Our
results demonstrate that an XX sex chromosome genotype, rela-
tive to XY, promotes the development of atherosclerotic lesions in
multiple mouse models and this is associated with profound
dyslipidemia, enhanced adiposity, and augmented dietary fat
bioavailability. While gonadal hormones also regulated some of
these factors, the pronounced effects of XX sex chromosome
genotype persist in gonadectomized (GDX) mice. Moreover,
higher serum lipids and atherosclerosis are evident in XX female
and male mice under different experimental paradigms (e.g., diet,
genetic background, gonadectomy), and multiple linear regres-
sion analysis reveals sex chromosome genotype as an explanatory
variable for the development of atherosclerosis. Our data suggest
that the greater atherosclerosis susceptibility in XX compared to
XY mice is associated with enhanced absorption and bioavail-
ability of dietary fat, which likely influences serum lipid levels and
adiposity. Our findings may have important ramifications for
human health, particularly following menopause, when protective
effects of female sex hormones are lost, and the effects of an XX
sex chromosome genotype may contribute to pro-atherogenic
lipid profiles and CAD.

Results
XX males and females have high food intake and body weight.
We generated FCG mice (XX females, XX males, XY males, and
XY females) on an Ldlr−/− C57BL/6 J background to study effects
of sex chromosome genotype on serum lipids and atherosclerosis.
Mice were defined as male or female on the presence of testes or
ovaries, respectively. Serum testosterone concentrations were
higher in male than female mice, regardless of sex chromosome
genotype (Male, XX: 2.89 ± 1.28, XY: 1.65 ± 0.85; Female, XX:
0.55 ± 0.08, XY: 0.33 ± 0.14 ng/ml; P < 0.005 for male compared to
female by 2-way ANOVA with Holm–Sidak test). However, there
were no differences in serum testosterone concentrations between
XX and XY mice, regardless of sex. Gonadectomy decreased
significantly serum testosterone concentrations in both sexes,
with more pronounced reductions in males (GDX, Male, XX:

0.24 ± 0.04, XY: 0.15 ± 0.06; Female, XX: 0.24 ± 0.09, XY: 0.06 ±
0.04 ng/ml; P < 0.001 compared to intact within sex and sex
chromosome genotype by 2-way ANOVA with Holm–Sidak test).
We were unable to quantify serum estrogen concentrations
because of interference from plasma lipids within the ELISA. At
baseline and following 1 week of the Western diet, males had
significantly higher body weights than females, regardless of sex
chromosome genotype (Fig. 1a; P < 0.001 3-way ANOVA with
Holm–Sidak test). Moreover, XX mice (at baseline or following
1 week of Western diet), regardless of whether they were females
or males, had significantly higher body weights (Fig. 1a; P < 0.001,
3-way ANOVA with Holm–Sidak test) and lean mass (Fig. 1b; P
< 0.001, 3-way ANOVA with Holm–Sidak test) than XY mice of
either sex, in agreement with previous reports22. Fat mass was
significantly higher at baseline in XX male (P < 0.001, 3-way
ANOVA with Holm–Sidak test), but not XX female mice (P=
0.383, 3-way ANOVA with Holm–Sidak test) compared to XY
mice of either sex (Fig. 1c; P < 0.001, 3-way ANOVA with
Holm–Sidak test).

Female mice had significant increases in food intake and
activity compared to males, regardless of sex chromosome
genotype, while males of each genotype had higher energy
expenditure than females (Fig. 1d–f). Moreover, XX mice with
higher body weights and fat mass had significantly higher food
intake (male and female, Fig. 1d; P= 0.028, 2-way ANOVA with
Holm–Sidak test), activity (female, Fig. 1e; P= 0.033, 2-way
ANOVA with Holm–Sidak test), and energy expenditure (male
and female, Fig. 1f; P < 0.001, 2-way ANOVA with Holm–Sidak
test) than XY mice of either sex. When male and female mice
were challenged short-term for 1 week with a Western diet,
differences in body weight (Fig. 1a), lean and fat mass (Fig. 1b, c),
food intake (Fig. 1g; P= 0.04, 2-way ANOVA with Holm–Sidak
test), activity (female, Fig. 1h; P= 0.03, 2-way ANOVA with
Holm–Sidak test) and energy expenditure (Fig. 1i; P= 0.003, 2-
way ANOVA with Holm–Sidak test) of XX compared to XY mice
(male or female) were augmented.

XX males and females have high lipids and atherosclerosis. We
fed male and female XX and XY Ldlr−/− mice a Western diet for
4 months to examine effects of sex chromosome genotype on
serum lipids and atherosclerosis. To separate the contribution of
sex chromosomes and sex hormones, male and female mice of
each sex chromosome genotype were either gonadally intact
(Intact) or surgically gonadectomized (GDX) two weeks prior to
initiation of the Western diet. Males (Intact) had increased body
weights (Fig. 2a; P < 0.001, 3-way ANOVA with Holm–Sidak test)
and fat mass (Fig. 2b, P < 0.001, 3-way ANOVA with Holm–Sidak
test) compared to females, regardless of sex chromosome geno-
type. Moreover, XX female and male mice (Intact) had greater
body weights (Fig. 2a, b; P < 0.001, 3-way ANOVA with
Holm–Sidak test), with 1.4–2.7-fold increases of the weights of
white adipose tissue (Table 1) compared to XY mice of either sex.
Gonadectomy decreased body weights of male, but not female
Ldlr−/− mice, regardless of sex chromosome genotype (Fig. 2a; P
< 0.001, 3-way ANOVA with Holm–Sidak test). Moreover,
greater body weights (Fig. 2a, b) and fat mass (Table 1) of XX
mice, relative to XY, persisted after gonadectomy.

Lipid content of serum from XX Ldlr−/− mice fed a Western
diet was visibly greater than XY Ldlr−/− mice (Fig. 2c). Serum
total cholesterol concentrations were significantly higher in male
compared to female mice, regardless of sex chromosome
genotype or surgery (GDX) (Fig. 2d; P < 0.001, 3-way ANOVA
with Holm–Sidak test). Moreover, serum total cholesterol
concentrations were markedly higher ( > 3-fold) in XX female
and male mice compared to XY mice of either sex (Fig. 2d; P <
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0.001, 3-way ANOVA with Holm–Sidak test), and these effects
persisted in GDX mice. However, there was no significant effect
of gonadectomy of male or female Ldlr−/− mice on serum
cholesterol concentrations, regardless of sex chromosome geno-
type. Serum concentrations of VLDL- (Fig. 2e; P < 0.001, 3-way
ANOVA with Holm–Sidak test) and LDL-cholesterol (Fig. 2f; P <

0.001, 3-way ANOVA with Holm–Sidak test) were also higher in
male compared to female mice, regardless of sex chromosome
genotype or surgery. Notably, serum VLDL- and LDL-cholesterol
concentrations were also markedly higher in XX than XY mice,
regardless of sex or surgery. There was no difference in serum
HDL-cholesterol concentrations between males and females,
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Fig. 1 XX male and female mice have higher body weight, fat mass and food intake. a Body weight of mice of each sex chromosome complement and
gonadal sex at baseline (when fed standard murine diet) or after 1 week of consumption of a Western diet (WD). Lean (b) and fat (c) mass (gm). d Food
intake, normalized to lean mass, of mice fed standard murine diet. e Physical activity, normalized to lean mass, of mice fed standard murine diet. f Energy
expenditure, normalized to lean mass, of mice fed standard murine diet. g Food intake, normalized to lean mass, of mice fed a Western diet (1 week).
h Physical activity, normalized to lean mass, of mice fed a Western diet. i Energy expenditure, normalized to lean mass, of mice fed a Western diet.
Symbols represent individual mice per group (n= 5 mice/group) per measurement, with horizontal lines representing mean ± SEM. *P < 0.05 compared to
XX within gonadal sex. #P < 0.05 compared to female within sex chromosome complement. $P < 0.05 compared to XX females. @P < 0.05 main effect of
sex chromosome complement. Data were analyzed by 3-way ANOVA (A-C) with Holm–Sidak test, or by 2-way ANOVA (d–i) with Holm–Sidak test.
Source data are available as a Source Data file
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Fig. 2 An XX sex chromosome complement promotes obesity and dyslipidemias. a Body weights (gm) of male and female intact and gonadectomized
(GDX) mice of each genotype (Intact: FXX, n= 11; FXY, n= 14; MXX, n= 9; MXY, n= 11; GDX: FXX, n= 9; FXY, n= 8; MXX, n= 7; MXY, n= 7).
b Representative pictures of mice from each group (left), with adipose tissue depots illustrated. c Representative pictures of serum from XX and XY male
mice. d Total serum cholesterol concentrations (Intact: FXX, n= 10; FXY, n= 12; MXX, n= 9; MXY, n= 11; GDX: FXX, n= 6; FXY, n= 4; MXX, n= 6; MXY,
n= 5). Concentrations of very low density lipoprotein (VLDL)-cholesterol (e) (Intact: FXX, n= 6; FXY, n= 6; MXX, n= 5; MXY, n= 6; GDX: FXX, n= 6;
FXY, n= 4; MXX, n= 6; MXY, n= 5), low density lipoprotein (LDL)-cholesterol (f) (Intact: FXX, n= 6; FXY, n= 6; MXX, n= 5; MXY, n= 6; GDX: FXX,
n= 6; FXY, n= 4; MXX, n= 6; MXY, n= 5) and high density lipoprotein (HDL)-cholesterol (g) (Intact: FXX, n= 6; FXY, n= 4; MXX, n= 6; MXY, n= 5;
GDX: FXX, n= 6; FXY, n= 4; MXX, n= 6; MXY, n= 5) and TG (h) (Intact: FXX, n= 4; FXY, n= 6; MXX, n= 4; MXY, n= 5; GDX: FXX, n= 6; FXY, n= 4;
MXX, n= 6; MXY, n= 5) in Ldlr−/− mice fed a Western diet for 4 months. Concentrations of total serum cholesterol (i) (FXX, n= 11; FXY, n= 10; MXX,
n= 12; MXY, n= 8), LDL-cholesterol (j) (FXX, n= 11; FXY, n= 10; MXX, n= 12; MXY, n= 8), HDL-cholesterol (k) (FXX, n= 11; FXY, n= 10; MXX, n= 12;
MXY, n= 8) and TG (l) (FXX, n= 11; FXY, n= 10; MXX, n= 12; MXY, n= 8) in Apoe−/− mice fed a standard murine diet. Symbols represent individual
mice per group per measurement, with horizontal lines representing mean ± SEM. *P < 0.05 compared to XX within gonadal sex. #P < 0.05 compared to
female within sex chromosome complement. $P < 0.05 compared to XX females. Data were analyzed by 3-way ANOVA (a, d–h) with Holm–Sidak test, or
by 2-way ANOVA (i–l) with Holm–Sidak test. Source data are available as a Source Data file. RPF retroperitoneal, EF epididymal, SubQ subcutaneous
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regardless of surgery (Fig. 2g). Serum HDL-cholesterol concen-
trations were higher in XX males, but not XX females compared
to XY mice (Fig. 2g; P= 0.018, 3-way ANOVA with Holm–Sidak
test). This difference in serum HDL-cholesterol concentrations
between male XX and XY mice was not present in GDX mice.
Serum triglyceride (TG) concentrations were also higher in male
than female mice, regardless of sex chromosome genotype
(Fig. 2h; P < 0.001, 3-way ANOVA with Holm–Sidak test).
Moreover, XX mice had markedly higher serum TG concentra-
tions than XY mice, and this effect persisted in GDX mice
(Fig. 2h; P < 0.001, 3-way ANOVA with Holm–Sidak test). There
was no effect of GDX on serum TG concentrations in male or
female mice of either sex chromosome genotype.

To determine if XX effects on serum lipids and atherosclerosis
were specific to an Ldlr−/− background and/or required a
Western diet, we examined serum cholesterol, TG, LDL- and
HDL-cholesterol concentrations in FCG mice fed standard
murine diet for 4 months but made hypercholesterolemic by
apoliprotein E deficiency (Apoe−/−). To remove influences of sex
hormones, these studies were performed in GDX mice. Similar to
findings from Ldlr−/− mice, serum total cholesterol and LDL-
cholesterol concentrations were higher in male compared to
female Apoe−/− mice, regardless of sex chromosome genotype
(Fig. 2i, j; P= 0.004, 3-way ANOVA with Holm–Sidak test).
Moreover, XX male and female Apoe−/− mice had higher serum
total cholesterol (Fig. 2i; P < 0.001, 2-way ANOVA with
Holm–Sidak test) and LDL-cholesterol (Fig. 2j; P < 0.001, 2-way
ANOVA with Holm–Sidak test) concentrations than XY mice of
either sex. However, neither serum HDL-cholesterol (Fig. 2k; P=
0.32, 2-way ANOVA with Holm–Sidak test) nor TG concentra-
tions (Fig. 2l; P= 0.66, 2-way ANOVA with Holm–Sidak test)
were different among the four genotypes.

We assessed the influence of sex chromosome complement on
atherosclerosis in three independent FCG mouse genetic back-
grounds: Ldlr−/− mice (Intact and GDX) fed a Western diet,
GDX Apoe−/− mice fed standard murine diet, and C57BL/6 J
mice fed a cholesterol-enriched atherogenic diet. In aortic arches
of Ldlr−/− mice, the percent of intimal surface area covered by
atherosclerotic lesions was significantly greater in male than
female mice (Intact), regardless of sex chromosome genotype
(Fig. 3a; P= 0.029, 3-way ANOVA with Holm–Sidak test).
Female XX, but not male XX mice (Intact) had more
atherosclerosis than XY mice of the respective sex (Fig. 3a, b;
P= 0.01, 3-way ANOVA with Holm–Sidak test). Gonadectomy
increased atherosclerosis in female XX, but not female XY mice

(Fig. 3a, b; P= 0.002, 3-way ANOVA with Holm–Sidak test),
suggesting a protective role for female gonadal hormones that
requires an XX sex chromosome genotype. In contrast, male XY,
but not male XX mice exhibited significantly less atherosclerosis
in the GDX groups relative to intact XY males (Fig. 3a, b; P=
0.046, 3-way ANOVA with Holm–Sidak test), suggesting
interactions between testicular hormones and an XY sex
chromosome genotype on lesion development. Following gona-
dectomy, atherosclerosis of XX mice was markedly greater than
XY mice, regardless of sex (Fig. 3a, b; P < 0.001, 3-way ANOVA
with Holm–Sidak test), demonstrating a robust effect of sex
chromosome genotype.

We also quantified atherosclerosis in aortic sinus tissue
sections of FCG Ldlr−/− mice, where lesion areas were not
significantly different between male and female mice, regardless
of sex chromosome genotype or surgery (Fig. 3c). However, XX
male and female mice had significantly greater atherosclerotic
lesion areas compared to XY mice of either sex (Fig. 3c, d; P <
0.001, 3-way ANOVA with Holm–Sidak test), which persisted in
GDX mice. In aortic sinus tissue sections from GDX Apoe−/−

(Fig. 3e, f) fed with standard murine diet or GDX C57BL/6 J FCG
mice fed with a HF diet for 4 months, there were no differences in
atherosclerotic lesion areas between male and female mice,
regardless of sex chromosome genotype (Fig. 3e). However,
similar to Ldlr−/− FCG mice, XX female and male GDX Apoe−/−

FCG mice (Fig. 3e, f; P < 0.0001, 2-way ANOVA with
Holm–Sidak test), as well as XX female and male GDX C57BL/
6 J FCG mice fed with an atherogenic diet for 4 months (Fig. 3g;
P= 0.001, 2-way ANOVA with Holm–Sidak test) had signifi-
cantly greater aortic sinus lesion areas compared to XY mice of
either sex. These results demonstrate the robust effect of the XX
genotype on atherosclerosis under three complementary experi-
mental paradigms.

A variety of parameters quantified in these studies could
contribute to higher levels of atherosclerosis in XX compared to
XY mice, including higher energy intake, body weight, fat mass or
differences based on gonadal sex, sex chromosome genotype, or
genetic background (e.g., C57BL/6 J vs. Ldlr−/− mice). We used a
multiple linear regression model with log-transformed athero-
sclerotic lesion area in aortic sinus as the response variable, and
examined the relationship of each of the above described
explanatory variables within the model to determine their
relationship to atherosclerosis. For this model, reference groups
for the analysis were Apoe−/− mice (genetic background), GDX
(surgery), females (sex), and XX sex chromosome genotype (sex

Table 1 Characteristics of mice of each group

Parameter FXX FXY MXX MXY

Intact Ldlr−/− on Western Diet Retroperitoneal Fat/body weight (%) 2.04 ± 0.3 0.92 ± 0.2 2.54 ± 0.17 1.57 ± 0.17
SubQ Fat/body weight (%) 2.19 ± 0.17 1.85 ± 0.17* 3.5 ± 0.27 1.89 ± 0.24*
Gonadal Fat/body weight (%) 6.06 ± 0.65 3.06 ± 0.4* 4.94 ± 0.22# 4.59 ± 0.38*
Liver/body weight (%) 5.8 ± 0.23 6.3 ± 0.11 7.9 ± 0.24 5.8 ± 0.17

Gonadectomized Ldlr−/− on Western Diet Retroperitoneal Fat/body weight (%) 3 ± 0.34 1.2 ± 0.2 2.1 ± 0.12 0.59 ± 0.09
SubQ Fat/body weight (%) 3.0 ± 0.21 1.7 ± 0.2* 3.66 ± 0.43 1.27 ± 0.15*
Gonadal Fat/body weight (%) 5.1 ± 0.23 2.5 ± 0.3* 5.18 ± 0.62 2.01 ± 0.45*
Liver/body weight (%) 6.3 ± 0.27 5.9 ± 0.1 5.88 ± 0.25 5.3 ± 0.17

Apoe−/− on Chow Diet SubQ Fat/body weight (%) 0.87 ± 0.13 0.60 ± 0.10 0.85 ± 0.10 0.73 ± 0.05
Gonadal Fat/body weight (%) 0.86 ± 0.23 0.40 ± 0.13 0.73 ± 0.10 0.55 ± 0.08
Liver/body weight (%) 4.44 ± 0.17 4.70 ± 0.22 4.30 ± 0.10 4.42 ± 0.18

C57BL/6 J on Atherogenic Diet SubQ Fat/body weight (%) 0.95 ± 0.12 0.70 ± 0.06* 0.64 ± 0.05 0.47 ± 0.03
Gonadal Fat/body weight (%) 2.16 ± 0.31 1.11 ± 0.16* 1.33 ± 0.23 0.30 ± 0.16
Liver/body weight (%) 7.50 ± 0.40 9.51 ± 0.35* 8.45 ± 0.51 11.6 ± 1.0*

Data are mean ± SEM
Data are analyzed by 2-way ANOVA with Holm–Sidak test
*P < 0.05 compared to XX within gonadal sex. #P < 0.05 compared to female within genotype
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chromosome genotype) (Table 2). We included all mice in the
analysis for which we had measurements on all variables. After
adjusting for all other variables, there were two explanatory
variables that were significant for the development of athero-
sclerosis, namely sex chromosome genotype and genetic back-
ground (Table 2).

Livers of XX males and females have diverse gene expression.
Elevations in serum lipids of XX mice could result from altera-
tions in cholesterol and/or lipid homeostasis in liver, a major
organ for lipoprotein synthesis, secretion and clearance. To focus
on sex chromosome influences on transcriptional profiles in the
absence of sex hormones, livers from GDX mice were used. We
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Fig. 3 An XX sex chromosome complement augments atherosclerosis in male and female mice. a Atherosclerotic lesion surface area, expressed as a
percentage of the aortic arch, in aortic arches from male and female XX and XY intact or gonadectomized (GDX) Ldlr−/− mice. (Intact: FXX, n= 11; FXY,
n= 12; MXX, n= 9; MXY, n= 11; GDX: FXX, n= 5; FXY, n= 4; MXX, n= 7; MXY, n= 7). b Representative aortic arch, stained with Oil Red O, from Ldlr−/−

mice of each group. c Atherosclerotic lesion area, quantified as Oil Red O staining, in tissue sections from the aortic sinus of male and female XX and
XY intact or GDX Ldlr−/− mice. (Intact: FXX, n= 4; FXY, n= 5; MXX, n= 4; MXY, n= 4; GDX: FXX, n= 4; FXY, n= 4; MXX, n= 5; MXY, n= 5).
d Representative aortic sinus tissue sections, stained with Oil Red O, from Ldlr−/− mice of each group. e Atherosclerotic lesion area in tissue sections from
XX and XY male and female Apoe−/− GDX mice. (FXX, n= 5; FXY, n= 4; MXX, n= 5; MXY, n= 4). f Representative aortic sinus tissue sections from
Apoe−/− GDX mice of each group. g Atherosclerotic lesion area in tissue sections from aortic sinus of XX and XY male and female C57BL/6 GDX mice fed
an atherogenic diet. Symbols represent individual mice per group per measurement, with horizontal lines representing mean ± SEM. (FXX, n= 8; FXY, n=
6; MXX, n= 10; MXY, n= 5). *P < 0.05 compared to XX within gonadal sex. #P < 0.05 compared to female within sex chromosome complement. $P < 0.05
compared to XX females. Data were analyzed by 3-way ANOVA (A,C) with Holm–Sidak test, or by 2-way ANOVA (e, g) with Holm–Sidak test. Scale bar
= 200 μm. Source data are available as a Source Data file

Table 2 Multiple linear regression of explanatory variables to atherosclerotic lesion area within the aortic sinus of FCG mice

Estimate Standard Error t-value P-value

(Intercept) 13.23 0.49 26.8 <0.0000000000000002
Body weight (g) 0.01 0.02 0.56 0.58
Sera cholesterol (mg/dl) −0.00 0.00 −1.43 0.16
Gonadal fat (%) 0.08 0.09 0.88 0.38
Genetic background:
Ldlr−/− mice −0.07 0.36 −0.19 0.85 < 0.0000000000000002
C57BL/6 mice −4.62 0.23 −19.95 0.85 < 0.0000000000000002
Sex −0.09 0.17 −0.56 0.58
Surgery (Intact) 0.01 0.27 0.03 0.98
Sex chromosome genotype −0.99 0.21 −4.77 0.000011

Reference groups were Apoe−/− mice (genetic background), female (sex), GDX (surgery), and XX genotype (sex chromosome genotype)
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performed transcriptome analysis on livers from GDX XX and
XY male and female Ldlr−/− mice after 4 months of Western diet
using Affymetrix Mouse Transcriptome Assay 1.0 assays. There
was no major effect of sex on liver gene expression (Fig. 4a, Male
vs. Female). However, a total of 1,399 genes exhibited highly
significant differences (2-way ANOVA, False Discovery Rate <
0.01; Fig. 4a, b, Supplementary Data 1) by sex chromosome
genotype (XX or XY). Volcano plots of the sex chromosome effect
with highly stringent cutoffs ( > 4-fold change, P < 1 × 10–6)
demonstrated that the expression of genes on sex chromosomes
was strongly influenced (Fig. 4b). As expected, genes within the
male-specific region of the Y chromosome (e.g., Uty, Kdm5d,
Eif2s3y) were significantly greater in XY livers (Fig. 4b), while Xist
(known to be expressed only in XX cells) was significantly greater
in XX livers. Biological pathway analyses revealed that a large
number of genes involved in the immune response (197) differed
in livers from XY compared to XX male and female mice
(Table 3). We did not observe an effect of sex chromosome
genotype on pathways related to hepatic cholesterol synthesis
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Fig. 4 Sex chromosome complement influences hepatic gene expression of Ldlr−/− gonadectomized (GDX) mice. a Total probe sets on the array were
filtered to retain annotated transcript clusters with reliable signal intensity. The filtered data set was analyzed by two-way ANOVA. The number of genes
whose expression was significantly changed (multiple testing corrected q value≤ 0.01) by the main effects of gene status (XX vs XY), biological sex (male
vs. female), as well as by interaction, are listed. Note that only genes significant by the chromosome effect survived multiple testing correction. b Fold
change in gene expression (log 2 scale, x-axis) and statistical significance (p value, y-axis) for the main effect of chromosome are plotted. Genes labelled in
blue exhibited significant increases in livers from XY compared to XX mice; genes labelled in red exhibited significant increases in livers from XX compared
to XY mice. (FXX, n= 5; FXY, n= 5; MXX, n= 4; MXY, n= 5). Source data are available as a Source Data file

Table 3 XY vs XX liver transcriptional pathway
over-representation

G.O. Description # P value

0006955 Immune response 197 7.62E-52
0030029 Actin filament-based

process
95 3.51E-21

0006897 Endocytosis 82 2.33E-20
0007264 Small GTPase mediated

signal transduction
72 7.10E-16

0005925 Focal adhesion 60 7.68E-13
0018212 Peptide-tyrosine

modification
46 1.18E-12

0001944 Vasculature development 68 4.43E-08
0072593 Reactive oxygen species

metabolic process
33 1.58E-07

Column titles: G.O. (Gene Ontology accession identifier); #- number of genes found significant
with category; p value- modified Fisher’s Exact Test using #−1 (EASE score)
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(Table 3), although some individual cholesterol-related genes
were different between genotypes (Supplementary Data 1).

Since serum TG and cholesterol concentrations were greater in
XX female or male mice compared to XY mice, we quantified
hepatic TG and cholesterol concentrations, and examined gross
morphology of liver tissue. Moreover, since higher serum lipids
were present in GDX XX compared to XY males and females,
indicating a primary effect of sex chromosome genotype, we
focused on livers from GDX mice. Hepatic TG and cholesterol
contents were greater in XX than XY females, but not in livers
from XX vs. XY males (Supplementary Figure 1A, B; P= 0.002, 2-
way ANOVA with Holm–Sidak test). Tissue sections from livers
of XX and XY male and female mice fed the Western diet for
4 months had similar gross morphology (Supplementary
Figure 1C). Elevations in hepatic cholesterol concentrations could
arise from increased synthesis or decreased cholesterol secretion.
As transcriptome analysis did not identify cholesterol home-
ostasis pathways as different between livers from XX and XY
mice, we quantified hepatic TG secretion as a major determinant
of serum cholesterol concentrations in male and female XX and
XY Ldlr−/− mice fed standard murine diet. Plasma TG
concentrations over time in fasted XX and XY male and female
mice (after injection with poloxamer to inhibit lipoprotein lipase-
mediated lipolysis, Supplementary Figure 2A) and TG secretion
rates (Supplementary Figure 2B) were higher in males compared
to females, but there was no significant effect of sex chromosome
genotype. Newly synthesized apolipoprotein B48 levels were
higher in male XX and XY mice compared to female mice of each
sex chromosome genotype (P < 0.05), but there was no difference
between genotypes (Supplementary Figure 2C, D). In contrast,
newly synthesized apolipoprotein B100 levels were higher in XX
than XY mice, regardless of sex (Supplementary Figure 2C,E; P=
0.029, 2-way ANOVA with Holm–Sidak test), consistent with
higher LDL/VLDL cholesterol concentrations of XX mice.

XX male and female intestines have augmented lipid handling.
The intestinal tract absorbs dietary fat and is an important
determinant of circulating lipids. Thus, we quantified mRNA
abundance of a variety of genes (cluster of differentiation 36
(Cd36), fatty acid binding protein 1 (Fabp1), fatty acid binding
protein 2 (Fabp2), secretion associated Ras related GTPase 1B
(Sar1b), apolipoprotein B (Apob), diacylglycerol acyltransferases
(Dgat1 and Dgat2), monoacylglycerol O-acyltransferase 2
(Mogat2), and microsomal triglyceride transfer protein (Mttp))
involved in the absorption and synthesis of dietary fat in small
intestines from XX and XY GDX male and female FCG Ldlr−/−

mice fed the Western diet for 4 months. mRNA abundance of
Cd36, Fabpt1, Fabp2, Mogat2, Sar1b, Dgat1 and Apob was not
different between males and females, and was not influenced by
sex chromosome genotype (Supplementary Figure 3; P > 0.05, 2-
way ANOVA with Holm–Sidak test). Similarly, mRNA abun-
dance of Dgat2, an enzyme that produces TG from absorbed fatty
acids23,24 (Fig. 5a; P= 0.008, 2-way ANOVA with Holm–Sidak
test), and Mttp (Fig. 5b; P= 0.001, 2-way ANOVA with
Holm–Sidak test), which assembles TG into chylomicrons25–27

was not different in small intestines of GDX male compared to
female mice, regardless of sex chromosome genotype. However,
mRNA abundance of both Dgat2 and Mttp was higher in intes-
tines from XX compared to XY mice of either sex. In support of
greater expression of these genes in small intestines of XX mice,
intestinal TG content was also higher in female, but not male XX
compared to XY mice (Fig. 5c; P= 0.023, 2-way ANOVA with
Holm–Sidak test). Analysis of intestinal lipids by HPLC/mass
spectrometry demonstrated that while there were no overall dif-
ferences between males and females, there were greater palmitic

acid/palmitic acid/oleic acid-containing lipids in small intestines
of XX compared to XY females, but not males (Fig. 5d; P= 0.034,
2-way ANOVA with Holm–Sidak test). Several other inter-
mediates of TG synthesis showed similar patterns with higher
levels of fatty acids in XX than XY small intestines (Supple-
mentary Figure 4). To determine if these differences influenced
dietary lipid absorption, we quantified fat absorption in female
and male XX and XY Ldlr−/− mice fed a semisynthetic diet
containing dietary fat and 5% sucrose polybehenate as a non-
absorbable polyester that has physical properties of dietary fat28.
There were no differences in % fat absorption between male and
female mice, regardless of sex chromosome genotype (Fig. 5f).
However, there was a trend for higher fat absorption in XX
female and male mice compared to XY mice of either sex (Fig. 5e;
P= 0.067, Kruskal–Wallis ANOVA on rank).

Finally, with the growing appreciation that the gut microbiota
may play a role in cholesterol homeostasis and host health, we
characterized overall microbiota differences utilizing 16 S rRNA
sequencing and alpha diversity measurements from FCG female
and male XX and XY Ldlr−/− mice fed the Western diet for
4 weeks. Female mice exhibited significantly higher alpha
diversity as determined by Chao1, Phylogenetic Diversity (PD)
whole tree, and observed Operational taxonomic units (OTU)
indices (Supplementary Figure 5A-C; P= 0.037, 0.019, 0.028,
respectively) than males, regardless of sex chromosome genotype.
However, while there was an overall trend for higher diversity in
XY compared to XX mice, these effects were not significant (P=
0.11, 0.11, 0.086). No differences were observed using the
calculated Shannon diversity index (Supplementary Figure 5D).

Discussion
Our findings shed light on causes of sex differences in common
cardiovascular diseases such as CAD. We demonstrate that
relative to XY, mice with an XX sex chromosome genotype
exhibit the following: (1) markedly elevated serum cholesterol
and TG concentrations, effects that were found in different
experimental paradigms (e.g., diet, genetic background, gona-
dectomy), (2) profound elevations in atherosclerosis, (3) altered
expression of hepatic genes associated with immune pathways,
(4) similar hepatic TG secretion but higher levels of newly syn-
thesized apolipoprotein B100, (5) greater expression levels of key
genes in small intestine involved in lipid absorption and chylo-
micron assembly, higher intestinal lipid content, and modest
elevations in % fat absorption (Fig. 5f). These results suggest a
prominent role of sex chromosomes in the control of dietary fat
absorption, the regulation of serum lipids and the development of
atherosclerosis. If results from these experimental studies are
translatable to humans, then thrifty effects of an XX sex chro-
mosome to promote fat absorption and handling, effects that may
be useful for child-bearing women, could adversely influence
health when protective effects of female sex hormones are lost
upon menopause (Fig. 5f).

Sex hormones exert many effects that have been suggested to
contribute to sex differences in fat storage, circulating lipids and
cardiovascular diseases29. By comparison, the role of the other
primary biological determinant of sex, namely sex chromosomes,
in disease development is relatively unknown despite an asso-
ciation of sex chromosome abnormalities with lipid and cardio-
vascular disorders30–33. The FCG murine model allows for
determination of the relative effects of sex hormones vs. sex
chromosomes to a phenotype. Recent studies using this model
indicate that the dose of the X chromosome influences several
metabolic traits, including obesity, fatty liver, food intake and
glucose homeostasis22,34–36. Results from the current study
extend these findings to murine models of dyslipidemia and
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atherosclerosis, demonstrating that an XX sex chromosome
genotype is associated with profound elevations in pro-
atherogenic circulating lipids and atherosclerosis. Moreover,
these effects were observed in several different mouse models of
atherosclerosis on a C57BL/6 J background (Ldlr−/−, Apoe−/−,
wild type), with or without consumption of experimental diets,
and were largely independent of sex hormones (e.g., persisted in
GDX mice). These results indicate a strong differential effect of
XX vs. XY chromosomes on the development of atherosclerosis.

In preclinical models and in humans, estrogen favorably
influences circulating lipid profiles and atherosclerotic lesion
development7–10. In agreement, our results demonstrate that
removal of ovarian hormones increased atherosclerosis in XX
mice, and extend previous results by demonstrating that this
protective effect of ovarian hormones was dependent on an XX
sex chromosome genotype, as XY females were not influenced by

gonadectomy. Beneficial effects of estrogens have been suggested
to protect females from CAD.(reviewed in37) However, with
advancing age (>85 years of age), the prevalence of atherosclerosis
in females has been reported to not only catch up to, but in some
studies exceed that of males11–13. Our results demonstrate that in
addition to regulation of atherosclerosis by sex hormones, an XX
sex chromosome genotype, relative to XY, promotes athero-
sclerosis in male or female mice. Future studies should determine
if an XX chromosome genotype contributes to a higher pre-
valence of atherosclerosis in aged, postmenopausal females.

Recent studies demonstrated higher HDL-cholesterol levels in
XX compared to XY mice of the FCG fed standard or HF diets36.
We observed higher levels of HDL-cholesterol in XX compared to
XY males, which were no longer evident in GDX males, sug-
gesting an effect of testosterone or its metabolites to promote
circulating HDL-cholesterol. In this study mice with an XX sex
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Fig. 5 Intestinal gene expression, triglyceride content, and fat absorption are higher in XX than XY Ldlr−/− mice. mRNA abundance of Dgat2 (a) (FXX, n=
4; FXY, n= 5; MXX, n= 5; MXY, n= 5) and Mttp (b) (FXX, n= 4; FXY, n= 5; MXX, n= 5; MXY, n= 5) in small intestines from gonadectomized (GDX)
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5). d Fatty acids (Palmitic/palmitic/oleic acids) that are enriched in intestinal triglycerides from XX compared to XY GDX mice (FXX, n= 4; FXY, n= 5;
MXX, n= 5; MXY, n= 5). e Absorption of dietary fat (%) in XX and XY male and female mice. Symbols represent individual mice per group per
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compared to female within genotype. @P < 0.05 XX vs. XY. f Overall conclusions from this study. Data (a–d) were analyzed by 2-way ANOVA with
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chromosome genotype had greater concentrations of total and
LDL-cholesterol, as well as markedly increased serum TG con-
centrations compared to XY mice, presumably related to the
hyperlipidemic background of genetically manipulated (Ldlr−/−,
Apoe−/−) mice. Levels of circulating pro-atherogenic lipids in
atherosclerosis-susceptible Ldlr−/− mice from the present study
were far in excess of those observed in previous studies using
atherosclerosis-resistant C57BL/6 J mice that typically carry lipids
predominately on HDL particles36. Moreover, multiple linear
regression analysis demonstrated that genetic background, such
as C57BL/6 J mice with predominately HDL- rather than LDL-
cholesterol, when compared to Apoe−/− mice as the reference
background, was an experimental variable that correlated sig-
nificantly to the extent of atherosclerosis.

Previous results from the Framingham Heart Study demon-
strated that increases in circulating levels of TG correlated more
strongly to cardiovascular disease risk in women compared to
men, but mechanisms for this sex difference have not been
identified2,38. In this study, serum TG concentrations were higher
in XX males than XX females, but atherosclerosis in the aortic
sinus was similar between XX males and females, suggesting that
female XX mice have more atherosclerotic burden than XX males
for a given level of circulating TG. The profound effects of an XX
sex chromosome genotype to promote higher levels of circulating
pro-atherogenic lipids, regardless of background genetic strain,
sex hormones, or diet, could result from alterations in hepatic
lipid/cholesterol production and/or secretion, or alterations in
intestinal lipid/lipoprotein absorption. However, surprisingly,
multiple linear regression did not identify serum cholesterol
concentrations as an explanatory variable for the development of
atherosclerosis. Thus, while serum concentrations of pro-
atherogenic lipids are clearly important in the development of
atherosclerosis, in these studies they were not the primary con-
tributing variable to the extent of atherosclerosis. In contrast, sex
chromosome genotype, namely an XX sex chromosome genotype,
did correlate significantly to the extent of atherosclerosis.

Notably, expression levels of a large number of genes in liver
were influenced by sex chromosome genotype, with greater
expression of genes involved in immune function in livers from
XY compared to XX mice. Surprisingly, gene pathways implicated
in cholesterol synthesis and handling by liver were not altered in
XX mice despite markedly higher serum cholesterol and TG
concentrations. These results are in agreement with previous
findings indicating that differences in plasma lipids between XX
and XY mice (male or female) were not associated with altera-
tions in liver gene expression levels for components of cholesterol
synthesis and metabolism36. Moreover, these results extend pre-
vious findings by demonstrating the large impact of sex chro-
mosome genotype on hepatic gene expression patterns.
Consistent with a lack of effect of sex chromosome genotype on
cholesterol handling genes, hepatic TG secretion was not altered
in XX male or female mice fed standard murine diet. However,
future studies should more fully characterize the contribution of
hepatic production of apolipoprotein B100 to the observed effects
of sex chromosome genotype on the development of
atherosclerosis.

Since hepatic secretion of TG did not appear to be a primary
target for regulation by sex chromosome complement, we turned
to intestinal handling of lipids as a cause of higher circulating
lipids and cholesterol in XX mice. Small intestine gene expression
of Dgat2 and Mttp, enzymes involved in the synthesis of TG from
absorbed fatty acids and assembly into chylomicrons, respec-
tively, paralleled changes in circulating lipids, with higher levels in
intestines from XX than XY males or females, and these effects
were independent of gonadal hormones as they persisted in tis-
sues from GDX mice. As these genes are not X-linked and do not

reside on the X chromosome, their regulation may be indirect or
downstream of X chromosomes. Moreover, elevations in gene
expression of Dgat2 and Mttp in small intestines from XX com-
pared to XY mice (male or female) were accompanied by greater
intestinal TG and fatty acid content, in a manner that reflected
lipids within the Western diet. Recent studies identified a role for
the gut microbiome in sexual dimorphism of gene expression in
mice39, sex differences in gut microbiota composition40, and
differences in the composition of gut microbiota have been
demonstrated between genders and between women of different
hormonal status41. In agreement with previous findings40, we
found that alpha diversity of gut microbiota was influenced by
sex, but not necessarily by sex chromosome genotype. These
results, while interesting, do not suggest a primary role for the gut
microbiome in augmented fat absorption, higher serum lipids and
atherosclerosis of XX compared to XY mice. Rather, absorption of
dietary fat was modestly, but not significantly higher in XX
compared to XY mice, indicating that altered expression levels of
these pivotal lipid-regulating genes were accompanied by func-
tional changes in fat bioavailability. The modest increase in daily
fat absorption of XX mice observed in this study, when con-
sidered cumulatively over 4 months of the Western diet and in
conjunction with increased energy intake, most likely contributed
to the observed hyperlipidemia of XX compared to XY mice.

In conclusion, results from this study identify a profound effect
of an XX sex chromosome effect to promote experimental dys-
lipidemias and atherosclerosis, a finding of potential relevance to
increased CAD of postmenopausal females. These effects of an
XX sex chromosome genotype were associated with augmented
absorption and bioavailability of dietary lipid, metabolic traits
that if present in humans may be important for child-bearing
purposes (Fig. 5f, left). However, our findings suggest that these
effects of an XX sex chromosome genotype, upon loss of pro-
tective sex hormones, may contribute to elevations of pro-
atherogenic lipids and increased atherosclerotic burdens of
postmenopausal females.

Methods
Animals. Male mice with deletion of the gene Sry from the Y-chromosome, but
expressing Sry transgene on an autosome (termed FCG mice) aged 8–12 weeks
were bred to females of 3 different backgrounds (Ldlr−/−, Apoe−/−, and C57BL/6 J)
to generate male and female mice with an XY or an XX sex chromosome com-
plement. Mice genotypes were identified by amplifying DNA extracted from tail or
ear clips using a Promega Maxwell system and polymerase chain reaction (PCR)
using a commercial PCR mix (Promega 2X Master Mix, cat#m7123) and specific
primers for the Sry transgene, presence of the Y-chromosome, and internal positive
control. Ldlr−/− FCG mice (12–16 weeks old) were fed Western diet, 42% kcal
from fat (TD88137, Harlan Teklad, Indianapolis, IN), Apoe−/− FCG mice
(14–16 weeks old) were fed standard murine diet (Purina 5001; approximately 5%
fat, PMI Nutrition International, St. Louis, MO), and C57BL/6 J FCG mice
(14–16 weeks old) were fed an atherogenic diet (7.5% cocoa butter, 1.25% cho-
lesterol, 0.5% sodium cholate, TD90221, Harlan Teklad, Indianapolis, IN) for
16 weeks. All experiments were approved by the animal care and use committee at
the University of Kentucky and the University of California, Los Angeles and
conformed to the Guide for the Care and Use of Laboratory Animals published by
the NIH.

Ovariectomy (OVX). Female FCG mice on the Ldlr−/−, Apoe−/−, and C57BL/6 J
background at 8–12 weeks of age were ovariectomized under anesthesia with
isoflurane (3–4% for induction and 2% for maintenance). Ophthalmic ointment
(Puralube vet ointment, Dechra) was applied to the eyes of mice to prevent
dryness during surgery. Before surgery, mice were subcutaneously injected, and
after 12–16 h of the surgery, with 10 mg/kg flunixin for analgesia. Mice were shaved
in the abdominal region at both flanks and a depilatory cream (Nair, Inc.) applied
to the skin to remove hair, followed by sterilizing with povidone-iodine and
ethanol. At each flank, a 1 cm incision was made to allow for locating fallopian
tubes, the vascular supply to ovaries was occluded using a hemostat, and the ovaries
were removed. Residual ends of fallopian tubes were ligated by cauterization. The
incision was closed by suturing (5–0 black monofilament nylon suture, Ethilon
1668G) the peritoneum and clipping the skin with wound clips (Autoclip stapler),
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followed by sterilization of the site with povidone-iodine. Mice recovered on a
heating pad.

Orchiectomy. Male mice on the Ldlr−/−, Apoe−/−, and C57BL/6 J background at
8–12 weeks of age were orchiectomized as described previously42. Briefly, mice
were anesthetized (isoflurane, 2–3%) and given pre and postoperative analgesic
(flunixin, 2.5 mg/kg). Mice were shaved in the scrotum region and a depilatory
cream was applied to remove hair, followed by sterilizing with povidone-iodine/
ethanol three times. After a small incision to this region, vas deferens are collapsed
using a hemostat and the testes removed. The vasculature to the area is cauterized
using a high temperature fine-tip look cauterizer and the hemostat released. The
surgical site was closed by wound clips and treated with povidone-iodine. For
sham-surgeries, the testes are manipulated but left intact in anesthetized mice. Mice
were allowed to recover for 2 weeks after surgery and to allow sufficient time to
clear endogenous testicular hormones.

16 S rRNA sequencing and measures of microbiota diversity. Male and female
XX and XY FCG Ldlr−/− mice (n= 4–6 mice/group) were fed the Western diet for
4 weeks. Following a 6 h fast, mice were anesthetized for harvest of the cecum
contents. DNA was extracted from cecum contents using the PowerSoil 96-well
DNA Isolation Kit (MoBio, Carlsbad, CA, USA), and 16 s rRNA sequencing was
conducted by the Environmental Sample Preparation and Sequencing Facility
(ESPSF) at Argonne National Laboratory and analyzed by Quantitative Insights
Into Microbial Ecology (QIIME) as described previously43,44. To estimate alpha
diversity, Operational taxonomic units (OTUs, the count of unique OTUs found in
a given sample) were chosen using open reference OTU picking against the
Greengenes database and diversity indices including Chao1 (species richness),
Phylogenetic Diversity (PD whole tree), and Shannon (information entropy of the
observed OTU abundances, to account for both richness and evenness of species)
were calculated.

Measurements of plasma and serum components. Concentrations of total
serum cholesterol, triglyceride and testosterone were quantified in sera (blood
collected from cardiac puncture) using enzymatic assay kits (Total cholesterol;
FUJIFILM Wako Diagnostics USA, cat#999–02601 and Triglyceride; L-type TG
cat#994–02891 color A, cat# 990–02991 color B, and Alpco, cat#55-TESMS-E01;
respectively). Plasma lipoprotein cholesterol was determined by on-line, high
performance gel filtration chromatography using Infinity Cholesterol reagent
(Thermo).

Quantification of atherosclerosis. Atherosclerotic lesions in the aortic arch and
aortic sinus were quantified as described previously45,46. Briefly, cleaned aortas
were cut open longitudinally and mounted on a black wax background using pins
(Fine Science Tools, cat# 26002–20). Lesions, appearing as white tufts on a
translucent aortic wall background, were traced and the quantification of lesion
area is represented as a percent of the total intimal surface.

Quantification of whole body metabolism. Indirect calorimetry was performed
using a LabMaster system (TSE Systems Inc., St. Louis, MO). Mice were acclimated
to chambers for one week, then placed on recording platforms for five days. Data
from three 24-h periods were averaged and analyzed by ANCOVA plot vs. final
lean mass.

Measurement of liver VLDL secretion. Male and female FCG XX and XY
Ldlr−/− mice fed standard murine diet were fasted for 4 h, anesthetized with iso-
flurane (4% induction & 2–3% maintenance, inhalation), and injected retro-
orbitally with (1) [35S]Met/Cys (7 µCi/g body weight; Cat #: NEG772007MC,
Perkin Elmer, Waltham, MA) to radiolabel newly synthesized apoB and (2)
poloxamer 407 (1,000 mg/kg, i.p.; USP grade, BASF Corporation, Florham Park,
NJ) to block lipolysis. Artificial tears were applied to lubricate and protect eyes
following retro-orbital injection. Blood (2 drops, about 50–70 μl) was drawn from
the submandibular vein at 0 h (immediately prior to injection), 30 min, 1, 2, and 3
h post poloxamer injection. Blood was immediately centrifuged at 7,600 × g for 10
min at 4 °C. Plasma was collected and used to quantify TG concentration by
enzymatic assay (Wako, TG kit Cat# 461–09092 and 461–08992). TG secretion
rates were derived from the slope of the line of best fit of time vs. plasma TG
concentration (mg/dL) for each individual animal using GraphPad Prism 5. After
the last collection time point, mice were euthanized for blood collection via heart
puncture. To measure secretion of newly synthesized apolipoprotein B, plasma
samples (3 h, 10 µl) were immunoprecipitated with goat anti-human apolipopro-
tein B antiserum (5 μg; Cat # 20S-G2, Academy Bio-Medical Company, Houston,
TX) in buffer containing 1% Triton X-100, 0.1% SDS, 0.5% sodium deoxycholate,
0.2% bovine serum albumin, protease inhibitors, and phosphatase inhibitor for 18
h using rotation at 4 °C, and then 20 μl of protein G beads (50:50 slurry; GE
Healthcare Amersham) were added for an additional 2 h incubation. Beads were
collected by centrifugation (9,391 x× g for 10 s) and washed three times with lysis
buffer. Proteins were eluted from the beads by heating (70 °C for 10 min) in SDS-
PAGE sample buffer and fractionated by 4–15% gradient SDS-PAGE (Catalog #

567–1085, Biorad, Hercules, CA). Gels were dried and images were acquired by
autoradiography47,48.

Lipid measurement in intestine and liver. Lipidomic analysis was performed
using an Ultimate 3000 ultrahigh performance liquid chromatography system
coupled to a Thermo Q-Exactive Orbitrap mass spectrometer equipped with a
heated electrospray ion source (Thermo Scientific, CA, USA). Lipid extracts were
separated on a Waters ACQUITY BEH C8 column (2.1 × 100 mm, 1.7 μm) with
the temperature maintained at 40 °C. The flow rate was 250 μL/min, and the mobile
phases consisted of 60:40 water/acetonitrile (A), and 90:10 isopropanol/acetonitrile
(B), both containing 10 mM ammonium formate and 0.1% formic acid. The
samples were eluted with a linear gradient from 32 to 97% B over 25 min, main-
tained at 97% B for 4 min and re-equilibrated with 32% B for 6 min. The sample
injection volume was 5 μL. The mass spectrometer was operated in positive ioni-
zation mode, and the full scan and fragment spectra were collected at a resolution
of 70,000 and 17,500, respectively. Data analysis and lipid identification were
performed using the software Lipidsearch 4.1.30 (Thermo Fisher, CA, USA). Mass
labeled d13-PC (18:0) was used as an internal standard.

Quantification of dietary fat absorption. Male and female 12 week old FCG
Ldlr−/− mice were housed individually and fed a butterfat 5% sucrose polybehenate
diet for 4 days (ad libitum) and bedding were replaced daily. Fecal pellets (5–8/
animal) were collected during the third and fourth day of diet consumption and the
percentage of fat absorption was quantified by the University of Cincinnati
Metabolic Phenotyping Center by measuring the ratio of fat to behenate in the fecal
pellet as described previously28. Briefly, mice were housed individually and fed ad
libitum a diet containing 5% sucrose polybehenate for 3 days. Fecal pellets were
collected from the animal cage each day, and approximately 10 mg of randomly
sampled feces were saponified, methylated, and extracted with 0.5 N methanolic
sodium hydroxide (4 mls) in a heated water bath at 80 °C (5 min). After cooling,
BF3 in methanol (3 mls) was added to methylate the sample, which was heated in
the water bath (5 min). After cooling, a saturated solution of sodium chloride
(2 mls) and hexane (10 mls) were added, samples were vortexed (1 min) and
centrifuged to create two layers. The hexane fraction was transferred to sodium
sulfate (10 mg), and then the sample (1 µl) was analyzed by gas chromatography.
The absorption of fatty acids was calculated as the fraction of absorbed fat as
follows:= FdBd− FfBfFdBd, where Fd= sum of the masses of all dietary fatty acids,
Bd=mass of dietary behenic acid, Ff= sum of the mass of all fecal fatty acids, and
Bf=mass of fecal behenic acid.

Quantitative real-time PCR. Following 4 months of Western diet feeding, RNA
was isolated from the proximal portion of the intestines (duodenum) of gona-
dectomized XX and XY male and female Ldlr−/− mice (n= 4–5 mice/group) and
1 µg of RNA were reverse transcribed to complementary DNA using the qScriptTM

cDNA Supermix (Quanta Biosciences, cat# 95048–500). mRNA abundance was
measured by real-time PCR using SYBER Green FastMix (Quanta Biosciences, cat#
95071–012) on a BioRad quantitative real-time PCR thermocycler. Sequences for
primers for RT-PCR are in Supplementary Table 1. mRNA abundance was
quantified as a fold change using the ΔΔCt method and normalized to the average
of the 3 least variable housekeeping genes (beta-actin, glyceraldehyde 3-phosphate
dehydrogenase, and beta-2-microglobulin).

Liver microarray. DNA microarrays. Harvested liver RNA samples from GDX
male and female XX and XY FCG Ldlr−/− mice (n= 4–5 mice/group) were of
sufficient quality and did not differ significantly among treatment groups (Agilent
Bioanalyzer RNA Integrity Number [RIN]: 9.55 ± 0.05 – p > 0.29; two-way
ANOVA main effect of Sex p= 0.25; main effect of chromosome p= 0.13; inter-
action p= 0.424). Extracted RNA was labeled and hybridized to Affymetrix Mouse
Transcriptome Array 1.0 (MTA-1.0; one array per subject). Signal intensities were
calculated using the Robust Multi-array Average (RMA) algorithm49 at the tran-
script level in Genomics Suite (Partek, St Louis). Data were transferred to flat files
in Excel and associated with Gene Expression Omnibus annotations for this
microarray platform (accession code GSE119497). Pre-statistical filtering retained
unique, annotated probe sets with signal intensity ≥ 4.2 on at least 2 arrays in the
study. Filtered signal intensities were analyzed by two-way ANOVA to identify
significant main effects of genotype (XX vs. XY), phenotypic sex (Male vs Female),
as well as Interaction. The False Discovery Rate (FDR) procedure50, as modified by
Storey51 was used to control for the error of multiple testing (q ≤ 0.01). The
complete list of significant results is provided as supplemental information (Sup-
plementary Table 1). Functional categorization for each expression pattern was
determined with the prestatistically filtered gene list as a background using DAVID
bioinformatic tools52. Currently, DAVID does not support Affymetrix Mouse
Transcriptome Array 1.0 accession identification numbers, and therefore best
match accession identification numbers from Affymetrix Mouse 1.0 Exon arrays
were used, covering more than 90% of the filtered Affymetrix Mouse Tran-
scriptome Array data set.

Statistical analyses. Data are presented as mean ± standard error of the mean.
Data were analyzed using two-way ANOVA with between group factors of gonadal
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sex and sex chromosome complement. For some studies, we performed a three-way
ANOVA with between group factors of gonadal sex, sex chromosomes and surgery
or diet. If data were not normally distributed, they were transformed prior to
ANOVA and post hoc analysis. Kruskal–Wallis ANOVA on rank was performed
when data did not pass normality after transformations. Statistical analyses were
performed using SigmaPlot software (Version 13) and GraphPad Prism 5. A
multiple linear regression model was fit to log-transformed aortic sinus athero-
sclerotic lesion area with the following main effects in the model: Body weight,
Cholesterol, Gonadal Fat, Sex, Chromosome, Group, and Sex Organs. Significance
was defined as P < 0.05.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data are available from the corresponding author upon reasonable request. Raw
microarray data (Fig. 4) are available through the Gene Expression Omnibus under the
accession code GSE119497. The source data underlying Figs. 1a, 2a-d, 6d, h and 7c and
Supplementary Figs. 1a and 5d are provided as a Source Data file.
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