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TWISTOR LINES IN THE PERIOD DOMAIN OF COMPLEX TORI

NIKOLAY BUSKIN AND ELHAM IZADI

Abstract. As in the case of irreducible holomorphic symplectic manifolds, the pe-
riod domain Compl of compact complex tori of even dimension 2n contains twistor
lines. These are special 2-spheres parametrizing complex tori whose complex struc-
tures arise from a given quaternionic structure. In analogy with the case of irre-
ducible holomorphic symplectic manifolds, we show that the periods of any two
complex tori can be joined by a generic chain of twistor lines. Furthermore, we
show that twistor lines are holomorphic submanifolds of Compl, of degree 2 in the
Plücker embedding of Compl.
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Introduction

Let M be a complex manifold of dimension 2n ≥ 2. Then M is called hyperkähler
with respect to a Riemannian metric g (see [6, p. 548]) if there exist covariantly
constant complex structures I, J and K which are isometries of the tangent bundle
TM with respect to g, satisfying the quaternionic relations

I2 = J2 = K2 = −1, IJ = −JI = K.

We call the ordered triple (I, J,K) a hyperkähler structure on M compatible with
g. A hyperkähler structure (I, J,K) gives rise to a sphere S2 of complex structures
on M :

S2 = {aI + bJ + cK|a2 + b2 + c2 = 1}.
We call the family M = {(M,λ)|λ ∈ S2} → S2 a twistor family over the twistor

sphere S2. The family M can be endowed with a complex structure, so that it
becomes a complex manifold and the fiber Mλ is biholomorphic to the complex
manifold (M,λ), see [6, p. 554].

The well known examples of compact hyperkähler manifolds are even-dimensional
complex tori and irreducible holomorphic symplectic manifolds (IHS manifolds). We
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2 NIKOLAY BUSKIN AND ELHAM IZADI

recall that an IHS manifold is a simply connected compact Kähler manifold M with
H0(M,Ω2

M) generated by an everywhere non-degenerate holomorphic 2-form σ.
Examples of IHS manifolds includeK3 surfaces and, more generally, Hilbert schemes

of points on K3 surfaces. For these examples there exist well-defined period domains,
carrying the structure of a complex manifold, and every twistor familyM determines
an embedding of the base S2 into the corresponding period domain as a 1-dimensional
complex submanifold. The image of such an embedding is called a twistor line.

It is known that in the period domain of an IHS manifold any two periods can
be connected by a path of twistor lines, meaning an ordered sequence S1, . . . , Sm of
twistor spheres such that Si ∩ Si+1 is non-empty if 1 ≤ i ≤ m − 1 (see [2] or [4]).
Moreover, such a path can be chosen generic, that is, the manifolds corresponding to
the periods at intersections of successive lines in the path have trivial Néron Severi
groups. Here we prove a similar result for the period domain Compl of complex tori
of dimension 2n.

Theorem 1. Any twistor sphere on a complex torus embeds into Compl as a complex
1-dimensional submanifold. In Compl any two periods can be connected by a generic
path of twistor lines.

For the case of IHS manifolds the proof of this fact relies on the realization of the
period domain as the grassmanian of oriented positive real 2-planes in the second
cohomology, where positivity is with respect to the Beauville-Bogomolov bilinear
form, again see [2] or [4]. This bilinear form provides a very convenient tool for
investigating the local topology of this period domain.

For complex tori, however, we do not have such a realization of their period domain
and cannot use a similar argument. Here, instead, we need to use the (less refined)
fact that the period domain of complex tori is a homogeneous space (which, certainly,
the period domain of an IHS manifold is, as well). Its homogeneous nature allows
us to proceed with proving the twistor path connectivity in steps that are more or
less parallel to the steps of the proof of the twistor path connectivity for the period
domains of IHS manifolds. Let A be a complex torus of dimension 2n. The period
domain Compl can be considered as an open subset of the Grassmanian G(2n, 4n),
whose points are 2n-dimensional complex planes, realizing the real weight 1 Hodge
structures on the complex 4n-dimensional vector space T0,RA ⊗ C. The open subset
consists of those 2n-planes in T0,RA⊗C that do not intersect the real subspace VR :=
T0,RA ⊂ T0,RA ⊗ C. Explicitly, a complex structure I : VR → VR corresponds to the
point (1− iI)VR ∈ G(2n, 4n) where 1 denotes the identity map.

Remark 2. There is a relation between twistor path connectivity and rational con-
nectedness, that is, the connectedness of points of a complex manifold by chains of
rational curves (for the latter see, for example, [7]). The grassmanian G(2n, 4n) being

a rational variety (G(2n, 4n)
∼
99K P4n2

), is certainly rationally connected. However,
rational connectedness is a weaker property than twistor path connectivity. Indeed,
the variety of lines in P4n2

, passing through a fixed point, has complex dimension
4n2 − 1 (and the dimension of the variety of rational curves of degree d > 1 in P4n2

,
passing through a fixed point, is even larger), thus its real dimension is 8n2 − 2. On
the other hand, our dimension count in Corollary 1.4 of the space of all twistor lines,
passing through a fixed point in the period domain, is 4n2 − 1. Thus, through a
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given point, there are half as many twistor directions than general rational curves,
and the problem of twistor path connectivity may be roughly considered as a “sub-
Riemannian” version of rational connectedness.

The plan of the paper is as follows.
In Section 1 we describe our basic set-up and show that the twistor spheres S2 ⊂

Compl are complex submanifolds (Corollary 1.7). We define the union CI of all
twistor spheres passing through a given period I and show that the stabilizer group
GI of I acts transitively on the set of twistor spheres containing I. The sets CI will
serve as the main tool in the proof of twistor path connectivity.

In Section 2 we provide an argument, illustrated by a picture, that the set of periods
reachable from a given one I by means of all possible triples of consecutive twistor
spheres contains an open neighborhood of the initial period. Then, the connectedness
of the period domain allows us to conclude that any two periods can be connected
by a path of twistor lines. The three spheres argument is essentially due to the
transversality formulated in its most general form in Proposition 2.5. We also show
that CI is a real analytic subset of Compl.

In Section 3 we prove the generic connectivity part of Theorem 1. The idea of the
proof is to show that the space of triples of consecutive twistor spheres connecting
a fixed pair of periods is not the union of of its subspaces for which the first or,
respectively, the second, of the two joint points belongs to the locus of tori with
nontrivial Néron-Severi group in the period domain. Again, the transversality, stated
in Proposition 2.5, constitutes the main tool for proving generic connectivity.

In Section 4 we prove that the degree of twistor lines in G(2n, 4n) with respect to
the Plücker embedding is 2. Here we use the fact that the group G := GL+(VR) acts
transitively on the set of all twistor lines together with an explicit computation on
an explicit example.

In Section 5 we gather the calculations needed in the example of Section 4.
The authors are indebted to Eyal Markman for suggesting the problem of twistor

path connectivity of the period domain and many useful comments that helped im-
prove the exposition.

1. The space of twistor spheres

1.1. Let A be a complex torus of complex dimension 2n. Denote by VR the real
tangent space TR,0A and by V the complex tangent space TC,0A ⊂ TR,0A⊗C, so that
dimR VR = 2 dimC V = 4n. Let I : VR → VR be the operator of the complex structure
on VR induced by scalar multiplication by i on V . Let G := GL+(VR) ∼= GL+

4n(R) be
the group of orientation-preserving automorphisms of VR, which acts via conjugation
on the set of complex structures on VR: g · I = gI := gIg−1 for g ∈ G. This
action is clearly transitive. We consider the set Compl of all complex structures
on VR as the orbit of I: Compl = G · I, diffeomorphic to the homogeneous space
G/GL(V ) ∼= GL+

4n(R)/GL2n(C). It carries the structure of a complex manifold, see
[3, p. 31] and Proposition 1.6. Assume that, in addition to I, there is a complex
structure J on VR anticommuting with I. Then I and J determine a twistor sphere

S(I, J,K) := {aI + bJ + cK|a2 + b2 + c2 = 1},
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where K = IJ . In general, for two complex structures I1, I2, not necessarily anticom-
muting, such that I1 6= ±I2, and such that they are contained in the same twistor
sphere S, we will also denote this sphere by S(I1, I2). Our notation is justifed by the
following lemma.

Lemma 1.1. Every twistor sphere S is uniquely determined by any pair of non-
proportional complex structures I1, I2 ∈ S.

Proof. By definition, S = {aI + bJ + cK|a2 + b2 + c2 = 1} for some I, J and K =
IJ satisfying the quaternionic relations. Let the 3-dimensional real vector space
〈I, J,K〉R ⊂ EndVR be equipped with the inner product (·, ·) defined by requiring
the basis I, J,K to be orthonormal. Let H := H(I, J) = 〈Id, I, J,K〉R ⊂ EndVR be
the subalgebra of quaternions generated by I and J . For arbitrary vectors u, v ∈
〈I, J,K〉R ⊂ H we have the equality in H, u · v = −(u, v)Id + u × v where · denotes
the product in H and u×v is the ordinary cross product of vectors in R3 = 〈I, J,K〉R.
Note that u and v are orthogonal if and only if u and v anticommute, and the
vectors of length 1 in 〈I, J,K〉R are precisely those belonging to S. So our inner
product does not depend on the choice of the quaternionic basis I, J,K spanning the
sphere S. The complex structures I1, I2 determine a 2-plane 〈I1, I2〉R in EndVR. The
intersection of this 2-plane with the set of all complex structures is the set of vectors
of length 1 for our inner product, hence equal to the great circle S1 = S∩〈I1, I2〉R and
independent of the choice of twistor sphere S containing I1, I2. Choose u, v ∈ S to be
an orthonormal basis of our plane 〈I1, I2〉R or, equivalently, a pair of anticommuting
complex structures in S1. Then u·v = u×v is again a point in S whose corresponding
vector is orthogonal to our 2-plane (which is equivalent to u · v being a complex
structure anticommuting with I1, I2). Thus S = {au + bv + c u · v|a2 + b2 + c2 = 1}
which shows that the set S is uniquely determined by u, v (and u · v) and hence it is
uniquely determined by I1 and I2. �

1.2. By the definition of Compl, the group G acts transitively on the space of com-
plex structures Compl on A:

g ∈ G : J 7→ gJ = gJg−1.

In particular, G acts on the set of all twistor spheres S(I, J):

g · S(I, J) = S( gI, gJ).

Consider the subgroup GI of G fixing I via the above action: GI = GL(VR, I) ∼=
GL(V ), so that Compl ∼= G/GI . For g ∈ GI we have g · S(I, J) = S(I, gJ). We have

Proposition 1.2. The group GI acts transitively on the set NI of complex structures
anticommuting with I.

Proof. Fix a hermitian form h on V (determining a Kähler class in H1,1(A)) and a
global holomorphic form σ ∈ H2,0(A). Any operator J : VR → VR defined by the
equation h(x, Jy) = Reσ(x, y) is non-degenerate, skew-symmetric with respect to h
and anticommutes with I. As h(·, ·) is positive definite, for such J , its square J2 is
a diagonalizable operator with negative real eigenvalues, such that the vector space
VR is an h-orhogonal sum of the eigenspaces Vλ for J2: VR =

⊕⊥ Vλ. Moreover,
as J2 commutes with I, we have that the Vλ are I-invariant. It follows that every
Vλ is an orthogonal sum of subspaces of the form 〈v, Iv, Jv,Kv〉, K = IJ, v 6= 0.
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As h(Jx, Jy) = Reσ(Jx, y) = −Reσ(y, Jx) = −h(y, J2x) = h(−J2x, y), we see
that J2 = −Id if and only if J is an isometry with respect to h. Let us replace
J on each eigenspace Vλ by 1√

−λJ . Denoting this operator again by J we obtain

J2 = −Id, moreover the vectors v, Iv, Jv,Kv for v ∈ Vλ all have equal h-norm and
form an orthogonal basis of the subspace they span. This tells us that Vλ, and hence
the whole VR, decomposes into an orthogonal sum of subspaces 〈v, Iv, Jv,Kv〉 such
that the union of the bases of these subspaces forms an orthonormal basis of VR.
The matrix of h on this basis is the identity matrix, and the matrix of J has the
block-diagonal form with the following 4×4 blocks on the diagonal

0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .

Summarizing the above observations, we see that our initial choice of a Kähler
class h ∈ H1,1(A) and nondegenerate σ ∈ H2,0(A) defines a complex structure J
which anticommutes with I, and, moreover, gives, in a non-unique way, a choice of
an h−orthonormal basis where J has the canonical form above. The group GI

∼=
GL(V ) < GL+(VR) = GL+

4n(R) acts transitively on the set of such bases.
Conversely, given a complex structure I, any operator J : VR → VR which anti-

commutes with I and whose square is −Id (but which is not a priori defined as
a skew-symmetric operator with respect to a form on VR induced by a hermitian
form on V ), originates, via a procedure similar to the one described above, from an
appropriate Kähler class h and a non-degenerate holomorphic 2-form σ. �

1.3. Therefore, given a complex structure J ∈ NI , NI = GI · J ∼= GI/GI,J is the
orbit of J under GI , where GI,J is the stabilizer group of J in GI . Since GI,J is
the subgroup of elements of GI = GL(V ) commuting with J , that is, preserving the
quaternionic structure on VR determined by I and J , we have GI,J

∼= GL(V,H) which
we will also denote by GH. So NI

∼= GL(V )/GL(V,H) and we deduce

Corollary 1.3. The set NI is a real submanifold of Compl of dimension 4n2.

Proof. The dimension of the orbit as a complex manifold is dimC GL(V )−dimC GL(V,H) =
(2n)2− 2n2 = 2n2 (the complex dimension of the space of quaternionic n×n matrices
is 2n2). The real dimension is thus equal to 4n2. �

1.4. Let S = S(I, J) for J ∈ NI be a twistor sphere. Define GI,S ⊂ GI to be the
stabilizer of S as a set, i.e., the set of elements g of GI such that g · S ⊂ S. For
any g ∈ GI,S, the complex structure gJ ∈ S also anticommutes with I, so gJ is of the

form aJ + bK, a2 + b2 = 1. Setting a = cos t, b = sin t we have aJ + bK = e
tI
2 Je−

tI
2 ,

where esI = cos s 1 + sin s I ∈ GI realizes, via the adjoint action, the rotations of S
around {±I}. Conversely, if g ∈ GI and gJ ∈ S, then g ∈ GI,S. The set of g ∈ GI,S

such that gJ = J is the quaternionic subgroup GI,J = GH ⊂ GI,S. Explicitly, we have
GI,S = 〈etI , t ∈ R〉 × GH, where 〈etI , t ∈ R〉 ∼= S1 (which is a subgroup of the center
of GI). This tells us, in particular, that dimR GI,S = dimR GH + 1 = 4n2 + 1.

Let MI be the set of all twistor spheres in Compl containing I. The natural map
NI → MI identifies two complex structures J1 and J2 whenever they belong to the
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same twistor sphere through I, i.e., S(I, J1) = S(I, J2). More precisely, they belong
to the great circle in S := S(I, J1) consisting of elements anticommuting with I.

Hence, for the S1-action J ∈ NI 7→ etIJ = e
tI
2 Je−

tI
2 on NI defined above, we have

NI/S
1 = MI . Therefore Corollary 1.3 immediately implies

Corollary 1.4. The set MI is a real manifold of dimension 4n2 − 1.

1.5. The twistor cone of I. Define the set CI :=
⋃
S∈MI

S ⊂ Compl as the union
of all twistor spheres containing I. All spheres in this union contain the complex
structures I and −I. We will sometimes refer to the set CI as a cone. Proposition
1.2 immediately implies

Corollary 1.5. The group GI acts transitively on MI
∼= GI/GI,S so that CI =⋃

g∈GI
g · S(I, J).

We will give an explicit local parametrization of CI in the next section and prove
that the cone CI is a real-analytic subset of Compl of dimension 4n2 + 1 (Proposition
2.6).

1.6. We now describe the complex structure on the tangent bundle of the orbit
Compl = G · I. Then we will see that the tangent bundle TS2 of an arbitrary twistor
sphere S2 ⊂ Compl is a subbundle of the restricted tangent bundle TCompl|S2 ,
invariant under the complex structure of TCompl|S2 . This will imply that S2 is a
complex submanifold in Compl.

Proposition 1.6. The manifold Compl is a complex manifold. Its complex structure
lI is given by left multiplication by I on TICompl ⊂ End(VR).

Proof. In order to prove the theorem we will use the classical period matrix realiza-
tions of open charts of the period domain. The charts carry the (compatible) complex
structures, induced from the complex affine space containing the period matrices, thus
giving a globally defined complex structure on the period domain. We will show that
the complex structure lI : TICompl → TICompl in the statement is induced by this
complex structure.

The period matrix realization of the period domain of marked complex tori uses
the complex space V with a fixed basis e1, . . . , e2n so that an arbitrary full rank lattice
Γ ⊂ VR, determining the complex torus A = VR/Γ, can be written in terms of this
basis of V ,

〈γ1, . . . , γ2n, . . . , γ4n〉 = (e1, . . . , e2n)(Z1, Z2).

The complex affine space Mat2n×4n(C) ∼= C8n2
of 2n × 4n complex matrices Z =

(Z1, Z2) carries a natural complex structure, given by multiplication by i. The affine
chart of matrices (Z1, Z2), subject to the open condition of the corresponding Γ
having full rank, holomorphically embeds into G(2n, 4n), where the embedding sends
(Z1, Z2) to the 2n-dimensional subspace of VR ⊗ C spanned by the rows of (Z1, Z2).
There is a mapping f from an open subspace of Mat2n×4n(C) to Compl, namely, the
matrix Z = (Z1, Z2), whose columns generate a full rank lattice Γ in VR, uniquely
determines the complex structure f(Z) = IZ : VR → VR of the torus A ∼= VR/Γ. Such
IZ is induced by multiplication by i on V , that is, the matrix of IZ in the basis
γ1, . . . , γ2n, . . . , γ4n of Γ, denoted also by IZ , satisfies

(e1, . . . , e2n)ZIZ = (e1, . . . , e2n)iZ.
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This can be written in short as the relation

Zf(Z) = iZ.

The mapping f (certainly, not bijective) is a submersion onto Compl. We want to use
the differential df |Z to induce the complex structure on Tf(Z)Compl. If we take any
small tangent vector X ∈ TZMat2n×4n(C) then, writing f(Z+X) = IZ+df |Z(X)+. . .
and f(Z + iX) = IZ + df |Z(iX) + . . . , we have that the equalities

(Z +X)f(Z +X) = i(Z +X), (Z + iX)f(Z + iX) = i(Z + iX)

imply

Zdf(X) +XIZ = iX, Zdf(iX) + iXIZ = −X.

Multiplying the first of these equalities by i and comparing to the second, we obtain
iZdf(X) = Zdf(iX). For Z in the domain of f , this equation has a unique solution
df(iX) = IZdf(X), which is precisely the statement of the proposition. �

Corollary 1.7. The twistor spheres S2 ⊂ Compl are complex submanifolds.

Proof. The proof is based on the simple observation that the tangent space of S2 =
S(I, J) at the point I, for I, J,K = IJ satisfying the quaternionic identities, is the
2-plane 〈J,K〉R ⊂ TICompl (this can be shown using the parametrization of S2 by
〈esJetKI | s, t ∈ R〉 as in Paragraph 1.4) and this plane is obviously invariant under
left multiplication by I. Thus, TS2 is a complex subbundle of TCompl|S2 and thus
S2 ⊂ Compl is a complex submanifold. �

2. Twistor path connectivity of Compl

The main result of this section is Theorem 2.3. Before proving it we need to intro-
duce a certain mapping and prove an important technical result about it (Proposition
2.1).

2.1. Let I, J,K be a triple of complex structures belonging to a twistor sphere S.
Consider the smooth mapping

Φ: GJ ×GK −→ Compl,
(g1, g2) 7−→ g1g2I,

where, as before, the action on Compl is by conjugation: g · I = gI = gIg−1. The
mapping Φ clearly sends GH×GH to I, so that its differential d(e,e)Φ factors through

d̃(e,e)Φ : TeGJ/TeGH ⊕ TeGK/TeGH → TICompl.

Proposition 2.1. Suppose I, J,K is a quaternionic triple. The mapping

d̃(e,e)Φ : TeGJ/TeGH ⊕ TeGK/TeGH → TICompl

is injective. Hence, since the two spaces have the same dimension, it is an isomor-
phism.
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Proof. By the definition of d̃(e,e)Φ, its restrictions to the above direct summands are
injective. Let us show that it is injective on the direct sum. Consider X ∈ TeGJ , Y ∈
TeGK and the vector d̃(e,e)Φ(X + TeGH, Y + TeGH), which is

d(e,e)Φ(X + Y ) =
d

dt

∣∣∣∣
t=0

(etXetY · I) = (X + Y )I − I(X + Y ) ∈ TICompl.

Assume that this vector is zero, that is, X + Y commutes with I:

(1) I(X + Y ) = (X + Y )I.

Then the conjugate (X + Y )J = J−1(X + Y )J = XJ + Y J = X − JY J must also
commute with I. Using that Y commutes with K we obtain

X − JY J = X − JY KI = X − JKY I = X − IY I.
The commutation with I is expressed now by I(X − IY I) = (X − IY I)I, or

IX + Y I = XI + IY,

which gives
I(X − Y ) = (X − Y )I.

Adding the last equality to (1) side by side gives that XI = IX, hence Y I = IY ,

which implies X, Y ∈ TeGH. This proves the required injectivity of d̃(e,e)Φ. �

Corollary 2.2. Suppose I, J,K is a quaternionic triple. The mapping Φ is a sub-
mersion at (e, e) ∈ GJ ×GK, that is

d(e,e)Φ(TeGJ ⊕ TeGK) = TICompl ∼= R8n2

.

Proof. As dimR TeGJ/TeGH = dimR TeGK/TeGH = 4n2, the statement that Φ is a

submersion follows from the fact that d(e,e)Φ factors through d̃(e,e)Φ and the fact that

the mapping d̃(e,e)Φ : TeGJ/TeGH ⊕ TeGK/TeGH → TICompl is an isomorphism by
Proposition 2.1. �

Theorem 2.3. Given a complex structure I ∈ End(VR), there is a neighborhood of
I in the space of complex structures on VR such that, for any complex structure I1 in
this neighborhood, there is a twistor path consisting of three spheres joining I to I1.
Consequently, the space of complex structures Compl is twistor path connected.

Proof. Choose a complex structure J , anticommuting with I, and consider the sphere
S = S(J, I) and the cone CJ . By Lemma 1.1, the complex structures K = IJ and
I span the sphere S = S(K, I) = S(J, I). We can then form the cone CK whose
intersection with CJ contains S. See Picture 1 below where the cones CJ and CK are
depicted by transversal planes and the sphere S lying in their intersection is depicted
by a line.

We first show that the images of CK under the action of GJ (“rotation of CK
around J”) sweep out an open neighborhood of I in Compl. Since Φ is a submersion
by Corollary 2.2, there exist neighborhoods Ue,J ⊂ GJ and Ue,K ⊂ GK of e such that
the set Φ(Ue,J × Ue,K) contains an open neighborhood of I. By definition, the cone
CK contains the orbit GK · I. Hence the union

⋃
g∈GJ

gCK contains the image of Φ
and consequently it contains an open neighborhood of I.
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Now the three twistor spheres connecting I to an arbitrary point I1 in this neigh-
borhood are found as illustrated in the following picture.

J

I

K

I1

CJ

gCK , g ∈ GJ

q

-

)CK

gK

1st
2nd

3rd

r

r

r
rr - r

r

Picture 1.

The connectedness of the space Compl allows us to conclude, as in [4, Prop. 3.7]
that Compl is twistor path connected. �

2.2. Another immediate consequence of the injectivity of d̃(e,e)Φ proved in Proposi-
tion 2.1 is the following

Corollary 2.4. For a quaternionic triple I, J,K, the triple intersection of the sub-
manifolds GI/GH, GJ/GH and GK/GH of the homogeneous space G/GH at eGH is
transversal.

The following generalization of this transversality is one of the main ingredients of
the proof of connectivity by generic twistor paths in Section 3.

Proposition 2.5. Let I1, I2, I3 be complex structures belonging to the same twistor
sphere S. The submanifolds GI1/GH, GI2/GH, GI3/GH in G/GH intersect transversally
(as a triple) if and only if I1, I2, I3 are linearly independent as vectors in EndVR.

Proof. Choose anticommuting complex structures I, J in S, and set K = IJ . By
Corollary 2.4,

(2) TeG/TeGH = VI ⊕ VJ ⊕ VK ,
where we set VI := TeGI/TeGH, VJ := TeGJ/TeGH, VK := TeGK/TeGH.

We shall prove that TeG/TeGH also decomposes into the direct sum of its subspaces
Vi := TeGIi/TeGH, i = 1, 2, 3. Put Ii = aiI + biJ + ciK, i = 1, 2, 3. Assume, on the
contrary, that for certain vectors X ∈ V1, Y ∈ V2 and Z ∈ V3 we have X+Y +Z = 0.
Let X := XI +XJ +XK be the decomposition of X into the sum of its components
in the respective subspaces of (2), and do similarly for Y and Z. Then for X the
commutation relation [X, I1] = 0 can be written as

a1[XJ +XK , I] + b1[XI +XK , J ] + c1[XI +XJ , K] = 0.
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Note that in the above expression, the term [XJ , I], for example, anticommutes with
both I, J , hence commutes with K = IJ , and an analogous commutation relation
holds for the other terms as well. Hence we can decompose the expression on the left
side of the above equality with respect to (2):

(b1[XK , J ] + c1[XJ , K]) + (a1[XK , I] + c1[XI , K]) + (a1[XJ , I] + b1[XI , J ]) = 0.

From here we conclude that b1[XK , J ] + c1[XJ , K] = 0, a1[XK , I] + c1[XI , K] = 0 and
a1[XJ , I] + b1[XI , J ] = 0. Perturbing the quaternionic triple I, J,K, we may assume
that all ai, i = 1, 2, 3, are nonzero. Then we can use the last two equalities to express

(3) [XJ , I] = − b1

a1

[XI , J ], [XK , I] = − c1

a1

[XI , K].

Note that FJ := [·, J ] : VI → VK , FK := [·, K] : VI → VJ and FI := [·, I] : VJ → VK are
isomorphisms of the respective vector spaces. Then, using (3), we can write

XJ = − b1

a1

F−1
I ◦ FJ(XI), XK = − c1

a1

F−1
I ◦ FK(XI),

so that

X = XI +

(
− b1

a1

F−1
I ◦ FJ(XI)

)
+

(
− c1

a1

F−1
I ◦ FK(XI)

)
.

Using a2, a3 6= 0, we obtain similar expressions for Y and Z. Since FI , FJ , FK are
isomorphisms, the equality X + Y + Z = 0 can now be written as 1 1 1

− b1
a1
− b2
a2
− b3
a3

− c1
a1
− c2
a2
− c3
a3

 XI

YI
ZI

 =

 0
0
0

 .

This has a nontrivial solution if and only if the columns of the matrix, i.e., I1, I2, I3,
are linearly dependent. �

2.3. We can now prove that the cone CI has a real analytic structure. Define the
incidence correspondence

SI := {(S, J) | J ∈ S} ⊂MI × Compl.
Then SI is an S2-bundle over MI and CI is the image of SI by the projection to
Compl:

NI
� � //

!!

SI

pr1
��

pr2 // CI ⊂ Compl

MI .

The projection SI →MI has two sections σ+ and σ−, given by +I and−I respectively.

Proposition 2.6. The map pr2 : SI → CI is a diffeomorphism away from the images
of σ± and contracts these images to points. Therefore the cone CI is a real-analytic
subset of Compl of dimension 4n2 + 1, smooth away from the points ±I.

Proof. First note that pr2 clearly contracts the images of σ±. Also, it is injective away
from ±I by Lemma 1.1. To see that it is also an immersion away from ±I, let J be
in CI \ {±I}, not necessarily anticommuting with I. Define the following mapping

Φ: (TeGI/TeGH)× R→ CI ,
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(X, t) 7→ eXetKJe−tKe−X ,

where K ∈ S(I, J) \ S1 for S1 = 〈I, J〉R ∩ S(I, J). Then the restriction of Φ on a
small enough neighborhood of (0, 0) ∈ (TeGI/TeGH)×R defines a parametrization of
CI around J .

Here the subgroup etK , t ∈ R, rotates the sphere S = S(I, J) around the axis {±K}
and, together with the rotation subgroup etI ⊂ GI,S ⊂ GI , sweeps out in S, via the
above action, a neighborhood of any point of S other than ±I,±K. Proposition 2.5
provides that K may be chosen arbitrarily in S \ S1, which in turn gives us that
CI is a manifold, smooth away from ±I, of dimension dimR(GI/GI,S) + dimR S =
(4n2 − 1) + 2 = 4n2 + 1. The fact that the points ±I are indeed singular points of
the cone CI is easy to prove. �

We can now use Proposition 2.1 to also prove

Corollary 2.7. For a quaternionic triple I, J,K, the cones CJ and CK intersect
transversely at ±I in S := S(I, J) ⊂ CK ∩ CJ and hence, by continuity, at all points
in some neighborhood of ±I.

Proof. The transversality of intersection at I ∈ S means that the intersection of
the quotient subspaces WJ = TICJ/TIS and WK = TICK/TIS in TICompl/TIS is
zero. The subspaces WJ and WK are isomorphic images, under the quotient map-
ping TICompl → TICompl/TIS, of the subspaces TeGJ/TeGJ,S and TeGK/TeGK,S

respectively, in the (non-canonical) decompositions of the transversal subspaces

d̃(e,e)Φ(TeGJ) ∼= TeGJ/TeGJ,S ⊕ TeGJ,S/TeGH

and

d̃(e,e)Φ(TeGK) ∼= TeGK/TeGK,S ⊕ TeGK,S/TeGH.

Thus, the transversality of WJ and WK follows. �

3. Connectivity by generic twistor paths

Recall that a period in Compl is generic if the corresponding complex torus has
trivial Néron Severi group. A twistor path in Compl is called generic, if its successive
twistor spheres intersect at generic periods. In this section we prove the connectivity
part of Theorem 1, i.e.,

Proposition 3.1. Any two periods in the period domain Compl can be connected by
a generic twistor path.

In this section, with the exception of Lemma 3.4 and its proof, we do not assume
that the complex structures I, J,K (with or without subscripts) anticommute.

3.1. Outline of the proof. Define T to be the closure, in Compl×Compl×Compl,
of the set of triples (I, J,K) that are linearly independent and belong to the same
twistor sphere. Denote by

pr1 : Compl × Compl × Compl −→ Compl,
pr23 : Compl × Compl × Compl −→ Compl × Compl
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the respective projections. For (I1, J1, K1) ∈ T , we defined, in Paragraph 2.1, the
mapping ΦI1,J1,K1 :

ΦI1,J1,K1 : GJ1 ×GK1 −→ Compl,
(g1, g2) 7−→ g1g2I1g

−1
2 g−1

1 = g1g2I1.

Proposition 2.5 tells us that, when I1, J1, K1 are linearly independent, ΦI1,J1,K1 is
a submersion near (e, e) ∈ GJ1 × GK1 . In other words, there is a neighborhood
Ue,G ⊂ G = GL+(VR) of e ∈ G such that the map ΦI1,J1,K1 is submersive on Ue,J1 ×
Ue,K1 , where Ue,J1 := Ue,G ∩ GJ1 and Ue,K1 := Ue,G ∩ GK1 (and the image is, thus, a
neighborhood of I1 in Compl).

Let I2 be an arbitrary point in the image of ΦI1,J1,K1 and let (g1, g2) ∈ Ue,J1 ×Ue,K1

be such that I2 = g1g2I1. With this notation, the three twistor spheres connecting I1

to I2 are: S1 := S(I1, J1, K1), S := g1S1 = S(g1I1,
g1J1 = J1,

g1K1) and S2 := g1g2S1 =
S(I2,

g1g2J1,
g1g2K1 = g1K1), with the joint points J1 and g1K.

We are going to show that, for a fixed I1, there is a neighborhood UI1 ⊂ Compl of
I1 such that for any I2 ∈ UI1 , we can choose a generic J ∈ CI , a K ∈ S(I, J) and find
(g1, g2) ∈ Φ−1

I,J,K(I1) as above such that g1g2K is also generic.
We begin by proving, in Lemma 3.2, that the set of non-generic periods in CI1 is a

countable union of proper analytic subsets, i.e., J can be chosen generic.
Next, for I2 close to I1, and with S1, S, S2 as above, connecting I1 to I2, the initial

sphere S1 together with the choice of J,K ∈ S1, uniquely determines the terminal
sphere S2 together with the pair of periods g1g2J, g1g2K.

To justify this uniqueness we first need to control the fibers of the maps ΦI,J,K

in a neighborhood of (I1, J1, K1), which we do in Lemma 3.5. This allows us to
introduce, in Paragraphs 3.4 and 3.7, two maps ΨI1→I2 and ΨI2→I1 which, roughly,
switch (S1, J,K) and (S2,

g1g2J, g1g2K).
We then show in Lemma 3.9, after shrinking our various domains, that the com-

position of ΨI1→I2 and ΨI2→I1 is the identity. Corollary 3.10 then shows that this
implies the irreducibility of the set of triples (S1, S, S2) joining I1 and I2 mentioned
in the introduction, which gives that J and g1g2K can both be chosen generic.

Thus the chain of three twistor spheres connecting I1 to I2 for every I2 in some
neighborhood of I1 can be chosen in such a way that the periods at the intersections
are generic. For arbitrary I1 and I2, we connect them by a path in Compl consisting
of generic triple subchains.

3.2. Let us first show that there are generic periods J ∈ CI . Dimension-wise this
is not trivial because dimR CI = 4n2 + 1, whereas the real dimension of the locus of,
for example, abelian varieties in Compl is 4n2 + 2n. For an alternating form Ω on VR

we denote by ComplΩ the locus of periods in Compl at which Ω represents a class of
Hodge (1,1)-type, that is

ComplΩ = {I ∈ Compl |Ω(I·, I·) = Ω(·, ·)}.

If we fix a basis of VR and switch to matrix descriptions, then the condition Ω(I·, I·) =
Ω(·, ·) simply becomes tI ΩI = Ω, where I and Ω also denote the matrices of the
corresponding complex structure and alternating form. The locus of marked complex
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tori with nontrivial Néron Severi group is

LNS =
⋃

06=[Ω]∈H2(A,Q)

ComplΩ,

where A is a fixed complex torus.

Lemma 3.2. For every I ∈ Compl the set of non-generic periods in CI , that is
CI ∩LNS, is a countable union of closed subsets of CI none of which contains an open
neighborhood (in CI) of any of its points.

The proof follows from the following lemmas.

Lemma 3.3. For any alternating form Ω and any twistor sphere S, the intersection
S ∩ ComplΩ is either finite or all of S.

Lemma 3.4. For any J anti-commuting with I and any nonzero alternating form Ω
on VR there is a neighborhood UΩ ⊂ CI of J such that the locus ComplΩ intersects
UΩ along a submanifold of positive codimension.

Let us assume Lemmas 3.3 and 3.4 for a moment and prove Lemma 3.2.

Proof of Lemma 3.2. Assume that some ComplΩ in LNS contains an open neigh-
borhood U ⊂ CI of a point I1 ∈ CI . This implies that, for every twistor sphere
S = S(I, ·) ⊂ CI intersecting U , the intersection S ∩ U contains a non-empty open
open subset of S. Hence, by Lemma 3.3, all of the periods of such S are contained
in ComplΩ, including the ones anticommuting with I. This holds for all spheres S
intersecting U , that is, for all g ∈ Ue ⊂ GI , where Ue is a neighborhood of e in GI ,
we have that S(I, gJ)) is contained in ComplΩ. Thus we have a contradiction with
the existence of UΩ as in Lemma 3.4. �

Proof of Lemma 3.3. Follows from the fact that ComplΩ and S (Corollary 1.7) are
complex analytic subsets of Compl. �

Proof of Lemma 3.4. If J /∈ ComplΩ there is nothing to prove. Assume J ∈ ComplΩ.
As in the proof of Proposition 1.2, choose a basis of VR in which the matrices of J

and I are bloc diagonal with 4× 4 blocs
0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


respectively. Such a basis is the union of sets of vectors of the form {v, Jv, Iv, JIv}.
We denote the matrices of I, J and Ω in this basis by the same letters.

Consider the orbit of J under the conjugation action of GI : GI · J ∼= GI/GH. Let

Ψ: GI −→ Compl,
g 7−→ gJ = gJg−1,

be the evaluation map of the action. Put GΩ := Ψ−1(ComplΩ), that is,

GΩ = {g ∈ GI | t(gJ)Ω(gJ) = Ω},
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(note that GΩ need not be a subgroup in GI). Let g(τ) be any curve in GΩ with
tangent vector X := g′(0) ∈ TeGΩ at e = g(0) ∈ GΩ. Then, differentiating the
constant function t(g(τ)J)Ω(g(τ)J) at τ = 0 we obtain

− tX tJΩJ + tJ tXΩJ + tJΩXJ − tJΩJX = 0.

The left hand side may be simplified, given that tJΩJ = Ω and tJ = J−1 = −J , to

− tXΩ + tJ tXJ tJΩJ + tJΩJ tJXJ − ΩX =
= − tXΩ + tJ tXJΩ + Ω tJXJ − ΩX
= t(XJ −X)Ω + Ω(XJ −X),

where

XJ := J−1XJ = JXJ−1.

So, denoting Y := XJ −X, we have the equality

(4) tY Ω + ΩY = 0,

where Y commutes with I and anticommutes with J . Note that for anyX, X = 1
2
(X+

XJ) + 1
2
(X −XJ), and TeGH is the subspace of elements of TeGI that commute with

I. Hence, the subspace of Y ’s in TeGI anticommuting with J maps isomorphically
onto the quotient space VI := TeGI/TeGH under the quotient map TeGI → VI . So we
need to check that for a nonzero Ω the space of solutions to (4) has dimension strictly
less than dimR VI = 4n2 (i.e., not all of the orbit GI · J lies in LNS).

Now conjugate equation (4) by I to obtain

tY ΩI + ΩIY = 0.

Adding and subtracting this from (4) we obtain

tY (Ω + ΩI) + (Ω + ΩI)Y = 0 and tY (Ω− ΩI) + (Ω− ΩI)Y = 0.

So we may assume that Ω is either I-invariant or I-anti-invariant in equation (4).

Case of I-invariant Ω. As Ω is J-invariant, it determines a skew-symmetric operator
Ω: VR → VR, commuting with J . So we may choose an Ω-invariant plane P =
〈v, Jv〉 ⊂ VR corresponding to a complex eigenvector v − iJv of Ω: VR → VR such
that the matrix of Ω|P is (

0 −λ
λ 0

)
.

The complex structure I provides another such plane IP = 〈Iv, JIv〉, which is also
Ω-invariant and orthogonal to P , so that on P ⊕ IP = 〈v, Jv, Iv, JIv〉 the matrices
of Ω, J and I are 4×4-block-diagonal with the following blocks on the diagonal

0 −λ 0 0
λ 0 0 0
0 0 0 λ
0 0 −λ 0

 ,


0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0

 .
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The condition that Y commutes with I and anticommutes with J tells us that Y has
a 4×4-block structure with blocks of the form

a1 a2 b1 b2

a2 −a1 b2 −b1

−b1 b2 a1 −a2

b2 b1 −a2 −a1

 .

Noting that Ω = JD = DJ for a diagonal matrix D commuting with J , we can
rewrite (4) as

(5) DY = tY D, Y I = Y, Y J = −Y.
For notational convenience we write the matrix Y in terms of its 2×2-blocks Yk,l,
Y = (Yk,l), 1 6 k, l 6 2n, and denote by 12×2 the 2×2 identity matrix. If at least one
λi, 1 6 i 6 n, in D is nonzero we get for all 1 6 j 6 n the equalities of 4×4-blocks(

λi12×2 0
0 −λi12×2

)
·
(
Y2i−1,2j−1 Y2i−1,2j

Y2i,2j−1 Y2i,2j

)
=

=

(
tY2j−1,2i−1

tY2j,2i−1
tY2j−1,2i

tY2j,2i

)
·
(
λj12×2 0

0 −λj12×2

)
.

These matrix equalities completely determine all n− 1 off-diagonal 4×4-entries of Y
in the i-th “fat” row of 4×4-blocks in terms of the off-diagonal 4×4-entries of the i-th
“fat” column, 1 6 i 6 n. So the codimension of the space of solutions of (5) is at
least 4(n−1) (precise lower bound that is reached in the least restrictive case λj = λi
for all j). For the diagonal 4×4-entry, i = j, we obtain b2 = 0 in Y2i−1,2i, so that the
codimension is at least 4n− 3.

Case of I-anti-invariant Ω. The only difference with the previous case is that in the
basis 〈v, Jv, Iv, JIv〉 as above the matrix of Ω is

0 −λ 0 0
λ 0 0 0
0 0 0 −λ
0 0 λ 0

 .

So equation (5), written block-wise, gives that in addition to the 4(n− 1) conditions
for the off-diagonal entries, for the diagonal 4×4-entry we have b1 = 0, which still
results in the lower bound 4(n− 1) + 1 = 4n− 3 for the codimension of the space of
solutions of (5).

Now, by Lemma 3.3, either a twistor sphere in CI entirely lies in some ComplΩ
or its intersection with LNS contains only finitely many points of each ComplΩ. If
I 6∈ LNS then no twistor sphere in CI is contained in LNS. The codimension estimate
above then allows us to conclude that, for every nonzero Ω, the subset CI ∩ ComplΩ
is of codimension at least (4n − 3) + 2 = 4n − 1 > 0 in CI . If I ∈ LNS, the lower
bound for the codimension is still at least 4n−3 > 0. The proof is now complete. �

3.3. The transversality of the triple intersection ofGI1/GH, GJ1/GH, GK1/GH at eGH,
which is equivalent to the direct sum decomposition TeG/TeGH = TeGI1/TeGH ⊕
TeGJ1/TeGH ⊕ TeGK1/TeGH, is preserved if we perturb (I1, J1, K1) ∈ T a little. In
other words, there is a compact neighborhood UI1,J1,K1 ⊂ T of (I1, J1, K1) and a com-
pact neighborhood Ue,G ⊂ G such that ΦI,J,K : Ue,J × Ue,K → Compl is a submersion
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onto its image for all (I, J,K) ∈ UI1,J1,K1 . Moreover, there is a compact neighbor-
hood UI1 ⊂ Compl of I1 which is contained in the image ΦI,J,K(Ue,J × Ue,K) for all
(I, J,K) ∈ UI1,J1,K1 . We will always assume that for each neighborhood Ue,G we made
a choice of such UI1 = UI1(Ue,G). Note that every I2 ∈ UI1 is a regular value of ΦI,J,K

for all (I, J,K) ∈ UI1,J1,K1 .

Lemma 3.5. There exists a neighborhood Ue,G such that for all I2 ∈ UI1 and for all
(I, J,K) ∈ UI1,J1,K1, the full preimage Φ−1

I,J,K(I2) is an 8n2-dimensional submanifold
in Ue,J × Ue,K of the form

(6) {(f1h1, h
−1
1 f2h2) | h1, h2 ∈ GH} ∩ (Ue,J × Ue,K),

where (f1, f2) is a pair in Ue,J × Ue,K such that ΦI,J,K(f1, f2) = I2.

Proof of Lemma 3.5. The fact that Φ−1
I,J,K(I2)∩(Ue,J×Ue,K) consists of a finite number

of 8n2-dimensional manifolds follows from the regularity of I2.
While the part of the fiber in (6) may have been easily guessed, the fact that

for a small enough Ue,G this is the whole fiber follows from Proposition 2.5. In-
deed, assuming that we have (f1, f2), (g1, g2) ∈ Φ−1

I,J,K(I2) ⊂ GJ × GK , we see that

f−1
2 f−1

1 g1g2 ∈ GI . Setting gI = f−1
2 f−1

1 g1g2 and gJ = f−1
1 g1 ∈ GJ we have the equality

f2gI = gJg2.

The left side of the equality lies in GKGI and the right side lies in GJGK . If we restrict
ourselves to Φ−1

I,J,K(I2)∩ (Ue,G×Ue,G) for a small enough neighborhood Ue,G ⊂ G then
Proposition 2.5 tells us that, for every element in the product Ue,JUe,KUe,I , each of
its three factors is uniquely determined up to a GH-correction.

So from our equality f2gI = gJg2 we obtain gI , gJ ∈ GH, which, after setting
h1 := gJ = f−1

1 g1 and h2 := gI , implies that g1 = f1h1 and g2 = g−1
J f2gI = h−1

1 f2h2.
Since UI1 , UI1,J1,K1 , Ue,G are compact and Ue,G is independent of the choice of

(I, J,K) ∈ UI1,J1,K1 , there is a universal upper bound for the number of connected
components of Φ−1

I,J,K(I2) ∩ (Ue,J × Ue,K), for all I2 ∈ UI1 and all (I, J,K) ∈ UI1,J1,K1 .

Therefore we can shrink the compact neighborhood Ue,G so that the fibers Φ−1
I,J,K(I2)∩

(Ue,J × Ue,K) for all I2 ∈ UI1 and all (I, J,K) ∈ UI1,J1,K1 contain only the component
specified in (6). �

Regarding the proof of Lemma 3.5, we note the following.

Remark 3.6. It is not hard to see that the fiber Φ−1
I,J,K(I2) in Lemma 3.5, as a

topological subspace of G × G, depends continuously on I2 ∈ UI1 and (I, J,K) ∈
UI1,J1,K1 .

Remark 3.7. In general, it is possible that g ∈ Ue,G is not uniquely representable as
a triple product of elements in the larger sets GJ , GK , GI and thus we cannot say if
the whole fiber Φ−1

I,J,K(I2) ⊂ GJ ×GK consists of just one GH×GH-orbit as in Lemma
3.5. This is why we possibly need to shrink Ue,G.

3.4. Recall that, for any I, MI = GI/GI,S parametrizes the twistor lines through
I (see Paragraph 1.4). For all I, put UI1,J1,K1(I) := pr23(pr−1

1 (I) ∩ UI1,J1,K1). Then
UI1,J1,K1(I1) is a neighborhood of (J1, K1) in CI1 ×MI1

CI1 = pr23(pr−1
1 (I1) ∩ T ).
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Consider the map

ΨI1→I2 : UI1,J1,K1(I1) −→ CI2 ×MI2
CI2 = pr23(pr−1

1 (I2) ∩ T ),
(S(J,K), J,K) 7−→ (S(f1f2J, f1f2K), f1f2K, f1f2J),

where (f1, f2) ∈ Φ−1
I1,J,K

(I2) ∩ (Ue,J × Ue,K), and we use, in an obvious way, the triple
notation of the kind (S(J,K), J,K) for the elements of the fiber products above. Note
the switched order of f1f2K, f1f2J . The role of this change of order will be clarified
later.

Lemma 3.5 guarantees that the mapping ΨI1→I2 is well-defined, as its value at
(S(J,K), J,K) is uniquely determined by the fiber Φ−1

I1,J,K
(I2) ∩ (Ue,J × Ue,K), so it

does not depend on the choice of a particular point in the fiber.

I1

J

K

f1f2K

f1f2J

I2

ΨI1→I2r r
r
r r
S1 S2

S r

Picture 2: For fixed I1 and I2 any pair (J,K) ∈ CI1 ×MI1
CI1 near (J1, K1)

determines a unique pair (f1f2K, f1f2J) ∈ CI2 ×MI2
CI2 .

3.5. Next, for each (I, J,K) ∈ UI1,J1,K1 consider the mapping ΦI,K,J (note that
we switched J and K in the subscript). By shrinking the original UI1,J1,K1 and
Ue,G if needed, we can find a compact neighborhood Ve,G ⊂ G such that for each
(I, J,K) ∈ UI1,J1,K1 we have

(a) ΦI,K,J : Ve,K × Ve,J → Compl is a submersion onto its image;
(b) every fiber of this mapping is of the form described in Lemma 3.5;
and
(c) the image ΦI,K,J(Ve,K × Ve,J) contains UI1 ⊂

⋂
(I,J,K)∈UI1,J1,K1

ΦI,J,K(Ue,J × Ue,K)

(see Paragraph 3.3).

By Lemma 3.5, conditions (a) and (b) are satisfied. We need only to comment on
(c). By Lemma 3.5, for the original triple (I1, J1, K1) ∈ UI1,J1,K1 , we can find Ve,G such
that ΦI1,K1,J1 : Ve,K1 × Ve,J1 → Compl, where Ve,K1 := Ve,G ∩GK1 , Ve,J1 := Ve,G ∩GJ1 ,
satisfies (a) and (b). Shrinking Ue,G and, thus, UI1 , if needed, we can satisfy (c) for
ΦI1,K1,J1 . Now shrinking UI1,J1,K1 and again Ue,G, if needed, we can satisfy conditions
(a), (b) and (c) for all (I, J,K) ∈ UI1,J1,K1 .

3.6. Now introduce VI1,K1,J1 := {(I,K, J) | (I, J,K) ∈ UI1,J1,K1} and VI1,K1,J1(I) :=
pr23(pr−1

1 (I) ∩ VI1,K1,J1).
Then, for all (I,K, J) in the interior of VI1,K1,J1 , the set pr1(VI1,K1,J1) is a neighbor-

hood of I in Compl and VI1,K1,J1(I) is a neighborhood of (K, J) ∈ CI ×MI
CI . Note
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that due to Condition (c) in Paragraph 3.5, for all I ∈ UI1 ∩ pr1(VI1,K1,J1) and for all
(K, J) ∈ VI1,K1,J1(I), the image ΦI,K,J(Ue,K × Ue,J) contains the neighborhood UI1 .

3.7. Choose I2 ∈ UI1 ∩ pr1(VI1,K1,J1) and K, J such that (I2, K, J) ∈ VI1,K1,J1 . Con-
ditions (a),(b) and (c) in Paragraph 3.5 allow us to define, analogously to ΨI1→I2 , the
map

ΨI2→I1 : VI1,K1,J1(I2) −→ CI1 ×MI1
CI1 ,

(S(J,K), K, J) 7−→ (S(d1d2J, d1d2K), d1d2J, d1d2K),

for (d1, d2) ∈ Φ−1
I2,K,J

(I1) (again, note the reversed order of J and K in the subscript).

The period f1f2K in Picture 2 above will play the role of the “rotation center” for
ΦI2, f1f2K, f1f2J (here J,K ∈ CI1), similar to the role that J plays for ΦI1,J,K . This
explains why we switched J and K.

Below we will impose restrictions on the domain of ΨI1→I2 in order for the image
of this map to be contained in the domain of ΨI2→I1 , so that we can compose them.

We begin by choosing a compact neighborhood UJ1,K1 of (J1, K1) in UI1,J1,K1(I1),
which can at first be all of UI1,J1,K1(I1). We will later modify UJ1,K1 , without changing
the original UI1,J1,K1 .

Lemma 3.8. For fixed VI1,K1,J1, we can shrink Ue,G and UJ1,K1 so that for arbitrary
I2 ∈ UI1,

ΨI1→I2(UJ1,K1) ⊂ VI1,K1,J1(I2).

Proof. As in Paragraph 3.5, this follows from the fact that the mapping ΨI2→I1 de-
pends continuously on I2 (see Remark 3.6), and that

lim
I2→I1

ΨI2→I1 = (12) : UJ1,K1 → VI1,K1,J1(I1),

(S(J,K), J,K) 7→ (S(J,K), K, J),

the latter mapping is trivially defined on the whole UJ1,K1 , so that the sizes of the
domains VI1,K1,J1(I2) of ΨI2→I1 ’s are bounded away from zero, when I2 is close to I1.

As before, we can further shrink Ue,G (and hence UI1), if needed, so that properties
(a), (b), (c) in Paragraph 3.5 hold independently of the point I2 ∈ UI1 . �

3.8. Possibly shrinking Ue,G, we can and will assume that it is invariant under taking
inverses, g 7→ g−1.

Lemma 3.9. Possibly further shrinking Ue,G and UJ1,K1, satisfying the conclusion of
Lemma 3.8, we have for all I2 ∈ UI1

ΨI2→I1 ◦ΨI1→I2 = Id|UJ1,K1
.

Proof. For all (f1, f2) ∈ Φ−1
I1,J,K

(I2) ∩ (Ue,G × Ue,G) and all (S(J,K), J,K) ∈ UJ1,K1 ,
we want the neighborhoods Ve, f1f2K = Ve,G ∩ Gf1f2K , Ve, f1f2J = Ve,G ∩ Gf1f2J to

contain, respectively, the neighborhoods f1f2Ue,K = f1f2Ue,Kf
−1
2 f−1

1 and f1f2Ue,J =
f1f2Ue,Jf

−1
2 f−1

1 , so that, in particular, Ve, f1f2K × Ve, f1f2J contains the pair

(d1, d2) = (f1f2 · f−1
2 · f−1

2 f−1
1 , f1f2 · f−1

1 · f−1
2 f−1

1 ) = (f1f
−1
2 f−1

1 , f1f2 · f−1
1 · f−1

2 f−1
1 ).
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Here the invariance of Ue,G under taking inverses is used. The pair (d1, d2) certainly
belongs to the preimage Φ−1

I2, f1f2K, f1f2J
(I1) as the product of its entries is f1f

−1
2 f−1

1 ·
f1f2 · f−1

1 · f−1
2 f−1

1 = f−1
2 f−1

1 .
Note that, for Ue,G small enough, the neighborhoods f1f2Ue,K × f1f2Ue,J will also

be uniformly small for all (f1, f2) ∈ Φ−1
I1,J,K

(I2) ∩ (Ue,G × Ue,G), so that the fiber of

Φ−1
I2, f1f2K, f1f2J

(I1) in f1f2Ue,K × f1f2Ue,J consists of a unique connected component of

the form described in Lemma 3.5. Then the pair (d1, d2) is contained in this “good”
part of the fiber Φ−1

I2, f1f2K, f1f2J
(I1) and we can use (d1, d2) to evaluate ΨI2 7→I1 at

(S(f1f2J, f1f2K), f1f2J, f1f2K). Thus

ΦI2, f1f2K, f1f2J(d1, d2) = I1

and
d1d2f1f2J = J, d1d2f1f2K = K,

so that
ΨI2 7→I1(S(f1f2J, f1f2K), f1f2K, f1f2J) = (S(J,K), J,K),

where, certainly, S(J,K) = S(I1, J,K), proving that the composition ΨI2→I1 ◦ΨI1→I2

is the identity on UJ1,K1 .
In order to ensure that Ve, f1f2K×Ve, f1f2J contains (d1, d2), we assume, shrinking Ue,G

and UJ1,K1 if necessary, but not changing Ve,G and the previously fixed VI1,K1,J1 , that
for all (S(J,K), J,K) ∈ UJ1,K1 and for all points (f1, f2) ∈ Φ−1

I1,J,K
(I2)∩ (Ue,G×Ue,G),

the neighborhoods Ve, f1f2K , Ve, f1f2J contain, respectively, the neighborhoods f1f2Ue,K
and f1f2Ue,J . �

Corollary 3.10. Let UI1 be defined by Ue,G (Ue,G satisfying Lemma 3.9). For arbi-
trary I2 ∈ UI1, both joint points J ∈ CI1 and f1f2K ∈ CI2 of a triple of twistor spheres
connecting I1 and I2, can be chosen generic.

Proof. Define
prK : VI1,K1,J1(I2) −→ CI2 ⊂ Compl,

(S(J,K), K, J) 7−→ K.

This projection is a submersion onto its image. By Lemma 3.2, the locus LNS inter-
sects CI2 in a countable union of closed submanifolds of positive codimension in CI2 .
As the mapping prK is a submersion onto its image, the preimage pr−1

K (LNS ∩CI2) is
also a countable union of closed submanifolds of positive codimension in VI1,K1,J1(I2).
Similarly, for

prJ : UJ1,K1 −→ CI1 ⊂ Compl,
(S(J,K), J,K) 7−→ J,

pr−1
J (LNS∩CI1) ⊂ UJ1,K1 is a countable union of closed submanifolds of positive codi-

mension. The mapping ΨI2→I1 is real-analytic, so the closure of ΨI2→I1(pr−1
J (LNS ∩

CI2)) in UJ1,K1 does not contain interior points. Therefore

(7) UJ1,K1 6= pr−1
J (LNS ∩ CI1) ∪ΨI2→I1(pr−1

K (LNS ∩ CI2)).
Since, by Lemma 3.9, ΨI2→I1 ◦ ΨI1→I2 = Id|UJ1,K1

, the inequality (7) tells us that

the image of the mapping ΨI1→I2 is not contained in pr−1
K (LNS ∩ CI2). Thus we

may find a pair (J,K) ∈ UJ1,K1 such that J = prJ(S(J,K), J,K) /∈ LNS ∩ CI1 and
f1f2K = prK(ΨI1→I2(S(J,K), J,K)) /∈ LNS∩CI2 , that is, both periods are generic. �
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4. The degree of twistor lines

In this section we show that, as in the case of K3 surfaces, twistor lines in Compl
have degree 2 in the Plücker embedding. We first show that the group G = GL+(VR)
acts transitively on the set of twistor lines in Compl and then compute the degree of
an explicit twistor line.

Lemma 4.1. The group G = GL+(VR) acts transitively on the set of twistor lines in
Compl.

Proof. Given two twistor spheres S1 = S(I1, J1) and S2 = S(I2, J2), there is an
element g ∈ G sending I1 to I2, hence sending S1 to a twistor sphere through I2. The
lemma now follows from Corollary 1.5. �

4.1. To construct our example, consider the affine chart in the GrassmannianG(2n, 4n)
of normalized period matrices (1|Z), where 1 is, in general, the 2n×2n identity matrix
and Z now denotes a non-degenerate 2n×2n complex matrix. Let us fix a basis of VR

and write the matrix of an arbitrary complex structure I : VR → VR in the following
block form

I =

(
A B
C D

)
,

for 2n× 2n real matrices A,B,C,D. Then the relation

(1 |Z)I = (i1 | iZ),

gives the matrix equations

A+ ZC = i1, B + ZD = iZ.

Assume that C is invertible so that the first equation allows us to write Z = (i1 −
A)C−1. The condition that I is a complex structure will then guarantee that the
second equation is automatically satisfied.

4.2. The case n = 1. Momentarily assume n = 1 and consider the twistor sphere
S = S(I, J) where I and J have the respective matrices

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

 ,


0 0 −1 0
0 0 0 1
1 0 0 0
0 −1 0 0


and put K = IJ . So for λ ∈ S,

λ = aI + bJ + cK =


0 −a −b −c
a 0 −c b
b c 0 −a
c −b a 0

 .

Assume additionally that b2 + c2 6= 0, that is, λ ∈ S \ {±I}. Here

A =

(
0 −a
a 0

)
, C =

(
b c
c −b

)
, C−1 =

1

b2 + c2

(
b c
c −b

)
.
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Then

Z = (i1− A)C−1 =
1

b2 + c2

(
ac+ ib −ab+ ic
−ab+ ic −ac− ib

)
=

(
z1 z2

z3 z4

)
,

where Z clearly satisfies the equations

z1 + z4 = 0, z2 − z3 = 0, det Z = z1z4 − z2z3 = 1.

4.3. Now, for a general n, we can construct a twistor line in the period domain of
complex 2n-dimensional tori, which, in the affine chart of G(2n, 4n) above, corre-
sponds to the locus of matrices (1|Z) where Z is the bloc diagonal matrix with the
same 2× 4-block (

1 0 u v
0 1 v −u

)
, u2 + v2 = −1,

on the diagonal.

4.4. The degree of the curve in the example is 2 in the Plücker embeddingG(2n, 4n) ↪→
P(4n

2n)−1. Indeed, the Plücker coordinates in the above affine chart are given by the
maximal minors of the matrix (1|Z). The twistor line S in our example is contained
in the plane P (S) with parameters u, v. The coordinates of the restriction of the
Plücker embedding are 0, 1,±u,±v, u2 + v2, or products of such, with the highest
degree coordinate equal to (u2 + v2)n. The image of P (S) by the Plücker embedding
is therefore the intersection of the image of the Grassmannian with a linear space and
has degree 2n in that linear space since its highest degree coordinate is (u2 + v2)n. It
is now immediate that the image of S is the intersection of the image of P (S) with a
linear space given by setting all the coordinates that are powers of u2 + v2 equal to 1
(and some of the other coordinates equal to each other). This shows that the image
of S by the Plücker embedding is contained in a plane and is a conic is that plane.

Corollary 4.2. Twistor lines have degree 2 in the Plücker embedding of Compl.

Proof. Follows from Lemma 4.1 and Paragraph 4.4. �

5. Appendix

Let A be a 2-dimensional complex torus with period belonging to the twistor line
S constructed in Paragraph 4.2.

For any Ω ∈ Hom(∧2Γ,Q) such that S ∩ ComplΩ is infinite, by Lemma 3.3, the
whole twistor line S is contained in ComplΩ. Below we determine all Ω such that
S ⊂ ComplΩ: these are specified by the invariance conditions Ω(I·, I·) = Ω(J ·, J ·) =
Ω(·, ·) and form a 3-dimensional subspace in Hom(∧2Γ,Q). The invariance conditions
mean that the first Riemann bilinear relation is satisfied.

On the other hand, the second Riemann bilinear relation does not hold: these Ω
determine (1, 1)-classes in the cohomology of tori in this twistor line whose hermitian
forms are always indefinite. Thus, none of the classes determined by these Ω is Kähler.
For the formulation of the Riemann bilinear relations see, for example, [5, Ch. 2].
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5.1. The first bilinear relation. Let Q be the matrix of the alternating form cor-
responding to an I, J-invariant cohomology class in H2(A,Q), written in the basis
in which the matrices of I, J are as in the previous section. The I, J-invariance
then translates into the commutation relations QI = IQ and QJ = JQ. A general
skew-symmetric such Q has the form

Q =


0 −b c −d
b 0 d c
−c −d 0 b
d −c −b 0

 , b, c, d ∈ Q.

Such Q, by definition, determines a rational class of Hodge type (1, 1) for all tori
with periods in S(I, J), so that the first bilinear relation ΩQ−1 tΩ = 0 is automatically
guaranteed by the choice of Q.

5.2. The second bilinear relation −iΩQ−1 tΩ > 0. For Q as above it is easy to
find Q−1. Indeed, note that

Q2 = −(b2 + c2 + d2)14×4,

where 14×4 is the 4×4 identity matrix, so that Q−1 = − 1
(b2+c2+d2)

Q and −iΩQ−1 tΩ >

0 is equivalent to iΩQ tΩ > 0. We have

ΩQ =

(
−uc+ vd −b− ud− vc c− vb −d+ ub
b− vc− ud −vd+ uc d+ ub c+ vb

)
,

so that ΩQ tΩ is equal to(
(u− u)c+ (v − v)d+ (uv − uv)b (u− u)d+ (v − v)c− (1 + |u|2 + |v|2)b

(u− u)d+ (v − v)c+ (1 + |u|2 + |v|2)b (u− u)c+ (v − v)d+ (uv − uv)b

)
.

Setting u = u1 + iu2 and v = v1 + iv2, we compute

iΩQ tΩ =

(
2(u2c− v2d) + 2(u1v2 − u2v1)b 2(u2d+ v2c)− i(1 + |u|2 + |v|2)b

2(u2d+ v2c) + i(1 + |u|2 + |v|2)b −2(u2c− v2d) + 2(u1v2 − u2v1)b

)
.

Now the determinant det iΩQ tΩ is

det iΩQ tΩ = (4b2(u1v2−u2v1)2−4(u2c−v2d)2)−(b2(1+|u|2+|v|2)2+4(v2c+u2d)2) =

= b2(4(u1v2 − u2v1)2 − (1 + |u|2 + |v|2)2)− 4(u2c− v2d)2 − 4(v2c+ u2d)2.

Let us show that indeed 4(u1v2 − u2v1)2 − (1 + |u|2 + |v|2)2 6 0 for all b, c, d ∈ R and
u, v ∈ C such that u2 + v2 = −1. This would prove that iΩQ tΩ > 0 never holds for
the periods in our twistor line.

The complex equation u2+v2 = −1 is equivalent to the two real equations u2
2+v2

2 =
u2

1 + v2
1 + 1 and u1u2 + v1v2 = 0. Introducing the vectors

X =

(
u1

v1

)
, Y =

(
u2

v2

)
.

these equalities can be written as |Y |2 = |X|2+1 and X ⊥ Y . The term (u1v2−u2v1)2

above is the square of the dot product of X and the result of rotation of Y by π
2
, so
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that X ⊥ Y implies that (u1v2−u2v1)2 = |X|2|Y |2. Now the equality |Y |2 = |X|2 + 1
allows us to write 1 + |u|2 + |v|2 = |X|2 + |Y |2 and we have

4|X|2|Y |2 − (|X|2 + |Y |2)2 = −(|X|2 − |Y |2)2 = −1 < 0.

So, finally we obtain det iΩQ tΩ < 0 and none of the Q above determines a Kähler
class.
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