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ABSTRACT OF THE DISSERTATION
Essays on Contract Theory and Industrial Organization
by

Zhuoran Lu
Doctor of Philosophy in Economics
University of California, Los Angeles, 2018
Professor Simon Adrian Board, Co-Chair

Professor Moritz Meyer-ter-Vehn, Co-Chair

This dissertation consists of three essays on contract theory and industrial organization.

The first chapter studies a signaling model in which a strategic player determines the cost
structure of signaling. A principal chooses a price schedule for a product, and an agent with
a hidden type chooses how much to purchase as a signal to the market. When the market
observes the price schedule, the principal charges monopoly prices, and the agent purchases
less than the first-best. In contrast, when the market does not observe the price schedule,
the principal charges lower prices, and the agent purchases more than in the observed case;
those of the highest types purchase more than the first-best. In terms of payoffs, the principal
gains lower profits, whereas the agent obtains higher utility than in the observed case. When
the intensity of signaling activity is sufficiently high, the observed case yields higher social
welfare than the unobserved case. The model can be applied to schools choosing tuition,

retailers selling luxury goods and media companies selling advertising messages.

The second chapter studies nonlinear pricing for horizontally differentiated products that
provide signaling values to consumers with private information, who choose how much to
purchase as a signal to the receivers. I characterize the optimal symmetric price schedules
under different market structures. Under monopoly, when the receivers observe the price

schedule, the market is partially covered, and quantity is downward distorted if there is

il



little horizontal differentiation. As the degree of horizontal differentiation rises, the market
coverage rises, and the downward distortion decreases. When the degree is sufficiently high,
for a certain level of signaling intensity, the monopolistic allocation achieves the first-best;
for higher signaling intensities, quantity is upward distorted at the low end. In contrast, when
the receivers do not observe the price schedule, the market is always partially covered, and
the allocation is more dispersed than that in the observed case. Specifically, higher types
purchase more than in the observed case, with the highest types purchasing more than the
first-best, whereas lower types purchase less than in the observed case, with more types
excluded from the market. When the market structure changes from monopoly to duopoly,
market competition results in a higher market coverage and larger quantities for both the

observed and unobserved case.

The third chapter analyzes a principal-agent model to study how the architecture of peer
monitoring affects the optimal sequence for teamwork. The agents work on a joint project,
each responsible for an individual task. The principal determines the sequence of executing
tasks as well as the rewards upon success of the project, the probability of which depends
on each agent’s effort and ability, with the objective of inducing full effort with minimum
rewards. Agents may observe one another’s effort based on an exogenous network and the
endogenous sequence. We focus on networks composed of stars, and find a simple algorithm
to characterize the optimal sequence of task assignment. The optimal sequence reflects the
trade-off between the magnitude and the coverage of reward reduction in incentive design.
In a single star, less capable periphery agents precede their center while more capable ones
succeed their center. In complex networks consisting of multiple stars, periphery agents
precede their center early in the sequence but succeed their center late in the sequence. When
the number of peripheries differ across stars, a “V-shape” emerges: agents in large stars are

allocated towards both ends of the sequence, while those in small ones towards the middle.
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CHAPTER 1

Monopolistic Nonlinear Pricing for Signals

1.1 Introduction

In classic signaling models, the sender’s preference depends only on his intrinsic type. This
paper investigates situations in which the signaling cost also depends on the choice made by
a third-party strategic player. For example, when a student obtains education to signal his
ability, the university sets the tuition; when a consumer purchases a luxury good to signal
his wealth, the retailer chooses the price; when a seller incurs advertising expenses to signal
a product’s quality, the media company determines the cost of advertising messages. A key
observation is that since signaling cost is endogenous, how receivers interpret and respond

to the sender’s signal will depend on whether they observe the third party’s choice.

In this paper, I derive the optimal price schedule for a principal selling a product to an
agent who is endowed with a hidden type and chooses how much to purchase as a signal
to the market. The equilibrium depends critically on whether the market observes the price
schedule. When the market observes the price schedule, the principal internalizes the agent’s
signaling incentive when screening the agent, leading to a downward distortion in quantity.
In contrast, when the market does not observe the price schedule, the agent is more sensitive
to price changes, since the market will attribute a difference in quantity to agent preference
heterogeneity. This provides the principal with an incentive to lower prices. In equilibrium,
the agent chooses a higher quantity and obtains higher utility than in the observed case,

whereas the principal gains lower profits than in the observed case.

This paper has meaningful implications for the price transparency of goods that provide
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signaling values to consumers. In the case of job market signaling, my model suggests that
education is more costly and students are worse off when the tuition scheme (more precisely,
the net prices for school) is observed by employers than otherwise. This implies that policies
that improve the transparency of the net prices at colleges and universities, e.g., U.S. Code
§1015a,|ﬂ may unintentionally raise education expenses and harm students. This is because
these policies allow schools to commit to high prices and not dilute the signaling value of a

high-cost education by means of fee waivers or financial aid.

In addition, my model implies that a signaling good will yield higher profits if the seller
can make the price publicly observed and commit to it. This echoes some real-world business
practices. For example, luxury brands, such as Louis Vuitton, Tiffany and Hermes, enjoy a
reputation of never or very rarely being on sale. This helps the sellers better commit to
high prices, thereby reinforcing the signaling values of luxury goods. In the advertising
industry, the high costs of each year’s Super Bowl commercials are widely reported, thereby
enhancing the signaling value of these costly commercials; in China, the TV station CCTV
even broadcasts the auctions for some of its popular TV show commercials to accentuate

their signaling values.

For the purpose of exposition, I present my model in conformity with the seminal work
of Spence (1973)) with productive education. I extend that model by adding a pre-signaling
stage in which a school (principal) sets its tuition scheme and a worker (agent) chooses his
education level to signal his privately known ability (type) to competing employers (market).
In Section 1.3, as a reference point, I briefly revisit Spence’s model by fixing tuition at zero.
This is the case when schools are competitive and set the price equal to the marginal cost. In
the least-cost separating equilibrium, all types except the lowest one choose more education

than the first-best, as they attempt to separate themselves from lower types.

In Section 1.4, I introduce the school and study the case in which employers observe the

I'Since 2011, American colleges and universities have been required to provide reasonable estimates of the
net prices, including tuition, miscellaneous fees and personal expenses, that students will pay for school. See
“U.S. Code §1015a - Transparency in college tuition for consumers” for details.
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tuition scheme. In the school-optimal separating equilibrium (which is also the least-cost
separating equilibrium), all types except the highest one choose less education than the first-
best. This result is in contrast to that of Spence’s model. The downward distortion is due to
the schools screening. Having a cost advantage in education, a higher type can secure higher
utility than a lower type by choosing the same education level. To incentivize truth-telling,
the school must leave information rents to the worker, meaning that the marginal profit is

less than the social surplus. Thus, the school under-supplies education.

While this mechanism is similar to screening models such as Mussa and Rosen (1978)),
my model also incorporates signaling, which can mitigate the downward distortion caused
by screening. To illustrate, suppose that employers can observe the worker’s ability, thereby
eliminating signaling. When a higher type imitates a lower type, he not only incurs a lower
total cost than the latter but also obtains a higher wage due to his higher ability. The second
effect means that the worker can extract more information rents from the school; thus, the

screening distortion is worse compared to when signaling is present.

In Section 1.5, I turn to the case in which employers do not observe the tuition scheme.
In the school-optimal separating equilibrium (which is also the least-cost separating equilib-
rium), the school sets lower tuition rates and the worker chooses more education than when
employers observe the tuition scheme. This difference is driven by a signal jamming effect.
Because employers cannot observe the actual cost of education, they do not know whether a
difference in education level is caused by a tuition change or worker cost heterogeneity. For
example, suppose that the school lowers tuition so that the worker obtains more education
than in the initial state. When employers observe the tuition scheme, they cut wages, since
any education level now corresponds to a lower-ability worker. This dampens the worker’s
demand for additional education. In contrast, when employers do not observe the tuition
scheme, they do not adjust wages despite that tuition changes. Consequently, the demand
for education is more elastic, making the price cut relatively more profitable for the school.

In equilibrium, employers correctly anticipate the schools incentive to cut tuition and offer



lower wages, as education is inflated. This reduces the worker’s willingness to pay, and thus,

the school achieves lower profits when employers do not observe the tuition scheme.

Since the school is worse off when employers do not observe the tuition scheme, one
may wonder why the school does not disclose tuition to employers. The reason is that the
school cannot credibly announce the price absent intervention such as mandatory disclosure.
Note that once employers believe the school’s announcement, the latter would secretly cut
prices to make a profitable deviation. Such an observation may explain the fact that while
the listed tuition at American colleges and universities is rising, these schools offer students
various and inclusive forms of financial aid The rationale is that employers cannot easily
observe the details of such financial aid and thus do not know the actual cost of education.
By raising the published tuition while simultaneously reducing the undisclosed net prices
through stipends, schools persuade employers that their students are smarter than is actually

the case, thereby allowing the schools to collect higher revenues from students.

Finally, in Section 1.6, I discuss the application and extension of the model and conclude

my paper. All omitted proofs are provided in the Appendix.

1.1.1 Related Literature

This paper is most closely related to the literature on signaling. The paper contributes to the
literature on signaling games by allowing a strategic player to affect signaling cost. In classic
signaling models (e.g., Spence |1973} Riley 1985, Milgrom and Roberts 1986, Bagwell and
Riordan [1991, Bagwell and Bernheim [1996)), with an exogenous cost function, signaling
activity gives rise to over-investment in costly actions. Spence (1974), Ireland (1994) and

Andersson (1996) suggest taxing signaling activity to undo the signaling effect to restore the

2 According to the reports by The College Board (www.collegeboard.org): “from 2007-08 through 2010-11,
the percentage of institutional grant aid that helped to meet students financial need at private nonprofit four-year
colleges and universities ranged from a low of 90% to a high of 93%” (Trends in Student Aid 2011, The College
Board); “between 2008-09 and 2013-14, the $3,800 increase (in 2013 dollars) in average institutional grant aid
for first-time full-time students at private bachelors institutions covered 95% of the $4,000 increase in tuition
and fees” (Trends in Student Aid 2016, The College Board).
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first-best. The associated tax scheme is thus the welfare-maximizing tax on signals. In my
model, when the market observes the price schedule, I solve for the profit-maximizing tax

on signals, which “over-taxes” signaling and causes a downward distortion in quantity.

The paper is also closely related to the literature on screening. Screening models, such as
Mussa and Rosen (1978) and Maskin and Riley (1984), typically assume that buyers derive
intrinsic utility from consuming the seller’s product. My model differs in the sense that the
product has further a signaling value, and a buyer’s utility depends on the information that
the product conveys. As such, my model contains both screening and signaling and clearly
states the interaction between the two forces. Calzolari and Pavan (2006) study information
disclosure in a sequential screening model. They show that the upstream principal leaves
more information rents to the agent if she discloses information about the agents type to
the downstream principal. Analogously, in my model, the principal leaves more rents to the
agent than she would otherwise if the market can observe the agent’s type, which is perfect
information disclosure. The difference is that the market in my model is competitive; thus,

unlike in their model, the disclosure of the agent’s type creates no value for the market.

The model is closest to Rayo (2013). This paper also considers a principal who sells a
signal to an agent with a hidden type, assuming that the principals mechanism is observed
by the market. Whereas I assume additive separability in the market’s action (e.g., wage)
and the agent’s type (e.g., ability), Rayo’s adopts a multiplicative structure, and thus, the
principals revenue depends on whether the allocation of signal is separating or pooling; this
necessitates the use of novel screening techniques. The contribution of my paper is to study
the case in which the market cannot observe the principal’s mechanism, and comparing this
to the observed case as well as a variety of other benchmarks. This enables me to assess how

the transparency of pricing affects the degree of signaling and welfare.

The unobserved tuition case belongs to the class of signal jamming models proposed by
Fudenberg and Tirole (1986). For example, in Holmstrom (1999), the labor market cannot

distinguish the impact of the worker’s ability from that of his effort on output. In response,



the worker works harder to improve the market’s perception of his ability. In comparison, in
my model, the labor market cannot distinguish the impact of the worker’s ability from that of
tuition on education level. Thus, the school has an incentive to secretly cut tuition, thereby
improving the market’s perception and stimulating demand. In Chan, Li, and Suen (2007), a
school has an incentive to inflate grades to improve the market’s perception of its students.
They show that grade inflation features strategic complements when the qualities of students
are correlated across schools. In contrast to their model, my model incorporates screening in

addition to signaling, as the school cannot observe its students’ abilities.

Finally, my paper relates closely to the literature on intermediate price transparency. In-
derst and Ottaviani (2012)) shows how product providers compete through commissions paid
to consumer advisers. Commissions bias advice; thus, an increase in a firms commission
reduces consumers’ willingness to pay if they observe the commission. Analogously, in my
model, cheaper tuition reduces the signaling value of education, and thus, tuition cuts are
less effective at stimulating demand than they would be otherwise when employers observe
tuition. In Janssen and Shelegia (2015), a manufacturer chooses a wholesale price, retailers
choose retail prices, and consumers search for the best deal. They argue that retailers are less
sensitive to wholesale price changes when consumers do not observe the price than other-
wise, as uninformed consumers are more likely to keep searching when the retail price rises.
By contrast, in my model the worker is more sensitive to tuition changes when employers
do not observe the tuition scheme than otherwise, as uninformed employers will have better

(worse) beliefs over the worker’s ability if they observe a higher (lower) education level.

1.2 The Model

Players and actions There is a single school (principal), a worker (agent) and multiple
identical and competing firms, also referred to as the labor market. At the beginning of the
game, the school chooses a tuition scheme 7'(z) : Ry — R, where z stands for education

level and T'(z) is the tuition at z. Subsequently, the worker decides how much education to

6



purchase from the school based on the tuition scheme. For simplicity, I do not explicitly
model firms’ actions; rather, I directly assume that they offer the worker a wage equal to his

expected productivity (see below).

The worker’s productivity depends on his ability (rype) 0 and his education choice z.
Specifically, 6 is a random variable, which distributes over the interval [0, 8], according to
a distribution function F(6) with a positive density function f(6). Denote by Q(z,0) the
productivity of a type-6 worker having education level z. I assume that Q(z,0) is twice
differentiable and increasing in both arguments. Formally, Q,(z,0), Qg(z,0) > 0if z > 0. I
also assume that a worker with no education has zero productivity irrespective of his ability;
that is, Q(0,0) = 0. I consider this assumption realistic since many jobs require a minimal
education level. For example, a lawyer candidate must graduate from a law school, and
medical school education is prerequisite for being a licensed practitioner of medicine. In the
Appendix, as a supplementary exercise, I present the analysis for the case in which education

is unproductive.

Information The worker’s education level is publicly observed. However, neither the
school nor the labor market observes the worker’s ability, but both know its distribution.
In this paper, I mainly study two variants of the model: in the observed case, the tuition
scheme is observed by the labor market; in the unobserved case, it is unobserved by the
labor market. In each case, the labor market announces and commits to a wage schedule

W(z) : Ry — R, based on the available information.

Payoffs I normalize the school’s marginal costs of educating to zero and abstract from
fixed costs. Suppose that the school chooses some tuition scheme T'; then, let z(6;7) be
the education level chosen by a type-60 worker under 7. Given the tuition scheme 7 and the

wage schedule W, a type-0 worker who chooses education level z has utility:

U(z,0) =W(z)—T(z) —C(z,0),

7



where C(z,0) is the worker’s cost of effort for education. I assume that C(z,0) is twice
differentiable, increasing and strictly convex in z, and unbounded: C,(z,0) > 0 if z > 0,
and C,;(z,0) > k for some k > 0. Moreover, the standard single-crossing property holds:
C;9(z,0) < 0if z > 0. This condition captures the feature that a higher-ability worker has
lower marginal effort costs than a lower-ability worker. I also normalize C(0,0) to O for
all @ € [6,0]. This implies that, combined with C,(z,0) > 0 and C,(z,0) < 0 if z > 0,
Cy(z,0) < 0 if and only if z > 0. Finally, I assume that the worker can obtain a zero-utility

outside option by acquiring no education and not entering the labor market.

First-best benchmark Define S(z, 0) as the social surplme function, i.e.,
S(Za 9) = Q(Za 9) o C(Z7 9)

Assume that S(z, 8) is strictly quasiconcave in z and has a unique maximizer z/?(8) > 0 for

all 8 € [0, 0]. Then, the first-order condition implies that

S.(/%(6),0) = 0.(z/"(0),0) — C.(z(6),6) = 0. (1.1)

To ensure that z/%(0) is increasing, I assume further that S,g(z,0) > 0 if z > 0. Then, the
monotonicity holds according to Milgrom and Shannon (1994, Theorem 4). It is also readily

confirmed that S(z/%(8), 0) is increasing in 6.

Equilibrium I use perfect Bayesian equilibrium as the solution concept throughout this
paper. In the observed case, an equilibrium consists of the school’s tuition scheme 7° and
conditional on any tuition scheme 7', the worker’s education function z°(0;7T) and the labor

market’s wage schedule W°(z;T'), such that

(i) For each T, the following holds: (a) given W°(z;T), z°(0;T) maximizes U(z,0); ()
W°(z;T) = E[Q(z,0)|z°(0;T)] such that the labor market’s posterior belief about the
8



worker’s ability, or simply the market belief, is updated using Bayes’ rule.

(ii) Given z°(0;T), T° maximizes the school’s expected profit, i.e.,

0
T’ € argmax/ T(z°(0;T))dF(0).
T 6

In the unobserved case, the market’s inference is independent of the actual tuition scheme
but is conditional on a conjectured scheme; in equilibrium, the conjecture is correct. In this
case, an equilibrium consists of a tuition scheme 7% and a wage schedule W* (more precisely,

W*(z;T")), and conditional on any 7', an education function z*(6;7), such that

(i) Given W*, foreach T, z(6;T) maximizes U(z,0); W*(z) =E[Q(z,0)|z*(6;T")] such

that the market belief is updated using Bayes’ rule.

(ii) Given z4(60;T), T* maximizes the school’s expected profit, i.e.,

6

T argmax/ T(2(6:T))dF(8).
T 6

Note that the equilibrium conditions have one important difference between the observed

and unobserved case: in the unobserved case, the market belief needs to be correct only

on the equilibrium path, whereas in the observed case, the market belief has to be correct

following every tuition scheme that is chosen by the school.

Equilibrium selection For both the observed and unobserved case, while there possibly
exist multiple equilibria, I focus on the school-optimal separating equilibrium, that is, the
equilibrium that yields the highest payoff for the school, provided that on the equilibrium
path, z(0) is one-to-one if z(0) > OE| To ensure that a separating equilibrium indeed exists,

I impose an assumption on the cost function C(z, ) and the distribution function F(6).

31 do not impose any restriction on z(8) off the equilibrium path.

9



Assumption 1.1. C,9¢(z,0) > 0 and F(0) has a non-decreasing hazard rate.

The reason that I select the school-optimal separating equilibrium is because in Spence’s
model, the unique equilibrium that survives the D1 refinement (Banks and Sobel [1987) is the
least-cost separating equilibrium (Riley |1979) in which z(60) is one-to-one and the lowest
type 6 chooses the first-best z/? (Q) In the school-optimal separating equilibrium, given
the equilibrium tuition scheme, the continuation game constitutes the least-cost separating
equilibrium, thereby allowing me to compare the associated equilibrium predictions with that
of Spence’s model. Moreover, in a discrete-type version of the model, a pooling equilibrium,
in which all participating types choose an identical education level, does not exist in either
case whenever the proportion of the highest type is sufficiently largeE] Hence, I consider the

school-optimal separating equilibrium a reasonable equilibrium to study.

Finally, given the equilibrium selection rule, one can easily conclude that the school has
a higher equilibrium payoff in the observed case than in the unobserved case, as it can secure

a weakly higher expected profit in the observed case by maintaining 7.

1.2.1 Communication Mechanisms

Appealing to the revelation principle, I consider communication mechanisms between the
school and worker in both the observed and unobserved case. It is without loss of generality
to adjust the timing as follows. First, the school offers a contract (z(0),7(z)) to the worker.
Then, the labor market publishes a wage schedule W (z) based on the information available:

in the observed case, it observes the contract; in the unobserved case, it does not. Finally, the

4Since 0 is the worst market belief, the lowest type does not fear further punishment from deviating to its
full-information optimal education level. This initial condition leads to the separating equilibrium in which the
worker obtains the least education.

3Suppose that, in either the observed or unobserved case, a pooling equilibrium exists such that all partic-
ipating types choose the same education; then, the equilibrium wage is a constant which equals the average
productivity, and the equilibrium tuition is a fixed fee and makes the lowest participating type just indifferent.
But whenever the proportion of the highest type is sufficiently large, it is optimal for the school to serve only
the highest type and exclude all lower types, leading to a contradiction.
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worker reports his type to only the school. Reporting a type , the worker obtains education

level z(6), pays tuition T'(z(9)) and then receives wage W (z(0)).

Worker’s problem In both cases, given a contract (z(6),T(z)) and the associated wage

schedule W (z), a type-6 worker chooses a report 6 to maximize his utility

The mechanism {(z(0),7(z)),W(z)} is incentive compatible (IC) if the worker is willing to
truthfully report his type and is individually rational (IR) if the worker obtains a non-negative

utility level. A type-6 worker’s equilibrium payoff is represented by U(0) := U (6, 0).

School’s problem In the observed case, the school chooses a contract to maximize its
expected profit subject to incentive compatibility, individual rationality, and the market belief
being correct. In the unobserved case, since the market’s inference is independent of the
school’s choice, given the wage schedule, the school chooses a contract to maximize its

expected profit subject to incentive compatibility and individual rationality.

Preliminaries In both cases, an allocation (z(6),U(6)) is implementable if it is incentive
compatible and individually rational. Appealing to Mas-Colell, Whinston, and Green (1995,

Proposition 23.D.2), I characterize all implementable allocations by the following lemma.

Lemma 1.1. In both cases, an allocation (z(0),U(0)) is implementable if and only if

(i) z(0) is non-decreasing.
(ii) Define 6y = inf{0|z(0) > 0}, then, for 6 > 6,

Ue)=U(6y)+ 99 —Co(z(s),s)ds

subject to U(6y) > 0.
11



By Lemma 1.1, I rewrite the school’s problem for both cases. Note that incentive com-
patibility means that 7'(z(0)) = W(z(6)) —C(z(6),0) —U(0) and that U(6p) is optimally

set to 0. Substituting and integrating by parts, the school’s problem can be stated as

1—F(8)

70) Ce(z(G),G)}dF(G) (1.2)

0
max/ {W(Z(O))—C(Z(Q),9)+
(7]

2(0) J6y

subject to z(6) being non-decreasing.

In the observed case, correctness of the market belief means that W (z) =E[Q(z,0)|z(0)]
for any implementable allocation z(6) that the school chooses. Then, from the law of total

expectation, program (1.2) is equivalent to

max /9: {s@(e), 0) + 1}<—I;(>9)C9(z(6),6)}dF(9) (13)

subject to z(0) being non-decreasing. Intuitively, because firms break even in expectation,
the school maximizes the expected difference between social surplus and consumer surplus,
as in Mussa and Rosen (1978) or Maskin and Riley (1984). It suffices to solve program (1.3)
for the equilibrium characterization of the observed case. If the solution z°(0) is increasing

over [0y, 0], then the school-optimal separating equilibrium is obtained.

In the unobserved case, without loss of generality, the school chooses an allocation z(0),
while simultaneously, the labor market chooses a wage schedule W. Then, the equilibrium
conditions can be simplified as follows: (i) given W, z(0) solves the school’s problem in
(1.2); (ii) W*(z) = E[Q(z,0)|z"(6)] such that the market belief is updated using Bayes’ rule.

In the case of multiple equilibria, I select the school-optimal separating equilibrium.

1.2.2 A Simple Example with Two Types

To develop simple intuitions for my general results, I establish a numerical example with

binary types. I assume that 6 € {6,605} with 0 < 6, < 6y and that each type is realized

with equal probability. T also assume that Q(z,60) = 8z and C(z,0) = z2/(26). It is readily
12



confirmed that Assumption 1.1 holds in this example.

As a first step, I study the observed case. Suppose that the contract {(z7,7/),(z%,T)}
solves the school’s problem and that the associated wage schedule is given by {W/, Wg}.

Then, incentive compatibility and individual rationality imply that

C(Z27 OL)_C(ZIOJ QH) S U(GH) - U<6L> S C(Z;)-h QL) - C(Z?-Iu 9H)7 (IC)

U(el) :W/lo_Tlo_C(Zlo7el) 207 l:L7H (IR)
Note that 70 = WP —C(z7,6;) —U(6;), i = L,H; thus, the school’s expected profit equals
I1°=0.5(T +Tg) =0.5[W, +Wg —C(z7,6L) —C(z%,60m) —U(6L) —U(6n)].

As is standard in the literature, both the downward IC and the low type’s IR constraints are
binding. Moreover, a correct market belief means that Wy + Wy = 0.z7 + Oy zj; regardless
of whether it is separating (27 # z7,;). Substituting these results and the model assumptions

into I1°, I write the school’s problem as follows:

2 2
2z (6y—06))z 2y
07 — L _\CHZOLRL g . ZH oS
X L= e, ~ 20,0, | CHYH T g, ST WH =L

Then, the first-order conditions imply that

2 = OHOI% 9 Zfb 0_9 _Zfb
L 26H_9L L H H H *

Since z7 < z§;, we obtain the school-optimal separating equilibrium. In this equilibrium,
the low type chooses less education than the first-best, while the high type chooses exactly
the first-best. Intuitively, the high type benefits from his cost advantage over the low type,
as indicated by the downward IC constraint, and thus, he extracts an information rent that
is increasing in the low type’s education level. This induces the school to under-supply

education to the low type. Since there are only two types, there is no distortion of the high
13



type’s education level. From preliminary calculations, one can completely characterize the

equilibrium outcome. In particular, the school’s equilibrium payoff equals
°=05(T +Ty) = ————— + .

Then, I consider the unobserved case. Suppose that the labor market believes naively
that the school’s contract is the same as that in the observed case and thus offers the same
wage schedule. Will the school retain the same contract? It depends. To see why, consider
an alternative contract {(z/,7”)} such that z/ =z, and T’ = Wj — C(z%,6r) < Tj. That is,
the school only offers the high education level from the observed case and reduces tuition to
the level that also attracts the low type. Thus, the school’s new expected profit equals

01

n=7 =01,
" 9g,

One can show that if 6y and Oy are close enough to one another, e.g., 6 = 1 and 8y = 1.1,
then this deviation is indeed profitable (IT" ~ 0.60 while IT° ~ 0.56). The idea is that with
the wage schedule being fixed, the school secretly cuts its prices to gain market share; if the
labor market could observe the tuition, such price cuts would undermine the signaling value
of education and thus would not be profitable. If the gap between types is small enough, then
the increase in quantity dominates the reduction in price, making the deviation profitable. In
contrast, if the gap is relatively big, e.g., 6 = 1 and 6y = 2 (in this case, IT' = 0 while
I = %), and any off-equilibrium-path education is believed to be chosen by the low type,
then the equilibrium of the observed case can also be sustained in the unobserved case. This
is because the high education level is relatively high, and thus, the school finds it unprofitable

to induce the low type to imitate the high type by secretly cutting the price.

Then, what is the equilibrium of the unobserved case if the aforementioned deviation
is profitable? Here, I characterize the school-optimal separating equilibrium without proof.

First, the offer to the low type (z},7}") is the same as (z{,7;°). Second, the high education

14



level zj; satisfies the school’s incentive compatibility constraint as follows:

2 2 2 2

b4 (91-1 — GL)ZM b3 (GH — QL)ZM
g L _ L _ g, M _*H _ H g 24 >4 SIC
1L 50, " 20,6y MH T o0, T 20,0y 0 T (1O

This constraint indicates that the school weakly prefers truthfully revealing the worker’s type
to inducing the low type to imitate the high type. Third, W equals Q(z,0y) if z = 2}, and
equals Q(z, 0.) otherwise. Finally, T} is derived by substituting z¥, into S(z,0y) — U (6x),

where U(0y) = C(z},01) — C(z},0n), as the downward IC constraint is binding.

This equilibrium outcome reveals the second heuristic result. In the unobserved case, the
high type selects more education than in the observed case (note that the low type’s situation
does not change). One can derive this result from the SIC constraint. For example, if 67 = 1
and Oy = 1.1, then 2% ~ 1.43 while z = zJ; = 1.21. The underlying intuition is that in
the unobserved case, the high education level must be excessively high such that the school
finds it unprofitable to induce the low type to imitate the high type. Since in both cases the
downward IC constraint is binding and the low type’s education level is the same, the high
type’s utility does not change between the two cases. This implies that the high education
level must be cheaper in the unobserved case, and thus, the school has a lower profit than in
the observed case. For example, if 6, = 1 and 6y = 1.1, then T}; =~ 0.61 while T} = 0.63.
The reason is that the high type selects the efficient quantity in the observed case but selects
more than the efficient quantity in the other, and thus, less social surplus is generated in the
unobserved caseﬁ To make the high type no worse off, the school must charge a lower price
for the high education level. Intuitively, since education is inflated (2%, > zf;), the signaling
value of the high education is diluted. This means that the worker has a lower willingness to

pay, and thus, the school achieves lower profits in the unobserved case.

OThis implies that social welfare is lower in the unobserved case in the two-type model. In the general
model, however, the welfare comparison between the two cases is ambiguous, as I will show in Section 1.5.
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1.3 Job Market Signaling without Tuition

I now return to the general model. As a reference point, I revisit Spence’s signaling game
in which tuition is fixed at zero. One could interpret such a benchmark as the case in which
schools are competitive and thus choose tuition equal to the marginal cost. In this case, an
equilibrium consists of an education function z°(6) and a wage schedule W*(z), such that (i)
given W*(z), z*(0) maximizes U(z,0); (ii) W*(z) = E[Q(z,0)|z*(0)] with the market belief
updated using Bayes’ rule. I focus on the least-cost separating equilibrium, in which z°(0)
is one-to-one and the lowest type 8 chooses the first-best z/?(8). In the following, I apply

the general results of Mailath (1987) to this specific setting to characterize the equilibrium.

Proposition 1.1. The least-cost separating equilibrium exists, such that

(i) 2°(8) = z/%(8); °(0) satisfies the first-order condition

0.(2°(0),0)+ Qg (*(0),0) -6 (*(8)) — C.(*(0),0) =0, (1.4)

where 0%(7) is the inverse function of z°(8), being differentiable on (8, 0)].

(ii) 7°(0) is increasing over [0, 0], and thus, W*(z*(8)) = Q(z*(0),0) for all 6 € [0, 0)].

Note that the first two terms on the left-hand side (LHS) of (1.4) are the total derivative
of W¥(z). In particular, the second term is non-negative given the monotonicity of z°(0).
Since S(z,0) is strictly quasiconcave, comparing (1.4) with (1.1) implies that z°(8) > z/2(8)
for all & > 6, with equality holding at § only. This comparison is illustrated in Figure 1.1. I

now summarize this result in the following corollary.

Corollary 1.1. In Spence’s signaling game, the worker chooses more education than the

first-best. Specifically, z5(8) > z/(0) on [0, 8], with strict inequality for 6 > 6.

Corollary 1.1 indicates that the worker’s signaling activity leads to over-education. The

intuition is well-understood. Under complete information, the marginal benefit of education
16



’ the first-best, 2/*(6)

Figure 1.1: The Signaling Effect
This figure compares z*(8) with z/?(0) over [8,8]. This figure assumes that Q(z,0) = 0z + 2z, C(z,0) =
1

22 +z—0z,and @ ~ U[0,1]. In this example, z/*(6) = 6 and z*(6) = 36.

is its marginal contribution to human capital. In contrast, when ability is privately known,
in addition to the human capital effect, there is a signaling effect; that is, a higher education
level makes the labor market regard the worker as having higher ability. Thus, the marginal
benefit of education is higher than under complete information. Since the marginal cost is

the same, education is over-invested in when the workers ability is private information.

1.4 Labor Market Observes Tuition

Starting with this section, I take the school’s strategic behavior into account. Here, I consider
the case in which the labor market observes the tuition scheme. According to Section 1.2.1,
it suffices to solve the school’s problem in (1.3) for the equilibrium characterization. It is
heuristic to interpret the integrand in (1.3) as the school’s marginal profit in the observed

case. Define
1-F(0)

MP°(z,0) = S(z,0)+ W

Co (Za 9)
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As is standard in the literature, I solve the school’s problem by relaxing the monotonicity
constraint of z(0) first and verity it ex post to justify the approach. This is equivalent to
pointwise optimization for MP°(z, ). Inspired by Martimort and Stole (2009), I say that the
school’s marginal profit in the observed case is regular if MP°(z, 0) is strictly quasiconcave
in z and MP?(z,0) is increasing in 6. Given Assumption 1.1, regularity holds. Therefore,
MP°(z,0) has a unique maximizer z*(6), which is increasing. Note that z*(6) might be
negative for some region of 6; as such, I set z(0) to 0 instead of z*(0). Thus, MP°(z(0),0)
is non-decreasing in 6 and is non-negative. The cutoff type 6 is thus either the maximal
root of MP°(z(0),0) = 0 if it exists, or 8 otherwise. In summary, the optimal education

allocation z°(0) is given by

“(0) if 0> Q2
(6) = <(6) 16 =9 (1.5)

0 otherwise.

To complete the characterization of equilibrium, back out z°(6)’s inverse function 6°(z)
over [6§, 0] given that z°(6) is increasing over (67, 8]. Plugging 6°(z) into Q(z, ) yields the
equilibrium wage schedule W°(z) on [z°(6(),z°(0)]. Finally, the equilibrium tuition scheme

T°(z) on [z°(6§),2°(0)] is given by

T°(z°(0)) = S(z°(0),0) —U(6) = S(z°(0),6) + ;Cg(zo(s),s)ds. (1.6)

For the off-path education levels, I assume without loss that the school sets exorbitantly
high prices such that no type is willing to deviate to there in any case. Then, given 7°(z),
the school-optimal separating equilibrium is also the least-cost separating equilibrium in the
sense that the cutoff type chooses his full-information optimal quantity under the total cost
function 7°(z) + C(z,0). Moreover, since z°(0) coincides with the unconstrained optimizer
z"(0) on path, this equilibrium is further the school-optimal equilibrium. 1 now summarize

the equilibrium outcome of the observed case in the next proposition.
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Proposition 1.2. In the observed case, the school-optimal separating equilibrium exists. On
the equilibrium path, the education function z°(0) is given by (1.5); the tuition scheme T°(z)

is given by (1.6); and the wage schedule W°(z) equals Q(z,0°(z)).

Note that MP?(z, 0) is less than S;(z, 0), holding weakly on the boundary. Consequently,
regularity implies that z°(6) < z/%(8) on [6g, 8], with equality holding at 8 only. If 63 > 6,

then z°(6) = 0 for all 6 € [, 6;). To summarize, we have the following corollary:

Corollary 1.2. In the observed case, the worker chooses less education than the first-best.

Specifically, 7°(8) < z/°(0) on [0, 8], with strict inequality on (6,0).

Corollary 1.2 states that when the labor market observes the tuition scheme, education is
under-supplied. This result stands in stark contrast to that of Spence’s model. The altered
equilibrium prediction results from the school’s screening activity. Specifically, having a cost
advantage in education, a higher-ability worker can secure higher utility than a lower-ability
worker by choosing the same education as the latter. Therefore, to incentivize truth-telling,
the school has to leave information rents to the worker. This means that the marginal profit
of education is less than the social surplus generated; therefore, the school under-supplies
education. In particular, an interval of types at the low end of the domain will be excluded

from education if it is too costly to serve them.

Remark. Suppose that education is a pure signal (i.e., Q(z,0) = Q(0)) as in Spence (1973);
I show in the Appendix that the school-optimal separating equilibrium yields a virtually
socially optimal outcome, such that z°(0) is arbitrarily close to ek (0) = 0. Specifically,
the school allocates increasing and infinitesimal education to different types, with the lowest
type having no education. Thus, the school’s profit is arbitrarily close to the first-best social
welfare minus the lowest type’s utility Q(0). To interpret, since education is unproductive,
the school provides little and different education in the form of different types of degrees to

separate types; a worker without any degree is regarded as having the lowest ability.
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1.4.1 Screening vs Signaling

While the equilibrium prediction for the observed case is due to the mechanism of monopoly
screening, my model also contains signaling. Note that given the tuition scheme 7°(z), the
subgame is indeed Spence’s signaling game as if the worker had a cost function in the form
of T%(z) +C(z,0). From the same argument as in Corollary 1.1, the education levels in the
observed case are distorted, due to signaling, above the “‘efficient” level with respect to the
total cost of education. This fact reveals that the equilibrium outcome of the observed case

results from the interaction between screening and signaling.

Corollary 1.2 indicates that when both screening and signaling are present and exert the
opposite effects—screening induces under-education, but signaling induces over-education—
screening outweighs signaling. This is because as a Stackelberg leader, the school internal-

izes the worker’s signaling incentive when screening his type. To see this, note that
d
T7(z) = W”(2) = Co(2,0°(2)) = - [0(2,0°(2))] = (. 6°(2)).

Substituting this equation into the first-order condition of MP°(z,0), we have

1 - F(6°(z))

T%(z) = Q9(z,6°(z)) - 0”'(2) + f(6°(z))

[=Czo(2,6°(2))]- (1.7)

On the right-hand side (RHS) of (1.7), the first term captures the signaling effect, and the
second term is the marginal information rent extracted by the worker. Note that signaling
induces over-education, which reduces the school’s profit in two ways: on one hand, it lowers
total surplus; on the other hand, it provides the worker with more information rents. Thus,
the optimal tuition scheme must undo these two effects, as indicated by (1.7). In contrast, if
the school were a welfare-maximizing social planner, it would only undo the signaling effect

by levying Pigovian taxes (Spence 1974). Denote by T/?(z) the welfare-maximizing tax on
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education. The marginal tax is equal to the signaling effect at the first-best, i.e.,
17 (2) = 0o (=, 67(2)) -6 (2), (1.8)

where 8/%(z) is the inverse function of z/?( 9) Since the second term on the RHS of (1.7)
is positive, it follows from comparing (1.7) with (1.8) that the profit-maximizing tax on

education “over-taxes” signaling activity and thus leads to under-education.

To see how signaling makes a difference, consider the situation in which the labor market
also observes the worker’s ability without changing any other element of the model. In this
case, the wage equals the actual productivity, and signaling is eliminated. This means that the
worker’s intrinsic value for education is the social surplus S(z, 0). Since Sg = Q9 —Cg >0, a
higher type can be seen as a higher-value buyer of education. Thus, the school has the same
monopoly screening problem as in Mussa and Rosen (1978)). Specifically, the school chooses
a contract (z(0),7T(z)) to maximize its expected profit subject to the IC and IR constraints.
Analogous to Lemma 1.1, an allocation (z(6),U(0)) is implementable if and only if (i) z(0)

is non-decreasing; (ii) U(6p) > 0 and for 6 > 6,

U(e)=U(6y)+ 99 So(z(s),s)ds.

Thus, the school’s problem in such Mussa and Rosen’s screening game can be stated as

6 _
ma /60 {S(Z(G), 6)— IT’;()Q)SG (2(6),0) } dF(6)

subject to z(0) being non-decreasing. Analogously, define the school’s marginal profit as

1 F(6)

MP"™ (z,0) :=S(z,0) — 7(0)

Se(z,0).

7Since the lowest type 6 chooses the first-best z/?(8) in equilibrium, he should be exempt from such tax;
that is, T/%(z/%(8)) = 0. Then, directly integrating (1.8) yields the welfare-maximizing tax scheme 7/7(z).
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Figure 1.2: Screening vs Signaling

This figure compares 7" (0) with z°(8) over [8, 8] based on Figure 1.1. This figure assumes the same numerical

example as Figure 1.1, such that z°(6) = ”T’l and Z"(0) =26 — 1.

Similarly, I say that MP™" (z,0) is regular if it is strictly quasiconcave in z and MP"(z, )
is increasing in Gﬂ Denote by Z"(6) and 6" the optimal allocation and the cutoff type in
Mussa and Rosen’s model, respectively. Suppose that MP™ (z,0) is regular, then one can

characterize 7""(6) and 6" analogously to the observed case.

I am interested in how the allocation in Mussa and Rosen’s model differs from that in
the observed case. On the extensive margin, because Sg > —Cg, MP™ (z,0) < MP°(z,0),
with strict inequality for 8 < 6. Hence, if 65 > 0, then 67" > 67; that is, more types are
excluded in Mussa and Rosen’s model. On the intensive margin, if Q.¢ > 0 on [0,z/® (é)]ﬂ

then 2 (0) < z°(0), with strict inequality on [0, 6), meaning that under-education is more

serious in Mussa and Rosen’s model. These findings are illustrated in Figure 1.2.

For welfare comparison, note that education is already under-supplied in the observed

8Given Assumption 1.1, MP™ (z, ) is regular if Q¢ < 0.

°This condition is not restrictive; indeed, given that Qg(z,0) > 0 and Q(0, 6) =0, we have Q9(z,0) >0
on [0,Z] for some Z > 0. Given this condition, MP"(z,0) < MP°(z,0) on [0,z/(8)] for 6 < 6.
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case, yet the downward distortion is larger in Mussa and Rosen’s model; thus, the observed
case has higher social welfare. Moreover, since MP™ (7"(0),0) < MP°(z°(0),0) with

strict inequality on [6§,0) and 6] > 6, it is readily confirmed that the school’s expected

profit is also higher in the observed case. In summary, we have the following proposition:

Proposition 1.3. If both MP°(z,0) and MP™ (z,0) are regular, and Q.9 > 0 on [0,z/%(0)),
then under-education is greater when signaling is eliminated. Specifically, 7" (0) < z°(0),
with strict inequality on [0, 0); if 60 > 0, then 6" > 63 > 0. Consequently, social welfare

and the school’s expected profit are strictly higher when signaling is present than otherwise.

Proposition 1.3 indicates that signaling can mitigate the downward distortion caused by
screening. Intuitively, when the labor market observes the worker’s ability, if a higher type
imitates a lower type by choosing the same education, he not only has a lower total cost than
the latter but also obtains a higher wage due to his higher productivity. In contrast, when
the labor market does not observe the worker’s ability, the higher type can no longer directly
reap the benefit from higher productivity, and thus, he acquires more education to signal
his ability. The signaling incentive reduces the worker’s willingness to imitate lower types.
Therefore, the school leaves lower information rents to the worker when signaling is present,
as we have the following inequality:

1—F(6) 1—F(6)
W [—Co(z,0)] WSG (z, 9)}

TV TV
information rents with signaling  information rents without signaling

which holds with equality at the highest type 8 only. Consequently, signaling mitigates the

screening distortion.

1.4.2 Signaling Intensity, Market Structure and Welfare

Knowing that signaling can mitigate the downward distortion due to screening, one may
wonder how the mitigation corresponds to the intensity of signaling. Intuitively, the more
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intense signaling is, the more downward distortion is mitigated. Unfortunately, with general
functional forms, such comparative statics is very complex; indeed, it is even hard to define

the intensity of signaling. For tractability, I consider the numerical example below.

Example Assume that Q(z,0) = y8z+z with y > 0, C(z,0) = z>+z— 0z, and 6 ~ U0, 1].
From previous results, we have z/?(0) = w, 2(0) = w and z°(0) = %.
Define the intensity of signaling to be the ratio of the over-invested education in Spence’s
model, i.e., z°(8) —z/?(8), to the first best education level z/%(8) for 8 > 0. Substituting the

education functions, we have

2(0)-%0) v
Jb(0)  y+1

Clearly, the intensity of signaling is increasing in the parameter y. To see the idea, note that
the larger 7 is, the stronger complementarity between the worker’s ability and education is.
In Spence’s model, higher education induces the labor market to regard the worker as having
higher ability; thus, if ability complements education to a larger extent, the marginal benefit

of education will be higher, thereby enhancing signaling through education.

Then, I examine how the signaling intensity affects signaling mitigating the screening
distortion. Similarly, I define the extent of the downward distortion in the observed case as
the ratio of the under-supplied education, i.e., z/?(8) —z°(8), to the first best education level

z/?(6) for @ > 0. Substituting, we have

J"(6)—2°(6) _ 1-6

/*(6) (r+1)6°

For any fixed 0 € (0, 1), the extent of the downward distortion is decreasing in y. This means

that the more intense signaling is, the more screening distortion is mitigated.

Recall that in Spence’s signaling game, signaling reduces social welfare, as it leads to

over-education. In the observed case, by contrast, signaling raises social welfare because it
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mitigates the screening distortion. From the above analysis, one can infer that if signaling is
sufficiently intense, then the welfare loss in Spence’s model will exceed that in the observed
case; thus, the observed case will yield higher social welfare. To be concrete, I formulate the

difference in social welfare between Spence’s model and the observed case:

(P+7-D(P+3y7+1)
12(7+2)2 '

/99 [5(z°(6),8) —S(z(8),0)]dF (8) =

V5-1
=

It is clear that the observed case yields higher social welfare if and only if y >

This finding has welfare implications for the market structure of signals (which refer to
education here). Note that when the market is served by perfectly competitive sellers of
signals, the equilibrium outcome is predicted by Spence’s model; when the market is served
by a monopoly with a publicly observed price schedule, the equilibrium outcome is predicted
by the observed case. Therefore, when the buyer’s signaling incentive is sufficiently strong, a
monopoly can yield higher social welfare than a perfectly competitive market. This implies
that introducing competition among signal sellers is not necessarily socially beneficial, as

doing so might aggravate over-investment in signaling activity.

Furthermore, since signaling exerts the opposite welfare effects between Spence’s model
and the observed case, an instrument that affects the intensity of signaling will also exert the
opposite welfare effects between the two cases. Specifically, any instrument that attenuates
signaling is socially beneficial in the Spencian world but harmful in the observed case. For
example, students’ grades substitute for their education levels in signaling; thus, grading is
beneficial in the Spencian world but harmful in the observed case. If grades become less
informative, e.g., due to grade inflation, then signaling through education will be enhanced,
as students will attempt to separate themselves from others (Daley and Green 2014). This
reveals that grade inflation is socially beneficial in the observed case by alleviating under-

education, while it is harmful in the Spencian world because it aggravates over-education.
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1.5 Labor Market Does Not Observe Tuition

In this section, I turn to the case in which the labor market does not observe the tuition
scheme. Given some wage schedule W (z), the school solves the problem in (1.2). Similar to

the observed case, I define the school’s marginal profit in the unobserved case as

1-F(6)

MP"(z,0) =W (z) —C(z,0) + 70)

Co(z,0).

It is heuristic to call the last two terms the school’s virtual cost, and I define

1 —F(8)

G(z,0) =C(z,0) — 70)

Co (Z7 9)

In doing so, I establish an auxiliary game analogous to Spence’s signaling game, in which

the worker’s cost function is given by G(z,0) and utility function by MP*(z,0).

This analogy simplifies the equilibrium characterization of the unobserved case. If there
exists an equilibrium with non-decreasing education levels for the auxiliary game, then one
can construct an equilibrium for the unobserved case based on that. Specifically, assign the
auxiliary game’s equilibrium outcome to {z*(6),W"(z)}. I conclude that z“(8) solves the
school’s problem given W*(z), as it maximizes MP"(z,0) pointwise and is non-decreasing.
Moreover, W*(z) is derived from the correct market belief over z(6). Thus, z*(6) and W*(z)
satisfy the equilibrium conditions of the unobserved case. As z“(6) has also determined the
cutoff type 6, the tuition scheme T"(z) can be derived analogously to the observed casem

This closes the equilibrium characterization of the unobserved case.

In the following, I instead study the auxiliary game and focus on the school-optimal
separating equilibrium. Given Assumption 1.1, we have G,9(z,0) < 0 if z > 0, and thus, the

single-crossing property holds. This condition means that it is less costly for the school to

10Unlike the observed case, it entails some loss of generality to assume that tuition is exorbitantly high for
the off-path education, as the school cannot influence the market’s belief over the tuition scheme. However, it
is natural to smoothly extend T"(z) to R ; I show in the Appendix that dosing so is incentive compatible.
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serve a higher-ability worker. The next proposition shows that the school-optimal separating

equilibrium exists in the unobserved case.

Proposition 1.4. In the unobserved case, the school-optimal separating equilibrium exists,

such that

(i) (6§,2"(6g)) = (65,2°(63)); 2"(0) satisfies the first-order condition

0:((8),0) + Q6 (2"(6),0) - 6"'(2"(8)) — G.("(6),8) =0, (1.9)

where 0“(z2) is the inverse function of z*(0), being differentiable on [6,0).

(ii) 2"(0) is increasing over [0y, 0], and thus, W"(z"(0)) = Q(z"(0),0) for all 6 < [0}, 6].

Proposition 1.4 characterizes the equilibrium education function z#(0). It indicates that
the cutoff type and his education level coincide for both the observed and unobserved case.
In the Appendix, I show that if there is no exclusion in the observed case (i.e., 6] = 6), then
the unobserved case has a unique separating equilibrium outcome, which is given above;
otherwise (i.e., 67 > 0) there exists a continuum of separating equilibrium outcomes, and in
each of them, 6§ > 6§ and z“(6§) > z°(6§). In addition, it is shown in the Appendix that
the school-optimal separating equilibrium is also the least-cost separating equilibrium in the
sense that the cutoff type chooses his full-information optimal education level under the total

cost function 7%(z) +C(z, 0).

The next theorem presents the paper’s main result. In contrast with the observed case,
the worker chooses more education in the unobserved case. In particular, a worker who has

a higher ability than the cutoff type chooses strictly more education in the unobserved case.

Theorem 1.1. In contrast with the observed case, the worker chooses more education in the

unobserved case. Specifically, 7(8) > z°(0) on [0, 6], with strict inequality for 6 > 6Y.

Proof. Given Assumption 1.1, MP°(z,0) is strictly quasiconcave in z. Because z°(0) is

the unique maximizer of MP’(z,0), it suffices to prove that MP?(z"(6),0) < 0, with strict
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inequality for 6 > 6. This is given by the following:

1-F(0)
f(0)

= 0:(2"(0),0) — G:(2(6),6)

< 0:("(8),0) + Q6 (2"(8),0) - 6"'(2"(6)) — G.(2"(6),6)

=0.

MP?(£"(6),0) = S.(z"(6),8) + C.0(2"(6),0)

The second equality is given by the definition of G(z,0); the inequality results from the

monotonicity of z#(60) on [y, 0]; the last equality is due to (1.9). Furthermore, for 6 > 6,

the second term in (1.9) is positive, and thus, the above inequality becomes strict. [

As I informally argued in Section 1.2 that the school has a lower equilibrium payoff in

the unobserved case, this argument is formally proven by the corollary below.

Corollary 1.3. In the unobserved case, the school’s expected profit I1" is strictly lower than

its expected profit I1° in the observed case.

Proof. From Proposition 1.4, we have MP“(z"(0),0) = MP°(z*(0),0). Since z°(0) is the

unique maximizer of MP’(z,0) and z(6) > z°(0) for 6 > 6§ = 6, we have

e — I = /:[MPO(ZO(G),G) — MP°(z"(6),0)]dF () > 0.

Thus, the school is worse off in the unobserved case. ]

The difference between the observed and unobserved case is driven by a signal jamming
effect. The worker’s signal is “jammed” in the unobserved case since the labor market does
not observe the actual cost of education. Specifically, the labor market cannot distinguish the
impact of a change in tuition from that of cost heterogeneity on the change in education. To
illustrate, suppose that the school lowers tuition so that the worker chooses more education

than in the initial state. When the labor market observes the tuition change, it cuts wages, as
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any education level now corresponds to a lower-ability worker. In contrast, when the labor
market does not observe the tuition change, it does not adjust wages despite that tuition
changes; thus, the worker is willing to pay more for additional education. Conversely, if the
school raises tuition such that education decreases, then the labor market will raise wages
in the observed case; thus, the worker’s willingness to pay is lower in the unobserved case.

This reveals that the worker is more sensitive to tuition changes in the unobserved case.

From the school’s perspective, the demand is more elastic in the unobserved case. Note
that the LHS of (1.9) represents the marginal profit of education in the unobserved case;
the second term represents the signal jamming effect and is positive. In comparison, in the

observed case, rearranging the first-order condition of MP°(z,0), we have

MP;(2°(6),6) = 0:(2°(6),6) — G(2%(6),6).

Thus, the school’s marginal profit is higher in the unobserved case than in the observed
case. This provides the school with an incentive to “fool” the labor market with secret price
cuts; that is, the school secretly supplies more education and persuades the labor market that
the worker is more productive than is actually the case. In equilibrium, the labor market
correctly anticipates the schools incentive and offers lower wages, as education is inflated.

This reduces the worker’s willingness to pay, and thus, the school achieves lower profits.

1.5.1 Implications for Tuition Transparency

I have shown that tuition cuts lead to smaller increases in demand in the observed case
than in the unobserved case. This is because when the tuition cuts are publicly observed,
the increase in demand is mitigated by the cheaper tuition reducing the signaling value of
education. Hence, tuition cuts are less profitable in the observed case. Here, I show further
that tuition is always more expensive in the observed case. Specifically, the tuition scheme

in the unobserved case is uniformly lower than that in the observed case over the common
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(a) Tuition Scheme (b) Worker’s Utility Level

the observed case, T(z) the unobserved case, U*(0)

the observed case, U°(6)

the unobserved case, T%(z) -

0 2”7(9) () U 9/63 9
Figure 1.3: Implications for Tuition Transparency
This figure compares tuition rates and the worker’s utility level between the observed and unobserved case.

This figure considers the same numerical example as Figure 1.1, such that (a) T°(z) = § and T"(z) = —% +%;
(b) U°(6) =32(6—3)* and U"(0) = (6 — 3)°.

domain of education. This is illustrated in Panel (a) of Figure 1.3.
Proposition 1.5. T"(z) < T°(z) on [z°(6]),2°(0)], with strict inequality for z > z°(6{)).

Proof. From the worker’s first-order condition in both cases, we have
d o o [ d u u u
d—Z[W (2) =T°(2)] = C;(z,6°(z)) and d—Z[W (2) = T"(2)] = C(z,0%(2)).

From Theorem 1.1, z°(6) < z%(6) on [6],6]. Since both z°(6) and z(6) are increasing,
6°(z) > 0“(z) on [°(63),z°(0)]. Thus, C(z,0°(z)) < C.(z,6"(z)) on [z°(65),z°(6)]. This
implies that W°(z) — T°(z) < W¥(z) — T"“(z) on [z°(6),z°(0)]. Since W°(z) = Q(z,0°(z))
and W"(z) = Q(z,0%(z)) on [2°(65),z°(0)], W(z) > W"(z) on [°(6]),z°(0)]. Hence, it is

readily confirmed that 7%(z) > T"(z) on [z°(6f),2°(0)]. O
Furthermore, from the worker’s first-order condition in the unobserved case, we have

T"(z) = W"(z) — C(z,0"(2)).
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Substituting this equation into (1.9), and noticing that W*(z) = Q(z, 6“(z)), we obtain

ul o I_F(GM(Z)) . u

Equation (1.10) states that in the unobserved case, the marginal tuition equals the marginal
information rent extracted by the worker. In contrast to the observed case, as indicated by
the comparison between (1.10) and (1.7), the optimal tuition scheme in the unobserved case
does not undo the signaling effect. The reason is that the loss in the social surplus caused by
over-education will be compensated by the labor market overpaying the worker, as the labor
market will overestimate the worker’s ability if the school secretly cuts tuition. In addition,
(1.10) states that the marginal tuition vanishes at the highest education level. This implies
that the school offers quantity discounts (i.e., T(z)/z is declining) for higher education levels
in the unobserved case. This echoes the classic screening model of Maskin and Riley (1984),

in which quantity discounts are also optimal at the right tail of the distribution.

In terms of the worker’s payoff, note that in both cases, the market belief about tuition is
correct in equilibrium; thus, given the equilibrium tuition scheme, the continuation game is
indeed Spence’s signaling game as if the worker’s cost function was given by the total cost.
Because the tuition scheme is uniformly lower in the unobserved case, the signaling costs
are lower in this case. Consequently, the worker has a higher utility level in the unobserved
case than in the observed case. This is illustrated in Panel (b) of Figure 1.3. Formally, we

have the following proposition.

Proposition 1.6. U"(0) > U°(0) on [0, 0], with strict inequality for 6 > 6.

iy}

Proof. For 6 € (6, 6], by Lemma 1.1 and Theorem 1.1, we have

U“(8)—U°(0) = /: [Co(2°(s),5) — Co(2"(s),5)lds > 0.

0
0

The inequality is due to C,g < 0 and z°(0) < z"(6). For 6 € [0,6(], U"(0) =U°(6) =0. [
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Propositions 1.5 and 1.6 imply that policies that improve the transparency of net prices
at colleges and universities through mandatory disclosure may unintentionally induce more
expensive education and harm students. These policies, such as U.S. Code §1015a, require
schools to publicly disclose their net prices, which are often not previously observed by
employers. Such an intervention allows schools to commit to high prices and not dilute the
signaling value of a high-cost education by means of fee waivers, financial aid, and so forth.

Hence, the net prices that students actually pay may be higher under such policies.

1.5.2 Welfare and Education Comparison

Now, I conduct a welfare analysis for the unobserved case. As a reference point, note that
2°(63) < 2/°(63) and z°(8) = z/°(D). Because z(0) > z°(0), holding strictly for 6 > 69,
continuity implies that z%(0) intersects z/*(0) from below at least once. Moreover, under
some mild conditions—the following Assumption 1.2, for example—I show that z%(8) is
single-crossing z/? (0), i.e., there is a unique cutoff type such that all lower types obtain less

education than the first-best while the others obtain more than the first-best (see Figure 1.4).

Assumption 1.2. The function

1—F(8)

Wcze(sz(e)» 0) (*)

00(z/7(6),6) -6/ (2) +

is single-crossing with respect to 0.

Proposition 1.7. Given Assumption 1.2, there exists a unique type 8" € (8*,0) such that
7(0) < 2/%(6) on [6,0") and 7*(0) > z/%(0) on (6",8), where 6* > 6} is the root of (x).

In the unobserved case, there are two competing forces that pull the education function
away from the first-best benchmark. On the one hand, the signal jamming effect provides
the school with an incentive to supply more education. On the other hand, more education
means more information rents to the worker. Since the cost of information rents ultimately

vanishes as type approaches the top, the school unambiguously over-supplies education on
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Figure 1.4: Equilibrium Education Functions

This figure illustrates all the equilibrium education functions that have been discussed in the paper. This figure
considers the same numerical example as Figure 1.1, such that z%(6) = 26 — %, and recall that z/*(8) = 6,

2(0)=36,2°(0) = 2% and 2" (6) =26 — 1.

some upper interval of the spectrum. Assumption 1.2 ensures that the relative significance
of the two forces alters only once, thus it rules out the possibility of multiple intersections
between z“(0) and z/%(0). Proposition 1.7 reveals that under-education is slighter on a lower
interval of the spectrum in the unobserved case than in the observed case; it also provides a

lower bound for the length of this interval.

However, since over-education also occurs in the unobserved case, whether the observed
or unobserved case yields higher social welfare remains ambiguous. Heuristically, if there
is slight under-education in the observed case, then over-education will be a relatively more
serious issue in the unobserved case; thus, the observed case will yield higher social welfare.
Recall that in the observed case, the more intense signaling is, the slighter under-education
there is. Thus, the more intense signaling is, the greater over-education in the unobserved
case, as the school will find it more profitable to fool the labor market by secretly suppling

more education. To illustrate, I revisit the example in Section 1.4.
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Example Assume that Q(z,0) = y0z+z with y >0, C(z,0) =z*+z—6z,and 8 ~ U|0, 1].
Applying Proposition 1.4, we have 74(0) = (y+1)6 — % Recall that z/%(0) = w and

72°(0) = %. It is readily confirmed that the welfare cutoff type 60" = ﬁ, which is

decreasing in . This implies that the over-education region is increasing in the intensity of

signaling. Moreover, the difference in social welfare between the two cases is given by

0 0 u _ Y(Y_ 1)(3/-'_ 1)3
| 15(6).6) —(z+(8). )] aF (8) = "I AT

0

Clearly, the RHS is positive if and only if y > 1; that is, if signaling is sufficiently intense,

then the observed case yields higher social welfare than the unobserved case.

My last proposition indicates that the education function in the unobserved case z(60) is

bounded above by that of Spence’s signaling game z°(0). This is illustrated in Figure 1.4.

Proposition 1.8. In the unobserved case, the worker chooses strictly less education than in

Spence’s signaling game, that is, 7(0) < z°(0) on [0, 8].

The intuition is clear, as the unobserved case is essentially Spence’s signaling game with
higher costs, meaning that it yields lower education levels. Proposition 1.8 implies that if
signaling is sufficiently intense so that over-education is prevalent in the unobserved case,

then social welfare is higher in the unobserved case than in Spence’s modelE-]

In this paper, I performed a pairwise comparison between different education functions.
I first showed that signaling alone leads to over-education, i.e., z°(8) > z/?(0). Then, after
accounting for the school’s strategic behavior, the equilibrium education functions vary with
the labor market’s information. In Table 1.1, I summarize the correspondence between the

equilibrium education function and information structure.

n the previous numerical example, if and only if ¥ is larger than some cutoff that is less than ‘/'E‘Z*' , the
unobserved case yields higher social welfare than Spence’s model. Thus, I have derived all the three cutoffs
for a pairwise welfare comparison between Spence’s model, the observed and unobserved case. These cutoffs
partition the domain of ¥ into four divisions in which the three cases rank differently in terms of social welfare.
It is clear that as the intensity of signaling rises (i.e., ¥ increases), the case that yields the highest social welfare
will be, respectively, Spence’s model, the unobserved case and the observed case.
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Table 1.1: Education Functions under Different Information Structures

Labor Market Observes Tuition
No Yes

Labor

No 2(0) 2’(0)
Market
Observes

Yes Z"(0)
Type

As illustrated by Table 1.1, when the labor market observes the worker’s ability and the
school’s tuition scheme, the model is Mussa and Rosen’s screening game. A higher-ability
worker benefits from his productivity and cost advantage over others. To incentivize truth-
telling, the school leaves information rents to the worker and thus under-supplies education,
that is, 7 (8) < z/?(8). When the labor market observes only the tuition scheme, a higher-
ability worker cannot benefit directly from his productivity advantage, and thus, signaling
arises. Signaling mitigates the screening distortion since the school incurs lower informa-
tion rents that stem from worker cost heterogeneity only. Thus, 7™ (0) < z°(0) < z/*(9).
Finally, when the labor market observes neither the tuition scheme nor the worker’s ability,
the worker becomes more sensitive to tuition changes, and thus, the demand for education is
more elastic than in the observed case. This makes price cuts relatively more profitable for

the school and induces it to supply more education; therefore, z°(0) < z“(0).

Remark. If education is a pure signal, all the results in this section are valid. Specifically, in
the school-optimal separating equilibrium, the lowest type has no education and the others
obtain increasing and positive amounts of education. Recall that in the observed case, the
lowest type has zero education and the other types obtain infinitesimal education. Thus, the
main result still holds. Moreover, in the unobserved case the school gains lower profits while
the worker has a higher utility level than in the observed case. Finally, because education
is unproductive and the unobserved case yields higher education levels, social welfare is

higher in the observed case. See the Appendix for further details.
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1.6 Summary and Discussion

In this paper, I developed classic signaling models by allowing a third party to affect the
signaling cost. I used this framework to analyze how a school with market power, e.g.,
a top business school, manages job market signaling by designing a tuition scheme. The
equilibrium depends critically on whether employers observe the tuition scheme. In the
observed case, the school internalizes the worker’s signaling incentive when screening his
type, causing under-education. In the unobserved case, the worker’s signal is jammed and he
is more sensitive to tuition changes. This leads to a more elastic demand for education and
induces the school to lower tuition rates. In equilibrium, the worker chooses more education
and obtains higher utility than in the observed case, whereas the school achieves lower profits

than in the observed case.

My framework has policy implications for the transparency of tuition at colleges and
universities. Mandatory disclosure policies, such as U.S. Code §1015a, make the net prices
of education public information. On the one hand, this reduces the search costs of students,
thereby stimulating the competition between schools and lowering prices; on the other hand,
this also allows schools to commit to high prices and not dilute the signaling value of a
high-cost education by means of fee waivers, financial aid and so forth. It is thus possible
that such policies ultimately raise education costs and harm students. Hence, policymakers

should not overlook the potential drawbacks of these mandatory disclosure policies.

My framework has welfare implications for the market structure of signals. When the
market is served by perfectly competitive sellers, the equilibrium outcome is predicted by
Spence’s model; when the market is served by a monopoly with a publicly observed price
schedule, the equilibrium outcome is predicted by the observed case. We show that when the
buyer’s signaling incentive is sufficiently strong, a monopoly can yield higher social welfare
than a perfectly competitive market. This implies that introducing competition among the
sellers of signals is not necessarily socially beneficial.

My framework also draws attention to the positive side of grade inflation at colleges and
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universities. Grade inflation, which is documented by a large body of empirical work (e.g.,
Johnson 2006, Rojstaczer and Healy 2010), induces students to obtain more education to
signal their intrinsic and unobserved abilities. My model suggests that when schools have
market power and under-supply education due to screening, grade inflation can mitigate the

screening distortion by encouraging education, thereby raising social welfare.

1.6.1 Applications of the Model

In addition to job market signaling, my model can be applied to other vertical relationships
in which signaling prevails, such as conspicuous consumption and advertising. In the case of
conspicuous consumption, a retailer (principal) chooses a price schedule 7'(z) for a luxury
good, where z denotes the quality of the good. Then, as in Bagwell and Bernheim (1996), a
consumer (agent) chooses the quality of the good he will purchase to signal his unobserved
wealth (type) 6 to the social contact (market); the social contact observes z and forms some
belief about 6. In the spirit of the seminal work of Veblen (1899), the social contact rewards
the consumer based on z. The reward scheme W (z) is given by the social contacts expected
benefit E[Q(z, 0)] from the consumer; the function Q(z, 0) is increasing in both arguments,
as the social contact obtains higher utility by making friends with richer people and sharing
goods of higher quality with them. Moreover, the consumer derives intrinsic utility from the
luxury good. The intrinsic utility is denoted by V (z, 0), which is increasing in the quality z.
More important, the single-crossing condition holds: V,g(z,0) > 0. This condition captures
the feature that a wealthier individual has higher marginal utility from consuming a luxury
good. For example, a buyer of a yacht can voyage more often if he is richer, as he is better
able to afford the fuel costs and maintenance fees. In terms of payoffs, the retailers profit
equals the revenue 7'(z) minus the cost C(z); the consumer’s net utility equals the reward
W (z) plus the intrinsic utility V(z,0) and minus the price 7(z). Then, given such a similar

setup, one can easily replicate the analysis we have conducted in the education application.

Then, I turn to the application of advertising. In this case, a media company (principal)
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chooses a price schedule 7'(z) for advertising messages, where z denotes advertising level.
Then, as in Milgrom and Roberts (1986), a producer (agent) that has just developed a new
product chooses its advertising level to signal the unobserved quality (type) 6 of the product
to consumers (market); consumers observe z and form some belief about 6. The producers
revenue has two sources: the purchase in the introductory stage and the repeat purchase in
the post-introductory stage. The introductory revenue R(z, é) depends on the advertising
level z and the expected quality , and is increasing in both arguments, as more advertising
results in higher consumer awareness, and better consumer perception allows the producer
to charge a higher price. In contrast, the post-introductory revenue R”(z,0) depends on the
actual quality O instead of 0, since the products quality is revealed after the introductory
stage. RP(z, 0) is increasing in z, as more introductory advertising results in a larger base of
repeat purchase. More important, the single-crossing condition holds: Rfe (z,0) > 0. This
is due to the complementarity between advertising and quality; that is, the marginal revenue
of the introductory advertising is higher if the product is of higher quality, thereby allowing
the producer to charge higher prices in the post-introductory stage. In terms of payoffs, the
media company’s profit equals the revenue 7'(z) minus the cost C(z); the producer’s profit
equals the sum of the introductory revenue R(z,8) and post-introductory revenue R”(z,6)
minus the price T(z), with production costs normalized to zero. In particular, if R'(z,0)
is linear in O, then R(z,0) = E[R/(z,0)], and thus, the setup is similar to the education

application and the analysis will be analogous.

A remark on the advertising model is as follows: the introductory price that is chosen
by the producer may also be used as a signal of quality, as in Milgrom and Roberts (1986).
In this regard, the producer faces a trade-off between signaling by price and signaling by
advertising, depending on which channel is more effective; it is possible that both types of
signal coexist in equilibrium. In turn, the possibility of multiple signals will also affect the

media company’s pricing strategy, making the analysis more complicated.
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1.6.2 Extensions of the Model

The current paper’s results still hold if we change non-linear tuition to linear tuition or change
continuous types to discrete types. A somewhat special case is linear tuition with discrete
types. Without loss of generality, suppose that there are only two types, low and high, and
the school chooses a uniform tuition rate. In the observed case, the least-cost separating
equilibrium exists, in which the high type obtains more education than the low type, and the
latter is indifferent between revealing own type and imitating the former. In the unobserved
case, however, such an equilibrium does not exist because the high education level is so
high that the low type strictly prefers to reveal his type. The intuition is similar: the high
education level must be relatively too high for the low type to imitate the high type, such that

the school finds it unprofitable to cut the price and gain market share.

A new economic force arises in this case as the school is unable to price discriminate.
That is, when the high type strictly prefers to separate himself from the low type, the school
has an incentive to squeeze him by raising tuition. The reason is that the high type is less
sensitive to tuition changes, as a decrease in education will cause him to be regarded as the
low type even if this decrease is due to higher tuition. Therefore, the school faces a trade-off
between squeezing the high type and maintaining the low type’s market share. If the gap
between the two types and the proportion of the high type are large enough, squeezing the
high type is relatively more profitable, such that in equilibrium the low type is excluded from
education and the high type is indifferent between choosing the equilibrium high education

level and deviating downward optimally.
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1.7 Appendix

1.7.1 Omitted Proofs
Proof of Proposition 1.1.

Proof. Let U(6, é,z) be type-0’s payoff if he chooses education level z and is believed as
type—é. In particular, U(6,6,z) equals S(z,0), which is strictly quasiconcave in z and has a
unique maximizer. Moreover, U»(8,0,z) = Qg(z,0) >0, U13(0,0,z) = —C,9(z,0) > 0, and
Us(0,0,2)/U>(6,8,z) is increasing in 8. Appealing to Mailath (1987, Theorem 3), I prove
that a function z(0) is incentive compatible if it satisfies (i) and (ii) of Proposition 1.1 and
such a function uniquely exists given the initial condition. I assume that the market holds the
worst belief off the equilibrium path, so that no type is willing to deviate to there. Thus, the

least-cost separating equilibrium exists and is characterized by Proposition 1.1. [

Proof of Proposition 1.4.

Proof. 1 first prove that a separating equilibrium exists in the unobserved case. Fix some
admissible initial point (65,2 (6})). Given Assumption 1.1, MP°(z,0) is regular. Replacing
C(z,0), U(z,0) and S(z,0) by G(z,0), MP"(z,0) and MP’(z,0), respectively, we obtain

immediately the existence by replicating the proof of Proposition 1.1.

To find the school-optimal separating equilibrium, it suffices to pin down the initial point.
I consider two cases. First, 6] = 6. Note that the lowest possible wage for any education

level z > 0is Q(z,0). Thus, for every pair (z,0) with z > 0, we have

MP*(z,0) > Q(z,0) —G(z,0) > Q(z,0) — G(z,0) = MP°(z,0).

The second inequality is due to G, < 0if z > 0. Since 6§ = 6, MP*(z°(8),0) > 0; that is,

the marginal profit of the lowest type can be at least non-negative. Thus, 6y = 6. Note too

that MP"(z"(0),0) = MP°(z"(0),0), as types reveal in equilibrium. Then, it is optimal for
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the school to choose z“(0) = z°(0), because the labor market cannot punish this choice by
holding a worse belief than 8 and z°(0) maximizes MP’(z, 8) by definition. Thus, if 6§ = 0,

then the separating equilibrium outcome is unique such that (8j,z"(6§)) = (8,z°(8)).

Second, 6§ > 6. In this case, (6),z(6})) and thus the equilibrium outcome is not
unique. From Mailath (1987, Theorem 3), for every separating equilibrium, z*(8) satisfies
(1.9) and is increasing. Analogously to the proof of Theorem 1.1, we have z“(6) > z°(0) on
(64, 6] with strict inequality for 6 > 6. This implies that MP"(z"(0),0) < MP°(z°(0),0),
as z°(0) is the unique maximizer of MP°(z,0), and MP*(z*(0),0) = MP°(z*(6),0). By
the definition of the cutoff type, we have that 6y > 67 in every separating equilibrium of
the unobserved case. Thus, we have determined the lower bound of (6j§,z“(6j)). In Section
1.7.2, I will show that the school-optimal separating equilibrium exists in this case such that
(64,2(08y)) = (6§,z°(6g)). In summary, in both cases, we have (68},z*(6§)) = (6§,z°(6f))-

Therefore, Proposition 1.4 is proven. ]

Proof of Proposition 1.7.

Proof. We only need to study the interval (6%, 6). T have shown that z%(8) intersects z/*(9)
from below at least once. Note that z#(6%) = z°(0¥) < z/®(8%) and 2“(6) > z°(0) = /().
If there are multiple intersections, then z(8) intersects z/?(8) at least three times. Denote
by W/?(z) the wage schedule in the first-best benchmark. Since both W¥(z) and W/?(z) are
increasing, it suffices to prove that W*(z) intersects W/?(z) only once. Suppose that z*(6)

intersects z/(0) at some 8", then W¥(z) intersects W/?(z) at z/?(6"). By differentiation,

1—-F(6")
7(6)
W' (7(0")) = 0.(z77(6"),6") + 0 (/2 (6"),0™) - 6/ (/" (6")).

W (2P(8")) = C.(/7(6"), ") — — " Cap(/7(6"),6"),

The first equation results from the first-order condition of MP"(z,0); the second is just the

total derivative of W/?(z).
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Then, from (1.1), we have that Wﬂ’/(zﬂ’(ew)) —W¥(z/%(6")) equals

1 F(6")

WCZG (z/"(6"),0").

00 (z/"(6"),6")- 6/ (/% (6")) +

Given Assumption 1.2, the RHS can change its sign only once for different values of 6".
Suppose that z4(8) intersects z/?(8) more than once, then the directions of the first three
intersections are from below, from above, and from below; thereby, W*(z) intersects W/?(z)
first from above, then from below, and then from above. This means that the LHS of the
above equation will change its sign more than once, a contradiction. Thus, we have that
24() intersects z/%(6) only once and from below. Then, W/’ (z/2(6")) —W*'(/%(6")) >0,

meaning that the RHS of the above equation is positive. By the definition of 8*, we have

1-F(6
QQ(Zfb(G*), 9*) . be’(sz(e*)) + W())CZ9<Z]%(9*)5 9*) —0.
It follows from Assumption 1.2 that 8" > 0*. Therefore, the proposition is proven. O

Proof of Proposition 1.8.

Proof. We only need to prove that z(0) < z°(6) on [6], 8]. From the first-order conditions,

we can derive W"(z) and W*(z), respectively, by the initial value problems (IVP) below:
W"(z) = G:(z,6"(w,2)) and W*(2) = C;(z,0°(w,2)),

with the initial points (z°(6g),W"(z°(6))) and (z°(6),W*(z°(83))) for W*(z) and W*(z),
respectively. It is easy to see that G, (z,w) > C;(z,w) in any common domain of (z,w). From
Corollary 1.2, we have z°(6) < z°(6) on [0, 0], and thus, 6 > 6°(z°(63)). This implies
that W*(z°(6g)) > W*(z°(65)). Then, appealing to Hartman (1964, Corollary 4.2, page 27),
we have W¥(z) > W*(z) in any common domain. This implies that 6(z) > 6%(z) in any

common domain; therefore, z/(0) < z°(6) on [6Y, 8]. The proposition is thus proven. ]
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1.7.2 Equilibrium Selection for the Unobserved Case

Here, I discuss equilibrium selection for the unobserved case. I present two lemmas. By
Lemma 1.2, T characterize the school-optimal separating equilibrium given that 65 > 0;
by Lemma 1.3, I show that the school-optimal separating equilibrium is also the least-cost

separating equilibrium with respect to the total cost of education.

Lemma 1.2. Given that 65 > 0, the school-optimal separating equilibrium exists in the

unobserved case, such that (63,2"(6§)) = (65,2°(6g))-

Proof. As a first step, I show that the cutoff type’s education level z“(6j) is an increasing

function of 6. From the proof of Proposition 1.4, we have 6 > 67 > 6. Thus,
MP*("(6y),65) = MP°(z"(65), 6y) = 0.

Given Assumption 1.1, MP°(z, 0) is regular; z°(6}) is the unique maximizer of MP?(z, 6§).
From the proof of Proposition 1.4, we have z“(6§) > z°(6}) for each separating equilibrium.
Then, regularity implies that z“(6) is the unique solution to the above equation given an
admissible 6, and z“(6) is increasing. Thus, z(6j) is an increasing function of 6.

u su

Second, I show that for any two admissible initial points (éé‘,ﬁ”(@)) and (6,2%(0)), if
B¢ < By, then £“(0) < 7*(0) in any common domain. From Mailath (1987, Theorem 3), for

every separating equilibrium, z(6) satisfies (1.9). Rearranging (1.9), we have

From the first paragraph, if % < 6%, then (8¢ < 7*(8%). Appealing to Hartman (1964,

Corollary 4.2, page 27), we have () < 7(0) in the common domain [0, 6.

Third, I characterize z*(0) for all separating equilibria. To do so, I have to determine
the domain of z“(6), which depends on the market belief off the equilibrium path. As have

been shown, the lower bound of 6j is 67, which is supportable if any off-path education is
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Figure 1.5: The Set of Separating Equilibria in the Unobserved Case

This figure illustrates the family of separating equilibria in the unobserved case given that 63 > 6. The blue area
depicts the set of equilibrium education functions. This region is uniformly above the equilibrium education
function in the observed case z° (0). The bold line is the set of equilibrium initial points with the cutoff type
ranging from 6 to ). Each point uniquely determines an equilibrium education function z*(6) and thus an
equilibrium outcome. This figure considers the same numerical example as Figure 1.1, such that the set of the
initial points is {(6,2)[z(6) =30 — 1;1 <6 < 1}.

believed to be chosen by type 6. As the off-path belief gets gradually harsher, 6j increases
continuously, until the labor market holds the worst belief 8 off the equilibrium path. It is
without loss of generality to confine the off-path education to [0,z“(6f)) when z"(6j) > 0.

Denote by 9_(')‘ the upper bound of 6§, which is pinned down by

Zjﬁ%g){Q(Z’Q) —G(z,05)} = MP"(z"(6)),65) = 0.
That is, the school is indifferent between allocating type—G_(’)’ the optimal off-path education
such that it is believed as type-0 and maintaining the equilibrium allocation. Therefore, we
have determined the domain of z/(6(). Then, picking any 6} € [6§, 6%], we can uniquely pin
down a z%(0). Figure 1.5 illustrates the education functions of all separating equilibria.
Finally, I prove that the initial point of the school-optimal separating equilibrium is

(65,2(6y)) = (65,2°(6§)). Choose two equilibrium education functions, “(6) and 7“(0),
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such that “(6) < 7“(6) on the common support [8%,6]. Since z*(8) > z°(6) on [8Y,6]
for every separating equilibrium, we have 2(0) —z°(6) < 7(6) — z°(6) on [6,8]. Thus,
regularity implies that MP"(2%(60),0) > MP“(z*(0),6) on [A(')‘, 6] O [6Y,6]. Then,

R . 6 6
n“(6y) —1"(6y) = | MP“(z“(6),0)dF(6)— | MP"(z*(6),0)dF(6) > 0.
6y 6y
The inequality is due to the fact that both the integrand and the integral domain of IT* (é(’)‘) are
bigger than those of H”(é(’)‘). This result reveals that the lower the cutoff type, the higher the
school’s equilibrium payoff. Since 6} < (6], _(')‘] the school-optimal separating equilibrium

must be the one in which 6} = 6§, and thus, z*(8}) = z°(6()). O

Lemma 1.3. In the school-optimal separating equilibrium, the cutoff type 6 chooses his

full-information optimal education level under the total cost function T"(z) +C(z, 6f), i.e.,

2"(6y) = argmax Q(z,6y) — T"(z) — C(z, 6).

Z
Proof. First, I characterize T"(z) on R,.. On the equilibrium path, T%(z) is given by

T%(z"(0)) = 5(z"(6),6) —U"(6) = 5(z"(6),6) ; Co(2"(s),s5)ds.

Then, I smoothly extend 7"(z) to R.. First, from (1.10), we have lim__ , - T"(z) =0. It

(6)
is thus natural to extend 7"(z) horizontally upto +-ec. Second, if z“(6§) > 0, then I smoothly
extend T"(z) to the left by extending the solution to the IVP that is defined by the differential
equation in (1.10) and the initial condition that (6§,2"(6)) = (6§,z°(6g)), until T"(z) or
z reaches 0, whichever is earliest. The rest part of T%(z) is fixed at 0. Thus, T%(z) is fully
characterized on R. To ensure that such 7%(z) is incentive compatible, I simply assume

that the labor market holds the worst belief 8 for any off-path education level, so that no

type will deviate to the off-path.
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Thus, given T"(z), it suffices to prove that the following first-order condition holds.
0:(z"(67),65) — T"'("(63)) — C:(2"(65), 65) = 0. (1.11)
Note that MP°(z,0) is regular, z°(6§) maximizes MP°(z,6{) and z"(6y) = z°(6), thus
MP?("(65),60) = Q:(z"(65), 65) — G=("(65), 65) = 0.

Substituting G, (z"(6f), ;) using (1.10) and the definition of G(z,0), we obtain (1.11).

Therefore, the lemma is proven. 0

1.7.3 Unproductive Education

Here, I consider the case in which education is a pure signal. Without loss of generality, I
assume that Q(0) = 6 > 0 on [0, 8]. Thus, the social surplus function S(z, 0) is decreasing

in z, meaning that zero education is socially optimal, i.e., z/?(8) = 0.

I start with the observed case and focus on the school-optimal separating equilibrium.
Unlike the productive education case, the worker’s outside option is now endogenous, which
depends on the off-path belief. Without loss of generality, I assume that the labor market
holds the worst belief 8 for all positive off-path education levels. The equilibrium wage for
zero education, W(0), equals E[0|60 € [0, 6y)] with the market belief updated by Bayes’ rule.
Thus, the worker’s outside option is endogenously given by E[0|6 € [0,6))]. Analogously

to Section 1.2.1, the school’s problem can be stated as

nzgic/ej {S(z(@),@) + 1}(—2()9)@(49), 0)—E[0]6 < [0, 90)]}dF(9).

subject to z(6) being increasing on [6p, 6]. Substituting Q(60) and G(z,0) into the integral,
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we can succinctly write the school’s value function as

max : {6-G(2(6),6) —E[6]6 < [6,60)]} dF (6).

Suppose that in equilibrium 6y > 0, then by differentiating the value function with respect

to 6y and rearranging, we have that the derivative equals

f(6o)

f(60) - G(z(6o), 60) — F(60)

(6o —E[6|6 €[0,60)]).

Note that z(6y) must be zero. Suppose not, then z(6) > 0 for all 6 € [0, 0], as z(0) is
increasing. But since the marginal profit 8 — G(z,0) is decreasing in z, it is profitable to
reduce all positive z(0) by a fixed small amount, a contradiction. Hence, G(z(6y), 6p) = 0.
Note too that 6y > E[0]6 € [8,6)]. Hence, the above derivative is negative, meaning that
the school can make a profitable deviation by lowering 6y, a contradiction. Thus, 8y = 6 in

equilibrium. Then, the school’s problem can be reduced to
6
max/ 60— G(2(0),0)]dF(6)—6.
z(6) Jo

subject to z(0) being increasing on [0, 8]. Note that the integrand is decreasing in z. Thus,
the school has an incentive to allocate as little of education as possible to the worker. Since
the school cannot charge the worker for zero education, the “optimal” allocation is increasing
and infinitesimal education. Formally, z°(8) is increasing on [0, 8] with z°(8) = 0; for any
€ > 0, we have z°(0) < €. Under this allocation, social welfare is arbitrarily close to the
first-best level, and the school’s payoff is equal to social welfare minus arbitrarily small

information rents and a positive rent @ for participation.

I now turn to the unobserved case. Similarly, I assume that the labor market holds the

worst belief for all positive off-path education levels. Since the wage schedule is independent
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of the actual tuition scheme, the school’s problem can be similarly stated as

max | 9 (W()— G((6),0) — E[6]0 < 9, 60)]} dF(6).

subject to z(0) being increasing on [6p, 8]. In equilibrium, W (z(0)) = 6, thus, by the same
argument as in the observed case, we have 6y = 6. Consequently, the analysis in Section 1.5
is completely applicable to this case. Specifically, the school-optimal separating equilibrium
exists in the unobserved case, such that z(8) = 0, z%(0) is increasing over [8, 8], and 7%(6)

satisfies the first-order condition
0(2"(0),6)-6"'((8)) — G.(z"(6),6) = 0.

Since 7%(0) is positive on 8 € (8, 0], we have z%(8) > z°(0) on [0, 8], with strict inequality
for 6 > 6; that is, the worker obtains more education in the unobserved case than in the
observed case, and thus, Theorem 1.1 still holds. Since education is unproductive, social
welfare is unambiguously higher in the observed case. Indeed, by the definition in Section
1.4, signaling intensity is infinity for unproductive education, as the equilibrium education
levels are positive in Spence’s model (Spence |1973)), but the fist-best education level is zero;
thus, the observed case yields higher social welfare. Since education levels are higher in
the unobserved case, the school leaves more information rents to the worker, and thus, the
worker is better off in the unobserved case. However, since social welfare is lower in the
unobserved case, the school, which is the residual claimant, must be worse off than in the

observed case. Thus, Corollary 1.3 also holds.
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CHAPTER 2

Competitive Nonlinear Pricing for Signals

2.1 Introduction

Starting with the seminal work of Mussa and Rosen (1978)) and Maskin and Riley (1984) on
monopolistic nonlinear pricing, there is a large literature on nonlinear pricing in competitive
settings. These models typically assume that buyers derive intrinsic value from consuming
the products. Recently, Lu (2018)) studies monopolistic nonlinear pricing for products that
provide signaling values to consumers and assesses how the transparency of pricing affects
the degree of signaling and welfare. In contrast, this paper studies nonlinear pricing for
horizontally differentiated products that provide signaling values to consumers, and further
investigates how (horizontal) competition affects sellers pricing strategies and the degree of
signaling and welfare. The paper is also closely related to Rochet and Stole (2002) and Yang
and Ye (2008) in the sense that the only substantial difference is that the products in this
model have signaling value in addition to intrinsic value. Thus, the paper is complementary

to the three recent papers, and establishes a close connection between each other.

In this paper, I derive the optimal symmetric price schedules, under different market
structures, for horizontally differentiated products that provide signaling values to consumers
with private information. The equilibrium depends critically on whether the signal receivers
observe the sellers’ price schedules, as well as on the market structure. I first consider the
case in which a monopolist maximizes the joint profit of all products. When the receivers
observe each product’s price schedule, the (vertical) market is partially covered, and quantity

is downward distorted if there is little horizontal differentiation. As consumers valuations
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for a product become more horizontally differentiated, the market coverage rises, and the
downward distortion decreases. When the degree of horizontal differentiation is sufficiently
high, for some intermediate level of signaling intensity, the monopolistic allocation can in
fact achieve the first-best; for higher signaling intensities, quantity is upward distorted at the
low end. In contrast, when the receivers do not observe any product’s price schedule, the
market is always partially covered, and the allocation is more dispersed than in the observed
case. Specifically, an interval of higher types purchase more than in the observed case, with
the highest types purchasing more than the first-best, whereas the rest types purchase less
than in the observed case, with more types excluded from the market. When the market
structure changes from monopoly to duopoly, in which each seller maximizes the profit of
own product, market competition results in a higher market coverage and larger quantities

for both the observed and unobserved case.

For the purpose of exposition, I present my model in terms of Spence’s education model
(Spence |1973) with productive education. In the model, two identical schools choose their
own tuition scheme, and a worker chooses which school to attend and how much education
to purchase to signal his privately known ability (vertical type) to competing employers. The
worker’s ability distributes uniformly over [0, 1]. Following Yang and Ye (2008)), I model
horizontal differentiation by assuming that the worker incurs transportation costs to attend
school. The worker’s distance to a school (horizontal type) distributes uniformly over [0, %]
As a benchmark, I consider the case in which there is no horizontal differentiation. Then,
a symmetric Bertrand competition induces both schools to set price at the marginal cost,
and the model returns to Spence’s signaling game. In the least-cost separating equilibrium,

all types except the lowest vertical type choose more education than the first-best, as they

attempt to separate themselves from lower vertical types.

In Section 2.3, I consider the case in which a monopolist maximizes the joint profit of the
two schools. I start with the observed case in which employers observe each school’s tuition

scheme. In the symmetric school-optimal separating equilibrium, when there is little hori-
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zontal differentiation, the vertical market is partially covered and has two segments: in the
fully covered range, all horizontal types purchase education; in the partially covered range,
only those close to either school purchase education. Moreover, all vertical types except the
highest one purchase less education than the first-best. This result stands in contrast to that
of the Bertrand-Spence benchmark. The downward distortion results from the interaction of
three forces: market penetration, screening and signaling. Since a higher type can benefit
from his cost advantage over lower types, the monopolist has to leave information rents to
the worker to incentivize truth-telling. In the fully covered range, since the market share is
maximized, the marginal profit of education is unambiguously lower than the social surplus,
thus the monopolist under-supplies education. In the partially covered range, in contrast,
the monopolist can benefit from rent provision to gain market share. However, when there
is little horizontal differentiation, the screening effect is dominant, leading to a downward
distortion. As the degree of horizontal differentiation rises, to maintain the market share in
the partially covered range, the monopolist offers the worker a higher rent by both raising

the market coverage and allocating more education to the worker.

When horizontal differentiation is sufficiently strong, the allocation depends critically on
the intensity of signaling. As is pointed out by Lu (2018), in the monopoly observed case,
signaling mitigates the screening distortion. This is because the worker’s signaling incentive
reduces his willingness to imitate lower types, and thus, the school leaves lower information
rents to the worker than when signaling is absent. When signaling intensity is relatively low,
screening outweighs signaling and market penetration, resulting in a downward distortion
with a partially covered vertical market. When signaling intensity is at some intermediate
level—when the workers productivity and cost heterogeneity are equally significant—the
monopolistic allocation achieves the first-best for all types. That is, the effects of signaling
and market penetration exactly offset that of screening, thereby restoring the social optimum.
In contrast, full-efficiency can never occur when signaling is absent, because otherwise the
monopolist had to offer the worker a rent equal to the social surplus, leading to zero profit.

Again, this is because the worker extracts more information rents when signaling is absent.
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For even higher signaling intensities, at the low end of the market where the monopolist has
to charge very low prices to obtain market share, signaling outweighs screening, leading to

over-education in this range.

Then, I turn to the unobserved case in which employers do not observe any school’s tu-
ition scheme. In the symmetric school-optimal separating equilibrium, the market coverage
is lower, and education levels are more dispersed than in the observed case. Specifically, an
interval of higher types choose more education than in the observed case, whereas the others
choose less education than in the observed case. As in Lu (2018), this difference is driven by
a signal jamming effect. Since employers cannot observe the actual cost of education, they
will attribute a difference in education level to worker cost heterogeneity despite that tuition
changes. Consequently, the worker’s demand for education becomes more elastic than in
the observed case. This provides the monopolist with an incentive to secretly supply more
education. Suppose that, as in Lu (2018), there is no horizontal differentiation and thus the
market contains only the fully covered range, then the vertical market is partially covered
due to screening, and education levels are uniformly higher in the unobserved case than in
the observed case. As the degree of horizontal differentiation rises, the partially covered
range emerges, and the monopolist offers lower types more education to gain market share.
However, due to incentive compatibility, doing so leaves higher types higher information
rents. Since in the unobserved case those higher types already obtain higher rents than in
the observed case, the monopolist finds it unprofitable to offer those lower types the same
education levels as in the observed case. Therefore, at any positive degree of horizontal
differentiation, opposite to higher types, an interval of lower types obtain less education in
the unobserved case than in the observed case, meaning that the market coverage is lower in
the unobserved case. The length of such an interval is increasing in the degree of horizontal

differentiation and vanishes as the degree approaches zero.

In Section 2.4, I consider duopoly in which each school maximizes own profit given the

others tuition scheme. Again, I start with the observed case. In contrast to monopoly, under
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duopoly, market competition results in a higher market coverage, higher education levels,
and a higher equilibrium payoff to the worker. Intuitively, under duopoly, the two schools
compete with each other in the fully covered range by providing the worker with more rents
than under monopoly. This relaxes the incentive compatibility constraint for lower types.
Specifically, each school fears less about allocating more education to lower types thereby
providing higher types with more rents, as higher types will enjoy more rents anyway due
to market competition. Therefore, the schools increase education supply for all participating

types, and include some of those who are not served in the monopoly case.

In the unobserved case, based on numerical computation, I obtain qualitatively identical
results as in the observed. However, the intuition is a bit subtler. Suppose that both schools
retain the contract of the monopoly case, and thus, the labor market offers the same wage
schedule. Then, given the other’s tuition scheme, each school has an incentive to supply more
education for two reasons. The first reason is the competition in rent provision between the
two schools, as is suggested above. The second reason is that due to the signal jamming
effect, each school has an incentive to secretly supply more education to “fool” the market
thereby making a profitable deviation. Similarly, while higher types receive more education,
so do lower types, as the incentive compatibility constraint relaxes. Thus, education levels
are uniformly higher under duopoly than under monopoly; accordingly, the market coverage

is higher under duopoly as well.

In Section 2.5, I conclude my paper. All omitted proofs are presented in the Appendix.

2.1.1 Related Literature

This paper is most closely related to three recent papers on nonlinear pricing: Rochet and
Stole (2002)), Yang and Ye (2008) and Lu (2018). Rochet and Stole (2002) studies both
monopoly and duopoly nonlinear pricing in a Hotelling model. In this paper, horizontal types
are interpreted as consumers outside options, thereby giving rise to random participation.

Their analysis focuses on the case in which the vertical market is always fully covered. As
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such, they show that under monopoly, there is either bunching or efficient allocation at the
bottom. Under duopoly, when the market is fully covered, both sellers offer an efficient

cost-plus-fee tariff (Armstrong and Vickers 2001|has obtained a similar result).

Yang and Ye (2008)) complements Rochet and Stole (2002))’s analysis by focusing on the
case in which the lowest participating type is endogenously determined. By doing so, they
investigate the effects of horizontal differentiation and competition on the market coverage
and quality distortion. The paper shows that under monopoly, the vertical market is always
partially covered and bunching never happens. Moreover, quantity is downward distorted
with efficiency achieved only on the top. When the market structure changes from monopoly

to duopoly, the market coverage rises, and quality distortion decreases.

In contrast to Rochet and Stole (2002) and Yang and Ye (2008)), the products in my
model possess signaling value. Signaling affects the equilibrium allocation by mitigating
the screening distortion. In particular, when horizontal differentiation is sufficiently strong,
for some certain level of signaling intensity, the monopolistic allocation can fully achieve
the first-best; for higher signaling intensities, there is an upward distortion at the low end
of the vertical market. These results cannot be obtained in the other two papers in which
signaling is absent. Recently, Ye and Zhang (2017) studies monopolistic nonlinear pricing
with consumer entry. Different from the mechanism in my paper, they show that consumer
entry can mitigate the screening distortion too. Under certain conditions, the first-best can

also be achieved by the monopolistic allocation.

Lu (2018)) studies monopolistic nonlinear pricing for products that provide signaling val-
ues to consumers and examines the effects of the transparency of pricing on the degree of
signaling and welfare. As in classic screening models, Lu (2018)) makes two simplifying
assumptions: the consumers possess one-dimensional private information, and make type-
independent participation decisions. In contrast, the current paper studies nonlinear pricing
for horizontally differentiated products with signaling value. Hence, the consumers have

two-dimensional types and make type-dependent participation decisions. The results of Lu
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(2018) can be regarded as the limit results of the current paper with respect to the degree of
horizontal differentiation. Thus, there is no discontinuity in the results of Lu (2018 when

we disturb the participation constraint somewhat.

There are several other papers that study nonlinear pricing for both horizontally and
vertically differentiated products in competitive settings. For example, Gilbert and Matutes
(1993)), Stole (1995)), Verboven (1999), Villas-Boas and Schmidt-Mohr (1999)), Ellison (2005)),
and Armstrong and Vickers (2001). Like Rochet and Stole (2002), all these papers assume
that the vertical market is always fully covered, thereby precluding the effects of horizontal

competition on the market coverage.

2.2 The Model

Players and actions There are n schools, a worker and a competitive labor market. At
the beginning of the game, each school i chooses a tuition scheme 7;(z) : Ry — R, where 7
stands for education level and 7j(z) is the tuition at z. Then, observing all the tuition schemes,
the worker chooses at most one school to attend, and upon attendance how much education
to purchase from the school. The worker’s education choice is thus characterized by which
school he attends and how much education he chooses. Finally, the labor market offers the

worker a wage equal to his expected productivity (see below).

The worker’s productivity depends on his ability 0 and education level z, irrespective of
which school he attendsm The worker’s ability 6 is a random variable, which distributes
uniformly over the unit interval: 6 ~ U[0,1]. Let Q(z,0) be the productivity of a worker

with ability 6 and education level z. Specifically, I assume that

0(z,0) = y0z+z,

I'That is, the education provided by each school is equally productive. Nonetheless, the wage offered by the
labor market may still depend on which school the worker attends.
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School 1

‘/‘%‘ Worker (6,d,)

School 2

Figure 2.1: A Duopoly Education Market

where y > 0 is a parameter. Thus, the productivity function is increasing in both arguments
and is supermodular, meaning that both education and the worker’s ability are productive,
and complement each other. In addition, a worker with no education has zero productivity
irrespective of his ability. This corresponds to that many jobs require a minimal education
level. For example, a lawyer candidate must student from a law school, and medical school

education is prerequisite for being a licensed practitioner of medicine.

The worker incurs a transportation cost if he attends a school. Specifically, the worker is
located randomly and uniformly along a unit-length circle. The locations of all the schools
split the circle evenly. Let d; be the distance between the worker and school i. If the worker
chooses to attend school 7, then he incurs a transportation cost kd;, where k > 0 is the unit
transportation cost. Note that the worker’s preference depends on his ability 0 and his lo-
cation that is summarized by {d;}. Thus, the worker is characterized by a two-dimensional
type (0,{d;}), where the first preference parameter 6 is called the worker’s vertical type and
the second parameter {d;} the worker’s horizontal type, respectively, with both parameters
independent of each other. Figure 2.1 illustrates the locations of two schools and the worker

in a duopoly education market.
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Information The worker’s education choice is publicly observed. Whereas the distribution
of the worker’s type is common knowledge, neither the schools nor the labor market observes
the worker’s type. In this paper, for each market structure we consider, I study two variants of
the model: in the observed case, all the tuition schemes are observed by the labor market; in
the unobserved case, no tuition scheme is observed by the labor market. In each case, based
on the available information, the labor market announces and commits to a wage schedule

Wi(z) : Ry — R for each school i’s student.

Payoffs I normalize each school’s production cost to zero. Thus, school i’s per-customer
profit equals the tuition revenue 7;. If a type-(6,{d;}) worker attends school i and chooses

education level z, then he obtains a gross utility given by
Vi(z,0) = Wi(z) = Ti(z) — C(z, 0),
and accordingly a net utility given by
Ui(z,0,d;) =Vi(z,0) — kd;,
where C(z, 0) is the worker’s cost of effort for education. Specifically, I assume that
C(z,0) =2+ (1-0)z.

Note that C(z,0) is increasing and strictly convex in z, and that C(0,0) = 0 for any 6.
More importantly, the standard single-crossing property holds: C,9(z,0) < 0 if z > 0. This
condition captures the feature that a higher-ability worker has lower marginal effort costs
than a lower-ability worker. I also assume that the worker can obtain a zero-utility outside

option by neither attending school nor entering the labor market.
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First-best benchmark Define S(z, ) as the social surplus function (which is net from the

transportation cost). Then, we have

S(z,0) =0(z,0) —C(z,0) = (y+1)0z — 22

It follows that the first-best education level is given by z/%(8) = (HTI)Q. Substituting z/?(8)

into S(z, 0), we have $/7(0) = W_

Equilibrium Throughout the paper, I use symmetric perfect Bayesian equilibrium as the
solution concept. Specifically, in the observed case, an equilibrium consists of each school i’s
tuition scheme 7 and conditional on any tuition scheme profile {7;}, the worker’s education

choice z/(0;{T;}) and the labor market’s wage schedule W?(z; {7;}) for each i, such that

(i) For each {T;}: (a) given W2(z:{T;}), 27(0:{T;}) maximizes U;; (b) WP (z:{T;}) =
E[Q(z,0)|z7(0;{T;})] such that the labor market’s posterior belief about the worker’s

ability, or simply the market belief, is updated using Bayes’ rule.

i) Given z?(06;{T;}) and {T°.}, T maximizes the school’s expected profit, i.e.,
1 l l p p

1
TS € argmax/ T; (27 (6:{T;}))dO
! 0

l

subject to that T} = T;” for any j # 1.

In the unobserved case, the market belief is independent of the actual tuition schemes
but is conditional on conjectured schemes. Since the solution concept focuses on symmetric
equilibrium, I assume that the conjecture of tuition scheme is identical across schools, and
in equilibrium, it is correct. Thus, in this case, an equilibrium consists of each school i’s
tuition scheme 7}* and the associated wage schedule W* (more precisely, W*(z;{7}*})), and

conditional on each profile {7;}, an education function z(6;{7;}) for each i, such that
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(i) Given W*, for each {T;}, z¥(0;{T;}) maximizes U;; W"(z) = E[Q(z,0)|2/(0;{T"})]

such that the market belief is updated using Bayes’ rule.

(if) Given z!(0;{T;}) and {T",}, T} maximizes the school’s expected profit, i.e.,

1
T € argmax/ Ti(z(6;{T:}))d6
< 0

1

subject to that 7} = T}" for any j # 1.

Note that the equilibrium conditions have one important difference between the observed
and unobserved case: in the unobserved case, the market belief needs to be correct only
on the equilibrium path, whereas in the observed case, the market belief has to be correct

following every tuition scheme that is chosen by the school.

Note too that all schools are symmetric and the worker’s location distributes uniformly
along the circle. Since I consider symmetric equilibrium, following Yang and Ye (2008), I
claim without argument that the analysis for a n-school oligopoly model can be translated
into that of a duopoly model if we normalize k to k' = 2k/ nE| Since I consider any k > 0, it is
without loss of generality to focus on the duopoly model. Thus, in the subsequent, I focus on
a duopoly education market as depicted in Figure 2.1. Hence, the worker’s horizontal type

can be simply characterized by d;, i = 1, 2.

Equilibrium selection Due to the flexibility of off-path belief, there possibly exist multiple
equilibria even though we consider symmetric equilibrium. Following Lu (2018)), for both
the observed and unobserved case, I focus on the school-optimal separating equilibrium;
that is, the equilibrium that yields the highest payoff for the schools, provided that on the

equilibrium path, z(6) is one-to-one if z(8) > OE|

2See Section 5 of Yang and Ye (2008) for greater details.

31 do not impose any restriction on z(8) off the equilibrium path.
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2.2.1 Direct Mechanisms

It is well known that in common agency games, it is no longer without loss of generality to
restrict attention to direct mechanisms by applying the revelation principle In this regard,
following Rochet and Stole (2002), I restrict my attention to deterministic contractsﬂ Note
that the worker’s gross utility, upon purchasing from school i, depends only on his vertical
type 6. Thus, it is without loss of generality to consider direct mechanisms such that the
allocation depends only on the vertical type the worker reports to a school. For brevity, in

the subsequent, I often interchange vertical type and type, provided there is no confusion.

Hence, for both the observed and unobserved case, it is without loss of generality to
adjust the timing as follows. First, each school i offers a contract (z;(6),7;(z)) to the worker.
Then, the labor market posts a wage schedule W;(z) for each school i’s student based on the
information available: in the observed case, it observes all the contracts; in the unobserved
case, it does not observe any contract. Finally, the worker chooses at most one school to
attend, and upon attendance he reports his type to only this school. If the worker chooses
to attend school i and reports a type 6, then he obtains education level z;(), pays tuition

Ti(z:(6)) and then receives a wage W;i(z;()).

Worker’s problem In both cases, given each school i’s contract (z;(0),Tj(z)) and the as-

sociated wage schedule W;(z), a type-6 worker chooses some school i to attend, and upon

“Martimort and Stole (2002) demonstrates an example in which the revelation principle may fail when com-
peting principals deviate to more complicated mechanisms that incorporate off-path messages. The reason for
such failure, as indicated by McAfee (1993)), is that the mechanisms offered by other competing principals may
also be the agent’s private information when making his decision. This implies that such private information
can potentially be used by competing principals in designing revelation mechanisms.

Ssee Rochet and Stole (2002) for a detailed discussion of restrictions due to focusing on deterministic
contracts and excluding the possibility of random contracts. In contrast, Manelli and Vincent (2006) and
Thanassoulis (2004) consider random contracts for indivisible goods in multi-dimensional screening games.
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attendance a report 6; to the school to maximize his net utility:

A A

Ui(6;,6,d;) = Wi(zi(6;)) — T (z:(6:)) — C(zi(6;), 0) — kd;.

The mechanism {(z;(0),Ti(z)),Wi(z)} is incentive compatible (IC) if the worker is willing
to truthfully report his type and is individually rational (IR) if the worker obtains a non-
negative utility level by attending school i. A type-0 worker’s equilibrium payoff is given by

U(6,d;) := max; U;(6,0,d;), and the corresponding gross utility by V(0) :=V;(6,0).

School’s problem In the observed case, given the other school’s contract, each school
chooses a contract to maximize its expected profit subject to the IC and IR constraints, and
the correctness of the market belief. In the unobserved case, given the wage schedules and
the other school’s contract, each school chooses a contract to maximize its expected profit

subject to only the IC and IR constraints.

2.2.2 Preliminary Analysis

For both the observed and unobserved case, an allocation (z(6),U(0,d;)) is implementable if
it is incentive compatible and individually rational. Since the worker’s net utility is separable
in z and d;, an allocation (z(0),U(0,d;)) is incentive compatible if and only if the allocation
of education level and gross utility, (z(0),V(0)), is incentive compatible. By Mas-Colell,

Whinston, and Green (19935| Proposition 23.D.2), we obtain the following lemma:

Lemma 2.1. In both cases, an allocation (z(0),V(0)) is incentive compatible if

(i) z(0) is non-decreasing.
(ii) Define 6y = inf{0|z(0) > 0}, then, for 0 > 6y,

6 0

V(0)=V(6y)+ ] —Co(z(s),s)ds =V (6y) + ; z(s)ds.
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Note that if the lowest participating type 6y is an interior type, i.e., 8y € (0,1), then
by continuity, V(6p) is optimally set to Oﬁ Following Armstrong and Vickers (2001), I
think each school as directly providing utility to the worker. Let V;(0) be school i’s rent
provision to a type-6 worker. According to Lemma 2.1, if school i’s allocation (z;(6),V;(0))

is incentive compatible, then we must have

This means that any incentive compatible contract can be characterized by a rent provision

schedule V;(0), and thus, individual rationality holds if and only if V;(0) — kd; > 0.
Given the rent provision schedules {V;(0)}, i = 1,2, the worker decides whether to attend

school, if so, which school to attend. If a type-(0,d;) worker chooses to attend school 7, then

we must have

Vi(8) — kd; > max {o,v,-(e) k(5 —d,-)} .

This is equivalent to

d; < min { Viie)

’4_11+ vi(6) ;kV—i(G)} — 5(0).

Hence, school i’s market share for each vertical type 6 is given by 2s;(0). Since V;(0) is
increasing in 0, there is a cutoff type 8 above which the horizontal market is fully covered;
that is, if the worker has a vertical type 6 € [0, 1], then he attends school irrespective of his
horizontal type d;. As such, I call the interval [0, 1] the competition range, as in Yang and
Ye (2008). In contrast, for 8 € [6p,, 6;), the horizontal market is partially covered; thus, I

call the interval [0y, 01) the local monopoly range. Note that 6 is endogenously given by

Vi(61) +Va(61) :’5‘.

V(6y) is not necessarily 0 if 6y is the lowest type 6. In general, if the lowest type can generate positive
social surplus, then the school may leave a positive “rent” V(0) to type 6, in order to gain the market share.
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Then, I can represent the schools’ expected payoffs with respect to the rent provision

schedules. Given V_;, school i’s expected profit equals twice

[} Wi:(0)) - C(2(0),0) ~i(0)] 5(6)ao.

0;

By decomposing the above integral into the local monopoly range and the competition range,

we have that school i’s expected profit is twice

0, .
/90. Wi(i(0)) — C(xi(9),6) — Vi(0)] Vlf)de

! 1 Vi(6)—V_(6
+ [ h(a(0) - C(a(0),0) - vie@)]- | 3 + O ae @
0 4 2k
In the observed case, correctness of the market belief means that W;(z) = E[Q(z, 0)|z;(0)]

for any implementable allocation z;(60) that the school chooses. Then, from the law of total

expectation, (2.1) can be rewritten as

! 1 Vi(68)-V_i(0)
+ [y, Bi(8).8) =Vi(O)] - |3 + T | 6. @2)

Thus, given V_;, school i’s problem is to choose a contract (z;(0),V;(0)) to maximize (2.2),
subject to z;(0) being non-decreasing and that V/(0) = z;(0). If the solution to this program
is identical for schools i = 1,2 with z;(0) being increasing over [0y, 1], then we obtain a

symmetric school-optimal separating equilibrium.

In the unobserved case, given V_; and W;, each school i’s problem is to choose a contract
(zi(0),Vi(0)) to maximize (2.1), subject to z;(0) being non-decreasing and that V/(0) =
zi(6). Without loss of generality, assume that each school chooses a contract, while simul-
taneously, the labor market chooses a corresponding wage schedule. Then, the equilibrium

conditions can be simplified as follows: for each school i = 1,2, (i) given Ve and W/,
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(24(6),V!(0)) solves school i’s problem; (ii) W*(z) = E[Q(z, 0)|z¥(0)] such that the market
belief is updated using Bayes’ rule. In the case of multiple equilibria, I select a symmetric

school-optimal separating equilibrium.

2.2.3 A Bertrand-Spence Benchmark

As a benchmark, I consider a duopoly education market in which the worker can attend any
school at zero transportation cost, i.e., k = 0. In this case, a symmetric Bertrand competition
induces both schools to set tuition at the marginal cost. The model is thus translated to a
Spence’s signaling game (Spence 1973). An equilibrium consists of an education function
Z*(0) and a wage schedule W*(z), such that (i) given W*(z), z*(0) maximizes U (z,0); (ii)
W3(z) =E[Q(z, 0)|z*(0)] with the market belief updated using Bayes’ rule. As in Lu (2018),
I focus on the least-cost separating equilibrium such that z°(0) = z/?(0). Applying Lu (2018,

Proposition 3.1), we have that the least-cost separating equilibrium exists, such that

@Gr+1)6 on [0,1], W¥(z) = 2Y

1
2
= —72"+ 0, v+ =|.

2(0) =

It follows that z°(6) > z/?(8) for all 8 > 0. The intuition is well understood. Specifically,
since the worker’s ability is private information, he attempts to separate himself from lower
ability workers by acquiring more education, thereby leading to over-education. Given the

analytical solution of z*(0), the signaling effect is explicitly given by

2
06((6),6)-0°(z) = zyfl ~0.

The signaling effect reflects the feature that a higher education level makes the labor market

regard the worker as having higher ability.

Furthermore, one can parameterize the intensity of signaling in this model. Let us define

the intensity of signaling to be the ratio of the over-invested education in Spence’s model,
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ie., z5(8) —z/%(8), to the first best education level z/%(8) for @ > 0. Substituting, we have

Z2(0)—/%(0) v
Jb(0) oy + 1

Clearly, the intensity of signaling is increasing in the parameter y. To see the idea, note that
the larger 7 is, the stronger complementarity between the worker’s ability and education is.
Due to the signaling effect, a higher education level induces the labor market to regard the
worker as having higher ability; thus, if ability complements education to a larger extent, the

marginal benefit of education will be even higher, thereby enhancing signaling activity.

2.3 Monopoly

In this section, as a well-controlled benchmark, I consider a monopoly education market
in which both schools are owned by a monopolist. The monopolist’s objective is thus to
maximize the joint profit of the two schools. Since the distribution of the worker’s type is
uniform and the schools’ locations and technologies are symmetric, I assume that for both the
observed and unobserved case, the two schools choose an identical contract in equilibrium,

thereby resulting in symmetric market shares. I start the analysis with the observed case.

2.3.1 The Observed Case

Since both schools offer an identical contract in equilibrium, we can drop the subscripts to

simplify (2.2). The monopolist’s problem can be stated as

0,
max/@o 1S(2(6),0) — V(8)] @d(n 611 1(2(6),0) — V(6)] %de

(. S/

Phase I: partially covered range Phase II: fully covered range

k

5..V'(0)=2(0), Z(6) >0, V(6)) = 1
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If further 6y € (0, 1], then V(6y) = 0; otherwise, V(6y) should be chosen optimally.

As is standard in the literature, I solve the above program by relaxing the monotonicity
constraint of z(0) first and verity it ex post to justify the approach. The monopolist’s problem
is a two-phase optimal control problem: in Phase I, the horizontal market is partially covered;
in Phase 11, in contrast, the horizontal market is fully covered. Define the Hamiltonian of the

two phases as follows:

v 1%
Hy(z,V,4,6) = [S(z,6) —V]Z +Az=[(y+1)6z—2 —V]er?Lz,

1 1
Hy(2,V,4,0) = [S(2,0) =V + Az =[(y+1)6z—2* = V] +1z,

where z is a control variable, V is a state variable and A is the associated adjoint variable.
From the Maximum Principle if (z*(6),V*(0)) solves the monopolist’s problem, then for

each phase i = 1,2, we must have

7" (0) = argmax H; (z,V*(0),A(0),0),

)

A(0) = —=-Hi(2'(6),V*(6),A(6),6),

along with the transversality condition A (1) = 0.

It follows that Phase I can be characterized by the following second order autonomous

ordinary differential equation (ODE):
(y+3)V —=2VV —V2 =0. (2.3)

To solve (2.3), I first consider the case in which the vertical market is partially covered;

that is, the optimal lowest participating type 6; € (0, 1], and thus, V(6;) = 0. Given this

7See Seierstad and Sydsaeter (1986) for details.
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boundary condition, it can be proven that the unique solution to (2.3) is given b

_r+3 3 _rt3 3
Analogously, in Phase II, we have the ODE: V = 7 = Hz . Moreover, the transversality

_ 7/+l

condition A (1) = 0 implies that z(1) = £5—. Thus, the solution to Phase II is given by

(y+2)6*> 6 (y+2)0 1

Vi(8) =5 +B(6), 7(8) = ——"——3,

where 3(60;) depends on the optimal switching type 6; which remains to be determined.
Since in both phases, z(0) is increasing in 6, the monotonicity constraint is automatically

satisfied, meaning that a symmetric school-optimal separating equilibrium exists.

To determine 6 and thus 6], I impose the smooth pasting conditions: V (8,;7) =V (6; ")

and z(6;) = z(0; +)H Combined with the condition V(6;") = §, 6 and 6; are given by

L+ DVAH3k o L VAR

0F = L0 =
07 y+2  2(r+2)(y+3) T ' T y+2 " 2(y+2)

(2.4)

It thus follows that for 6 € [0, 1], V(0) is given by

V*(G):§+(9—9f‘) (Y+2);9+91*)_% .

2(y+3)
(r+1)*

we have 6 > 1, meaning that Phase II

Note that 6 is an interior solution if and only if k < We shall consider two

2(y+3)
(r+1)%°

is never entered. Then, 6] is pinned down by the transversality condition A (1) = 0, such

cases. First, Yy < 1. In this case, when k >

that 65 = 71,%/ > 0, with equality holding at Y = 1 only. Hence, if y < 1, then 6] is always

8Rochet and Stole (2002) shows that if a convex solution to (2.3) exists, then given specific boundary
conditions, it is unique. See Rochet and Stole (2002, Appendix, p. 304-305) for details.

9The smooth pasting conditions are implied by the Weierstrass-Erdmann necessary condition.
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an interior solution; in addition, Phase I (the partially covered range) always exists, whereas

2(y+1)?
Y+3

Phase II (the fully covered range) exists only if k < . Second, ¥y > 1. In this case, when

k= %;ﬁ;z), we have 6] < 1, meaning that Phase II always exists. Thus, if k > ?;ﬁ?z),

6, < 0; that is, the vertical market is fully covered. As a result, V(0) is free at the lowest

then

type 6 = 0 and the boundary condition V(0) = 0 does not necessarily hold. Since such a
case is more complicated, I postpone further analysis until I have summarized the results of

the case in which the vertical market is partially covered.

Suppose that ¥ < 1, then the monopolist’s optimal symmetric contract exists and has been
characterized in the above analysis. Let (z"°(0),V™(0)) be the equilibrium contract in the
monopoly observed case, and 9(’)"” and 0" be the lowest participating type and switching
type, respectively. Then, we have that z” () is increasing on [6), 1]; in particular, if y < 1,
then 6" > 0 always holds. Hence, the school-optimal separating equilibrium is obtained.
Indeed, this equilibrium is the one that yields the highest expected profit for the monopolist

among all equilibria. To summarize, we have the following proposition:

Proposition 2.1. Suppose that y < 1, then in the monopoly observed case, the symmetric

2(y+1)2)
(r+3) )

school-optimal separating equilibrium exists. Specifically, for k € (O,

L2(0-65") o5 <6<6"

(r+2)6 1
2 2

7" (0) =

ifom <0 <1,

2(y+1)?
(r+3) ’

where 96” * and 9{” ¢ are given by 0 and 0{ in (2.4), respectively. For k >
3
2" () = % (6—6r) ifer<o<1,

where 6" = % If y < 1, then for any k > 0, )" > 0 and 7" (0) < z/°(0) on [0, 1] with

equality holding at © = 1 only; if y =1, then for k > 28:132, 7"(0) =z/*(0) on [0,1].

The monopolist’s optimal contract has two noticeable features. First, when y < 1, there
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is always under-education on both the extensive and intensive margin. Specifically, there is
always a positive measure of vertical types who are excluded from education, i.e., 6, > 0.
In addition, for all but the highest vertical type, education level is downward distorted, i.e.,
Z"(0) < z/%(6) on [6],1). This result stands in contrast to that of Spence’s model in
which there is always over-education. Second, perhaps it is more striking that when y =1,
if the market contains only the partially covered range, then the monopoly optimal contract
in fact achieves the first-best! In contrast, Lu (2018]) studies monopolistic nonlinear pricing
for signals with deterministic participation and find that the optimal contract can achieve the
first-best only asymptoticallym Moreover, Rochet and Stole (2002) and Yang and Ye (2008)
study monopolistic nonlinear pricing for non-signaling goods with random participation,
and both papers find that the optimal contract always exhibits a downward distortion with

efficiency achieved only on the boundary@

The above features result from the interaction between three forces: market penetration,
the monopolist’s screening and the worker’s signaling. To be specific, let us first consider the
fully covered range. Note that the monopolist’s market share is already maximized for each
vertical type, thus it cannot benefit from supplying more rents to gain market share. Since
a higher vertical type can benefit from his cost advantage over lower types, the monopolist
has to leave information rents to the worker to incentivize truth-telling. This implies that
the marginal profit of education is unambiguously less than the marginal social surplus in
the fully covered range, and thus, the monopolist under-supplies education. In Lu (2018),
the market contains only the fully covered range, and hence, there is always a downward

distortion with efficiency achieved only on the top.

In contrast, in the partially covered range, the monopolist can benefit from rent provision

to obtain market share. In this case, increasing education supply has two opposite effects.

10Using a numerical example similar to the current model, Lu (2018) shows that z"(8)/z/*(8) — 1 as
Y — co. See Section 4.2 of Lu (2018)) for details.

ITSee Rochet and Stole (2002, Proposition 4) and Yang and Ye (2008, Proposition 1).
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On one hand, it reduces per-customer profit by providing the worker with more information
rents. On the other hand, a larger rent also results in a larger market share. The optimal
allocation rule thus must balance these two opposite effects. But the question is: why does
under-education always occur in the partially covered range when y < 1, whereas the social

optimum can be fully achieved when y = 1?

To answer this question, one should understand the effects of signaling on the optimal
allocation. As is pointed out by Lu (2018)), in the observed case under monopoly, signaling
can mitigate the screening distortion. To see this, note that given the monopolist’s tuition
scheme, the subgame is indeed a Spence’s signaling game as if the worker’s cost function
was given by T'(z) + C(z, 0); thus, the signaling effect induces the worker to “over-invest” in
education in terms of total cost. The signaling incentive reduces the worker’s willingness to
intimate lower types, thus the worker extracts lower information rents than when signaling is
absent. To illustrate, suppose that the labor market can observe the worker’s ability, thereby
eliminating signaling. As a result, we return to Rochet and Stole (2002) or Yang and Ye
(2008). In this case, the IC constraint is given by V/(0) = Sg(z(0),0). In contrast, in the
current environment, it is given by V'(6) = Cy(2(6),0) < Sg(z(0),0). This reveals that the

monopolist leaves lower information rents to the worker when signaling is present.

Recall that y measures signaling intensity: the larger ¥ is, the more intense signaling is.
Thus, if ¥ is relative big, then the screening distortion can be mitigated to a relatively great
extent. Specifically, if the market has only the partially covered range, then it can be easily
verified that the ratio z(8)/z/?(8) is increasing in y for all 8, and arrives at 1 when y = 1;
that is, the effects of market penetration and signaling can exactly offset that of screening,

thereby restoring the first-best allocation.

At first glance, it may be surprising that under asymmetric information, the monopolistic
profit-maximizing pricing can be welfare-maximizing. To see the intuition, note that if the
market contains only the partially covered range, then the marginal profit of each type 0 is

given by [S(z(0),0) —V(0)]V(0)/k. Suppose that the monopolist can observe the worker’s
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vertical type, then the optimal contract (z*(0),V*(0)) is simply given by z*(8) = z/*(8) and
V*(0) = S(z/*(8),0)/2. This is because V = §/2 maximizes the marginal profit for any S
and z*(0) = z/*(6) maximizes S(z,0). However, even without the ability to contract on 8,
such an allocation can still be implemented without violating the IC constraint V/(0) = z(0)
when Y = 1. In contrast, in the contracting problems of Rochet and Stole (2002)) and Yang
and Ye (2008), the first-best can never be fully achieved. Suppose not, then z*(8) = z/*(8)

on [0, 1]. It follows from the envelope theorem and the associated IC constraint that
0
5*(68) = S(z/(6),6) :/ Se(z/%(s),s)ds = V*(8).
0

Thus, the marginal profit is always zero, which cannot be optimal. Again, this is due to that

the monopolist supplies more information rents when signaling is absent.

It is worth noting that when y = 1, the worker’s productivity and cost heterogeneities
are equally significant (i.e., Q.9 = C,g). Since the lowest type is totally unproductive, at the
social optimum, each type’s social surplus is exactly twice his information rent, as is shown
in the above. Thus, the first-best can be fully achieved if the market has only the partially
covered range. Moreover, it can be easily verified that in equilibrium the signaling effect
that is measured by Qg - 6’(z) equals the marginal tuition 7”(z). This implies that when the
market contains only the partially covered range, the monopolistic optimal tuition scheme
levies Pigovian tax on signaling, which undoes the signaling effect and thus restores the
first-best. In contrast, in Lu (2018)), the market has only the fully covered range; thus, the
optimal tuition scheme “over-taxes” signaling and leads to a downward distortion.

Going forward, I turn to the case in which y > 1. When k < %, we have 95 > 0,

i.e., the vertical market is partially covered. Thus, the equilibrium contract is characterized

2(y+3)
(y+1)2°

fully covered. In this case, the equilibrium contract in the fully covered range is also given

by Proposition 2.1; thus, the boundary conditions V (6;) = § and V(6;) = (%2)# remain.

by Proposition 2.1. In contrast, when k > we have 65 <0, i.e., the vertical market is

However, the initial state V(0) is now free. This means that the adjoint variable A satisfies:
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Figure 2.2: A Convex Solution in the Monopoly Observed Case

A(0) = OE It follows that efficiency occurs at the bottom, i.e., z*(0) = z/?(0) = OE This

yields an extra boundary condition: V(0) = 0. In summary, when k > %, the optimal

contract in the partially covered range is given by the solution to the following problem:

(y+3)V —=2VV —V? =0,

51 V(0) =0, V(6)) = %, V(6)) = (”2)#.

Note that this is not a standard boundary value problem (BVP), as the boundary conditions
involve an endogenous endpoint 0;. As far as I know, no existing BVP theorem can be
applied directly to show the existence and uniqueness of the solution to this problem, not
mention deriving an analytical solution. In this regard, I solve the problem using numerical

methodsm In Figure 2.2, panel (a) depicts a convex solution V(0) when y =2 and k = 2,

and panel (b) depicts the associated tuition scheme 77 (z).

128ee Seierstad and Sydsaeter (1986, p. 185-186) for details.
3Rochet and Stole (2002) provides an intuitive discussion about efficiency at the bottom in its Appendix.

14The MATLAB code for all numerical calculations of this paper is available upon request.
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Figure 2.3: Over-Education at the Low End

The equilibrium outcome has a salient feature: that is, when the unit transportation cost k
is sufficiently large, over-education occurs at the low end of the spectrum of 6. Moreover, if
the market contains the fully covered range, then there exists a cutoff type such that all lower
vertical types obtain more education than the first-best, whereas the others obtain less than
the first best. This is illustrated in Figure 2.3 which assumes the same numerical example as

in Figure 2.2. To summarize, we have the following proposition:

Proposition 2.2. Suppose that v > 1, then for sufficiently large k, if the market contains both

the partially covered and fully covered range, then there exists a cutoff 6 € (0, Olm ?), such

that 7" (0) > z/*(0) on (0,0), whereas 7 (0) < z/*(8) on (0,1).

As is depicted by Figure 2.3, 7 () is single-crossing z/?(0) from above in the interior
of the partially covered range. The intuition for over-education occurring at the low end is
that when y > 1, signaling is relatively intense; if the transportation cost is relatively high,
then to gain market share, the monopolist charges low prices, especially at the low end of the
vertical market. As illustrated in panel (b) of Figure 2.2, the tuition scheme is flat and close
to 0 for low education levels. Thus, at the low end, signaling outweighs screening, leading to
over-education. In addition, from Figure 2.3, 7”°(6) is bounded above by z*(0) which is the
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equilibrium education function in Spence’s model. Intuitively, since tuition is fixed at zero,
education is the least costly in Spence’s signaling game, compared to other models; thus, the

worker obtains the highest education level in Spence’s model.

I am interested in the effects of the unit transportation cost k on allocation, in particular,
on the (vertical) market coverage and quantity distortion. Similar to Yang and Ye (2008),
k measures the degree of horizontal differentiation: a larger k means that the two schools
are more horizontally differentiated. Following directly the previous analysis, Corollary 2.1
below shows that when the fully covered range exists and the vertical market is not fully
covered, as horizontal differentiation increases, the monopolist raises the market coverage,
offers more rents, and reduces the downward distortion in education level. When horizontal
differentiation is eliminated, i.e., k = 0, the equilibrium outcome coincides with that of the

observed case of Lu (2018)). Formally, we have:

Corollary 2.1. In the monopoly observed case, when k is such that 6(')ﬂ ° >0, 9{" ° <1, as
k increases: (i) 2" (0) increases on 8 € (6),0,"] but remains the same on (6{",1]; (ii)
V™o (0) increases for 0 € (6y°,1]; (ii) the market coverage [0, 1] enlarges, whereas the
fully covered range [9{" ° 1] shrinks. If k = 0, then the equilibrium outcome coincides with

that of the observed case of Lu (20185).

Intuitively, as horizontal differentiation rises, to maintain market share in the partially
covered range, the monopolist has to provide the worker with more rents, which, according
to Lemma 2.1, can be achieved by either raising the market coverage, i.e., reducing 6, or
supplying more education. The optimal allocation requires a balance between these two
approaches. Corollary 2.1 shows that both methods will be employed in equilibrium when k&
increases. Corollary 2.1 also states that as k increases, the fully covered range shrinks. This
is because the switching type 0;’s education level is pinned down by the IC constraint in
the fully covered range, which does not directly depend on k; as education levels increase in
the partially covered range, 6; must be higher accordingly. In other words, as the fixed fee

(opportunity cost) of attending school kd; increases, the marginal consumer 6; must have a
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higher valuation for education.

2.3.2 The Unobserved Case

Now, I turn to the unobserved case. Since I consider symmetric equilibrium, I assume that
the labor market offers the same wage to both schools’ student for a given education level,
thereby allowing me to drop the subscript of the wage schedule. Then, given some wage

schedule W (z), the monopolist solves:

o V(6) ! |
max/e0 [W(z(68)) —C(2(0),0) —V(0)] Td0+ 6 W(z(8))—C(z(0),0)—V(0)] Zde

(. J/

Phase I: partially covered range Phase II: fully covered range

k
5.t.V'(0)=2(0),7(0) >0, V() = 1
If further 6y € (0, 1], then we have V (8y) = 0; otherwise, as in the observed case, we have to

choose V(6y) optimally.

Similarly to the observed case, define the Hamiltonian of the two phases as follows:

Hi(z,V,1,0) = [W(2) —C(z,0) —v]% 42z,

Hy(z,V,A,0) = [W(z) —C(z,0) — V];l + Az,

The key difference from the observed case is that here W (z) is endogenously determined by
the equilibrium conditions. Suppose that the school-optimal separating equilibrium exists,
and let (z*(0),V*(0)) solves the monopolist’s problem, then from the Maximum Principle,

we have the following first oder conditions (F.O.C.):

(%Hl (2'(6).V"(8).1(8).6) = W'("(8)) - C:("(8).0)) 2 1 2(6) =0,
%sz*(e),v*(exue),e) = W'((8)) ~ C:(°(6), 0)] ; +A(6) =0,
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along with the evolution rule for A:

A(0) = —=—H;(z*(6),V*(0),A(0),0), i=1,2,

v
and the transversality condition A (1) = 0.

Moreover, in equilibrium, the market belief should be correct: W(z*(0)) = Q(z*(0),0).
Thus, W/(z*(6)) = 0.(z*(0),0) + Qg (z*(6),6) - 6*'(z). Combining these conditions and
substituting the model assumptions, we obtain an autonomous ODE for Phase I:

YWVV
72

W2

(2y+3)V — —2\7V+7 —V2=0. (2.5)

To solve (2.5), I first consider the case in which the vertical market is partially covered, i.e.,
65 < (0,1], and thus, V(6;) = 0. Given this boundary condition, it can be verified that the

solution to (2.5) is given by

_4y+3
8

(0-65)% 2°(0) = ———(6— 6);

v (6) -

consequently, the wage schedule in Phase I is given by

* 4 *
W*(z) = 4y13z2+(y60+1)z,

where the lowest participating type 6 remains to be determined.

Then, I consider Phase II. Because A'(0) = }1 and A(1) =0, A(8) = % in Phase II.
Substituting A (6) and the condition W (z) = Q(z,0(z)) into the F.O.C. for z in Phase II, we
obtain the following ODE:
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The general solution to this ODE is given by

2 1
W(z) = LA (r+ )z+c-z,
Y+1 Y+2

where c¢ is some parameter. To fully characterize W(z), we need to pin down c. As is argued
previously, the current model converges to Lu (2018) as k — 0. Thus, I apply Lu (2018,
Poposition 5.1) to the current model, assuming that k = 0, and conclude that ¢ = 0. As such,

we have fully characterized W (z) for Phase II.

It thus follows that in Phase II, V*(60) and z"(6) are given by

2 Y+2

T Bor), 2 (0) = (r+ (60— ——)

V(e
() Y+2

where (6;") depends on the optimal switching type 6;" that remains to be determined. Then,

from smooth pasting and the condition V(6;) = f‘T, 0 and 6 are thus given by

L1 2(4y+3)k .1 2(4y+3)k
0" yr2 4(y+D)@y+3) ' y+2 " Ay+1)

(2.6)

Substituting 6;°, we have that in Phase II, V(0) is given by

(ry+1)(6+6;) 7y+1
4 Y+2|

Vi(0) =5 +(0-67)

o e 8(y+1)? 8(y+1)*(r+3) « £ 1.
In addition, from (2.6), if @) 12 <k< Gy then 65 > 0 and 6; > 1; thus,
Phase I exists, whereas Phase II is never entered. In this case, 6 is pinned down by the
transversality condition A (1) = 0, such that 6 = 27/% > 0. Thus, for any £ > 0, we have

6, > 0, that is, the vertical market is always partially covered.

Since z*(0) is increasing in both Phase I and II, and the initial condition is optimally
chosen, we obtain the school-optimal separating equilibrium. Let (z"(8),V"(0)) be the

equilibrium contract in the unobserved case under monopoly, and 6;™ and 6;™ be the lowest
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participating type and switching type, respectively. I summarize the equilibrium education

allocation of the unobserved case in the proposition below.

Proposition 2.3. For any y > 0, in the monopoly unobserved case, the symmetric school-
4
optimal separating equilibrium exists. Specifically, for k € (0, %),

W9 _gm)  ifeM <o < oM
M (0) = 4 0 0 = 1

(y+1)6—-15 iref <o <i,

8(y+1)*

where 9(')" “and 0{™ are given by 6 and 0 in (2.6), respectively. For k > Sy

_ 4y+3

() =1

(6 —6™), if " < 6 <1,

where 6y = TIJFS It follows that there exists a cutoff 6 € (85, 1), such that 2"(8) < z/*(0)

on (6)",8), whereas 7™(6) > z/*(0) on (8,1).

As is immediately implied by Proposition 2.3, the degree of horizontal differentiation
that is measured by k has similar effects on education supply, the worker’s gross utility and

the market coverage as in the observed case. Specifically, we have the following corollary:

Corollary 2.2. In the monopoly unobserved case, when the market has the fully covered
range, as k increases: (i) 2™ (0) increases for 6 € (8™, 0,"] but remains the same for 6 €
(6], 1]. (ii) V"™«(8) increases for 6 € (6,™,1]; (iii) the market coverage (8™, 1] enlarges,
whereas the fully covered range [0)",1] shrinks. If k =0, then the equilibrium outcome

coincides with that of the unobserved case of Lu (201§)).

I am interested in the difference in allocation between the observed and unobserved case.
Proposition 2.3 shows that in contrast to the observed case, in the unobserved case, both
under-education and over-education occur in equilibrium. Specifically, there exists a cutoff

type such that all lower types obtain less education than the first-best, whereas the others
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obtain more than the first best. The next proposition shows further that in the unobserved
case, the (vertical) market coverage is smaller than that of the observed case, whereas the
fully covered range is larger in the unobserved case. Moreover, there exists a cutoff type
in the partially covered range of the unobserved case, such that all lower types obtain less
education in the unobserved case than in the observed case, whereas the others obtain more

education in the unobserved case. Formally, we have:

Proposition 2.4. For any v,k > 0, 96" > 9(')" ° and 9{" <L 9{” °, Furthermore, there exists a
cutoff 6 € (63"™,0/™), such that z"(8) < 2" (0) on (65, 0), whereas z"(6) > z"(6) on

0, 1]. The length of the interval (8], 0) is increasing in k, and vanishes as k — 0.
0

Proposition 2.4 states that education levels are always higher in the unobserved case than
in the observed case within the fully covered range of both cases. This result generalizes
that of Lu (2018]) in which the market contains only the fully covered range in both cases,
and thus, the worker obtains more education in the unobserved case than in the observed
case. As in Lu (2018), this result is driven by a signal jamming effect. Specifically, in the
unobserved case, since the labor market cannot observe the actual cost of education, it does
not know whether a difference in education level is caused by a tuition change or worker cost
heterogeneity. Suppose that the monopolist lowers tuition so that the worker obtains more
education than in the initial state. When the labor market observes the tuition scheme, it cuts
wages, since any education level now corresponds to a lower-ability worker. This dampens
the worker’s demand for additional education. In contrast, when the labor market does not
observe the tuition scheme, it does not adjust wages despite that tuition changes. Thus, the
demand for education is more elastic in the unobserved case. This provides the monopolist
with an incentive to secretly supply more education and persuades the labor market that the
worker is more productive than is actually the case. Since in the observed case efficiency
occurs at the top, over-education must occur at the high end in the unobserved case, as
is predicted by Proposition 2.3. In equilibrium, the labor market correctly anticipates the
monopolist’s incentive and offers lower wages, as education is inflated.
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Figure 2.4: Education Comparison between the Observed and Unobserved Case

Furthermore, Proposition 2.4 reveals a significant distinction between Lu (2018]) and the
current model. That is, an interval of vertical types at the low end obtain more education in
the observed case than in the unobserved case; the length of this interval is increasing in the
degree of horizontal differentiation and vanishes as the degree approaches zero. Intuitively,
when horizontal differentiation rises, to maintain the market share in the partially covered
range, the monopolist offers the worker more rents by increasing both the market coverage
and education levels. However, the increase in education supply is smaller in the unobserved
case than in the observed case, especially at the low end of the market. This is because if
the monopolist allocates the same education level to lower types as in the observed case,
then the monopolist should allocate more education and leave more rents to higher types to
remain incentive compatibility. But since those higher types already obtain higher education
levels than in the observed case, supplying more education to them is not profitable. Thus,
an interval of lower vertical types obtain less education in the unobserved case than in the
observed case. As horizontal differentiation increases, this interval enlarges, meaning that
the market coverage is larger in the observed case at any degree of horizontal differentiation.
Propositions 2.3 and 2.4 imply that the education function is steeper in the unobserved case

than in the observed. These features are illustrated in Figure 2.4.
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Proposition 2.4 implies that an interval of lower vertical types obtain lower gross utility
in the unobserved case than in the observed case, whereas the others obtain higher gross
utility in the unobserved case, and the length of this interval is increasing in the degree of
horizontal differentiation. Similarly, the tuition scheme in the unobserved case 7" is higher
than that in the observed case 7" at the left tail of the common domain, such a region is also
increasing in horizontal differentiation. These results differ from that of Lu (2018]) in which
tuition rates are uniformly lower and the worker is always better-off in the unobserved case

than in the observed case. To summarize:

Proposition 2.5. For any v,k > 0, there exists a cutoff 6 € (65", 1), such that V"« (8) <
V™e(8) on (85, 0), whereas V™(8) > V™ (0) on (0,1]. The length of the interval (6", 0)
is increasing in k, and vanishes as k — 0. Furthermore, there exists a cutoff 7 € (0, 1), such
that T™(z) > T™(z) on (0,Z), whereas T"™(z) < T™(z) on (Z,1]. The length of the interval

(0,2) is increasing in k, and vanishes as k — 0.

From Corollaries 2.1 and 2.2, we have that the worker’s gross utility is increasing in the
degree of horizontal differentiation in both the observed and unobserved case. This means
that if the worker is close to either school, i.e., min{d;,d,} is small enough, then his net
utility is also increasing in the degree of horizontal differentiation. Intuitively, as horizontal
differentiation increases, the worker’s value for education becomes more dispersed, which
corresponds to a clockwise rotation in demand (Johnson and Myatt 2006). Consequently,
the monopolist lowers prices as the marginal consumer’s willingness to pay is lower. This
benefits the infra-marginal consumers who are close to either school. Proposition 2.5 thus
implies that a low-ability worker who is close to either school benefits more from the rise in
horizontal differentiation in the observed case than in the unobserved case. This is because,
as is pointed out in the previous argument, the demand for eduction is more elastic in the

unobserved case than in the observed case.
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2.4 Duopoly

In this section, I consider a duopoly education market in which each school chooses its own

contract to maximize its expected profit, given the other school’s contract. The purpose of

this section is to investigate the effects of market competition on education supply and the

market coverage, compared to the monopoly benchmark, for the observed and unobserved

case separately. For ease of comparison, I focus on the case in which the vertical market

is partially covered in the monopoly case. As such, I assume throughout this section that
2(r+1)? 2(y+3)

k < k :=min {W’ W} As in the monopoly case, I consider symmetric equilibrium.

I start the analysis with the observed case.

2.4.1 The Observed Case

Suppose that a symmetric equilibrium exists, such that both schools choose an identical
contract (z*(0),V*(0)). Thus, given the other school choosing (z*(6),V*(0)), school i’s
best response is to choose (z;(0),Vi(0)) = (z"(0),V*(0)). Given its expected profit in (2.2),

school i’s problem can be stated as

s [ 50).0) - v0) Wi+ ['15(0(0).0 v [1+ KOV )

N J/

Phase I: the local monopoly range Phase II: the competition range

1. V/(0) =2(0). £(0) > 0, Vi(6) +V"(6) = &
If further 6y, € (0, 1], then V;(6,) = 0; otherwise, V;(6p,) is free. Analogously, let us define

the Hamiltonian of the two phases and substitute S(z, 0), then we have:

Vi
Hi(2i,Vi, A, 0) = [(y+1)6zi — 27 —VilT 23

1 Vi—-Vv*
HalanVid,8) = [+ 0953V (4 M50 ) + 22,

4 2k
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Note that Phase I is exactly the same as that in the monopoly case. If 8y, € (0, 1], then

the solution to Phase I is also given by:

vie)="0 -6 < (0)= T (0 - 6p).

Then, I consider Phase II. By the Maximum Principle, we obtain the necessary conditions:

combined with the transversality condition A (1) = 0. Eliminating A (0) from the above two

equations, we obtain the following ODE:

V= %2 - l[(wr DOV —v*2—v*|.

In equilibrium, V;(0) = V*(0), and thus, V*(8;) = %. From smooth pasting and the solution
to Phase I, we have V*(0;) = z*(0) = —VZ(ZH)]{. In addition, A (1) = 0 implies that V*(1) =
Z*(1) = %1 Thus, the existence of equilibrium reduces to the existence of 6; € (0, 1] and

the existence of a convex solution V(6) over [0, 1], satisfying:

V:T %[(yﬂ)ev VZ_V] (2.7)
k 273k I
s1.V(0) = 5, V(8) = #, V(l):%.

Note that (2.7) is not a standard BVP, as it involves an endogenous endpoint 0;. As
far as I know, no existing BVP theorem can be applied directly to show the existence and
uniqueness of the solution to this problem. The oder-reduce techniques introduced by Rochet
and Stole (2002) and Yang and Ye (2008) cannot be applied to (2.7) either. In this regard,
I solve problem (2.7) using numerical methods. Let (z%(6),V%(8)) be the equilibrium
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Figure 2.5: A Convex Solution in the Duopoly Observed Case

contract in the duopoly observed case, and 951" and 91d” be the lowest participating type and
switching type, respectively. In Figure 2.5, panel (a) depicts a convex solution V% () when
Y= 1 and k = 1, along with the worker’s gross utility under monopoly V" (0); panel (b)
depicts the associated tuition scheme 7% (z), along with that of the monopoly observed case
T™o(z). It turns out that under duopoly, tuition is lower and the worker obtains higher utility

than under monopoly. I now summarize the equilibrium education allocation as follows:

Proposition 2.6. Suppose that k € (0,k), then in the duopoly observed case, the symmetric

school-optimal separating equilibrium exists, such that

3 (o ’ (o 0
0oy il <o<of
Vdo(6) ifed <o <1,

where V% (0) and Ofl" are the solution to problem (2.7), and 961" = Old” — A /%.

Proposition 2.6 implies that under duopoly, the equilibrium is discontinuous at k = 0.
When k = 0, the equilibrium is a Bertrand-Spence equilibrium in which tuition is pushed
down to 0 due to a symmetric Bertrand competition, and thus, the market is fully covered

and the education selection is predicted by Spence’s model. However, since social surplus is
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Figure 2.6: The Impacts of Market Competition in the Observed Case

close to O for sufficiently low types, so long as k > 0, each school becomes a local monopoly
for those types. Thus, each school finds it profitable to exclude some very low types from
education. Since the threshold is endogenously determined, it leads to distortion for infra-
marginal types. In contrast, in Armstrong and Vickers (2001) and Rochet and Stole (2002),
the lowest type can generate sufficiently high social surplus, thus, when the market is fully
covered, both competing duopolists offer a cost-plus-fee tariff. This is because given that the
competitor chooses such a pricing strategy, each duopolist finds it more profitable to make

an efficient offer with a higher fixed fee than any inefficient offer.

Going forward, I investigate the impacts of market competition on education supply and
the market coverage. The next proposition shows that in contrast to the monopoly case, both
education supply and the market coverage are higher under duopoly. This is illustrated in

Figure 2.6. A similar result has been obtained by Yang and Ye (2008).

Proposition 2.7. Given k € (0,k), we have 961” < 63" and z%(0) > 7" () for 6 € (Gg”, 1).
It follows that in contrast to the monopoly case, more worker types (in terms of both vertical

and horizontal type) receive education, and each participating type obtains higher net utility.

Intuitively, under duopoly, the two schools compete with each other in the fully covered

range by providing the worker with more rent than in the monopoly case, thereby extending
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the fully covered range. Moreover, this relaxes the IC constraint. Specifically, each school
fears less about allocating more education to lower types thereby providing higher types with
more rent, as higher types will enjoy more rent anyway due to market competition. Hence,
the schools increase education supply for all participating types, and include some of those

who are not served in the monopoly case.

2.4.2 The Unobserved Case

Now, I turn to the unobserved case. Suppose that a symmetric equilibrium exists, in which
both schools choose an identical contract (z*(0),V*(0)), and the labor market offers the
same wage schedule W*(z) for both schools’ student. Given the wage schedule W*(z) and

that the other school chooses (z*(6),V*(6)), the school’s problem can be stated as

max [ 6 W (2(0)) ~C(<i0). 0) ~vi(0)] Lo

(. J/

Phase I: the local monopoly range

[ w0 - o0 vio): [§ + 1O TV g

J/

Phase II: the competition range

5.0 V/(8) =2(6), 2(8) >0, Vi(6)) +V*(61) = g

If further 6y, € (0, 1], then V;(6,) = 0; otherwise, V;(6p,) is free. Analogously, let us define

i

the Hamiltonian of the two phases and substitute S(z, 0), then we have:

Vi
Hi(z;,Vi,A,0) = [W*(z;) — C(z;,0) _Vi]? + Az,

1 V-V~
ol Vi, 0) = V() ~ C(a.0) -V (;+ V5 ) + 2

As in the observed case, Phase I coincides with that in the monopoly case. If 6, € (0, 1],
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then the solution to Phase I is also given by:

4y+3
8

4y+3

Vi(0)= (6 -6;) *(6) = —5 (06— 6).

Then, I consider Phase II. By the Maximum Principle, we obtain the necessary conditions:

( (0))—27(0)—1+6 -%+7L(9),
1

(W*(z(8)) —2%(8) — (1 - 6)z(8) —V*(8)],

combined with the transversality condition A (1) = 0. Moreover, the correctness of market
belief means that W*(z) = Q(z,0(z)). Then, substituting W*(z) and eliminating A from the

above two equations, we obtain the following ODE:

— (Y+2)V* 4 (y—2)V*2 +3 %

V : — 1oV +Vv*v*|.
yV* Yk | V* (r+1) +

In equilibrium, V;(0) = V*(0), and thus, V*(0;) = %. From smooth pasting and the solution
to Phase I, we have V*(0;) = z*(0;) = —W. In addition, A (1) = 0 combined with the

F.O.C. for z implies that W* (z(1)) —2z(1) = 0, meaning that % = 7+ 1. Thus,

the existence of equilibrium reduces to the existence of 6; € (0,1] and the existence of a

convex solution V(0) over [0, 1], satisfying:

2V r=2V2 2 VWV ey v (28)

V= :
144 Yk |V

2(4y+3)k [y—2v(1)]v(1)
4 ! V(1)

k .
S.t.V(@l):Z, V(6)) = =7v+1.

Clearly, there is no closed form solution to (2.8) in general. Thus, I solve (2.8) numerically.
Let (z%(0),V%(8)) be the equilibrium contract in the duopoly unobserved case, and 661” and
6{1 “ be the lowest participating type and switching type, respectively. In Figure 2.7, panel (a)

depicts a convex solution V% (@) when y = 1 and k = 1, along with the worker’s gross utility
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Figure 2.7: A Convex Solution in the Duopoly Unobserved Case

under monopoly V" (0); panel (b) depicts the associated tuition scheme 7 (z), along with
that of the monopoly unobserved case 7" (z). Similar to the observed case, under duopoly,
tuition is lower and the worker obtains higher utility than under monopoly. I now summarize

the equilibrium education allocation as follows:

Proposition 2.8. Suppose that k € (0,k), then in the duopoly unobserved case, the symmetric

school-optimal separating equilibrium exists, such that

W —g%) el <o <o
Zd”(e) _ .4 0 0 1
Viu(6) ifel <o <1,

where V4(0) and 6{1” are the solution to problem (2.8), and 961” =0," —, /45%.

As in the observed case, the equilibrium is discontinuous at k = O in the unobserved
case. This is because when k = 0, the equilibrium is a Bertrand-Spence equilibrium as in the
observed case. But so long as k > 0, both schools become a local monopoly for sufficiently
low types. Consequently, both schools find it profitable to exclude some very low types and

thus induce distortion for infra-marginal types.

In addition, I am interested in the impacts of market competition on education supply
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Figure 2.8: The Impacts of Market Competition in the Unobserved Case

and the market coverage in the unobserved case. Unfortunately, I cannot obtain a clear result
rigorously. This is mainly due to that in the unobserved case under both monopoly and
duopoly, the highest type’s education level is not fixed at the first-best but is determined
endogenously in equilibrium. Thus, the method in the proof of Proposition 2.7 cannot be
applied, and I cannot derive any result from the corresponding ODEs either. Figure 2.8
illustrates a numerical example assuming that Y = 1 and k£ = 1. It turns out that education

supply and the market coverage are indeed higher under duopoly than under monopoly.

The intuition of Figure 2.8 deserves some comments. Suppose that both schools retain
the contract of the monopoly case, and thus, the labor market offers the same wage schedule.
Then, given the other’s contract, each school has an incentive to supply more education. The
reason is twofold. First, as in the observed case, each school has an incentive to supply more
education to steal the market share from the other in the competition range. Second, since
the labor market does not observe the actual tuition scheme, supplying more education can
induce the labor market to regard the worker as having higher ability, thereby increasing the
worker’s willingness to pay. Thus, both schools will rise education supply in the competition
range. This in turn relaxes the IC constraint for lower types. Since the signal jamming effect

also exists in the local monopoly range, each school will supply more education in this range,
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and will also include some of those who are not served under monopoly. A noticeable feature
of Figure 2.8 is that the increase in education supply is relatively small at the high end of
the market. A possible intuition is that both schools already allocate too much education,
compared to that in the observed case, to these types under monopoly. Thus, the schools find

it less profitable to allocate more education to those high types.

2.5 Conclusion

In this paper, I studied nonlinear pricing for horizontally differentiated products that provide
signaling values to consumers, who choose how much to purchase as a signal to the receivers.
I characterized the optimal symmetric price schedules under different market structures. The
equilibrium depends critically on whether the receivers observe the sellers’ price schedules,
as well as on the market structure. Under monopoly, when the receivers observe the price
schedule, the market is partially covered, and quantity is downward distorted if there is
little horizontal differentiation. As the degree of horizontal differentiation rises, the market
coverage rises, and the downward distortion decreases. When the degree is sufficiently high,
for some intermediate level of signaling intensity, the monopolistic allocation achieves the
first-best; for higher signaling intensities, quantity is upward distorted at the low end. In
contrast, when the receivers do not observe any price schedule, the market is always partially
covered, and the allocation is more dispersed than that in the observed case. When the market
structure changes from monopoly to duopoly, market competition results in a higher market

coverage and larger quantities for both the observed and unobserved case.

By studying the products that provide signaling values to consumers who possess private
information, my model obtains qualitatively different welfare implications from standard
competitive nonlinear pricing models. Moreover, this framework allows us to examine the
interaction between horizontal competition and the transparency of pricing, and to assess the

joint effects of these two forces on the equilibrium allocation and welfare.
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2.6 Appendix

2.6.1 Omitted Proofs
Proof of Proposition 2.4.

Proof. Since for any v,k > 0, 65" > 0, we only need to focus on the case in which both 6"

and 6y are positive. I first prove that 8" > 6;". From (2.4) and (2.6), we have

o — Qe — (y+DV20r+3)k  2(4y+3)k

2(r+2)(v+3)  4(y+1)(4y+3)

o+l 2k |, __v+2 y+3
2(y+1)2\ 4y+3

C2(r+2) | v+3
It can be easily verified that the value of the above bracket is positive for any y > 0. Thus,

{_ 2(y+1) [ y+3
y+2 \/ 4y+3

It can be easily verified that the value of the above bracket is negative for any ¥y > 0. Thus,

we have 6" > 6. Similarly, we have

2(4y+3)k
4(y+1)

ny my __
91 o 91 -

we have 8, < 6" This completes the proof of the first statement.

Then, I prove that there exists a cutoff 8 € (6], 6{™), such that " (6) < () on
(65, 6), but Z™(0) > z"(6) on (8,1]. From Propositions 2.1 and 2.3, 2™ (1) > z™(1).
Since 2™ (6,™) = 2" (6;") = 0 and 6™ > 6", we have that z*(8) crosses 2(0) at least
once. Let 6 be one of the intersecting points. I will prove that € (96” “,0,™). Suppose not,
then we have 6 € [6]",1). We shall consider two cases: (i) 8 € [6;™,0]"); (ii) 6 € (6;",1).

Suppose that (i) holds, then we have

Y Y43

oyt
16 —
(18- 5 ="

<
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It follows that

~ 4744 1
b =""""(_—__1)<0
0 3y+1(y+2 )< ’

leading to a contradiction. Then, I consider (ii). Suppose that (ii) holds, then we have

o+l (r+2)6 1

y+2 2 2

(y+1)6

It follows that § = ﬁ < 0", leading to a contradiction. Thus, we have 0 c (6™, 6™). It
remains to show that such a @ is unique. To see this, note that z%(8) > z"(8) on (6,1),
as 6 € (6)™,0;™). Since 7"(8) = z"(8), ™(0) is single-crossing 7™ (0) from below at
6. This completes the proof of this statement. Finally, note that both 6, and 6, converge

to ﬁ as k — 0. Thus, (65", 0;™) vanishes as k — 0. The proposition is thus proven. 0

Proof of Proposition 2.5.

Proof. 1 first prove that there exists a cutoff 6 € (6™, 1), such that V" (8) < V" (6) on
(6',8), but V"™(6) > V™ (6) on (6,1]. From Lemma 2.1, we have

k L k L

V() =~+ [ 7"(0)d0 >+ [ 2m(8)de =V™Me(1).

4 elrnu 4 9{"0
The inequality is due to that ™ < 6" and z”(8) > z"(8) on (63", 1) from the proof of
Proposition 2.4. Since V""«(6,™) =V"(6,") =0and 65" > 6;", it follows from Lemma 2.1
and the single-crossing between z”(0) and " (60) that V" (0) is single-crossing V" (0)

from below at some 6 € (6y™,1). This completes the proof of this statement.

Then, I prove that there exists a cutoff Z € (0,2 (1)), such that 7«(z) > T™(z) on

(0,Z), but T™«(z) > T"™(z) on (Z,2"(1)]. Let 8’ be the cutoff such that z(8) < z(0) on
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(8,6"), but 2" (8) > 2™ () on (6’,1]. From the worker’s F.O.C. in both cases, we have
W (2) = T (2) = Ce(z, 0" (2))  W"(0) = T"(2) = Ce(z, 0™ (2)).
Integrating both differential equations from 0 to z”(1), we have

W (2% (1)) =T (2" (1)) = C(Z"(1),1),
W™ (1)) = T™ (2" (1)) = C(Z" (1), 6™ (" (1))).

According to Proposition 2.4, 6™ (z™ (1)) < 1. Since W™ (z) = Q(z,0™(z)) and W™« (z) =
0(z,0™:(z)), WMo (" (1)) > W™u(z"(1)). Also, since C,g < 0, C(Z"(1),0™ (M (1))) >
C(Z™(1),1). It thus follows that 7" (™ (1)) > T™(z"(1)).

Moreover, since 2™ (6) < z"(6) on (63", 8’) and both z™(8) and 7 () are increasing,
6™u(z) > 6™ (z) on (6", 0’). Thus, C,(z,0™(z)) < C;(z,6™(z)) on (85, 6"). It follows
that W (z) — T™«(z) < W™ (z) — T"(z) on (0,2 (0")]. Since W (z) = Q(z,0"(z)) and
Wu(z) = Q(z,0™(z)) on (0,2 (8")], W™ (z) > W™(z) on (0,z"(8’)]. Thus, it is readily
confirmed that 7(z) > T"(z) on (0,z"(")]. However, since T (" (1)) > T™« (7" (1)),
continuity implies that 7" (z) must intersect 7" (z) at some Z > 7" (8"). It remains to prove

that such 7 is unique. To see this, note that for both the observed case

T (2) = S(z,0™(2)) — V"™ (6™ (2)),

Tmu (Z) — S(Z, Gmu (Z)) _ Vmu (emu (Z))
Differentiating both equations with respect to z, we have

T"(2) = S2(2,6"(2)) +So (2, 6™ (2)) - 0"(2) = V"> (8" (2)) - 6" (2)
T"(z) = S.(z,0™(2)) + So(z,0™(2)) - 0™ (z) — V"™ (8™ (2)) - ™(z).
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Substituting S(z, 0) into the above equations and note that V/(0) = z(0), we have

T"(z) = (y+1)0™ (2) — 2z -+ yz- 0™ (2),

T"(z) = (y+1)0™(z) — 22+ yz- 0" (2).

Since Z > 7 (8'), for any z € (%,2"(1)), we have 8™ (z) > 8™(z) by the definition of
6’. From the proof of Proposition 2.4, we have z(6) > z"(6) on (6y™,1). This implies
that 6™ (z) > 6™(z) on (0,2 (1)). Thus, we have T (z) > T"™u(z) on (Z,2"(1)). Since
T™o(zZ) = T™x(Z), such Z must be unique. The statement is thus proven. The rest part of the

proposition follows immediately from Proposition 2.4. Thus, Proposition 2.5 is proven. [

Proof of Proposition 2.7.

Proof. 1 first prove that 661" < 6. Suppose not, then Qg" > 6,". Note that Bld o — 661" =

07" — 0y = | /%, thus Qld ° > 6/". From Propositions 2.1 and 2.6, we have

2(y+3)k

do _ Sy 0\ —
() =" (0) = =

/

Since 8% > 6™, for 6 € [8]™, 6], 7" (6) = %2 This implies that 27 (61%) > 74 (8%).

Moreover, from (2.7), we have that for 8 € [91‘10, 1],

2 (0) = %2 - %[(w 1)62%(8) — 2% (8) — v (0)]
y+2 1 , ,
= — £ [5("(6),0) -V (0)]

In equilibrium, each school must gain positive profit for each type in the fully covered range,

ie., S(z%(8),0) > V%(0) for @ > 8. Thus, we have that for 6 € [0, 1],
d m’ o
20(0) < "0 (0) = L=
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Since 7 (6,°) > zdo(Gld ?), we have 7 (1) > z%(1). This contradicts the fact that 7" (1) =

2% (1) = z/*(1). Thus, we have 65° < 6,". This also implies that 8% < .

Then, I prove that z%(8) > 7 (6) on (Gg”, 1). First, consider 6 € (961”, Gld”]. Since
on this interval z”¢(8) = z% (@) and 6 < @' = %2, we have z%(0) > 7™ (8) for all
0 < (8, 0:]. Second, consider 8 € (8, 6/"]. Since z%(0{”) = 2 (]") and both z% ()
and 7" (@) are increasing, we have z%(0) > 7 (@) for all 8 € (9{1 °,0/"]. Finally, consider
6 < (6], 1]. Due to the above analysis, we have z%(8) < z(8) on (8], 1]. Since 2 (1) =
29 (1), 2%(0) > 7 (0) for all 8 € (6;",1). Thus, we have z%(8) > 7" () on (961", 1).

Since Gg” < 6} and z%(6) > ™ (6) on (Gg", 1), from Lemma 2.1, V% (8) > V"™ ()
on (Gg”, 1). Tt is thus readily confirmed that more types, w.r.t. both horizontal and vertical

types, are served in the market under duopoly. Thus, the proposition is proven. [

95



CHAPTER 3

Optimal Sequence for Teamwork

3.1 Introduction

With the emergence of new business models and advanced communication technology, a
large variety of workplace architectures have come into existence: typical examples include
the “open space” or “war room” model adopted by Bloomberg, Google, Goldman Sachs, etc.,
and in contrast loose-fitting designs such as Virtual Locations promoted by Amazon. Such
an architecture essentially determines how information can flow internally among peers. For
instance, a worker’s job attitudes or efforts can be observed by neighboring colleagues in an
open office, but not by someone remote or partitioned. As indicated by empirical evidence,
workers’ productivity and willingness to work respond positively to observed efforts of peers
(Ichino and Maggi 2000; Heywood and Jirjahn 2004; Gould and Winter 2009; Mas and
Moretti |2009). In this context, a principal responsible for incentive design is essentially
endowed with a monitoring structure among agents that helps reduce the cost of inducing
full effort: the more peers an agent can affect via a change in decision (e.g., from working to
shirking), which means a greater impact on the success of the whole team, the less incentive
needed for her effort exertion. However, there is still considerable room for designing the
optimal incentives, as in many situations the principal can dictate the order of tasks, and
hence how information will flow, as well as the outcome-based rewards. This paper seeks to
answer a naturally spurred question in this context: given a workplace architecture, what is

the optimal sequence of assigning tasks, and what is the optimal associated reward scheme?

Winter (2010) has provided a thorough discussion on the optimal incentive design under
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an exogenous task assignment sequence. In contrast, our paper focus on endogenizing the
sequence in the principal’s problem, and makes two contributions. First, we extend Winter’s
model to include the design of sequence as the principal’s available option in addition to the
reward scheme. Since there is a one-to-one relation between every sequence and the optimal
rewards that follow, the optimal sequence predicted by our model is essentially unique for
a wide range of architectures. Second, we explicitly characterize the optimal sequence for
several typical classes of architectures, including simple ones such as cliques and stars, and
composite ones such as core-periphery networks. We find that the solution relies heavily on
the shape of the architecture as well as heterogeneity among agents. In general, the optimal
sequence allocates agents with more transparent actions to intermediate positions, and less

capable/important agents are assigned tasks earlier than their more capable/important peers.

Our model considers a group of multiple agents working on a joint project, where each
agent is responsible for an individual task. Externally, the agents face the standard moral
hazard problem. Each agent needs to decide whether or not to exert effort, which cannot be
observed by the principal, and the success probability of the whole project is determined by
the joint effort profile. In most parts of our analysis, the agents’ tasks are complementary.
We allow agents to be heterogeneous, in the sense that some agent’s effort may impose a
greater influence on the success probability than others. Internally, the agents are connected
to one another via an effort observation structure, which represents a workplace architecture
in various applications. We model this structure as a network: a link ij between agent i and
agent j implies that i observes j’s effort if j makes his decision before i, and vice versa. In
other words, feasibility of effort observation between two linked agents is bilateral in nature,

while the actual flow of internal information is determined by the order of task execution.

The principal faces two problems of incentive design. First, she chooses and commits
to a sequence of task assignment, in every period of which at least one agent is asked to
make their decision on their corresponding task. Second, she offers a reward to each agent

contingent on the final outcome of the project. The principal’s objective is to minimize the
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total cost — that is, the sum of rewards upon success of the project — while inducing full effort

from the agents.

Once the sequence is fixed, the network essentially produces a unique acyclic flow of
internal information. We can then apply Winter (2010)’s result to characterize the optimal
reward scheme. Also, a straightforward application of results from other prior works (e.g.,
Winter 2006) shows that the optimal sequence in a fully connected network, or a clique, is
the reverse order in importance, i.e. the agent who is least influential to the project’s success
moves first, the second least influential agent moves second, and so forth. Our main analysis

thus focuses on more complex and possibly asymmetric networks.

Our first novel result characterizes the optimal sequence in a star network. Star networks
are representative of many important workplace relationships and social interactions, for
instance, the center being the general contractor for a construction project and the peripheries
being the subcontractors who work on different parts of the building job and communicate
with the general contractor. We propose a simple algorithm to find the optimal sequence,
which is unique subject to a number of trivial variations with identical reward schemes. In the
sequence, the center takes up a position between two subgroups of peripheries, allowing the
principal to offer less incentives to peripheries before the center at the cost of more incentives
to those after the center. The optimum represents the balance between marginal benefit and
marginal cost. In addition, more important agents move later in the sequence, so that every
agent after the center is more important than any agent before the center. Intuitively, when
an early mover’s decision affects a group of more important peers, his shirking will trigger
a greater reduction in the project’s success probability. Hence, his implicit cost of shirking

rises, which is always to the principal’s advantage.

Not all workplace architectures or relationships can be approximated by simple structures
such as cliques and stars. Instead, a complex architecture may be regarded as the composition
of multiple simple ones, as in large projects that require the collaboration of several small

teams. A typical class of such architectures is core-periphery networks, in which the centers
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of multiple stars are interlinked. We first consider a core-periphery structure for a vertical
project, i.e., the order of executing tasks between stars is fixed while that within each star is
decided by the principal. This architecture can represent a multi-phase project with vertical
collaboration, e.g., the development of drugs that include preclinical, investigational and
post-marketing phases. As above, we identify an algorithm that characterizes the essentially
unique optimal sequence. In the sequence, one and only one of the stars plays a special role.
Before it, all periphery agents of each star execute their tasks before their corresponding
center, and obtain lower rewards when the project succeeds; after it, on the contrary, all
periphery agents of each star execute their tasks after their corresponding center, and obtain
higher rewards when the project succeeds. Such dichotomy results from monotonicity in the
influence of an agent’s action according to the position their star takes: the earlier their star
is in the series, having the agent work his task before the center means more peers whom he
can affect via internal information, and thus, a higher benefit from reducing his reward for
the principal; at the same time, fewer agents would affect his action if he were placed after

the center, implying a lower opportunity cost from reducing the rewards of those agents.

We further consider a core-periphery network for a horizontal project, that is, a set of
inter-connected stars in which the order of executing tasks between stars is also decided by
the principal. Projects that require horizontal collaboration of multiple departments, such as
those for different components of an assembled final product like a cell phone or a motor
vehicle, are typical examples of this architecture. We provide a partial characterization of
the optimal sequence. On one hand, the sequence also features a “special” star before which
all peripheries precede their center in task assignment and after which all peripheries follow
their center. On the other hand, the number of peripheries in the optimal sequence must
exhibit a “V-shape”: before the “special” star, stars with more peripheries are assigned tasks
first, while after the “special” star the pattern reverses. Placing a large star towards the end
of the sequence allows the principal to raise the maximum size of reward reduction for each
earlier agent, while placing one towards the beginning of the sequence exposes more agents

to a larger-scale reward reduction.
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The theoretical literature on incentive design for teamwork is extensive and growing. The
trade-off an agent faced between working and shirking originates from the classical literature
on moral hazard (Holmstrom |1982; Holmstrom and Milgrom 1991} Itoh|1991). Subsequent
studies developed this literature to static contracting on teamwork with a number of varia-
tions, such as externalities (McAfee and McMillan 1991} Segal |1999; Babaioff et al.[2012),
specialization versus multitasking (Balmaceda 2016)), and loss-averse agents (Balmaceda
2018). Che and Yoo (2001), Segal (2003), Bernstein and Winter (2012) studied contracting
problems in a dynamic context, with the main focus on how various forms of externalities
affect the optimal contracts. A comprehensive study on the role of internal information in
teamwork, with an exogenous sequence of task assignment, has been given by Winter (2004,
2006, |2010). This is the main strand of literature that our work contrasts to by endogenizing
the sequence. Finally, experimental studies on behavior in team production have also indi-
cated that an agent’s contribution in teamwork is highly responsive to internal information
(Carpenter et al. 2009; Steiger and Zultan 2014) and that unequal rewards tend to facilitate

coordination and improve efficiency (Goerg, Kube, and Zultan |2010).

The rest of the paper is organized as follows. Section 3.2 describes the model. Section
3.3 presents the result for a fully connected network. Sections 3.4 and 3.5 present the results
for a star network and a core-periphery network, respectively. Section 3.6 concludes. All

omitted proofs are provided in the Appendix.

3.2 The Model

Players and actions A principal (she) owns a project that is collectively managed by a
set N of n agents. Each agent (he) is responsible for a single task and chooses whether to
exert effort or not. Formally, each agent’s action space is given by A = {0, 1}, with a = 1
if the agent chooses to exert effort and a = O if he shirks. The cost of effort is ¢ > 0 and
constant over all agents. To save on notation, we normalize ¢ to 1 without loss of generality.

Hereafter, we interchange the terms work and exert effort.
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Network The organizational structure, also referred to as the network of the agents, is
characterized by an intrinsic and undirected graph g of unordered pairs (i, j) of agents who
are directly linked. This network could origin from the workplace architecture, the authority

structure, informal social networks and so forth. The structure of g is common knowledge.

Technology The organization’s technology is a mapping from a profile of effort decisions
to a probability of the project’s success. For a subset S C N of working agents, the probability
of the project’s success is p(S). Throughout the paper, we assume that p is increasing in the
sense that if 7 C S, then p(T) < p(S). Moreover, we distinguish between the technology’s
properties of complementarity and substitutability. A technology p satisfies complementarity
among agents if for every two sets of agents S and 7 with T C S and every agent i ¢ S, we
have p(SU{i}) — p(S) > p(T U{i}) — p(T); that is, i’s effort is more effective if the set of
other agents who exert effort enlarges. By contrast, we say that p satisfies substitutability
among agents if p(SU{i}) — p(S) < p(TU{i}) — p(T). In addition, we distinguish between
different agents’ importances to the project. We say that agent i is (weakly) more important
than j if for every coalition S C N with i, j € S, we have p(S\{i}) < p(S\{/}); that is, i’s
shirking is more detrimental than j’s to the probability of success. We assume that the set N

is totally ordered in terms of importance.

Mechanism Before the agents execute their tasks, the principal has to choose a sequence
of execution (permutation) 7 such that agent i is the m;-th, with ; € {1,...,n}, player to act.
In addition, the principal has to design a reward scheme v = (vy,...,v,) such that agent i
receives v; > 0 if the project turns out to be successful, and receives zero payoff otherwise.
A mechanism {7,v} consists of a sequence of execution 7 and a reward scheme v for the

agents. Throughout, we assume that the principal can commit to the mechanism.

Information The principal cannot monitor the agents’ effort choices, but knows whether

the project is a success or a failure after all effort decisions have been made.
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The agents’ internal information about their peers’ effort choices is jointly determined by
the graph g and the permutation 7. Specifically, agent i observes agent j’s action, or simply
i sees j, before i acts if and only if i and j are directly linked in g (i.e., (i,) € g), and i acts
after j (i.e., m > Ej)ﬂ For every pair (g, ), we define N;(g, ) := {j|(i,j) € g, m > 7;} to
be the set of agents whom agent i sees given the internal information determined by (g, 7).

To save on notation, we write N; for the set N;(g, ) henceforth.

Principal’s problem Consider the game that is defined by the set of agents N, the agents’
action space A, the network g and a mechanism {7,v}. A strategy for agent i is a function
s; : 2V — {0,1} which specifies the agent’s effort choice as a function of his information on
the effort decisions of other agents who are in N;. For every strategy profile s = (s1,...,5,),

agent i’s expected utility is given by

where W () is the set of agents who work given s.

A mechanism {7,v} is effort-inducing (EFI) with respect to the network if there exists
a perfect Bayesian equilibrium (PBE) s* for the associated game such that all the agents
exert effort (i.e., W(s*) = N). The principal’s problem is to design an EFI mechanism that
yields minimal total payoffs to the agents among all EFI mechanisms. We call this mecha-
nism an optimal EFI mechanism. In particular, for a fixed permutation 7, a reward scheme
v¥(m) is optimal if {z,v*(7)} is an optimal EFI mechanism. The principal’s objective is
economically meaningful when she has a relatively high value for the project and each agent
is sufficiently productive, such that exerting effort increases the probability of a success to a
great extent. Alternatively, one can consider the mechanism that maximizes the principal’s
net profit (i.e., the project’s value minus the agents’ rewards). We find that doing so does not

provide new insights, while complicates the analysis remarkably.

'If i and j act simultaneously, then neither of them can see the other.
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Remark. Our model makes a notable assumption for the information structure, that is, an
agent can observe only the actions of those who are directly connected to him. This stands in
contrast to Winter (2006)’s model in which the agents can see all their predecessors’ actions.
Clearly, if an agent could observe each preceding action, then the information he possesses
depends only on the sequence of execution, making the network irrelevant. Consequently,
one would derive the same results as in Winter’s model. In order to examine the impacts of
network topology on incentive design, we impose this assumption. Moreover, the assumption
is reasonable when communication about others’ efforts is costly between individuals. For
example, it might be difficult to provide evidence showing that a worker shirked; in many
companies, it is unprofessional to discuss colleagues’ job performances, preventing workers

from sharing such information with others.

3.2.1 Preliminary Analysis

In this subsection, we characterize the optimal reward scheme v*(7) given a fixed sequence
of execution . Whereas this result has been established by Winter (2010), we keep this part
in the paper for the sake of the completeness of analysis. We start the characterization with

a complementary technology.

Let the technology p satisfies complementarity. Define M;(g, ), M; for short, to be the
set of agents satisfying that for each j € M; there exists a sequence {k,} such that j sees
ki sees kp sees ...k, sees i. That is, everyone in M; can ultimately learn i’s action if an
agent could share his information with those who see him. Proposition 3.1 characterizes the

optimal reward scheme v*(7) with respect to an arbitrary permutation 7.

Proposition 3.1. Suppose that p satisfies complementarity. For any fixed permutation 7, the

optimal reward scheme v*(T) exists and pays agent i vi = [p(N) — p(N\({i} UM;))]~".

The intuition of Proposition 3.1 is that when the agents execute their tasks sequentially,
they are facing an implicit threat of shirking; that is, the exposure of a low effort might induce

an agent who observes this behavior to shirk and consequently trigger a domino effect of
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shirking, making a success less likely. This implicit threat reduces the agent’s incentive cost.
Under complementarity and an optimal reward scheme, it is indeed sequentially rational for
an agent to shirk once he sees someone shirking, making the implicit threat credible. In
addition, Proposition 3.1 implies that if agent i’s action becomes more transparent in the
sense that the set M; increases, then the principal should pay i less since i has a greater
implicit threat now. In general, an agent’s decision is more transparent when he acts earlier

in the sequence and has more links connected to him.

We now turn to the case of substitutability. In contrast to the case of complementarity,
under a substitutable technology, the internal information has no impact on incentives as if
all the agents acted simultaneously. To implement full effort, the principal must provide the
agents sufficient incentives when they believe that all their peers are working. However, due
to the substitutability, such a reward scheme gives an agent an even stronger incentive to
work when he sees someone shirking. This eliminates the implicit threat of shirking that
is critical in the complementarity case, thereby preventing the principal from reducing the

incentive costs. Formally, we have the following result:

Proposition 3.2. Suppose that p satisfies substitutability. For every fixed permutation T, the

optimal reward scheme v* () is identical and pays agent i vi = [p(N) — p(N\{i})] .

Proposition 3.2 indicates that peer information does not reduce incentive costs under a
substitutable technology. This is because under an effort-inducing reward scheme the agents
are incentivized to substitute own effort for those whom they see shirking. Thus, if an agent
chooses to shirk, it does not affect the others’ decisions. This means that an effort-inducing
reward scheme has to provide an agent sufficient incentive when he believes that all his peers
exert effort. It is tempting to note that such a reward scheme is also required by a full-effort
Nash equilibrium of the game in which the agents choose their efforts simultaneously. Since
the optimal reward scheme depends not on the information structure, every permutation is
equivalent payoff-wise. Hence, in the subsequent sections, we assume that the technology

satisfies complementarity. Since N is a finite set, Proposition 3.1 ensures that an optimal EFI
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mechanism exists; it thus remains to characterize such a mechanism.

3.3 Fully Connected Network

As a benchmark, in this section, we study a fully connected network in which all the agents
are interconnected. This network topology yields the richest transparency in the sense that
under any permutation, each agent can observe all preceding actions. As Proposition 3.1
characterized the optimal reward scheme for an arbitrary sequence of execution 7, it remains
to seek for the optimal permutation 7*. Instead of characterizing the optimal sequence for a
fully connected network directly, we provide some more general resultsﬂ As a first step, we
show that if two agents are linked in a network, then they cannot act simultaneously in the

optimal sequence. This is summarized by Lemma 3.1 below:

Lemma 3.1. For any two agents i and j such that (i, j) € g, we have that Tt} # 71,']* in the

optimal sequence T*.

Proof. Suppose not, then 7 = 7r;. Consider a new permutation 7’ which differs from 7*
only in that j acts in 7’ immediately after i and before all the agents who act after i in 7*;
thus, 7} > 77 and 7; = &} for any agent k # j. This implies that N7 C N and M, = M.
Consider an agent k 7 j. Clearly, if m; > 77, then M, =M. Ifmf < 77, then we partition
M into two parts: M,f\j and M; \M,f\j, where ;\j is the set of agents who will remain in M
if all j’s links are eliminated and the agents act in the order of 7*. Pick any agent [ € M;. If
le M,j\j, then clearly he will remain in M under 7. If € M\ Z‘\j, it must be that / € Mj.
Since Nj C N;. and M;- = Mj, I will still remain in M;, and thus, M} C M;. In summary,
for any agent k € N, we have M}’ C M;, meaning that v (n') < v;(7*) due to Proposition
3.1. But since (i, j) € g and 7 = 7}, we have M{ C M;; thus, v} (7') <v;(7*). This means
that the total payoffs to the agents are strictly lower under 7’ than under 7*, leading to a

contradiction. Thus, the lemma is proven. 0

2Thus, the results of this section will be more general than that of Winter (2006).
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Lemma 3.1 states that under complementarity, it is always suboptimal to make two linked
agents acting simultaneously. This is because doing so reduces the transparency of actions,
thereby mitigating the implicit threat of shirking and raising incentive costs. Lemma 3.1
implies that in a fully connected network in which all the agents are interconnected, the
optimal sequence is such that the agents act sequentially in the order 1,2,...,n, though the
specific order of each agent remains unknown. To fully characterize the optimal sequence,
we relabel the agents in the way that agent i is (weakly) less important than i+ 1,i <n—1,
with agent n being the most important. In addition, we say that agents i and j are neighbors
if (i, j) € g. Proposition 3.3 below shows that if two agents are neighbors and share the same
neighbors other than themselves, then the optimal sequence satisfies that if one agent acts
immediately after the other, then the more important agent acts later. This implies that the

optimal sequence for a fully connected network is the identity permutation.

Proposition 3.3. For any two agents i and j such that (i,j) € g, {k|(i,k) € g}\{j} =

{k|(j,k) € g}\{i} and i is more important than j, if in the optimal sequence 7", |1} — ;| =1,
then 7 = 71:]* + 1. Thus, if g is a fully connected network and the agents are increasingly
important, then the optimal EFI mechanism {m*,v*} satisfies: (i) & is the identity permu-
tation; (i) agent i receives payoff vi = [p(N) — p({j|j < i})| 1. In particular, if two agents

are equally important, then switching their orders in ©* still results in an optimal sequence

and does not change the total payoffs.

Proof. We first prove that 7 = 7} 4 1. Suppose not, then 7} = 7/ + 1. Now switch i and j
and call the new permutation 7'. Since {[(i,k) € g}\{j} = {k|(j,k) € g}\{i} and 7] > 7,
we have N; U {i} = N7 U{j}, N; =N/, Mj = M} and M;U{j} = M U{i}. Consider an
agent k 7 i, j. By Lemma 3.1, for any of i’s neighbors /, we have either 7/ < & or 7/ > 7;.
Thus, there are two possibilities to Consider First, i, j ¢ M. Since N; U {i} = N7 U{j}

and N;- = N/, the switch between i and j will not affect My; thus, M,’c = M}, meaning that

3The case that j € M} buti ¢ M; is impossible. This is because if j € M} then 7} < 7, meaning that i € M;
as {k|(i,k) € g}\{j} = {k|(j,k) € g}\{i}, leading to a contradiction.
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vi (") = vi(m*). Second, i € M}, then j € M}. Since M; = M; and M’;U{j} = M; U{i}, the
switch will not affect My; thus, M; = M} and vi (') = vi(7*). Note that M; = M} and i is

more important than j, thus we have

pP(N\{7PUM])) = p(N\MP)\{)}) > p((N\M)\{i}) = p(N\({i} UM})).

It follows from Proposition 3.1 that v} (') < vi(x*). Moreover, since M; U {,j} = M; U {i},
we have vi(x') = vi(7*). This implies that the total payoffs to the agents are strictly lower

under 7’ than under 7%, leading to a contradiction.

The second part of the proposition is thus immediate. Note that if g is a fully connected
network, then by Lemma 3.1, the agents act sequentially under 7*. If further the agents are
increasingly important, then the above result means that the optimal sequence is the identity
permutation, and thus, the optimal reward scheme is given by Proposition 3.1 accordingly.
Finally, if two agents are equally important, then it is readily confirmed that switching these

agents does not affect any agent’s incentive cost. Therefore, the proposition is proven. L[]

Proposition 3.3 suggests that in a fully connected network, the principal should delay
more important tasks towards the end of the production process if feasible. Intuitively, when
an agent shirks under the optimal reward scheme, he triggers all his successors to shirk.
If the agent and his successors together are more important to the project, then he faces a
greater implicit threat of shirking and is thus easier to be incentivized. Analogously, on
the equilibrium path, agent i makes his decision as if he worked on an independent project;
if he chooses to exert effort, then the project yields a high output equal to p(N)v}, with
vi fixed; otherwise, the project yields a low output equal to p({j|j < i})v}. By allocating

more important agents into later stages, the principal essentially reduces the low output level

without changing the high output; clearly, the agent will be more willing to exert effort.

Proposition 3.3 implies that agents who are allocated to later stages under the optimal

mechanism are compensated more generously, even if all the agents are equally important
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ex ante. The idea is particularly transparent for fully connected networks. That is, on the
equilibrium path, each agent could alternatively free ride on his predecessors’ efforts instead
of exerting effort himself, while the optimal reward just offsets his free riding incentive; an
agent who involves in a later stage can free ride on more predecessors’ efforts, and thus, his
incentive cost is larger. Moreover, due to complementarity, the gap between two adjacent
agents’ rewards increases in their orders. This is because complementarity corresponds to an
increasing return-to-scale technology; as more agents exerted efforts, the free riding behavior
becomes more detrimental, and thus, the principal incurs increasingly more incentive costs

to induce effort. These results are summarized by the following corollary:

Corollary 3.1. Suppose that g is a fully connected network, then the optimal reward scheme

V* satisfies: v; is increasing and strictly convex in i under the optimal sequence 7*.

Proof. From Proposition 3.3, the gap between vy, | and v; is given by

P p(UlJ <i+1}) —p{jli <i})
T ) = p{lJ < i+ p(N) = p({il < )]

The numerator of the right-hand side (RHS) is increasing in i due to the complementarity

of p; the denominator is decreasing in i due to the monotonicity of p, and thus, v} 1 viis

increasing in i. The monotonicity of v} follows immediately from Proposition 3.3. U

Since a fully connected network yields the richest transparency, it imposes the greatest
implicit threat of shirking on the agents. The corollary below states that the total payoffs to
the agents are the least in fully connected networks among all network topologies. Thus, we

obtain a sharp lower bound for the total payoffs an optimal EFI mechanism incurs.

Corollary 3.2. A fully connected network yields minimal total payoffs to the agents.

Proof. Let g1 be a fully connected network and g, be an arbitrary network with the same

amount of vertices as g;. From Lemma 3.1, a permutation with some simultaneous moves
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is weakly suboptimal for gz Without loss, assume that in the optimal sequence 7*(g») of
&> the agents act sequentially in the order 1,2,...,n. Consider the permutation 7(g;) of g
such that each agent has the same order in 7(g;) as in 7%(g). Clearly, for each agent i, M;
is weakly larger under 7(g;). Then from Proposition 3.1, the optimal reward scheme pays i
less under 7(g;). Since m(g;) is not necessarily optimal, the optimal total payoffs must be

(weakly) lower under g1. Thus, the corollary is proven. [

Corollary 3.2 indicates that a fully connected network is the best network topology for
the principal as it yields the richest internal information. Such a network can represent the
emerging workplace architecture “war room” that is implemented by different organizations.
The movement to such open-space environment allows workers to monitor their peers more
easily, making the peer information about effort more transparent. Consequently, it enhances
the implicit incentive of working that is imposed by this mutual observability. In our model,
the network g is exogenously given. Suppose that the principal can improve the connection
between agents (i.e., by adding links to g) at relatively low costs, then she might find it

profitable to transform g into a fully connected network.

3.4 Star Network

Starting with this section, we study the optimal sequence for some typical network topologies
that have not been studied by the literature. Here, we consider star networks. A star network
satisfies that there exists some node i such that every link in the network involves node i;
thus, agent i is termed as the center of the star, and the rest of the agents are termed as the

peripheries of the star. The layout of a star network is depicted in Figure 3.1.

Star network structures are common in organizations. For example, in most scientific

labs, when a project leader coordinates with his/her fellow researchers, the leader often

“Note that if agent i is not linked to anyone else, then his incentive cost is fixed at [p(N) — p(N\{i})]~!.
Thus, whether there is another agent acting simultaneously does not affect i’s incentive cost.
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Figure 3.1: An Example of Star Network

works as the center of the team, while each fellow researcher works on an individual task
and communicates the progress to the project leader. Such a team thus has a star network
structure. Usually, the principal investigator (PI) of the lab can only observe the outcome of
the entire project and chooses how to reward the team based on the outcome. In large-scale
constructions, a general contractor who is in charge of the overall coordination of a project
performs part of the building work and contracts subcontractors to perform specific and in-
dependent tasks. Such a team also can be represented by a star network, with the general
contractor being the center and the subcontractors being the peripheries. In most cases, the
owner/developer (principal) observes the quality of the entire building during the inspection

phase and remunerates the contractors based on the quality.

To find the optimal sequence for a star network, it suffices to characterize the set of
the center’s successor(s), with the possibility of an empty set. For ease of exposition, we
relabel the peripheries by importance from 1 to n — 1, with a higher index referring to a more
important agent. Provided there is no confusion, let the center be the n-th agent who is not
necessarily the most important. As a useful general result, Lemma 3.2 below shows that if
two agents share the same nonempty set of neighbors, then the optimal sequence satisfies
that if the two agents have a neighbor who acts between them, then the more important one

of the two agents acts in a later stage than the other.
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Lemma 3.2. For any two agents i and j such that {k|(i,k) € g} = {k|(j,k) € g} #0 and i
is more important than j, if in the optimal sequence Tt*, there exists some k' € {k|(i,k) € g}

such that &7 ANTT; < 7, < w7V T}, then 7} > T}

Lemma 3.2 implies that if in the optimal sequence the center has a nonempty set of
predecessors and successors, respectively, then the center’s successors are uniformly more
important than his predecessors. The intuition has been suggested previously; that is, if more
important agents act in later stages, then shirking will induce agents with higher importance
to shirk and is thus more detrimental to the probability of a success, leading to lower incentive
costs. The relative importance between the center’s predecessors and successors implies that
the optimal sequence for a star network can be summarized by a sufficient statistic, that is,
the number of the center’s successor(s)E] Let m be the number of the center’s successor(s),
with 0 <m < n— 1. Then, the center has n — 1 —m predecessors; if each of them shirks, then
the center and all his successors shirk correspondingly. Similarly, if the center shirks, then
all his successors shirk too. However, the center’s successors cannot trigger others’ shirking,
since their actions are unobservable to others. Thus, from Proposition 3.1, the total payoffs

to the agents under an optimal reward scheme v* is given by

n—1l—m 1

V= L (Gl < mN )
h payoffs to the predecessors
; ! LY L
PN) —p(T <nm)) " PN~ p (N

1

J/

v TV
payoff to the center payoffs to the successors

To find the optimizer m*, we compare v*(m) with v*(m -+ 1); the difference between the

two items is the marginal effects of increasing the center’s successors on the total rewards.

SThis is because the relative orders between the center’s predecessors or successors does not affect their
incentive costs, as each individual’s action is equally transparent for predecessors and successors, respectively.
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By preliminary calculation, for any m with 0 < m < n—2, we have

i . _n—2—m 1
Vim )= = L R (Gl <n—m - TN
n—2—m 1
LN (Ul < m i)
1 1

TP (Gl <) ) p 1y O
The summation of the first three terms on the RHS of (3.1) is the net change in payoffs to the
center and his predecessors. Since p is increasing, this value is negative, i.e., by increasing
the center’s successors, the total payoffs to the center and his predecessors decrease. The
reason is twofold: first, increasing the center’s successor reduces the number of the rest of the
agents; more important, doing so makes the efforts of the center and his predecessors more
transparent, thereby enhancing the implicit threat of shirking for these agents and reducing
the incentive costs. In this regard, we call these terms together the marginal benefit (MB) of

increasing the center’s successors. Formally, we define

MB(m) = Y ! _ !
& e = p{jli <n—mP\{i})  p(N)—=p({jli <n—m—1}\{i})
1
p(N)—p({jlj <n—m})

_|_

In contrast, the last term on the RHS of (3.1) is positive, which is the extra reward to the new
successor. Analogously, we call this term the marginal cost (MC) of increasing the center’s

successors. Formally, we define,

1
p(N) = p(N\{n—m—1})’

MC(m) =

Note that MC(m) is non-decreasing in m. This is because each new successor of the center
is (weakly) less important than the current ones, and thus, his incentive cost is higher. It

follows that if MB(m) is decreasing in m, then there exists a unique optimizer m* (either an
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interior solution or a corner solution). Lemma 3.3 below shows that under complementarity,

MB(m) is indeed decreasing in m.

Lemma 3.3. MB(m) is decreasing in m.

The idea is that on the equilibrium path, the center and his predecessor could alternatively
free ride on the other predecessors’ efforts. As the center obtains more successors, there are
fewer agents whose efforts one can free ride on. Since complementarity corresponds to an
increasing return-to-scale technology, free riding becomes less detrimental as the number of
the center’s successors rises. Furthermore, since the center’s successors are uniformly more
important than the predecessors as required by the optimal sequence, the shirking of the
center and his predecessors will trigger on average less important agents to shirk as the center
obtains more successors, meaning that the implicit threat of shirking is relatively weaker. In
summary, on both the extensive and intensive margin, increasing the center’s successors
becomes less effective in reducing the incentive costs of the center and his predecessors as

the number of the center’s successors increases.

Lemma 3.3 ensures that the optimal sequence is essentially unique and can be succinctly
characterized by an integer m* which is the smallest m such that MB(m) < MC(m). The next
proposition shows that in the optimal sequence, the center never acts the first; if the center is

sufficiently more important than all the peripheries, then he acts the last.

Proposition 3.4. Suppose that g is a star network with n > 3 agents, then the optimal EFI
mechanism {m*,v*} satisfies: (i) the center has m* successor(s) with0 <m* <n—2 and each
of them is more important than all the center’s predecessors; (ii) the optimal reward scheme
V¥ is characterized by Proposition 3.1 accordingly. Moreover; if [p(N) — p(N\{n—1})] <
O [p(N) — p(N\{n})| for some small § > 0, then m* = 0, where agent n — 1 is the most

important periphery agent and agent n is the center.

Proof. The optimal sequence is given by Lemmas 3.2 and 3.3. Indeed, Lemma 3.3 implies

that m* = min{m|MB(m) < MC(m)}. Then, the optimal reward scheme v* is characterized
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by Proposition 3.1 accordingly. To see that m* is bounded above by n — 2, note that

1 1
W) —p({(1) = p) — p(\{1])

MB(n—2) = = MC(n—2),

and thus, m* < n — 2. To prove the last statement of the proposition, note that

1
M) = oWy p =13
and that
MBO) = Y 1 - :
2\ o) = p(lT <P} PN — p(lJ < n—11\{i})
1
N = (N {n])
< v ! + !
& o) = p(Gl <N p(N) = p(N\{n)
n—1

= pN) = p(N\{n})’

Let § = 1; thus, if [p(N) — p(N\{n—1})] < & [p(N) — p(N\{n})], then MB(0) < MC(0).

This implies that m* = 0. The proposition is thus proven.

The intuition of why the center never acts the first is straightforward. Note that for star

networks, the first mover’s incentive cost is constant, as his shirking always induces everyone

to shirk. Rather than making the center the first mover, letting one periphery acts the first

will lead to one more agent whose action can be observed by others, thereby improving

transparency and reducing incentive costs. Hence, the optimal sequence requires that the

center never acts the first.

Proposition 3.4 states that if the center is relatively more important than the peripheries,

in the sense that the center’s shirking is much more detrimental to the probability of success,

then the center should act the last. Intuitively, if the center is relatively more important, then

his predecessors’ incentive costs are relatively low due to the large implicit threat of shirking.
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In contrast, the center’s successors do not have such implicit threat and thus have relative high

incentive Costsﬁ Consequently, increasing the center’s successors is unprofitable.

Remark. In particular, if all the agents are equally important, then it can be easily proven
that 1 < m* < n—2; that is, the center always acts in an interior stage. This is because
if the agents are equally important, then each agent i’s incentive cost depends only on the
cardinality of M, irrespective of his identity. By allocating the center into an interior stage,
the mechanism allows the peripheral agents to learn their peers’ actions through the center,
as if the center acted as an internal communication device. This makes the agents’ actions

more transparent, thereby reducing the incentive costs.

The previous analysis indicates that there exists a simple algorithm to find the optimal
sequence for star networks. Specifically, one just needs to allocate the peripheries into the
set of the center’s successors one by one from the most important to the least, until the first
time when MB(m) < MC(m). In practice, this process is remarkably simpler than searching
the optimal sequence for a general network topology. Moreover, the algorithm remains valid
even if the relative order between the center and some peripheries is unadjustable. This
can be achieved by applying the original algorithm to the remaining peripheries. See the

Appendix for further details.

As a comparative-statics analysis, we study the impacts of the importance of individual
task on the optimal sequence for star networks. Specifically, we examine how the number
of the center’s successors in the optimal sequence varies with the importance of individual
task. For ease of exposition, in the following, we consider a numerical example and assume

that the agents are equally important to the project.

Example Suppose that g is a star network with n > 3 agents, and that the project is a

success if and only if all tasks are successful. Each task is successful with probability 1 if

6Indeed, for any 1 <m < n—2, the incentive costs of the center and his predecessors’ are bounded above
by [p(N) — p(N\{n})]"!, whereas that of a center’s successor is bounded below by [p(N) — p(N\{n—1})]"".
By assumption, the latter incentive cost is more than 1/6 times of the former, for some small § > 0.
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the agent works, and is successful with probability & € (0, 1) if the agent shirks. Hence, a
lower probability o means that the failure of an individual task has critical implications on
the entire project. Let w be the number of agents who work, then p(w) = =" because all
tasks are independent. Clearly, p is increasing and satisfies complementarity. Applying the

previous results, we express MB(m) and MC(m) explicitly in the following:

n—-m—2 n—m—2 1
MB(m, @) = 1—amt2 1 —qmt3 ' [ —qmtl’
M 1

It follows that for fixed @ € (0,1), MB(m) is decreasing in m, and that MB(0) > MC(0)
and MB(n—2) < MC(n—2). Thus, the optimizer m* exists and is an interior solution for
any o € (0,1). In addition, from basic mathematical analysis, we have that for fixed m,
both MB(a) and MC (o) are increasing and strictly convex in a, and that MB(a) is single-
crossing MC(ct) from below in the domain € (0,1). This is illustrated in Figure 3.2. It thus

follows that the optimizer m* (@) is non-decreasing in aﬂ Formally, we have:

Corollary 3.3. In the optimal sequence 1*, the number of the center’s successors m* () is

non-decreasing in o for o. € (0,1).

Corollary 3 implies that the more important each task is, the fewer successors the center
has in the optimal sequence. Intuitively, if each task is important to the project’s success, then
each agent has a relatively strong incentive to work. Thus, the implicit threat of shirking is
not crucial in providing incentive. This means that improving the transparency of actions by
increasing the center’s successors is not effective in reducing incentive costs. In contrast, if
each individual task has little effect on the project’s success, then each agent has a relatively
strong incentive to shirk. In this case, the implicit threat of shirking plays an important role
in providing incentive. Thus, the principal should make shirking behaviors more transparent

by increasing the center’s successors, thereby enhancing the implicit threat of shirking.

’Since m is an integer, m* () is not necessarily increasing in «.
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Figure 3.2: Marginal Benefit and Marginal Cost as a Function of Importance

3.5 Core-Periphery Network

In Sections 3.3 and 3.4, we studied two simple network topologies, fully connected networks
and star networks. However, not all organizational structures can be approximated by such
simple networks; rather, in many organizations, a more complex structure might emerge
as a composition of multiple simple ones. For example, in large projects that require the
collaboration of several teams, the organizational structure can be represented by a network
composed of multiple stars. In this section, we study a typical class of such networks — core-
periphery networks, in which the centers of multiple stars are interconnected. The layout of

a core-periphery network is illustrated in Figure 3.3.

Based on the nature of production process, we consider two cases. In a vertical project,
the relative order between different stars is fixed while that of the agents within each star is
determined by the principal. This feature can represent a multi-phase project with vertical
collaboration, such as the development of drugs that includes preclinical, investigational and
post-marketing phases. The orders of different phases cannot be interchanged. In contrast,

in a horizontal project, the principal can additionally determine the relative order between
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Figure 3.3: An Example of Core-Periphery Network

different stars. Projects that require horizontal collaboration of multiple departments such as
those for different components of an assembled final product (e.g., a cell phone and a motor
vehicle) typically have such feature. For tractability, we assume throughout this section that

all the agents are equally important to the project. This implies that for any subset W of

working agents, p(W) = p(|W|), where |W| is the cardinality of set W.

We first consider a vertical project. Let r be the number of stars in the network g. For ease
of exposition, we assume that all stars act sequentially, and label the stars by their relative
order such that each agent in star i acts before any agent in star i + 1. Let s; be the number of
agents in star i; thus, we have )/, s; = n. The principal’s problem is to choose the sequence
of execution within each star separately. Since the relative order between different stars is
fixed, the internal sequence of each star jointly determines the sequence of execution for
the entire project. Note that given the sequence, the core-periphery network yields the same
transparency as the network in which the centers of the stars are linked in a chain according
to their relative orders (see Figure 3.4). This is because for each agent i, M; is identical
between the two networks under the same sequence of execution. We call this new network
connected-stars. In the subsequent, we will focus on the connected-stars network as it can

be illustrated in an easier way.
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Figure 3.4: A Vertical Project Conducted in a Connected-Stars Network

In this sequence, the relative orders between different stars is fixed. Each agent acts before every agent of a star
to his right. The label of each node denotes the order of the agent in the entire sequence. Given the sequence,
such a network yields the same transparency as the core-periphery network in Figure 3.3.

To find the optimal sequence, we introduce, analogously to star networks, the marginal
benefit and marginal cost of increasing the center’s successors within a single star, namely,
the marginal effects of allocating one more periphery to the set of the center’s successors. To
be succinct, we use the terms marginal benefit (MB) and marginal cost (MC). As explained
before, the marginal benefit stems from the improvement of the transparency of preceding
actions as well as the decrease in the number of the center’s predecessors; the marginal cost
is simply the extra payoft to the new successor. Since the agents are equally important, each
agent i’s incentive cost depends only on the cardinality of M;. Thus, within any specific star,
if a periphery acts after the center, then his incentive costs is fixed at [p(n) — p(n —1)]~L.
This implies that the marginal cost is constant across stars. The marginal benefit, in contrast,
has an inter-star effect; that is, for any star except the first, increasing the center’s successors
within this star will improve the transparency of not only the center’s action, but also all
preceding actions that the center can learn on equilibrium path. To illustrate, consider the
example in Figure 3.4. If alternatively agent 5 acts as agent 6’s successor, then not only 6’s
action becomes more transparent, but also agent 1 to 4’s actions are more transparent too, as
these actions can be learned by agent 6 on the equilibrium path. Indeed, by moving agent 5

after 6, |[M;| increases by 1, for i = 1,2,3,4 and 6, and thus, vi becomes lower.

Analogously to star networks, let m; be the number of peripheries who act after the center
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within star i, with 0 < m; < s; — 1; thus, MB(m;) stands for the marginal benefit of allocating
one more periphery of star i into the set of its center’s successors; the marginal cost MC
is fixed at [p(n) — p(n—1)]~!. We first establish a useful result by Lemma 3.4 below. It
indicates that if in the optimal sequence a center acts after some of his peripheries, then all
preceding centers act the last within own star; if in contrast, a center acts before some of his

peripheries, then all subsequent centers act the first within own star.

Lemma 3.4. Suppose that the project is vertical, then the optimal sequence TT* satisfies: (i)

ﬂf :0"

if there exists a star i, with i > 1, such that s; — 1 —m; > 0, then for any star j < i, n;

*

(ii) if there exists a star i, with i < r, such that m; > 0, then for any star j > i, n;

Sj—l.

Proof. We first prove statement (i). Suppose that in the optimal sequence, there exist two
stars i and j, with i > j, such that s; — 1 —m] > 0 and m;‘ > 0, then we must have MB(m}) <
MC < MB(m}f — 1); otherwise, the principal can make a locally profitable deviation by
raising m; by 1 or reducing m} by 1. On the other hand, we must also have MB(m]) >
MB(mj- —1). To see this, let K| be the set of agents such that for any agent k| € Kj,
if m] increases then |Mj, | increases. Similarly, let K> be the set of agents such that for
any agent ky € K», if mj increases (equivalently, mj — 1 increases) then |Mj,| increases.
Given the organizational structure, since i > j, we must have K, C Kj. This implies that
MB(m;) > MB(m; — 1), leading to a contradiction. The proof of statement (ii) is analogous.

Therefore, the lemma is proven. [

The idea of Lemma 3.4 is straightforward. Since the stars’ centers are ordered in a chain,
the marginal benefit of increasing the center’s successors within a star is always higher than
that of a star in an earlier stage, as actions in later stages can impose the implicit threat of
shirking on more preceding agents. Thus, if a center does not act the first within own star,
then we have that the marginal benefit of increasing this center’s successors is less than the
marginal benefit. This implies that all preceding centers should act the last within own star,
as the corresponding marginal benefits are even lower. Analogously, if a center does not act

the last within own star, then when he has fewer successors, the marginal benefit is higher
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than the marginal cost, meaning that all subsequent centers should act the first within own

stars, as the corresponding marginal benefit are even higher.

Note that in any sequence, each star can only have three possible internal sequences. We
say that a star is a fype [ star if the center acts the last within own star, is a type II star if the
center acts in an interior stage within own star, and is a fype 111 star if the center acts the first
within own star. Lemma 3.4 implies that in the optimal sequence, there can be at most one
type II star, and all preceding stars (if any) should be type I and all subsequent stars (if any)
should be type III. The other possible case is that there are several type I stars followed by

type Il stars, with the possibility that there are only type I stars or type III stars.

Consequently, we could establish a simple algorithm to find the optimal sequence for a
core-periphery network under a vertical project. Specifically, we first assume that all stars
are type I stars. Then, from the last star to the first, we allocate the peripheries one by one
into the set of the center’s successors. Note that the optimal sequence must emerge in some
stage of this process. Thus, if the marginal benefit is non-increasing through this process,
then the optimal sequence is obtained once MB < MC. The next proposition shows that such

an algorithm is indeed valid.

Proposition 3.5. Suppose that the project is vertical, then the optimal sequence T* can
be obtained through the following procedure: first, make each star a type I star; second,
from the last star to the first, allocate the peripheries one by one into the set of the center’s
successors, until MB(m}) < MC for some star i in which m! peripheries act after the center.
In the optimal sequence, no center acts the first or the last in the entire sequence. The optimal

reward scheme v* is given by Proposition 3.1 accordingly.

The algorithm characterized by Proposition 3.5 allows us to find the optimal sequence
in a monotonic way, as for star networks. This remarkably simplifies the searching process.
However, we have to point out that this simple algorithm relies on the assumption that the
agents are equally important. If the agents are differently important, then the algorithm might

not hold, as the marginal cost is not necessarily monotone across stars, whereas the algorithm
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for star networks is robust even if the agents differ in importance.

We now turn to a horizontal project. The only difference is that the principal is now able
to choose the relative order between different stars, while an agent of a star in an earlier
stage still acts before each agent of any subsequent star. Furthermore, Lemma 3.1 implies
that in the optimal sequence all stars should be ordered sequentially, as simultaneous moves
reduce the transparency. Thus, once the relative order between stars is determined, the rest
of the analysis is identical to a vertical project. Although we are unable to fully characterize
an algorithm to pinpoint the optimal sequence for a horizontal project, we find a useful
property of the optimal sequence which can remarkably simplify the searching process. This

is summarized by the proposition below.

Proposition 3.6. Suppose that the project is horizontal, then the optimal sequence T* satis-
fies: for any 1 <i <r—1, (i) if both stars i and i+ 1 are type I stars, then s; > s;1; (ii) if

both stars i and i+ 1 are type 11l stars, then s; < sj1.

Proof. We first prove statement (i). Suppose not, then s; 1 > s;. Thus, for any periphery j of
star i and any periphery k of star i+ 1, we have |[M7| = |[M;|+ 1. Now switch star i and i + 1
with both stars remained as type I. Call this new permutation 7. Note that after the switch,
|M| = M| and [M}| = |M?;|, whereas |M;| = [M]| for any agent / who is not a periphery of

either star i or i + 1. From Proposition 3.1, the difference in total payoffs equals

(1) — v (1) = si—1 Siv1— 1
V) —viE) lp(n)—p(n—l—lM;fl)+p(n)—p(n—1—lM,i‘!)]

[ s;i—1 n Sit1 — 1 ]

p(n)—pn—1—=|M}]) ~ p(n)—p(n—1—[M])

_ Si+1 — i _ Si+1 —Si
p(n)—pn—1—=|Mg])  p(n)—p(n—1—|M7])

>0.

This implies that 7£* is not an optimal sequence, leading to a contradiction.
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Then, we prove statement (ii). Suppose not, then s; > s;,1. Let agent j be the center of
star i and agent k be the center of star i+ 1. Thus, we have [M}| = [M|+s;. Now switch
star i and i + 1 with both stars remained as type III. Call this new permutation 7’. Note that
after the switch, |M}| = [M}| — siy1 +s; and |M;| = |[M}|, whereas |[M;| = [M]| for any agent

! who is not the center of either star i or i + 1. Thus, the difference in total payoffs equals

* *_v* /: 1 1
V) i) [p<n>_p<n_1_|M;|)+p<n)_p<n_1_,M;,>]
- 1 . 1
P —pn—1= L) " o) —pln—1— 2]
1 1
TP —pi— 1= M) p(m)—pla— 1= M)
1 1
TP —pln—1=|M;])  pln) = p(n—1—[M|—si+sis1)

>0.

The inequality is due to that s; > s;;;. This implies that 7£* is not an optimal sequence,

leading to a contradiction. Thus, the proposition is proven. [

Proposition 3.6 indicates that in the optimal sequence, if multiple consecutive stars are all
type I stars, then a star with more agents is allocated to an earlier stage; in contrast, if these
stars are all type III stars, then a star with more agents is allocated to a later stage. Thus, if in
the optimal sequence both type I and type III stars are present, including the case that these
two types are connected by a single type II star, then the permutation is “V-shaped” in terms
of the number of agents within each star. Specifically, starting from the very beginning, we
first observe a series of type I stars with the number of agents within each star decreasing.
Then, there may or may not be a single type Il star which does not necessarily have fewer
agents than previous stars. Finally, we observe a series of type III stars with the number
of agents within each star increasing. In summary, Proposition 3.6 rules out many possible

permutations, though the optimal one has not been obtained yet.
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3.6 Conclusion

In this paper, we characterized the optimal effort-inducing mechanism for teamwork with
network-based internal information for typical networks composed of stars. Our framework
highlights the endogeneity of the task assignment sequence and provides a simple algorithm
to derive the optimal sequence. An agent’s position is tightly related to his importance to
the project as well as his connectivity in the network. More important agents move later in
the sequence and receive higher rewards, while better connected agents take up intermediate
positions, reflecting a balance between incentives for early and later agents. The general
question of how to fully characterize the optimal incentive scheme in an arbitrary network
remains open; richer studies in this direction may shed more light on incentive design in

many contemporary circumstances with complex channels of internal information.

3.7 Appendix

3.7.1 Omitted Proofs
Proof of Proposition 3.1.

Proof. We first prove that {m,v*(7)} is an EFI mechanism. Consider a strategy profile s*
such that s; = 1 if and only if a; = 1 for all j € N; or N; is empty; that is, an agent works
unless he sees someone shirking. This strategy profile can be sustained by a PBE with the
set of beliefs: if a; = 1 for all j € N; or N; = 0, then a;, = 1 for all k € N\ (N; U {i} UM;); that
is, an agent, not seeing anyone shirking, believes that those whom he cannot see and who
cannot see him through a sequence of agents will exert effort. To verify this statement, note
that if agent i shirks then by induction every j € M; shirks as well. In contrast, if i works
then he believes that all the other agents work too unless he sees someone shirking. Suppose
i is the first to act, then he believes that if he works then all the other agents also work, and

if he shirks then he will induce each agent in M, to shirk. Thus, i prefers working to shirking
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if and only if the difference in expected reward exceeds the effort cost, i.e.,

[P(N) = p(N\({i} UM;))]vi > 1 (3.2)

Clearly, v} satisfies (3.2). It follows by induction that for all ; € {2,...,n}, i prefers to work
on equilibrium path if and only if (3.2) holds, as he sees no one shirking. Off the path, if i
sees a nonempty subset S; C N; of agents shirking, then he knows that each j € S; will induce
everyone in M; to shirk. Let R; := .U M;US; be the set of agents whom i believes shirk.
Thus, if i works then his expected u{ueliy equals p(N\R;)v} — 1. In contrast, if i shirks then

his expected utility equals p((N\R;)\({i} UM;))v}. We now provide a useful lemma.
Lemma 3.5. Suppose p satisfies complementarity, then for any two nonempty sets of agents

B, C C N, we have p(N) — p(N\B) > p(N\C) — p((N\C)\B).

Proof. 1If p satisfies complementarity, then for two nonempty sets 7 and S with 7 C S and

two agents i, j ¢ S, we have

p(SULi}U{j}) —p(S) = p(SULi} U{j}) — p(SU{i}) + p(SU{i}) — p(S)
> p(TU{i}u{j}) —p(T U{i}) + p(T U{i}) — p(T)

p(TU{i} U{j}) —p(T).

This implies by induction that for any nonempty set Q C N with QNS = 0 we have

p(SUQ) —p(S) > p(TUQ) —p(T). (3.3)

Then, let T = (N\C)\B, S = (N\B), and Q = B. It is readily confirmed that 7 C S and

QNS = 0; thus, the lemma is proven using (3.3). ]

From Lemma 3.5, we conclude that [p(N\R;) — p((N\R)\({i} UM;))]vi < 1. This

means that i prefers to shirk whenever he sees someone shirking. Thus, s* and the set of
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beliefs that are constructed above indeed constitute a PBE with full effort.

It remains to show that any alternative reward scheme v/ with v, < v} cannot constitute a
PBE with full effort. Suppose not, then the probability of success is p(N) on the equilibrium
path. If i shirks unilaterally, then he can at most trigger those in M; to shirk, irrespective
of the strategy profile. In other words, i’s effort externality is confined to the coalition M;.
Since p is increasing, the difference in expected reward is less than the effort cost. Hence,
i can make a profitable deviation by shirking, leading to a contradiction. Note that all these

arguments go through for any fixed 7, thus we have proven the proposition. 0

Proof of Proposition 3.2.

Proof. As usual, we first prove that {m,v*(7)} is an EFI mechanism. Consider a strategy
profile s* with s7 = 1, that is, an agent always exerts effort irrespective of his information
set. This strategy profile can be sustained by a PBE with the set of beliefs that a; = 1 for
all j ¢ N;; that is, an agent believes that those whom he cannot see will exert effort. Note
that if agent i sees no one shirking then he believes that all the other agents work. Hence,
he prefers to work if and only if [p(N) — p(N\{i})]v; > 1, which holds for v}. In contrast,
if i sees a nonempty subset of agents S; C N; who shirk, then his expected utility equals
p(N\S;)vi — 1 if he works; equals p((N\S;)\{i})v} if he shirks. Then by substitutability,
we have p(N\S;) — p((N\Si)\{i}) > p(N) — p(N\{i}). This implies that i still prefers to
work. Hence, s* and the set of beliefs constitute a PBE. Finally, we argue that there does not
exist a reward scheme v with v < v} that admits a PBE with full effort. Suppose not, then
i must prefer working to shirking if he encounters no shirking. Due to substitutability, if i
shirks unilaterally then each j € M; prefers to work, as argued above. This means that the
difference in expected reward equals p(N) — p(N\{i}). Since i is indifferent under v}, he

must prefer shirking under v/, a contradiction. Hence, v* (7) is indeed optimal. O]
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Proof of Lemma 3.2.

Proof. Suppose not, then 7} < 7, < ;. Since (i,k'), (j,k') € g, we have j € M;. Now
switch i and j and call the new permutation 7’. Since {k|(i,k) € g} = {k|(j,k) € g}, we
have (i, j) ¢ g, and thus, N = N7, N; = N}, M{ = M; and M; U {j} = M; U {i}. Consider
an agent k # i, j. There are three possibilities to consider. First, i, j ¢ M;. Since N; = N;
and N} = N/, the switch between i and j will not affect My, and thus, M1/< = M}, meaning
that vi (') = v{(7*). Second, i € M. It follows that j € M as j € M;. Since M] = M}
and M’;U{j} = M; U{i}, the switch will not affect My; thus, M; = M}’ and v; (') = vi(7*).
Third, j € M} buti ¢ M. This means that (i,k) € g, and by Lemma 3.1, that 7/ < 7 < 7;.

It follows that M; \{j} = M;\{i}, and thus, we have

P(N\({k} UM;)) = p(N\({k} U(MA{H) U{j}))
(M{&} U MALTHIIY)

(
(N{& U NN
(
(

P
P

V

p((N\{&} U M\ B))\(})
pP(N\{Kk}U (M\{i}) U{i})) = p(N\({k} UMy)).

The inequality above is due to that i is more important than j. Then, from Proposition 3.1,

we have vi(7') < vi(7*). Moreover, since M; = M7}, we have

p(N\{jPuM;)) = p(N\MP)\{j}) > p(N\M))\{i}) = p(N\({i} UM})).

It follows from Proposition 3.1 that v; (') < vi(x*). Finally, since MU {j} = M; U {i},
we have v}‘-(n” ) = vi(m*). This implies that the total payoffs to the agents are strictly lower

under 7’ than under 7*, leading to a contradiction. Thus, the lemmas is proven. 0
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Proof of Lemma 3.3.

Proof. Define AMB(m) = MB(m+ 1) — MB(m). From basic calculation, we have

n—3—m 1 1
AMBm) = X | Sy (G <n—m TN @) p(U < TS

1 1
i=1 [P(N) —p({jli<n—mi\{i}) p(N)—p({jlj<n—m- 1}\{i})}

1 1
" [pav) ol <n—m—13)  pN)=p({jlj < n—m}ﬂ

1 1
' LD(N) —p({jlj <n=m=2})  p(N)=p({jli < n—m}\{n—m—2})1 '

Note that given a specific i, the term

1 1
[p(N) —p({jli <n—mP\{i})  p(N)—p({jlj <n—m- 1}\{1'})]

is decreasing in m. This is due to the exactly same reasoning in the proof of Corollary 3.1.
Thus, the difference between the above two summations is negative. In addition, the value
of the third and forth bracket in the expression of AMB(m) are both negative, since p is

increasing. Therefore, AMB(m) is negative, meaning that MB(m) is decreasing in m. O

Proof of Proposition 3.5.

Proof. We first prove that the marginal benefit is decreasing within each star. Consider a
star i, with 1 <i <r. Let m; be the number of peripheries who act after the center within
star 7, with 0 < m; < s; — 1. Given the result of Lemma 3.4, it is without loss of generality
to assume that for any star j < i, m; = 0, and that for any star j > i, m; =s; — 1. Note
that the marginal benefit of raising m; has two independent components: first, improving the
transparency of the actions within i and reducing the number of the center’s predecessors;
second, improving the transparency of all preceding actions that can be learned by the center

of star i on the equilibrium path. Lemma 3 has shown that the first component is decreasing
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in m;, thus it suffices to show that the second component is also decreasing in m;. Denote

the second component MB;;(m;). Since m; = 0 for any star j < i, the total payoffs to the

*

agents of these stars, v;_;(m;), is given by

\
—

Sj—l 1
: + :
j—1 j—1
p(n) —P(kZ1 sk+sj+si=3—mi) p(n) —P(kZ sk+sj+si—2—mi)
= =1

(. . S

payoffs to the peripheries payoff to the center

V}k'<i(mi)

~.
I
—_

By definition, MB<;(m;) = vi_;,(m; + 1) —vj_;(m;), with 0 <m; <s; —2. Because p
satisfies complementarity, it can be easily shown that MB ;(m;) is indeed decreasing in m;.

Thus, the marginal benefit is decreasing within star i.

Then, we prove that the marginal benefit is decreasing over stars. This follows directly
from the proof of Lemma 3.4. Specifically, a periphery of star i who acts after the center
of i can impose an implicit threat of shirking on more agents than his counterparts in any
star j < i. This implies that the marginal benefit is decreasing across stars. In summary, the

marginal benefit is decreasing through the process characterized by Proposition 3.5.

To see that the center of star 1 does not act the first, we consider the marginal benefit
when m = s; —2 and m; = s; — 1 for all star j > 1. However, this is equal to the marginal
benefit of a single star when m = n — 2, and from Proposition 3.4, MB(n —2) < MC. Thus,
the center of star 1 does not act the first. Similarly, to see that the center of star  does not act
the last, we consider the marginal benefit when m; = O for any star i. However, this equals

the marginal benefit of a single star when m = 0. From Proposition 3.4, we have

n—>2 n—72 1 1
B0 = b2 P =) el 1) ) —pla=1)

Thus, the center of star r does not act the last. Therefore, the proposition is proven. [
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3.7.2 Optimal Sequence for Partially Adjustable Star

Here, we demonstrate that the algorithm of searching the optimal sequence for star networks

remains valid if the relative order between the center and some peripheries is unadjustable.

Suppose that due to technology constraint, a subset K; C N of peripheries have to execute
their tasks before the center, a subset K, C N of peripheries have to execute their tasks after
the center, and the remaining agents are perfectly flexible for ordering. Let ¢ be the number
of agents in the third group, and relabel the peripheries from 1 to # — 1, with a higher index
referring to a more important agent. Let agent ¢ be the center. Suppose that among these
t — 1 peripheries, m act after the center, then from Lemma 3.2, they are more important than

the other peripheries. Thus, the total payoffs to the agents is given by

i 1
; p(N)—p({jlj <t —mp\{i }UKI)

payoffs to the remalnmg predecessors

1 = 1
+ — + Y :
p(N)—p({jlj<t-m}UKy) 5 p(N)=p(N\{i})
payoff to the center payoffs to the re&raining successors
1 1
. p(N)—p({jlj <t— }UK\{k}) L (N) = p(N\{k2})
kIEKl JIJ m 1 1 szsz V4 2
payoft to the agents in K payoffs to tl:eragents in Ky

Analogously, the marginal benefit MB(m;t) is given by

i { 1 1 }
= —p({jli <t—m\{i}UKy) p(N)—p({jlji<t—m—1N\{i}UK)

+ T Lo 1 ! |

kK, —p({jlj <t—m}UK\{ki})  p(N)—p({jlj<t—m—1}UK\{ki})
1

p(N)—p({jlj<t—m})’

and the marginal cost MC(m;t) is given by [p(N) — p(N\{t —m—1})]~!
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It can be shown analogously to Lemma 3.3 that MB(m;1) is decreasing in m, as p satisfies
complementarity. On the other hand, MC(m;¢) is increasing in m, as an agent with lower
index is less important to the project. Thus, the optimizer m* is either a corner solution or
an interior solution such that m* = min{m|MB(m) < MC(m)}, meaning that the algorithm

in Section 3.4 is still valid for searching the optimal sequence for star networks.
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