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Cerebrospinal fluid biomarkers in the Longitudinal Early-onset 
Alzheimer’s Disease Study

A full list of authors and affiliations appears at the end of the article.

Abstract

Introduction: One goal of the Longitudinal Early Onset Alzheimer’s Disease Study (LEADS) is 

to define the fluid biomarker characteristics of early-onset Alzheimer’s disease (EOAD).

Methods: Cerebrospinal fluid (CSF) concentrations of Aβ1–40, Aβ1–42, total tau (tTau), 

pTau181, VILIP-1, SNAP-25, neurogranin (Ng), neurofilament light chain (NfL), and YKL-40 

were measured by immunoassay in 165 LEADS participants. The associations of biomarker 

concentrations with diagnostic group and standard cognitive tests were evaluated.

Results: Biomarkers were correlated with one another. Levels of CSF Aβ42/40, pTau181, tTau, 

SNAP-25, and Ng in EOAD differed significantly from cognitively normal and early-onset non-

AD dementia; NfL, YKL-40, and VILIP-1 did not. Across groups, all biomarkers except SNAP-25 

were correlated with cognition. Within the EOAD group, Aβ42/40, NfL, Ng, and SNAP-25 were 

correlated with at least one cognitive measure.
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Discussion: This study provides a comprehensive analysis of CSF biomarkers in sporadic 

EOAD that can inform EOAD clinical trial design.

Keywords

Alzheimer’s disease; amyloid; astrogliosis; Aβ42/40; biomarkers; CSF; dementia; neurogranin; 
NfL; pTau181; SNAP-25; tau; tTau; VILIP-1; YKL-40

1 | BACKGROUND

Alzheimer’s disease (AD) is characterized by the presence of amyloid plaques and tau 

neurofibrillary tangles in the brain and is the most common cause of dementia.1 Although 

there are rare autosomal dominant cases, most sporadic cases (95%) of AD are late-onset 

Alzheimer’s disease (LOAD), with symptom onset occurring after the age of 65 years. 

About 5% of sporadic cases have an onset of symptoms before the age of 65 years and are 

referred to as sporadic early-onset Alzheimer’s disease (EOAD).2,3 Patients with sporadic 

EOAD have been included along with LOAD in many clinical trials despite reported 

differences in neuropsychological presentation, progression rates, density and distribution 

of tau pathology, and genetic risk factors.4–7 The Longitudinal Early-Onset Alzheimer’s 

Disease Study (LEADS) was launched in 2018 to study this population.8 One goal of 

LEADS is to characterize cerebrospinal fluid (CSF) biomarkers in the sporadic EOAD 

population. Understanding the effect size associated with an AD diagnosis on each of these 

measures and the amount of variation that exists in a sporadic EOAD population is essential 

to enable clinical trials for this understudied patient group. These CSF biomarker data can be 

used to calculate the sample size or power when designing proof-of-concept clinical trials in 

the EOAD population where these biomarkers may be useful as disease-related endpoints.

CSF biomarkers have been used extensively in AD clinical research and clinical practice 

to aid in diagnosis in patients.9 The core set of CSF AD biomarkers includes amyloid-β 
peptides 42 (Aβ42) and 40 (Aβ40), which are usually used as a ratio (Aβ42/40), as well 

as tau (both total tau [tTau] and tau phosphorylated at threonine 181 [pTau181]). The 

core CSF AD biomarkers identify those individuals likely to have amyloid pathology as a 

potential contributor to their cognitive symptoms.10,11 In addition to this core set of AD 

biomarkers, other CSF biomarkers have been used in AD clinical research: neurofilament 

light chain (NfL), for neuroaxonal damage; visinin-like protein 1 (VILIP-1), for neuronal 

injury; chitinase-3-like protein 1 (YKL-40) and glial fibrillary acid glycoprotein (GFAP), for 

astrocytic changes; synaptosomal-associated protein 25 (SNAP-25), for presynaptic damage; 

and neurogranin (Ng), for postsynaptic damage.9,12 In LOAD studies, these additional CSF 

biomarkers are correlated with one another and are increased in early AD but may plateau 

or even decrease in later stages of AD dementia.13–15 However, most studies have not 

characterized these CSF biomarkers specifically in the sporadic EOAD population.

The aim of this cross-sectional study was to provide a descriptive analysis of a panel of CSF 

biomarkers in EOAD compared with cognitively normal (CN) or amyloid positron emission 

tomography (PET)-negative early-onset cognitively impaired participants (EOnonAD). 

Achieving this aim will provide information necessary for future clinical trial design 
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using CSF biomarkers in this population and provide a foundation for understanding the 

relationship of the CSF biomarkers with the disease course of EOAD. Additionally, this 

study provides a foundation for future studies using sophisticated modeling techniques 

to investigate the individual information that each CSF biomarker provides to the overall 

understanding of the EOAD population.

2 | METHODS

2.1 | Participants

The LEADS design (NCT03507257) was published previously.8 Institutional Review Board 

(IRB) approval was obtained through a central IRB overseen by Indiana University, and 

informed consent was obtained in written form from study participants or authorized 

representatives. LEADS participants must be age 40 to 64 years at the time of consent. 

EOAD and EOnonAD participants must meet National Institute of Aging-Alzheimer’s 

Association (NIA-AA) criteria for dementia or mild cognitive impairment (MCI) and 

have a global Clinical Dementia Rating (CDR) score ≤1 indicative of very mild or mild 

dementia.16 Impaired individuals with genetic mutations in amyloid precursor protein 

(APP), presenilin-1 (PSEN1) or presenilin-2 (PSEN2), microtubule associated protein 

tau (MAPT), chromosome 9 open reading frame 72 (C9ORF72), or granulin precursor 

aka progranulin (GRN) were excluded. Unlike the Alzheimer’s Disease Neuroimaging 

Initiative (ADNI) study and some clinical trials, LEADS does not exclude individuals with 

predominantly non-amnestic presentations other than motor and behavioral presentations. 

Individuals meeting criteria for the dysexecutive, logopenic primary progressive aphasia or 

posterior cortical atrophy variants are eligible for the study.

2.1.1 | Clinical assessments—LEADS clinical assessments included a standardized 

history of present illness, past medical history, family history, concurrent medication, and 

detailed general medical and neurological examinations. LEADS uses the NACC Uniform 

Data Set cognitive battery (UDS 3.0), the NACC Frontotemporal Lobar Degeneration 

module, the Alzheimer’s Disease Assessment Scale—Cognitive Subscale (ADAS-Cog), 

and several additional cognitive tests tapping into cognitive functions that are commonly 

impaired in rare AD variants.17 Clinical diagnosis is established in a multidisciplinary 

consensus conference at each clinical site following the NIA-AA diagnostic criteria for 

dementia and MCI. Cognitive screening tests included in this analysis are the Montreal 

Cognitive Assessment (MoCA), clinical dementia rating sum of boxes (CDR-SB), and 

ADAS-Cog.18

2.1.2 | CSF fluid biomarkers—There were 371 participants included in the LEADS 

mid-term analysis, but only 165 participant samples were available for this analysis since 

the lumbar puncture (LP) was optional. Additionally, 11 of the subjects were missing a CSF 

sample at the baseline visit, so the first collections (10 at 12 months and one at 24 months) 

were included for this analysis. Samples were distributed blinded to the Knight Alzheimer’s 

Disease Research Center Fluid Biomarker Core laboratory at Washington University in St. 

Louis in May 2022 after being randomized prior to analysis for age, sex, and diagnosis 
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by the National Centralized Repository for Alzheimer’s Disease and Related Dementias 

(NCRAD).

Concentrations of Aβ40, Aβ42, tTau, and pTau181 were measured using the Lumipulse 

G1200 Chemiluminescent Enzyme Immunoassay platform according to the manufacturer’s 

instructions. The Lumipulse platform is an automated analysis system based on 

chemiluminescent enzyme immunoassay (CLEIA) technology. Fujirebio kit-provided 

controls and in-house fluid biomarker core CSF controls were used for quality control 

purposes (see supplemental materials for assay measurement range and quality control 

performance in Tables S6, S7, S8, and S9). VILIP-1, SNAP-25, and Ng were measured 

by quantitative fluorescent two-site immunoassays with Single Molecule Counting (SMC) 

technology using antibodies and protocols developed in the laboratory of Dr. Jack Ladenson 

at Washington University in St. Louis, as was previously described.14,19–21 Samples and 

in-house CSF controls (Tables S10 and S11) were analyzed over 7 days, 27 samples per day.

NfL and YKL-40 were measured with plate-based commercial Enzyme-Linked 

Immunosorbent Assays (ELISAs) manufactured by Uman Diagnostics and Quidel, 

respectively, and as previously described.22,23 Measuring range and control values are in 

supplemental materials (Table S12, S13, and S14).

2.2 | Statistical analysis

Statistical analysis was conducted in JMP Pro version 16 or GraphPad Prism (version 

9.5). Mean differences in demographic variables and cognitive test results by diagnostic 

groups were evaluated using post hoc pairwise comparisons and Tukey-Kramer to limit 

type I error.24 To facilitate comparisons between biomarkers, CSF biomarker data were 

standardized using the mean and standard deviation of the CN group after using an 

outlier box plot to identify and remove outliers (supplemental methods Table S1). Once 

the standardized values were calculated, all participant results were included in the 

analyses. Non-parametric correlation analyses (Spearman’s correlation) were performed 

due to the skew of fluid biomarker data and non-linear nature of the associations. 

Spearman’s correlation means and bias-corrected (BC) confidence limits were determined 

through bootstrap resampling (n = 2500) in JMP Pro.25 Comparisons of CSF biomarkers 

by diagnostic group were performed by ANOVA with a Kruskal-Wallis test for overall 

significance and post hoc, pariwise Dunn’s multiple-comparisons tests. Data transformation, 

as well as adjustments for age, sex, or APOE e4 carrier status, was outside the scope of these 

analyses as the influence of these factors will be best understood in focused studies of the 

specific clinical uses of each CSF biomarker.

3 | RESULTS

3.1 | Participants

This analysis includes participants enrolled in LEADS as of February 2022. The LEADS 

is ongoing, and the LP procedure is optional. As such, the numbers of participants (n = 

165) included only those that had undergone at least one LP at the time of samples being 

identified for analysis (February 2022) and represent about 44% of the overall LEADS 
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cohort at that time. The characteristics of individuals with CSF data are shown in Table 

1 and are divided into diagnostic categories (n = 37 CN, n = 96 EOAD, and n = 32 

EOnonAD). Diagnostic groups did not vary by sex, APOE carrier status, or race. The EOAD 

group was older than the CN group and was less ethnically diverse compared with the CN 

or EOnonAD groups. As expected, the EOAD group performed worse on cognitive tests 

compared to the CN group in post hoc pairwise comparisons. Additionally, the EOAD group 

had greater impairment than the EOnonAD group on the MoCA (p < .001) and ADAS-Cog 

(p = .002), but not the CDR-SB (p = 1.000).

3.2 | Correlation of CSF biomarker levels and association with diagnostic groups

CSF biomarkers were correlated with one another (Figure 1A and Table S2) in the total 

study population as well as within the EOAD group (Figure 1B and Table S3), except 

for NfL with SNAP-25 or Aβ42/40 in the EOAD group, and both have p value > .05 

and Spearman’s rho of −0.104 and 0.186, respectively. Non-parametric densities of the 

standardized CSF biomarker data allow visual assessment of scatter patterns. There are two 

distinct density clusters across all associations with Aβ42/40 in the total study population. 

The NfL scatter plots show seven members of the EOnonAD group and two EOAD with 

very high levels. The synaptic degeneration markers (Ng and SNAP-25) and VILIP-1 have 

similar patterns with most of the variation seen in the EOAD group. The correlations 

between VILIP-1 and Ng or SNAP-25 in the total study population or in the EOAD group 

are higher than the correlation of VILIP-1 and NfL (Tables S2 and S3).

The standardized levels of individual biomarkers varied across diagnostic groups (Figure 

2 and Table 2). AD biomarkers Aβ42/40, tTau, and pTau181 all showed similar patterns, 

with the EOAD group significantly different from CN and EOnonAD groups (p < .001 

in comparisons for each biomarker). However, the CN group was not different from the 

EOnonAD group (p > .05 for all biomarkers). Other CSF biomarkers showed unique 

patterns including NfL being elevated in both EOAD and EOnonAD groups compared with 

CN (p < .001 and p < .05, respectively) and different between EOAD and EOnonAD (p < 

.001). Levels of SNAP-25, VILIP-1, YKL-40, and Ng were elevated in EOAD compared 

with CN (p < .05, p < .01, p < .001, p < .001, respectively), only SNAP-25, YKL-40, and Ng 

were different between EOAD and EOnonAD (p < .05, p < .01, p < .01, respectively).

3.3 | Correlation of CSF biomarkers with cognition (MoCA, CDR-SB, and ADAS-Cog)

The correlations of the three cognitive measures with CSF biomarkers in the overall study 

population, as well as in the EOAD group, are shown in a forest plot using Spearman’s 

rho and 95% confidence limits (Figure 3). The strongest correlations were seen with 

NfL, Aβ42/40, tTau, and pTau181. All of these were significant across all three cognitive 

measures (Table S4). However, the correlation of CSF biomarkers with all three cognitive 

measures within the EOAD group (Figure 3) showed only NfL remaining significant for 

the MoCA (p < .001), CDR-SB (p < .001), and ADAS-Cog (p < .008) (Table S5). All 

biomarkers were correlated with one or more of the cognitive measures in the overall 

study population, except for SNAP-25, where the bootstrap resampling confidence limits 

overlapped a Spearman’s rho of zero in all three measures. The correlations between CSF 

biomarkers and cognitive measures were generally weaker in the EOAD group compared 
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with the overall population. Only NfL maintained significant correlations with all three 

cognitive measures in the EOAD group.

4 | DISCUSSION

We completed a descriptive analysis of CSF biomarkers in LEADS participants generally 

and in the sporadic EOAD population specifically. As expected and consistent with the 

recent US Food and Drug Administration (FDA) approvals for some of these biomarkers, the 

CSF measures of Aβ42/40 and pTau181 differentiated the EOAD from CN and EOnonAD 

groups. This result was expected since the EOAD and EOnonAD groups were defined by the 

presence or absence of amyloid pathology as determined by amyloid PET imaging; however, 

verification further supports the use of these CSF biomarkers to aid in the diagnosis of 

EOAD. All the CSF biomarkers correlated with one another, which is very similar to 

what has been observed in LOAD and autosomal-dominant EOAD.23 Outside of aiding 

in diagnosis, it remains unclear what information the other biomarkers might convey as 

independent measures. Future studies are required to explore this question in detail. It is 

important to note that the frequency of APOE ε carriers in the CU group (51%) of this 

CSF substudy was similar to that described in the CN group of LEADS (51%), and both 

are higher than seen in population-based studies such as the Mayo Clinic Study of Aging 

(29.1%) in clinically unaffected participants ages 50 to 65.26 The explanations for this 

difference are likely related to biased recruitment to clinical research studies compared with 

population-based studies. Individuals are more likely to be interested in participating in 

clinical research studies if they have affected family members or have knowledge of their 

risk profile. We believe this is intensified for early-onset dementia due to the large impact on 

families.

Many studies have investigated core CSF AD biomarkers (Aβ42/40, pTau181, tTau, and 

NfL) in broad populations and have found support for the use of these biomarkers to aid 

in the diagnosis of AD or related dementias in individuals aged at least 50 years.27 The 

CSF and plasma biomarkers have been similarly used as exploratory endpoints or post hoc 

studies of investigational amyloid removal therapies in both autosomal-dominant AD and 

LOAD.28,29 However, few studies have characterized investigational markers (Ng, VILIP-1, 

SNAP-25, and YKL-40) in sporadic EOAD populations and evaluated how these biomarkers 

relate to one another. The effect sizes and data in Table 1 can be used to model sample 

size and power for the use of these CSF biomarkers as clinical trial endpoints in the EOAD 

population, supporting the idea that these data may inform the design of clinical trials in the 

EOAD population or provide confidence in their use in the 50-and-over population.

In a recent study of LOAD, Pereira et al. showed that synaptic markers, including SNAP-25 

and Ng, were associated with amyloid deposition and memory dysfunction, while NfL levels 

continued to increase with worse global cognition.30 Our results are consistent in EOAD, 

also showing associations of cognition with NfL. Pereira et al. also observed reductions in 

Ng with decreased memory performance, as was replicated in our EOAD group.30 Other 

CSF biomarker trajectory analyses have been conducted in autosomal-dominant AD23,31 and 

LOAD14 that have shown early changes followed by a plateau or even reductions in levels, 

but these trajectories may differ depending on the comparison with amyloid PET, tau PET, 
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or cognitive symptoms. The changes in biomarker levels by disease stage will be important 

factors to control for when using these CSF biomarkers in clinical trials.

4.1 | Limitations

This study had several limitations. This constitutes an interim assessment of an ongoing 

study, and additional enrollment could affect the findings. The EOnonAD group is likely 

heterogeneous, including likely subjects with Lewy body disease and frontotemporal 

dementias, among other potential diagnoses. LEADS is a multisite longitudinal study, but 

the analysis is baseline only and, thus, only a cross-sectional analysis. The findings should 

be confirmed once the study is completed and longitudinal follow-up is incorporated into 

the analyses. This was a descriptive analysis and used non-parametric approaches in data 

analysis. Future studies incorporating data transformations and covariates into parametric 

models can be performed to allow for more specific hypotheses to be evaluated.

Although there similarities were noted between EOAD and LOAD, direct comparative 

analyses adjusting for covariates are necessary to generalize biomarker similarities and 

differences between the populations. The generalizability of the findings and observations to 

a diverse non-White or Hispanic population remains unknown due to the low enrollment of 

these populations in LEADS. LEADS is funded to increase enrollment of diverse subjects, 

and future analyses will need to be completed to evaluate our results in a more diverse 

population. Finally, future studies should evaluate each of these CSF biomarkers for specific 

contexts of use.

5 | CONCLUSION

CSF biomarkers were associated with diagnostic groups and cognition in LEADS. It 

remains to be seen whether they will be associated with cognitive decline. Future studies 

investigating longitudinal CSF biomarker trajectories and differences between EOAD and 

LOAD are needed to define the utility of these CSF biomarkers for monitoring unique 

aspects of disease progression.
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RESEARCH IN CONTEXT

Systematic review:

Cerebrospinal fluid (CSF) biomarkers are commonly used in Alzheimer’s disease 

(AD) research and clinical practice.Using PubMed, we identified only a few reports 

that describe their use in the sporadic form of early-onset Alzheimer’s disease 

(EOAD).Additionally, we did not identify any studies in sporadic EOAD that included 

CSF biomarkers of astrogliosis, neuronal damage, or synaptic dysfunction along with 

those for amyloid and tau pathology.

Interpretation:

A broad scope of CSF biomarkers were measured in research participants enrolled in the 

Longitudinal Early Onset Alzheimer’s Disease study (LEADS).We provide a descriptive 

analysis of how CSF biomarkers differ in relation to diagnosis and how they relate to one 

another in individuals with EOAD.

Future directions:

LEADS is ongoing, and longitudinal data and samples are being collected.Future 

analyses will investigate the relationship of CSF biomarkers with plasma biomarkers, 

genomics, imaging, and cognitive decline.
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FIGURE 1. 
Correlation analysis of standardized CSF biomarkers in (A) LEADS and (B) EOAD group. 

Individual values for CN (gray), EOAD (dark blue), and EOnonAD (light blue) are shown 

by filled circles. The non-parametric densities are shown by red shading (0.90) and gray 

shading (0.50). The opposite side of the correlation map is masked to avoid duplication of 

scatter plots.
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FIGURE 2. 
Standardized CSF biomarker values by diagnostic group: (A) pTau181, (B) tTau, (C) NfL, 

(D) Ng, (E) VILIP-1, (F) YKL-40, (G) SNAP-25, and (H) Aβ42/40. Individual values for 

CN (gray), EOAD (dark blue), and EOnonAD (light blue) are shown by filled circles, 

squares, and triangles, respectively. Error bars showing the mean and standard deviation. 

Significance (p values) is determined by Kruskal–Wallis test for significance and Dunn’s 

multiple comparisons test. ∗p < 0.05; ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001.
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FIGURE 3. 
Forest plot of Spearman correlations and 95% confidence limits of CSF biomarkers with 

cognitive tests in total LEADS population (purple circle) or EOAD group (dark blue square). 

CDR-SB, Clinical Dementia Rating Scale Sum of Boxes; MoCA, Montreal Cognitive 

Assessment Total Score; ADAS-Cog, Alzheimer’s Disease Cooperative Studies—cognitive 

behavior subscale. Worse performance in cognitive testing is associated with lower MoCA 

scores and higher scores on CDR-SB or ADAS-Cog.
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