
UCSF
UC San Francisco Previously Published Works

Title
CryoFold: Determining protein structures and data-guided ensembles from cryo-EM density 
maps

Permalink
https://escholarship.org/uc/item/9ns981p8

Journal
Matter, 4(10)

ISSN
2590-2393

Authors
Shekhar, Mrinal
Terashi, Genki
Gupta, Chitrak
et al.

Publication Date
2021-10-01

DOI
10.1016/j.matt.2021.09.004
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9ns981p8
https://escholarship.org/uc/item/9ns981p8#author
https://escholarship.org
http://www.cdlib.org/


CryoFold: determining protein structures and data-guided 
ensembles from cryo-EM density maps

Mrinal Shekhar1, Genki Terashi2, Chitrak Gupta3,4, Daipayan Sarkar2,3, Gaspard 
Debussche5, Nicholas J. Sisco3,6, Jonathan Nguyen3,4, Arup Mondal9, John Vant3,4, Petra 
Fromme3,4, Wade D. Van Horn3,6, Emad Tajkhorshid1, Daisuke Kihara2,8, Ken Dill7, Alberto 
Perez9, Abhishek Singharoy3,4

1Center for Biophysics and Quantitative Biology, Department of Biochemistry, NIH Center for 
Macromolecular Modeling and Bioinformatics, Beckman Institute for Advanced Science and 
Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA

2Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA

3The School of Molecular Sciences, Arizona State University, Tempe, AZ 85287, USA

4The Biodesign Institute Center for Structural Discovery, Arizona State University, Tempe, AZ 
85281, USA

5Department of Mathematics and Computer Sciences, Grenoble INP, 38000 Grenoble, France

6The Biodesign Institute Virginia G. Piper Center for Personalized Diagnostics, Arizona State 
University, Tempe, AZ 85281, USA

7Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New 
York 11794, United States

8Department of Computer Science, Purdue University, West Lafayette, IN 47907, USA

9Chemistry Department, Quantum Theory Project, University of Florida, Gainesville, Florida, 
32611, USA

Abstract

Cryo-electron microscopy (EM) requires molecular modeling to refine structural details from 

data. Ensemble models arrive at low free-energy molecular structures, but are computationally 

expensive and limited to resolving only small proteins that cannot be resolved by cryo-EM. Here, 

we introduce CryoFold - a pipeline of molecular dynamics simulations that determines ensembles 

of protein structures directly from sequence by integrating density data of varying sparsity at 

3–5 Å resolution with coarse-grained topological knowledge of the protein folds. We present 

six examples showing its broad applicability for folding proteins between 72 to 2000 residues, 

including large membrane and multi-domain systems, and results from two EMDB competitions. 

Driven by data from a single state, CryoFold discovers ensembles of common low-energy models 

together with rare low-probability structures that capture the equilibrium distribution of proteins 

constrained by the density maps. Many of these conformations, unseen by traditional methods, 

are experimentally validated and functionally relevant. We arrive at a set of best practices for 

data-guided protein folding that are controlled using a Python GUI.
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1 Introduction

Cryo-electron microscopy (cryo-EM) is a powerful tool for determining the structures 

of biomolecules. It serves a niche – such as large complexes or membrane proteins or 

molecules that are not easily crystallizable – that traditional methods, such as X-ray 

diffraction, electron or neutron scattering, or NMR often cannot handle. Routine cryo-EM 

structure determination has a number of components: the experiment produces raw data 

in the form of single-particle images, correction and processing of this data recovers an 

electrostatic potential map (henceforth referred to as a density map), and finally molecular 

modeling is required to determine structures from the map. Currently, there are two broad 

classes of methods for molecular modeling. First, established algorithms for refining X-

ray structures, such as Phenix, Coot, or REFMAC are often used, even for ensemble 

determination 1. They offer complete models with data of 2 Å or better resolution 2. A 

challenge arises because the Cryo-EM datasets are commonly of lower resolution, reflecting 

a broad diversity of underlying conformations. Second, integrative approaches leverage data 

from multiple experimental sources 3–5, identifying consensus structures compatible with 

the different datasets. The challenge here is that cryo-EM data is heterogeneous, meaning 

that some parts of a protein structure are well-determined by the data while others are more 

poorly defined 6.

The uneven resolution of the datasets poses a need for extensive conformational sampling 

of the computational models, and identifying the most biophysically relevant conformations 

from the poorly resolved regions. The span of this biophysically relevant conformational 

search space is large and grows non-linearly with system size 7. Multi-model approaches 

have been recently conceived to interpret sub-5 Å structural data with atomistic ensembles 8. 

These methods focus on sampling the conformational space, constrained by the knowledge 

of only the experimentally observed states. However, ensembles constructed around a 

known conformation are not representative of the thermodynamic state of a protein 9. 

Their truncated sampling offers an incomplete estimate of the number of structures and the 

corresponding ensemble of states that a protein can assume during equilibrium. Thus, a 

substantial portion of the conformational space that contributes to the heterogeneity of the 

observed data remains unresolved 10.

Here, we describe CryoFold, a multiphysics algorithm that derives equilibrium ensembles of 

folded protein structures from cryo-EM data. Illustrated in Fig. 1, CryoFold is a combination 

of three methods: (1) MAINMAST 11, MAINchain Model trAcing from Spanning Tree – 

a method that generates the trace of the connected peptide chain when provided with EM 

data, (2) ReMDFF 12, Resolution exchange Molecular Dynamics Flexible Fitting – a MD 

method for refining protein conformations from electron-density maps, and (3) MELD 13, 14, 

Modeling Employing Limited Data – a Bayesian engine that can work from insufficient 

data to accelerate the MD sampling of rare events, such as those needed for protein 

folding. Starting with density maps of resolution 5.0 Å and better, first, MAINMAST is 

employed to derive a chain trace of Cα atoms. Then we use this trace as a template to 

iterate between MELD and ReMDFF. While MELD explores a large conformational space, 

visiting multiple plausible secondary structures consistent with the MAINMAST template, 

ReMDFF simulations refine the protein backbone and sidechain conformations to fit to the 
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density map for each one of the assumed secondary structures (Fig. 2A) 15. Taken alone, 

ReMDFF fits models into density features, but fails to explore the variations in secondary 

structures 12. MELD addresses this issue by partial folding, unfolding and reformation of 

secondary structures 13, 14, integrating the coarse physical insights (CPI) available on web-

servers 14, 16 and that from MAINMAST’s initial trace. For example, based on sequences, 

CPI includes specific fractions of hydrophobic contacts, β-strand pairing and secondary 

structures required to minimize protein frustration (see Methods) 13. Taken together, a 

hybrid iterative MELD-ReMDFF approach allows the determination of a set of complete 

all-atom models from sequence information merged with available structural data of varying 

coarseness, and infer a subset of models that best matches with the target dataset. Also, 

MELD with only CPI is limited to folding small soluble proteins of up to 100 residues. The 

data-guidance from ReMDFF allows MELD to fold larger structures, with at least 10-fold 

more residues, inside CryoFold. For intermediate to low-resolution data (less than 5 Å) 

wherein C-alpha tracing is unreliable, the MAINMAST step can be avoided. Nonetheless, 

if successful, the search template derived from backbone tracing almost always accelerates 

convergence of CryoFold.

The guidance from experimental data allows CryoFold to derive transmembrane systems 

and asymmetric multi-protein complexes. More importantly, unlike homology models, the 

free energy description of folded and unfolded populations accessible to MELD enables the 

clustering of structures into distinct metastable states. Thus, starting with the structural data 

from a particular protein conformation, CryoFold predicts on one hand, the energetically 

favorable ensemble of structures that are consistent with the data, while on the other 

hand, discovers multiple new low-energy protein states distal to the fitted model. Going 

beyond the determination of a stationary structure or local fluctuations in its vicinity 17, 18, 

CryoFold offers a collective interpretation of the major equilibrium conformations. This 

ensemble view of the data comes from MELD, wherein the 3D map-fitted search models 

from MAINMAST are first translated into a set of hundreds of high-dimensional structural 

restraints. The molecular ensembles are then generated by exchanging between these sets 

of restraints. The generalized ensemble methodology allows knowledge from the cryo-EM 

data to be imposed as an average boundary condition that all the resulting models follow 

either partially or entirely, rather than as a single holonomic boundary restraint traditionally 

imposed in real-space refinements. Thus, model populations are determined that either 

completely or partially satisfy the data. As ReMDFF iteratively improves the consistency 

between the search model and the density data, the set of MELD restraints derived from 

the fitted models improve. The ensemble generated with these data-guided restraints reveals 

simultaneously the most-likely set of refined structures, as well as molecular dynamics 

underlying the protein’s conformational heterogeneity. Any structure from the MELD 

ensemble can be refined using ReMDFF to derive models consistent with the experimental 

data. However, to ensure rapid convergence, structures from the MELD ensembles are 

clustered based on their correlation coefficient (CC) relative to the experimental data. The 

one with the highest map-model correlation (also validated using EMRinger scores) is 

refined employing ReMDFF.

The states discovered by CryoFold scan the equilibrium protein ensemble either by visiting 

diverse manifestations of the same structural data or by visiting new energy basins, 
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structures from which are verified against orthogonal NMR, X-ray crystallography or cryo-

EM datasets. All existing X-ray 1, NMR 19 or Cryo-EM 18 ensemble refinement tools focus 

on interpretation of a chosen dataset via locally restrained model construction. Extending 

this paradigm, CryoFold enables the generation of global ensembles, encompassing a 

considerably higher dimensional conformational space, that we cluster and re-refine against 

multiple independent datasets. The multitude of structures so resolved enables the generation 

of “molecular movies” directly from experimental data, wherein structures are seen 

transitioning between multiple energy states 20.

We report data-guided structural ensembles for six different examples here, for proteins 

from 72 to 618 residues, extending to heterogeneous multi-protein complexes of up to 

2000 residues, and across both soluble and membrane systems. CryoFold overcomes 

the sampling limitations of traditional MD predictions, producing high-quality structural 

models: it convergences to solution(s) starting with partially folded models from MELD, and 

iteratively refining soluble and transmembrane structures with consistently > 90% favored 

backbone and sidechain statistics, and high EMRinger scores 21. The results are independent 

of the initial estimated conformation and consistent with physics and stereochemistry, 

highlighted through results in 2016 and 2019 EMDB competitions. The hybrid protocol 

is available through a python-based graphical user interface with a video tutorial and list of 

best practices.

2 Results

We describe six systems, chosen to highlight the pros and cons of the component methods 

in the CryoFold pipeline. Three are soluble proteins, with varying degrees of local resolution 

in the density maps. One is from the 2019 EMDB competition challenge, in which data on 

the same protein was provided at three different resolutions 22. These examples bring to light 

how MELD-ReMDFF recover correct ensembles when the MAINMAST predictions are 

challenged, and vice versa. One is a large asymmetric multi-protein complex that allowed 

us to test how big a structure CryoFold could handle. And, one is a transmembrane system, 

to see if MELD’s implicit-solvent model would be adequate for ensemble determination in 

the membrane environment. At any given resolution, the accuracy of CryoFold ensemble 

predictions depends on: (1) quality of Cα traces by MAINMAST, (2) variations in secondary 

structure within the MELD ensemble, and (3) convergence of ReMDFF. A set of best 

practices required for controlling these dependencies, and regulating the size of the data-

guided ensembles is outlined in the Methods.

Proof of principle on a small known protein

In this case, we began with a synthetic map of ubiquitin, a small 72-residue protein. 

Ubiquitin is a good test system because, on the one hand, it is small enough to fold 

computationally, and yet on the other hand its experimental folding time is in the 

millisecond range, so it is hard to fold by brute force MD simulation 23, and even, to a lesser 

extent, by the MELD approach 14. From the known X-ray crystal structure of ubiquitin, we 

generated a synthetic density map at 3.0 Å resolution, and asked if CryoFold could correctly 

recover the X-ray structure.
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We found that only two MELD-ReMDFF iterations were needed to give a model having 

a root mean square difference or RMSD of 2.53 Å from the crystal structure (PDB id: 

1UBQ, see Table S1). Starting from a random coil, the overall ubiquitin topology was 

already recovered in the first iteration (Fig. 2B). The ensembles are reminiscent of the F’ 

and F1 intermediates of ubiquitin folding 23. Secondary structure refinement of the small 

fourth β-strand and 310 helical loop yielded a fully folded state after the second iteration. 

Notably, MELD alone was unable to recover the helical loop (seen in MELD Step 1) 

despite sampling key folding intermediates seen in 2D-NMR 24. The synthetic density 

data reinforced such key secondary structural information during ReMDFF. This yielded 

more accurate CPI or coarse physical information for the next iteration of MELD, and 

subsequently secondary structure restraints for the next round of ReMDFF. Altogether, the 

proof of principles example demonstrates that the new data-driven pipeline is capable of 

attaining multiple equilibrium states that the too narrow ensembles in ReMDFF 12 or the too 

extensive ensembles in MELD 13 cannot individually achieve.

Test on a soluble lipoprotein with a uniformly high-resolution data

Francisella lipoprotein Flpp3 is a 108 amino acids long membrane-interacting protein 

that serves as a target for drug development against tularemia25. In this case, we had 

two datasets: one at high resolution (1.8 Å) from our Serial Femtosecond X-ray (SFX) 

crystallography experiments of Flpp3, PDB: 6PNY (See Supplementary Information and 
26), and another truncated at low resolution (5.0 Å). The point of this test was to see if 

we could use the low-resolution data to achieve the high-resolution structure. For both sets, 

we used MAINMAST 11 to introduce the C± traces as constraints for MELD (Fig. 3A,B). 

Convergent ensembles derived from this MAINMAST-guided MELD step were then refined 

by ReMDFF to improve the sidechains until the density was resolved with models of reliable 

geometry. MAINMAST’s spanning tree algorithm alone cannot offer any reliable sidechain 

geometry, it just places the C± atoms in the density. We found that one iteration of the 

MELD-ReMDFF cycle following MAINMAST sufficed to resolve an all-atom model of 

Flpp3 from the SFX density, with accurate secondary and tertiary structure assignments, 

and sidechain packing (structural statistics summarized in Table S2). At 5 Å resolution 

MAINMAST produced low quality backbone traces (Fig. 3B). Remarkably, even these 

low quality Cα traces were enough for MELD-ReMDFF to successfully produce models 

comparable to our high-resolution refinements. After two MELD-ReMDFF iterations, the 

best structure obtained was within 2.29 Å RMSD from the SFX model. The overall 

ensemble from the second MELD-ReMDFF iteration (inset in graph of Fig. 3B) also 

samples a narrower range of RMSD and global correlation coefficient (CC) values showing 

the convergence towards a set of conformations in good agreement with the cryo-EM 

data. However, for the same RMSD relative to the known target model, we find structures 

covering a broad range of CCs within the MELD ensembles. This breadth of the CC values 

corresponding to the models in the lowest RMSD window, which is reproducible across all 

the following examples, confirms that while CryoFold focuses on the possible best fit, the 

collection of data-guided structures concomitantly accounts for uncertainty about the best fit.

The MELD-only predictions modelled the β-sheets accurately; however, they failed to 

accurately converge on all helices (Supplementary Fig. S1). For example, a 4-turn helix 
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was underestimated to contain only 2-3 turns. Similar to the ubiquitin example, but now 

using empirical X-ray maps, guidance by the density in CryoFold recovered these turns in 

both the high and low resolution cases (Tables S2 and S3). Thus, the Flpp3 test further 

demonstrates that the CryoFold trio of methods gives accurate structures for longer chains 

than is otherwise possible with any one of these methods.

Here, we are also able to test an important aspect of physics-based structure determination, 

namely whether we can generate meaningful conformational ensembles, not just single 

average structures. The quality of the CryoFold ensembles is assessed against a set of 20 

NMR models of Flpp3 25 by looking at the conformation of key residues (Y83,K35 and 

D4) responsible for binding tularemia drugs (Fig. S2A) 26. Upon projecting the ensemble 

of 50 lowest-energy CryoFold structures onto a space defined by the distance between 

Y83-K35 & Y83-D4, where closed Flpp3 is represented by (Y83-K35 <5.0 Å & Y83-D4 > 

10.0 Å), and open Flpp3 implies (Y83-K35 >10.0 Å & Y83-D4 < 5.0 Å) 26, all the major 

conformational states seen in the NMR experiments have been recovered (Fig. S2B). Thus, 

extending beyond the prediction of a single stationary structure, the cluster of low-energy 

conformations predicted by CryoFold captures both the open and closed conformations, 

starting only with the 6PNY data from the closed state.

The classification of structural ensembles based on projections onto the distance space 

requires a priori knowledge of the structural features of all the major states in the ensemble. 

In an alternate scheme that does not require such knowledge, the models were classified 

based on their Rosetta-energy and RMSD relative to the crystal structure 27. Rosetta is 

chosen as a benchmark due to its use of energy functions analogous to the CHARMM or 

AMBER force fields in MDFF/ReMDFF and MELD. In this energy space, the ensemble of 

50 Flpp3 structures derived from CryoFold at 1.8 Å resolution recovered only a minimum 

number of the states observed in NMR (Fig. S3). This limitation is explained by our recent 

studies showing that very high-resolution data of 1-3 Å poses stiff data constraints that 

make it entropically unfavorable for an MD simulation to overcome and explore states 

that are not strictly defined by the data 28. Consequently, the sampling becomes highly 

localized to only one state and the ensemble is overpopulated with similar structures, cutting 

down on conformational diversity. Rosetta-EM visited almost all the NMR states, potentially 

benefiting from its Monte Carlo sampling scheme, but still using a 20-fold larger ensemble 

size than used in CryoFold. In contrast, for the 5.0 Å regime, CryoFold produces a markedly 

better performance with the 50-model ensemble overlapping with the majority of NMR 

intermediates and the final SFX solution, as well as consistently determining structures with 

lower energy than Rosetta-EM. Therefore, the extended sampling benefits of CryoFold are 

more apparent in fuzzier datasets. Here, a broader segment of the protein folding funnel 

is accessed by MELD, recovering models even from the poor initial guesses generated by 

MAINMAST(Fig. S4).

Taken together, the ubiquitin and Flpp3 examples establish CryoFold as an enhanced 

sampling tool for resolving multiple metastable states of proteins with > 100 residues, 

guided only by a single experimental dataset at 3-5 Å. Instead of individually determining 

multi-model interpretations for the 1 SFX and 20 NMR datasets, CryoFold allowed the 

generation of all the druggable vs. non-druggable models as part of a single ensemble 
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driven by just one piece of information. In the absence of the NMR knowledge, even a 

multi-model refinement of the high-resolution SFX data would have produced a narrow 

ensemble, artifactually suggesting that this protein is rigid (Figs. S2 and S3). The multi-state 

equilibrium ensemble generation in CryoFold removes such assumptions and brings to light 

the dynamic nature of this protein in addition to resolving the experimental structures.

Test on soluble domains of a membrane protein with heterogeneous-resolution data

We look at the cytoplasmic domain of a large trans-membrane protein, TRPV1, a heat-

sensing ion channel (592 amino acids long). The point of this test is that the data is 

highly heterogeneous, with experimental density maps ranging between 3.8 to 5.0 Å 29, 

as determined by Resmap. Furthermore, TRPV1 has two apo-structures deposited in the 

RCSB database, one with moderately resolved transmembrane helices and cytoplasmic 

domains (pdb id: 3J5P, EMDataBank: EMD-5778), and another with highly-resolved 

transmembrane helices (pdb id:5IRZ, EMDataBank: EMD-8118) but with the cytoplasmic 

regions, particularly the β-strands, less locally resolved than in 3J5P. CryoFold was 

employed to regenerate these unresolved segments of the cytoplasmic domain from the 

heterogeneous lower-resolution data of 5IRZ. We compare the CryoFold model to the 

reported 3J5P structure (Fig. 4), where these domains are much better resolved showing 

clear patterns of β-sheets. The final model was observed to be at an RMSD of 3.41 Å with 

a CC of 0.74 relative to 5IRZ. The same model with some loops removed for consistency 

with the EMD-5778 density produced an RMSD of 2.49 Å and CC of 0.73 with respect to 

the reported 3J5P model. Taken together, models derived from the CryoFold refinement of 

5IRZ capture in atomistic details the highly resolved features of this density, yet without 

compromising with the mid-resolution cytoplasmic areas where it performs as well as the 

3J5P model (Table S4).

TRPV1 was part of the 2016 Cryo-EM modeling challenge where only ReMDFF was used 
30. Presented in Table S5, our updated CryoFold model of TRPV1 (model no. 4), represents 

the top - 20% of the submissions with > 90% Ramachandran favored statistics, and an 

EMRinger score of 2.54. This model is now refined over the originally reported structure 

with a score of 1.75, and our previous submission at 2.25. Comparisons with the results 

from other methods is provided in the supplement, and summarized in the Discussions. 

The improvement is attributed solely to the higher-quality β-sheet models that is now 

derived from the enhanced sampling obtained by running MELD and ReMDFF in tandem. 

Starting with a random coil as search model (Fig. 4B), the recovery of these β-sheets 

is highly improbable with the limited conformational space that MDFF visits. In fact, 

MAINMAST and MDFF combined also could not resolve the cytoplasmic region of TRPV1 
31. Addressing this issue, MELD invokes a multi-replica temperature exchange scheme, 

wherein at high replica indices it samples many distinct structures that have short lifetimes 
13. At the lower-temperature replica a stronger coupling with the data is achieved, and 

these structures are folded into a smaller number of long-lived clusters, each with varying 

degrees of native contacts and secondary structure (Fig.S5). The 5.0 Å local resolution of 

TRPV1’s soluble region is the fuzziest density feature that CryoFold is tasked to resolve. 

Consequently, refinement of the TRPV1 β-sheets required MELD to sample the broadest 

structural funnel among all the chosen examples (Fig. S4). It focuses initial models starting 
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within an RMSD span of 10–25 Å from the target down to refined structures displaying 

four classes of low-energy topologies (Fig. S5). Thus, unlike MDFF (or ReMDFF), MELD 

allows for a much broader search of structural motifs hidden within the same density 

features. In Fig. 4D we see the conformational diversity of the refined ensemble coming 

from MELD. When these methods are combined inside CryoFold, both the backbone and 

sidechain geometries are refined against the target 5IRZ density to find the most probable 

set of conformations (80% of the ensemble population) that capture the TRPV1’s labile 

β-strands.

An analysis of the less probable CryoFold ensembles reveals partial unfolding of the β-

strands in the soluble domains of TRPV1 with around 3-4% of the structures presenting 

incomplete β-sheets, akin to the model originally submitted with 5IRZ (Fig. S5C). Partial 

unfolding of these regions have not been attributed to any functional implications in TRPV1, 

though some peripheral evidence of functional advantages from unfolding exist in TRPV3 

channels 32. The β-strands and loops from the soluble domains form the inter-protomer 

interface within the tertrameric channel. Secondary structural changes at these interfaces, 

triggers coupling between cytoplasmic and transmembrane domains, priming the channel 

for opening. Such changes, though rare, are indeed apparent in our MELD assignments. 

Therefore, the ensemble of structures and not merely the most probable model that CryoFold 

offers, opens the door to analyzing a number of distinct folded and unfolded conformations, 

all of which can contribute to the same density map with different weights 22, 33. Also 

evident from the TRPV1 case study, we can generate such atomistic ensembles with data 

of low local resolution, yet with accuracy commensurate to structures derived from higher 

resolution density maps.

Tests on apoferritin at three different resolutions from the 2019 EMDB modeling challenge

The EMDB competition is a community-wide effort to assess the limits of structure 

prediction using cryo-EM data. Here we were tasked to determine the structure of a 174-

residue apoferritin monomer using data at 1.8, 2.3 and 3.1 Å resolution. Following an initial 

tracing by MAINMAST on the monomeric map, it took two iterations for CryoFold to 

arrive at the final model for the first two resolutions, and three iterations for the third map. 

In total 13 teams participated in the 2019 competition that focused primarily on ab-initio 

structure determination, and all the results are reported on the EMDB website. CryoFold 

(team 73) models were independently assessed to be of high accuracy (Fig. S6 (scale labeled 

in green)), specifically for three different categories of scores: Reference-free, EM-map and 

target-structure scores. The results were robust over the narrow range of resolutions tested, 

earning us the top rank for multiple entries 22. Comparability with respect to the target 

structures is almost always very high, as also reflected in commensurately high Fourier Shell 

Coefficient (FSC = 0.5) and the correlation coefficient with the experimental map. Another 

noticeable strength is the strong EMRinger scores of the MD-based refinement, very 

similar to ReMDFF’s performance in the 2016 competition 30. A relatively new measure 

to evaluate mainchain geometry and to identify areas of probable secondary structure based 

on C-Alpha geometry, called CaBLAM 34 also found the CryoFold models to be favorable. 

One limitation however, is the increased number of Ramachandran outliers observed in the 

CryoFold and MDFF determined structures, which implicates the assumptions of classical 
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CHARMM-type force fields30. Our recently developed neural network potentials have 

already been useful to circumvent this issue 35.

Test on a large multi-chain protein complex with mid-resolution data

A grand challenge for cryo-EM is to determine structures of multi-chain complexes. 

Symmetry is used wherever possible, e.g., in viruses or homo-oligomeric membrane proteins 
32. However, most protein-protein or protein-nucleic acid complexes are asymmetric. Our 

test here is whether CryoFold could obtain the structure in an asymmetric complex. We 

focused on ATP synthase. Recently Murphy et al. reported 30 distinct conformations of 

this motor at 2.7-4.5 Å resolution 36. A majority of these structures contain rotating 

conformations of the so called transmembrane c-ring. For simplicity, we have removed 

this c-ring (the transmembrane problem will be addressed in the next section) and chose 

to model specific ATP synthase conformations that do not contribute to the rotation of the 

ring. Therefore, we started refining PDB ID: 6RET that contains 31 chains resolved at 4.3 

Å, which is one of the lower resolution densities wherein the c-ring is in a non-rotatable 

conformation.

Similar to the Flpp3 and TRPV1 cases, here the ensemble computed by CryoFold correctly 

captured the low-lying states of the multi-chain system in addition to the target 6RET 

conformation. For example, seven of the thirty models reported by Murphy et al. which 

include overall deformations of the 2000-residue system without rotation of the c-ring 

were represented well in the CryoFold ensemble. Using RMSD matrices (Fig. S7A), 

these structures were clustered in 4 distinct states (States I: 6RET; II: 6RDQ, 6RDR; III: 

6RDW, 6RDX; and IV: 6RDK, 6RDL). Remarkably, all these four states are identifiable 

in an RMSD matrix of 2200 MELD structures within CryoFold (Fig. 5B). States II, III 

and IV from MELD are initially at backbone RMSD 7.6, 12.0 and 8.4 Å from 6RET, 

respectively (Fig: S7B). After ReMDFF refinements, structures are consistent with the 

experimental models from Murphy et al. for states II, III and IV which were refined 

to RMSD values of 2.1, 2.8, and 1.8 Å, respectively (Fig. 5C, S7C and S8C). Beyond 

sampling the rare secondary structural changes, seen in the first few examples, here MELD 

visits states separated by variations in tertiary structures of the protein-protein interfaces 

(Fig. S9). A simple multi-model ensemble from ReMDFF of the individual density maps 

completely misses the existence of the other states. Therefore, starting with an ensemble 

of structures generated to resolve 6RET, the inter-state exchange promoted by MELD’s 

enhanced sampling of the interface contacts 37, allowed ReMDFF to resolve three more 

conformations of ATP synthase consistent with 6RDQ, 6RDW and 6RDK (Tables: S6 and 

S7).

A key biophysical outcome that we make from the CryoFold ensembles of ATP synthase is 

the flexibility of this motor’s peripheral stalk domains. Specifically, the OSCP hinge (chain 

P) assumes a number of distinct open and closed conformations with an RMSD of 3.3-6.4 

Å (Fig. 5D) relative to the hinge from 6RET. The elastic coupling in ATP synthase has 

remained a topic of contention in the bioenergy community with crystallographers claiming 

minimum flexibility of the stalk regions 38, in sharp contrast to single-molecule observations 

of “power-strokes” that originate from deformations of the stalk 39. Within the CryoFold 
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ensembles incorporating all the states I-IV, we see that the central stalk is in fact less flexible 

than the peripheral stalk with an RMSD ranging between 2.4-3.8 Å relative to 6RET. So, our 

results show that most of the elastic coupling in polytomella ATP synthase comes from the 

flexibility of the peripheral stalk, rather than the central stalk. Going beyond the knowledge 

derived from stationary models, our resolution of structural ensembles exchanging between 

four low-energy states clearly suggests stalk deformability, and adds credence to the power-

stoke mechanism of ATP turnover.

Tests on soluble and membrane domains of a large ion channel with mid-resolution data

A second major challenge in structural ensemble determination arises from the modeling 

of complete transmembrane protein systems, including structure of both the soluble and 

TM domains. The refinement becomes particularly daunting for CryoFold, as MELD 

simulations fail to capture structural changes from explicit protein-membrane interactions 13. 

Consequently, the accuracy of the model will depend on the structural information available 

from the map, and less on the fidelity of the physical interactions that underscore MELD.

Addressing this challenge, CryoFold was employed to model a monomer from the 

pentameric Magnesium channel CorA, containing 349 residues, at 3.80 Å resolution 40 (pdb 

id: 3JCF, EMDataBank: EMD-6551) (Figs. 6 and S10). An initial topological prediction 

of the channel was obtained by flexibly fitting of a linear polypeptide onto the Cα trace 

obtained from the cryo-EM density using MAINMAST. These traces were already within 

6.0 Å of the target Cα conformation in 3JCF, providing high-confidence coarse-grained 

information for MELD to operate. Leveraging the MAINMAST trace, MELD was used to 

perform local conformational sampling, regenerating most of the secondary structures. Such 

local refinement requires a narrow sampling of the folding funnel (Fig. S4). The model with 

the highest correlation coefficient to the map was then refined using ReMDFF, resulting in 

models which were at 2.90 Å RMSD to the native state. Even though this model possessed 

high secondary structure content of 76%, substantial unstructured regions remained both in 

the cytoplasmic and the transmembrane regions, warranting a further round of refinement. 

In the subsequent MELD-ReMDFF iteration, the resulting models were re-refined to 2.60 Å 

RMSD from the native state and final CC of 0.84 with the map. The CryoFold models were 

also comparable in geometry to that deposited in the database (Fig. 6 and Table S8).

We find that starting with high-quality chain traces, CryoFold ensembles can indeed be 

guided to model helical membrane segments even in an implicit solvent environment. 

The β-sheet rich soluble domains are concomitantly refined from lower resolution features 

of the same map. Seen in Fig. 6B, the uncertainty in the ensemble is broader in the 

soluble domains, which, similar to TRPV1 are verified to be more flexible and engage 

in Magnesium-mediated pore opening 40. Convergence of the refined MELD ensemble 

is further indicated by tighter clusters of structures with systematic improvement in CCs 

and RMSD values relative to the target Fig. 6C across three rounds of ReMDFF MELD 

iterations. CryoFold therefore overcomes MELD’s traditional weaknesses, and going beyond 

the limited convergence radius and over-fitting artifacts of flexible fitting methodologies 41, 

establishes MD simulation as a data-guided ensemble determination tool for transmembrane 

proteins and their complexes.
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3 Discussion

The systems presented here have been chosen as challenging problems to the methods 

that constitute CryoFold. We have not over-optimized any aspect of the protocol to fit 

one problem, rather complemented the uncertainties and weakness of one method with the 

strengths of another. This approach is akin to the consensus methods that are known to 

improve performance over single methods in blind prediction challenges 42. In light of the 

current results, it is expected that a selected combination of methods within CryoFold’s 

plug-and-play protocol will enable the resolution of novel protein folds (Fig. S11) from 

density data, where the individual methods will potentially fail.

The probability of a structure contributing to one or more subsets of data, or the converse, 

is determined by their energies derived from the all-atom force field (GBneck2 and ff14SB). 

Several subsets of data can contribute to the same metastable state or different – and some 

might be incompatible with the force field leading to very low populations. Therefore, the 

ratio of refined structures populating multiple metastable states maintains the same ratio of 

Boltzmann weights between these states as in the unbiased force field, while still agreeing 

with one or more subset of data. This unique facet of MELD allows the determination of 

thermodynamic averages, such as relative binding free energies37. Within CryoFold, since 

thermodynamic averages are not our focus, we have focused only on the construction of the 

data-guided ensembles and, using ReMDFF, extraction of the best possible single-structure 

representation of the data.

How much data we enforce is set as a prior (explained at lengths in the SI). If the uncertainty 

prior is set too low, MELD sampling is compromised and we cannot identify structures 

consistent with the data. If it is set too high, the lower replicas will increase in restraint 

energies, creating difficulty in the identification of the biologically relevant metastable 

states and deforming their conformations. Iteration between ReMDFF and MELD produces 

new sets of contact maps that gives rise to better priors and faster convergence to the 

relevant metastable states. Thus, during these iterations the coarse physical information 

or CPI derived from the experimental data is used as an average quantity, arising from 

different subsets of the contact data and affecting the refined models with varying degrees of 

uncertainty, rather than all the contacts being enforced on a single model. Only in the final 

iteration, the agreement with the experimental data is enforced. Here, we used ReMDFF to 

find a single model that is best fitted into the density map. Cryofold offers therefore, both 

the single best data-guided structure as well as an associated ensemble, where all the data is 

not satisfied by a single structure.

While CryoFold appears promising for obtaining biomolecular structures from cryo-EM, we 

are aware of some limitations. First, its success depends upon the correctness of the initial 

trace generated by MAINMAST. It is not clear when and whether the MD tools can recover 

from a wrong chain trace, particularly for resolving the transmembrane systems. We do not 

expect that sequence assignment in MAINMAST model is perfect. Therefore, we use the 

MELD-MDFF protocol for refinement. When an initial map has low resolution resulting in 

a lower quality MAINMAST trace, we de-weight the accompanying contact information. 

For this reason, we chose to perform a refinement of Flpp3 protein at a 5 Å resolution, 
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wherein indeed, the MAINMAST alignment was incorrect. Here, the MAINMAST contacts 

were employed with softer restraints inside MELD relative to the 1.8 Å case. Protein folding 

(primarily driven by force fields) via the replica-exchange sampling inside MELD recovered 

the all-atom structure from the initial misalignments to one that is commensurate to the 

higher-resolution model. If the protein segments are small (within 115 residues) misfolding 

errors coming from incorrect sequence alignments can be corrected by the force fields, 

ensuring local refinements. But if such errors become global, physics simulations will find 

it difficult to handle the problem. Thus, unlike Flpp3, repeating the CorA refinement with 

a misaligned MAINMAST trace resulted in unreliable models. Deep learning tools such as 

Deep-Tracer offer a tangible alternative to the MAINMAST traces for providing templates 

for ensemble generation at sub-4 Å resolution. Second, we do not have a good implicit 

membrane model to use in the MELD simulations and the use of explicit solvent would 

require many replicas, seeking more resources than currently available. Thus, by relying 

solely on the information coming from the density map we impose positional restraints 

and focus sampling on the transmembrane domains. Third, as with any MD simulation of 

biomolecules, the force fields are still not perfect and larger structures will be a challenge for 

the searching and sampling, even with an accelerator such as MELD. Finally, in our current 

approach, MELD is the most computationally limiting, requiring between one and ten days 

of sampling with 30 GPUs for the systems studied. These resources might be prohibitive for 

single lab resources but accessible through supercomputing resources available to academic 

researchers. Future research will aim at reducing the computational expense required for 

CryoFold. The computing need will be particularly pressing in multi-chain systems where 

map segmentation becomes an additional issue that we have not addressed during ensemble 

generation. Fortunately, MAINMAST has a recently developed multi-segment version which 

naturally lends to our pipeline 43, and MD simulations have been historically successful 

in modeling multi-subunit systems 9. Thus, scaling CryoFold with segmented-MAINMAST 

offers a viable way forward for data-guided ensemble generation of large protein complexes.

Despite the aforementioned limitations, CryoFold has been compared to popular structure 

determination protocols. Barring the Flpp3 case at 1.8 Å, CryoFold was always found to 

offer higher quality models, but more importantly a diverse range of structures consistent 

with the expected biophysics. While for TRPV1 and CorA, other available multi-model 

protocols converged to structures with unphysical overlap between the β-strands (Fig. S5 

and S12), a multi-protein refinement for ATP synthase could not be reproduced using 

standard resources, though individual chain refinements were achieved and are reported 

in Fig. S14. A key benefit of this work, justifying the need for intense computations, is 

the ability to capture ensembles rather than single structures. Consequently, we identify 

conformations that are close to the native structure, but also some alternative meta-stable 

states that are favored by the combination of force field and data. An important question 

follows – are these structures really relevant or just spurious? To this end, we have 

validated using NMR and cryo-EM experiments that in addition to the narrow set of models 

consistent with one density map, there exists orthogonal states that are observed both in 

the experiments in CryoFold refinements. These orthogonal structures sampled by MELD 

are indeed leveraged in biological functions, as found in the open→close transition in 

Flpp3, secondary structure-induced pore opening in the TRPV channels or flexibility of 
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the peripheral stalks in elastic coupling of the ATP synthase example, and yet behooves 

resolution by the limited sampling capacity of brute-force MD or Monte Carlo sampling 

used in stationary structure determination. Also, deep learning tools (e.g. AlphaFold) though 

have championed single protein structure prediction, their role in the prediction of ensemble 

dynamics for multi-domain systems is yet to be determined, keeping the physics approaches 

still the first choice.

Finally, evident from the 2016 and 2019 EMDB competition results, heterogeneous map 

resolutions affect the completeness of all the ensuing models. While a significant number 

of modelers prefer to truncate the more dynamic regions, MDFF offers a way to quantify 

uncertainty of the dynamic regions with root mean square deviations from an average 

model 12, and to correlate the inherent flexibility of complete protein models with the 

local resolution of density maps. Now, inside CryoFold, the flexible regions are even more 

thoroughly sampled by MELD offering the possibility of seeking hidden states in these 

fuzzy regions. Altogether, we present the first MD based methodology for data-guided 

protein folding and ensemble refinement, bridging the strengths from two distinct areas 

of Biophysics. The implementation is semi-automated, and manual fitting is completely 

avoided. However, the user will require to control the Input/Output between the three 

methods, and optimize the default parameters as required. Detailed in the Methods and in 

the SI, we have provided a GUI to facilitate this stage.

4 Conclusions

Structures, dynamics and function are interlinked. We often concentrate on a set of tools to 

determine structures from data and then use alternate computational techniques to determine 

dynamics between these metastable structures to ultimately elucidate biological functions. 

By leveraging the parallel algorithms with techniques such as CryoEM that capture multiple 

states (but an unknown number of them) computations can go beyond single structures to 

establish molecular dynamics directly from data. CryoFold is a first step in that direction.

5 Materials and Methods

The data-guided fold and fitting paradigm presented herein combines three real-space 

refinement methodologies, namely MELD, MAINMAST and ReMDFF. In what follows, 

these three formulations are articulated individually and the readers are referred to the 

original publications for details. Then, we outline the hybridization of the methods to 

provide a molecular dynamics-based de novo structure determination tool, CryoFold. Details 

of the setup for each individual system, as well as, an outline of the computational resources 

required is outlined in Supplementary Information to showcase the different contexts in 

which CryoFold can operate (see Table S9).

MELD

Modeling Employing Limited Data (MELD) employs a Bayesian inference approach (eq. 

(1)) to incorporate empirical data into MD simulations13, 14. The bayesian prior p(x ) comes 

from an atomistic force field (ff14SB sidechain, ff99SB backbone) and an implicit solvent 

model (Generalized born with neck correction, gb-neck2) 44, 45. The likelihood p(D ∣ x ), 
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representing a bias towards known information, determines how well do the sampled 

conformations agree with known data, D. p(D ) refers to the likelihood of the data, which we 

take as a normalization term that can typically be ignored. Taken together,

p(x ∣ D )
posterior

= p(D ∣ x )p(x )
p(D )

∼ p(D ∣ x )
likelihood

p(x )
prior

. (1)

MELD is designed to handle data with one or more of these features: sparsity, noise and 

ambiguity. Brute-force use of such data leads to incorrect models46 as not all the data is 

compatible with the native state. MELD addresses the refinement of low-resolution data by 

enforcing only a fraction (x%) of this data at every step of the MD simulation. Although 

x is kept fixed, the subset of data chosen to bias the simulation keeps changing with the 

simulation steps in a deterministic way. For a given structure all the data is evaluated, sorted 

according to their energy penalty and the x% with lowest energy guide the simulation until 

the next step. The data is incorporated as flat-bottom harmonic restraints E(rij) for evaluating 

the likelihood (p(D ∣ x )).

E(rij) =

1
2k(r1 − r2)(2rij − r1 − r2) if rij < r1

1
2k(rij − r2)2 if r1 ≤ rij < r2

0 if r2 ≤ rij < r3
1
2k(rij − r3)2 if r3 ≤ rij < r4

1
2k(r4 − r3)(2rij − r4 − r3) if r4 ≤ rij,

(2)

When these restraints are satisfied they do not contribute to the energy or forces, 

contributing for flat bottom region of eq. 2 and (Fig. S13). When the restraints are not 

satisfied they add energy penalties and force biases to the system – guiding it to regions 

that satisfy a subset of the data, or conformational envelopes. MELD is available as a plugin 

on the MD simulation platform OpenMM. Details of MELD implementation and ensemble 

generation are provided in Supplementary methods: Description of MELD and Data-guided 

ensemble generation.

MAINMAST

MAINchain Model trAcing from Spanning Tree (MAINMAST) is a de novo modeling 

program that directly builds protein main-chain structures from an EM map of around 4-5 

Å or better resolutions11. MAINMAST automatically recognized main-chain positions in 

a map as dense regions and does not use any known structures or structural fragments. 

The procedure of MAINMAST consists of mainly four steps (Fig. S15). In the first 

step, MAINMAST identifies local dense points (LDPs) in an EM map by mean shifting 

algorithm. All grid points in the map are iteratively shifted by a gaussian kernel function 

and then merged to the clusters. The representative points in the clusters are called LDPs. 
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In the second step, all the LDPs are connected by constructing a minimum spanning tree 

(MST). It is found that the most edges in the MST covers the main-chain of the protein 

structure in EM map11. In the third step, the initial tree structure (MST) is refined iteratively 

by the so-called tabu search algorithm. This algorithm attempts to explore a large search 

space by using a list of moves that are recently considered and then forbidden. In the final 

step, the longest path of the refined tree is aligned with the amino acid sequence of the 

target protein. This process assigns optimal Cα positions of the target protein on the path 

and evaluates the fit of the amino acid sequence to the longest path in a tree. MAINMAST is 

now available as a plugin on Chimera. Details of MAINMAST implementation are provided 

in Supplementary methods: Description of MAINMAST.

Traditional MDFF

The protocol for molecular dynamics flexible fitting (MDFF) has been described in detail15. 

Briefly, a potential map VEM is generated from the cryo-EM density map, given by

V EM(r) =
ζ 1 − Φ(r) − Φthr

Φmax − Φthr
if Φ(r) ≥ Φthr,

ζ if Φ(r) < Φthr .
(3)

where Φ(r) is the biasing potential of the EM map at a point r, ζ is a scaling factor that 

controls the strength of the coupling of atoms to the MDFF potential, Φthr is a threshold for 

disregarding noise, and Φmax = max(Φ(r)).

A search model is refined employing MD, where the traditional potential energy surface is 

modified by VEM. The density-weighted MD potential conforms the model to the EM map, 

while simultaneously following constraints from the traditional force fields.

ReMDFF

While traditional MDFF works well with low-resolution density maps, recent high-

resolution EM maps have proven to be more challenging. This is because high-resolution 

maps run the risk of trapping the search model in a local minimum of the density features. 

To overcome this unphysical entrapment, resolution exchange MDFF (ReMDFF) employs 

a series of MD simulations. Starting with i = 1, the ith map in the series is obtained by 

applying a Gaussian blur of width σi to the original density map. Each successive map in 

the sequence i = 1, 2, … L has a lower σi (higher resolution), where L is the total number 

of maps in the series (σL = 0 Å). The fitting protocol assumes a replica-exchange approach 

described in details12 and illustrated in Fig. S16. At regular simulation intervals, replicas 

i and j, of coordinates xi and xj and fitting maps of blur widths σi and σj, are compared 

energetically and exchanged with Metropolis acceptance probability p(xi, σi, xj, σj) =

min 1, exp −V (xi, σj) − V (xj, σi) + V (xi, σi) + V (xj, σj)
kBT (4)

where kB is the Boltzmann constant, V (x, σ) is the instantaneous total energy of the 

configuration x within a fitting potential map of blur width σ. Thus, ReMDFF fits the 

search model to an initially large conformational space that is shrinking over the course 
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of the simulation towards the highly corrugated space described by the original MDFF 

potential map. Both MDFF and ReMDFF are available as plugins on VMD. Details 

of ReMDFF implementation are provided in Supplementary methods: Description of 

Resolution exchange MDFF.

CryoFold (MELD-MAINMAST-ReMDFF) protocol and best practices

Illustrated in Fig. 1, the CryoFold protocol begins with MELD computations, which guided 

by backbone traces from MAINMAST yields folded models. These models are flexibly 

fitted into the EM density by ReMDFF to generate refined atomistic structures.

1. First, information for the construction of Bayesian likelihood is derived from 

secondary structure predictions (PSIPRED), which were enforced with a 70% 

confidence. This percentage of confidence offers an optimal condition for 

MELD to recover from the uncertainties in secondary structure predictions16. 

For membrane proteins, this number can be increased to 80% when the 

transmembrane motifs are well-defined helices. MELD extracts additional prior 

information from the MD force field and the implicit solvent model (see eq.1).

2. In the second step, any region determined with high accuracy will be kept in 

place with cartesian restraints imposed on the Cα during the MELD simulations. 

This way, the already resolved residues can fluctuate about their initial position.

3. In the third step, contact restraints (e.g. distance between the Cα traces 

of MAINMAST) are derived. The threshold value of density chosen for 

MAINMAST chain-tracing is 0.5-1.0. A second important MAINMAST 

parameter is the number of iterations. If the chain length >115 residues, it 

requires between 1000-5000 iterations to converge. For smaller protein segments 

(<100 residues), up to 500 iterations suffice.

The application of MAINMAST allows construction of pairwise interactions 

as MELD-restraints directly from the EM density features. Together with the 

cartesian restraints of step 2, these MAINMAST-guided distance restraints are 

enforced via flat-bottom harmonic potentials (see eq. 2) to guide the sampling of 

a search model; notably, the search model is either a random coil or manifests 

some topological features when created by fitting the coil to the Cα trace with 

targeted MD. Depending upon the stage of CryoFold refinements, only a percent 

of the cartesian and distance restraints need be satisfied. The cartesian restraints 

are often localized on the structured regions, while the distance restraints 

typically involve regions that are more uncertain (e.g loop residues).

The two parameters that are relevant in going from MAINMAST models to 

MELD setup is the threshold Cα-Cα distance to consider and the number of 

contacts to trust. At lower resolution, we set a higher distance threshold (e.g. 8Å) 

and reduce the per cent of contacts to trust (e.g (55%). Ultimately, after running 

MELD simulations, the agreement with the density map and violations on the 

number of restraints can provide a good estimate of the quality of the initial 

assumptions. If large number of violations are detected, the percentage of trusted 

contacts should decrease or the distance threshold increase.
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4. Fourth, a Temperature and Hamiltonian replica exchange protocol (H,T-REMD) 

is employed (using data from steps 1 to 3) to accelerate the sampling of low-

energy conformations in MELD13, 14, refining the secondary-structure content of 

the model. The Hamiltonian is changed by changing the force constant applied 

to the restraints. Simulations at higher replica indexes have higher temperatures 

and lower (vanishing) force constants so sampling is improved. At low replica 

indices, temperatures are low and the force constants are enforced at their 

maximum value (but only a certain per cent of the restraints, the ones with lower 

energy, are enforced). See SI for details for individual applications. Simulations 

of 30 ns per replica with 15 to 25 replicas are routinely applied to construct the 

conformational ensembles.

5. Fifth, the correlation coefficient of the H,T-REMD-generated structures with the 

EM-density is employed as a metric to select the best model for subsequent 

refinement by ReMDFF (Fig. S16). Resolution exchange across 5 to 11 maps 

with successively increasing Gaussian blur of 0.5 Å (σ in eq. 4) sufficed to 

improve the correlation coefficient and structural statistics. The model with 

the highest EMringer score forms the starting point of the next round of 

MELD simulations, where now the contact information come from the ReMDFF 

models. Thereafter, another round ReMDFF is initiated, and this iterative 

MELD-ReMDFF protocol continues until the δ CC between two consecutive 

iterations is <0.1.

ReMDFF employs secondary structure (or ssrestraints) to avoid over-fitting of 

structures into the density maps. In CryoFold, these constraints are employed 

starting from the second iteration of the MELD-ReMDFF cycle, only after 

the first MELD step is complete, wherein secondary structure from PSI and 

MAINMAST data are translated in all-atom structures. The gscales parameter 

ranges between 0.1–0.3 in earlier MELD-ReMDFF iterations till the topology 

information in MELD converges. In subsequent iterations when the map 

resolution is between 3–4.5 Å, the temperature is brought to 80 K and in the 

final step the gscale is increased to 1.0 to enable sidechain refinements. For maps 

lower than 5 Å resolution, only backbone fitting is performed.

As more iteration cycles between MELD and ReMDFF are done, the contact 

distance threshold and percentage of data to trust increases. At the last stages of 

refinement Cα-Cα thresholds of 6 Å and percentages as high as 80% are used. 

The decisions are based on the agreement between ReMDFF models and the 

CryoEM map.

Throughout different rounds of iterative refinement, the structures from ReMDFF are used 

as seeds in new MELD simulations. At the same time, distance restraints from the ReMDFF 

model are updated and the pairs of residues present in those contact interactions are enforced 

at different accuracy levels. As expected, the more rounds of refinement we do, the higher 

the accuracy levels for the contacts is achieved in CryoFold. In going through this procedure, 

the ensembles produced get progressively narrower as we increase the amount of restraints 

enforced. The discussed parameters can be conveniently set in the GUI. A video tutorial and 
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the description of this pipeline encompassing Chimera, OpenMM and VMD is provided in 

Supplementary methods: Graphical User Interface.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: An overview of the CryoFold protocol.
For a high-resolution density map (data-rich case), backbone tracing is performed using 

MAINMAST to determine Cα positions, and a random coil is fitted to these positions using 

targeted MD. This fitted protein model is subjected to the next MELD-ReMDFF cycles as 

a search model. For a low or medium resolution density map (data-poor case), a search 

model is constructed from primary sequence using MELD. This search model is fitted into 

the density map using ReMDFF. The ReMDFF output is fed back to MELD for the next 

iteration, and the cycle continues until convergence. The last iteration of the cycle yeilds a 

refined model and refined ensemble.
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Figure 2: Ensemble models for TRPV1 and the refinement protocol for ubiquitin.
(A) Ensemble refinement with CryoFold showcased for the soluble domain of TRPV1. 

Several conformations from the TRPV1 ensemble are superimposed; color coding from blue 

(N-terminal) to red (C-terminal). In a MELD-only simulation, a soluble loop (indicated in 

red) artifactually interacted with the transmembrane domains. Following the data-guidance 

from ReMDFF, this loop interacted with the soluble domains and a more focused ensemble 

is derived that agrees with the density map. (B) Stages of the refinement protocol for a test 

case, ubiquitin. The initial model is an unfolded coil. MELD was used to generate 50 search 
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models from just the amino acid sequence, and no usage of the density map data. Then, 

these models were rigid-fitted into the density map using Chimera47, and ranked based on 

their global correlation coefficient. ReMDFF refined the best rigid-fitted model even further. 

The ReMDFF model with the highest correlation coefficient (CC) to the density map served 

as a template for the subsequent iteration with MELD. In two consecutive MELD-ReMDFF 

iterations the RMSD of the folded model relative to the crystal structure (1UBQ) attenuated 

from 25.04Å to 2.53Å. The RMSD for unlabeled Cα-Cα pairing, reflecting that fit of atoms 

to density maps do not depend on the labels of the residues, changes from 3.18 Å (step 1) 

→ 1.99 Å (step 2) → 1.54 Å (step 3) → 1.28 Å (step 4). However, unlike all-atom RMSD, 

such estimates are less sensitive to topological correctness of the model as poor connectivity 

can still reflects in low deviations from the standard.
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Figure 3: Hybrid structure determination of Flpp3.
(A) High-resolution density map at 1.8 Å resolution. An unfolded structure was used as 

the initial model. A SFX density map at 1.8 Å resolution was employed to generate the 

Cα position (green spheres) using MAINMAST, and the initial model was fitted into these 

positions by targeted MD. The resulting structure (green cartoon model) was then subjected 

to MELD-ReMDFF refinement. This procedure yielded a structure with RMSD of 1.56 

Å relative to the native SFX structure (yellow). The global CC of this structure is 0.83 

and Molprobity score is 0.93 with 94.34% Ramachandran favoured backbones and 98.78% 

favoured sidechains (Table S2). The Rosetta-EM model (cyan) has an RMSD of 1.28 Å 

with respect to the SFX structure. (B) Lower-resolution density map at 5 Å resolution. An 

initial Cα trace in the map was computed using MAINMAST. Subsequent MELD-ReMDFF 

refinement resulted in a structure (green cartoon model) with an RMSD of 2.29 Å from the 

SFX structure (yellow) (Table S3). The best Rosetta-EM model has (cyan) an RMSD of 2.35 

Å to the SFX structure. Bar plots depict the evolution of RMSD of the CryoFold models 

with each subsequent MELD-ReMDFF refinement. The inset of the bar plot in panel B is an 

RMSD vs global CC scatter plot for the first and second cycle of MELD refinements shown 

in lime green and dark green, respectively.
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Figure 4: Modeling of the soluble domain of TRPV1.
(A) TRPV1 structures deposited in 2016 (pdb 5IRZ in yellow) and in 2013 (pdb 3J5P 

in cyan in cartoon representation, showing the latter has a more resolved β-sheet while 

the former possess an additional extended loop. (B) The 5IRZ model was heated at 600 

K using brute-force MD, while constraining the α helices. After 10 ns of simulation, 

this treatment resulted in a search model with the loop regions significantly deviated and 

the β sheets completely denatured. The search model was subjected to MELD-ReMDFF 

refinement. A single round of MELD regenerated most of the β-sheet from this random 

chain, however the 5- to 15-residue long interconnecting loops still occupied non-native 

positions. Subsequent ReMDFF refinement with the 5IRZ density resurrected the loop 

positions. One more round of the MELD and ReMDFF resulted in the further refinement of 

the model. The final refined model agrees well with 5IRZ. (C) Progress of the refinement 

in each step of CryoFold. MELD step 1 shows the β sheets modeled correctly, while the 

loops recovered in ReMDFF step 2, and refinement was complete by step 4. The approach 

resulted in structures with 93.75% Ramachandran favored backbones and 92.37% favored 

sidechains and the Molprobity score of 1.67 (Table S4). Similar to the ubiquitin example, 

the RMSD for unlabeled Cα-Cα pairing, changes from 2.25 Å (step 1) → 1.28 Å (step 

2) → 1.15 Å (steps 3-4). (D) Analysis of the MELD ensembles from the first and second 

MELD-ReMDFF iterations. The scatter plot shows RMSD vs CC for each structure from 

both ensembles. The ensemble statistics significantly shifts towards models consistent with 

the density maps, and yet capturing deviations around the best-fitted model, concomitantly 

accounting for data uncertainty.
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Figure 5: CryoFold samples several biologically relevant states of the soluble domain of 
mitochondrial F1 - F0 ATPsynthase.
We modeled mitochondrial F1 - F0 ATPsynthase starting from pdb 6RET (state I) and 

excluding the grey region embedded in the membrane from refinement. CryoFold samples 

different conformations through a hinge motion in the OSCP region (orange) connecting 

the arm (blue) with the rotary domains (cyan). Clustering and 2D-RMSD analysis shows 

Cryofold samples conformations of additional ATPsynthase states represented by pdb codes 

6RDK, 6RDL (state IV). Ohter states represented by pdb codes 6RDQ, 6RDR (state II) and 

6RDW, 6RDX (state III) are included in SI.
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Figure 6: Modeling transmembrane Magnesium-channel CorA.
(A) The CryoFold protocol on CorA. A starts from an Cα trace based Cryo-EM density 

map using MAINMAST and refined through different cycles of MELD and ReMDFF 

produces a structure that agrees well with the reported native structure (yellow), featuring 

accurate beta structures. (B) CryoFold produces narrower, more constraint ensembles as we 

iterate through MELD/MDFF. (C) A scatter plot of RMSD vs CC derived from the MELD 

ensembles at every stage of three MELD-ReMDFF iterations. The end-model refined using 

ReMDFF of the third-stage MELD ensemble is 2.60 Å RMSD from the reported structure.
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