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Alternative Control Trajectory Representation
for the Approximate Convex Optimization
of Non-Convex Discrete Energy Systems

Eric M. Burger, Scott J. Moura

Energy, Control, and Applications Lab, University of California, Berkeley

Abstract

Energy systems (e.g. ventilation fans, refrigerators, and electrical vehicle chargers) often have binary
or discrete states due to hardware limitations and efficiency characteristics. Typically, such systems have
additional programmatic constraints, such as minimum dwell times to prevent short cycling. As a result,
non-convex techniques, like dynamic programming, are generally required for optimization. Recognizing
developments in the field of distributed convex optimization and the potential for energy systems to partici-
pate in ancillary power system services, it is advantageous to develop convex techniques for the approximate
optimization of energy systems. In this manuscript, we develop the alternative control trajectory represen-
tation – a novel approach for representing the control of a non-convex discrete system as a convex program.
The resulting convex program provides a solution that can be interpreted stochastically for implementation.

Keywords: alternative control trajectory, discrete systems, convex optimization, distributed optimization

1. Background and Motivation

A fundamental requirement of the electric power
system is to maintain a continuous and instanta-
neous balance between generation and load. The
variability of renewable energy resources, particu-
larly wind and solar, poses a challenge for power
system operators. Namely, as renewable penetra-
tion increases, it will be necessary for operators to
procure more ancillary services, such as regulation
and load following, to maintain balance between
generation and load [1][2]. In the long-term, grid-
scale storage technologies (e.g. flywheels, batter-
ies, etc.) are sure to play a major role in provid-
ing these ancillary services [3][4]. In the near-term,
there is a high potential for aggregated loads, in
particular electric vehicles (EVs) and thermostat-
ically controlled loads (TCLs), to providing such
ancillary services [5][6][7][8].
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The advantages of responsive aggregated loads
over large storage technologies include: 1) they are
distributed throughout the power system thus pro-
viding spatially and temporally distributed actua-
tion; 2) they employ simple and fast local actua-
tion well-suited for real-time control; 3) they are
robust to outages of individuals in the population;
and 4) they, on the aggregate, can produce a quasi-
continuous response despite the discrete nature of
the individual controls [6][9][10].

Energy systems like EVs and TCLs often have bi-
nary or discrete states due to hardware limitations
and efficiency characteristics. Consequently, non-
convex techniques are generally required for opti-
mal control. This poses a challenge for load ag-
gregation applications since distributed optimiza-
tion methods generally require linearity or convex-
ity in the agents. In this manuscript, we develop
the alternative control trajectory representation –
a novel approach for representing the control of a
non-convex discrete system as a convex program.
This representation enables the approximate opti-
mization of energy systems using distributed con-
vex algorithms, such as the alternating direction



method of multipliers (ADMM), and provides a so-
lution that can be interpreted stochastically for im-
plementation.

This paper is organized as follows. Section 2
briefly describes the optimization of non-convex
systems and section 3 presents the alternative con-
trol trajectory representation. Section 4 overviews
the incorporation of the ACT representation into a
convex program and the stochastic interpretation of
the solution. Section 5 describes the incorporation
of the ACT representation into a distributed op-
timization algorithm, the statistical characteristics
of the solution, and an iterative method for reduc-
ing variance by inducing sparsity. Finally, Section
6 provides an illustrative example of the proposed
modeling and optimization approach.

2. Optimization of Non-Convex Systems

In this section, we consider the optimization of an
arbitrary discrete-time system represented by the
state-space model

xk = G(xk−1, uk)

yk = H(xk, uk)
(1)

where G and H are known functions, xk is the
state of the system, uk is the exogenous input, yk is
the output, and k denotes the integer-valued time
step. For simplicity, this paper will only consider
the univariate case (i.e xk, uk, and yk are univari-
ate, G : R2 → R, and H : R2 → R). Functions
G and H may be any closed deterministic function
(i.e. non-convex, piece-wise, semi-continuous, etc.)
and xk, uk, and yk may be continuous or discrete.

We would like to solve an optimization problem
of the form

minimize
u

F0(y)

subject to Fi(x, u) ≤ bi, i = 1, . . . ,M

xk = G(xk−1, uk), k = 1, . . . , N

yk = H(xk, uk), k = 1, . . . , N

x0 = x0

(2)

where F0 : RN → (−∞,∞] is a closed convex ob-
jective function, N is the number of time steps, and
x0 is the initial state. Functions Fi : R2 → R,
i = 1, . . . ,M represent the constraints of the sys-
tem. Like G and H, Fi may be any closed deter-
ministic function.

There are a number of non-convex optimization
techniques, such as dynamic programming and ge-
netic algorithms, suitable for solving (2) to identify
a control trajectory u∗ that optimizes the system.
Convex optimization techniques, however, are un-
suitable given the non-convex constraints and the
discrete states, inputs, and outputs.

3. Alternative Control
Trajectory Representation

In this section, we introduce the alternative con-
trol trajectory (ACT) representation, a novel ap-
proach for representing the control of non-convex
systems in a manner suitable for convex program-
ming. Put simply, we simulate the system un-
der multiple alternative control inputs in order
to generate a discrete set of output trajectories.
These alternative control trajectories can be in-
corporated into a convex program as a linear con-
straint, thereby enforcing feasibility. By solving the
convex program, we produce a solution that can be
interpreted stochastically for implementation.

It should be noted that the alternative control
trajectories do not represent the full decision space
of the original optimization program (2) and that
the stochastic solution has no optimality guarantee.
Rather, the contribution of the ACT representation
is to enable the optimization of a large population
of non-convex agents using distributed convex opti-
mization. Accordingly, by employing the ACT rep-
resentation, we are accepting suboptimality in the
individual objectives in order to achieve optimality
in the global objective.

To produce the alternative control trajectory rep-
resentation of a system, we first define Na input
trajectories for Nt time steps

uj = (u1j , u
2
j , . . . , u

Nt
j )

∀ j = 1, . . . , Na
(3)

with variable uj ∈ RNt and ukj ∈ Su for k =
1, ..., Nt, where Su is the discrete or continuous con-
straint set of feasible inputs. Each of the input tra-
jectories uj must be distinct and should be selected
to produce a distinguishable change in the system’s
output (i.e. performance extremes, efficiency op-
timum, etc.). Regardless of whether the input is
discrete or continuous, the set of alternative input
trajectories express only a small but key portion of
the true decision space.
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Next, for each input trajectory uj , we simulate
the system model (1) according to the update func-
tion G with x0 = xi while imposing any additional
constraints (represented by Hi in (2)). Given the
simulation results, we generate Na alternative state
and output trajectories as defined by the xj and yj ,
respectively.

xj = (x1j , x
2
j , . . . , x

Nt
j )

yj = (y1j , y
2
j , . . . , y

Nt
j )

∀ j = 1, . . . , Na

(4)

The input, state, and output trajectories can be
expressed compactly as

U = (u1, u2, . . . , uNa
)

X = (x1, x2, . . . , xNa
)

Y = (y1, y2, . . . , yNa
)

(5)

with variables U, X, and Y representing the set
of all uj , xj , and yj sets for j = 1, . . . , Na. Nat-
urally, we can also view U, X, and Y as matrices
∈ RNa×Nt such that the rows represent the alter-
native trajectories and the columns represent the
time step k.

In the case that functions G and/or H are not
injective/one-to-one and the distinctness of uj does
not guarantee the distinctness of xj or yj , it is
necessary to reduce the number of trajectories in
U, X, and Y. We define the number of dis-
tinct alternative control trajectories asNd such that
Nd ∈ {1, . . . , Na}.

4. Convex Optimization

In this section, we detail how the ACT repre-
sentation described above can be introduced into a
convex program. To begin, we introduce a variable
w ∈ {0, 1}Nd such that

wj =

{
1 if trajectory j is selected

0 otherwise

∀ j = 1, . . . , Nd

(6)

Thus, if j = 1 is the selected trajectory (i.e. w1 = 1)

UTw = u1

XTw = x1

YTw = y1

The integer/binary program below demonstrates
how Y and w can be introduced to solve for the
optimal trajectory

minimize
w

F (YTw)

subject to
∑
wj = 1

w ∈ {0, 1}Nd

(7)

where F : RNt → (−∞,∞] is a closed convex ob-
jective function. The above program is an example
of the generalized assignment problem (GAP). If
feasible, (7) guarantees that only one component of
minimizer w∗ is non-zero. Therefore, y∗ = YTw∗

is the optimal output trajectory within the dis-
crete set defined by Y. However, the binary con-
straint makes the program non-convex and NP-
complete. By relaxing the binary constraint such
that ŵ ∈ RNd , we can express the convex program
as

minimize
ŵ

F (YT ŵ)

subject to
∑
ŵj = 1

ŵ ≥ 0

ŵ ∈ RNd

(8)

The program is now convex and the decision vari-
able continuous. By minimizing the objective func-
tion with respect to ŵ, we allow the convex program
to form weighted averages of the alternative output
trajectories. Therefore, ŷ∗ = YT ŵ∗ is the optimal
weighted average of the output trajectories within
the discrete set defined by Y. However, for many
systems, the solution defined by ŵ∗ is not realizable
(e.g. û∗ = UT ŵ∗ is not within the feasible space,
ŷ∗,k 6= H(x̂∗,k, û∗,k), etc.). To produce a realizable
solution, we can interpret ŵ∗ stochastically, as de-
scribed in the next section.

4.1. Stochastic Solution

Due to the linear constraints, the optimal solu-
tion ŵ∗j is ∈ [0, 1] for j = 1, . . . , Nd and in prac-
tice, ŵ∗j can be interpreted as the probability of
selecting control trajectory j. Thus, we can im-
plement a single trajectory ỹ ∈ Y based on the
discrete probability distribution ŵ∗. Expressed al-
ternatively, we can generate a discrete random vari-
able W ∈ {1, . . . , Nd} such that ŵ∗j = Pr(W = j)
for j = 1, . . . , Nd. The value of W represents the
index of the stochastically selected control trajec-
tory. Thus, we can define a variable w̃ ∈ {0, 1}Nd ,
representing the stochastic solution of (8), as
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w̃j =

{
1 if W = j

0 otherwise

∀ j = 1, . . . , Nd

(9)

The selected output trajectory is therefore given
by ỹ = YT w̃. By treating ŵ∗ as a discrete prob-
ability distribution, ŷ∗ becomes the probability-
weighted average of possible output trajectories (as
defined by Y). Therefore, ŷ∗ is the expected value
of ỹ.

E[ỹ] = ŷ∗ (10)

To summarize, the optimal solution to (7) is
physically realizable (i.e. only one component of
w∗ is non-zero) but not solvable using convex opti-
mization. By contrast, (8) is convex but the opti-
mal solution is not realizable (i.e. all components of
ŵ∗ may be non-zero). Using (9), we can transform
ŵ∗ into w̃, which is realizable (i.e. only one com-
ponent of w̃ is non-zero). It should be noted that
w∗ and ŵ∗ are guaranteed to be optimal solutions
to (7) and (8), respectively. However, w̃ may be
an optimal or sub-optimal solution to both (7) and
(8).

Throughout this paper, we refer to the optimal
output trajectory (y = YTw) produced by (7) as
the discrete solution y∗ (w∗ ∈ {0, 1}Nd), by (8) as
the continuous solution ŷ∗ (ŵ∗ ∈ RNd), and by (8)
and (9) as the stochastic solution ỹ (w̃ ∈ {0, 1}Nd).
It should be noted that y∗ and ŷ∗ are deterministic
whereas ỹ is, of course, stochastic.

5. Distributed Optimization

In this manuscript, we have detailed the ACT
representation for expressing the control of a non-
convex discrete system as a convex program and
have discussed how the solution can be interpreted
stochastically for implementation. In this section,
we briefly discuss the application of this approach
to distributed convex optimization.

Consider the generic sharing problem of the form

minimize
y

∑
fi(yi) + g(

∑
yi) (11)

with variables yi ∈ S
Ny

i , the decision variable of
agent i for i = 1, . . . , Np, where Si represents the
convex constraint set of agent i, Np the number of
agents in the population, Ny is the length of yi, fi
is the convex objective function for agent i, and g

is the shared convex objective function of the pop-
ulation. The function g takes as input the sum of
the individual agent’s decision variables, yi. The
sharing problem allows each agent in the popula-
tion to minimize its individual/private cost fi(yi) as
well as the shared objective g(

∑
yi). The problem

is known to be solvable using iterative methods of
distributed convex optimization, such as the alter-
nating direction of multipliers algorithm (ADMM)
[11].

The ACT representation can be incorporated into
the objective functions of (11) as given by

minimize
ŵ

∑
fi(Y

T
i ŵi) + g(

∑
YT
i ŵi)

subject to
∑
ŵi,j = 1

ŵi ≥ 0

ŵi ∈ RNd,i

∀ i = 1, . . . , Np

(12)

with variables ŵi ∈ RNd,i , the decision variable of
agent i, Yi ∈ RNd,i×Ny , the set of alternative out-
put trajectories for agent i, and Nd,i, the number
of distinct trajectories in Yi for i = 1, . . . , Np. Be-
cause the objective function and constraints of each
agent are separable, the problem can be solved in
a distributed manner. The optimal output ŷ∗i =
YT
i ŵ
∗
i for i = 1, . . . , Np is the continuous solution

of each agent in the population. Thus, ỹi = YT
i w̃i

is the final stochastic solution and can be imple-
mented by each agent.

5.1. Aggregated Stochastic Solution

When trying to optimize the behavior of a pop-
ulation, we are interested in understanding the re-
lationship between the aggregate of the continuous
and stochastic solutions, as given by

Ŝ =
∑
ŷ∗i

S̃ =
∑
ỹi

e = S̃ − Ŝ

(13)

with variables Ŝ ∈ RNy , the sum of the continuous
solutions, S̃ ∈ RNy , the sum of the stochastic so-
lutions, and e ∈ RNy , the error between Ŝ and S̃
(ideally, e ∈ {0}Ny ).

Because ŷ∗i is the expected value of ỹi, Ŝ is the
expect value of S̃
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E[S̃] =
∑

E[ỹi]

=
∑
ŷ∗i

= Ŝ

(14)

The error e is therefore related to the variance of
S̃, given by

Var(S̃) = E[(S̃ − E[S̃])2]

= E[(ỹ1 − ŷ∗1 + . . .+ ỹNp
− ŷ∗Np

)2]

= E[(ỹ1 + . . .+ ỹNp)2]

− (ŷ∗1 + . . .+ ŷ∗Np
)2

=

Np∑
i=1

(E[ỹ2i ]− (ŷ∗i )2)

+
∑
i 6=j

(E[ỹi]E[ỹj ]− (ŷ∗i ŷ
∗
j ))

=

Np∑
i=1

Var(ỹi) +
∑
i 6=j

Cov(ỹi, ỹj)

(15)

Because the random variables are uncorrelated
(Cov(ỹi, ỹj) = 0,∀(i 6= j)), the variance of S̃ re-
duces to

Var(S̃) =

Np∑
i=1

Var(ỹi)

=

Np∑
i=1

(E[ỹ2i ]− (ŷ∗i )2)

(16)

Since ŵ∗ is a discrete probability distribution

Var(S̃) =

Np∑
i=1

Nd,i∑
j=1

ŵ∗i,j(yi,j − ŷ∗i )2

=

Np∑
i=1

Nd,i∑
j=1

(ŵ∗i,jy
2
i,j)− (ŷ∗i )2


=

Np∑
i=1

Nd,i∑
j=1

(ŵ∗i,jy
2
i,j)−

Np∑
i=1

(ŷ∗i )2

(17)

where variable yi,j is the j-th alternative output
trajectory for agent i.

In the remainder of this section, we discuss
two particular characteristics that impact the error
e = S̃ − Ŝ and the variance of S̃: the homogene-
ity/heterogeneity of the agents in the population

and the sparsity of the discrete probability distri-
bution ŵ∗i (i.e. the number of non-zero terms) for
i = 1, . . . , Np.

For a population of highly homogeneous agents
with identical output trajectories and objective
functions, solving (12) will cause each agent to con-
verge to the same solution ŵ∗i . Effectively, the out-
put of each agent is defined by the same random
variable ỹi with the same probability distribution
ŵ∗i and expected value ŷ∗i . This is a special case
where

E(S̃) = Npŷ
∗
i

Var(S̃) = Np

Nd,i∑
j=1

ŵ∗i,j(yi,j − ŷ∗i )2
(18)

and the probability mass of S̃ becomes more and
more concentrated about E(S̃) = Ŝ as the num-
ber of agents Np increases. If Np is very large, the

distribution has a narrow peak at Ŝ regardless of
the sparsity of ŵ∗i . Therefore, by the law of large

numbers, S̃ → Ŝ and e → {0}Ny as Nd → ∞. As
the heterogeneity of the population increases, this
characteristic weakens as the probability mass of S̃
flattens. For a heterogeneous population, the out-
put of each agent is no longer defined by the same
random variable and (12) is less likely to converge
to similar probability distributions.

The sparsity of ŵ∗i also impacts the variance of ỹi.
In the most sparse case, only one term in ŵ∗i is non-
zero for every agent in the population. Therefore,
ỹi is a constant random variable (Var(ỹi) = {0}Ny )
equal to its expected value (ỹi = ŷ∗i ). Accordingly,

Var(S̃) = {0}Ny and S̃ → Ŝ.
In the least sparse case, every agent is equally

likely to implement any one of its control trajecto-
ries (i.e. ŵ∗i,j = 1/Nd,i ∀ j = 1, . . . , Nd,i). Thus

E(S̃) = Ŝ

Var(S̃) =

Np∑
i=1

Nd,i∑
j=1

(yi,j − ŷ∗i )2

Nd,i

(19)

and the aggregate behavior of the population be-
comes highly stochastic, especially as heterogeneity
in Yi increases.

5.2. Inducing Sparsity

The stochasticity of S̃ diminishes our ability to
optimally control the behaviour of the distributed
population. Particularly, in order to optimize a
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highly heterogeneous population, it would be de-
sirable to force the variance of S̃ towards zero. In
this case, we would no longer rely on the law of large
numbers to drive S̃ towards the expected value Ŝ.

To decrease the variance, we focus on inducing
sparsity in the continuous solution ŵ∗ of a single
system. In this section, we begin by discussing the
challenges of inducing sparsity and conclude with
an iterative optimization technique. This iterative
technique adds a linear cost function to (8) which
drives the terms in ŵ towards 0 and 1.

It is important to recognize that attempting to
induce sparsity in the solution to (8) is prone to
introducing non-convexity to the program. As
mentioned previously, integer programming with a
branch and bound algorithm is non-convex. The `1-
norm, when added as a linear regularization penalty
to an objective function, is known to incentive spar-
sity in the solution [11][12]. However, due to the
linear constraints in (8), `1 regularization is ineffec-
tive (i.e. ‖ŵ‖1 = 1). Direct attempts to drive the
terms in ŵ towards 0 and 1 (i.e. min F (YT ŵ) +∑
ŵj(1− ŵj)) or to minimize the variance of ỹ (i.e.

min F (YT ŵ) +
∑
ŵj(yj −YT ŵ)2) are concave.

In the remainder of this section, we present an
iterative technique for inducing sparsity in ŵ∗. Put
simply, at each iteration n, we solve (8) with a linear
weight βn ∈ RNd applied to ŵn

minimize
ŵn

F (YT ŵn) + α(ŵn)Tβn

subject to
∑
ŵnj = 1

ŵn ≥ 0

ŵn ∈ RNd

(20)

where α is a scaling parameter for the sparsity-
inducing cost.

The linear weight is initialized at 0 (β0 ∈ {0}Nd)
and after each iteration n, updated according to the
previous solution (ŵn)∗

βn+1
j =

1

Nd
− (ŵnj )∗

∀ j = 1, . . . , Nd

(21)

For each successive iteration, βn drives the terms
in ŵn away from 1/Nd. If (ŵnj )∗ > 1/Nd, then

βn+1
j < 0 and the program will be incentivized to

increase ŵn+1
j in the next iteration. Inversely, if

(ŵnj )∗ < 1/Nd and βn+1
j > 0, the program will try

to decrease ŵn+1
j . Thus, the terms in ŵn are en-

couraged, though not required, to approach 0 or 1.

To enable tie-breaking, we can add a small random
perturbation to the weight update

βn+1
j =

1

Nd
− (ŵnj )∗ + v

∀ j = 1, . . . , Nd

(22)

where v ∈ R is a Gaussian random variable with
a small covariance (e.g. v ∼ N(0, 0.01)). This will
allow ties between different output trajectories to
be broken randomly.

This iterative technique for inducing sparsity ŵ∗

can be applied to the optimization of individual
agents. While the objective of (20) is not constant,
the change in βn from one iteration to the next is
relatively small. On the whole, the updating weight
βn introduces concavity into the problem. Specifi-
cally, the magnitude of each weight increases as the
terms in (ŵn)∗ approach 0 or 1. With each suc-
cessive iteration, (ŵn)∗ is forced further away from
(ŵ0)∗, the optimal solution to (8).

6. Illustrative Example

To illustrate the application of the ACT represen-
tation for the convex optimization of a non-convex
discrete energy system, this section considers the
control of a thermostatically controlled load (TCL).
Specifically, we optimize the electricity demand of
a simulated residential refrigerator using the tech-
niques described in this manuscript.

The TCL is modeled using the hybrid state dis-
crete time model [10][13][14]

T k = θ1T
k−1 + (1− θ1)(T ka + θ2m

k) + θ3

mk =


1 if T k < Tset − δ

2 + uk

0 if T k > Tset + δ
2 + uk

mk otherwise

(23)

where state variables T k ∈ R and mk ∈ {0, 1} de-
note the temperature of the conditioned mass and
the discrete state (on or off) of the mechanical sys-
tem, respectively. Additionally, k = 1, 2, . . . , Nt de-
notes the integer-valued time step, T ka ∈ R the am-
bient temperature (◦C), Tset ∈ R the temperature
setpoint (◦C), and δ ∈ R the temperature dead-
band width (◦C). The control input uk ∈ Su is a
setpoint change at each time step where Su defines
the discrete set of feasible values.

The parameter θ1 represents the thermal char-
acteristics of the conditioned mass as defined by

6



Figure 1: T1 and y1 trajectories given u1

Figure 2: T2 and y2 trajectories given u2

Figure 3: T3 and y3 trajectories given u3

θ1 = exp(−h/RC) where C is the thermal capac-
itance (kWh/◦C) and R is the thermal resistance
(◦C/kW), θ2 the energy transfer to or from the mass
due to the systems operation as defined by θ2 = RP
where P is the rate of energy transfer (kW), and θ3
is an additive process noise accounting for energy
gain or loss not directly modeled.

The electricity demand of the TCL at each time
step is defined by

yk =
|P |
COP

mk (24)

where yk ∈ R is the electric power demand (kW)
and COP the coefficient of performance. We now
have the state and output equations necessary to
model the system ((23) serves as G and (24) as H).

Figures 1, 2, and 3 present examples of Na = 3
alternative trajectories for the TCL. In the exam-

Figure 4: Target power demand p∗

ples, each alternative input uj for j = 1, 2, 3 is
∈ {0,−1, 1}20 (i.eNt = 20). While the input trajec-
tories are not plotted, they can be inferred from the
changes in the setpoint and temperature bounds.
For trajectory j = 1, uk1 = 0 for k = 1, . . . , 20.
For trajectory j = 2, uk2 = 0 for k = 1, . . . , 10
and uk2 = −1 for k = 11, . . . , 20. For trajectory
j = 3, uk3 = 0 for k = 1, . . . , 10 and uk3 = 1 for
k = 11, . . . , 20.

The TCL has been simulated using (23) and (24)
with a default setpoint Tset of 2.5◦C, a deadband
width δ of 2◦C, an initial temperature T 0 of 3.3◦C,
and an initial mechanical state m0 of 0. Figures
1, 2, and 3 present the Tj and yj trajectories cor-
responding to each input uj for j = 1, 2, 3. The
mechanical state trajectories mj can be inferred
from the Tj and yj trajectories. As illustrated by
the figures, each distinct input uj produces a dis-
tinct Tj , mj , and yj . Therefore, in this example,
Nd = Na = 3.

Next, we define some optimal power demand tra-
jectory p ∈ R20 which we would like the TCL to
match as closely as possible. As illustrated in Fig-
ure 4, we define pk = 0.3 for k = 2, . . . , 4 and for
k = 11, . . . , 18 and pk = 0 otherwise. The convex
optimization program is defined with a least squares
objective function

minimize
ŵ

‖YT ŵ − p∗‖22

subject to
∑
ŵj = 1

ŵ ≥ 0

ŵ ∈ RNd

(25)

By solving (25) with Y and p as described above,
we find that ŵ∗ = (0.263, 0.421, 0.316). The con-
tinuous solution ŷ∗, the optimal linear combination
of the alternative output trajectories, is illustrated
in Figure 5.

It should be noted that the squared error between
p and y1, y2, and y3 is 0.134, 0.134, and 0.15, re-
spectively. Thus, the utility of y1 and y2 are equal.
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Figure 5: Continuous solution ŷ∗

However, if we apply (9), there are 3 possible out-
comes for the discrete solution w̃,

Pr(w̃ = (1, 0, 0)) = 26.3%

Pr(w̃ = (0, 1, 0)) = 42.1%

Pr(w̃ = (0, 0, 1)) = 31.6%

(26)

By applying the sparsity inducing penalty de-
scribed in (20) and (22), we find that the (ŵ∗)n =
(0, 1, 0) after 3 or 4 iterations. Despite the random
perturbation added to the weights, we observe that,
for this particular example, the program always
converges to the same solution (i.e (ŵ∗)n → (0, 1, 0)
as n → ∞). Thus, for this TCL, we would imple-
ment the control trajectory defined by u2, T2, m2,
and y2.

7. Conclusions

In this manuscript, we have developed the alter-
native control trajectory (ACT) representation – a
novel approach for representing the control of a non-
convex discrete system as a convex program. The
resulting convex program provides a solution that
can be interpreted stochastically for implementa-
tion. This approach enables the approximate opti-
mal control of non-convex agents using distributed
convex optimization techniques. By inducing spar-
sity in the individual agents, we can increase the
predictability (i.e. reduce the variance) of the ag-
gregated output.
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