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Abstract
We humans spend almost a third of our lives asleep, and
there is mounting evidence that sleep not only maintains, but
actually improves many of our cognitive functions. Mem-
ory consolidation–the process of crystallizing and integrating
memories into knowledge and skills–is particularly benefitted
by sleep. We survey the evidence that sleep aids memory con-
solidation in various declarative and implicit tasks and review
the basic neurophysiological structure of sleep with a focus on
understanding what neural systems are involved. Drawing on
machine learning research, we discuss why it might be useful
for humans–and robots, perhaps–to have such an offline pe-
riod for processing, even though humans are clearly capable of
learning incrementally, online. Finally, we propose and simu-
late two mechanisms for use in computational memory models
to accomplish sleep-based consolidation via either or both 1)
re-encoding knowledge representations and 2) reactivating and
strengthening recent memories.
Keywords: memory consolidation; sleep; dreaming; hip-
pocampal replay; memory model

Introduction
Researchers have long been confused why people–and many
other animals–spend around a third of their lives asleep. Why
has nature burdened us with needing to be in such a vul-
nerable, unproductive state for so long? Hypotheses abound
about why we have evolved to sleep, ranging from it allows
us to conserve energy (during a night full of terrors, even),
to it simply being a necessary restorative for tired muscles
and minds (Siegel, 2013). Both of these example hypothe-
ses are both reasonable and hard to refute (especially the for-
mer). Evidence in favor of the latter has been mounting: in
a wide variety of cognitive and motoric tasks, performance
drops when sleep patterns are interrupted.

Not only does sleep deprivation cause performance
deficits, but there is now substantial empirical evidence
that both declarative (i.e., facts and events–‘what’, ‘where’,
‘when’) and procedural (i.e., skills–‘how’) memory bene-
fit from even short periods of sleep. Memory is typically
described as three processes: 1) encoding: forming new
traces from experience, 2) consolidation: integrating memo-
ries with prior knowledge and strengthening/crystallizing the
trace, and 3) retrieval: task-dependent extraction of overall
familiarity or recall of particular traces. Sleep is generally
accepted to aid in consolidation, but under what particular
circumstances it helps is not fully understood (Diekelmann,
Wilhelm, & Born, 2009, for a review), nor by which mecha-
nisms it works.

It is our goal to hypothesize several mechanisms by which
sleep could serve to improve consolidation, and to evaluate

which of these are suggested by existing empirical evidence.
We will begin by considering the computational advantages
and disadvantages of online (i.e., incremental; awake) learn-
ing versus offline (i.e., batch; asleep) learning, with intuitions
imported from the machine learning literature. By consid-
ering the often-competing computational needs of the mind
(e.g., to quickly and accurately store new information, but
also to integrate such episodes with existing knowledge), we
hope to better organize existing findings for rational analysis.
Thus, we then proceed to review the physiological character-
istics of sleep, along with some of the diverse memory effects
that have been found. Typical studies often have a similar
design (but different task) to the first one that found a bene-
fit for sleep: Jenkins and Dallenbach (1924) found improved
retention of nonsense syllables after a night of sleep as com-
pared to the same amount of time spent awake. However,
more recent studies have looked at shorter periods of sleep
and also measured the time spent in different sleep stages,
which exhibit different types of neural activity. After syn-
thesizing the empirical results, we offer the beginnings of a
computational approach to modeling memory consolidation.
Despite the large amount of interest in developing computa-
tional models of episodic memory (Hintzman, 1984; Shiffrin
& Steyvers, 1997, e.g.) and semantic memory (Jones & Me-
whort, 2007, e.g.), these models do not yet incorporate sleep-
based consolidation mechanisms. We offer several sugges-
tions for concrete changes to an existing model of episodic
memory.

Computational Issues
Machine learning algorithms can be classified as either
incremental–allowing data to be added to the model instance
by instance–or batch, requiring a (sometimes large) set of
training instances before before the model produces useful
predictions. Before we dive into a high-level discussion of
costs and benefits to these two approaches, let us consider a
motivating example.

A Tale of Two Robots
Imagine two cooking robots running two different versions
of the same underlying learning algorithm during a week of
daily training to become pizza chefs: Bob runs a batch ver-
sion, and Ingrid runs an incremental version. Each day, Bob
and Ingrid each watch 10 pizzas being made. Bob watches
closely, recording every move for processing later that night,
whereas Ingrid learns while watching–but is sometimes over-
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whelmed by too many simultaneous things to pay attention
to. On the other hand, even after seeing the first pizza made,
Ingrid is able to make predictions about the next, and can
evaluate and update her knowledge (and attention to observ-
ing particular steps) based on prediction failures. However,
by storing all of the input over the day (and perhaps forever),
Bob can often make a model that better approximates the real
experience than what Ingrid’s incremental adjustments add up
to. In fact, there may even be particular sequences of expe-
rience that can lay a false foundation: for example, consider
if Ingrid’s first ‘pizza’ experience is a dessert pizza, or ‘pizza
chicken’–not very stereotypical pizzas. For an incremental
learner who may hastily build a foundation from the first ex-
perience, such a starting point may cause difficulties for fo-
cusing on and updating the correct features over the next few
recipes experienced. In contrast, Bob’s batch algorithm has
the advantage of being able to downweight outliers at the end
of the day before building his model. Bob’s batch and In-
grid’s incremental algorithms each have their advantages and
disadvantages, and some generalizations are made below.

Storage versus Processing
Incremental or online algorithms (e.g., naı̈ve Bayes) clearly
offer the advantage of being able to work (however poorly)
with very little data, and can learn immediately when new
data are acquired. Moreover, since instances are processed
immediately, they do not need to be stored for later updat-
ing. One disadvantage is that online updating may require
significant computational resources, perhaps at an inconve-
nient time. In contrast, batch (i.e., offline; e.g., support vec-
tor machines, decision trees) learning algorithms may need
a large store of data and quite some time to build an initial
useful model, and adding a single training instance may re-
quire iterating over the entire (and increasing) data store to
update the model. A survey of learning algorithms will re-
veal the classic algorithmic tradeoff: one can store more, and
process less upfront (but retrieval can be costly), or process
more upfront and store less.

Another problem with many incremental algorithms is the
potential to arrive at different learning outcomes based on the
order the instances are encountered in. In many cases, such
order effects are undesirable, but on the other hand humans
and animals show a variety of order effects (e.g., in associa-
tive learning: Kachergis (2012). Could sleep be a chance
to mitigate the order effects brought on during online learn-
ing? A few batch-update models have been found to have
roughly-equivalent incremental versions. For example, latent
semantic analysis (Deerwester, Dumais, Furnas, Landauer, &
Harshman, 1990, LSA) learns semantic similarities of words
via the singular value decomposition (SVD)–an expensive
matrix operation–of a large word × document co-occurrence
matrix. This large matrix–adults know over 70,000 unique
words, and have read thousands of documents–must be kept
in memory to be updated when a new document is read. Up-
dating the model requires performing the SVD again, so it
would be quite expensive to update knowledge every time a

new document is read. It is more sensible to read a batch
of documents–although, of course, this means that any new
knowledge is not available in the model until the latest batch
is incorporated. Fortunately, an incremental SVD algorithm
has been proposed that not only is less computationally ex-
pensive, but also does not require storing the full word ×
document (Sarwar, Karypis, Konstan, & Riedl, 2002).

Models that use batch updating require storing all of the
instances in long-term memory, allowing the model to iterate
over all episodes–even multiple times–to extract higher-level
features (e.g., correlations of multiple features). On the other
hand, incremental updating can reduce the need to store so
much information, much of which may be redundant or al-
ready over-learned. We conclude that sleep might be a way
to get the best of both worlds: incremental learning based on
salient features for immediate use, in addition to storage of
daily episodes–especially exciting or confusing memories–
that can be replayed during sleep to make more thorough,
careful updates to knowledge representations before further
compressing the memories.

Effects of Sleep
After a brief summary of the neurophysiological characteris-
tics of sleep, we survey sleep effects found in various declar-
ative and implicit memory tasks.

Structure of Sleep
Sleep in mammals and birds consists of cycles of four stages,
proceeding from non-rapid eye movement (NREM) stages 1,
2, and 3 (also called slow-wave sleep), to rapid eye move-
ment (REM) sleep. Human adults typically go through four
or five cycles each night, reaching REM sleep every 90 min-
utes or so. More slow-wave sleep (SWS; NREM3) occurs
early in the night, whereas more REM sleep occurs in the last
few hours of a night’s sleep. Each stage is characterized by
particular muscle behaviors and brain activity (Schulz, 2008).

NREM1, between wakefulness and sleep, is recognized by
somewhat active muscles (e.g., fluttering eyelids and rolling
eyes) and alpha waves (7.5-12.5 Hz)–as in an awake state–
transitioning to a theta rhythm (6-10 Hz).

NREM2 exhibits lower muscle activity and no awareness
of surroundings, as well as a theta rhythm (6-10 Hz), with
periodic sleep spindles (11-16 Hz) and K-complexes. It is
thought that sleep spindles reflect the brain inhibiting pro-
cessing, thereby keeping the sleeper asleep, and occur as a
result of information flow between thalamic and cortical ar-
eas. Sleep spindles often occur together with K-complexes,
which are basically delta waves lasting around one second.
Their function is thought to be stimulus suppression as well
as memory consolidation support.

Sleepers in SWS (NREM3) show very little reactivity to
environmental stimuli, and predominantly delta wave activ-
ity (< 3.5 Hz, high amplitude). SWS (i.e. deep sleep) is
also when parasomnias such as sleepwalking and night ter-
rors occur. This is the hardest part of sleep to wake up from,
and sleep interruption during this stage often lead to feeling
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groggy and sleepy. There is evidence to suggest that this is an
essential stage of sleep: after sleep deprivation, the amount of
SWS increases drastically.

Additionally, REM sleep is characterized by rapid, random
eye movements as well as most memorable dreaming. At the
same time, muscle ationa prevents dreamers from acting out
their dreams. Similar to SWS, deprivation of REM sleep in-
creases the amount of REM sleep in a recovery period, indi-
cating that REM is crucial for normal functioning. From neu-
ral recordings of rats, it appears that memory replay during
non-REM sleep occurs at a 10x speedup, whereas REM re-
play is roughly at the speed of the behavioral episode (Bendor
& Wilson, 2012). During non-REM sleep, replay happens
during short periods of increased activity in cortex and hip-
pocampus related to cortical ‘up-states’ (i.e., frames). Both
cortex and hippocampus replay similar content, but replay is
initiated in the hippocampus, whereas cortical frames start
roughly 50ms before hippocampal frame, leading researchers
to conclude that the replay of sequential event memories may
be driven by hippocampus, though the memories may be se-
lected by cortex (Lee & Wilson, 2002).

One of the neurotransmitters that is often studied in rela-
tion to memory (especially Alzheimer’s disease) and sleep
is acetylcholine (ACh). ACh levels are lower during sleep
than during awake, except during REM sleep when it reaches
higher than awake levels. Hasselmo (1999) postulates that
ACh inhibits feedback loops within the hippocampus and
from it to the neocortex). This means that high ACh lev-
els during waking hours (and REM) supports encoding new
declarative memories, whereas low ACh during SWS allows
replay of hippocampal memories, which are then stored more
permanently in the neocortex.

Implicit Memory
Implicit or non-declarative memories are memories we do not
have conscious access to, such as motor skills and procedural
and perceptual memory. A positive influence of sleep on a
finger tapping task has been demonstrated by Walker, Brake-
field, Morgan, Hobson, and Stickgold (2002), which found
that subjects performed 20% better after a night of sleep
compared to subjects spending an equivalent amount of time
awake. Furthermore, a correlation was found between the
amount of stage 2 NREM sleep and performance improve-
ment. The spindles that are characteristic of stage 2 sleep
are thought to trigger specific intracellular mechanisms re-
quired for neural plasticity (Walker & Stickgold, 2006). More
evidence for this specific influence of stage 2 NREM sleep
comes from selective sleep deprivation studies. Smith and
MacNeill (1994) found worse retention of a visuomotor adap-
tation task after stage 2 NREM sleep deprivation compared to
REM sleep deprivation.

Similar spindles are visible in the somatosensory cortex
of newborn rats and humans following spontaneous twitches
during REM sleep, suggesting that learning is taking place
in the brain following these movements (Khazipov et al.,
2004). As infants spend relatively more of their sleep time

in the REM stage compared to adults, muscle twitching dur-
ing REM sleep may be a way for the body to build (especially
in infants) and reinforce (in adults) specific neural pathways
from brain to muscles that are frequently used. This mecha-
nism may simply be a low-level version of a similar mecha-
nism known as motor babbling, which allows infants to build
higher-level action-effect associations.

Although most sleep-based consolidation studies have used
implicit memory tasks, several have been done with declara-
tive memory tasks.

Declarative Memory
The type of memory most people are familiar with is declar-
ative or explicit memory. This type of memory provides us
with knowledge of facts, such as Athens being the capital of
Greece (semantic knowledge), as well as knowledge of per-
sonal events, like what you had for dinner last night (episodic
knowledge).

Declarative memory is thought to be largely dependent on
the hippocampus. Evidence supporting this theory consist of
patient studies as well as various lesion studies in rats. One
famous case includes memory disorder patient H.M., who
was unable to form episodic memories after surgery remov-
ing a large part of his hippocampus. In rats, Eichenbaum
(1990) showed that rats with hippocampal system lesions are
severely impaired in the flexible use of previously learned
information–normally attributed to episodic memory.

But what is exactly the mechanism by which the hippocam-
pus performs this task? The prevailing hypothesis is that
the hippocampus enables the consolidation of memory–i.e.,
converting an initial memory trace to a stable representation.
Sleep is thought to play an important role in memory con-
solidation, for both declarative and implicit memory. During
SWS, the episodic information that is stored in the hippocam-
pus is replayed and projected to brain regions in the neocor-
tex, which stores stable, permanent memories. The direction
of this information flow reverses during the REM sleep that
occurs later in time. It has been proposed that this allows the
hippocampus to remove the unstable, short-term memories
in order to make room for new memories to be stored there
(Wamsley & Stickgold, 2011).

Indeed, there are many studies showing that sleep improves
declarative memory using several paradigms. Retention of
nonsense syllables has been shown to improve with sleep
since (Jenkins & Dallenbach, 1924), and more recent research
has shown improvement on a paired associates word list after
SWS-rich sleep (Gais & Born, 2004).

In fact, it seems that not only sleep, but dreaming specif-
ically can have beneficial effects on declarative memory.
Wamsley, Tucker, Payne, Benavides, and Stickgold (2010)
showed that after training on a virtual navigation task, im-
proved performance at retest was correlated with relevant
dream imagery during an afternoon nap. Similar thoughts
during wakefulness, however, were not correlated with im-
proved performance. It seems that reactivation of recently
formed memories facilitates memory consolidation, with
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dream imagery reflecting this process. Although recall
shows more consistent sleep-related benefits than recogni-
tion, declarative memory often shows benefits even after only
one to two hours of sleep (Diekelmann et al., 2009). Con-
solidation of declarative memories has been found to depend
more on early hours of sleep, perhaps due to the dominance
of SWS, and nondeclarative memory was more aided by the
late, REM-dominated hours of sleep (Plihal & Born, 1999).
Lee and Wilson (2002) ran rats repeatedly through a sequence
of spatial receptive fields of hippocampal CA1 place cells,
and during slow wave sleep (SWS) later ran through the same
order of activation at a 20-fold temporal compression of the
behavioral sequence, showing that the hippocampus is impor-
tant for spatial learning–and likely the formation of long-term
temporally-extended episodic memories in humans.

In general, SWS seems to aid declarative memory whereas
REM enhances procedural and emotional memory in many
cases (Mednick & Alaynick, 2010). However, in a study us-
ing a sequence learning task (the serial response time task),
in which subjects were either explicitly told to learn a (re-
peating) sequence of button presses or learned it implic-
itly, the subjects learning explicitly improved only in the
sleep condition, and to an extent that was correlated with the
amount of NREM sleep (Robertson, Pascual-Leone, & Press,
2004). More intriguing was the fact that implicit learners all
improved–regardless of sleep–over a twelve hour period, but
not after only 15 minutes. Thus, it may be that for proce-
dural memories, intentionally encoded memories are consol-
idated during sleep, whereas implicit memory consolidation
may simply require time.

Theories of Sleep and Dreaming
An early attempt to explain why we dream was the activation-
synthesis hypothesis (Hobson & McCarley, 1977), which
posits that dreams come from the cortex trying to make sense
of the random noise produced in the brainstem during REM
sleep. We now know that dreaming also occurs during non-
REM sleep, and even in deep, ‘slow-wave’ sleep.

Walker, Stickgold, Alsop, Gaab, and Schlaug (2005) pro-
poses that there is a two-phase process by which memo-
ries are consolidated during sleep. The hippocampus, which
stores recent episodic memories replays events during slow-
wave sleep for the neocortex, where long-term memories re-
side. The communication between the two brain areas at this
time is one way, from the hippocampus to the neocortex. Dur-
ing the REM dreaming that follows, though, the flow of in-
formation flips, from the neocortex back to the hippocampus.
Stickgold suggested that once the neocortex connects the new
memories to others in storage, it sends a message back to the
hippocampus to erase them.

For declarative memory, there are two basic theories of
how memory consolidation is improved during sleep: the ac-
tive hypothesis states that consolidation depends on sleep,
whereas the permissive hypothesis views consolidation as a
time-dependent, interference-sensitive process that uses peri-
ods of low hippocampus input to process prior information

(Mednick & Alaynick, 2010). Procedural memory is just
generally thought to be ‘enhanced’ by sleep, but this idea is
not universally accepted (Mednick & Alaynick, 2010). An
early neural model found that offline replay helped main-
tain declarative memories using hippocampal-neocortical in-
terplay (Kali & Dayan, 2004). We will focus on proposing
specific computational mechanisms for improving declarative
memory, since the current models are more readily adapted to
this task, and the empirical evidence indicating the necessity
for this is strong.

Model
Here we will propose and test two mechanisms of sleep-
based consolidation that can be added to modern computa-
tional models of episodic memory. Our modifications will
be specified in terms of the REM1 (Retrieving Effectively
from Memory) model Shiffrin and Steyvers (1997), which
is a multitrace memory model that makes optimal recogni-
tion decisions assuming that memory is subject to noise. In
multitrace memory models, a memory trace is represented
by a large vector of feature values representing the context
and content of the event. Some features may be abstract
and learned, whereas others are assumed to be simple and
sensory-based (i.e., primitive). REM has both episodic traces
as well as lexical-semantic traces, the latter of which are de-
contextualized accumulations of the various episodic traces,
updated across a lifetime. In REM, individual traces are as-
signed random feature values, each drawn from a geometric
distribution with parameter g. That is, the probability that a
feature has value v is

P(v) = g(1−g)v−1 (1)

The geometric distribution makes small feature values more
probable (and thus frequent) than large values. REM uses
these varying base rates in calculating evidence for a mem-
ory match: matching a low (common) feature value is not as
strong evidence as matching a high value. Conscious experi-
ence activates the lexical-semantic (LS) trace for the attended
stimuli and updates it with the current context features. An
episodic memory trace is formed by copying context and LS
features with probability u per time unit t. When a feature
is stored, it is only copied correctly with probability c; oth-
erwise, a random value is drawn according to Equation 1.
Missing features have a value of 0 (uninformative). Our first
proposed modification is to update lexical-semantic (LS) fea-
tures (i.e., neocortical representations) during a sleep period,
when episodic traces since the last sleep period are (randomly,
although it may be more accurate to prioritize surprising or
emotionally-charged traces) reactivated. The detailed lexical
re-encoding mechanism is described in detail below. Updat-
ing LS features during sleep leaves the hippocampal episodic
traces available for retrieval and recognition throughout the
day. REM assumes that when the same stimuli appear multi-
ple times in similar contexts, the old trace may be updated by

1In this section, REM refers only to the model.
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filling in missing features from LS traces, instead of making
a new trace (this differentiation process is how it accounts for
the word frequency mirror effect and null list strength effect).

Retrieval in REM uses context features–reinstated by the
probe, whatever its source (internal or external)–to activate a
subset of long-term memory (e.g., to the studied list of items).
This is in part done for simplicity of simulation–so that a
number of extra-experimental parameters and processes need
not be assumed, but is also a reasonable thing to expect from
memory. For recognition, REM computes a likelihood ra-
tio indicating how well test cue j (from the LS traces) match
each episodic trace i in the activated subset being considered.
This likelihood ratio, in which gsys is the base rate in the long-
term, nq and nm are the number of non-zero mismatching and
matching features, respectively, is defined

λi, j = (1− c)nq
∞

∏
v=1

[c+(1− c)gsys · (1−gsys)
v−1

gsys(1−gsys)v−1

]nm
(2)

Thus, the decision depends on not only the number of match-
ing features, but also on how diagnostic the features are: large
values are more rare in the geometric distribution, and are
thus more informative. Therefore, prior knowledge about the
base rate of different values (gsys) may affect recognition.
REM decides that cue j was presented on the list if the av-
erage of the likelihood ratios is above a criterion; else it is re-
jected. Since small feature values will tend to be quite com-
mon and thus undiagnostic, whereas the more useful large
feature values are rarely encountered, a potential mechanism
for improving memory would be to redistribute feature val-
ues. By choosing one or more unique, diagnostic features for
each trace (or set of highly-related traces), memory will be
improved. Although an exhaustive cross-check to make sure
features are unique would be quite computationally expensive
(which is why it should be offline), but a simple, greedy ver-
sion might work well, with high probability. We now describe
and test two consolidation methods that we have hinted at.

Simulation
Using REM as the basis for storing and retrieving memories,
we define and test two sleep-based consolidation mechanisms
in a simulation of studying 100 items 1, 3, or 5 times2. The
reactivation method simply reactivates n (here, n = 50) ran-
dom memory traces from the day, and then for each of these
memories m finds the best matching LS trace t and copies in
missing (0-valued) features from t to m. In essence, the reac-
tivation mechanism assumes that people dream about recent
memories and fill in missing details in the traces using back-
ground knowledge. Although these traces are strengthened,
the underlying knowledge representations (the LS traces) re-
main static. In contrast, the re-encoding method randomly
selects r LS traces (here, r = 50) for re-encoding, with proba-
bility proportional to their familiarity in recent memory (here,
the day). For each of these r LS traces, f features (here,

2https://github.com/kachergis/REM consolidation

f = 6) are randomly chosen, and those feature values are in-
cremented by 1, thus making those features more diagnos-
tic, and the item easier to remember in the future. How-
ever, now that the LS (i.e., neocortical) representation has
changed, memories that were encoded with the old represen-
tation will be more difficult to retrieve. This can be largely
remedied by probing memory for copies of the old represen-
tation while re-encoding, and updating those items in mem-
ory, as well: simply increment whatever is stored for those
f features. Figure 1 shows the mean d′ (z(H)− z(FA)) of
50 simulated subjects after studying 100 items one, three, or
five times, using REM alone or either of the proposed con-
solidation mechanisms, both of which aid memory. Note that
these two methods are complementary, and could be used to-
gether with greater effect. The effect of reactivation lessens
with more item repetitions, while the re-encoding effect can
be quite strong, regardless of repetitions.
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Figure 1: Mean d′ for REM simulations using no consolida-
tion, or one of reactivation- or re-encoding-based consolida-
tion after studying 100 items 1, 3, or 5 times. Error bars show
+/-1SE for 50 simulated subjects.

Variations of these two methods are quite plausible for
modeling sleep-based consolidation in current memory mod-
els. However, at least one important aspect is clearly missing:
structured sequences of events must be linked in some way,
but are not in the REM framework (what defines an ‘event’
is not yet known). Future models should address how event
boundaries are marked. It may be possible–and would be de-
sirable, for compression–to identify routine sequences (e.g.,
eating your typical breakfast, or driving home from work via
your usual route) and to replace the specific feature values in
traces containing these sequences with placeholders pointing
to the appropriate LS representation, thus simplifying future
updating. Modeling procedural sleep-consolidation effects
may require distributed neural models such as Kachergis, Wy-
att, O’Reilly, Kleijn, and Hommel (2014).

Discussion
We have proposed two computational mechanisms that could
beneficially operate on memories during sleep, along with
a rationale for why humans may find it advantageous to be
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capable of learning by both incremental and batch updat-
ing. The proposed mechanisms are all fairly computation-
ally expensive–involving many comparisons and updates to
long-term lexical-semantic traces that are presumably stored
in neocortex, making them suitable for conducting during
sleep. Note that while a complex version of redistributing
diagnostic feature values would have to be done in batch, the
simple greedy version used here (choosing random features to
increment) is more batch-incremental. Although we specified
these mechanisms in terms of the REM (Shiffrin & Steyvers,
1997) model, the same mechanisms could be used in related
multitrace modeling frameworks such as SARKAE (Nelson
& Shiffrin, 2013) or MINERVA2 (Hintzman, 1984). We pro-
posed the reactivation and re-encoding mechanisms based on
our survey of sleep-related effects on a variety of declarative
and procedural tasks, which we found to convincingly impli-
cate sleep as beneficial to memory consolidation. Our model-
ing confirms that the proposed methods benefit memory, and
offers an avenue for both predicting and matching detailed
results from sleep studies.
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