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Bias to CMB Lensing Reconstruction from Temperature Anisotropies due to
Large-Scale Galaxy Motions

Simone Ferraro1, 2 and J. Colin Hill3

1Berkeley Center for Cosmological Physics and Department of Astronomy,
University of California, Berkeley, CA, USA 94720

2Miller Institute for Basic Research in Science, University of California, Berkeley, CA, 94720 USA
3Dept. of Astronomy, Pupin Hall, Columbia University, New York, NY USA 10027

Gravitational lensing of the cosmic microwave background (CMB) is expected to be amongst
the most powerful cosmological tools for ongoing and upcoming CMB experiments. In this work,
we investigate a bias to CMB lensing reconstruction from temperature anisotropies due to the
kinematic Sunyaev-Zel’dovich (kSZ) effect, that is, the Doppler shift of CMB photons induced by
Compton-scattering off moving electrons. The kSZ signal yields biases due to both its own intrinsic
non-Gaussianity and its non-zero cross-correlation with the CMB lensing field (and other fields that
trace the large-scale structure). This kSZ-induced bias affects both the CMB lensing auto-power
spectrum and its cross-correlation with low-redshift tracers. Furthermore, it cannot be removed
by multifrequency foreground separation techniques because the kSZ effect preserves the blackbody
spectrum of the CMB. While statistically negligible for current datasets, we show that it will be
important for upcoming surveys, and failure to account for it can lead to large biases in constraints
on neutrino masses or the properties of dark energy. For a Stage 4 CMB experiment, the bias can
be as large as ≈ 15% or 12% in cross-correlation with LSST galaxy lensing convergence or galaxy
overdensity maps, respectively, when the maximum temperature multipole used in the reconstruction
is `max = 4000, and about half of that when `max = 3000. Similarly, we find that the CMB lensing
auto-power spectrum can be biased by up to several percent. These biases are many times larger than
the expected statistical errors. We validate our analytical predictions with cosmological simulations
and present the first complete estimate of secondary-induced CMB lensing biases. The predicted
bias is sensitive to the small-scale gas distribution, which is affected by pressure and feedback
mechanisms, thus making removal via “bias-hardened” estimators challenging. Reducing `max can
significantly mitigate the bias at the cost of a decrease in the overall lensing reconstruction signal-to-
noise. A bias . 1% on large scales requires `max . 2000, which leads to a reduction in signal-to-noise
by a factor of ≈ 3− 5 for a Stage 4 CMB experiment. Polarization-only reconstruction may be the
most robust mitigation strategy.

PACS numbers: 98.80.-k, 98.70.Vc

I. INTRODUCTION

Matter inhomogeneities between our location and the surface of last scattering deflect cosmic microwave background
(CMB) photons, introducing new correlations in the observed CMB anisotropies. These correlations allow the pro-
jected gravitational potential sourced by the late-time matter distribution to be extracted from high-resolution maps
of the microwave sky, a procedure known as CMB lensing reconstruction. CMB lensing probes the density field over
a wide range of redshifts (0.5 . z . 6) and is dominated by contributions from linear modes for angular scales up to
multipole L ≈ 1000. It is therefore an excellent probe of dark energy, modified gravity, and the sum of the neutrino
masses [1, 2].

The CMB lensing power spectrum will be measured with signal-to-noise (S/N) > 100 by ongoing and upcoming
experiments, including the Advanced Atacama Cosmology Telescope (AdvACT) [33], the South Pole Telescope-3G
(SPT-3G) [48], the Simons Observatory1, and CMB Stage-42 (CMB-S4) [34]. At this level of precision, sub-percent
control is required on possible biases in CMB lensing reconstruction. Such biases can result from both instrumental
or astrophysical effects; here, we will focus on the latter. In particular, the observed CMB temperature fluctuations
are a sum of the lensed primary fluctuations (which alone would give rise to an unbiased lensing reconstruction,
modulo estimator-related complexities [16, 37, 49]) and several secondary anisotropies due to the interaction (either
gravitational or electromagnetic) of CMB photons with late-time structures. These secondary anisotropies include the
thermal and kinematic Sunyaev-Zel’dovich (SZ) effects [3–6], the integrated Sachs-Wolfe (ISW) effect [7], and the non-
linear generalization of the ISW effect known as the Rees-Sciama effect [8]. In addition, the microwave sky includes

1 http://www.simonsobservatory.org/
2 http://www.cmb-s4.org/
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signals from thermal dust emission (both Galactic and extragalactic) and radio emission, which must be carefully
treated in CMB analyses. While most of the secondary and astrophysical signals can be separated from the lensed
primary CMB using multifrequency component separation methods, such procedures cannot isolate the kinematic SZ
(kSZ) and ISW effects, since they preserve the blackbody spectrum of the CMB.3 The linear ISW effect is only relevant
on large angular scales (& 1 degree), making it straightforward to filter out in the lensing reconstruction process if
needed, while the Rees-Sciama effect is expected to be roughly two orders of magnitude smaller than the kSZ signal
on the relevant scales [9, 10]. We therefore focus on the kSZ-induced bias, being the largest among the effects that
cannot be mitigated by multifrequency component separation.4 Imperfect removal of non-blackbody foregrounds can
also lead to significant biases in CMB lensing reconstruction, as has been explored in detail for the thermal SZ and
dusty galaxy (cosmic infrared background [CIB]) signals [17, 18], as well as for the polarized dust emission from our
Galaxy [19].5

The kSZ effect is a Doppler shift due to the Compton-scattering of CMB photons off of free electrons moving
with a non-zero line-of-sight (LOS) velocity [5, 6, 11]. The corresponding shift in the observed CMB temperature
is proportional to the total number of electrons and their LOS velocity, i.e., the LOS electron momentum. Being a
Doppler shift, the kSZ effect preserves the blackbody spectrum of the CMB, leading to only a small change in the
blackbody temperature (to lowest order). The kSZ signal can be used to measure the ionized gas abundance and
distribution in galaxies and clusters, thus providing important information about the extent and nature of astrophysical
feedback processes (e.g., energy injection from active galactic nucleus feedback). Taking advantage of this sensitivity
to the gas distribution, recent detections of the kSZ signal have made progress towards resolving the long-standing
“missing baryons” problem at low redshift [14, 30, 31, 51, 52]. In addition, through its dependence on the large-scale
velocity field, the kSZ effect can also be used as a cosmological probe to measure the growth of structure [53–55]. In
this paper, however, we will focus on the bias it imprints on CMB lensing reconstruction.

Building on previous work [12, 13], it was shown in [14, 15] that the kSZ signal can be efficiently extracted by
cross-correlating the square of an appropriately filtered CMB temperature map with a sample of large-scale structure
tracers. In contrast to other kSZ estimators, this method does not require spectroscopic redshift information for
the tracer sample, relying only on the projected tracer distribution, thus allowing kSZ measurements with densely-
sampled photometric surveys. In [14] the first kSZ detection using this method was achieved using the Planck,
WMAP, and Wide-field Infrared Survey Explorer (WISE) datasets. These analyses also noted that because this kSZ
estimator is quadratic in CMB temperature, it is significantly contaminated by the CMB lensing signal. The CMB
lensing contribution was detected at high significance and had to be marginalized over in order to obtain a reliable kSZ
measurement. Turning the problem around, one would thus expect a contribution from the kSZ signal to the quadratic
lensing reconstruction estimator. Quantifying this bias is the focus of this paper. To our knowledge, this effect has
only been investigated in detail in [39], who found that it could lead to biases of order unity on the reconstructed CMB
lensing power spectrum for a low-noise (2µK-arcmin), high-resolution (0.8 arcmin) experiment. The effect was also
discussed briefly in [40], who found a sub-percent bias to the CMB lensing auto-power spectrum for higher-noise maps
(18µK-arcmin) of similar resolution (≈ 1 arcmin). Given the dramatic increase in our knowledge of the microwave
sky in recent years, as well as the expected precision of upcoming CMB experiments, it is timely to revisit this issue.

The CMB lensing power spectrum is a sensitive probe of the amplitude of fluctuations at relatively low redshift,
probing the integrated growth of structure between recombination and z = 0, with a broad peak around z ≈ 2. Thus,
it is a probe of the constituents of the Universe. For example, massive neutrinos produce a few-percent suppression
of the CMB lensing power spectrum compared to a cosmology with massless neutrinos [2, 20] (with the amount of
suppression being proportional to the neutrino mass sum). Therefore, even percent-level biases in the lensing power
spectrum can yield large biases on cosmological parameters of interest. Moreover, cross-correlations of CMB lensing
maps with galaxy overdensity or galaxy weak lensing maps also directly probe the late-time growth of structure,
providing a powerful test of gravity and dark energy models [21], as well as calibration of systematics [22].

While the kSZ signal affects only CMB temperature and not polarization fluctuations (to lowest order), the statistical
power of CMB lensing reconstruction will be dominated by temperature in the next generation of CMB surveys, and
will represent a statistically non-negligible contribution even for experiments for which the overall reconstruction is
dominated by polarization, such as the proposed CMB-S4 survey. Thus, although polarization-only reconstruction

3 Relativistic corrections to the kSZ effect (e.g., [50]) generate a non-blackbody frequency dependence, but are negligible for the purposes
of our analysis.

4 There are also CMB lensing reconstruction biases due to the non-Gaussianity of the late-time matter field [16], which are by definition
blackbody in frequency-dependence, but these are distinct from the secondary anisotropy-induced biases.

5 Note that Refs. [17, 18] primarily focused on single-frequency measurements, but at much higher noise levels than considered in this
paper, thus yielding a kSZ-induced bias much smaller than the statistical uncertainties (as we show explicitly for the Planck SMICA
map in Sec. VI) and much smaller than the unmasked tSZ- or CIB-induced biases.
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allows the kSZ-induced bias to be avoided, the consequence could be a significant decrease in the overall lensing S/N ,
depending on the experimental configuration.

In our analysis we assume a flat ΛCDM fiducial cosmology with Planck 2015 parameters (column 3 of Table 4 of
[23]). We also assume massless neutrinos in the fiducial model, and compare the size of the kSZ-induced bias to the
effect of minimal mass, normal hierarchy neutrinos in Section VI D.

The remainder of this paper is organized as follows: In Section II we review the kSZ effect, and in Section III we
review the process of lensing reconstruction from CMB temperature anisotropy measurements. The kSZ-induced bias
to the cross-correlation between CMB lensing and low-redshift tracers is explored in Section IV, while the effect on
the CMB lensing auto-power spectrum is investigated in Section V. In Section VI we show numerical estimates of
the bias for upcoming surveys. In Section VII we test the approximations made by comparison with cosmological
simulations, which we also use to perform a complete calculation of the bias to the lensing auto-power spectrum
(modulo reionization contributions). We consider mitigation strategies in Section VIII and conclude in Section IX.
Detailed derivations of the main results of the paper are found in Appendices A and B.

II. THE KINEMATIC SZ EFFECT

The kSZ effect produces a CMB temperature change, ΘkSZ(n̂) = ∆T kSZ(n̂)/TCMB, in a direction n̂ on the sky (in
units with c = 1):

ΘkSZ(n̂) = −
∫
dη g(η) pe · n̂ (1)

= −σT
∫

dη

1 + z
e−τne(n̂, η) ve · n̂ , (2)

where σT is the Thomson scattering cross-section, η(z) is the comoving distance to redshift z, τ is the optical depth
to Thomson scattering, g(η) = (dτ/dη)e−τ is the visibility function, ne is the physical free electron number density,
ve is the peculiar velocity of the electrons, and we have defined the electron momentum pe = (1 + δe)ve. The sign
has been chosen such that electrons with positive LOS velocity produce a negative kSZ signal.

Significant kSZ anisotropies are produced in cosmological epochs during which there are large fluctuations in electron
density. Such fluctuations are present at late times in galaxies and clusters due to the non-linear growth of structure,
and also earlier during the epoch of reionization, where fluctuations in the electron density field are due to fluctuations
in the ionization fraction [24–26]. While the latter are also expected to be correlated with the matter density field
and hence with CMB lensing, they are located at z & 7. Due to the declining geometric kernel for CMB lensing at
these high redshifts, their influence is likely much smaller in our analysis than the kSZ fluctuations at low redshift.
For this reason, we focus on the kSZ signal arising from late-time structures and defer a study of the effects of
reionization to future work. Nevertheless, our results should be taken as a lower limit on the kSZ-related biases in
CMB lensing reconstruction (particularly for the auto-power spectrum), since reionization-generated kSZ fluctuations
will also contribute at some level.

We also note that to lowest order in velocity, the kSZ effect produces only temperature and not polarization
fluctuations. Therefore, we will only consider lensing reconstruction from CMB temperature maps in this analysis.

III. LENSING RECONSTRUCTION FROM TEMPERATURE FLUCTUATIONS

Gravitational lensing of the primary CMB introduces statistical correlations between different Fourier modes, which
would otherwise be uncorrelated (under the hypothesis that the primordial fluctuations are a statistically isotropic
Gaussian random field). These correlations allows the lensing field to be reconstructed from observed CMB maps, as
we will describe.

In the absence of foregrounds, the observed, lensed fluctuations Θ̃p(x) are related to the unlensed, primordial
fluctuations Θp by a remapping under the displacement field d(x) [1]:

Θ̃p(x) = Θp(x + d) (3)

To lowest order, it can be shown that the vector field d(x) is irrotational, and therefore all of the information is
contained in its divergence. For this reason, we will work with the CMB lensing convergence, conventionally defined
as κCMB = − 1

2∇ ·d. Physically, the CMB lensing convergence is a weighted projection of the matter density field back
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to the surface of last scattering (see Equations 16 and 17 below). It can then be shown that the minimum variance
quadratic estimator for κCMB can be written as [1, 27]6:

κ̂CMB(L) =
L2N(L)

2

∫
`

Θ̃(`)Θ̃(L− `)f(`,L) =

∫
`

Θ̃(`)Θ̃(L− `)Γ(`,L) , (4)

where we have defined

Γ(`,L) =
1

2
L2N(L)f(`,L) (5)

and the mode-coupling kernel is

f(`,L) =
(L− `) ·LCTT|L−`| + ` ·LCTT`

2Ctot
` Ctot

|L−`|
. (6)

The reconstruction noise serves as the normalization in the estimator and represents the uncertainty in the recon-
struction of 2κCMB(L)/L2 due to chance correlations between different modes in an unlensed, Gaussian realization:

N(L)−1 =

∫
`

[
(L− `) ·LCTT|L−`| + ` ·LCTT`

]2
2Ctot

` Ctot
|L−`|

. (7)

In all of the above, Θ̃ is the observed temperature fluctuation field, which is the sum of the lensed primordial
fluctuations Θ̃p and the kSZ fluctuations7 ΘkSZ, as well as detector noise with power spectrum Ndet

` , uncorrelated
with all of the other components and given by

Ndet
` = ∆2

T e
θ2FWHM`

2/(8 ln 2) , (8)

where ∆2
T is the noise level of the experiment (usually quoted in µK-arcmin) and θFWHM is the full-width at half-

maximum (FWHM) of the beam in radians.
We will assume that all non-blackbody foregrounds have been removed by component separation and that the ISW

fluctuations can be removed by filtering out scales & 1 degree from the observed temperature map. In practice, we use
scales down to `min = 30, but increasing this cutoff to 100 or 200 would have negligible impact on our work, as there
is effectively no accessible lensing or kSZ signal on these scales. Throughout, Ctot

` denotes the total power spectrum

of the observed Θ̃, including the lensed primary CMB, kSZ, and detector noise.

IV. BIAS TO CROSS-CORRELATION WITH LARGE-SCALE STRUCTURE TRACERS

In this section, we investigate the kSZ-induced bias to the cross-correlation between low-redshift tracers (e.g.,
galaxies, quasars, or galaxy weak lensing convergence) and κCMB. We assume that κCMB is reconstructed from a
temperature map containing kSZ and lensed primary fluctuations (as well as detector noise). When considering
galaxies or quasars as tracers, we define the projected tracer overdensity δg as

δg(n̂) =

∫ ηmax

0

dη W g(η) δm(ηn̂, η) , (9)

where ηmax is the maximum source distance, δm is the (three-dimensional) matter overdensity, and W g(η) is the
projection kernel:

W g(η) = bgps(η) . (10)

Here ps(η) ∝ dn/dη is the distribution of the tracers in comoving distance (normalized to have unit integral) and bg
is the linear tracer bias, which is allowed to be redshift-dependent.

6 For compactness, we use the notation
∫
` ≡

∫
d2`

(2π)2
and

∫
η ≡

∫
dη. Hats denote estimators for a given quantity. Upper-case L denotes

lensing multipole, while lower-case ` denotes temperature map multipole. We assume the flat-sky approximation throughout.
7 We will ignore the lensing of the kSZ fluctuations in this work.
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When considering galaxy lensing (i.e., cosmic shear) as a tracer, the convergence field κgal is given by

κgal(n̂) =

∫ ηmax

0

dη Wκgal(η) δm(ηn̂, η) , (11)

where Wκgal(η) is the lensing kernel:

Wκgal(η) =
3ΩmH

2
0η

2a

∫ ηmax

η

dηs ps(ηs)
ηs − η
ηs

, (12)

where a is the scale factor and ps(η) ∝ dn/dη is the distribution of sources in comoving distance (normalized to have
unit integral). For concreteness, we will use galaxies as tracers in the following, but all of the equations also hold for
galaxy lensing with the replacement W g →Wκgal .

The lensed temperature fluctuations can be decomposed as the sum of a (lensed) primary component, the kSZ

component, and noise: Θ̃ = Θ̃p + ΘkSZ + Ndet. Schematically, the cross-correlation of κ̂CMB with galaxies can be

written as 〈δg κ̂CMB〉 ∼ 〈δg Θ̃Θ̃〉, which can be expanded in Θ̃p and ΘkSZ, yielding terms of the form 〈δg Θ̃pΘ̃p〉,
〈δg Θ̃pΘ

kSZ〉, and 〈δg ΘkSZΘkSZ〉. The first term gives the cross-correlation with the true convergence field κCMB, the
second term vanishes on average, due to the equal probability of the kSZ signal being positive or negative, and the
third term represents the bias to the cross-correlation arising from kSZ leakage into the CMB lensing reconstruction
estimator. Therefore, to lowest order, to calculate the kSZ-induced bias to CMB lensing cross-correlations, we can
just replace Θ̃→ ΘkSZ in the κ̂CMB estimator.

A computation outlined in Appendix A shows that the bias to the cross-correlation between κCMB and galaxy
overdensity is given by: (

∆CκCMB×g
L

)
kSZ

=

∫
η

W g(η)g2(η)

η2
B(k = L/η; η) (13)

with

B(k; η) =

∫
q

Γ(kη + qη,kη)Bδpzpz (k,q,−k− q; η) . (14)

The hybrid bispectrum appearing in Equation 14, Bδpzpz , is the bispectrum of one power of the matter density field
δm and two powers of the electron momentum projected along the line-of-sight, pz. It has been shown that on scales
smaller than the coherence length of the velocity field, the following is a good approximation [12, 13]:

Bδpzpz ≈
1

3
v2

rmsB
NL
δee , (15)

where v2
rms is the 3D velocity dispersion and BNL

δee is the non-linear bispectrum of matter and electron overdensity. As
a first approximation, we can assume that the electrons trace the matter on the scales of interest and approximate
BNL
δee with the non-linear matter bispectrum BNL

m . We will revisit this assumption in Section VI B. Throughout, we
use fitting functions from [28] for the non-linear matter bispectrum BNL

m , and the velocity dispersion v2
rms is computed

in linear theory, which has been shown to be an excellent approximation [56]. We will compare the prediction of
Equation 13 to cosmological simulations in Section VII.

At late times, a small fraction of the cosmological abundance of electrons lies in stars or neutral media and thus
does not participate in the Thomson scattering that produces the kSZ signal. We define ffree as the fraction of free
electrons, which is in general a function of redshift. The visibility function g(η) in Equation 1 is proportional to ffree,

so that
(
∆CκCMB×g

L

)
kSZ
∝ f2

free. In the following, we will take ffree = 0.85 as our fiducial value (except where stated

otherwise), and note that ffree can be constrained with kSZ measurements [15, 29–31].

V. BIAS TO THE CMB LENSING POWER SPECTRUM

Similar to the calculation in the previous section, we also compute an analogous kSZ-induced bias to the re-
constructed CMB lensing power spectrum, 〈κ̂CMBκ̂CMB〉. The relation between CMB lensing convergence and the
underlying matter density field is given by setting the source for lensing to the surface of last scattering in Equation 12
(i.e., ps(η) = δD(η − η∗), where η∗ is the comoving distance to recombination):

κCMB(n̂) =

∫ η∗

0

dη WκCMB(η) δm(ηn̂, η) , (16)
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where WκCMB(η) is the lensing kernel:

WκCMB(η) =
3ΩmH

2
0η

2a

η∗ − η
η∗

. (17)

The computation is greatly simplified by noting that κCMB is also a tracer of low-redshift structure (just like galaxies
or galaxy lensing), and therefore, at the very least, there must be a bias to the CMB lensing power spectrum which
is obtained by using Equation 13 with the replacement W g → WκCMB (and a combinatorial factor of 2, representing
whether we consider the first or the second κCMB in 〈κCMB κCMB〉 as the tracer). We calculate the kSZ-induced bias
to the κ̂CMB auto-power spectrum in Appendix B, finding that the result can be approximated as

(∆CκCMB

L )kSZ ≈ 2

∫
η

WκCMB(η)g2(η)

η2
B(k = L/η; η) + (other terms) , (18)

where B(k = L/η; η) is given by Equation 14. The first term corresponds to the contribution discussed above
(treating κCMB as a tracer of low-redshift structure). The “other terms” arise from different contractions of the fields,
and include contributions from trispectra of the kSZ and ISW fields. These terms are given in Appendix B. The
contribution from the kSZ trispectrum was first investigated in [47] and found to be negligible for the noise levels of the
original ACT survey. We include its contribution for Planck, CMB-S3, and CMB-S4 noise levels in the full simulation
calculation presented in Sec VII B. Note that for the tSZ and CIB-induced lensing biases, the trispectrum-induced bias
on large scales was found to have the opposite sign to the term discussed above, and thus lead to partial cancellation
in the overall bias [17]. Similarly, “secondary contractions” of the term in Eq. 18, as described in Appendix B, may
be of similar magnitude [18]. We will compare the prediction of Equation 18 to cosmological simulations in Section
VII A, and will present the full result from simulations (including secondary contractions and the trispectrum) in
Section VII B.

VI. NUMERICAL RESULTS FOR CURRENT AND UPCOMING SURVEYS

A. Experimental configurations

We consider three idealized CMB experiments, summarized in Table I:8 one with characteristics similar to the
recent Planck SMICA component-separated map [32], one similar to the nominal specifications of ongoing Stage-3
experiments (which we will denote by CMB-S3) such as AdvACT [33], and finally a CMB-S4-like experiment [34].9

We consider lensing reconstruction from temperature anisotropies only and choose a multipole range from `min = 30
to `max = 4000 or `max = 3000 for the reconstruction in our fiducial analysis. We will further explore the effects of
using a different multipole range for the lensing reconstruction in Section VIII.

CMB experiment white noise level beam FWHM

∆T [µK-arcmin] θFWHM [arcmin]

Planck SMICA 45 5

CMB-S3 7 1.4

CMB-S4 1 3

TABLE I: Experimental configurations considered in this work.

For low-redshift tracer samples, we consider galaxy density and galaxy lensing convergence maps extracted from
Large Synoptic Survey Telescope (LSST) data. We assume the following source distribution for the LSST “gold”
sample with i-band magnitude i < 25.3 ([35], Chapter 3):

ps(z) =
1

2z0

(
z

z0

)2

e−z/z0 , (19)

8 Note that residual Poisson sources may increase the effective high-` noise level over the white noise levels specified here, but the size of
this effect depends sensitively on the source flux masking threshold and detailed experimental configuration (e.g., frequency coverage).

9 The configuration for the proposed CMB-S4 experiment has not yet been set; therefore this case is for illustration purposes only.
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where z0 = 0.0417i − 0.744. We assume a linear galaxy bias of the form bg(z) = 1 + 0.84z ([35], Chapter 13). The
“gold” sample has a median redshift of zm ≈ 0.8 and galaxies extending out to z ≈ 3. We use this sample both
as a galaxy number density sample and as a source sample for galaxy weak lensing convergence. For the forecasts
involving LSST, we will assume that the shape noise is σε = 0.26 and the source number density n = 26 arcmin−2.

The normalized window functions for LSST galaxies, LSST galaxy lensing, and CMB lensing are shown in Figure 1.
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FIG. 1: Window functions for LSST galaxy lensing (left peak), LSST galaxies (middle peak), and CMB lensing (right peak).
They are related to the window functions defined in the text by W (z) = W (η)dη/dz.

B. Baryonic physics

In our fiducial model for the kSZ signal, we assume that the baryons trace the dark matter on the scales of interest.
This assumption is known to fail on small scales due to the effects of feedback and pressure support in galaxies and
clusters. A full treatment of these baryonic processes requires high-resolution hydrodynamical simulations and is
beyond the scope of this paper. However, here we study the effect of pressure support, assuming that feedback acts
on similar scales. Semianalytical models of gas dynamics predict that the gas overdensity δgas is suppressed compared
to the dark matter δcdm below the filtering scale kF [38]:

δe(k, z) ≈ δgas(k, z) ≈ δcdm(k, z)e−k
2/k2F (z) . (20)

The filtering scale kF is a time-integral of the Jeans scale kJ(z) = a(z)
√

4πGρ̄m/cs(z) that takes redshift evolution
into account (here cs is the sound speed):

1

k2
F (t)

=
1

D+(t)

∫ t

0

dt′
D̈+(t′) + 2H(t′)Ḋ+(t′)

k2
J(t′)

a2(t′)

∫ t

t′

dt′′

a2(t′′)
, (21)

where D+(t) is the linear growth factor.
In order to assess the impact of the baryon distribution on our results, we adopt an exponential suppression of the

form in Equation 20, and compare with the case in which baryons trace the dark matter.

C. Results: cross-correlation with tracers

Figure 2 shows the fractional bias to the cross-correlation of tracers (galaxies or galaxy lensing) with CMB lensing

for the Planck, CMB-S3, and CMB-S4 configurations described above, i.e.,
(
∆CκCMB×g

L

)
kSZ

/CκCMB×g
L . The top panel

shows the results for CMB lensing convergence reconstructed from a Planck-like experiment, while the middle and
bottom panels show the results for CMB-S3 and CMB-S4, respectively. We include forecasted error bars computed
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from the standard analytic prescription including contributions from Gaussian sample variance and noise, with survey
specifications as described in Sec. VI A above, and assuming fsky = 0.44, in bins with ∆L ≈ 600.

Due to the relatively large noise level and beam size of Planck, the reconstruction technique mostly upweights large
angular scales in the temperature map, which are the least affected by the kSZ contamination (since the primary CMB
is significantly larger than the kSZ signal on these scales). Thus, the kSZ-induced biases are generally within the
statistical error bars for Planck. As the noise level and beam size are lowered, smaller scales become important in the
reconstruction, leading to a progressively larger bias due to the kSZ contamination. For CMB-S3 and CMB-S4, the
bias to the LSST galaxy lensing – CMB lensing cross-correlation can be as large as ≈ 15%, when using reconstruction
`max = 4000 and ≈ 5% for `max = 3000. For comparison, the overall S/N for the cross-correlation between LSST
lensing and CMB-S4 lensing is expected to be ≈ 250 and 160, respectively, using temperature reconstruction and
the same values of `max. Thus, the kSZ-induced bias is many times larger than the projected statistical errors on
the cross-correlation. The kSZ-induced bias thus requires careful treatment for efforts to calibrate the galaxy shear
multiplicative bias via such cross-correlations [22, 57–61], as well as for constraints on cosmology.

Moreover, Figure 2 shows that both the bias to the CMB lensing cross-correlation and the influence of baryonic
physics are larger for LSST lensing than LSST galaxies. This is because the kernel for galaxy lensing peaks at
lower redshift than that for galaxy clustering, if the same LSST galaxies are used for both clustering and shape
measurements.10 The kSZ signal increases as redshift decreases, thus explaining the larger bias on lensing than
galaxies, and the physical scale corresponding to a given angular scale is smaller at low redshift than high redshift,
thus explaining the larger influence of baryons on lensing than galaxies (at fixed L). If the galaxy sample is split
into tomographic redshift bins, the lower redshift ones will be more affected by the kSZ bias and require better
understanding of baryonic physics.

D. Results: auto-power spectrum

As discussed in Section V, the kSZ signal also leads to a bias on the CMB lensing auto-power spectrum. The
dominant contribution to the bias is found by treating κCMB as a tracer of the low-redshift matter distribution, in
analogy with the calculation in Section IV. Other terms contribute to the auto-correlation as well, which are listed
in Appendix B. We estimate the full bias from all terms in Section VII B, modulo contributions from reionization.
At a minimum, the bias discussed in Section V should be present, which can be calculated in the analytic formalism
presented earlier. It is quantified in Figure 3 in terms of the fractional bias on CκCMB

L for Planck SMICA, CMB-S3,
and CMB-S4. As in Figure 2, we include forecasted error bars computed from the standard analytic prescription
including contributions from Gaussian sample variance and noise, with survey specifications as described in Section
VI A. Note that our results in Section VII B confirm that the term computed analytically here is indeed the dominant
term, so a comparison to the forecasted error bars is informative.

As in Figure 2, the bias becomes larger when lowering the noise level and beam size, and simultaneously baryonic
effects become more important. While the bias is sub-percent for the scales probed by the Planck satellite (and is
thus smaller than the Planck statistical uncertainties on CκCMB

L ), it can reach ≈ 5 − 10% for CMB-S3 or CMB-S4
when using `max = 4000 and about half of that for `max = 3000. If unaccounted for, it can lead to significant biases
in cosmological parameters inferred from the CMB lensing auto-power spectrum. As an example, we compute the
fractional change in CκCMB

L induced by massive neutrinos with a total mass of 0.06 eV, which is the minimum mass
possible in the normal hierarchy, as compared to our fiducial model with massless neutrinos. The suppression of the
matter power spectrum below the neutrinos’ free-streaming scale leads to a ≈ 3% suppression in CκCMB

L . Detecting
this effect is a major goal of upcoming CMB experiments, but as can be seen in Figure 3, the kSZ-induced bias
(∆CκCMB

L )kSZ can be larger than the massive neutrino signal for both CMB-S3 and CMB-S4. We will discuss possible
mitigation strategies to overcome the kSZ-induced bias in Section VIII.

10 Here, we assume that the same galaxy sample is used for clustering and as sources for lensing measurements. In this case, the lensing
effect is produced by lower redshift structures, for which the kSZ signal and baryonic effects are larger.
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FIG. 2: Fractional bias to the cross-correlation of CMB lensing and galaxy density (denoted Y = g) or galaxy lensing (Y = κgal)
maps from LSST. From top to bottom, the panels show results for CMB lensing reconstructions from Planck SMICA, CMB-S3,
and CMB-S4, respectively. The lensing reconstruction is performed on CMB temperature only, with `min = 30 and `max = 3000
(left panels) or `max = 4000 (right panels). The kSZ-induced bias is computed via Equation 13. The solid curves assume the
gas perfectly traces the dark matter, while the dashed curves consider the effect of baryonic physics via the Jeans scale given in
Equation 21. The bias is considerably larger than the forecasted error bars on such cross-correlation measurements for CMB-S3
and CMB-S4, shown here assuming fsky = 0.44 for the overlap between LSST and these surveys.
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FIG. 3: Fractional bias to the CMB lensing auto-power spectrum arising from the term discussed in Section V (see Figure 6 for
an estimate of the full bias derived from simulations). The panel ordering is identical to Figure 2. The lensing reconstruction is
performed on temperature only, with `min = 30 and `max = 3000 (left panels) or `max = 4000 (right panels) and the kSZ-induced
bias is computed via Equation 18. The solid curves assume the gas perfectly traces the dark matter, while the dashed curves
consider the effect of baryonic physics via the Jeans scale given in Equation 21. For comparison, the dot-dashed curve shows
the effect of massive neutrinos with a summed mass of 0.06 eV (the minimum mass in the normal hierarchy), which causes a
≈ 3% reduction in power compared to the fiducial case with massless neutrinos. The error bars show the statistical significance
expected in 6 equally spaced multipole bins and assuming fsky = 0.5 for all experiments.
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VII. NUMERICAL SIMULATIONS

A. Validation of Analytic Formalism

We validate the analytic formalism presented above by comparing to results measured from the cosmological simu-
lation described in Ref. [36]. In this analysis, a lightcone was extracted from a large dark matter N -body simulation
(1 Gpc/h on a side). It was then post-processed with a variety of baryonic physics prescriptions to generate realistic
simulations of several signals in the microwave sky (thermal SZ, kSZ, cosmic infrared background, radio point sources,
and Galactic thermal dust). The kSZ power spectrum extracted from this simulation is consistent with upper limits
from ACT [62] and SPT [63]. However, we note that a high-pass filter was applied to the kSZ field in this simulation
in order to correct an overprediction of the intergalactic medium kSZ signal on large angular scales (which resulted

from the lightcone construction). In particular, a filter w(`) = 1− e−(`/500)2 was applied to the kSZ map to suppress
the large-scale excess. Thus, the kSZ field at ` . 1000 may not be expected to match analytic calculations perfectly,
which should be kept in mind when comparing the simulation and analytic results below.

For our purposes, the most important feature of this simulation is that the extragalactic signals are all realistically
correlated with one another. In particular, a κCMB map was generated by summing the mass in redshift shells
extracted from the N -body volume using the CMB lensing kernel in Equation 17 (no ray-tracing was performed, i.e.,
the Born approximation was assumed), and the kSZ signal was generated self-consistently from ionized gas “pasted”
onto the same large-scale structure realization. The simulated maps cover an octant of the sky, which was replicated
eight times to yield full-sky HEALPix maps. The kSZ map is provided at resolution Nside = 8192, while the κCMB

map is provided at Nside = 4096. For consistency and computational efficiency, we downgrade the kSZ map to
Nside = 4096 (accounting appropriately for the pixel window function) and work at this resolution throughout the
following analysis.

We use only the κCMB and kSZ maps from the simulation. In particular, due to a sign error in the deflection
calculation used to lens the primary CMB in the simulated temperature maps, we do not use the provided lensed
(or unlensed) CMB temperature maps. We instead generate an unlensed CMB temperature map from a CMB
power spectrum computed with camb,11 with cosmological parameters matching those used in the simulation (the
temperature map is generated at Nside = 4096 from a CMB power spectrum extending to ` = 10000). We then use
LensPix12 to lens this CMB map with the deflection field computed from the simulated κCMB map.13 We verify that
the power spectrum of the resulting lensed CMB temperature map matches the camb prediction to effectively exact
precision up to ` = 5000, which is higher than any of the `max values used in the reconstructions in this paper.

We use the full-sky CMB lensing reconstruction algorithm provided in LensPix to reconstruct maps of κ̂CMB.
We consider each of the three experimental configurations given in Table I, which define the properties of the filter
functions used in the estimator. We use the same multipole range for the reconstructions as considered earlier:
`min = 30 and `max = 3000 or 4000. Note that the kSZ-related biases can be mitigated to some extent by decreasing
`max at the cost of decreased S/N on the CMB lensing reconstruction, as shown in Figures 2 and 3 and discussed
further in Section VIII. In this subsection, we only compute cross-power spectra of reconstructed maps with input
maps, and thus we avoid the N (0) and N (1) biases that afflict κ̂CMB auto-power spectra. In the following subsection,
we will construct Gaussian simulations that by definition have identical N (0) and N (1) biases as the “true” simulation.
We mitigate (most of) the N (2) bias by following the standard practice of using lensed CMB power spectra in the
reconstruction filters [37]. Note that the filter denominator explicitly includes the kSZ power (in addition to lensed
CMB and noise), as would be the case in an actual data analysis. We do not explicitly add noise to any of the
simulated maps, but we verify that this does not bias any of the power spectrum results presented here.

We first verify that the cross-power spectrum of the reconstructed convergence (κ̂CMB) with the true convergence
(κCMB), 〈κ̂CMBκCMB〉, matches theoretical expectations. For Planck SMICA, 〈κ̂CMBκCMB〉 matches 〈κCMBκCMB〉
well. For CMB-S3 and CMB-S4, a small residual difference is present (a fractional deficit ≈ 5% on large scales for
`max = 4000 and roughly half this value for `max = 3000). However, this residual bias is consistent with estimates of
the additional N (2) bias arising from the sub-optimal choice of filter weights [66, 67] and the N (3/2) bias due to the
non-zero lensing potential bispectrum (our map includes only the non-linear growth contributions to this bias, and not
the post-Born contributions) [16]. Regarding the residual N (2) bias, as discussed in [67], an unbiased temperature-
reconstructed κ̂CMB power spectrum at CMB-S4 noise levels requires the use of the non-perturbative gradient power

11 http://camb.info
12 http://cosmologist.info/lenspix/
13 We verify that the power spectrum of the N -body simulation-derived κCMB map matches the non-linear prediction from camb (which

uses Halofit [64, 65]) very accurately to L = 5000, which is more than sufficient for our purposes.
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spectrum CΘ̃∇Θ̃
` in the filter weights, rather than CΘ̃Θ̃

` . As our focus is not on the reconstructed convergence auto-
power spectrum, 〈κ̂CMBκ̂CMB〉, but rather on the kSZ-related biases, we do not consider these higher-order κ̂CMB

biases further, and proceed to use the estimator as described above.
We proceed to validate the analytic theory presented earlier by measuring the kSZ-induced bias arising from the

correlation of the kSZ field with the κCMB field (Term B in the terminology of Appendix B). We run the lensing
reconstruction estimator on the simulated kSZ map to obtain a map of κ̂kSZ

CMB, which we cross-correlate with the (true)
input κCMB field, 〈κ̂kSZ

CMBκCMB〉. Error bars are obtained from the standard analytic formula for cross-correlations
with fsky = 0.125, assuming the Gaussian approximation (which is valid due to the wide multipole bins considered,
with ∆` = 200). The error bars are small as there is no noise added to the maps. We assess the kSZ-induced bias by
comparing 〈κ̂kSZ

CMBκCMB〉 to 〈κCMBκCMB〉.
To compare the cross-correlation formalism between the simulations and analytic theory, we extract a sample of

tracer halos from the catalogs provided by Ref. [36], and measure cross-correlations of this sample with the input
and reconstructed convergence maps. The sample is defined by selecting all halos with redshift 0.1 < z < 0.8 and
halo mass M200c > 5× 1013M�, yielding 131388 objects. Using the sky position of each halo, we generate a map of
the tracer number density fluctuation, δg(n̂) = (ng(n̂)− n̄g)/n̄g. This map is only defined on the original simulation
octant, and thus we must apply a mask defining this octant when using the δg map in cross-correlations. We apodize
the mask using a Gaussian taper with FWHM = 30 arcmin. We correct for its effect in the power spectrum results
using a simple fsky factor, which is sufficiently accurate given the mask’s simple structure and large sky fraction,
as well as the wide multipole bins considered. We cross-correlate this map with the (true) input convergence field
κCMB, as well as with the N -body and kSZ reconstructions described above. From the measurement of 〈κCMBδg〉, we
determine the linear bias of the tracer sample, which is needed for the analytic calculation in Equation 13. We verify
that 〈κ̂CMBδg〉 agrees well with 〈κCMBδg〉 (up to a small residual bias consistent with N (3/2) [16]), and thus assess
the kSZ-induced bias by comparing 〈κ̂kSZ

CMBδg〉 to 〈κCMBδg〉.
To approximately model the effects of star formation, feedback, and Helium reionization which are present in

the simulations, we compare the amplitude of the kSZ power spectrum from the simulations to that expected in
our theoretical framework, defining an “effective” f eff

free as (CkSZ
` )simulations = (f eff

free)2(CkSZ
` )theory.14 By fitting the

simulations over the range ` = 1500 − 3000, we find f eff
free ≈ 0.7, which is the value that we use in the comparison

between the analytic formalism and simulation results below. Note that this is analogous to measuring the amplitude
of the kSZ signal in the real Universe, and then using the measured amplitude to predict the kSZ-induced bias to
CMB lensing.

Figure 4 presents a comparison of the tracer cross-correlation results from the simulations to those derived from
the analytic formalism described earlier, including the baryon effects quantified through the filtering scale (c.f. Equa-
tion 13). The analytic calculation uses identical cosmological parameters to those used in the numerical simulation,
as well as a tracer bias matching that for the sample extracted from the simulation. The agreement for the fractional
bias on CκCMB×g

L is generally good, although minor discrepancies are seen for the CMB-S4 case at low multipoles.
It is possible that this is related to the large-scale filtering applied to the kSZ field in the simulation (see discussion
earlier) or to differences between the baryonic effects in the simulation and those in the analytic calculation.

Figure 5 shows a comparison of the auto-power spectrum results from the simulations to those obtained from the
analytic formalism described earlier, specifically the term given in Equation 18. The agreement for the fractional bias
on CκCMB

L is again reasonable, although the theory calculation appears to overpredict the bias on large scales for the
CMB-S3 and CMB-S4 cases. We again suspect that these issues could be related to the filtering of the simulation kSZ
map or to baryonic effects. Also, at z & 3, Helium is only partly ionized and therefore the number of free electrons
is lower at those redshifts. This only affects the bias to the CMB lensing auto-power spectrum (and is present
in the simulations), and not the bias on cross-correlations with tracers at lower redshift. The f eff

free determination
discussed above partially captures this effect, but is not exact due to the differing redshift kernels of the kSZ power
spectrum (used to determine f eff

free) and the kSZ-induced bias on the κCMB power spectrum. Modeling the effects of
He reionization is beyond the scope of this paper and is left to future work.

Overall, the agreement in Figures 4 and 5 provides a strong check of our analytic formalism and verifies that the
magnitude of the kSZ-induced bias cannot be neglected for CMB-S3 or CMB-S4 lensing measurements.

14 Here (CkSZ
` )theory is calculated with ffree = 1.
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FIG. 4: Comparison of simulation-derived (dashed curves with error bars) and analytic predictions (solid curves) for the
fractional kSZ-induced bias on the cross-correlation of CMB lensing and tracers, for various experimental configurations. All
reconstructions here use `max = 4000. The agreement between the theory and simulations is generally good. The small
discrepancies seen on large scales for the CMB-S4 case may be related to filtering applied to the kSZ field in the simulation
or differing treatments of baryonic effects between the analytic calculation and the simulation. Note that the cosmological
parameters and ffree here differ from the fiducial ones in the rest of the paper and are chosen to match those in the simulations.

B. Estimate of Full Auto-Spectrum Bias

We proceed to use the simulation maps to estimate the full bias to the reconstructed CMB lensing auto-power
spectrum arising from the kSZ effect, modulo contributions from reionization, which are not included in the simulation.
The tracer cross-correlation bias is fully described by Equation 13, and thus the analytic formalism captures the full
effect. The auto-correlation bias includes the contribution from Equation 18 (Term B in Appendix B), which our
analytic formalism describes, but also includes contributions from two additional terms that are more difficult to
compute analytically. The first, labeled Term C in Appendix B, is simply the alternative Wick contraction of the four
fields present in Term B (such terms were labeled “secondary contractions” in Ref. [18]). The second, labeled Term
E in Appendix B, arises from the non-zero connected trispectrum of the kSZ signal.

Instead of breaking the bias down into its constituent terms, we estimate the sum of all three (Terms B+C+E) via
the following procedure. First, we generate ten Gaussian kSZ realizations (ΘkSZ,g) with a power spectrum precisely
matching that of the true kSZ map (ΘkSZ,sim) described in the previous subsection. Second, we add each of these

Gaussian kSZ maps to the lensed CMB temperature map (Θ̃sim) described above: Θtot,g = ΘkSZ,g +Θ̃sim. We also add

the true kSZ map to the lensed temperature map: Θtot = ΘkSZ,sim + Θ̃sim. We then run the LensPix reconstruction
algorithm on the ten realizations of Θtot,g (obtaining maps of κ̂tot,g

CMB) and the map containing the true kSZ field Θtot

(obtaining maps of κ̂tot
CMB). By construction, the biases on the auto-power spectrum of the reconstructed lensing fields

for all of these maps are identical, except for terms involving mixtures of the non-Gaussian κCMB and kSZ fields (or
the non-Gaussian kSZ field alone), which are the biases we want to estimate. Thus, we can measure the kSZ-induced
biases by simply subtracting the reconstruction auto-power spectra

(∆CκCMB

L )kSZ = C
κ̂tot
CMB

L − 〈C κ̂
tot,g
CMB

L 〉avg, (22)

where the angle brackets in the second term indicate an average over the ten Gaussian kSZ realizations.15 We estimate
error bars on (∆CκCMB

L )kSZ from the scatter amongst the ten realizations. We note that this calculation is the first
full estimate in the literature (to our knowledge) of all contributions (i.e., Terms B+C+E) to a secondary-induced
CMB lensing auto-power spectrum bias.

15 Note that the residual N(2) and N(3/2) biases discussed earlier will cancel in this procedure, in addition to N(0) and N(1).
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FIG. 5: Comparison of simulation-derived (dashed curves with error bars) and analytic predictions (solid curves) for the
fractional kSZ-induced bias on the CMB lensing auto-power spectrum, for various experimental configurations, including only
the term discussed in Section V (see Figure 6 for an estimate of the full bias including all terms). All reconstructions here
use `max = 4000. The agreement between the theory and simulations is generally good, though somewhat less precise than in
Figure 4. The discrepancies seen on large scales for the CMB-S3 and CMB-S4 cases may be due to filtering applied to the kSZ
field in the simulation or differing treatments of baryonic effects (particularly He reionization) between the analytic calculation
and the simulation. Note that the cosmological parameters and ffree here differ from the fiducial ones in the rest of the paper
and are chosen to match those in the simulations.

The results of this procedure are shown in Figure 6. As expected, the total bias for Planck remains negligible
compared to the statistical errors, although there is a slight hint of a deficit at low-L. For CMB-S3 and CMB-S4,
Figure 6 confirms that the term which we computed analytically (Equation 18, i.e., Term B) is indeed the dominant
term, particularly on large scales where the statistical errors are smallest. For `max = 3000 reconstructions, this
term alone essentially suffices to describe the full bias, although there is a hint of an additional contribution around
L ≈ 1500. For `max = 4000 reconstructions, the contribution of the additional terms (Term C, due to the “secondary
contraction”, and Term E, due to the kSZ trispectrum) can clearly be seen. These terms partially cancel the bias
due to Term B on large scales, leading to a total bias that is slightly smaller in amplitude than Term B alone. Term
B dominates the total bias up to L ≈ 2500; it appears that the other terms dominate the total bias on very small
scales, although this is of less interest due to the larger statistical errors there. Most importantly, the total bias is
still significantly larger than the statistical errors for CMB-S3 and CMB-S4 temperature lensing reconstruction, as
can be seen by comparing the solid curves in Figure 6 to the expected error bars shown in Figure 3. Thus, mitigation
strategies for the kSZ-induced bias will be needed for these experiments.

VIII. MITIGATION STRATEGIES

We have shown that the kSZ effect leads to significant biases in both the auto- and cross-power spectra of recon-
structed CMB lensing maps. Here we discuss methods to reduce or eliminate the impact of these biases. Unfortunately,
all strategies described here come at the cost of decreased statistical significance in the lensing reconstruction.

A. Polarization reconstruction

To lowest order (in both galaxy optical depth and velocity), the kSZ effect produces only temperature anisotropies,
not polarization anisotropies. Thus, it only affects lensing reconstruction from CMB temperature maps; polarization-
only reconstruction is free from the kSZ-induced biases discussed in this paper. However, for map noise levels & 5µK-
arcmin, temperature-based lensing reconstruction has larger statistical power than polarization reconstruction. Thus,
polarization-only reconstruction would lead to a large degradation in S/N [27], particularly for Stage-3 experiments.
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FIG. 6: Fractional bias to the reconstructed CMB lensing auto-power spectrum arising from the sum of all terms discussed
in Appendix B (Terms B+C+E), as estimated via the procedure described in Sec. VII B. The panel ordering is identical to
Figures 2 and 3. The lensing reconstruction is performed on temperature only, with `min = 30 and `max = 3000 (left panels) or
`max = 4000 (right panels) and the kSZ-induced bias is computed by comparing reconstructions involving Gaussian kSZ maps
to those using the true non-Gaussian kSZ map (see Sec. VII B). The solid curves show our estimate of the full kSZ-induced
bias (modulo reionization contributions), while the dashed curves show the contribution of Term B (i.e., Equation 18) only, as
plotted in Figure 5. This term is indeed the dominant contribution to the total bias on large scales. The error bars on the solid
curves are computed from the scatter amongst the ten Gaussian kSZ realizations.
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For example, for the fiducial CMB-S3 configuration assumed here, the temperature estimator contributes about 75%
of the total S/N on the CMB lensing auto-power spectrum measurement [72]. The existence of the kSZ bias could
thus motivate Stage-4 lensing survey designs that are optimized for depth (i.e., lower noise level) rather than large sky
area, so that the polarization estimators dominate the lensing reconstruction S/N . However, for CMB “halo lensing”
measurements [68, 69, 71] (i.e., the one-halo term of stacked CMB lensing measurements on a given halo sample),
the temperature estimator is likely to always have higher S/N than the polarization estimators (modulo foreground
complexities), due to the much larger temperature gradient signal. The kSZ bias will thus require careful treatment
for halo lensing measurements (see [69, 70] for initial work in this direction).

B. Reducing the reconstruction `max

The kSZ-induced bias can also be decreased by restricting the lensing reconstruction to larger angular scales, i.e.,
lower `max. This is because the relative contribution of the kSZ signal to the CMB power spectrum increases at
higher `, and becomes the dominant source of anisotropy at ` & 4000 (assuming all non-blackbody signals have been
removed). In Figures 2 and 3 we show a comparison between `max = 4000 and `max = 3000, while in our tests
we also consider `max = 2000.16 We find that for a CMB-S4 like experiment in cross-correlation with LSST galaxy
lensing, the maximum bias at low L goes from ≈ 15% for `max = 4000 to 5% and 0.4% when `max = 3000 and 2000,
respectively. Similarly, the maximum bias to the auto-power spectrum (from Term B only) is reduced from ≈ 8%
when `max = 4000 to 3% and 0.3% when `max = 3000 and 2000, respectively. Therefore, in order for the kSZ-induced
biases to be less than 1% (if no other mitigation strategy is applied), we would need to take `max . 2000. Note that
when reducing `max, a non-negligible kSZ bias seems to appear at high L (however, this could be within the statistical
errors on these small scales).

A reduction in `max comes at a significant statistical cost, as summarized in Table II: reducing `max from 4000
to 3000 or 2000 yields a decrease in S/N of a factor of 1.5 − 2 or 3 − 5, respectively (where the decrease depends
on the observable considered). In particular, the CMB-S4 lensing auto-power spectrum S/N (from temperature
reconstruction only) is reduced by a factor of 5 when reducing `max from 4000 to 2000.

S/N for CMB-S4 `max = 4000 3000 2000

〈δg κCMB〉 497 281 127

〈κgal κCMB〉 251 157 80

〈κCMB κCMB〉 252 140 50

TABLE II: Expected S/N for cross-correlations between LSST and CMB-S4 and for the CMB-S4 lensing auto-power spec-
trum. The power spectra are always assumed to be measured on the same multipole range L = 30 − 3000, while the lensing
reconstruction is performed on temperature multipoles between `min = 30 and `max = 4000, 3000, and 2000 (no polarization
information is used). For LSST lensing, the shape noise is assumed to be σε = 0.26 and the source number density n = 26
arcmin−2. Here, we are using fsky = 0.5 for CMB-S4 and fsky = 0.44 for the overlap between LSST and CMB-S4.

C. Other strategies

As discussed in [17, 39], masking the most massive galaxy clusters and brightest point sources can reduce lensing
reconstruction biases due to astrophysical signals, including the kSZ and tSZ effects, as well as dust or radio emission.
Indeed, this strategy has been used to mitigate biases from the tSZ effect and point source emission in recent lensing
analyses from Planck, ACT, and SPT [73–75]. To reduce the kSZ bias discussed in this paper, galaxy groups and
clusters must be masked. In particular, the kSZ signal is proportional to the cluster mass, and thus by masking
the most massive clusters (and then progressively decreasing the masking threshold), the kSZ-induced bias can be
progressively decreased. However, the lensing signal of these objects is also proportional to their mass. Thus,
this strategy is guaranteed to bias the κ̂CMB reconstruction itself, at some level, because the masked regions are
preferentially the highest κCMB regions in the sky. For current analyses, the effect of this “high-mass masking”
is negligible on the CMB lensing power spectrum (compared to the statistical errors), but it may already be an

16 Note that the CMB-S4 Science Book assumes `max = 5000 for temperature-based lensing reconstruction (see their Figure 46) [34].
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issue for cross-correlations with galaxy lensing maps [76] and is clearly an issue for tSZ cross-correlations [77]. For
our purposes here, it is unclear that a significant reduction of the kSZ-induced bias can be achieved by masking
without simultaneously biasing the lensing reconstruction at an unacceptable level (particularly for low-redshift cross-
correlations). Further numerical work would be required to explore this point.

Given the analytical templates produced in this paper, the amplitude of the kSZ contamination can be estimated
together with the amplitude of lensing, thus greatly reducing the leakage of one signal into the other. This procedure,
known as “bias hardening”, was explored in [18, 41]. However, this method would be complicated by the fact that the
kSZ contribution depends sensitively on baryonic effects, as shown in Figures 2 and 3. Thus, the templates would come
with additional theoretical uncertainty (unlike, e.g., templates appropriate for the trispectrum of Poisson-distributed
point sources). Furthermore, the bias-hardening would lead to some loss of S/N . We leave such calculations for future
work.

A final idea for mitigating the kSZ-induced bias relies on the approximate symmetries of the problem: the standard
lensing quadratic estimator optimally combines estimates of the local dilation and shear of the background primary
CMB [42–44]. Since the kSZ field at low redshift is mostly sourced by galaxies and clusters, we expect the kSZ signal
to predominantly contaminate the “dilation” part of the lensing estimator. Thus, we speculate that a “shear”-only
reconstruction would be less affected by kSZ contamination.17 Similarly, one could construct an estimator sensitive
only to kSZ by taking the appropriate difference of dilation-only and shear-only lensing estimators, since lensing
contributes in the same way to both (up to a factor), while the kSZ signal contributes differently. In addition, real-
space estimators have been proposed that are sensitive to only kSZ, and not lensing, due to the conservation of surface
brightness by lensing [45]. A full exploration of such avenues is left to future work.

Lastly, we note that kSZ contamination could also lead to a failure of the usual curl null test in CMB lensing
reconstruction. Since the kSZ field is not the gradient of a scalar field (unlike the CMB lensing deflection), it will
generically yield a non-zero curl reconstruction. This test can thus be used as a diagnostic for kSZ contamination,
although other systematics and foregrounds can also contribute to the curl, which may render the test non-informative
as to the origin of the failure.

IX. CONCLUSIONS

CMB lensing measurements from ongoing and upcoming experiments will be one of the most powerful cosmological
probes available in the near term. The CMB lensing power spectrum measures the amplitude of late-time matter fluc-
tuations over a broad range of redshifts and is sensitive to a variety of novel physics, including massive neutrinos, dark
energy, and modified gravity. At the same time, cross-correlations of the CMB lensing field with low-redshift tracers
(such as galaxy number density or galaxy lensing convergence maps) in several redshift bins can probe the time evo-
lution of the matter fluctuations, breaking degeneracies between different models and allowing further improvements
in cosmological constraints, especially for non-standard models.

However, lensing reconstruction is afflicted by biases related to non-Gaussian-distributed astrophysical sources
(which are themselves generally correlated with the lensing field). Here, we have focused on the kSZ effect, which
is the largest contaminant that cannot be removed via multifrequency component separation techniques, since the
kSZ effect preserves the blackbody spectrum of the CMB. We have shown that for an aggressive reconstruction with
`max = 4000, the biases to cross-correlations with LSST lensing maps can be as large as ≈ 2%, 12%, and 15% for
CMB experiments similar to Planck, CMB-S3, and CMB-S4, respectively. The biases to CMB lensing auto-power
spectrum measurements can be as large as ≈ 1%, 6%, and 8% for Planck, CMB-S3, and CMB-S4, respectively, when
using `max = 4000, and about half of that for `max = 3000. Moreover, the kSZ-induced bias has non-negligible
sensitivity to the assumptions made about the baryon distribution, making it difficult to predict ab initio, as seen in
the differences between the analytic and simulation-derived results in our work. For Planck, the bias is smaller than
the statistical error bars on the lensing power spectrum. However, the kSZ-induced bias is considerably larger than
the statistical precision of Stage 3 and 4 CMB experiments, and is larger than the few-percent change induced on the
lensing auto-power spectrum by massive neutrinos. Thus, it will require careful consideration in future analyses. We
have verified the amplitude of these effects by comparing directly to measurements from cosmological simulations,
including the first full simulation-based calculation of a secondary-induced CMB lensing bias (i.e., including all terms).
Nevertheless, precise predictions of the kSZ-induced biases will require simulations with more sophisticated baryonic
feedback implementations than those considered here.

17 However, the large-scale tidal component of the density field will also contribute to the shear; thus, a shear-only estimator could still
receive a small kSZ contribution.
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Mitigation strategies to reduce this bias include the use of polarization-only reconstruction or the reduction of the
maximum temperature multipole `max used in the lensing reconstruction. In order to ensure that the bias is always
less than 1% on large scales, we find that we would need to take `max . 2000, which would lead to a reduction in
statistical S/N on various observables by a factor of 3 − 5 for CMB-S4. Other strategies such as masking, building
bias-hardened estimators, or using shear-only reconstruction will be the subject of future work.

Finally, we note that in a realistic experiment, imperfect foreground removal can introduce additional biases,
for example from residual tSZ or CIB [17, 18]. The exact size of these residuals depends on the experimental
configuration, the multifrequency component separation method, and the true complexity of the small-scale microwave
sky (e.g., possible decoherence of the CIB across frequencies). The residuals may lead to biases that are larger than or
comparable to the kSZ-induced bias discussed in this work — indeed, if no multifrequency cleaning or masking were
performed (e.g., at 150 GHz), they would be larger than the kSZ bias. Nevertheless, in principle the other biases can
be removed at high precision with sensitive measurements at multiple frequencies, whereas the kSZ bias cannot be.
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Appendix A: Derivation of kSZ bias to CMB lensing-tracer cross-correlation

Here, we compute the kSZ2 contamination to 〈δg κ̂CMB〉 or 〈κgal κ̂CMB〉 and compare to the fiducial signals produced
by lensing only. We consider temperature reconstruction only, since polarization is much less affected by the kSZ
signal.

The quadratic estimator for CMB lensing in terms of the lensed CMB temperature fluctuations Θ̃ can be written
as

κ̂CMB(L) =
L2N(L)

2

∫
`

Θ̃(`)Θ̃(L− `)f(`,L) =

∫
`1

∫
`2

Θ̃(`1)Θ̃(`2) (2π)2δD(L− `1 − `2)Γ(`1,L) , (A1)

where we have defined

Γ(`,L) =
1

2
L2N(L)f(`,L) (A2)

and

f(`,L) =
(L− `) ·LCTT|L−`| + ` ·LCTT`

2Ctot
` Ctot

|L−`|
, N(L)−1 =

∫
`

[
(L− `) ·LCTT|L−`| + ` ·LCTT`

]2
2Ctot

` Ctot
|L−`|

. (A3)

As we argued in Section IV, to calculate the kSZ bias to CMB lensing, one can simply replace Θ̃ → ΘkSZ in the
κ̂CMB estimator. For the kSZ field we can write:

ΘkSZ(x, y) = −
∫
dη g(η) pz(x, y, η) , (A4)

where x and y are (angular) displacements across the line-of-sight, η is the comoving distance in the z direction,
g(η) = τ̇ e−τ is the visibility function, and the line-of-sight momentum pz ≈ δevz on small scales. Taking the Fourier
transform, we find that the projected kSZ temperature fluctuation is:

ΘkSZ(`) = −
∫
dη

η2
g(η)

∫
dkz
2π

p̃z(k⊥ = `/η, kz) e
ikzη , (A5)

where p̃z(k) is the Fourier transform of pz(x, y, η). Similarly, for the projected galaxy fluctuation (or galaxy lensing
convergence) we have:

δg(x, y) =

∫
dη W g(η) δ(x, y, η) (A6)
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so that in Fourier space

δg(L) =

∫
dη

η2
W g(η)

∫
dkz
2π

δ̃g(k⊥ = L/η, kz) e
ikzη . (A7)

Now we can compute the kSZ2 bias to the CMB lensing-tracer cross-correlation, 〈δg(L1)κ̂kSZ
CMB(L2)〉:

〈δg(L1)κ̂kSZ
CMB(L2)〉 =

∫
`3,`4

Γ(`3,L2)〈δg(L1)ΘkSZ(`3)ΘkSZ(`4)〉 (2π)2δD(L2 − `3 − `4) (A8)

Renaming indices, the expectation value in the integrand is given by:

〈δg(L1)ΘkSZ(`2)ΘkSZ(`3)〉 =

∫
η1,η2,η3

∫
k1z,k2z,k3z

ei(k1zη1+k2zη2+k3zη3)W
g(η1)g(η2)g(η3)

η2
1η

2
2η

2
3

〈δg(k1)pz(k2)pz(k3)〉

=

∫
η1,η2,η3

∫
k1z,k2z,k3z

ei(k1zη1+k2zη2+k3zη3)W
g(η1)g(η2)g(η3)

η2
1η

2
2η

2
3

(2π)3δD(k1⊥ + k2⊥ + k3⊥)δD(k1z + k2z + k3z)Bδpzpz (k1,k2,k3)

=

∫
η1,η2,η3

∫
k1z,k3z

eik1z(η1−η2)eik3z(η3−η2)W
g(η1)g(η2)g(η3)

η2
1η

2
2η

2
3

(2π)2δD(k1⊥ + k2⊥ + k3⊥)Bδpzpz (k1,k2,k3) (A9)

So far the result is exact. We can now use the Limber approximation, treating the integrand as slowly varying in η
and doing the kz integrals:

〈δg(L1)ΘkSZ(`2)ΘkSZ(`3)〉 ≈
∫

η1,η2,η3

δD(η1 − η2)δD(η3 − η2)
W g(η1)g(η2)g(η3)

η2
1η

2
2η

2
3

(2π)2δD(k1⊥ + k2⊥ + k3⊥)Bδpzpz (k1,k2,k3)

=

∫
η1

W g(η1)g2(η1)

η4
1

(2π)2δD(L1 + `2 + `3)Bδpzpz

(
k1 =

L1

η1
,k2 =

`2

η1
,k3 =

`3

η1
; η1

)
(A10)

Here, the hybrid bispectrum arises from momenta lying on surfaces of constant redshift at distance η1.

Switching back indices 2→ 3 and 3→ 4, and plugging this into Equation A8, we find:

〈δg(L1)κ̂kSZ
CMB(L2)〉 =

∫
`3,`4

Γ(`3,L2)〈δg(L1)ΘkSZ(`3)ΘkSZ(`4)〉 (2π)2δD(L2 − `3 − `4)

=

∫
η1

W g(η1)g2(η1)

η4
1

∫
`3,`4

Γ(`3,L2)(2π)2δD(L1 + `3 + `4) (2π)2δD(L2 − `3 − `4)Bδpzpz (k1,k3,k4)

= (2π)2δD(L1 + L2)

∫
η1

W g(η1)g2(η1)

η4
1

∫
`3

Γ(`3,L2)Bδpzpz (k1,k3,k2 − k3) (A11)

This is the final result. If we want to put it in a more familiar form, we can change variables to q = `3/η (note that
all momenta are perpendicular to the line-of-sight) and use the fact that d2`3 = η2d2q to find the expression for the
kSZ-induced bias given in Equation 13 of the main text:

(
∆CκCMB×g

L

)
kSZ

=

∫
η

W g(η)g2(η)

η2

∫
q

Γ(`3 = qη,L2 = −L)Bδpzpz (k = L/η,q,−k− q; η)

=

∫
η

W g(η)g2(η)

η2

∫
q

Γ(L + qη,L)Bδpzpz (k = L/η,q,−k− q; η) , (A12)

where we can approximate (see [12, 13])

Bδpzpz ≈
1

3
v2

rmsBm . (A13)

The same result holds if we consider galaxy lensing instead of galaxy overdensity, with the replacement W g →Wκgal .
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Appendix B: kSZ bias to CMB lensing auto-power spectrum

Here, we discuss the lowest-order bias to the κ̂CMB power spectrum due to the kSZ effect. In analogy to Equation A8,
we can write:

〈κ̂CMB(L1)κ̂CMB(L2)〉 =

∫
`3,`4,`5,`6

Γ(`4, `3)Γ(`6, `5) 〈Θ̃(`3)Θ̃(`4)Θ̃(`5)Θ̃(`6)〉 (2π)4δD(L1 − `3 − `4)δD(L2 − `5 − `6)

(B1)

We decompose the observed fluctuations Θ̃ = Θ̃p + ΘkSZ and organize the ensemble average in Equation B1,

〈Θ̃(`3)Θ̃(`4)Θ̃(`5)Θ̃(`6)〉, as the sum of terms of the form summarized in Table III.

label multiplicity form notes

A 4 〈ΘkSZΘ̃pΘ̃pΘ̃p〉 vanishes due to symmetry

B 2 〈(ΘkSZΘkSZ)(Θ̃pΘ̃p)〉 same as 〈κkSZ
CMBκ

true
CMB〉

C 4 〈(ΘkSZΘ̃p)(Θ
kSZΘ̃p)〉 “secondary contraction”, see discussion below

D 4 〈Θ̃pΘ
kSZΘkSZΘkSZ〉 vanishes due to symmetry

E 1 〈ΘkSZΘkSZΘkSZΘkSZ〉 kSZ trispectrum

F 1 〈Θ̃pΘ̃pΘ̃pΘ̃p〉 same as 〈κtrue
CMBκ

true
CMB〉 after noise bias subtraction

TABLE III: Different terms in the expansion of the expectation value in Equation B1. The multiplicity denotes the combinatorial
factor in the expansion, and the parentheses ( ) make explicit which variables are convolved together. Note that all of the
quantities Θp, κCMB, and ΘkSZ are � 1 and therefore we shall only keep the ones with the fewest number of powers of the
small quantities.

The first thing to note is that any Gaussian component of the fields Θ̃p and ΘkSZ will be subtracted when removing

the noise bias N (0) in the process of estimating the κCMB power spectrum from the measured (biased) κ̂CMB power
spectrum. Therefore, we will neglect all terms that arise from Wick’s theorem (i.e., any expansion of higher (even-
order) point functions as a product of two-point functions).

Also, terms containing an odd power of ΘkSZ vanish on average because the kSZ effect is equally likely to be positive
or negative (a consequence of the symmetry vr → −vr).

Term B corresponds to estimating κ̂CMB on the kSZ field alone and then cross-correlating with the true κCMB. This
is equivalent to the calculation in the previous section, where now κCMB is the low-redshift matter tracer rather than
galaxies. Therefore, this term can be computed by replacing W g → WκCMB in Equation A12 above (and noting the
multiplicity of 2 in this case).

Evaluating Term C is equivalent to applying the lensing quadratic estimator on two different maps, where one leg
is taken from Θ̃p and the other from ΘkSZ, and then evaluating the resulting power spectrum. This represents a
“secondary contraction” (in the terminology of [18]) of the same fields that give rise to Term B, and is analogous to
the N (1) bias for the CMB lensing field itself [49]. Such “secondary contraction” terms have been investigated for
the biases arising from Poisson radio point sources, tSZ clusters, and Poisson and clustered infrared sources [18], and
it has been shown that these terms can be of the same order of magnitude as the “primary contraction” (Term B),
particularly at high L for high-resolution, low-noise experiments. It is non-trivial to evaluate Term C analytically,
since the full expression results in non-separable integrals over the bispectrum.

Term E is only sourced by the (connected part of the) kSZ trispectrum. The contribution from late-time matter has
been shown to be roughly 10 times smaller than Term B for lensing reconstruction with noise levels matching those
of the original ACT survey and `max ≈ 2000 (after N (0) subtraction) [47]. For the lower noise levels of CMB-S3 and
CMB-S4 and/or higher `max values, Term E and Term B could be more comparable in amplitude, but quantifying
this analytically is beyond the scope of the present paper. The sum of Term B and Term E was also considered in [40],
who found a combined sub-percent bias on the CMB lensing auto-power spectrum for noise levels matching those of
the SPT-SZ survey and `max = 3000.

We present numerical results for the total bias (i.e., the sum of Terms B+C+E) in Sec. VII B. Term B is indeed
the dominant term, particularly on large scales. For `max = 4000, cancellations amongst the various terms can clearly
be seen.

All of our results have neglected the kSZ signal from reionization. We note that Ref. [29] has argued that the
kSZ signal due to fluctuations in the ionization fraction during reionization can cause a detectable squeezed limit
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trispectrum. We leave the study of the impact of such contributions on CMB lensing to future work.
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