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Selection of Long-Term Reference Frames
in Dual-Frame Video Coding Using
Simulated Annealing

Mayank Tiwari and Pamela C. Cosman

Abstract—In dual-frame video coding, both encoder and
decoder store a short-term reference (STR) and a long-term
reference (LTR) frame for motion compensation. In past work,
LTR frames at regular intervals were assigned higher quality than
the other frames to improve overall video quality. In this letter,
we present a method of LTR frame selection using simulated an-
nealing, and we show that PSNR is improved compared to the case
of evenly spaced LTR frames. To reduce delay and computational
complexity, we consider a constraint on the size of the look-ahead
window.

Index Terms—Dual-frame video coding, long-term reference
frame, simulated annealing, video compression.

I. INTRODUCTION

OTION-COMPENSATED prediction is widely used

for inter-frame video coding to remove temporal re-
dundancy. Each block in the current frame to be encoded is
typically predicted from a block in the immediate past frame
(known as the reference frame) by searching for the best
match block for it. In dual-frame video coding [1]-[4], one
short-term reference (STR) frame and one long-term reference
(LTR) frame are available for motion compensation. The LTR
and STR frames are stored in both encoder and decoder. For
encoding frame n, the STR is frame n — 1 and the LTR frame
is frame n — k, for some k > 1. The LTR frame can be chosen
by jump updating [2], in which, for example, the LTR frame
remains the same for encoding N frames, then jumps forward
by N frames and again remains the same for encoding the next
N frames. In such an approach, every frame serves as an STR,
but only every Nth frame serves as an LTR; this allows the use
of high-quality LTRs which are allocated more bits than regular
frames. This enhanced the quality of the entire sequence [5],
[6]. In [5], the assumption was that certain frames could be
starved of bits so as to generate high-quality LTR frames at
regular intervals, provided that a long-term average bit rate
constraint was met. This method improved the average video
quality by 0.6 dB over a regular dual-frame encoder in which
all frames were given equal importance. In [6], dual-frame
coding was considered in a cognitive radio scenario.
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Fig. 1. Percentage average references to a frame when it is treated as a high-
quality LTR frame. “1st 20 Frames” shows the effect of an LTR frame on the
first 20 frames using it.

In both cases, the high-quality LTR frames were not chosen
based on video content. It is possible that the frame chosen as
an LTR may not serve as a good reference for future frames.
The variable usefulness of LTR frames is shown in Fig. 1 for
the Mother-Daughter video sequence. To generate this figure,
the video was encoded repeatedly; each time, only one frame is
a high-quality LTR frame. On the z-axis is the frame number of
the frame that is available as a high-quality LTR frame. On the
y-axis is the percentage of macroblocks (MB) of the following &
frames (for £ = 20, 35, 50, and 100) which choose to reference
that LTR frame rather than use the immediate past (STR) frame
for reference. The frames where we see the peaks (for example,
frames 34, 35, 36, and 78) are more useful as LTRs than the
frames in the valleys (for example, frames 24, 25, 26, 60, and
61). For example, the plot shows that when frame 78 is chosen
to be an LTR, over 12% of the MBs of the next 20 frames prefer
to reference it rather than the STR. In contrast, when frame 127
is the LTR, only 3% of MBs in the next 20 frames choose to
reference it, which means 97% of the MBs find a better match in
the STR. The curve for “1st 20 frames” is almost always above
the curve for “1st 35 frames” which shows that the effect of the
LTR frame fades as we move away from the LTR frame.

A method for LTR frame selection was studied in [7] using
color layout descriptors. That paper assumes a large frame
buffer at the input to the encoder and the decoder to preselect
the possible LTR frames. It requires either a standard incom-
patible bitstream if the descriptions are sent to the decoder
or an increase in complexity at the decoder to generate these
descriptions.
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In this letter, we aim to find a set of frames in a video sequence
that can serve as good LTR frames. We use simulated annealing
(SA) for the LTR frame search. We consider two scenarios: 1)
when the entire video sequence is available for the LTR frame
search at the encoder and 2) when there is a constraint on the
size of the look-ahead window. The first scenario is solely done
offline for the transmission of archived video, while the second
scenario can be done in real-time assuming that the encoder is
computationally efficient and that a small delay can be tolerated.
This letter shows that overall video quality can be improved
by proper selection of high-quality LTR frames instead of just
choosing them at regular intervals. SA is one method to find
such good LTR frames, but other optimization methods could
be applied. We note that when the LTR frames are afforded too
many bits compared to the other frames, there can be an an-
noying pulsing of quality that is visibly perceptible. However,
the slight increase in quality for LTR frames used in this work
does not lead to visible quality pulsing, and it raises the per-
ceived quality of the entire video sequence.

This letter is organized as follows: Section I describes the SA
method for finding LTR frames for archived video. Section III
presents the window-based SA method for finding the LTR
frame positions under the constraint of look-ahead window
size. Conclusions and future work are given in Section I'V.

II. SIMULATED ANNEALING FOR LTR FRAME SEARCH

SA [8] is an optimization process derived from the physical
process of cooling molten material down to the solid state. SA
has been widely used for various combinatorial and other op-
timization problems [9]. SA starts with an initial solution that
can be generated either randomly or using some known solu-
tion. A constraint-based new solution is then generated. If the
new solution is better than the current solution, it is accepted
unconditionally and becomes the next current solution. If, how-
ever, the new solution is worse than the current solution, it is not
rejected outright, but it is accepted with a certain probability.
At the beginning, to avoid a local optimum, the probability of
acceptance of a worse solution is kept high. As the simulation
progresses, the probability is lowered according to some prede-
fined schedule, and after some point, a new solution is no longer
accepted unless it is better than the current solution.

We use SA for LTR frame choice in a video sequence for
dual-frame video coding. If we know the video characteristics
as shown in Fig. 1 for the Mother-Daughter sequence, then we
can pick the peaks as our initial solution. However, since gen-
erating such characteristics is computationally intensive, we in-
stead choose our initial solution by creating high-quality LTR
frames at a uniform interval of Itr_dist, starting from the first
frame. Evenly spaced high-quality LTR frames were used in [5]
which is the reference point for comparing our results. Then one
of the current set of LTR frames is randomly selected and is re-
placed by a new frame which is also randomly selected in the
range of £swing_width from its original position. The new ar-
rangement of LTR frames is accepted as the new current solu-
tion if the average PSNR of the video sequence is no less than
thr_accept below the PSNR of the current solution. Otherwise,
the new solution is rejected. We then randomly choose another
LTR position from among those not yet perturbed on this round
and repeat the same process. After we have gone through all
total_ltr LTR frame positions in some random order, we have
completed one iteration. After completing num_iter such iter-
ations, we reduce swing_width by one step and thr_accept by
€ amount and continue with the next round of iterations. When
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Fig. 2. Improvement over evenly spaced high-quality LTR frames using simu-
lated annealing approach. Average PSNRs for the sequence with evenly spaced
high-quality LTR frames are 33.0 dB for carphone, 29.0 dB for Foreman, 37.4
dB for M-D, 41.6 dB for Claire, 38.1 dB for Container, 33.8 dB for M-D CIF,
and 40.0 dB for M-D 2 video sequence.

thr_accept becomes zero, we stop accepting inferior solutions.
The simulation stops when swing_width becomes zero. The po-
sition of the high-quality LTR frames at the end of the simulation
is our final solution.

Results: We modified H.264/AVC [10] reference soft-
ware JM 9.6, obtained from [11]. We used the 4:2:0 QCIF
(176 x 144 pixels) video sequences Foreman, Carphone, Con-
tainer, Mother-daughter (M-D), and Claire at 30 fps for our
simulations. SA was performed on 200 frames with the first
frame intra-coded and the remaining frames inter-coded. A
lossless channel was assumed with a constant average bit rate of
58 kbps. The initial LTR frame position was chosen at a regular
interval (Itr_dist) of 25 frames starting from the first frame.
So, there were a total of 8 high-quality LTR frames (total_ltr).
Parameter swing_width was initialized to 5 and each LTR
frame position was iterated num_iter = 4 times for every
value of swing_width. We initialize thr_accept = 0.04, which
was found empirically, as the PSNR decrease that could still
be accepted. thr_accept was reduced by ¢ = 0.01 whenever
swing_width was reduced by 1.

Fig. 2 shows the results for different test video sequences.
We ran six SA simulations for each video sequence. The three
bars for each video sequence show the average, maximum, and
minimum PSNR improvement for these six runs over the PSNR
achieved by using evenly spaced LTR frames. For the Carphone
video sequence, the average PSNR improvement of six SA sim-
ulations is 0.5 dB over the evenly spaced LTR frames, with the
highest improvement of 0.6 dB and the lowest improvement of
0.4 dB. Best results were obtained for the M-D video sequence
where the average improvement by using SA is 0.7 dB with the
highest improvement of 0.8 dB and the lowest improvement of
0.6 dB. The trend of the results at CIF resolution at 58kbps for
M-D video (M-D CIF) is consistent with the results for QCIF
video. Similar results were also found for QCIF resolution for
M-D video at 82 kbps (M-D 2). Both M-D CIF and M-D 2 are
shown in Fig. 2.

As an example of the frame selection: For the Claire video
sequence, evenly spaced LTR frames are 0, 25, 50, 75, 100, 125,
150, and 175. One SA run produced a PSNR gain of 0.7 dB
over evenly spaced LTR frames and chose the final LTR frames
8, 32,59, 77, 110, 122, 146, and 167. Five of the six SA runs
had frames 32, 77, and 146 in their final LTR sets, suggesting
that these frames are particularly useful as LTR frames. After
frames 32 and 146, the video content moves very slowly. So,
having these frames as high-quality LTRs improves the PSNR
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of subsequent frames through long-term as well as subsequent
short-term references. In general, SA selects one of the first few
frames of a low motion part in a video sequence and assigns it
as a high-quality LTR frame. SA tries to avoid assigning a high-
quality LTR in a high motion part of a video sequence because
the video content changes rapidly and a high-quality LTR would
not be useful for long. This is also the reason for getting higher
PSNR improvement for low motion sequences such as Mother-
Daughter and Claire compared to the higher motion sequences
such as Foreman under the constraint of having the same number
of LTR frames. In Claire, the video is constant for around 15
frames after frame 77 and then the face moves rapidly causing
SA to avoid assigning new LTR frames. Therefore, the next LTR
frame comes around frame 110 when the high motion part is
over, resulting in a longer LTR frame distance than the average.
The container video sequence has the largest gains for evenly
spaced high-quality dual-frame coding over regular quality
dual-frame coding among all the video sequences tested [5].
Because of the rather constant motion between the ship and
the camera, evenly spaced LTR frames do well. For an LTR
spacing of 25, it showed about 0.8 dB PSNR improvement
over regular quality evenly spaced LTR frames. As we can
see in Fig. 2, this video sequence gives the least improvement
using SA over evenly spaced LTR frames. Since there is no
significant change in motion, the importance of all the frames
is almost the same. When we make a plot similar to Fig. 1
for this video sequence, it produces an almost flat number
of references to any frame in the video sequence. Therefore,
while the evenly spaced high-quality LTR frames produce a
big PSNR gain compared to evenly spaced regular-quality LTR
frames, further change in LTR position will give just a small
additional PSNR improvement. Conversely, while only 0.3 dB
improvement was achieved for the Claire video sequence in
[5] for evenly spaced high quality LTR frames with spacing
of 25 compared to regular-quality dual-frame coding, we were
able to achieve a further 0.7 dB of PSNR improvement on
top of the evenly spaced LTR frames. In general, more than
1.0 dB PSNR improvement is achieved over evenly spaced
regular-quality LTR frames in dual-frame video coding by
using both high-quality LTRs [5] and uneven spacing of LTRs
as discussed in this letter. The PSNR improvement is achieved
with a high computational complexity which is on the order of
swing_width X num_ter X num_ltrx sequence length.

III. WINDOW-BASED APPROACH FOR LTR FRAME SEARCH

The PSNR improvement achieved in Section II assumes that
the encoder has access to all 200 frames of the video sequence
in advance. It is good for broadcast video where long encoding
delay is possible but is not suitable for real-time or near real-time
applications. For long video sequences, it requires huge memory
to store the input video and also a large amount of compu-
tational resources. To overcome this problem, we propose a
window-based heuristic approach to find LTR frame positions.
This approach can be used for real-time video transmission with
a small encoding delay.

Fig. 3 shows the average percentage of a frame that references
the LTR frame (y-axis) as a function of the distance back to the
LTR frame position (z-axis) for all the five video sequences.
Each of the first 150 frames of each video was sequentially se-
lected as a high-quality LTR frame and the number of references
made to this LTR frame was observed over the next 100 frames
(and averaged over the 150 frames), except for the frame next
to the LTR frame. From this figure, we can clearly see that the

% Average References
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Fig. 3. Average percentage references to a high-quality LTR frame as a func-
tion of frame distance.

importance of LTR frames decreases with increasing frame dis-
tance. One approach would therefore be to assign frequent LTR
frames. However, we must limit the number of LTR frames (be-
cause each one requires more bits than a typical frame).

We define the average LTR distance (avg_ltr_dist) at any
given time to be the ratio of the number of frames remaining
to be encoded to the number of LTR frames remaining to
be created. Initially, avg_ltr_dist is 25 (200 frames to be en-
coded using 8 LTR frames). Experimentally, for avg_Itr_dist
of 25 frames, we found that keeping an LTR frame for at
least 15 frames provides a good quality. We denote this dis-
tance as min_Itr_dist. We keep an LTR frame for a minimum
of min_lItr_dist frames, and after that, we begin to look for
the next LTR frame position. Therefore, the lower boundary
for the current LTR frame search (frame number [trLpg) is
min_Itr_dist from the previous LTR frame position. We recal-
culate avg_ltr_dist after choosing each LTR frame position.
In general, we set min_Iltr_dist = max(avg_ltr_dist —10, 0),
so that min_Iltr_dist increases if avg_ltr_dist increases (that
means we are getting frequent LTR frames) and vice versa.
This reduces the chances of getting LTRs too close to each
other. The next LTR frame position is initialized at avg_Itr_dist
from the previous LTR frame position and its frame number is
init_ltr_loc. We search for the LTR frame position starting from
frame ltrLpg), keeping frame init_Itr_loc in the middle of the
search range by extending the search range to the same number
of frames (X = init_ltr_loc — ltrLg) on the other side of
frame init_Iltr_loc. We denote the upper boundary of the search
range as [trUp = init_ltr_loc + (init_ltr_loc — ltrLg).

However, the upper boundary of the search range is also dic-
tated by the size of the look-ahead window. We want to create
an LTR frame five frames or more back from the end of the
look-ahead window so that we have at least five frames over
which to judge whether or not it is a useful LTR frame. If W
is the size of the look-ahead window and it starts from frame
ltr L, then the upper boundary is restricted to frame ltrUf =
ltr L g+W —5. Therefore, the upper boundary of the LTR search
range is given by ltrUg = min(ltrUpg, ltrUg). Fig. 4 depicts
both the cases of LTR frame search range where (a) ltrUp <
ltrU},, which means that the search range is not restricted by the
size of the look-ahead window, and (b) ltrUp > [trU};, when
the upper boundary of the search range is restricted by the size
of the look-ahead window.

The process of searching for one LTR frame in the speci-
fied range is done using SA as described in Section II. Once
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Fig. 4. LTR search range (a) ltrU}, < ltrUj, (b) ltrUy > ltrU}, where
ltrUy = initltr loc+ (init ltr loc = ltrLg), ltrUy = ltrLp + W — 5,
and X = initltr_loc — ltrLp. ltrUp = man(ltrUpg, ltrUg).

an LTR frame is found, we recalculate the avg_ltr_dist, ltr L g,
and /trUp. We then move on to find the next LTR frame posi-
tion using the same approach. We repeat this process until the
end of the video sequence.

Results: Let W be the number of frames in the look-ahead
window, meaning that these frames are assumed to be available
at the encoder and are not yet encoded. After determining one
LTR frame location, for computing the next LTR frame loca-
tion, the look-ahead window starts at frame [¢r L g and extends
to frame ltrLg + W — 1. All the frames before frame ltrLp
are assumed to have already been encoded. Frame init_Itr_loc
is first selected as an LTR frame to calculate the PSNR for all
W frames in the look-ahead window. Then the same SA proce-
dure is applied to select the best LTR frame in the search range,
where the search range is between ltr L and [trUp in these W
frames as described above. Once an LTR frame is selected, we
calculate the new avg_ltr_dist, init_Itr_loc, ltr L, and ltrUp
and repeat the procedure. Since the LTR search range is quite
small compared to the range in Section II, we initialize the
swing_width to 4 and num_iter to 2, thereby further reducing the
complexity. Assuming the same variation of PSNR by changing
an LTR frame position, we initialize thr_accept = W,
where num_frm is the number of frames in the LTR search range
(ltrUp —ltr Lp+1), and it is reduced to 0 in swing_width steps
(e = 0.25 X thr_accept).

Fig. 5 shows the average PSNR improvement for various test
video sequences over evenly spaced LTR frames as a function
of W which was varied from 20 to 40 in steps of five frames.
The PSNR improvement was averaged over eight simulations
for each W in a video sequence and compared with the results
from Section II, shown here as “Full SA.” As discussed in the
previous section, we found that the improvement for the Con-
tainer video sequence remains almost flat for various window
sizes and is very close to “Full SA.” Claire and Carphone have
ample choices for LTR frames, and so these videos are also in-
sensitive to the look-ahead window size. Fig. 1 for the Mother-
Daughter video sequence shows narrow peaks and, for small
look-ahead window sizes, sometimes we miss these peaks for
LTR selection. In general, even with a small look-ahead window,
we achieve significant PSNR improvement over evenly spaced
LTR frames. The computational complexity is on the order of
swing_width x num_iter x numltr x (ltrUg — ltrLp).
With the reduction in swing_width, num_iter, and LTR search
range, the computational complexity in the window-based ap-
proach for finding LTR frames is drastically reduced compared
to the full LTR search and is feasible for real-time.

IV. CONCLUSION

We used simulated annealing to find good locations for
high-quality LTR frames. The experimental results show PSNR
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Fig. 5. Variation of PSNR improvement over evenly spaced LTR frames as a
function of the look-ahead window size.

improvement of 0.2 to 0.7 dB for various test video sequences
over evenly spaced high-quality LTR frames. On combining
our results with [5], more than 1.0 dB PSNR improvement
was achieved over video encoding using regular quality evenly
spaced LTR frames. The process of LTR frame selection was
further performed on a constrained look-ahead window size in
a long video sequence for real-time video transmission which
reduced delay and computational complexity. For most of the
video sequences, the PSNR improvement in this case was close
to the PSNR improvement when the whole video sequence was
considered. In both cases, changing the parameters such as the
bit rate (50 to 100 kbps), length (100 to 300 frames), resolution
(QCIF and CIF), or number of LTR frames (5 to 8) produces
similar results.
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