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Abstract

Most current research on commonsense question answering
(CQA) has focused on proposing different techniques in nat-
ural language processing and text information retrieval. How-
ever, for human cognition, retrieving and organizing desired
answers from text knowledge related to commonsense ques-
tions is far less intuitive and comprehensive than it is when
using multi-modal knowledge, such as related images and
videos. Motivated by this, we propose a framework for trying
the acquisition of diverse modal information, and embedding
and integrating it into CQA tasks, further improving the perfor-
mance and user experience. Specifically, this paper proposes
the integration of multi-modal knowledge, including images,
image description statements, image scene graphs, and knowl-
edge sub-graphs, into a CQA system. It introduces a paral-
lel embedding technique for this multi-modal knowledge and
employs an alignment-interaction-fusion mechanism to facil-
itate the seamless integration of this multi-modal knowledge.
Through extensive experiments, the effectiveness and superi-
ority of our proposed method are demonstrated.
Keywords: commonsense question answering framework;
multi-modal knowledge acquisition; parallel embedding;
alignment-interaction-fusion

Introduction
The commonsense question answering (CQA) system is a
type of conversational system that aims to analyze and com-
prehend user-posed commonsense questions and provide cor-
responding answers or solutions (Palta & Rudinger, 2023).
CQA systems have been widely applied in various scenarios,
such as online customer services, intelligent assistants, and
search engines (He, Gutiérrez-Basulto, Pan, et al., 2023; Qin
et al., 2023; Lan et al., 2022; Zhu et al., 2022).

Existing studies (Zou, Zhang, & Zhao, 2023; Khashabi et
al., 2020; Dou & Peng, 2022; M. Zhang, He, & Dong, 2024)
have concentrated their efforts on natural language processing
and knowledge base integration via the information retrieval
paradigm. Among them, the utilized knowledge mainly in-
cludes textual modal data, such as free text knowledge and
structured knowledge. However, for human cognition, re-
trieving and organizing answers from text knowledge related
to commonsense questions is far less intuitive and compre-
hensive than doing so from multi-modal knowledge such as
related images and videos. For example, when answering
questions about the spatial relationships between objects, or
about the color, shape, and size of objects, information from
other modalities can be much more helpful. As illustrated in
Figure 1, questions can be answered well by information from

In 'SpongeBob SquarePants,' who is 

taller, SpongeBob or Patrick?

In the cartoon 'Tom and Jerry,' what are 

the fur colors of Tom and Jerry?

Which character, Donald Duck or 

Mickey Mouse, prefers wearing hats, 

and which one prefers wearing pants?

Figure 1: Multi-modal knowledge provides auxiliary infor-
mation for the commonsense question-answering task.

corresponding images. Inspired by this, we aim to leverage
multi-modal knowledge to enhance CQA systems.

Specifically, this paper proposes an innovative method for
acquiring multi-modal knowledge by utilizing advanced tech-
niques such as keyword retrieval (Campos et al., 2018), im-
age search (M. Wang, Wang, Qi, & Zheng, 2020), image de-
scription generation (Nguyen, Suganuma, & Okatani, 2022),
and image scene graph generation (J. Yang et al., 2022). To
achieve effective feature representation for different types of
data, this paper introduces the parallel embedding mecha-
nism for acquiring multi-modal knowledge, which consists
of three types of encoders: language transformer encoder, vi-
sion transformer encoder, and graph neural network. Finally,
an alignment-interaction-fusion mechanism for multi-modal
embedded features is specifically designed and constructed to
better fuse embedded features from different modalities and
enhance the model’s overall generalization ability.

Our contributions can be summarized as follows:
(1) A novel CQA framework based on the fusion of multi-

modal knowledge, which combines textual information with
multi-modal knowledge information to obtain accurate ques-
tion answers that better meet user requirements.

(2) A method for acquiring multi-modal knowledge based
on keyword retrieval, image search, image captioning, and
image scene graph generation. Using these techniques, we
have built a novel multi-modal resource base (MRB).

(3) A method for parallel embedding of multi-modal
knowledge, along with a mechanism for aligning-interacting-
fusing them, aiming to achieve diverse feature representations
and compatibility with different types of data, thereby effec-
tively integrating multi-modal information.

(4) Extensive experiments are conducted to demonstrate
1701
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Figure 2: An overview of our multi-modal knowledge enhancement framework (MKE).

the effectiveness and superiority of the proposed method,
achieving an accuracy improvement of 4.0% and 3.4% on the
OBQA and CSQA datasets, respectively.

Related Work

Auxiliary knowledge augmentation is an active research
field aimed at improving the performance of CQA sys-
tems (Q. Chen et al., 2023). Existing CQA systems mainly
utilize free text knowledge and structured knowledge as aux-
iliary knowledge. Free text knowledge, as a fundamen-
tal form of auxiliary knowledge, is primarily extracted from
large-scale textual corpora (Rosset et al., 2020). This type of
knowledge encompasses domain-specific knowledge, com-
monsense knowledge, and textual knowledge obtained from
other sources, such as social media, etc. Existing work (Guu,
Lee, Tung, Pasupat, & Chang, 2020; Borgeaud et al., 2022)
has primarily focused on utilizing various methods to ex-
tract free textual knowledge from large-scale corpora and use
them effectively. The vast amount of user-generated con-
tent on social media platforms contains valuable knowledge,
such as online encyclopedias, user comments, posts, tweets,
and more. CQA systems leverage social media knowl-
edge (Rogers, Gardner, & Augenstein, 2023; G. Xu et al.,
2021; Li et al., 2020; R. Sun et al., 2020; Cui, Lan, Pang,
Guo, & Cheng, 2020; H.-Y. Yang & Silberer, 2022) to ac-
quire real-time information and user perspectives, enabling
better answers to questions related to social media. Knowl-
edge graphs, as a structured representation of knowledge,
have been widely applied in CQA systems (Y. Sun, Shi, Qi,
& Zhang, 2022; Y. Xu et al., 2021; Pan et al., 2023). Re-
searchers have continuously explored how to better construct
and utilize knowledge graphs to enhance the performance of
CQA systems (Tian, Jing, He, & Liu, 2021; S. Liu, Chang,
Liang, Chakraborty, & Driggs-Campbell, 2021).

Method
This paper proposes a multi-modal knowledge enhancement
framework (MKE) for CQA, which integrates knowledge of
multi-modalities with the question-answer textual informa-
tion to more effectively meet user needs. The core design
of this framework includes three parts, as shown in Figure 2.

Knowledge Acquisition: Acquire various knowledge
from multiple modalities relevant to the question, including
images, textual descriptions of images, scene graphs of im-
ages, and knowledge sub-graphs. This enables the provision
of rich and diverse commonsense knowledge.

Knowledge Embedding: Use multiple parallel encoders
to embed the input question-answer text and knowledge from
various modalities acquired earlier, capturing the correspond-
ing features of information from these modalities.

Knowledge Alignment, Interaction, and Fusion: Ef-
fectively leverage the acquired information from multiple
modalities by aligning, interacting, and fusing the features
of the information from different modalities.

Knowledge Acquisition
The existing methods for multi-modal knowledge acquisition
in the context of images primarily rely on utilizing only the
respective images. However, such approaches may not be
able to capture deeper relationships between objects, as well
as object properties such as the object’s color, shape, size,
and so on. To address this issue, a new multi-modal knowl-
edge acquisition method is proposed. This method integrates
keyword-based extraction, image search, image description
generation, and scene graph generation. This enables a more
comprehensive and accurate extraction of fine-grained visual
information such as entities, entity relationships, and entity
attributes contained in the image. Specifically, we first uti-
lize the keyword extraction algorithm YAKE (Campos et al.,
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2018) to extract keywords from the question:

YAKE(Question) = {(ki,si)}K
i=1 (1)

where ki represents keyword, si represents the keyword score,
and K is the number of keywords. Then, we use these pairs of
keywords to retrieve relevant images from image search en-
gines (Google, Wikipedia, and Bing) (Y. Chen et al., 2023).
Subsequently, the image captioning and scene graph genera-
tion algorithms (Nguyen et al., 2022; J. Yang et al., 2022) are
employed to process the retrieved images and obtain corre-
sponding detailed image descriptions and scene graphs:

Caption(Image) = {di}M
i=1 (2)

SceneGraph(Image) = {(hi,ri, t j)}N
i=1 (3)

where di represents the i-th word in the description, and M
represents the number of words. (hi,ri, ti) represents a triplet
in the scene graph, N represents the number of triplets. At the
same time, inspired by existing work (Yasunaga et al., 2022),
for each question, we also retrieve the knowledge sub-graph
from ConceptNet (Speer, Chin, & Havasi, 2017).

Knowledge Embedding
To achieve diverse feature representation and compatibility
with different types of information, we propose a multi-
channel parallel embedding method. Specifically, language
transformer encoders (LTE) are employed for question-
answer text, image description, and scene graph, while a vi-
sion transformer encoder (VTE) is used for image. Further-
more, the knowledge sub-graph, enhanced by the image scene
graph, is embedded using a graph neural network (GNN).

Text Embedding. For a given token sequence of
question-answer text T = {t1, ..., tI}. We prepend tint to
the original question-answer text T , and the input repre-
sentation is calculated by summing the token embeddings,
segment embeddings, and position embeddings for each
token:{t(0)int , t

(0)
1 , ..., t(0)I }. Then, we compute the output rep-

resentation for each layer to obtain the embedding EText :

{t(w)int , t
(w)
1 , ..., t(w)I }= LTE({t(w−1)

int , t(w−1)
1 , ..., t(w−1)

I }) (4)

where w represents the layer index in the LTE, and the spe-
cific LTE used is RoBERTa-Large (Y. Liu et al., 2019).

For a given token sequence of image description
{d1, ...,dM} and scene graph {h1,r1, t1, ...,hN ,rN , tN}, the
input representation is calculated by summing the to-
ken embeddings and position embeddings for each token:
{d(0)

1 , ...,d(0)
M }, {h(0)1 ,r(0)1 , t(0)1 , ...,h(0)N ,r(0)N , t(0)N }. Then, we

compute the output representation for each layer to obtain the
embedding ECaption and embedding ESceneGraph:

{d(x)
1 , ...,d(x)

M }= LTE({d(x−1)
1 , ...,d(x−1)

M }) (5)

{h(y)1 ,r(y)1 , t(y)1 , ...,h(y)N ,r(y)N , t(y)N }=

LTE({h(y−1)
1 ,r(y−1)

1 , t(y−1)
1 , ...,h(y−1)

N ,r(y−1)
N , t(y−1)

N })
(6)

where x and y represent the layer index in the LTE, and the
specific LTE used is pretrained RoBERTa-Base.

Image Embedding. A given image is divided into
a sequence of patches {p1, ..., pO}, where O denotes the
number of patches. The input representation is calculated
by summing the patch and position embeddings for each
patch:{p(0)1 , ..., p(0)O }. Then, the output representation for
each layer is computed to obtain the embedding EImage:

{p(z)1 , ..., p(z)O }= VTE({p(z−1)
1 , ..., p(z−1)

O }) (7)

where z is the VTE (Dosovitskiy et al., 2021) layer index.
Graph Embedding. We use the VCU method (McInnes,

2016) to combine the scene graph extracted from the image
with the retrieved knowledge sub-graph. This leverages fine-
grained entity and relationship information in the image to
obtain the enhanced knowledge sub-graph {g1, ...,gF}, where
F represents the number of nodes. Then, we connect gint to
the entity-linked nodes in the enhanced knowledge sub-graph,
resulting in the final knowledge sub-graph {gint ,g1, ...,gF}.
Subsequently, we compute the output representation for each
layer to obtain the embedding EG:

{g(l)int ,g
(l)
1 , ...,g(l)F }= GNN({g(l−1)

int ,g(l−1)
1 , ...,g(l−1)

F }) (8)

where l is the GNN (Velickovic et al., 2017) layer index.

Knowledge Alignment, Interaction, and Fusion
Knowledge Alignment Layer Multi-modal knowledge is
heterogeneous at low-level representation but unified at high-
level semantics (Cao et al., 2022). The alignment layer fo-
cuses on aligning different modalities of knowledge, ensur-
ing their compatibility, and enabling meaningful cross-modal
interactions in a shared feature space. Since both image de-
scriptions and scene graphs are derived from images, after
obtaining their embeddings, this paper utilizes linear trans-
formations to align their dimensions (Eq. 9) and then com-
bines the aligned embeddings of different modalities with the
question-answer text embeddings (Eq. 10).

ĒImage, ĒCaption, ĒSceneGraph =

Linears(EImage,ECaption,ESceneGraph)
(9)

ÊT = Add(EText , ĒImage, ĒCaption, ĒSceneGraph) (10)

where Linears are linear dimension transformations, Add de-
notes feature concatenation, Ē represents the aligned embed-
ding features, and ÊT represents the question-answer text em-
bedding after incorporating the aligned embeddings.

Knowledge Interaction Layer Inspired by existing
work (Yasunaga et al., 2022; X. Zhang et al., 2022), we use
two self-supervised reasoning tasks to pre-train the model, so
an interaction layer is designed to achieve the fusion of the
two knowledge modalities. The goal is to capture the inter-
dependencies and synergistic relationships between different
modalities of knowledge. The interaction layer encodes
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the embeddings from question-answer text and knowledge
sub-graph separately and combines their representations
using special interaction nodes (t̃int , g̃int ). It consists of three
components: a LTE to encode the aligned question-answer
text, ÊT =(t̂(w)int , t̂

(w)
1 , ..., t̂(w)I ) (Eq. 10); a GNN to encode the

knowledge sub-graph, EG=(g(l)int ,g
(l)
1 , ...,g(l)F ) (Eq. 8); and an

interaction block to fuse the features of the special interaction
nodes. For uniform representation, ÊT and EG are re-denoted
as ÊT =(t̃(0)int , t̃

(0)
1 , ..., t̃(0)I ) and EG=(g̃(0)int , g̃

(0)
1 , ..., g̃(0)F ).

(tint , t1, ..., tI),(gint ,g1, ...,gF) =

Inter((t̃(0)int , t̃
(0)
1 , ..., t̃(0)I ),(g̃(0)int , g̃

(0)
1 , ..., g̃(0)F ))

(11)

(t̃( j)
int , t̃

( j)
1 , ..., t̃( j)

I ) = LTE(t̃( j−1)
int , t̃( j−1)

1 , ..., t̃( j−1)
I ) (12)

(g̃( j)
int , g̃

( j)
1 , ..., g̃( j)

F ) = GNN(g̃( j−1)
int , g̃( j−1)

1 , ..., g̃( j−1)
F ) (13)

[t̃( j)
int ; g̃( j)

int ] = Inter-Block([t̃( j)
int ; g̃( j)

int ]) (14)

where ET =(tint , t1, ..., tI) and EG=(gint ,g1, ...,gF) represent
the embeddings of question-answer text and knowledge sub-
graph after the interaction layer. Inter-Block (interaction
block) is implemented using a multilayer perceptron, j de-
notes the index of the interaction layer.

Knowledge Fusion Layer The fusion layer integrates the
pre-interaction features of question-answer text and the
knowledge sub-graph with post-interaction features, thus
preserving individual semantic information while capturing
inter-modal interactions. Specifically, for question-answer
text, the first token of ET after the interaction layer is con-
catenated with the first token of the aligned ÊT (Eq. 10):

ET = (tint + t̂(w)int , t1, ..., tI) (15)

For the knowledge sub-graph, the features of all nodes in the
EG after the interaction layer are concatenated with the cor-
responding node features of the embedded EG (Eq. 8):

EG = (gint ,g1, ...,gF)+(g(l)int ,g
(l)
1 , ...,g(l)F ) (16)

Finally, to align closely with the methodologies of our
base model (Yasunaga et al., 2022), we pretrain our proposed
MKE framework by jointly conducting two self-supervised
reasoning tasks: masked language modeling and knowledge
sub-graph link prediction. The overall training objective for
this enhanced approach is defined by the following equation:

LModel = LMask +LLinkPred (17)

Experiments
This section analyzes our approach via experiments. We de-
tail the implementation for reproducibility and insight into
results. We then compare our model’s performance with lead-
ing question-answering models and assess individual compo-
nents through ablation studies. Additionally, we explore the
method’s effectiveness on various downstream tasks.

Implementation Details
Datasets. We first evaluate our model on two multiple-choice
commonsense question-answering datasets: OpenBookQA
(OBQA) (Mihaylov, Clark, Khot, & Sabharwal, 2018) and
CommonsenseQA (CSQA) (Talmor, Herzig, Lourie, & Be-
rant, 2019). Simultaneously, considering the efficiency dur-
ing the model training process, we pre-build a multi-modal
resource base called MRB. MRB is constructed based on
the OBQA and CSQA datasets using our proposed knowl-
edge acquisition method, comprising 18,059 pairs of key-
words, 18,059 images, 18,059 description statements, and
18,059 scene graphs. Each keyword corresponds to an im-
age, and each image is associated with one description state-
ment and one scene graph. Additionally, we conduct ex-
periments on several other downstream reasoning tasks to
demonstrate the model’s comprehensive effectiveness, in-
cluding HellaSwag (Zellers, Holtzman, Bisk, Farhadi, &
Choi, 2019), Physical Interaction QA (PIQA) (Bisk, Zellers,
Gao, Choi, et al., 2020), and Social Interaction QA (SIQA)
(Sap, Rashkin, Chen, Le Bras, & Choi, 2019). For this study,
we use the original data split of the above dataset provided in
DRAGON (Yasunaga et al., 2022).

Evaluation Metrics. In question-answering tasks, accu-
racy (Acc.)(%) is a widely used metric for assessing how well
a model correctly answers given questions. It is defined as
the ratio of the number of questions correctly answered by
the model to the total number of questions in the dataset.

Baselines. The models we compare with include
DRAGON, GreaseLM (X. Zhang et al., 2022), QA-
GNN (Yasunaga, Ren, Bosselut, Liang, & Leskovec, 2021),
MHGRN (Feng et al., 2020), and GconAttn (X. Wang et al.,
2019), all of which utilize textual knowledge graphs. Addi-
tionally, we compare our model with RoBERTa-Large, which
does not incorporate any knowledge graph.

Experiment Settings. To ensure rigorous comparison, we
adopt the DRAGON model as the base model and perform
basic masked language modeling and knowledge sub-graph
link prediction pretraining on the same text data with an equal
number of training steps. Therefore, the only difference is
that our model utilizes multi-modal knowledge and applies
corresponding feature processing during the pretraining pro-
cess. Hyperparameters for pretraining RoBERTa-Base (for
image description and scene graph embedding), ViT-Base
(for image embedding), and embedding for question-answer
text and knowledge sub-graphs are detailed in (Y. Liu et al.,
2019), (Dosovitskiy et al., 2021), and (X. Zhang et al., 2022)
respectively. Experiments run on an Ubuntu system with 160
GB RAM and four Tesla V100 SXM2 32GB GPUs.

Main Results
We compare the experimental results of our model with
various existing state-of-the-art commonsense question-
answering models on the development and test datasets of
OpenBookQA and CommonsenseQA, as shown in Table 1.
We observe consistent improvements in our model compared
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Table 1: The table displays the performance comparison of our proposed model with various existing state-of-the-art question-
answering models on the development (Dev) and test datasets of OpenBookQA (OBQA) and CommonsenseQA (CSQA).

Model OBQA Dev Acc. (%) OBQA Test Acc. (%) CSQA Dev Acc. (%) CSQA Test Acc. (%)
RoBERTa-Large 66.8 (±1.1) 64.8 (±2.4) 73.1 (±0.5) 68.7 (±0.6)
GconAttn 64.3 (±1.0) 61.9 (±2.4) 72.6 (±0.4) 68.6 (±1.0)
MHGRN 68.1 (±1.0) 66.9 (±1.2) 74.5 (±0.1) 71.1 (±0.8)
QA-GNN - 67.8 (±2.7) 76.5 (±0.2) 73.4 (±0.9)
GreaseLM - 66.9 (±1.0) 78.5 (±0.5) 74.2 (±0.4)
DRAGON 70.8 (±1.3) 72.0 (±0.9) 79.3 (±0.3) 76.0 (±0.5)
Our Model 75.8 (±0.8) 74.9 (±0.6) 81.4 (±0.3) 78.6 (±0.4)

to the fine-tuned language model (RoBERTa-Large) and ex-
isting language models augmented with textual knowledge
graphs (DRAGON, GREASELM, etc.) on both datasets.
Specifically, on the OBQA test dataset, our model achieves
a 74.9 accuracy, representing a 16% and 4.0% increase over
RoBERTa-Large and DRAGON, respectively. Similarly, on
the CSQA test dataset, our model achieves a 78.6 accuracy,
reflecting a 14% increase compared to RoBERTa-Large and a
3.4% improvement compared to DRAGON. The experimen-
tal results indicate that the MKE framework proposed in this
paper, which utilizes multi-modal knowledge for enhance-
ment, performs better in supporting auxiliary reasoning.

We also examine our model’s performance on complex rea-
soning problems, as shown in Table 2. Building on previous
works (X. Zhang et al., 2022), we categorized complex ques-
tions based on the presence of negation (Neg), the presence
of conjunction (Coj), the presence of hedge terms (Hed), the
number of entity mentions (set at 10, Ent10), and the number
of prepositional phrases (set at 3, PP3). Here, the presence of
negation or conjunction indicates logical multi-step reason-
ing, while the presence of hedge terms indicates engagement
with complex textual nuance. Additionally, having more en-
tity mentions or prepositional phrases indicates the involve-
ment of more reasoning steps or constraints. From the ex-
perimental results, it can be observed that our model outper-
forms the fine-tuned language model and existing knowledge
graph-augmented models significantly across all these cate-
gories. Specifically, the negation and conjunction categories
show improvements of 3.2% and 4.1%, respectively, over
DRAGON, indicating our model’s superior logical multi-step
reasoning capabilities. The hedge category shows a 5.7%
improvement over DRAGON, suggesting that our model can
represent more complex textual nuances. The entity mentions
and prepositional phrases categories show 6.3% and 5.4%
improvements, respectively, over DRAGON, indicating our
model handles more reasoning steps or constraints effectively.

Ablation Studies

In this section, we present comprehensive ablation studies to
rigorously assess our model’s various techniques. We first
examine the impact of architectural components on perfor-
mance. Next, we explore how different modal knowledge af-

Table 2: Accuracy on OBQA+CSQA dev datasets for ques-
tions involving complex reasoning.

Model Neg Coj Hed Ent10 PP3
RoBERTa-Large 61.7 70.9 68.6 74.5 73.1
QA-GNN 65.1 74.5 74.2 78.6 71.3
GreaseLM 65.1 74.9 76.6 79.4 73.6
DRAGON 75.2 79.6 77.5 83.5 80.9
Our Model 77.6 82.8 81.9 88.7 85.2

Table 3: Experimental results correspond to the components
(MKU, MKF) and their combination (MKU+MKF).

Model OBQA Acc. CSQA Acc.
Base 72.0 76.0
Base + MKU 74.1 77.9
Base + MKF 72.6 76.5
Base + MKU + MKF 74.9 78.6

fects inference. Finally, we investigate the impact of specific
techniques in knowledge fusion on the model’s results.

The Architecture. We conduct comprehensive ablation
studies on our framework’s components (Table 3). Base rep-
resents the base model. MKU represents the utilization of our
proposed multiple components for multi-modal knowledge
acquisition, embedding, alignment, and interaction. MKF
represents the use of our designed component for knowledge
fusion without utilizing the multi-modal knowledge proposed
in this paper. On the OBQA test dataset, MKU improves the
model’s accuracy from 72.0 to 74.1, and the MKF component
enhances it from 72.0 to 72.6. The combination (MKE) of
MKU and MKF further boosts the model’s accuracy to 74.9.
Similarly, on the CSQA test dataset, MKU boosts accuracy
from 76.0 to 77.9, and MKF to 76.5, with MKE enhancing it
to 78.6. The combination (MKE) of MKU and MKF further
improves the model’s accuracy to 78.6. These results validate
our MKE framework’s effectiveness in improving accuracy.

Multi-modal Knowledge. We assess the effectiveness
of different modal knowledge in our multi-modal knowledge
framework (see Table 4). Here, EI denotes image informa-
tion, EC denotes image description information, and ES de-
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Table 4: Ablation studies on multi-modal knowledge.

Model OBQA Acc. CSQA Acc.
Base 72.0 76.0
Base + EI 73.2 77.1
Base + EC 72.8 76.7
Base + ES 73.0 76.9
Base + EI + EC + ES 74.1 77.9

notes scene graph information. These experimental results
demonstrate the effectiveness of each modality’s data. Fur-
thermore, the combined utilization of all modalities yields op-
timal accuracy performance, as it leverages the fine-grained
visual information of the image, such as the spatial relation-
ship between objects, and colors and sizes of objects, as well
as the information of the whole image. For specific exam-
ples corresponding to Figure 1, qualitative experimental re-
sults are depicted in Figure 3. Image information provided
global context and detailed size information about characters
like Patrick and SpongeBob. Image description information
offered fine-grained details like the skin colors of Tom and
Jerry. Scene graph information included intricate relational
details, such as the connections between Mickey Mouse and
Donald Duck with specific items like pants and hats.

cartoon

mouse

cartoon

duck

pants hat

wearingwearing

near

Scene Graph GenerationImage Captioning

Scene Graph InformationImage Description Information

A gray cartoon cat and a brown 

cartoon mouse are holding hands.

VTE

Image Information

Figure 3: Qualitative analysis of multi-modal knowledge.

Knowledge Fusion. We conducted ablation experiments
on the specific techniques of the proposed knowledge fusion
component within the MKE framework, as shown in Table 5.
Here, TF represents the fusion of question-answer textual in-
formation, GF represents the fusion of knowledge sub-graph
information, and MKF represents the fusion of both question-
answer textual information and knowledge sub-graph infor-
mation. The experiments are performed under the condi-
tion of using existing multi-modal knowledge (Base + MKU).
The experimental results demonstrate that on the OBQA test
dataset, TF improves the model’s accuracy from 74.1 to 74.7,
GF enhances the accuracy from 74.1 to 74.5, and MKF im-
proves the model’s accuracy from 74.1 to 74.9. On the CSQA
test dataset, TF increases the model’s accuracy from 77.9 to
78.4, GF enhances the accuracy from 77.9 to 78.2, and MKF
raises the model’s accuracy from 77.9 to 78.6. These results
demonstrate the effectiveness of the techniques within the
knowledge fusion component. Both the fusion of question-

Table 5: Ablation studies on knowledge fusion.

Model OBQA Acc. CSQA Acc.
Base + MKU 74.1 77.9
Base + MKU + TF 74.7 78.4
Base + MKU + GF 74.5 78.2
Base + MKU + MKF 74.9 78.6

Table 6: Experiment results on more downstream tasks.

Model HellaSwag PIQA SIQA
RoBERTa-Large 82.3 79.4 75.9
QA-GNN 82.6 79.6 75.7
GreaseLM 82.8 79.6 75.5
DRAGON 85.2 81.1 76.8
Our Model 87.6 83.9 78.7

answer textual and knowledge sub-graph contribute to im-
proving the model’s accuracy to a certain extent, and their
combination achieves the best experiment results.

More Downstream Evaluation Tasks
We also conducted fine-tuning and comprehensive evalua-
tion on several downstream reasoning tasks, with detailed
experimental results presented in Table 6. Across various
reasoning tasks, including HellaSwag, PIQA, and SIQA,
our model consistently outperforms the fine-tuned language
model (RoBERTa-Large) and existing knowledge graph-
augmented models (QA-GNN, GreaseLM, DRAGON). No-
tably, for SIQA reasoning tasks, the images are retrieved
based on context content, not question-based. Specifically,
when compared to DRAGON, our model’s accuracy in-
creased by 2.8%, 3.5%, and 2.5% in the HellaSwag, PIQA,
and SIQA reasoning tasks, respectively. This underscores
our model’s robust performance and versatility, highlighting
its potential for widespread application in diverse reasoning
tasks and laying a strong foundation for its practical utility.

Conclusion
Inspired by the important role of multi-modal knowledge
such as vision information in human commonsense question-
answering, we propose a commonsense question-answering
framework MKE based on the enhancement of multi-modal
knowledge, combining textual information with multi-modal
knowledge to provide more accurate user-oriented common-
sense question answers. We integrate multi-modal knowledge
into a CQA system, introduce a parallel embedding tech-
nique for embedding this multi-modal knowledge, and em-
ploy an alignment-interaction-fusion mechanism to facilitate
the seamless integration of this multi-modal knowledge. Ex-
tensive experiments on OBQA and CSQA datasets validate
our method’s effectiveness in both conventional and complex
reasoning tasks. Experiments on downstream reasoning tasks
further confirm our proposed method’s broad effectiveness.
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