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Abstract 25 

Modular type I polyketide synthases (PKSs) are multifunctional proteins that are comprised of 26 

individual domains organized into modules. These modules act together to assemble complex 27 

polyketides from acyl-CoA substrates in a linear fashion. This assembly-line enzymology makes 28 

engineered PKSs a potential retro-biosynthetic platform to produce fuels, commodity chemicals, 29 

speciality chemicals, and pharmaceuticals in various host microorganisms, including bacteria and fungi. 30 

However, the realization of this potential is restricted by practical difficulties in strain engineering, 31 

protein overexpression, and titer/yield optimization. These challenges are becoming more possible to 32 

overcome due to technical advances in PKS design, engineered heterologous hosts, DNA synthesis and 33 

assembly, PKS heterologous expression, and analytical methodology. In this review, we highlight these 34 

technical advances in PKS engineering and provide practical considerations thereof. 35 

Keywords 36 
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1. Introduction 39 

Retrobiosynthesis, an approach to design de novo biosynthetic pathways, has enabled the 40 

production of various useful chemicals, including biofuels [1] and drugs [2]. In this approach, design 41 

starts from the target molecule and proceeds backwards to precursors by considering stepwise 42 

biochemical reactions. Modular type I polyketide synthases (PKSs) have the potential to be a versatile 43 

retro-biosynthetic platform for its collinear and modular biosynthetic logic. Native PKSs catalyze the 44 

formation of carbon-carbon bonds in an assembly-line manner to synthesize the scaffolds of complex 45 

natural products, such as macrolides (e.g. 6-deoxyerythronolide B) [3], polyenes (e.g. α-lipomycin) [4], 46 

and polyethers (e.g. salinomycin) [5]. In this biosynthetic process, each module of a PKS catalyzes a 47 

two-carbon elongation followed by potential reductions. During elongation, the acyltransferase (AT) 48 

domain loads a specific malonyl-CoA analog onto the phosphopantetheinyl group of the acyl-carrier 49 

protein (ACP) domain. This phosphopantetheinyl group is derived from the essential post modification 50 

of PKS via phosphopantetheinyl transferases (PPtases). After loading, the ketosynthase (KS) domain, 51 

which is primed with an acyl group (a starter acyl group or an acyl chain formed in the previous module), 52 

catalyzes a Claisen condensation to fuse the acyl group with the decarboxylated malonyl unit. After 53 

elongation, if present, the ketoreductase (KR) domain stereoselectivity reduces the β-ketone to a 54 

hydroxyl group. The dehydratase (DH) domain can then catalyze a dehydration, resulting in the loss of 55 

this hydroxyl group to form an α-β double bond. Finally, the enoylreductase (ER) domain can reduce 56 

this α-β double bond to form a saturated bond. The oxidation state of the β-carbon depends on the 57 

presence of reductive domains in each module. Following rounds of elongation and reduction, the acyl-58 

chain is released by a thioesterase (TE) domain by cyclization to form a macrolactone or hydrolysis to 59 

form a linear product.  The collinearity of the PKS biosynthetic process results in a diversity of products 60 

due to different AT substrate specificities and varying degrees of reductions in each module, and the 61 

different module organizations (Fig. 1). 62 

  63 

Many fundamental studies used engineered PKSs as a retro-biosynthetic platform by 64 

conducting domain modifications, domain swaps, and module rearrangements; these results have been 65 



extensively reviewed elsewhere [6–9]. These studies indicated that there is still a large gap between the 66 

promise of PKS engineering and reality, especially for constructing novel multi-module PKSs. Hence, 67 

compared to complex natural products, commodity chemicals or biofuels bearing simple structures are 68 

more realistic targets for PKS engineering [8]. The production of these targets only requires connecting 69 

a limited number of PKS modules (usually ≤ 2). However, even for these simple targets, unique 70 

challenges emerge when engineering PKSs to produce compounds in vivo. Besides the fundamentally 71 

mechanistic understanding of PKS biosynthesis, these challenges stem from the practical difficulties in 72 

novel PKS design, host selection, large DNA fragment synthesis and assembly, target production, and 73 

product detection (Fig. 1). In this review, we highlight the state-of-the-art technical advances that deal 74 

with these challenges and provide practical considerations for PKS engineering.  75 

2. PKS design 76 

To determine a target molecule for production using PKSs, both economic and technical 77 

considerations must be evaluated. First, the candidate should be assessed for cost and energy efficiency. 78 

Next, retro-biosynthetic analysis can be used to evaluate the feasibility for the candidate molecule to be 79 

made through PKS mechanisms. Once a candidate is established to be a feasible target molecule, an 80 

initial biosynthetic pathway may be designed using software tools (Fig. 2). 81 

 82 

Deciding on a target molecule depends on economic feasibility, which reduces to evaluating 83 

the value of the candidate against the cost of its production. An estimate of the candidate's monetary 84 

value can be established based on existing commercial value, if known. Otherwise, the value should be 85 

estimated according to the candidate’s potential applications or molecules with similar functions [10]. 86 

To determine production cost, a techno-economic analysis that considers molecular precursors, energy 87 

requirements, and production time may be performed [11]. Finally, it is important to consider if the 88 

target molecule can be produced in a more practical or economically favorable means through other 89 

biosynthetic pathways. While PKSs have recently been engineered to produce short-chain ketones, 90 

potential gasoline blending agents, from plant biomass at titers of 1 g/L [12], fatty acid and isoprenoid 91 



synthesis are currently more established production pathways with higher yields [13]. This holistic 92 

economic analysis of the target molecule can guide the extent of engineering efforts required for 93 

production. 94 

 95 

Once established as economically feasible, a retro-biosynthetic analysis can determine a 96 

possible pathway for attaining the compound. In this process, the candidate should be deconstructed by 97 

carbon-carbon bond breaking according to PKS biosynthetic logic. Engineered PKSs modular nature 98 

can be leveraged to programmatically produce non-natural compounds. As such, extensive research has 99 

been performed to understand the rules concerning domain swapping to control chain extender unit 100 

selection at the acyltransferase (AT) domain and the degree of β-carbonyl reduction by the 101 

ketoreductase (KR), dehydratase (DH), and enoyl reductase (ER) [14–16]. For example, the swapping 102 

of non-native ATs has been successfully achieved to switch from methyl-malonyl to malonyl extension 103 

[17], and research has been conducted to discover AT’s that accept extender units with exotic sidechains 104 

(phenyl, allyl, etc.) [18, 19]. The principles of domain swapping in PKSs are maturing, and there is a 105 

wealth of information to determine viability for novel PKS products [9, 20]. In parallel, considerable 106 

progress has been made to engineer PKS domains with more traditional protein engineering methods 107 

(e.g. mutagenesis) [21]. With the expanding research on the engineering possibilities of PKSs, the range 108 

of molecules that are accessible through PKS biosynthetic pathways is continuously growing. 109 

 110 

With a viable target molecule determined, software enables the rapid identification of natural 111 

PKS domain candidates to be combined into a suitable catalytic system. Most recently, the free, online 112 

software package ClusterCAD [22] has been developed for in silico engineering of PKS pathways to 113 

achieve synthesis of a specified product. ClusterCAD semi-quantitatively determines the similarity of 114 

the target molecule to the native substrates of an annotated database of biosynthetic gene clusters. Users 115 

may additionally specify design constraints, such as native substrate size similarity or AT extender 116 

selectivity, to narrow the number of possible routes to the product. The software then proposes 117 

biosynthetic pathways that combine components from multiple PKSs that meet the design criteria. 118 

ClusterCAD is also just one of the many available in silico tools that help guide the engineering process. 119 



The identification of biosynthetic loci for every known secondary metabolite class [23], the structure-120 

based sequence analysis of PKSs [24], and a crowd-sourced database of microbial PKS and NRPS gene 121 

clusters [25] are all accessible from present software tools. Despite such advances in our understanding 122 

of PKS engineering, not all design rules for these enzymatic systems have yet been elucidated. As a 123 

result, an experimental, combinatorial approach to produce the output PKS systems is often still the 124 

most effective method for successful PKS engineering.   125 



3. Host selection  126 

The growth properties of the host organism are important to take into account when selecting a 127 

heterologous host for PKS production. Many natural polyketide producing microbes are not culturable 128 

in laboratory conditions [26] or grow very slowly in laboratory conditions as is the case with lichen [27] 129 

and thus are not suitable hosts for heterologous expression. Bacteria from the genus Streptomyces are 130 

common heterologous hosts for PKSs due to their status as prominent PKS producers but they can 131 

frequently present issues for industrial scale-up including slow growth and the tendency to form 132 

mycelial clumps [28], the latter of which has been shown in some cases to be important in the activation 133 

of biosynthetic gene clusters [29]. Despite that, Streptomyces continue to be one of the most popular 134 

industrial heterologous hosts for polyketide products and major efforts have been put in place to 135 

engineer strains that do not form clumps and grow quickly [30]. Another growth property of interest 136 

includes the carbon and energy sources used by the heterologous host. Heterologous hosts such as 137 

Pseudomonas putida which consume a wide variety of lignin compounds as a carbon source [31] or the 138 

cyanobacterium Synechococcus elongatus, which can use light as an energy source and CO2 as a carbon 139 

source [32] have been adapted for the production of PKSs (Table 1).  140 

 141 

The availability of genetic tools for a particular host is of great aid to the task of genetically 142 

engineering a host to heterologously produce polyketides. Most common heterologous hosts have well 143 

developed methods for transformation, conjugation, or transduction of vectors. Of particular importance 144 

for controlling expression levels heterologously is a comprehensive list of compatible promoters and 145 

RBSs (Fig. 3(A)). These are well known for classic heterologous hosts like E. coli [33] and there have 146 

been successful efforts to develop promoter-RBS libraries for Streptomyces [34]. Ultimately, genomic 147 

integration of engineered gene clusters is desired in industrial heterologous host strains as it eliminates 148 

the need for selection pressures such as antibiotics and provides a more stable and consistent expression 149 

of genes [35]. Tools for genomic integration─such as site-specific integrases, homologous 150 

recombination-based integration vectors, and CRISPR-Cas9─are widely available for common hosts 151 

like E. coli and have also been adapted for Streptomyces [36–38]. As these tools continue to be 152 



developed for Streptomyces and other suitable PKS hosts the ability to heterologously produce PKSs 153 

will continue to improve. 154 

  155 

When selecting a host for heterologous expression one must consider the existing metabolic 156 

infrastructure to ensure that the host contains all the precursors and tailoring enzymes needed to produce 157 

the desired polyketide. Among the most important things to consider is the expression of a compatible 158 

PPTase [39] (Fig. 3(B)). As mentioned above, PPTases are responsible for activating ACPs by 159 

modifying the active site serine with a phosphopantetheinyl moiety. To ensure the heterologous host 160 

can phosphopantetheinylate the engineered PKS in question it is important to ensure the host expresses 161 

an appropriate PPTase. While many natural type I PKS producers such as Streptomyces have native 162 

PPTases, many common hosts do not and a PPTase must be heterologously expressed. One of the most 163 

common PPTases used in heterologous PKS expression is Sfp from Bacillus subtilis because it is 164 

capable of phosphopatetheinylating a wide variety of type I PKS and NRPS carrier proteins [40, 41]. 165 

However, Sfp may not be active on certain PKSs [42], thus it is important to check for 166 

phosphopantetheinylation via proteomics methods [43]. Another important prerequisite is the 167 

availability of precursors such as extender units and starter acyl-CoAs. The most common extender 168 

units used by PKSs are malonyl-CoA and methylmalonyl-CoA [44] although there do exist a variety of 169 

rare extender units as seen in the biosynthesis of zwittermycin [45], chlorizidine [46], or unnatural 170 

extender units [47] that can be incorporated by engineered PKSs (Fig. 3(C)). While all organisms 171 

produce malonyl-CoA for fatty acid synthesis the ability to produce methylmalonyl-CoA is absent from 172 

many common hosts such as E. coli and S. cereviseae. This challenge was overcome in E. coli by the 173 

development of the K207-3 strain which has both Sfp and a propionyl-CoA carboxylase present to 174 

produce intracellular methylmalonyl-CoA [48]. Ultimately a researcher must determine what precursors 175 

and tailoring enzymes are necessary for the production of their desired molecule and must take steps to 176 

either engineer the heterologous host to produce these precursors or find a heterologous host that 177 

naturally produces these precursors and tailoring enzymes. 178 

 179 



The stability and toxicity of the target molecule in the heterologous host must be evaluated. It 180 

is possible for the target molecule to be toxic to the host, therefore it is important to do a growth 181 

inhibition assay if a sample of the target molecule is available. Additionally, it is possible for the target 182 

molecule to be consumed as a carbon source by the host organism. This can be determined by growing 183 

the organism on the target molecule as a sole carbon source if possible. Finally, it is possible for the 184 

target molecule to be modified or unstable in the cell and this can be detected by incubating the target 185 

molecule in cell lysate before extraction and analysis. 186 

4. DNA synthesis and assembly 187 

After the target PKS organization and host are determined during the design stage, the careful 188 

consideration of the strategy for DNA synthesis and assembly of PKS genes are needed in the build 189 

stage (Fig. 4). To expedite the whole engineering process, automation of the steps in the build stage is 190 

preferable, although some challenges exist. 191 

 192 

PKSs are typically encoded by a series of genes clustered in the genome of the producing 193 

organisms [49]. Thus, the cloning and expression of PKSs can be achieved by acquiring the genomic 194 

DNA (gDNA) harboring the entire cluster from a gDNA library construction. In addition to the phage-195 

mediated homologous recombination-based methods [50], transformation-associated recombination 196 

(TAR)-based techniques have been developed to capture large biosynthetic gene clusters from 197 

environmental DNA or gDNA samples. These techniques utilize the native in vivo homologous 198 

recombination of budding yeast Saccharomyces cerevisiae, which occurs in much higher frequency 199 

compared to ligation or non-homologous end joining methods [51]. On the other hand, in vitro 200 

homology-based methods such as Gibson assembly and sequence- and ligation-independent cloning 201 

(SLIC) methods are advantageous over in vivo methods in the turnaround time, although the construct 202 

size is typically smaller. 203 

  204 



If the PKS genes are heterologously expressed and require DNA refactoring like codon 205 

optimization, it is most likely that de novo DNA synthesis is needed. Although the trends of price per 206 

base for DNA sequencing and column-based oligonucleotide synthesis seem to have reached plateaus 207 

in recent years, the cost for gene synthesis continues to decrease [52]. As an alternative to outsourcing 208 

DNA synthesis, array-based gene synthesis may be carried in house, followed by error correction and 209 

verification [53]. In addition, enzymatic de novo synthesis of oligonucleotides with terminal 210 

deoxynucleotidyl transferase (TdT)-deoxynucleotide triphosphates (dNTPs) conjugates may serve as a 211 

promising basis for enzymatic oligonucleotide synthesizer [54]. Online tools such as JBEI ICE public 212 

registry [55] and SynBioHub [56] may facilitate users to search and share the designs of DNA parts. 213 

  214 

Because PKS genes are typically modular, the modules are usually exchanged during PKS 215 

engineering in combination with various promoters, terminators, ribosome-binding sites (RBSs), linker 216 

domains, and other parts. If DNA cloning is high-fidelity, sequencing the individual parts may be 217 

avoided to reduce cost and effort and save time. Different parts could then be assembled by several 218 

methods including yeast assembly [57], Gibson assembly [58], and Golden Gate assembly [59]. In the 219 

case of PKS gene construction, although yeast assembly takes a few days, it has the advantages of 220 

generating large final gene constructs and promoting recombinational joining of unrelated DNA 221 

fragments with the aid of “stitching oligonucleotides”, compared with in vitro methods [60]. The 222 

construction of shuttle vectors that allow amplification, replication, and expression in S. cerevisiae, E. 223 

coli and the selected host would greatly facilitate this process, as well as the development of automation 224 

method such as high-throughput transformation of S. cerevisiae using liquid handling robots [61]. 225 

5. Production and analysis 226 

 227 

The introduction of the assembled PKS genes into the selected host yields the candidate strain, 228 

which needs the appropriate conditions to produce the target molecules. After production, analytical 229 

methods allow researchers to assess the production of the desired product and/or possible shunt products 230 



to evaluate the performance of the engineered PKS. Finally, troubleshooting and optimization can be 231 

facilitated by detection of intermediates and high throughput screens. 232 

 233 

A major consideration in the production stage is the selection of a growth medium. A well-234 

selected medium facilitates the strain’s growth and PKS biosynthesis [62, 63] and ultimately increases 235 

the chance of detecting the final product [64], considering most engineered PKSs result in a decreased 236 

production [6, 8]. The media preferences for the PKS production vary from host to host. For common 237 

heterologous hosts the media selection can be straightforward since the media for these organisms are 238 

widely used and commercially available. Additionally, PKS production in these organisms is clear, as 239 

the precursor biosynthetic genes and PPtase gene are usually under the control of strong constitutive 240 

promoters [48, 65, 66]. Hence, rich media are usually the first choice for these hosts. Examples include 241 

LB medium used to produce lactones [67, 68] and short chain ketones [17] by engineered PKSs in E. 242 

coli, while YPD medium was used to produce lactones by engineered PKSs in Saccharomyces 243 

cerevisiae [65].  However, as most native PKS producers are not model organisms, the media selection 244 

could be challenging when these organisms are chosen as hosts. Rich media usually suitable for cell 245 

growth may not be suitable for PKS production in these hosts, since these hosts typically produce their 246 

native PKSs under nutritional deficiencies [69]. Therefore, for the PKS production in these non-model 247 

hosts, production mediums screens are usually required to produce the desired molecules [64, 70] 248 

(Table 1).  249 

  250 

Once production of the target molecule is confirmed, media optimization is required to 251 

maximize the yield and reduce cost. This optimization is crucial for low-value commodity 252 

chemicals/biofuels production. In this process, carbon source, nitrogen source, phosphate, and other 253 

nutrients are carefully adjusted via a one-factor-at-a-time method or statistical method [71]. In the case 254 

of short chain ketone production by an engineered PKS in S. albus, when the carbon source was 255 

supplemented by the plant-biomass hydrolysates the product titer increased more than four-fold and 256 

further titer increases were achieved by feeding specific acyl-CoA precursors [12]. Aside from 257 



traditional methods, recently developed machine learning algorithms have great potential to accelerate 258 

the media optimization process [72].  259 

  260 

Researchers receive feedback regarding the functionality of their engineered PKS when 261 

analytical methods are used to detect reaction products. Gas/liquid chromatography coupled to mass 262 

spectrometry (GC/LC-MS)-based methods are usually the first choice for analysis [12, 73, 74] because 263 

of their low detection limit for commodity chemicals and biofuels. However, these methods only detect 264 

released molecules and leave the PKS biosynthetic pathway a black box. Engineered PKSs frequently 265 

fail to produce any free products in vivo in the first Design-Build-Test-Learn (DBTL) cycle. Thus, other 266 

analytic approaches are needed to debug these failed PKSs for the next DBTL cycle. Transcriptome 267 

[75] and proteomics [76] analysis are well developed to detect the expression of PKSs. Ppant ejection 268 

methods are designed to detect on-line PKS intermediates [43]; this method was used to optimize an 269 

adipic acid producing PKS in vitro [74] (Fig. 5(B)). Together, these analytical methods can be used 270 

effectively to detect the production of target molecules or help troubleshoot malfunctioning modules. 271 

 272 

Aside from these ‘rational’ approaches, high throughput screening/selection is another possible 273 

route to create a functional PKS in vivo. With well-developed mutagenesis methods, generating a big 274 

mutant library is feasible for a specific PKS [77]. The methods used to select or screen for an improved 275 

mutant result in the largest bottleneck in a high throughput approach. Screening via GC/LC-MS systems 276 

is a possibility [78], however, despite the availability of high throughput GC/LC-MS systems that have 277 

reached the speed of several seconds per sample [79], it is still ineffective when the size of mutagenesis 278 

library becomes large (>1010). High throughput detection could be achieved by tying the production of 279 

the target molecule with a detectable signal or with the viability of the hosts [80]. For most compounds 280 

lacking bioactivity or a chromophore, biosensors are usually required to perform the connections. 281 

Although to our knowledge there are no reported cases of a biosensor being coupled with type I PKS 282 

production in vivo, some biosensors are reported to detect chemicals that are made or can be possibly 283 

made by engineered PKSs, such as diacids [74, 81], lactams [82–84], and pyrones [85, 86]. These 284 

compounds are promising targets for high throughput PKS engineering (Fig. 5(B)). 285 



 286 

6. Conclusions 287 

 288 

Currently, engineered PKSs can produce several products that are not naturally occurring 289 

products in microorganisms. These accomplishments benefit from an expanded understanding of type 290 

I modular PKS biosynthetic mechanisms, as well as technical advances summarized here. Similar 291 

advances will continue to emerge and promote PKS engineering to be a reliable retro-synthetic platform 292 

for the production of commodity chemicals and biofuels. We speculate that over the next few decades, 293 

an automatic solution to produce new chemicals by engineered PKS will be available. This technology 294 

will include an automatic retro-synthesis software, super hosts for PKS production, automatic DNA 295 

synthesis and assembly platforms, and high-throughput production and analytical methods. This has 296 

begun to be realized since these technologies have been developed in related fields such as PKS derived 297 

natural products discovery [80, 87–89]. By harnessing these advances in PKS engineering and synthetic 298 

biology technologies, we will be able to engineer PKS to access an extensive chemical space. 299 
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Table 1. Selected cases of engineered PKSs used to produce target chemicals in microbial hosts. 311 

 312 

Organism Strain Media Product Highest 

titer 

Reference 

Escherichia coli K207-3 Terrific 
Broth (TB) 

Short-chain ketone 4 mg/L [17] 

  K207-3 Luria-
Bertani 
(LB) 

Triketide lactone 23 mg/L [68] 

  BAP1 LB 6-deoxyerythronolide 
B (6-dEB) analog 

1 mg/L [90] 

  K207-3 LB Long side chain 
triketide lactone 

14.6 mg/L [91] 

Synechococcus 
elongatus 

AMC2302 BG11 Multimethyl-
branched fatty acid 

N/Aa [32] 

Streptomyces 
albus 

J1074 Modified 
042 

Short-chain ketone 1 g/L [12] 

Streptomyces 
coelicolor 

OP SCFM6‐2 Triketide lactone 500 mg/Lb [92] 

  CH999 R2YE Triketide lactone 3 mg/L [93] 

Streptomyces 
lividans 

K4.114/ 
K4.115 

R5 or R6 6-deoxyerythronolide 
B (6-dEB) analog 

20 mg/L [94, 95] 



Streptomyces 
venezuelae 

ATCC 
10712 

042 3-Hydroxycarboxylic 
acid 

13.8 mg/L [64] 

  N/Aa SCM Triketide lactone N/Aa [96] 

Saccharomyces 
cerevisiae 

BJ5464 YPD Triketide lactone 1 mg/L [65] 

 313 
a not available 314 
b with diketide feeding  315 



Fig. 1. Retro-biosynthetic analysis is a potential platform to bridge native PKSs and engineered PKSs, 316 

and the realization of this potential depends on the technical advances in PKS design, host selection, 317 

DNA synthesis and assembly, target production, and product analysis. The logic of PKS biosynthesis 318 

is illustrated in native PKSs. Acyltransferase (AT) loads the malonyl-CoA analogs (different Rα) to the 319 

acyl carrier protein (ACP). Catalyzed by ketosynthase (KR), the loaded malonyl-ACP decarboxylates 320 

and condenses with upstream acyl-ACP intermediate for chain elongation. Optional reduction domains 321 

(ketoreductase (KR), dehydratase (DH), and enoylreductase (ER)) reduce the β-ketone to an alcohol, 322 

double bond, or saturated bond (Rβ). After rounds of elongation and reductions, the final acyl chain is 323 

released by a thioesterase (TE) to form a macrolactone or linear product. Elongation domains are 324 

represented as blue sphere, optional reduction domains as green spheres, and release domains as purple 325 

spheres.  326 

  327 



Fig. 2. Economic and technical considerations in PKS design 328 

  329 



Fig. 3. Heterologous host selection must take into account the genetic tools available for the host as 330 

well as the metabolic precursors produced by the host. (A) Promoter/RBS libraries help control 331 

transcription and translation levels of heterologous proteins. (B) Appropriate PPTases are needed to 332 

adequately phosphopantetheinylate heterologous ACP domains. (C) Malonyl-CoA and methylmalonyl-333 

CoA serve as the most common extender unit precursors for type I PKSs though rare extender units 334 

exist. RBS - ribosomal binding site, PPTase - phosphopantetheinyl transferase, CoA-SH - coenzyme A, 335 

3’,5’-PAP – 3’,5’-phosphoadenosine phosphate. 336 

  337 



Fig. 4. DNA synthesis and assembly in new PKS construction. Purple square represents corresponding 338 

homology region for yeast assembly and Gibson assembly, or corresponding sticky end for Golden Gate 339 

assembly. gDNA - genomic DNA, RBS - ribosome binding site, 340 

Loading/Extension/Reduction/Termination - different modules of PKS genes, Linker - linker domains. 341 

  342 



Fig. 5. Proposed methods to troubleshoot the stalled PKS in the host: A) Ppant ejection, B) high 343 

throughput screen/selection. ESI - electrospray ionization, MS - mass spectrometry, CID - collision-344 

induced dissociation, HCD - higher-energy collisional dissociation, MS/MS - tandem mass 345 

spectrometry. 346 

  347 
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