
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Programming Safe Chemistry on Laboratories-on-a-Chip

Permalink
https://escholarship.org/uc/item/9np4m82c

Author
Ott, Jason

Publication Date
2019

Copyright Information
This work is made available under the terms of a Creative Commons Attribution-
NonCommercial License, availalbe at https://creativecommons.org/licenses/by-nc/4.0/

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9np4m82c
https://creativecommons.org/licenses/by-nc/4.0/
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Programming Safe Chemistry on Laboratories-on-a-Chip

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Jason Matthew Ott

December 2019

Dissertation Committee:

Professor Philip Brisk, Chairperson
Professor Vassilis Tsotras
Professor William H. Grover
Professor Mohsen Lesani

Copyright by
Jason Matthew Ott

2019

The Dissertation of Jason Matthew Ott is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

This endeavor has been one of the most formative experiences in my life. To say that

this was easy or simple would be nothing short of a lie. This has challenged, stretched,

destroyed, and rebuilt me in ways I could never imagine. Thankfully, I am surrounded by

advisors, family, and friends who were there to celebrate the successes, mourn the loses, and

encourage through the tough. This thesis, while my own work, is a product of the support,

mentorship, and grace from the people who surround me; this thesis wouldn’t exist without

you.

I would like to thank my advisor, Dr. Philip Brisk, I would not be here without his

patient mentorship and support through this program. To the rest of my committee: Dr.

Mohsen Lesani, who was patient and gentle with his instruction and advice; Dr. Grover,

whose questions and insight were always insightful and brought new perspective; Dr. Vassilis

Tsotras, whose interest and care for me spanned much more than just a student, thank you.

To Shelley, Ariana, Luciana, and Matteo: you have endured it all and I cannot

thank you enough. Your support, love, crafts, smiles, laughs, tears, scrapes, bumps, bruises,

and joy are what kept me going. You have been patient and sacrificed so much to participate

in this journey. You are deserving of more than acknowledgement.

To my parents and family who have and will always be my cheerleaders and support

me through the think and the thin, thank you.

To Dr. Skyler Windh and Dr. Prerna Budhkar, your encouragement and friendship

are, at some points what kept me going. I genuinely appreciate your friendship, and will

not forget the impact you’ve had on my life both professionally and personally.

iv

To Tyson, Lindsey, and the “boys”: the hours spent at the “farm” enjoying shared

food and company kept me (and Shelley) sane and helped refine countless ideas and avenues.

Tyson, you are a phenomenal sounding board for all things, and your wisdom is much

appreciated.

To Bashar Romanous, Saheli Ghosh, Ravdeep Pasricha, Jill Foster, Gaurav Jhaveri,

Ignacio del Castro, Carmen Solanas, Aditya Dhakal, and Nick Derimow: my life-long friends,

I cherish our friendship dearly and you guys have been better friends than anyone could

ask for.

To my lab mates: Dr. Brian Crites, Dr. Jeffrey McDaniel, Chad Davies, Serhan

Gener, Amin Kalantar, Phillip Park, Josh Potter, Maryam Shahcheraghi, Dr. Zachary

Zimmerman, and Jose Rodriguez Bourbon thank you for always having a “minute”, knowing

full well it will take far more time. You also suffered my idiosyncrasies, bad humor, and

silly opinions, thank you.

v

Previous publications were used to create this thesis, portions of them are reprinted using

the following permissions.

Copyright © 2018 ACM. Reprinted, with permission, from Jason Ott, Tyson Loveless,

Christopher Curtis, Mohsen Lesani, and Philip Brisk. BioScript: Programming Safe Chem-

istry on Laboratories-on-a-Chip, Object-Oriented Programming, Systems, Languages & Ap-

plication, 2018.

Copyright © 2019 ACS. Reprinted, with permission, from Jason Ott, Daniel Tan, Tyson

Loveless, William H. Grover, and Philip Brisk. ChemStor: Using Formal Methods to

Guarantee Safe Storage and Disposal of Chemicals, Journal of Chemical Information and

Modeling, 2019.

I would like to thank the following entities for their generous awards, fellowships and

stipends which made this research possible.

• UCR for their Dean’s fellowship aid, and

• The Department of Education for their Graduate Assistance in Areas of National

Need (GAANN) Fellowship.

vi

This dissertation is dedicated to:

• Jesus Christ, my savior, who has provided, to the very finest detail all the

provisions necessary to survive this program,

• My wife Shelley, whose patience and understanding cannot be understated and

whose selflessness through this process has not been overlooked or ignored,

• My kids: Ariana, Luciana, and Matteo. Let this be a reminder that God is

faithful to the very end. He will provide, even when things look terribly bleak,

his faithfulness is uncanny and unwaivering.

vii

ABSTRACT OF THE DISSERTATION

Programming Safe Chemistry on Laboratories-on-a-Chip

by

Jason Matthew Ott

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2019

Professor Philip Brisk, Chairperson

Laboratories-on-a-chip (LoC), including their programmable variants (pLoC) (both flow-

and droplet-based technologies), promise to fundamentally transform the life sciences through

miniaturization and automation. However, adoption of these devices lags given their pur-

ported advantages. The lack of adoption is a result of two shortcomings: programming a

valve or cell activation sequence is equivalent to that of an assembly language and system

LoC designers typically design devices by hand, fundamentally limiting the size and com-

plexity of the designed devices. Both shortcomings are symptomatic of missing abstractions

limiting all but the most intrepid of life scientists to leverage (p)LoC devices for simplistic

usages that are equivalent to a “hello, world”-level of complexity for their experiments and

devices.

This thesis introduces the necessary abstractions providing life science practition-

ers the ability to fully utilize the potential (p)LoC devices promise. The first abstraction is

a robust cookbook-style domain specific language (DSL) that allows practitioners to pro-

gram and execute experiments on droplet-based (p)LoC devices. The second is an extension

viii

to the DSL allowing flow-based (p)LoC system designers the ability to specify an exper-

iment and fabricate the corresponding device capable of executing the experiment, even

generating valve activations if desired. The third is a system that can provably protect a

life scientist from inadvertently mixing, storing, and/or disposing of chemicals that would

otherwise generate an explosion or lethal gasses. These abstractions allow practitioners to

fully leverage the promised potential (p)LoC devices have on their discipline in a safe and

easy manner.

ix

Contents

List of Figures xiv

List of Tables xviii

1 Introduction 1

2 Background & Related Work 5
2.1 Digital Microfluidic Biochips (DMFBs). 5
2.2 DMFB Compilation . 8

2.2.1 Interprocedural Register Allocation in High Level Synthesis 12
2.3 Continuous Flow Devices . 13
2.4 High-level Languages for Programmable Chemistry 16

2.4.1 Ontologies . 16
2.4.2 Laboratory Automation . 16
2.4.3 Device-Specific Languages for LoCs 17

2.5 Fabrication Methods . 18
2.5.1 Laminates . 18
2.5.2 Molding . 18
2.5.3 3D Printing . 19
2.5.4 Nanofabrication . 19

2.6 Automated Laboratory Safety . 20

3 BioScript 22
3.1 Introduction . 22
3.2 Overview . 24

3.2.1 BioScript Syntax and Semantics . 24
3.2.2 Example: PCR with Droplet Replenishment 25
3.2.3 Example: Synthesizing Acetaminophen 26
3.2.4 Type Systems and Safety . 28
3.2.5 Software & Hardware Architecture 29

3.3 Type System . 30
3.3.1 Syntax . 31

x

3.3.2 Operational Semantics . 32
3.3.3 Type Checking System . 34
3.3.4 Type Inference System . 39

3.4 Implementation . 42
3.4.1 BioScript . 42
3.4.2 The Type System . 42
3.4.3 Code Generation . 44

3.5 Evaluation . 45
3.5.1 Language . 45
3.5.2 Type System Evaluation . 47
3.5.3 Compilation Time . 50
3.5.4 Simulation Results . 51

3.6 Conclusion and Future Work . 52
3.6.1 Type System . 53
3.6.2 Compiler . 54

4 Extensions to BioScript 62
4.1 Introduction . 62
4.2 Overview . 64

4.2.1 Compilation Phase . 64
4.2.2 Synthesis Phase . 64

4.3 Compiler Design . 65
4.3.1 Context Insensitive Call Graph Analysis 66
4.3.2 Context Sensitive Call Graph Analysis 67

4.4 SIMD Semantics . 67
4.4.1 Implementation . 69

4.5 Conclusion . 70

5 Targeting Continuous-Flow Microfluidic Devices 77
5.1 Introduction . 77
5.2 System Design . 79

5.2.1 Designing an Assay . 79
5.2.2 Component Selection & Generation 82
5.2.3 Designing a Device . 83
5.2.4 Device Fabrication & Assay Execution 86
5.2.5 Application Mapping . 87

5.3 Results & Discussion . 88
5.3.1 Small Dilution Mixer — the “Mini-Mixer” 90
5.3.2 Medium Dilution Tree . 90

5.4 Future Work . 91
5.5 Conclusion . 93

xi

6 ChemStor 101
6.1 Introduction . 101
6.2 Overview of ChemStor . 102
6.3 Methods . 108

6.3.1 Chemical Compatibility . 108
6.3.2 Chemical Interaction Graph . 108
6.3.3 Chemical Storage . 109
6.3.4 Chemical Disposal . 110
6.3.5 Characterization of a Solution to the Chemical Storage Problem . . 110
6.3.6 Satisfiability Modulo Theories . 111
6.3.7 SMT Constraints . 112
6.3.8 Coalescing Strategy . 113
6.3.9 De-Coalescing Strategy . 114
6.3.10 No Solutions . 116

6.4 Results . 116
6.5 Conclusions . 120

7 Conclusion 122

A Assay Execution Videos 123
A.1 BioScript on Physical Hardware . 123

A.1.1 Image Probe Synthesis . 123
A.1.2 Titration . 123

A.2 MFSim Simulated Videos . 124

B BioScript Proofs 127
B.1 Helper Lemmas . 127
B.2 Proof of Progress . 134
B.3 Proof of Preservation . 143
B.4 Proof of Soundness . 156
B.5 Proof of Completeness . 164

C Syntax Study 173
C.1 Syntax Study: ELISA Protocols . 173

D Type System Tests 176
D.1 Real world Assays . 176
D.2 Synthetic Preventions . 178
D.3 Synthetic Successes . 180

E Languages 182
E.1 BioScript Assays . 183

E.1.1 PCR droplet Replenishment . 183
E.1.2 Probabilistic PCR . 183
E.1.3 Broad Spectrum Opiate . 184
E.1.4 Ciprofloxacin eLISA . 185

xii

E.1.5 Diazepam eLISA . 186
E.1.6 5-4-7 Dilution . 187
E.1.7 Fentanyl eLISA . 187
E.1.8 Morphine eLISA . 188
E.1.9 Morphine eLISA with Control Samples 188
E.1.10 Heroin eLISA . 190
E.1.11 Oxycodone eLISA . 190
E.1.12 Image Probe Synthesis . 191
E.1.13 Glucose detection . 191
E.1.14 PCR . 192
E.1.15 Neurotransmitter Sensing . 192

E.2 AquaCore Assays . 193
E.2.1 Glucose Detection . 193
E.2.2 PCR . 193
E.2.3 Imaging Probe Synthesis . 194
E.2.4 Neurotransmitter Sensing . 195

E.3 BioCoder Assays . 195
E.3.1 PCR . 195
E.3.2 Probabilistic PCR . 196
E.3.3 PCR Droplet Replenish . 197
E.3.4 Glucose Detection . 199
E.3.5 Image Probe Synthesis . 199
E.3.6 Neurotransmitter Sensing . 200

E.4 Antha Assays . 201
E.4.1 Glucose Detection . 201
E.4.2 Imaging Probe Synthesis . 203
E.4.3 PCR . 204
E.4.4 Neurotransmitter Sensing . 207

Bibliography 209

xiii

List of Figures

2.1 The electrowetting principle [108, 127]: applying an electrostatic potential to
a droplet at rest reduces the contact angle with the surface, thereby increasing
the surface area in contact with the droplet 6

2.2 A droplet is transported from control electrode CE2 to neighboring electrode
CE3 by activating CE3, and then deactivating CE2 (white: activated elec-
trode; black: deactivated electrode). 7

2.3 Left: A DMFB is a planar array of electrodes [138, 126, 70, 131, 76, 4]. Right:
Cross-sectional view. 7

2.4 The DMFB ISA supports five basic operations: transporting, merging, split-
ting, mixing and storage, in addition to I/O on the perimeter of the array. . 7

2.5 A DMFB (a) and it’s reconfigurable instruction set (b). 7
2.6 A DMFB compiler for biochemical programs without control flow. 9
2.7 Fig. 2.7a depicts a passive flow device that mixes two chemicals. The shape of

the channels perturbs the fluids inducing turbulence, causing them to mix.
A rotary mixer, Fig. 2.7b, uses control valves to circulate the input fluids
resulting in the fluids mixing by traveling through the mix component. . . . 15

3.1 PCR with droplet replenishment [92]. It uses the target-specific save instruc-
tion. 26

3.2 Safe assay for synthesizing acetaminophen [95] 26
3.3 Unsafe assay synthesizing acetaminophen [167]. Mixing water with acetoni-

trile creates hydrogen cyanide, an extremely poisonous and flammable gas.
Hence, this reaction may be unsafe. 27

3.4 The BioScript compiler, execution engine and DMFB device. 30
3.5 Syntax of BioScript ’s type system. 55
3.6 Evaluation rules . 56
3.7 Type checking rules. 57
3.8 Type inference rules . 58
3.9 DropBot device (a) and example execution, where (b) & (c) depict mixing

two droplets. 59
3.10 Example assay specified using Biocoder(Fig. 3.10a)[44, 72], Antha(Fig. 3.10b)[164],

AIS(Fig. 3.10c)[9], and BioScript(Fig. 3.10d). 60

xiv

3.11 The number of lines of code to specify Image Probe Synthesis, Glucose De-
tection, Neurotransmitter Sensing, PCR[9], Probabilistic PCR[112], PCR
w/ Droplet Replacement[92], and Opiate Detection[14, 117, 94] in AIS [9],
BioCoder [11, 73, 44], Antha [164], and BioScript . We were unable to specify
the latter three assays in AIS and Antha. 61

4.1 Synthensis is split into two phases: the Compiler phase is responsible for
traditional compilation techniques: transformation into SSI form, data-flow
analysis, CFG analysis, etc. The Synthesis phase translates an intermediate
representation to the necessary electrode activation sequence provided it can
solve the scheduling, placement, and routing problems. 65

4.2 Fig. 4.2a depicts a scientist who wishes to observe how a protein denatures in
the presences of differing concentrations of acid. Without SIMD operations,
a scientists would have to write the code depicted in Fig. 4.2b. Fig. 4.2c
illustrates how SIMD operations simplifies the same experiment. Reducing
the number of lines of code from 12 to just 2. 72

4.3 Two programs, Fig. 4.3a depicts BioScript ’s SIMD semantics, and Fig. 4.3b
depicts an assay using direct indexing. These two programs are semantically
identical. 73

4.4 A simple program targeting a DMFB device. The mix function combines the
two fluids passed as an argument. Every variable declaration triggers an I/O
request, drawing liquid from a reservoir, except for variables declared as a
result of the mix operation. 74

4.5 The abbreviated context sensitive call graph corresponding to Fig. 4.4. For
brevity and clarity, we omit explicit procedure entry and exit points, only
denoting return of control from a procedure being called and don’t include
call string information on edges. As this is context sensitive, a call path
cannot traverse both dotted and dashed lines. 75

4.6 Fig. 4.6a depicts where function foo might initially be placed when called
from line 8 in Fig. 4.4a. However, because different calling contexts will yield
different chip allocations, calling foo from a different location may force foo
to be placed in a different location. In this case, routing must be aware of
the changes to placement. Fig. 4.6b depicts what the calling context placed
onto the chip would look like at line 9 in Fig. 4.4a. bar is placed where foo
was originally placed. Routing must now move the fluidic variable defined in
line 2 of Fig. 4.4b to foo’s new placement, denoted by the vertical pinstripes.
The black electrodes, or registers, are used for storing fluids. They cannot
be used for general computation. 76

5.1 Fabricating flow-based devices begins with a BioScript program depicted in
Fig. 5.1a. After selecting components, the BioScript compiler builds a netlist:
Fig. 5.1b. A synthesis tool then attempts to both place the components on
a device Figure 5.1c and to route the connections prescribed in the netlist
Fig. 5.1d. If both placement and routing are successful, the device can be
fabricated (Fig. 5.1e) using any available fabrication processes. 95

xv

5.2 Overview of Xylograph[133, 119], which begins with an assay expressed in the
BioScript programming language. The compiler (1) then selects components
(2) while translating the assay into ParchMint, a form ingestible by Inkwell.
Inkwell then attempts to solve the placement and routing problems specific
to the input assay (3). If the assay yields a valid design, it can then be
fabricated and used to execute the original assay (4). 96

5.3 The job of a compiler: converting an input language (C++, Python) to ma-
chine code a specific architecture (x86, x64, ARM) can execute. The left side
of the dotted line compares the compilation process for traditional computer
architectures with that of microfluidic architectures. Relying on traditional
compiler techniques allows BioScript to target different architectures. . . . 97

5.4 The activation sequence required for loading 2 fluids, input 1 and input 2
(Figs. 5.4a and 5.4b) and mixing them (Figs. 5.4c and 5.4d). Red denotes
valves that are in a “closed” state while green denote an “open” valve. . . . 98

5.5 Figures 5.5a and 5.5b record the RGB histogram of the yellow and blue
channels before the mix operation, respectively. Figure 5.5c shows the color
histogram for the resulting mixed fluid. 98

5.6 Fig. 5.6a depicts the code required to build a dilution tree resulting in fluids of
0%, 33%, 66%, and 100% dilutions. Figure 5.6b is the corresponding Inkwell
placement and routing masks. Finally, Fig. 5.6c is the fabricated device. . . 99

5.7 Figures 5.7a and 5.7b record the RGB histograms of the input to the dilution
mixer. Figure 5.7c provides a visual of the output fluids, while Figs. 5.7d
to 5.7g show the color histograms for each of the output ports on the device.
Starting with Figs. 5.7a and 5.7d, we see an almost identical histogram; the
same holds true for Figs. 5.7b and 5.7g. The histogram for Fig. 5.7e shows a
markedly redder mixture, while Fig. 5.7f depicts a markedly greener mixture.
As expected, the ranges are distributed correctly, proving correct dilutions
at 0%, 33%, 66%, and 100% respectively. 100

6.1 Using ChemStor to safely dispose of leftover reactants from performing the
Belousov-Zhabotinsky (BZ) reaction. This simple scenario (based on real-
life events that culminated in a lab-destroying fire [13]) begins with three
reactants (cerium ammonium nitrate, malonic acid, and potassium bromate)
combined in dry form in a single container (A). A teaching assistant considers
placing this container beneath a leaky sink drain, which will add water to the
mixture. At this point, ChemStor constructs a chemical interaction graph
(B) containing vertices for each chemical in the proposed mixture. In this
graph, chemicals that may react with each other are linked with solid lines,
and chemicals that are identical and can be combined are linked with dotted
lines. After ChemStor calculates the chromatic number of the graph and
colors the graph (C), the chemicals can be safely added to different containers
based on their vertex colors (D). At this point, ChemStor would notify the
teaching assistant that water should not be added to the container with the
BZ reactants, the teaching assistant would avoid placing the container in a
wet location, and a significant laboratory accident would have been avoided. 104

xvi

6.2 Demonstrating the coalescing strategy. The affine edge (dotted line) in (A)
allows ChemStor to combine those chemicals into one vertex as shown in
(B), as long as the volumes v + v′ ≤ maxVolume(v, v′). 114

6.3 Demonstrating the de-coalescing strategy. To store a chemical whose volume
exceeds the capacity of any one shelf (A), ChemStor de-coalesces vertices
and splits the chemical into p parts to derive a feasible storage configuration
(B). 116

C.1 Fentanyl ELISA . 175

xvii

List of Tables

3.1 BioScript supported fluidic operations. 24
3.2 Compile time, the number of constraints gathered, and simulated execution

times for the safe and unsafe assays. 49
3.3 Experimental tests validating BioScript ’s type system; parentheses denote

reactive group(s) assigned to chemicals. Tests are documented incidents that
could have been prevented. I denote Incompatible errors (dangerous) based
on the EPA/NOAA reactive groups. 51

3.4 The impact of the proposed global placement method in comparison to a
prior approach that computes placement for each scheduled basic block in
isolation [45]. 52

5.1 The activation sequence at each time step for each valve required to mix two
fluids in a circular mixer. 88

5.2 Results demonstrating the time it takes to express an assay (using BioScript)
and then using Inkwell to synthesize the corresponding device. The results
clearly demonstrate how well this workflow performs at building successively
more complicated devices; a task that, when done by hand is exceedingly
arduous and onerous. Xylograph is shown to reduce human design time by
an average 22%. 89

6.1 Common notation in set theory and Boolean logic. 107
6.2 Results from using ChemStor to solve chemical storage and disposal prob-

lems from real-life incidents. In these incidents, faulty storage or disposal
configurations caused lab fires, explosions, or human harm and incurred sig-
nificant damages to lab spaces. All run times were averaged across 100 tests.
ChemStor was able to find a safe chemical storage or disposal configuration
for each incident in a few milliseconds. 118

6.3 Synthetic tests demonstrating the efficacy of ChemStor ’s coalescing and de-
coalescing strategies. All run times were averaged across 100 tests. We
crafted tests for the edges case: restrictive placement, relaxed placement,
coalescing success or failure, and decoalescing success or failure. If a solution
could not be found, the corresponding column is marked with a “No”. . . . 119

xviii

Chapter 1

Introduction

Laboratories-on-a-Chip (LoC), including their programmable counterparts (pLoC)

(both flow- and droplet-based) have been promising to revolutionize biological and chem-

ical experimentation for decades. Their promise to reduce waste, increase safety, increase

reproducability, and reduce experimentation cost is consistently verified, but has yet to be

realized. In part, this is a result of their inherent complexity and difficulty to leverage in

a meaningful manner that sufficiently augments the scientist — in short, they are difficult

to integrate into the laboratory. The difficulty in finding the right application for scientists

to make use of (p)LoC devices resides in the simple fact that the necessary abstractions

required to ease the use of p(LoC) technologies hasn’t existed. Historically, designing an

LoC device, and if necessary, subsequently programming it, uses what amounts to cumber-

some computer aided design (CAD) software and assembly-level programming, respectively.

Both require a significant amount of domain-area expertise, where a biologist or chemist

might have experience in CAD software, they most likely have no exposure to assembly-

1

level programming languages. Moreover, these CAD tools and assembly-level programming

languages make no guarantees to safety.

With the missing abstractions, it is no surprise that the promised benefits of LoC

devices haven’t been realized. Simply put: it is faster for scientists to manually mix, heat,

measure, or pipette than to use a (p)LoC device. This highlights the need for building

these abstractions so that scientists can safely and confidently use p(LoC) devices as their

primary tool for building and executing experiments.

In this dissertation we detail the necessary abstractions required to enable scientists

to widely and easily apply (p)LoC devices in their laboratory. We begin by introducing

a simple-to-use “cook-book” style domain specific language (DSL), BioScript , with it’s

provably safe type system in Chapter 3. BioScript uses an intuitive syntax that reads like

a recipe, making it easy to express complicated and nuanced assays that can execute on

droplet-based pLoC devices. The simplicity and robustness BioScript exhibits also makes

it a viable candidate as a standardized means to disseminate assays within the scientific

community. BioScript ’s type system also guarantees that no two chemicals that shouldn’t

be combined are combined. It also guarantees that no chemical is used more than once;

an interesting constraint not found in traditional computer science. We showcase BioScript

by detailing how effective its type system is at preventing incompatible chemicals from

mixing, showing its capability at preventing many reported laboratory incidents. We also

compare BioScript to other languages targeting (p)LoC devices and demonstrate its ability

to express the same assays using 67% less code. Finally, we demonstrate the utility of

2

BioScript by executing a standard biological assay on an industry-standard (p)LoC device:

Appendix A.1.

Chapter 4 details necessary extensions to the BioScript syntax to fully support

functions, including recursion. Because pLoC devices operate on reconfigurable comput-

ing platforms, there are a myriad of data-flow analysis that must occur for BioScript to

fully support functions, including recursion. We also extend the BioScript compiler to in-

clude Single-Instruction Multiple Data (SIMD) semantics; allowing the compiler to fully

utilize the inherent parallelizable properties (p)LoC devices enjoy. Part of the inclusion of

the SIMD semantics include introducing a new instruction which allows scientists to easily

create dilution trees with a single instruction. These enhancements complete the neces-

sary abstractions for targeting droplet-based pLoC devices resulting in a feature-rich, fully

functional programming language.

In Chapter 5, we introduce Xylograph, a workflow enabling BioScript programs to

target flow-based (p)LoC devices. This workflow extends the BioScript compiler to include

the necessary data-flow analysis and targeting engine enabling a scientist to express an

assay in BioScript , synthesize, and fabricate the requisite device from the input program.

This work removes the CAD tool domain-area expertise enabling more scientists to leverage

(p)LoC technologies in their laboratories. The contribution this chapter brings is time saved

designing and fabricating flow-based (p)LoC devices. Xylograph is capable of designing

flow-based LoC devices in a matter of minutes; where a similar design would take an expert

hours if at all. We prove that Xylograph is able to convert a BioScript program into a valid

flow-based (p)LoC design and subsequently run the BioScript assay in Appendix A.1.

3

Finally, Chapter 6 details a provably safe storage and disposal system, ChemStor .

ChemStor extends BioScript ’s type system applying it to a wider class of problems that a

scientist endures in a laboratory setting: how to safely store or dispose of chemicals used

in the daily work of scientist. There have been countless home and laboratory incidents

resulting from improperly storing or disposing chemicals. We demonstrate the efficacy of

ChemStor by showing it could prevent numerous real-world reported incidents and a myriad

of synthetic tests designed to push the boundaries of its capabilities.

4

Chapter 2

Background & Related Work

2.1 Digital Microfluidic Biochips (DMFBs).

This paper targets a specific class of programmable LoCs that manipulate discrete droplets

of fluid via electrostatic actuation. Fig. 2.1 illustrates the electrowetting principle [108, 127]:

applying an electrostatic potential to a droplet modifies the shape of the droplet and its

contact angle with the surface. As shown in Fig. 2.2, droplet transport can be induced

by activating and deactivating a sequence of electrodes adjacent to the droplet [138]; the

ground electrode, on top of the array, improves the fidelity of droplet motion and reduces

the voltage required to induce droplet transport.

Fig. 2.3 depicts a programmable 2D electrowetting array, called a “Digital Mi-

crofluidic Biochip (DMFB).” A DMFB can support five basic operations, shown in Fig. 2.4:

transport (move a droplet from position (x, y) to (x′, y′)), split (create 2 droplets out of

1), merge/mix (combine 2 droplets into 1, and, optionally, rotate them in a rectangular mo-

tion), and store (place a droplet at position (x, y) for later u). A DMFB is reconfigurable,

5

Figure 2.1: The electrowetting principle [108, 127]: applying an electrostatic potential to
a droplet at rest reduces the contact angle with the surface, thereby increasing the surface
area in contact with the droplet

as these operations can be performed anywhere on the array, and any given electrode can

be used to perform different operations at different times. Droplet I/O is performed using

reservoirs on the perimeter of the chip, which are not depicted in Fig. 2.5.

The DMFB ISA can be extended by integrating sensors [140, 15, 38, 163, 104, 151,

144, 103, 65, 90, 18, 130, 150, 105, 4], optical detectors [159, 110, 111, 176], heaters [112],

or online video monitoring capabilities [152, 16, 81, 61, 173, 106]. Sensors and actuators

create a “cyber-physical” feedback loop between the host PC controller and the DMFB.

The ability to perform sensing, computation, and actuation based on the results of the

computation adds control flow to the instruction set of the DMFB. Prior work has applied

feedback-control for precise droplet positioning [151, 130, 18, 105, 16, 61, 81, 173, 106, 4] and

online error detection and recovery [188, 113, 114, 80, 91, 5, 86, 87, 6, 137, 88, 106]; efforts

to leverage these capabilities to provide control flow constructs at the language syntax level

have been far more limited [73, 44, 45].

6

Figure 2.2: A droplet is transported from control electrode CE2 to neighboring electrode
CE3 by activating CE3, and then deactivating CE2 (white: activated electrode; black:
deactivated electrode).

Figure 2.3: Left: A DMFB is a planar array of electrodes [138, 126, 70, 131, 76, 4]. Right:
Cross-sectional view.

Figure 2.4: The DMFB ISA supports five basic operations: transporting, merging, splitting,
mixing and storage, in addition to I/O on the perimeter of the array.

Figure 2.5: A DMFB (a) and it’s reconfigurable instruction set (b).

7

2.2 DMFB Compilation

Compilation targeting DMFBs without control flow is mature. The input is effectively a

fluidic variation of a traditional data dependence graph, where vertices represent fluidic

operations and edges represent “fluidic dependencies”, i.e., an edge (ui, uj) indicates that

operation ui produces a droplet di,j that is used (consumed) by operation uj . As shown in

Figure 2.6, a compiler for a fluidic data dependence graph must solve three interdependent

NP-complete problems: operation scheduling [49, 141, 161, 71, 132, 109], reconfigurable

module placement [160, 185, 180, 181, 115, 107, 35, 116, 72], and droplet routing [162, 22,

36, 186, 82, 142, 143, 97, 96].

The scheduler must determine the time steps at which each biochemical operation

occurs, while satisfying droplet dependency constraints and physical resource constraints of

the device. The placer determines the location on the 2D electrode array where each opera-

tion is performed as the reaction progresses over time. The router ensures that droplets are

transported from/to their start/stop positions (as determined by the placer) at appropriate

times (as determined by the scheduler), while ensuring that droplets do not inadvertently

collide with one another or interrupt any other ongoing operations on the chip during trans-

port. If needed, the droplet router may introduce wash droplets to remove residue left by

“functional” droplets that travel over the surface of the chip [83, 187, 183].

Compiling a Control Flow Graph (CFG) onto a DMFB is an active area of research;

however, the two techniques proposed to date still compile basic blocks individually, and

therefore lack a global scope. The first is to dynamically interpret the CFG by just-in-

8

Figure 2.6: A DMFB compiler for biochemical programs without control flow.

time (JIT) compiling each basic block on-the-fly as the program executes [73]: as each

basic block executes, the runtime performs computation on sensory data acquired from the

device, which resolves conditions and determines the next basic block to JIT-compile.

The alternative is to compile the CFG statically. To date, the only technique

which has been proposed compiles each basic block in isolation, using any of the scheduling,

placement, and routing algorithms listed above[45]; however, the approach to placement

taken by that compiler introduces a number of otherwise unnecessary droplet transport

operations, which the placer introduced in this paper effectively eliminates. We provide a

detailed discussion of the key differences here.

Similar in principle to graph coloring register allocation [33, 32, 26, 67] two placed

operations or fluidic variables “interfere” if their lifetimes overlap, and interfering operations

or variables must be placed at non-overlapping positions on the spatial 2D array to prevent

inadvertent mixing and cross-contamination of fluids. Operations are defined atomically

within basic blocks (i.e., an operation such as “mix” cannot start in one basic block and

finish in another; further, the compiler introduced by [45] splits all fluidic variable live

ranges at basic block boundaries, which serves to localize all interferences to operations

and variables whose lifetimes start and end within the same basic block. This ensures that

fully correct CFG compilation can be achieved by compiling each basic block in isolation

9

and inserting additional droplet transport operations at CFG boundaries to ensure that

all droplets have the same starting positions along all possible paths leading into all basic

blocks. As noted earlier, this yields a correct executable ”program,” but does nothing to

eliminate or reduce the number of droplet transport operations that the compiler inserts.

For example, consider a fluidic dependence edge (ui, uj). If operations ui and uj

are placed at distinct on-chip locations pi = (xi, yi) and pj = (xj , yj), then the compiler

must insert an operation to transport droplet di,j from pi to pj . On the other hand, if

the placer can ensure that pi = pj , then the transport distance becomes 0, eliminating the

need to insert the operation. This is identical, in principle, to coalescing performed during

register allocation: assigning two variables involved in a copy operation to the same register

creates an identity operation (a copy from a register to itself), which can be eliminated.

A similar observation holds for the φ- and π-functions of the Static Single As-

signment (SSA) [47] and Static Single Information (SSI) [10, 154, 23] Forms. Without loss

of generality, consider fluidic operations ui and uk, and a φ-function φj , which we denote

using subscript-j to ensure notational consistency: ui produces a droplet di,j , which is read

by φj , and φj produces a droplet dj,k, which is read by uk; the exact statement of the

φ-function is therefore dj,k ← φ(. . . , di,j , . . .). SSA elimination replaces φj with a copy

operation dj,k ← di,j , which the compiler converts to a droplet transport operation. If ui

and uk are placed at positions pi and pk, then the transport distance becomes 0 and the

transport operation can be eliminated if the placer can ensure that pi = pk. Once again,

this is analogous to how a traditional compiler attempts to coalesce di,j and dj,k into a

single variable to remove the copy operation during SSA elimination [158].

10

In short, the placer presented in this paper applies techniques derived from coalesc-

ing to minimize the number of droplet transport operations that it inserts; moreover, when

droplet transportation operations are inserted, the placer attempts to minimize the overall

transport distance while incorporating a static estimate of the criticality of the transport

operation to overall assay execution time. In contrast, prior work on static DMFB compila-

tion [45] emphasized correctness (i.e., the ability to statically compile a CFG), but did not

attempt to reduce the number of length of droplet transport operations that were inserted.

Prior work on microfluidic placement has taken inspiration from spatial computing:

[49, 181, 72] and have adapted placement algorithms originally introduced for dynamically

reconfigurable FPGAs [17] to the microfluidic context. While practical and useful, these

algorithms assume that tasks that are compiled onto a dynamically reconfigurable FPGA

do not communicate, and thus do not effectively reduce droplet transport latencies when

applied to microfluidics.

Unsurprisingly, there are also many principle similarities between microfluidic and

data flow compilation, both of which entail placement and routing problems [156]. One

key difference is that a data flow compiler must adhere to the microarchitectural details

of the processing elements and interconnect architecture of the data flow target, which are

considerably more intricate (enabled in no small part by multi-layer metallization) than

the architecture of a DMFB (which is inherently planar). One key similarity is that both

microfluidic and data flow compilation can improve performance by respectively minimizing

data and fluidic transport distances. Additionally, many techniques to extract parallel

execution regions from sequential code can generalize from data flow compilation to DMFBs.

11

One important caveat is that DMFBs lack any notion of a memory address space and/or off-

chip memory hiearchy. As a result, fluidic pointers do not exist, which eliminates the need

for a microfluidic compiler to tackle technical challenges such as memory disambiguation

and memory access ordering.

2.2.1 Interprocedural Register Allocation in High Level Synthesis

Register allocation is a classic problem compilation faces. In traditional compilation, the

number k of registers is fixed by the target architecture and a scalar is either allocated to a

register or “spilled” into memory. Solving register allocation is traditionally accomplished

by attempting to color an interference graph G = (V,E) with k colors, where V contains the

set of all variables declared at a given point in a program and E contains all the interferences

between variables (u, v).

A counterpart similar to register allocation is necessary in DMFB synthesis as well.

With no external memory, a DMFB has a ceiling on the number of locations that can be

used to store droplets, which, as a result of the cohesive property of fluids, is significantly

smaller than the total number of electrodes comprising the chip, as depicted in Figs. 4.6a

and 4.6b. Hence, allocating resources for storage on a DMFB can be treated as register

allocation without the ability to spill.

Although graph coloring in the general case is known to be NP-Complete [12, 58,

29], there have been successful techniques which reduce the complexity in common cases.

Programs utilizing Static Single Assignment (SSA) form produce interference graphs that

are chordal [27], which are optimally colorable in O(|V | + |E|) time [66]. Similarly, Static

Single Information (SSI), an extension to SSA form which places σ-functions at some split

12

points of a control-flow graph, is an interval graph [24] and also proven to be optimally

colorable in O(|V | + |E|) time [28]. SSI form allows variables to be renamed in every

conditional context where used, resulting in a linearlized def-use chain, a property useful in

the context of fluidic variables that no longer exist after they have been used, e.g., through

a mix operation.

In order to account for interprocedural analysis, the creation of an interprocedural

interference graph (IIG) is necessary [28]. This graph is either chordal or interval depending

on which form a program takes – SSA or SSI, respectively. The IIG is defined for the

whole program, i.e., interferences between variables defined locally in discrete procedures:

if variable v defined in procedure Pi is live across a call cm to Pj , then v interferes with

every variable defined that is reachable from cm.

2.3 Continuous Flow Devices

Continuous flow microfluidic devices have been demonstrated to span a wide variety of bio-

logical and chemical applications which includes, but are not limited to: protein crystallization[77],

single-cell mRNA isolation and DNA synthesis [118], single-cell imaging [57], and interroga-

tion of protein-DNA interactions[178]. Like their digital counterparts, continuous flow de-

vices promise the same benefits to the biologist or chemist: higher experimentation through-

put, reduced human error, and reduced sample/reagent usage relative the benchtop work

they aim to replace. A result of their size, scale, and automated nature lends these devices

to perform more complex and sophisticated experiments than their benchtop counterparts

are capable of. Further, these attributes lead to direct impacts on global health care: mi-

13

crofluidic devices create low-cost point-of-care devices that can have dramatic effects in

both developed and developing nations [182].

There are two major categories within the continuous flow microfluidic taxonomy:

passive and active devices. Passive microfluidic devices, in their simplest form, are chan-

nels either etched or carved into a rigid substrate[53, 84, 135] or imprinted in a flexible

polymer[179] then mounted to a rigid substrate. The device functions by applying a pres-

sure, either an external pump, gravity, or vacuum which moves fluids through the channels.

As fluid flows through these channels, fluidic computation, of sorts, occurs.

While a discrete channel might not accomplish anything in particular, for a device

to be of use, it must perform some function. The various functions a passive-flow device

can take is dependent upon the component(s) included in the flow path. These components

are channels comprised of sets of specific geometries that manipulate fluid in a desired

manner. For example, the passive device depicted in Fig. 2.7a which performs a mix of two

fluids, employs a serpentine channel mixer (a series of turns designed to agitate the input

fluids). While we present a simple, single function device, devices are quickly increasing in

complexity and sophistication and are capable of performing increasingly complex biological

and chemical experiments.

Active flow, the second category in the continuous flow taxonomy, utilizes control

valves to pump fluid through channels. These valves are analogous to the transistor, the

fluidic variant. The components included in an active device still rely on specific geometries

designed to perform their given function. Figure 2.7b depicts an active flow device with

valves placed at specific points whose activation allow for the movement of fluid through the

14

Input 1

Input 2

Output

(a)

Input 1

Input 2

Output

Control Valves

(b)

Figure 2.7: Fig. 2.7a depicts a passive flow device that mixes two chemicals. The shape of
the channels perturbs the fluids inducing turbulence, causing them to mix. A rotary mixer,
Fig. 2.7b, uses control valves to circulate the input fluids resulting in the fluids mixing by
traveling through the mix component.

device. The valves placed on the device can be controlled by an external pressure source.

This allows for greater control of how fluid moves through the device and increases the

complexity of operations that a device is capable of performing[168].

15

2.4 High-level Languages for Programmable Chemistry

Languages for programmable chemistry, including but not limited to microfluidics, typically

fall into one of three categories: ontologies, laboratory automation, and device-specific

languages. For a more general review, we refer the interested reader to [145].

2.4.1 Ontologies

Ontologies in synthetic biology, such as Synthetic Biology Open Language (SBOL) [63]

or EXACT [157] aim to standardize how biochemical scientists discuss and disseminate

information in a standardized form. They describe experiments and models in a common

language, but cannot directly execute the experiment.

2.4.2 Laboratory Automation

Aquarium [100] specifies and composes laboratory workflows using a standard inventory,

combining formal and informal statements with photographs. Processes are formed from

individual protocols and are then parallelized and scheduled on the available laboratory

equipment. In principle, the inventory could be expanded to include a programmable LoC

programmed using BioScript or any other appropriate domains-specific language.

Cloud-based automation allows scientists to remotely execute biological procedures

in robot-run laboratories over the Internet. Experiments are described using laboratory-

specific domain-specific languages, such as Transcriptic’s Autoprotocol 1 and Synthace’s

1http://autoprotocol.org

16

Antha 2. These languages could be extended to encompass LoCs as laboratory components,

but would still need to interact with a high-level language to program the devices.

2.4.3 Device-Specific Languages for LoCs

BioStream targeted a programmable LoC designed primarily for serial dilution protocols

which coupled a fluidic mixer to a fluidic memory [171, 166]. BioStream abstracted away the

device-level details from the programmer and included algorithms to automatically generate

serial dilution protocols from a set of user-specific target concentrations; however, after the

initial publication, the specification and compiler were never released.

Aquacore [9, 8] is a programmable LoC comprising a collection of microvalve-based

components connected to a centralized bus, which is programmed using the assembly-like

AquaCore Instruction Set (AIS). A high-level language like BioScript could be specialized

for compatibility with Aquacore’s components, and a BioScript to AIS compiler, although

not presently under development, is certainly feasible.

BioCoder began as an ontology [11] and was later extended to target programmable

LoCs [123, 73, 44, 45]. Although useful as a proof-of-concept, BioCoder ’s syntax is unin-

tuitive and it lacks a type system and formal semantics. BioScript is introduced here as a

long-term replacement for BioCoder, as it is much closer to a natural language and is likely

to be easier for a biologist to learn how to program.

2https://docs.antha.com

17

2.5 Fabrication Methods

The fabrication of flow-based microfluidic devices is a rich research area, with significant

contributions, some borrowed from traditional computer architecture fabrication. While

these thesis doesn’t claim any contributions for fabrication technique, as this thesis describes

a top-to-bottom high-level language down to fabrication tool, we provide a cursory overview

of fabrication techniques.

2.5.1 Laminates

Laminate fabrication is a technique that involves bonding independently cut channels in

some medium. When bonded these layers comprise the vias that allow fluid to flow through

the device. Computer Numerical Control (CNC) milling is one application of this fabrication

technique. A 3D rendering is provided to Computer-Aided Design (CAD) software which

is capable of converting the rendering into G-code, a programming language capable of

controlling a CNC mill. That G-code controls the CNC mill which etches a negative in

acrylic or some other polymer. This method is considered the fastest and cheapest way to

fabricate microfluidic devices[64].

2.5.2 Molding

Fabrication using molding relies upon photolithography to generate a positive mold. One

can then use PDMS or some other liquid-set polymer to create a negative mold. Once the

PDMS has cured, it can be bonded with glass creating a microfluidic device.

18

2.5.3 3D Printing

3D printing extrudes different layers of the mold onto a 2D plane. 3D printing is considered

a fast and cheap fabrication method making design iterations fast and easy. Currently, 3D

printing is limited in how small devices can be fabricate and it suffers from leaky vias that

arise from interfacing layers of different materials. However, there are interesting endeavors

to overcome these barriers using techniques like laser etching to melt plastic[184] or applying

stereo lithography techniques to the 3D printing process[19].

2.5.4 Nanofabrication

Nanofabrication is a borrowed fabrication technique from the microprocessor. This tech-

nique works by adding photoresist material to a substrate and applying an ultra-violet light

to remove any area not covered by the photoresist material and applying the functional

material in the newly etched area(s)[25, 89]. The process repeats itself until all the pho-

toresist layers and functional materials have been placed. This process is very expensive

and time-intensive, but provides the most accurate and the smallest devices available[64].

Each of these fabrication methods have their strengths and weaknesses. However,

they all share the same common denominator: they all require the manual placement of

components and routing between them. This bottleneck demonstrates a clear and present

need for an automated tool that handles the synthesis of a device from a high-level language.

19

2.6 Automated Laboratory Safety

Efforts to improve chemical safety generally fall into two categories—system-based ap-

proaches and behavioral approaches—both of which have limitations in avoiding storage-

and disposal-related incidents:

• System-based solutions focus on building systems (often computer-based) that aid

research labs in managing many different administrative functions involving chemicals.

These functions may include generating various state and federal compliance reports,

automatically issuing a purchase order should inventory of a chemical fall below preset

levels, and sharing inventory among collaborating laboratories.[68, 41, 147, 62, 139]

Some Chemical Inventory Management Systems (CIMS) employ simple safety fea-

tures, like the ability to parse a chemical’s Materials Safety Data Sheet (MSDS) to

inform the researcher how to properly store the chemical. Chempliance[139] offers

some guidelines on chemical disposal practices but is lacking any guarantees with

respect to safety and does not track the volumes of chemicals.

• Behavioral systems focus on training and the human aspects of safety. Some of

these systems train employees to focus on “safety first,”[98, 40] while others aim

to identify disparities between institutional and individual beliefs about safety[153,

39]. These approaches focus on systemic issues that, while important, are sometimes

relatively abstract and far removed from the specific day-to-day decisions faced by

a researcher, like where to store a particular new chemical, or where to dispose of a

certain waste chemical.

20

In summary, existing methods for improving chemical safety can inform researchers about

general best practices, but fail to provide real-time guidance on specific storage and disposal

decisions.

21

Chapter 3

BioScript

3.1 Introduction

The last two decades have witnessed the emergence of software-programmable laboratory-

on-a-chip (LoC) technology, enabled by technological advances in microfabrication coupled

with scientific understanding of microfluidics, the fundamental science of fluid behavior at

the micro- to nano-liter scale. The net result of these collective advancements is that many

experimental laboratory procedures have been miniaturized, accelerated, and automated,

similar in principle to how the world’s earliest computers automated tedious mathematical

calculations that were previously performed by hand. Although the vast majority of mi-

crofluidic devices are effectively Application Specific Integrated Circuits (ASICs), a variety

of programmable LoCs have been demonstrated [138, 171, 9, 93, 59, 8].

With a handful of exceptions, research on programming languages and compiler

design for programmable LoCs has lagged behind their silicon counterparts. To address

this need, this paper presents a domain-specific programming language, type system, and

22

compiler for a specific class of programmable LoCs that manipulate discrete droplets of

liquid on a two-dimensional grid [138, 126, 70, 131, 76, 4]. The basic principles of the

language, type system, and compiler readily generalize to programmable LoCs in general,

realized across a wide variety of microfluidic technologies.

The presented language, BioScript , offers a user-friendly syntax that reads like a

cookbook recipe. BioScript features a combination of fluidic/chemical variables and oper-

ations that can be interleaved seamlessly with computation, if desired. Its intended user

base is not traditional software developers, but life science practitioners, who are likely to

balk at a language that has a steep learning curve.

BioScript ’s type system ensures that each fluid is never consumed more than

once, and that unsafe combinations of chemicals —those belonging to conflicting reactivity

groups, as determined by appropriately qualified government agencies—never interact on-

chip; BioScript ’s type system is based on union types and was designed to ensure that type

inference is decidable. This will set the stage for future research on formal validation of

biochemical programs.

The BioScript compiler exploits the parallelism provided by the target platform

to execute as many concurrent chemical operations as possible. Of particular importance,

here, is a proper formulation of the problem of microfluidic placement in the scope of

a control flow graph, rather than an individual basic block. The problem formulation

presented here borrows ideas from graph coloring register allocation as well as spatial/data

flow compilation; placement problem instances are solved using an evolutionary heuristic.

23

Table 3.1: BioScript supported fluidic operations.

Target Features

Core

Material Decl
Mix
Output
Store
Repeat

Control Flow
Branch
Loop

Digital
Detect
Heat
Split

The BioScript language, type system, and compiler are evaluated using a set of

benchmark applications obtained from scientific literature. We use a microfluidic simulator

to assess performance under ideal operating conditions, and also execute them on a real

device, which is much smaller and supports a subset of BioScript ’s operational capabilities.

This result establishes the feasibility of high-level programming language and compiler

design for programmable chemistry, and opens up future avenues for research in type systems

and formal verification techniques within this non-traditional computing domain.

3.2 Overview

3.2.1 BioScript Syntax and Semantics

BioScript is a language for programmable microfluidics whose syntax aims to be palatable

to life science practitioners, most of whom are not experienced programmers. We desired

a syntax and semantics that expresses operations in a manner that closely resembles plain

English. To keep the language small, we do not include operations in the language syntax

24

that can automatically be inferred by the compiler and/or execution engine. For example,

the compiler can automatically infer implicit fluid transfers for a mix operation. BioScript

features a semantics that targets (p)LoC technologies ranging from simplest to the most

complicated. The syntax and semantics of BioScript ’s type system are formally described

in 3.3.

We divide BioScript ’s fluidic operations into three categories, as shown in Ta-

ble 3.1. The core of the language contains generic operations that are effectively common

to all LoCs, such as declaration of fluidic variables and storage. BioScript also supports

control flow operations, as well as DMFB-specific operations including sensing (detect) and

actuation (heat and split). The detect instruction measures properties of droplets such as

temperature or volume and the split instruction splits a droplet into multiple parts.

We begin with a self-contained example to illustrate the expressive capabilities of

BioScript .

3.2.2 Example: PCR with Droplet Replenishment

Fig. 3.1 presents a BioScript specification for a DMFB-compatible implementation of the

Polymerase Chain Reaction (PCR), used to amplify DNA [129]. This specific example was

obtained from the scientific literature [92], and expressed in BioScript .

PCR involves thermocycling (repeatedly heating then cooling) a droplet containing

the DNA mixture undergoing amplification [lines 5-17]. In this implementation, thermocy-

cling may cause excess droplet evaporation. This implementation uses a weight sensor to

detect the droplet volume after each iteration [line 8]; if too much evaporation occurs [line 9]

the algorithm injects a new droplet to replenish the sample volume [line 10-11], preheating

25

1 // PCRMasterMix is a commercially available

2 // pre -mixed concentrated solution that has

3 // all required components to perform PCR

4 // that are specific to the sample.

5 PCRMix = mix PCRMasterMix with Template for 1s

6 repeat 50 times {

7 heat PCRMix at 95C for 20s

8 volumeWeight = detect Weight on PCRMix

9 if (volumeWeight <= 50uL) {

10 replacement = mix 25uL of PCRMasterMix with 25uL of

Template for 5s

11 heat replacement at 95C for 45s

12 PCRMix = mix PCRMix with replacement for 5s

13 }

14 heat PCRMix at 68C for 30s

15 heat PCRMix at 95C for 45s

16 }

17 heat PCRMix at 68C for 5min

18 save PCRMix

Figure 3.1: PCR with droplet replenishment [92]. It uses the target-specific save instruction.

1 step_1 = mix hydroxylamine_hydrochloride with toluene

2 heat step_1 at 105C for 24h

Figure 3.2: Safe assay for synthesizing acetaminophen [95]

a template solution [line 12] to ensure that replenishment does not affect the temperature

of the DNA.

3.2.3 Example: Synthesizing Acetaminophen

Chemistry is an enormous space; chemists conservatively theorize that the number of phar-

macologically active molecules is on the order of 1060[51]. Cheminformatics is a field where

chemists rely on computers to manage drug and compound discovery, a process whereby

26

1 step_1 = mix 10uL of acetic_acid with 10uL of

tetrahydrofuran

2 step_2 = mix step_1 with 10uL of water

3 step_3 = mix step_2 with 10uL of acetonitrile

4 heat step_3 at 20C for 12h

Figure 3.3: Unsafe assay synthesizing acetaminophen [167]. Mixing water with acetonitrile
creates hydrogen cyanide, an extremely poisonous and flammable gas. Hence, this reaction
may be unsafe.

chemical libraries are used to screen and identify substances that have desired therapeutic

effects, which are then tested on a biological cell. Although cheminformatics offers au-

tomation, many cheminformatic solutions may be unsafe when translated to the laboratory.

BioScript ’s type system can differentiate between safe and unsafe protocol specifications.

The search space explored by Cheminformatics includes all molecular combinations

to synthesize concrete materials. In contrast, the static interaction table for type checking

is limited to the reactivity groups of materials, which is necessarily conservative.

Acetaminophen, discovered in 1886[30], is a common pain medication used today,

and its synthesis has been extensively studied. Reaxys[55], a leading chemical reaction

database, details 275 different ways to synthesize acetaminophen, but ignores factors such

as safety and efficiency. As an example, Figures 3.2 and 3.3 report BioScript specifications

of two of the documented 275 paths: the one shown in Fig. 3.2 is safe, while its counterpart

in Fig. 3.3 is unsafe and potentially dangerous. This distinction was made by BioScript ’s

type system. Leveraging the type system could further reduce the search space for viable

screening procedures by partitioning the Reaxys database between safe and unsafe protocol

specifications.

27

3.2.4 Type Systems and Safety

The Environmental Protection Agency (EPA) and National Oceanic and Atmospheric Ad-

ministration (NOAA) have categorized 9,800 chemicals into 68 reactivity groups [56], defined

by common physical properties of discrete chemicals. It is known that mixing materials from

certain reactivity groups can produce materials from other reactivity groups; for example

mixing acids and bases induces a strong reaction that produces salt and water. BioScript ’s

type system models reactivity groups as types. As a material can belong to multiple reac-

tivity groups, a union type is associated with a material. Using standard reaction corpora,

we calculate the type signature of the mix operation, which is fundamental throughout

chemistry, as a table of abstract reactions between pairs of types, which results in a union

of types.

At the same time, reactions vary in terms of safety. The EPA/NOAA categoriza-

tion assigns one of three outcomes to the combination of chemicals: Incompatible, Caution,

or Compatible. If the union type resulting from a mix operation includes a hazardous type,

then the corresponding cell in the table is marked as being unsafe. Any biochemical proce-

dure, or assay, specified in BioScript is allowed to execute only if it is safe. The signature

of the mix operation does not include unsafe abstract reactions, which correspond to unsafe

table cells. Therefore, the type system exclusively type-checks mix statements that do not

produce hazardous materials. This is fundamental to the soundness of BioScript ’s type

system: it only type-checks assays that do not produce unsafe materials.

BioScript allows, but does not require, type annotations, saving the programmer

from the burden of annotating programs with overly complicated union types. The assay

28

specifications presented in Figs. 3.1 to 3.3 do not use type annotations. BioScript ’s type

inference system can automatically infer types. Since, the EPA/NOAA classification begins

with a finite set of material types, type inference can be reduced to efficiently decidable

theories. We prove that the inference is sound: if a typing assignment is inferred, it can

be used to type-check the assay. We also prove that it is complete: if there is a typing

assignment with which the assay can be type-checked, the inference will discover it. Other-

wise, the assay is rejected and marked as a potential hazard if no typing assignment can be

inferred for it. Our experiments show that the type system is expressive enough to reject

hazardous and to accept safe assays.

3.2.5 Software & Hardware Architecture

The BioScript compiler and runtime system is comprised of three discrete modules, as

shown in Fig. 3.4: the compiler, the execution engine, and the DMFB. The front-end

performs lexical analysis, parsing, abstract syntax tree (AST) generation, and AST to CFG

conversion. The front-end inlines all function calls, noting that BioScript does not presently

support recursion, and then passes the CFG to the back end.

The back-end converts the CFG to Static Single Information (SSI) form [10, 154,

23], under which each definition of a variable dominates each use, and each use of a variable

post-dominates its definition, which linearizes def-use chains. The compiler executes a type

inference algorithm (described in the next section) in the back end, rather than the front

end, by gathering constraints and passing them to an SMT solver to infer types. If the

BioScript program is typeable, the compiler passes the SSI-based CFG to the execution

engine, which performs code generation (scheduling, placement, and routing), which may

29

Compiler

Symbol Table Generation

Type Checking

Execution Engine

Runtime Monitoring

Scheduling

Placement

Routing

Code Generation

Parsing/AST Construction

DMFB Device (with sensors)

Sensor Data

Commands

CFG Construction

Transformations

CFG Parsing

PC Controller

DMFB Device (w/
sensors)

Micro-Controller
Driver

Synthesize electrode

activation sequence

to execute assay
Feedback

for

erro
r re

covery

Electrode
activation relay

Feedback for
error recovery

Figure 3.4: The BioScript compiler, execution engine and DMFB device.

be performed either statically [45] or dynamically [73]. The execution engine processes

sensory feedback produced by the DMFB, including dynamic error detection and recovery;

it may be necessary to re-compile parts of the assay, especially if a hard fault has been

detected, rendering a portion of the device unusable; prior work has covered dynamic error

recovery in detail [188, 113, 114, 80, 91, 5, 86, 87, 6, 137, 88, 106]. The execution engine

terminates successfully when the control flow reaches the CFG exit node or unsuccessfully

if the error recovery mechanism fails for any reason.

3.3 Type System

This section presents the core BioScript language, its semantics, the type checking and

inference systems, and their guarantees. We present the core language and type system to

showcase ideas and have implemented the type system for our full language.

We first present the BioScript syntax and its operational semantics that models

the runtime execution of assays on pLoCs. Next, we present the type checking system, which

guarantees that well-typed assays never perform unsafe operations at run time. Unsafe op-

30

erations include dangerous material interactions and attempts to access materials that have

already been consumed. We establish the soundness of the type system as tandem progress

and preservation properties. We then present the type inference system, which can auto-

matically infer types of variables in assays. We establish the soundness and completeness

of type inference with respect to type checking. Type inference succeeds if and only if there

are types for the variables that make the assay type-check.

3.3.1 Syntax

Figure 3.5 represents the core language syntax. The language is imperative and a statement

is a sequence of effectful instructions that involve side-effect-free terms.

A term t is one of: a variable x, a math operation, detection of a property for a

material, or a value v. The set of variables and values are respectively denoted by X and V.

Math operations “t1 ⊕ t2” are parametric in terms of the math operation ⊕. The DMFB

has a set of detection modules, module1, .., modulen, each of which measures a property of a

material. A detect term “detect module on x for t” returns the property that module detects

for the material represented by the variable x after a measurement for t time units. A value

v is a material value mat, a real number r or natural number n. We use Mat, N and R to

denote the set of materials, the set of natural and real numbers. Volume and other fluidic

properties are captured in the full language, but not in the core language.

A statement s is either the sequence of an instruction i and another statement

or the terminal skip statement. An instruction is either an assignment, material mixing,

material splitting, or a conditional or loop control operation. An assignment “x := t”

31

assigns term t to variable x. The type system checks assignments to prevent aliasing for

material variables. A mix instruction “x := mix x1 with x2 for t” mixes the two materials

represented by the variables x1 and x2 for t time units and assigns the resulting material to

the variable x. The type system checks the safety of mixing x1’s reactivity group with that

of x2. The split instruction “〈x1, .., xn〉 := split x into n” splits the material represented by

the variable x into n parts and assigns them to variables x0, .., xn. The conditional and

loop instructions are standard.

3.3.2 Operational Semantics

We model execution of BioScript assays on a DMFB as an operational semantics. A store

σ maps the set of variables to a set of values. The state of the transition system is a pair

(σ, s), where s is a statement. We now present the transition rules. If the conditions of no

rule is satisfied for a term (other than values) or a statement (other than skip), its evaluation

is stuck. A stuck term or statement models an error.

Figure 3.6.(a) presents the evaluation rules for terms. Terms are side-effect-free

and leave the store unchanged; therefore, the transition rules for terms are of the form

(σ, t)→ t′. The rule E-Var checks that the store σ holds the value of a variable; if so, the

variable’s value is read from the store.

Rules E-MathR1 and E-MathR2 evaluate the first and second operands of a

math operation in-order; then the rule E-Math applies the operation to the arguments if

both are numeric values. The rule E-DetectR evaluates the time term t until it is reduced

to a value. Then, the rule E-Detect reduces a detect term if the value of the variable in

32

the store is a material. Property measurement by modules is modeled as the function detect

that given the material, the module and the measurement time returns the property value.

If the value of the variable in the store is not a material, the detect term is stuck.

Figure 3.6.(b) presents the evaluation rules for statements. The rule E-AssignR

evaluates the right-hand side term (if it is not a variable); the rule E-Assign assigns the

value to the variable in the store. The rule E-Assign′ transfers a material from the right-

hand side variable to the left-hand side variable. The value of a variable is consumed when

it is assigned to another variable. This restriction is necessary for material variables but

can be easily lifted for numeric variables.

The rule E-MixR evaluates the time term; then, the rule E-Mix reduces a mix

instruction if the values of both variables in the store are materials and their interaction is

safe. Run time material interactions are represented by the concrete interaction function

interact. Given input materials mati and matj and the interaction time r, the function

interact returns if mixing mati and matj for r time units is unsafe; otherwise, it returns

the resulting material. The used variables x1 and x2 are removed from the store and the

variable x is mapped to the resulting material. The evaluation of a mix instruction is stuck

if either of the two variables does not represent a material value, or is already used and

removed from the store, or the interaction of the two is unsafe.

The rule E-Split reduces a material split instruction by removing the input vari-

able from the store and mapping the output variables to the splits. The function split

models splits: given a material mat and the number of splits n, it split mat to n parts of

equal volume and returns a part. Rule E-IfR reduces the condition term; rules E-IfTrue

33

and E-IfFalse reduce an if instruction to either the then or else statement depending on

the value of the condition. The operator • on statements unrolls the second statement after

the first as a sequence of instructions. The rule E-While unrolls the while statement once

to an if statement.

3.3.3 Type Checking System

This section presents BioScript ’s type system and its guarantees. We first consider the

typing judgments, and the typing rules for terms and statements, and then establish progress

and preservation properties. Using an abstract model of chemical interactions, the type

system guarantees that any program that type-checks will never cause an unsafe material

interaction at runtime. BioScript ’s type system also guarantees that an operation is never

applied to mismatching or missing values. In the evaluation of a type-checked program, no

material variable is evaluated to an already used material.

Figure 3.5 represents the syntax of types. A type T is either the union of the

scalar types ∪S or a type variable V ; type variables are used for type inference. The

overline notation S denotes multiple scalar types S. A scalar type is one of the material

types Mat1, .., Matn or real R or natural N number types. Each material type Mati

represents a group of similar materials. A material value mat can be a member of one (or

multiple) material types Mati written as mat ∈ Mati. Membership is trivially lifted to

union types. The type Mat is defined as the union of all material types Mat1 ∪ .. ∪Matn.

If a type T is a single scalar type, we elide the union symbol. For example, a union type

with the single natural number type N can be denoted as N. A scalar type S is a member of

a type T = ∪S, written as S ∈ T , iff S is one of the scalar types S. A type T is a subset of

34

another type T ′, written as T ⊆ T ′, iff any scalar type in T is also in T ′. Similarly, union,

intersection and equality of types are defined. A type environment Γ is a mapping from

variables to types. An empty environment is denoted by ∅; an environment that includes

the mapping from variable x to T is denoted by Γ;x : T . Since the BioScript assays are

written as scripts, Γ contains the type assignment for all variables in the assay.

The type system uses interact-abs, the abstract interaction function, which accepts

two scalar material types as arguments and returns a union type. The abstract interaction

interact-abs is conservative with respect to the concrete interaction interact. If two material

values mati and matj are members of two material types Mati and Matj , and the concrete

interaction of mati and matj is unsafe, then the abstract interaction of Mati and Matj is

undefined; otherwise, the result of the concrete interaction is a member of the type resulting

from the abstract interaction of Mati and Matj . A discussion of how the interact-abs

function is used is presented in 3.4.

The typing judgment for terms is Γ, X ` t : T , which states that under the typing

environment Γ and set of available variables X, the term t has type T . The type system

keeps track of available variables in the set X. These are the variables with unused values.

Figure 3.7.(a) presents the type checking rules for terms.

Rule T-Var states that a variable x has type T if it is typed as such in environment

Γ and it is available (x ∈ X). Rule T-Math states that if the terms t1 and t2 have the same

numeric type, then the operation t1 ⊕ t2 has the same type. Rule T-Detect states that

a detect term has the real return type if the following conditions hold: only properties of

materials can be detected; thus, the input variable x should be typed as the union of only

35

material types. In addition, the term t for time should be typed as a real number. Rule

T-Mat states that a material literal has the union type of material types that it belongs

to. A material literal may belong to multiple material types. Rules T-Nat and T-Real

type natural and real number literals.

The typing judgment for statements, Γ, X ` s,X ′, states that term s is typed under

typing environment Γ and available variable set X, yielding updated available variable set

X ′. A similar typing judgment, Γ, X ` i,X ′, exists for instructions. Figure 3.7.(b) lists

type checking rules for statements.

Rule T-Inst states that sequence i; s, comprising instruction i and statement s,

is typed if both i and s are typed. The resulting available variable set from i is the input

available variable set for s. Rule T-Skip unconditionally types the terminating statement

skip. Rule T-Assign-1 types an assignment of a value to a variable. The type of the

assigned value should be a subset of the type of the variable. The variable is also added to

the set of available variables. Rule T-Assign-2 types assignment of a variable to another.

The right-hand side variable is consumed and the left-hand side variable is added to the

set of available variables. This rule prevents aliasing of materials: two variables may not

represent the same material. (At the cost of brevity, the rule can be easily relaxed to

not remove numeric variables from the available set.) Rule T-Assign-3 types assignments

where the assigned term has a numeric type. This rule restricts aliasing through reading

from terms to only numeric values. (With the current set of typing rules for terms, any

term other than variables and values can be typed only as a numeric type. However, we

keep the numeric type condition in this rule for future extensions of terms.)

36

Rule T-Mix types a mix instruction if the following conditions hold: only materials

can be mixed; thus, both input variables x1 and x2 should be typed as the union of only

material types; term t (time) should be typed as a real number; typing fails if the abstract

interaction function is undefined for any pair of material types in the union types for x1 and

x2; if material types are defined for all such pairs, then the result represents a safe material;

as the result is assigned to x, the type of x in the environment should be a superset of

the resulting material types; since the materials represented by x1 and x2 are consumed, x

replaces x1 and x2 in the set of available variables.

Rule T-Split types a split instruction of variable x into variables x1, .., xn. Only

materials can be split; thus, variable x should be typed as the union of material types. The

split parts are assigned to variables x1, .., xn; thus, the type of each xi should be a superset

of the type of x in the environment; x1, .., xn replace x in the set of available variables.

Rule T-If types an if instruction; the output available set is conservatively the

intersection of the output available sets of the then and else statements. Rule T-While

types a while loop of a statement s. Since the output available set of one iteration can be

the input available set of the next, the output available set for s should be a superset of

its input available set X. Since the condition may fail and the loop may not execute, the

output available set of the while statement is conservatively X.

As classical results establish, there is correspondence between type systems and

data-flow analysis[134]. The type system corresponds to flow-sensitive analysis for defined

variables and flow-insensitive analysis for interaction safely.

37

We now state progress and preservation lemmas that together state that well-typed

programs never execute unsafe operations. As explained for the operational semantics, there

is no reduction rule for unsafe operations, that is unsafe operations are stuck. The following

lemmas state that well-typed programs never get stuck.

To state the lemmas, we first define the consistency invariant between the runtime

store σ and the static type environment Γ and the set of variables X. A store σ is consistent

with the type environment Γ and the set of variables X, if every variable that is in X and

Γ, has a value in σ whose type complies with Γ.

Definition 1 For all Γ, X and σ, consistent(Γ, X, σ) iff for all x and T such that x ∈ X

and (x : T) ∈ Γ, we have σ(x) ∈ T .

The following progress lemma states that well-typed programs are not stuck, i.e.,

they can take a step. More precisely, if a statement is typed, then it is either the terminal

statement skip or it can make a step with every consistent store. The proofs for these

Lemmas are available in the supplemental material.

Lemma 1 (Progress) For all Γ, X, s and X ′, if Γ, X ` s,X ′ then either s is skip or

for all σ such that consistent(Γ, X, σ), there exists σ′ and s′ such that (σ, s)→ (σ′, s′).

The following preservation lemma states that if a well-typed program steps, the

resulting program is also well-typed. More precisely, if a statement s is typed and with a

consistent store σ steps to a statement s′ and a store σ′, then s′ is typed and σ′ is consistent

as well.

38

Lemma 2 (Preservation) For all Γ, X, σ, s, X ′′, σ′, s′, if Γ, X ` s,X ′′,

consistent(Γ, X, σ) and (σ, s) → (σ′, s′) then there exists an X ′ such that Γ, X ′ ` s′, X ′′

and consistent(Γ, X ′, σ′).

3.3.4 Type Inference System

We now present the type inference system. A type can be not only a union of scalar types

but also an unknown type variable. The type inference rules match the corresponding type

checking rules but restate the conditions as constraints. After the type inference system

derives the constraints for a program, a satisfying model for the constraints yields types for

the variables of the program.

The type inference judgment for terms is Γ, X ` t : T | C that states that under the

typing environment Γ and available variables X, the term t is typed as T if the constraints

C are satisfied. The constraints C are quantifier-free set theory formulae. Since we have

a finite set of scalar types, the constraints can be reduced to quantifier-free formula in the

theory of equality. The type inference rules for terms are presented in Figure 3.8.(a)

The rule CT-Var introduces no constraints. The rule CT-Math introduces con-

straints requiring the two arguments to be of the same numeric type. The rule CT-Detect

introduces constraints that require the type of the material variable x not to include numeric

types. This is because, as mentioned for the rule T-Detect, only properties of materials

can be detected; thus, the type of the material variable should only include material types.

The rules CT-Mat, CT-Real and CT-Nat type literal values without constraints.

39

The type inference judgment for statements is Γ, X ` s,X ′ | C, which states

that under typing environment Γ and available variables X, statement s is typed and the

resulting available variables are X ′ if all conditions C are satisfied. There is also a similar

type inference judgment for instructions: Γ, X ` i,X ′ | C. Figure 3.8.(b) presents type

inference rules for statements. Rules CT-Assgn-1, CT-Assgn-2 and CT-Assgn-3 type

the assignment instruction. If the right-hand side is a material value, then rule CT-Assgn-

1 introduces a constraint that requires the type of the right-hand side to be a subset of

the type of the left-hand side. Rule CT-Assgn-2 and CT-Assgn-3 similarly mirror rules

T-Assign-2 and T-Assign-3. Rules CT-Mix, and CT-Split restate the conditions of

their corresponding typing rules as constraints. Rules CT-If, and CT-While introduce a

constraint that requires the condition term to be of natural number type.

To infer types for program s, we first check if the type inference judgment Γ0, ∅ `

s,X ′ | C is derivable; Γ0 maps each variable x in s to a fresh type variable Vx, and the initial

set of available variables is empty. We note that to support optional type annotations for

variables, Γ0 can map an annotated variable to the concrete type annotation instead of a

type variable. If the judgment cannot be derived, the program may access an uninitialized

variable or an already used material variable. Thus the program is rejected. If the judgment

can be derived and constraints C are satisfiable, then any model m of C provides the typing

[x 7→ m(Vx)] for the program.

We now state the soundness and completeness of the type inference system, which

collectively state that types can be inferred for a program iff it is typeable. The soundness

lemma states that, if the type inference system infers types for a program, then with the

40

inferred types, the type checking system can type-check the program. More precisely, if

under a type environment Γ with type variables, the type inference system derives the set

of type constraints C for a statement s and C is satisfiable with a model m, then applying

m to Γ yields the concrete type environment m(Γ) under which the type checking system

can type-check s.

Lemma 3 (Soundness) For all Γ, X, s, C, X ′, and m, if Γ, X ` s,X ′ | C and m is a

model for C then m(Γ), X ` s,X ′.

The completeness lemma states that if, for a program, there exist types for vari-

ables under which the type checking system can type-check the program, then the type

inference system can infer those types. More precisely, if there exists a model m that maps

type variables in a type environment Γ to concrete types such that under the concrete type

environment m(Γ), the type checking system can type-check s, and the type inference sys-

tem, under Γ, derives the constraints C for s, then C is satisfiable and m is a model for

it.

Lemma 4 (Completeness) For all Γ, X, s, X ′, X ′′, C, and m, if m(Γ), X ` s,X ′ and

Γ, X ` s,X ′′ | C then m is a model for C.

The proofs are available in Appendix B.

41

3.4 Implementation

This section describes the underlying details of implementation of the BioScript language,

its type system and its code generator.

3.4.1 BioScript

The BioScript language was implemented as described in Section 3.2. As DMFBs do not of-

fer external fluidic storage, there is no possibility to implement a stack or heap of substantial

size. For these reasons, BioScript provides inline functions exclusively and does not support

recursion; similarly, BioScript does not support arrays, even of constant size, as doing so

would significantly inhibit portability. We hope to address these issues in greater detail

in a future publication. BioScript handles variable assignment implicitly, e.g., Fig. 3.10d.

However, the scientist declares a manifest of chemicals that is used throughout the assay

(“blood” and “water”, in this case) and the BioScript compiler infers the dispense and move

operations.

3.4.2 The Type System

BioScript ’s type system utilizes static type checking, which runs during compilation. The

type system automatically infers types using an abstract interaction function that is a

conservative over-approximation of the resulting chemical types of each interaction. The

type system uses the 68 EPA/NOAA reactivity groups as the material types Mati, that

together with natural N, and real R numbers, constitute the set of scalar types S.

42

We calculate the abstract interaction function interact-abs (used in Section 3.3) as

a table that is indexed by two material types and stores union types. Each reactive group or

type Mati comprises a non-empty set of chemicals Ci. Abstract mixing of a pair of material

types Mati and Matj effectively mixes each pair of chemicals (ci, cj) in the cross product

Ci × Cj . If any interaction is Incompatible, the table entry for (Mati,Matj) is marked as

hazardous (or undefined, as modeled in Section 3.3). Otherwise, if the mix operation yields

a new chemical ck, we use the industry-standard ChemAxon [34] computational chemistry

library to assign a union type ∪Matk to ck, which are added to the union type of the cell for

Mati and Matj . In practice, molecules of ci and cj will remain after mixing ci and cj , even

if a reaction occurs, and the presence of extra molecules at the micro-liter scale, or smaller,

may have a non-negligible impact on the underlying chemistry or biology 1. To account

for this fact, Mati and Matj are also added to the cell. Since type assignment to concrete

chemicals is conservative and we include the input types in the resulting union type, the

types in the table represent an over-approximation of the chemicals that can result from

concrete interactions.

The type system implements Hindley-Milner type reconstruction [124]. Con-

straints are gathered from the CFG according to the type inference rules. Constraints

are encoded in the SMTLib2 format and passed to Z3 [48] for satisfiability. In cases that

no type can be inferred, deciding which part of the program is to blame is a classical

problem[174]. Life scientists using BioScript would benefit from localized typing errors;

including the necessary heuristics is left for future work.

1This was confirmed by a collaborator in the Bioengineering department of the authors’ institution.

43

There may be instances where scientists need to create hazardous reactions, which

the type system would correctly reject. For example, mixing ammonia with bleach yields

chlorine gas, which is deadly. The type system correctly prevents mixing ammonia and

bleach; however, in organic chemistry and industrial manufacturing, chlorine is a founda-

tional material, and many consumer products rely on chlorine for production, e.g. PVC

piping and cleaning agents. Thus, a scientist may wish to create chlorine to use elsewhere

in the assay. In this case, the type system generates all relevant errors and warnings, but

allows the programmer an override to finish compilation and execute the assay.

While not necessary, the execution engine is capable of performing dynamic checks

as well. Before each interaction, it consults the EPA and NOAA categorization: if the

interaction is Incompatible, then execution is halted or the user is prompted to override

necessary safety precautions in order to proceed. This is a final safety check, given the

safety-critical nature of the domain.

3.4.3 Code Generation

The code generator presently targets three DMFB back-ends. The first two are simulators

that can statically compile [45] or dynamically interpret [73] assays featuring control flow

operations. The simulator is primarily used for performance characterization under idealized

(i.e., fault-free) operating conditions.

As the simulator does not have access to physical sensors, it generates pseudo-

random numbers, constrained within realistic values, to represent sensor readings that are

then passed to the execution engine when confronted with a detect instruction.

44

The code generator also targets a real-world platform called DropBot [61], shown

in Fig. 3.9a. Although DropBot features real-time object tracking, it does not, at present,

support execution of assays that feature control flow. The DropBot interface allows the

user to specify an electrode activation sequence using either a graphical interface, shown in

or through a JSON file. We modified the code generator to produce a DropBot-compatible

JSON file. Fig. 3.9 shows DropBot’s graphical interface while manipulating droplets on a

real-world device.

3.5 Evaluation

The objectives of BioScript are to reduce the time and costs of scientific research and to

provide a safe execution environment for chemists and biologists with respect to chemical

interactions. As noted earlier, BioScript is a DSL that enables high-level programming and

direct execution of bioassay on (p)LoCs. These objectives inform our selection of metrics

to evaluate BioScript .

3.5.1 Language

Compared to other languages, BioScript offers an intuitive and readable syntax and a type

system. As a point of clarification, we do not claim that BioScript offers a performance

advantage with respect to other languages; performance primarily depends on the algo-

rithms implemented in the compiler back-end and execution engine, which are compatible,

in principle, with any language and front-end. Hence, our evaluation emphasizes qualitative

metrics of the language.

45

First, we compare BioScript ’s syntax to three other languages: the AquaCore

Instruction Set (AIS), a target-specific assembly-like language [9]; Antha, a language for

cloud-based laboratory automation [164]; and BioCoder, a C++ library that has been

previously specialized for DMFBs [11, 73, 44]. We review these three languages in greater

detail in Chapter 2 and Appendices C and E. Our comparison uses a set of compact,

yet representative, bioassays taken from published literature. As an illustrative example,

Fig. 3.10 shows a simple assay (a Mix followed by a Heat instruction) in all four languages;

BioScript , by far, has the shortest description.

• The BioCoder specification (Fig. 3.10a) is written as a C++ program. It does not

require awareness of the underlying physical resources of the target device, but does

require explicit statements to synchronize time-steps and to terminate the assay.

• The Antha specification (Fig. 3.10b), is imperative, but involves unintuitive notation

such as []* and . operators (e.g., []*wtype.LHComponent).

• The AIS specification (Fig. 3.10c) operates at a lower level of abstraction. AIS is an

assembly language, that requires resource awareness, which inhibits retargetability.

The programmer must explicitly declare fluids, manually bind fluidic operations to

resources, and explicitly transfer fluids between resources. Our back-end can automate

this process.

• The BioScript specification (Fig. 3.10a) requires 3 lines of code. The specification is

compact and declares variables implicitly.2

2In fact, the only arguably superfluous keywords are of (preposition), with (preposition), at (preposition)
and for (preposition or conjunction), which bring the language closer to written English than to an imperative
programming language.

46

Figure 3.11 compares the number of lines of code required to specify seven repre-

sentative bioassays using the four languages; three of the seven assays were not compatible

with AIS (which is tethered to a specific pLoC [9]) and Antha (which is tethered to a cloud

laboratory), so we only report four assays for those languages. We do not count empty

lines (for spacing/aesthetic purposes) or lines that contain comments. We wrote each assay

based on our notion of human readability, which generally meant one statement/operation

per line for AIS, BioCoder, and Antha. As shown in Fig. 3.10d, the mixture statement

in BioScript succinctly encompasses two implicit variable declarations with fluid type and

volume information.

Across the four compatible assays, BioScript required 68% fewer lines of code than

AIS and 73% fewer lines of code than Antha. Across all seven assays, BioScript required

65% fewer lines of code than BioCoder, which can target DMFBs, [73, 44], unlike AIS and

Antha. Although these results do not account for subjective experience, we believe that

they convey the same basic sentiments as Fig. 3.10: BioScript has an intuitive syntax and

will be far easier for scientists to learn and use compared to existing languages in the same

space. Source code for all implementations of the bioassays reported in Figure 3.11 are

included in Appendices C and E.

3.5.2 Type System Evaluation

BioScript ’s type system’s main purpose is to prevent inadvertent production of hazardous

chemicals. We evaluate its ability to detect hazardous mixing in BioScript descriptions of

5 reported real-world incidents [7, 21], as well as several hand-generated examples. To the

47

best of our understanding, BioScript ’s type system is first-of-its kind, so there are no prior

type systems to compare against.

Table 3.3 summarizes the results of our experiments. The first four tests are taken

from documented real-world situations in which chemists ignored safety precautions while

carrying out experiments. The first three are incidents documented by the American In-

dustrial Hygiene Association (AIHA) [7]. Mustard gas refers to a documented situation

where an individual mixed two common reagents used to clean swimming pools, inadver-

tently creating mustard gas. SafetyZone refers to a documented explosion where a student

mixed a sulfuric acid/hydrogen peroxide mixture with acetone [50] (it remains unknown

whether this explosion was intentional or accidental). The type system correctly identified

the presence of safety hazards in all of these cases.

We also tested the type system on 14 assays that were known to be safe; BioScript ’s

type system successfully inferred types in all of these cases. We have intentionally chosen

to express only the assays in Table 3.2, noting the limited benchmarks. These assays are

currently being used in the bio-chemical sciences today. By demonstrating BioScript ’s

ability to express, type-check, and execute these assays, we demonstrate the power that

BioScript provides scientists. We could have created synthetic benchmarks, but all would

be derivative of the presented assays and, ostensibly, would not provide as compelling an

argument to a life scientist of BioScript ’s capabilities.

48

T
ab

le
3
.2

:
C

o
m

p
il

e
ti

m
e,

th
e

n
u

m
b

er
of

co
n

st
ra

in
ts

ga
th

er
ed

,
an

d
si

m
u
la

te
d

ex
ec

u
ti

on
ti

m
es

fo
r

th
e

sa
fe

an
d

u
n

sa
fe

as
sa

y
s.

B
e
n

ch
m

a
rk

C
o
m

p
il
a
ti

o
n

C
o
n

st
ra

in
t

G
a
th

e
re

d
E

x
e
c
u

ti
o
n

E
n

g
in

e
E

x
e
c
u

ti
o
n

T
im

e
(s

ec
)

S
o
lv

in
g

(s
ec

)
C

o
n

st
ra

in
ts

T
im

e
(m

:s
:m

s)
T

im
e

(h
:m

:s
)

A
IH

A
1

[7
]

0.
01

2
0.

93
6

70
N

/A
N

/A
A

IH
A

2
[7

]
0.

01
2

1.
64

8
68

N
/A

N
/A

A
IH

A
3

[7
]

0.
01

4
1.

21
4

17
N

/A
N

/A
B

ro
a
d

S
p

ec
tr

u
m

O
p

ia
te

[1
4
,

11
7
,

9
4
]

0.
01

1
0.

88
7

11
0:

18
:5

5
0:

23
:2

1
C

ip
ro

fl
ox

a
ci

n
[9

4]
0.

02
3

1.
72

2
14

10
1:

31
:8

0
12

8:
54

:3
2

D
ia

ze
p

a
m

[7
9]

0.
02

4
1.

00
7

14
96

:4
8:

13
12

1:
01

:3
9

D
il

u
ti

o
n

[7
9]

0.
01

4
0.

89
2

9
0:

21
:0

5
0:

26
:3

3
F

en
ta

n
y
l

[1
1
7
]

0.
01

8
0.

90
0

13
12

6:
32

:4
0

15
8:

10
:8

0
F

u
ll

M
o
rp

h
in

e
[7

9]
0.

04
8

4.
18

8
19

12
7:

16
:7

8
15

9:
06

:1
7

G
lu

co
se

D
et

ec
ti

on
[9

]
0.

01
2

1.
63

3
14

0:
23

:7
7

0:
29

:7
3

H
er

oi
n

e
[7

9
]

0.
02

0
1.

55
3

13
12

6:
32

:4
0

15
8:

10
:8

0
Im

ag
e

P
ro

b
e

S
y
n
th

es
is

[9
]

0.
01

5
2.

18
1

13
8:

38
:9

6
10

:4
7:

50
M

o
rp

h
in

e
[7

9
]

0.
01

8
1.

02
6

13
12

6:
32

:4
0

15
8:

10
:8

0
M

u
st

a
rd

G
as

[2
1]

0.
01

5
1.

43
3

83
N

/A
N

/A
O

x
y
co

d
on

e
[1

4]
0.

02
6

0.
95

9
13

12
6:

32
:4

0
15

8:
10

:8
0

P
C

R
[9

]
0.

03
2

3.
53

4
8

11
:1

6:
12

14
:3

6:
29

S
af

et
y

Z
on

e
[5

0
]

0.
01

3
1.

34
1

76
N

/A
N

/A
C

a
n

ce
r-

d
et

ec
ti

on
v
ia

ge
n

e-
ed

it
s

[1
5
5]

0.
01

6
1.

63
7

16
19

20
:0

8:
01

N
/A

49

3.5.3 Compilation Time

We compiled the safe and unsafe assays described in the previous subsection, targeting

the DropBot platform, which is a 4 × 15 array (ignoring I/O reservoirs on the perimeter),

assuming the default electrode actuation time of 750ms. The experiments were run on a 2.7

GHz Intel™ Core i7 processor, 8GB RAM, machine running macOS™. We include a video

of assay running imaging probe synthesis3 on a DropBot device in Appendix A.1.

Construction of the the type system’s abstract interaction table took 31 minutes

running on a 2.53 Ghz Intel™ Xeon™ processor, with 24GB RAM, running CentOS 5.

In this case, performance was limited to a single execution thread, as per ChemAxon’s

documentation [34]. Constructing the abstraction interaction table using a multithreaded

implementation of ChemAxon would significantly reduce construction time.

Table 3.2 reports the compilation time, constraint solving time, number of con-

straints gathered, time spent in the execution engine performing code generation, and total

assay execution for each of the benchmarks. The unsafe assays were unable to run, so their

execution times are reported as N/A. On average, each material defined in the benchmarks

belonged to 3.015 distinct reactive groups; average benchmark compilation time was 0.0190

seconds; and the average time spent solving constraints was 1.594 seconds. Execution times,

in these cases, depended on the assay specifications (e.g., PCR spends a lot of time ther-

mocycling, which cannot be optimized away) and the effectiveness of the code generation

algorithms.

3Imaging probe synthesis is a technique using radioactivity or fluorescence to tag a DNA or RNA fragment
to detect complimentary nucleotide substances.

50

BioScript assays, along with several additional synthetic benchmarks, are made

available in Appendix C.

Table 3.3: Experimental tests validating BioScript ’s type system; parentheses denote reac-
tive group(s) assigned to chemicals. Tests are documented incidents that could have been
prevented. I denote Incompatible errors (dangerous) based on the EPA/NOAA reactive
groups.

Name Result Description

AIHA 1 [7] FAIL - I Mix Nitric Acid (2) and Tetrachloroethylene (17,28)
AIHA 2 [7] FAIL - I Mix Nitric Acid (2) and Methanol (4)
AIHA 3 [7] FAIL - I Mix Potassium Hydride (35, 21) and Diaminopropane (7)
Mustard Gas [21] FAIL - I Mix Calcium Hypo (1) and Dichlor (17)
Safety Zone [50] FAIL - I Mix Hydrogen Peroxide (44) and Sulfuric Acid (2),

then mix Acetone (19)

3.5.4 Simulation Results

As DropBot cannot execute assays that feature control flow, we evaluated the impact of

our global placement techniques using a cycle-accurate DMFB in the preceding section.

Table 3.4 reports the simulated execution times for several benchmarks that feature control

flow. These benchmarks were compiled using the optimized global placement strategy

presented in this paper, and compared against a more naive approach that compiles each

basic block individually, introducing droplet transport operations when needed, at basic

block boundaries [45]. Identical random number seeds were used when executing each

benchmark using the two placement strategies.

The results show small, but consistent, improvements in assay execution time. The

explanation is that placement can optimize droplet transport times, which are generally

much shorter than the time required for mixing or heating/cooling. Although improved

51

scheduling could potentially reduce the latency of the scheduled operations, there is no

way that existing code generation techniques, for example, could reduce the amount of time

that a PCR implementation spends on thermocycling. Although the results of the optimized

placement are not necessarily optimal (noting that placement is NP-complete), these results

do quantify the limitations and capabilities of placement on real-world benchmarks that have

been extracted from the scientific literature.

Table 3.4: The impact of the proposed global placement method in comparison to a prior
approach that computes placement for each scheduled basic block in isolation [45].

Benchmark Global Placement Prior Placement
(mm:ss) (mm:ss)

PCR w/droplet replenishment 38:16 40:44
Probabilistic PCR(full) 11:17 11:19
Probabilistic PCR(early exit) 7:20 7:21
Opiate immunoassay (positive) 399:54 405:30
Opiate immunoassay (negative) 100:16 101:48

3.6 Conclusion and Future Work

This paper has established the viability of high-level programming languages and type

systems for programmable LoCs, and has properly formulated the problem of global place-

ment, on the granularity of CFGs, for digital microfluidics. This paper reports a full system

implementation, which can compile and type-check a high-level language program and exe-

cute it on the real-world DropBot platform by transmitting commands (electrode actuation

sequences) via the DropBot software interface.

In the future, we hope to extend the BioScript language with support for non-

inlined functions, arrays, SIMD operations, and some notion akin to processes or threads.

52

We view the type system as a starting point for a much deeper foray into formal verifica-

tions, e.g., to ensure that biological media always experience physical properties such as

temperature or pH levels within a user specified range. We also plan to investigate more

efficient heuristics for global placement compared to NSGA-II. Lastly, we will continually

scour the scientific literature on microfluidics to find new and relevant benchmarks that

exploit novel device-level capabilities, especially involving control flow. Long-term, we hope

to expand the language and compiler to target a wider variety of microfluidic technologies

and programmable LoC platforms.

3.6.1 Type System

Being nascent, BioScript ’s type system statically type-checks only chemical reactivity groups.

Extending the type system, introducing dependent types to account for properties such as

temperature, pH, volume, or concentration is a natural next step. For example, mate-

rial types can be dependent on concentration and volume. The split rule will keep the

concentration the same but lower the volume. The mix rule should use an extended 4

dimensional abstract interaction table that in addition to the reactivity groups is depen-

dent on the concentration and volume. To have a finite table, properties can be divided

to ranges such as, low, medium and high concentration. However, available datasets such

as chemicals/pubchem [99] do not report these properties. A large dataset is needed to

calculate the dependent abstract interaction table. In conjunction with extending the type

system’s capabilities, providing meaningful error messages will help life scientists under-

stand problematic portions of their BioScript program. Long-term, this type system could

53

be generalized into a generic type system for cyber-physical systems, transcending even

(p)LoC-based biochemistry.

3.6.2 Compiler

We aim to support both compilation and synthesis. Compilation targets a pLoC which has

already been fabricated, while synthesis converts a BioScript program into an optimized

application-specific LoC prior to fabrication. Likewise, we aim to target two technologies:

DMFBs and continuous fluid flow technologies. At present, our compiler targets a specific

hardware, we aim to extend support to more devices than just DMFB devices.

BioScript enables scientists to express assays in a comfortable manner, similar in

principle to laboratory notebooks. Its type system, which defines the operational semantics

of BioScript , can provide safety guarantees when potentially hazardous chemicals are used.

BioScript is extensible, allowing it to target pLoC compilation and LoC synthesis across

multiple technologies. BioScript and its software stack pave the way for many life science

subdisciplines to increase productivity due to automation and programmability.

54

t ::= Terms:
| x ∈ X Variable
| t1 ⊕ t2 Math operation
| detect module on x for t Detect
| v ∈ V Value
v ::= Values:
| mat Material value
| r Real number
| n Natural number
module ::=
| module1|..|modulen Sensor module(s)
s ::= Statements:
| i; s Sequencing
| skip Skip
i ::= Instructions:
| x := t Assignment
| x := mix x1 with x2 for t Mixing
| 〈x1, .., xn〉 := split x into n Splitting
| if t then s1 else s2 Conditional
| while t s Loop

T ::= Union Types:

| ∪S Union type
| V Type variables
S ::= Scalar types:
| Mat1 | .. | Matn Material types
| R Real number
| N Natural number

Γ ::= Context:
| ∅ Empty context
| Γ, x : T Variable type binding

X Set of variables x
C Constraints

Figure 3.5: Syntax of BioScript ’s type system.

55

E-Var
x ∈ dom(σ)

(σ, x)→ σ(x)

E-MathR1
(σ, t1)→ t′1

(σ, t1 ⊕ t2)→ t′1 ⊕ t2

E-MathR2
v ∈ N ∨ v ∈ R (σ, t2)→ t′2

(σ, v ⊕ t2)→ v ⊕ t′2

E-Math
(v1 ∈ N ∧ v2 ∈ N) ∨ (v1 ∈ R ∧ v2 ∈ R)

v1 ⊕ v2 = v

(σ, v1 ⊕ v2)→ v

E-DetectR
(σ, t)→ t′

(σ, detect module on x for t)→
detect module on x for t′

E-Detect
σ(x) ∈Mat r2 = detect(σ(x), module, r1)

(σ, detect module on x for r1)→ r2

(a) Evaluation rules for terms

E-AssignR
(σ, t)→ t′ t 6∈ X

(σ, x := t; s)→ (σ, x := t′; s)

E-Assign

(σ, x := v; s)→ (σ[x 7→ v], s)

E-Assign′

σ′ = (σ \ {x′})[x 7→ σ(x′)]

(σ, x := x′; s)→ (σ′, s)

E-MixR
(σ, t)→ t′

(σ, x := mix x1 with x2 for t; s)→
(σ, x := mix x1 with x2 for t′; s)

E-Mix
σ(x1) ∈Mat σ(x2) ∈Mat
interact(σ(x1), σ(x2), r) 6=

σ′ = (σ \ {x1, x2})[x 7→ interact(σ(x1), σ(x2), r)]

(σ, x := mix x1 with x2 for r; s)→ (σ′, s)

E-Split
σ(x) ∈Mat σ′ = (σ \ {x})[xi 7→ split(σ(x), n)]

(σ, 〈x1, .. xn〉 := split x into n; s)→ (σ′, s)

E-IfR
(σ, t)→ t′

(σ, if t then s1 else s2; s)→
(σ, if t′ then s1 else s2; s)

E-IfTrue
n 6= 0

(σ, if n s1 else s2; s)→ (σ, s1 • s)
E-IfFalse

(σ, if 0 s1 else s2; s)→ (σ, s2 • s)

E-While
(σ, while t s1; s2)→ (σ, if t then (s1 • while t s1; s2) else s2)

skip • s = s (i; s) • s′ = i; (s • s′)

(b) Evaluation rules for statements

Figure 3.6: Evaluation rules

56

(T-Var)
x : T ∈ Γ x ∈ X

Γ, X ` x : T

(T-Math)
Γ, X ` t1 : T Γ, X ` t2 : T

T = N ∨ T = R
Γ, X ` t1 ⊕ t2 : T

(T-Detect)
Γ, X ` x : ∪Mati Γ, X ` t : R
Γ, X ` detect module on x for t : R

(T-Mat)
mat ∈Mati

Γ, X ` mat : ∪Mati

(T-Nat)
Γ, X ` n : N

(T-Real)
Γ, X ` r : R

(a) Typing rules for terms

(T-Inst)
Γ, X ` i,X ′ Γ, X ′ ` s,X ′′

Γ, X ` i; s,X ′′

(T-Skip)

Γ, X ` skip, X

(T-Assign-1)
x : T ∈ Γ Γ, X ` v : T ′ T ′ ⊆ T

Γ, X ` x := v,X ∪ {x}

(T-Assign-2)
x : T ∈ Γ Γ, X ` x′ : T ′ T ′ ⊆ T

Γ, X ` x := x′, X \ {x′} ∪ {x}

(T-Assign-3)
x : T ∈ Γ

t 6∈ V ∪ X Γ, X ` t : T ′

T ′ = R ∨ T ′ = N T ′ ⊆ T
Γ, X ` x := t,X ∪ {x}

(T-Mix)
Γ, X ` x1 : ∪Mati Γ, X ` x2 : ∪Matj Γ, X ` t : R

interact-abs(Mati,Matj) ⊆ Γ(x) for each i and j

Γ, X ` x := mix x1 with x2 for t,X \ {x1, x2} ∪ {x}

(T-Split)
Γ, X ` x : ∪Mati Γ(x) ⊆ Γ(x1), ..,Γ(x) ⊆ Γ(xn)

Γ, X ` 〈x1, .., xn〉 := split x into n,X \ {x} ∪ {x1, .., xn}

(T-If)
Γ, X ` t : N Γ, X ` s1, X ′ Γ, X ` s2, X ′′

Γ, X ` if t then s1 else s2, X
′ ∩X ′′

(T-While)
Γ, X ` t : N Γ, X ` s,X ′ X ⊆ X ′

Γ, X ` while t s,X

(b) Typing rules for statements

Figure 3.7: Type checking rules.

57

(CT-Var)
x : T ∈ Γ x ∈ X

Γ, X ` x : T | ∅

(CT-Math)
Γ, X ` t1 : T1 | C1 Γ, X ` t2 : T2 | C2

Γ, X ` t1 ⊕ t2 : T1 |
C1 ∪ C2 ∪ {T1 = T2 = N ∨ T1 = T2 = R}

(CT-Detect)
Γ, X ` x : T1 | C1 Γ, X ` t : T2 | C2

Γ, X ` detect module on x for t : R |
C1 ∪ C2 ∪ {T1 ∩ {R,N} = ∅, T2 = R}

(CT-Mat)
mat ∈Mati

Γ, X ` mat : ∪Mati | ∅

(CT-Real)
Γ, X ` r : R | ∅

(CT-Nat)
Γ, X ` n : N | ∅

(a) Type inference rules for terms

(CT-Inst)
Γ, X ` i,X ′ | C1 Γ, X ′ ` s,X ′′ | C2

Γ, X ` i; s,X ′′ | C1 ∪ C2

(CT-Skip)

Γ, X ` skip, X | ∅

(CT-Assgn-1)
x : T ∈ Γ Γ, X ` v : T ′ | C′

Γ, X ` x := v,X ∪ {x} | C′ ∪ {T ′ ⊆ T}

(CT-Assgn-2)
x : T ∈ Γ Γ, X ` x′ : T ′ | C′

Γ, X ` x := x′, X \ {x′} ∪ {x} | C′ ∪ {T ′ ⊆ T}

(CT-Assgn-3)
x : T ∈ Γ t 6∈ V ∪ X Γ, X ` t : T ′ | C′

Γ, X ` x := t,X ∪ {x} | C′ ∪ {T ′ = R ∨ T ′ = N, T ′ ⊆ T}

(CT-Mix)
Γ, X ` x1 : T | C Γ, X ` x2 : T ′ | C′

Γ, X ` t : T ′′ | C′′

Γ, X ` x := mix x1 with x2 for t,
X \ {x1, x2} ∪ {x} | C ∪ C′ ∪ C′′∪

{T ∩ {R,N} = ∅, T ′ ∩ {R,N} = ∅, T ′′ = R,
for each i, j: Mati ∈ T ∧Matj ∈ T ′ ⇒

interact-abs(Mati,Matj) ⊆ Γ(x)}

(CT-Split)
Γ, X ` x : T | C

Γ, X ` 〈x1, .., xn〉 := split x into n,
X \ {x} ∪ {x1, .., xn} |

C ∪ {T ∩ {R,N} = ∅, T ⊆ Γ(x1), .., T ⊆ Γ(xn)}

(CT-If)
Γ, X ` t : T | C

Γ, X ` s1, X ′ | C1 Γ, X ` s2, X ′′ | C2

Γ, X ` if t then s1 else s2,
X ′ ∩X ′′ | C ∪ C1 ∪ C2 ∪ {T = N}

(CT-While)
Γ, X ` t : T | C

Γ, X ` s,X ′ | C′ X ⊆ X ′

Γ, X ` while t s,
X,C ∪ C′ ∪ {T = N}

(b) Type inference rules for statements

Figure 3.8: Type inference rules

58

(a)

(b)

(c)

Figure 3.9: DropBot device (a) and example execution, where (b) & (c) depict mixing two
droplets.

59

1 /* Initialization Omitted */

2 b.first_step ();

3 b.measure_fluid(blood , tube);

4 b.measure_fluid(water , tube);

5 b.next_step ();

6 b.tap(tube , tenSec);

7 b.next_step ();

8 b.incubate(tube , 100, tenSec);

9 b.end_protocol ();

(a)

1 /* Initialization Omitted */

2 smpl := make ([]* wtype.LHComponent , 0)

3 Bld := mixer.SampleForTotalVolume(Blood , BldVol)

4 smpl = append(smpl , Bld)

5 Wtr := mixer.Sample(Water , WtrVol)

6 smpl = append(smpl , Wtr)

7 rctn := MixInto(OutPlate , "", smpl ...)

8 r1 := Incubate(rctn , mltTemp , InitDenatime , false)

(b)

1 /* Initialization Omitted */

2 input s1, ip1

3 input s2, ip2

4 move mixer1 , s1 ;

5 move mixer1 , s2 ;

6 mix mixer1 , 10 ;

7 move heater1 , mixer1;

8 incubate heater1 , 100, 10;

(c)

1 /* Initialization Omitted */

2 mixture = mix 10uL of water with 10uL of blood for 10s

3 heat mixture at 100C for 10s

(d)

Figure 3.10: Example assay specified using Biocoder(Fig. 3.10a)[44, 72], An-
tha(Fig. 3.10b)[164], AIS(Fig. 3.10c)[9], and BioScript(Fig. 3.10d).

60

Figure 3.11: The number of lines of code to specify Image Probe Synthesis, Glucose
Detection, Neurotransmitter Sensing, PCR[9], Probabilistic PCR[112], PCR w/ Droplet
Replacement[92], and Opiate Detection[14, 117, 94] in AIS [9], BioCoder [11, 73, 44], Antha
[164], and BioScript . We were unable to specify the latter three assays in AIS and Antha.

61

Chapter 4

Extensions to BioScript

4.1 Introduction

Digital Microfluidic Biochips (DMFBs) are poised to transform biological and chemical sci-

ences through automation and miniaturization by reducing fluidic volume to the micro- or

nano-liter scale. These devices operate by manipulating discrete fluidic droplets on a two-

dimensial grid [138, 126, 70, 131, 76, 4]. Automation at the microfluidic scale accelerates

and reduces waste in laboratory experimentation. DMFBs, a member of programmable

laboratory-on-a-chip devices [138, 171, 9, 93, 59, 8], are taxonomically similar to Appli-

cation Specific Integrated Circuits and Field-Programmable Gate Arrays. Programming a

DMFB relies on the same high-level synthesis (HLS) techniques used in other reconfigurable

computing domains whereby a user provides a high level description of a desired behavior

and the synthesis tool generates the corresponding digital hardware matching the specified

behavior. Where DMFBs differ from their reconfigurable counterparts and traditional Von

62

Neumann architectures is the lack of a memory hierarchy, leaving no ability to store data

in off-chip memory.

Synthesis frameworks targeting DMFBs use either static [74, 75] or just-in-time

[73, 177] (JIT) compilation techniques. JIT frameworks targeting DMFBs include support

for the use of functions in their high level specification; a feature not currently supported in

static frameworks. However, the use of JIT compilation can lead to programs that halt mid-

way through execution, wasting time and resources. This outcome is easily avoided by using

static synthesis techniques to determine if a target architecture is capable of supporting the

specification before execution.

A DMFB operates by mapping operations onto portions of the device for each

timestep of execution. This behavior allows for any number of operations to be mapped at

any given timestep given the sum of the areas of the operation don’t exceed the area available

for computation. This property allows them to run many operations in parallel. The HLS

tools handle the scheduling and placement of the operations. Currently, no programming

language targeting DMFB devices[177, 133] support parallelization techniques within the

programming language itself. They rely on the HLS tools to handle parallelization for them.

This paper describes extensions to a leading static synthesis framework [74] which

provides support for functions within the framework and a domain specific language for pro-

gramming DMFB devices to include support for Single Instruction Multiple Data (SIMD)

operations. By cleverly applying data flow techniques to the compilation and synthesis pro-

cess, the static framework overcomes the issues of wasted time and resources that plague

dynamic approaches.

63

In 4.2 we describe how the system works, followed by its implementation in 4.3.

We conclude this paper by discussing future research directions for this system in 4.5.

4.2 Overview

Synthesizing an executable for a DMFB device is comprised of two phases: the compilation

phase is responsible for classic compiler techniques while the synthesis phase synthesizes the

input program into an electrode activation sequence. This process is depicted in Fig. 4.1.

4.2.1 Compilation Phase

In phase 1, the compiler converts an input program into SSI form, builds a Control-Flow

Graph (CFG), and runs various data-flow analysis: variable liveness analysis, reaching defi-

nitions, and context sensitive call graph analysis. As DMFBs manipulate discrete droplets,

the idea of a pointer is obtuse: there is a one-to-one mapping between addresses (droplet

location) and their values (droplets). As the program is in SSI form, context insensitive

analysis is sufficient to calculate space requirements necessary to store droplets alive across

function calls [78, 28], except for cases when head-recursion is present, which we discuss

below.

4.2.2 Synthesis Phase

During the second phase, we attempt to synthesize an executable as an electrode activation

sequence from the CFG provided from phase 1. The CFG is parsed into into a series of Di-

rected Acyclic Graphs (DAGs), each of which is synthesized separately. The synthesis phase

64

Compilation Phase Synthesis Phase

Scheduling

Placement

Routing

Code Generation

Parsing/AST Construction

SSA/SSI Conversion

Transformation

CFG Parsing

CFG Construction

Data-flow analysis

Context (in)sensitive analysis

Runtime Monitoring

DMFB Device (with sensors)

Sensor Data

Commands
PC Controller

DMFB Device (w/
sensors)

Micro-Controller
Driver

Synthesize electrode

activation sequence

to execute assay
Feedback

for

erro
r re

covery

Electrode
activation relay

Feedback for
error recovery

Figure 4.1: Synthensis is split into two phases: the Compiler phase is responsible for
traditional compilation techniques: transformation into SSI form, data-flow analysis, CFG
analysis, etc. The Synthesis phase translates an intermediate representation to the necessary
electrode activation sequence provided it can solve the scheduling, placement, and routing
problems.

proceeds to solve the scheduling, placement, and routing problems discussed in Chapter 2

by first converting the CFG-linked DAGs into the schedule of operations. After scheduling

completes, placement begins, binding modules (mixers, detectors, etc.) to particular chip

regions. When a valid placement has been determined, the router attempts to route the

necessary droplets to their appropriate modules, as depicted in Fig. 2.6. The synthesis

phase creates an executable in the form of an electrode activation sequence corresponding

to the droplet manipulations that encode the high level description of the program.

4.3 Compiler Design

To help detail the algorithms used, we explore our implementation with the aid of an

example, depicted in Figs. 4.4 to 4.6. In general, any language supporting the DMFB ISA

can be compiled and run on a DMFB. As pointers are not supported by DMFBs there is

no need for resolving points-to analysis, as there are no function pointers nor any notion of

65

dynamic dispatch. To begin, the program is converted into SSI form where a combination

of context insensitive and sensitive analysis occurs.

An input program, Fig. 4.4, details an arbitrary program targeting a DMFB utiliz-

ing functions. As shown in Fig. 4.4a, the program begins with a series of dispenses, denoted

in lines 2-7. We assume that, prior to line 8, all of these droplets are alive on the chip. In

line 8, the program invokes function foo, defined in Fig. 4.4b. bar is subsequently invoked

in line 9, which also invokes foo. The program finishes with several mixes (lines 10 & 11).

4.3.1 Context Insensitive Call Graph Analysis

In order to determine if a program has adequate space to execute on a device, the compiler

uses context insensitive analysis to calculate live ranges and allocate storage for variables live

across function calls; because the program is in SSI form as discussed in Chapter 2, there are

optimal linear time solutions [27, 28]. In Fig. 4.4, the variables alive across foo (line 8) are

{maina,mainb,mainc,mainf}. The variables alive across bar are {maina,mainb,mainc};

however, due to the imprecise nature of context insensitive analysis, the chip must be able to

support storage of the maximum number of live variables across all function calls, including

nested calls. In the case of this program, that is 4. Using a chip size of 5 × 8, as depicted

in Fig. 4.6, this program is able to be executed on the device.

66

4.3.2 Context Sensitive Call Graph Analysis

Context sensitive analysis is required in order to statically synthesize the electrode activation

sequence that is correct with respect to the input program. Fig. 4.4 demonstrates a program

that necessitates context sensitive analysis. On line 2 of Fig. 4.4b there is an I/O operation:

c is assigned from an input fluid dispensed from the edge of a device. foo is called from two

different locations: lines 7 and 8 in Figs. 4.4a and 4.4c, respectively. The interprocedural

control path originating from line 8 of main, depicted by the dotted lines in Fig. 4.5 might

yield the placement and routing plan depicted in Fig. 4.6a. Unfortunately, as a result of

the dispense present in foo, this cannot be blindly copied and repeated throughout the

execution of the program.

The dashed lines in Fig. 4.5 depict the interprocedural control path originating

from line 9 of main. This calls bar which may subsequently call foo. Because bar is called

before foo in this calling context, Fig. 4.6b depicts a valid placement and routing plan

generated by the synthesis phase. In more complicated programs, the shape as well as

the location of basic blocks and their modules may change as a result of differing calling

contexts.

4.4 SIMD Semantics

Flynn’s taxonomy describes several classifications of hardware architectures[52, 60]. One

classification, Single-Instruction-Multiple-Data (SIMD), manipulates multiple data elements

with a single instruction; exploiting data-level parallelism. In traditional computation mod-

els, SIMD instructions lend themselves to image-processing and other multimedia applica-

67

tions, e.g., changing the brightness level of an image; where a constant value can be added

or subtracted from rows of pixels at a time.

In the life sciences, a practitioner may wish to react a sample with a range of

different concentrations. This is analogous to applying a constant to a row of pixels in an

image. The scientist, hoping to understand how a protein sample denatures in the presence

of various concentrations of acid, as presented in Fig. 4.2a, historically, would have to write

a BioScript equivalent to that of Fig. 4.2b. DMFB devices, being reconfigurable, lend

themselves to parallelization. Thus, SIMD instructions can both increase the complexity of

assays that BioScript is capable of expressing while decreasing the overall size of a BioScript

program by 80%, as depicted in Fig. 4.2c.

To model SIMD semantics in BioScript , we leverage techniques from array pro-

gramming [172]. Each variable is an array implicitly and the compiler infers SIMD oper-

ations using inferred context from the instruction, as depicted in Fig. 4.3a. This allows

the scientist to write assays exploiting SIMD semantics without having to explicitly use

them. On line 3 of Fig. 4.3a, the BioScript compiler is able to automatically mix 2 droplets

of water with both values (in this case water) stored in y. BioScript also supports direct

indexing, as expressed in lines 3 and 4 of Fig. 4.3b. Both pieces of code in Fig. 4.3 are

semantically identical.

This is largely a usability construct that affords an easier syntax for scientists

unaccustomed to programming. Allowing scientists to express more complicated and that

are more representative with their traditional laboratory workflow.

68

4.4.1 Implementation

We extend [46], a Java-based SSI-form compiler for DMFB devices, to support both static

compilation of programs utilizing functions and SIMD semantics. Context insensitive anal-

ysis uses the algorithm described in [28]. The required IIG is built and optimally colored.

Thus, if the coloring exceeds the number of regions capable of storing fluids, then the com-

pilation halts, notifying the user that the target device cannot execute the input program,

saving time and resources; otherwise, compilation continues onto the synthesis phase. For

context sensitive analysis the compiler uses the functional approach [149], choosing accuracy

at the expense of time, noting that the size of existing programs are not much larger or more

complex than Fig. 4.41. If analysis discovers a head-recursive function, in which droplets

created within a function remain alive across recursive calls,detected by the cardinality of

the liveness set increasing, that calling context is marked as requiring JIT compilation.

The synthesis implementation extends MFSim [74], a C++-based DMFB synthesis

framework, to include full support of recursion. Using the context sensitive analysis, we

must determine different placement and routing plans for each calling context, as they may

differ for each calling context, as noted in 4.3.2. Recognizing that statically computing

precise recursion depth is intractable even in traditional architectures, we rely on MFSim’s

JIT runtime to handle programs featuring unbounded head recursion. Thus, where there

are no cases of head recursion this solution uses statically-compiled CFGs. If there are

1To further understand the complexity of chemical experiments, we refer the reader to the supplemental
material produced in [133]. Which detail experiments that are representative of what scientists conduct in
a cookbook-style syntax.

69

instances of head recursion the synthesis uses statically-compiled CFGs where able and JIT

compilation at runtime to resolve the head recursion.

As DMFBs are nascent, the complexity of standardized chemical experiments is

minimal, not exceeding trivial conditional statements, like that of Fig. 4.41. There are,

to the best of our knowledge, no experiments that necessitate the use of functions, much

less recursion. We do acknowledge that several assays might benefit from a reduction in

assay size should they employ functions. Reporting the results of synthetic assays do not

sufficiently demonstrate the efficacy and potential this implementation yields other than

to demonstrate functionality. In any event, reporting results amounts to providing an

electrode activation sequence for an experiment or reporting failure; as we make no claims

about performance or efficiencies.

4.5 Conclusion

DMFBs stand to accelerate and reduce waste in laboratory experimentation through au-

tomation and miniaturization. While the current complexity of uses on DMFBs do not

require the usage of high level abstractions such as functions, more complex uses will re-

quire the reworking of current synthesis techniques to allow for abstractions which enable

users to specify their usage clearly. This paper describes an implementation that statically

compiles and synthesizes DMFBs from high level descriptions utilizing functions, providing

for a clear path for specifying more complex experimentation and research and introduc-

ing SIMD semantics, allowing programmers to exploit the inherent parallelism endemic to

70

DMFB devices. Current DMFB architectures lack I/O channels native to traditional Von

Neumann architectures, which poses interesting future work which could ease scheduling and

placement during synthesis and allow for the completely static synthesis of head-recursive

functions should off-chip storage be manifested.

71

0% 25% 50% 75% 100%

Protein

Graduated Solvents

(a)

1 // Initialization omitted

2 // Prepare the 25% and 75%

3 half = mix acid with buffer

4 temp = split half into 2

5 twenty_five = mix temp [0]

with buffer

6 seventy_five = mix temp [1]

with acid

7 fifty = mix acid with

buffer

8 zero = dispense buffer

9 one_hundred = dispense acid

10 // Denature the protein

11 p_0 = mix protein with zero

12 p_25 = mix protein with

twenty_five

13 p_50 = mix protein with

fifty

14 p_75 = mix protein with

seventy_five

15 p_100 = mix protein with

one_hundred

(b)

1 // Initialization omitted

2 ranges = gradient acid with

buffer range 0, 100 at

25

3 denature = mix protein with

ranges

(c)

Figure 4.2: Fig. 4.2a depicts a scientist who wishes to observe how a protein denatures in the
presences of differing concentrations of acid. Without SIMD operations, a scientists would
have to write the code depicted in Fig. 4.2b. Fig. 4.2c illustrates how SIMD operations
simplifies the same experiment. Reducing the number of lines of code from 12 to just 2.

72

1 x = dispense water

2 y = split x into 2

3 z = mix y with water

(a)

1 x = dispense water

2 y = split x into 2

3 z = mix y[0] with water

4 a = mix y[1] with water

(b)

Figure 4.3: Two programs, Fig. 4.3a depicts BioScript ’s SIMD semantics, and Fig. 4.3b
depicts an assay using direct indexing. These two programs are semantically identical.

73

1 main() {

2 a = ...

3 b = ...

4 c = ...

5 d = ...

6 e = ...

7 f = ...

8 g = foo(d, e)

9 h = bar(f, g)

10 i = mix(a, h)

11 j = mix(b, c)

12 }

(a)

1 foo(a, b) {

2 c = ...

3 if (...) {

4 m = mix(a, c)

5 dispose b

6 } else {

7 m = mix(b, c)

8 dispose a

9 }

10 return m

11 }

(b)

1 bar(a, b) {

2 c = mix(a, b)

3 if (...) {

4 return c

5 } else {

6 d = ...

7 e = foo(c, d)

8 return e

9 }

10 }

(c)

Figure 4.4: A simple program targeting a DMFB device. The mix function combines the two
fluids passed as an argument. Every variable declaration triggers an I/O request, drawing
liquid from a reservoir, except for variables declared as a result of the mix operation.

74

a = ...; b = ...; c = ...;
d = …; e = …; f = ...

g = foo(d, e)

(return foo(d, e))

h = bar(f, g)

(return bar(f, g))

main()

i = mix(a, h)
j = mix(b, c)

c = …
if (...)

foo(a, b)

d = mix(a, c)
dispose b

d = mix(b, c)
dispose a

return d

c = mix(a, b)
if (...)

bar(a, b)

return c d = …
e = foo(c, d)

(return foo(c, d))

return e

Figure 4.5: The abbreviated context sensitive call graph corresponding to Fig. 4.4. For
brevity and clarity, we omit explicit procedure entry and exit points, only denoting return
of control from a procedure being called and don’t include call string information on edges.
As this is context sensitive, a call path cannot traverse both dotted and dashed lines.

75

mainb

maina mainc

I/O

mainf

Function foo

fooa

foob fooc

(a)

mainb

maina mainc

I/O

mainf

Function foo

Function bar

bar.
fooc

(b)

Figure 4.6: Fig. 4.6a depicts where function foo might initially be placed when called from
line 8 in Fig. 4.4a. However, because different calling contexts will yield different chip
allocations, calling foo from a different location may force foo to be placed in a different
location. In this case, routing must be aware of the changes to placement. Fig. 4.6b depicts
what the calling context placed onto the chip would look like at line 9 in Fig. 4.4a. bar
is placed where foo was originally placed. Routing must now move the fluidic variable
defined in line 2 of Fig. 4.4b to foo’s new placement, denoted by the vertical pinstripes.
The black electrodes, or registers, are used for storing fluids. They cannot be used for
general computation.

76

Chapter 5

Targeting Continuous-Flow

Microfluidic Devices

5.1 Introduction

The design and fabrication of microfluidic devices for use in experimental micro-biology is

limited to those with the requisite domain expertise spanning a multitude of disciplines:

biology, chemistry, physics, material sciences, and microfabrication techniques, to name a

few. The expertise required creates a barrier restricting adoption of microfluidic devices

to a few specific applications in academia and industry; even in spite of the technological

advances microfluidic devices have experienced.

Historically, the design of flow-based laboratory-on-a-chip (LOC) devices has been

by hand, using computer-aided design (CAD) tools to draw a device and then fabricating

the design using one of the myriad of fabrication techniques available — a laborious task

77

requiring significant investment from the scientist for even the simplest of devices. There

are two basic categories that describe the designers of microfluidics devices: component and

system designers. Component designers explore how fluidic phenomena can be exploited to

create new components to achieve new goals or old ones more efficiently. In contrast, system

designers explore building large-scale microfluidic devices typically involving hundreds of

components and channels. For continuous flow devices, those which rely upon an external

pressure or vacuum to drive fluids, system designers have physical constraints to suffice,

e.g., maintain an equal relative resistance across the device, otherwise the device may not

function as intended. Both size (number of components and connections) and medium

(fluidic properties used in the device) further compound complexity and difficulty for system

designers to design and fabricate functional devices.

This paper introduces Xylograph, a toolchain designed to reduce the complexity

and difficulty system designers face designing and fabricating new microfluidic devices. Xy-

lograph applies concepts native to Computer Science — programming languages, compiler

theory, and architectural synthesis — to automate the design and fabrication of microflu-

idic devices Xylograph is used to design an assay using a cook-book-style programming

language. Xylograph uses that program to automatically design the corresponding device

that maintains semantic fidelity to the user’s assay; which amounts to automatic selection

and placement of the required components used in the assay and the routing of the connec-

tions between those components. Xylograph makes it easy for experts and amateurs alike

to automatically design and fabricate microfluidic devices, including devices that would

otherwise be intractable to design by hand.

78

In this work, we showcase Xylograph’s capability at removing the barriers a system

designer faces in designing and fabricating microfluidic devices; enabling amateurs to lever-

age microfluidics. We use Xylograph to automatically design and fabricate 2 microfluidic

devices that perform common tasks like mixing reagents or generating reagent concentra-

tions. To demonstrate the time saved, we measure the time it takes to express assays of

components ranging from 4 to 1,024 components in Xylograph against estimates from a

bioengineer to design the same devices by hand.

5.2 System Design

The discrete steps of Xylograph are depicted in Fig. 5.1, with the architecture workflow

described in Fig. 5.3. Xylograph is a series of extensions to prior work easing the burden

system designers face when designing new microfluidic devices.

5.2.1 Designing an Assay

A program is composed of a series of instructions conforming to the syntax of a particular

programming language. These instructions, before they can be executed on a processor,

must be compiled. A compiler translates the programmers code into something the processor

is capable of understanding. Once the compilation is complete, the program can then be

executed and the desired output or behavior can be observed.

Designing a microfluidic device and writing a program share many similarities:

the designer begins with an assay, a series of instructions culminating in some measurable

output. The steps range from mixing chemicals, to heating a reagent, to measuring the

79

pH of reagents, the steps are discrete and clear. Those steps, in the context of microfluidic

devices, typically require the use of a component. Thus, when designing a microfluidic

device, a designer will place the necessary components and route channels between the

components. It can be said that an operation is “executed” when the fluid has moved from

the input(s) of a component to it’s output(s) — or computation has occurred.

Because of these similarities there have been several attempts at developing pro-

gramming languages targeting microfluidic devices. These languages, however, only aim to

program digital microfluidic devices, doing nothing to address the complexities of designing

and fabricating a continuous-flow device from a specification. While these languages might

be effective at programming a device, they tend to be arcane and/or tied to a specific device,

in some cases necessitating expertise in Computer Science.

For instance, BioCoder [44], Puddle[177], and BioScript [133] all target specific pro-

grammable microfluidic architectures. While BioStream[171, 166] and Aqucore Instruction

Set (AIS)[9, 8] are focused on specific customizeable wet-ware architectures. However, the

range of expertise required to use the languages ranges from the esoteric corners of Com-

puter Science (BioStream and AIS) to user-friendly (Puddle and BioScript). Further, these

languages are restricted to their specific microfluidic architectures, unable to support the

automatic design of microfluidic devices.

In order to federate languages from their specific architectures, computer scien-

tists utilize compilers. A compiler takes a high-level language (e.g., Python or C++), and

translates them into sets of low-level machine code — instructions a physical architecture

is capable of understanding. This process is illustrated in Fig. 5.3 (left of the dotted line),

80

in which a user provides an input program, written in C++ or Python in this case, and

the compiler translates the input into an intermediate representation, and then generates

the machine code that is specific to the processor on which the program will execute. The

translation into the intermediate representation might seem unnecessary; however, if it did

not exist, there would need to be a mapping from each language to the specific proces-

sor architecture. In other words, the translation to an intermediate representation intro-

duces a common denominator that allows computer scientists to build one compiler that

is, in principle, capable of accepting any language as input and is capable of targeting any

processor architecture. Intermediate representations also allows a myriad of standardized

optimizations to the input code that typically reduces execution time and better utilizes

computational resources. Once optimizations occur, the compiler can translate the inter-

mediate representation code into the machine code for the processor architecture(s) desired

for execution.

Recent research discuses the creation of microfluidic compilers[45, 133, 74]; how-

ever, these endeavors target digital microfluidic devices. Interest is lacking in leveraging

compilers for continuous-flow devices, much less conjoining compilers with that of design-

automation tools.

The BioScript language and compiler, (1) in Fig. 5.2 is extended to include a

target for continuous flow devices, via the ParchMint[119] interchange format; creating the

workflow represented in Fig. 5.3 (right of the dotted line). Part of this extension includes

component selection and netlist generation. For this experiment we use the ParchMint

microfluidic netlist standard as an interchange format between BioScript and Inkwell [43].

81

5.2.2 Component Selection & Generation

A system designer might begin designing a new device by first selecting the required compo-

nents. However, those components might require changes as the original component might

have been designed with different fluidic properties in mind.

Like the designer, the compiler selects the component that best matches the func-

tion of the operation. For Xylograph to correctly map BioScript instructions to their

corresponding component, it employs a direct mapping of instruction to pre-generated com-

ponents. For instance, given the mix instruction in line 7 of Fig. 5.1a, the compiler maps all

mixes to a pre-generated serpentine mixer. Component selection is parameterized such that

if a time definition exists on the mix instruction, component selection will attempt to select

the best match; opting to round up when necessary. There is nascent work involving auto-

mated and parameterized component generation[146], however, as the BioScript compiler

currently lacks necessary information, automated component generation is left for future

work.

Once components are selected, the compiler builds the connections between these

components as a netlist (Fig. 5.1b). A connection is defined as a channel between a compo-

nent that defines a variable (for example, line 5 in Fig. 5.1a defines the variable acid with

the value hcl) and any uses of that variable (for example, line 7 in Fig. 5.1a, the variable

acid is being used in the mix instruction, but is not defined in the statement). BioScript ’s

compilation process finishes by generating a netlist — it’s machine code.

The netlist represents an abstract description containing what components the

device should have and how those components should be connected. This abstract netlist is

82

not sufficient for fabrication as it does not contain concrete information about where compo-

nents should be located or what routes connections should take to connect two components.

In order to convert an abstract netlist into a concrete netlist containing this information we

need to perform two steps: placement and routing.

5.2.3 Designing a Device

Once the system designer has a conceptual idea of the assay and the necessary components

they can begin designing the physical device. To do so, they must solve 2 problems consid-

ered by computer scientists to be intractable: placement and routing. A designer may be

able to solve both of these problems on simple or small designs, those having 5-10 compo-

nents. However, for devices comprised of hundreds or even thousands of components, this

quickly becomes overwhelming; as complexity increases designing by hand is not viable.

The only viable way to design and fabricate these devices is by automating the design and

fabrication processes.

Since BioScript is only concerned with the conversion of a high level description

into an abstract netlist, another tool, Inkwell[120], is utilized to perform the synthesis phase:

finding a valid placement of components and routing channels between them.

Placement

Two different methods, Planar Placement (Figs. 5.1c to 5.1e) [121] and Directed Placement

(Figs. 5.6b and 5.6c) , are used in generating results for this publication. Both of these

methods are designed to obtain a placement of components within a 2D plane such that no

83

components overlap, optionally including an additional user-defined buffer distance between

components to facilitate fabrication.

Planar Placement seeks to find a component placement which will support a planar

routing, one where no two connections intersect; which is necessary to generate a valid single-

layer device with no incidental fluid interactions. Intersection can be dealt with in 2 ways:

at any intersection a valve can be placed there to switch which fluid channel is currently

flowing or the device can contain multiple levels allowing fluids to route above/below each

other. Xylograph, in principle could support either of these methods. Noting that either

method dramatically increases the complexity of fabricating and/or operating the device.

The Xylograph methods used here only support the design and fabrication of planar device,

and all other non-planar inputs are designated as invalid before placement begins.

Determining planarity occurs by utilizing the Chrobak-Payne straight line planar

embedding algorithm [37] to find a layout where all connected components can be con-

nected using a straight line. Unfortunately the Chrobak-Payne method is only capable of

embedding single points and not components with varying sizes, necessitating additional

processing. After initial coordinates are found space is inserted such that sufficient space

exists for the coordinate to represent the upper left of the component without introducing

any overlap between neighboring components. There are a number of different ways that

this space can be inserted, however for this publication we use the naive method [42].

Directed Placement uses an assumed flow paths in the netlist to generate a superior

design for certain types of devices. This method starts with the fluid input components and

places them on the left-hand side of the device. It then traverses each connection from the

84

input components and as it does so places each new component it finds in a subsequent lane,

so components that are 1 connection from an input are in lane 2, components 2 connections

away are in lane 3, etc. After it finds initial lanes for each component it performs a number

of optimizations to distribute the components so they do not overlap and they are well

aligned with their neighboring components.

Routing

Once a valid placement has been found routes need to be determined to connect the com-

ponents as described in the netlist, depicted in Fig. 5.1d. In order to create a set of routes

that introduce no intersections with components or each other we use the Planar Routing

[122] method. This method creates a grid of nodes for each point of unused space (space

within the bounds of the device that does not contain a component) which represents the

available paths for a route. Using a network-flow based routing algorithm route paths are

found between a component and all other components to which its connected, and that

process continues for each component until a path for every connection has been found.

When a path is found the nodes it uses are removed from consideration by other paths so

that they cannot re-use or cross an existing route path. In the case that a valid route, i.e.

one that does not intersect another route path, cannot be found then all the paths found

so far are removed and the process beings again with the connection which could not be

routed going first. In this way connections which move through the most congested part of

the device are routed first and connections with more possible choices are routed last.

85

5.2.4 Device Fabrication & Assay Execution

Once a design is created, either by hand or using design automation tools, it must be

reviewed by a domain expert. A domain expert must ensure the geometries, channel widths,

etc. are correct with respect to the specification and that the device will operate relative

to fluidic attributes. We expect, future research into component generation and placement

and routing to address this shortcoming. However, because Inkwell generates an Scalable

Vector Graphics (SVG), there is no real time investment for a domain expert. The SVG,

in this context, is then sent to Computer-Aided Design (CAD) software, where the device

can then be simulated and fabricated using any of the techniques mentioned above. Since

BioScript nor the netlist do not capture physical attributes of fluids, most devices generated

require review from a domain expert.

In principle, the design generated by Xylograph can be fabricated using any pop-

ular fabrication method, e.g., Computer numerical control (CNC) milling[101, 102] or pho-

tolithography. For the purposes of this work, we use a CNC mill (Bantam Tools© Desktop

PCB Milling Machine) to mill a negative in poly(methyl methacrylate) (PMMA, or “acrylic”

plastic)[54, 85, 136]. We then bond a glass layer to the PMMA layer. Once the bond has

cured, I/O ports are then connected to their respective reservoirs and the device is ready

to be used, Fig. 5.1e. The devices are capable of either being powered by gravity-induced

head pressure or, as in our case, external syringe pumps.

86

5.2.5 Application Mapping

Application mapping for passive flow devices amounts to generation of a Directed Acyclic

Graph (DAG), selection of components that best match operations and then executing the

assay on the device, a process discussed in more detail in earlier in 5.1. Mapping an assay

onto a programmable, active flow device is more complicated: while the process remains the

same, in principle, an additional step between component selection and execution is inserted

into the process: application mapping[125]. This is analogous to the code generation phase

of a traditional compiler; where the compiler schedules operations, binds values to registers,

and emits processor-specific machine code. However, in this context, it is binds resources

to components, using the device’s valves to move fluid to the appropriate component.

BioScript generates an activation sequence like that detailed in Table 5.1. This

table maps the resources to a component for a given time step. This ultimately results

in the valves being activated at a given timestep, as illustrated in Fig. 5.4. BioScript

implementation of relies on previous work described in [125]. At each time step a resource

is scheduled and bound to a component. After this, a path from origin to destination is

computed. If a route cannot be found, the assay can not be executed on the device —

application mapping fails.

Unfortunately, at time of writing, Inkwell is incapable of supporting device design

and fabrication utilizing valve-based pLoC devices. Xylograph will generate the activation

sequence based on the timing information provided by the user. The activation sequence

can be trivially translated to a tool like Labview©, an industry standard tool capable of

physically actuating the valves in accordance with the activation sequence generated by

87

Table 5.1: The activation sequence at each time step for each valve required to mix two
fluids in a circular mixer.

Time Step Open Closed Operation

1 {cv1, cv3, cv4, cv5, cv6, cv7} {cv2} Load Fluid 1
2 {cv2, cv3, cv7} {cv1, cv4, cv5, cv6} Load Fluid 2
3 {cv4, cv6} {cv1, cv2, cv3, cv5, cv7} Mix
4 {cv5} {cv1, cv2, cv3, cv4, cv6, cv7} Mix
5 {cv4, cv6} {cv1, cv2, cv3, cv5, cv7} Mix
... {...} {...} ...
n {cv5} {cv1, cv2, cv3, cv4, cv6, cv7} Mix

Xylograph. It should be noted: this is a naive and simple mapping, it does not account

for timing issues pertaining to fluidic properties such as viscosity. We leave all extensions

involving fluidic properties for future work.

5.3 Results & Discussion

We measured the time it took to program an assay and synthesize a corresponding device

design. These assays are arbitrary on purpose; only including primitive operations found

in many lab-on-a-chip devices (mix, split, and dispose/dispense). For the purposes of these

experiments we assume standard components, e.g., all mix modules behave the same in

form (two input, one output), or channel splits can only split into some power of 2 (so one

channel can split into two channels, four channels, eight channels, etc.).

We generated Table 5.2 using an Amazon AWS™instance comprised of 8 vCPUs

running at 2.2 Ghz and 64 GB of RAM. We acknowledge that these results are in a vacuum

— free from comparison of how traditional microfluidic devices are created. We have been

unable to find any quantitative information regarding the time required to design and

88

fabricate these devices. In light of that fact, we consulted with Bioengineers to estimate

how long it would take them to build each of the devices in question; which we report

in Table 5.2. The 1024 component device is a conservative estimate from Bio-Engineers

working with microfluidics. Using Xylograph reduces the amount of time a system designer

must invest in the design of a device by 78%.

To empirically prove that Xylograph can reduce the barriers for system designers,

we used Xylograph to design 2 devices that perform common tasks like preparing a range

of solute concentrations. We also use one of the fabricated devices to automate the steps

involved in a standard dilution experiment. We discuss the experimental setup and outcome

for each of the devices in 5.3.1 and 5.3.2.

Table 5.2: Results demonstrating the time it takes to express an assay (using BioScript) and
then using Inkwell to synthesize the corresponding device. The results clearly demonstrate
how well this workflow performs at building successively more complicated devices; a task
that, when done by hand is exceedingly arduous and onerous. Xylograph is shown to reduce
human design time by an average 22%.

Design time using Xylograph
(hh:mm:ss)

Design time by hand
(hh:mm:ss)

Number of Write BioScript & Total Estimated Xylograph’s
Components Assay Inkwell Total Time Savings

4 0:26 0:01 0:27 2:00 78%
6 0:45 0:01 0:46 5:00 85%

16 2:48 0:05 2:53 10:00 72%
32 3:03 0:17 3:20 15:00 80%
64 6:49 1:11 8:00 30:00 77%

128 12:36 4:52 17:29 1:00:00 79%
1024 1:42:09 6:22:25 8:04:34 7:00:00 76%

89

5.3.1 Small Dilution Mixer — the “Mini-Mixer”

We tested our “small” device, depicted in Fig. 5.1e, a CNC-milled PMMA device sealed

with Polymerase Chain Reaction (PCR) tape. We used two 50mL fluids colored with 10

drops of blue dye and 60 drops of yellow dye. The colored fluids were pumped through the

device at a rate of 0.5ml/min.

We expected the “Mini-Mixer” device to generate a 50% dilution of the yellow and

blue colored fluids — in this case we expect to create green water. To confirm this dilution,

we took images of the resulting outputs using an off-the-shelf high-resolution camera and

using ImageJ, an industry standard image processing tool, we created the RGB histograms

Fig. 5.5. The histogram in Fig. 5.5c shows that Xylograph’s generated device produces a

fluid with the appropriate color profile, the water is green. The histogram for the blue water,

Fig. 5.5b, has a large presence of green. To the naked eye, Fig. 5.1e appears slightly cyan

— which does includes some amount of green. Figure 5.5c also exhibits a large presence

of red. These variances could be a result of differing densities of the dye or imperfections

introduced into the device during milling.

5.3.2 Medium Dilution Tree

While a tiny mixer is an intersting proof-of-concept, we wanted to demonstrate Xylograph’s

ability to produce devices that can reproduce meaningful experiments. To do this, we use

Xylograph to build a dilution tree — a standard experiment allowing scientists to quickly

generate a series of reagents with ranging concentrations, as depicted in Fig. 5.6. Like the

90

“Mini-Mixer”, described in 5.3.1, this device was fabricated using a CNC-milled PMMA

device sealed with PCR tape. Our two inputs are are 50mL of water colored with 10 drops

of blue dye and 50mL of water colored with 60 drops of yellow dye. The two fluids were

driven through the device using a syringe pump at a rate of 0.125mL/min.

To obtain visual measurements, we used an off-the-shelf high-resolution camera

and used ImageJ to measure the RGB values in the resulting solutions. Figure 5.7 depicts

ImageJ’s generated histograms. In Figs. 5.7a and 5.7b demonstrate the inputs as expected

— yellow (Fig. 5.7a) and blue (Fig. 5.7b). The outputs, Figs. 5.7d to 5.7g, demonstrate

the expected output for the device. The histograms in Figs. 5.7d and 5.7g show the correct

outputs, 100% of both yellow and blue, respectively. The histograms in Figs. 5.7e and 5.7f

correlate with the droplets of their respective position in Fig. 5.7c. These histograms show

the presence of both green and red in the resulting mixtures, but in different ratios, which

demonstrates reasonable rates of mixtures for the expected concentrations. The lack of

perfect distributions in the outputs could be a result of milling imperfections or different

densities in the dyes used to color the water. To determine the exact concentrations, or in

this case, presence of colors, in Figs. 5.7e and 5.7f would require the use of spectroscopy —

a tool not readily accessible to computer scientists.

5.4 Future Work

Xylograph is flexible and pliable: there are many directions one can choose to further develop

this idea and tool. One orthogonal research avenue would be exploring component reuse

and reduction. Current devices are not large, spatially; however, they can be comprised

91

of dozens of components. Designing these devices doesn’t explicitly identify components

capable of reuse. Automatically detecting and reducing components can reduce design and

fabrication time. This avenue is only possible in active flow devices, as fluid may be flowing

backwards through the device.

As noted in 5.3, fluidic properties (e.g., viscosity, concentration, or density) are

not captured in the front-end (BioScript) or utilized during device synthesis (Inkwell). By

capturing these properties, Xylograph could further reduce the need for expertise required

in fabricating and verifying more interesting and complicated devices. One interesting ap-

plication of including fluidic properties is solute separation – making separating blood cells

and cancer cells significantly simpler while using far less blood. Including these proper-

ties has implications for the inclusion of timing constraints as well. Timing constraints

allow a user to specify that a particular fluidic variable must be used within a particular

time interval. Capturing fluidic properties also has implications for component generation:

without fluidic properties a “best match” component may not be appropriate to achieve

homogeneity between the fluid(s) and the component’s function.

Component designers include fluidic properties when designing new components.

Including fluidic properties during compilation and synthesis would allow for dynamic com-

ponent generation or selection and deliver the best possible device. This would entail ma-

nipulating channel width or geometries, influencing placement and routing, or even simply

selecting the best component for the fluid (an improvement over Xylograph’s direct map-

ping approach). However, even by including these properties devices still require validation

prior to execution.

92

Finally, extending the compiler to include active-flow devices, devices that use

pumps to move fluid through the channels, instead of back pressure or gravity, would be a

natural extension; allowing active control of the device — the ability to change execution

based on various readings or inputs. This hass the added benefit of removing the intersecting

channel limitation. This would require a further extension to all 4 steps denoted in Fig. 5.2.

Component selection and generation would need to include components that are able to be

controlled. The compiler would need to know how the selected components behave, and

how to actuate them. Fabricating a device with multiple layers is feasible; however, still

requires some fashion of human intervention. The different layers would have to be aligned

precisely so they can be bonded. This step, in using the cost-effective CNC mill, requires

human intervention. Execution of the assay would require a feedback loop that can notify

the compiler of any changes to execution.

5.5 Conclusion

Xylograph is the first workflow of its kind: system designers can design assays in a high-level

language, and quickly and efficiently derive a design that can be fabricated using one of

many fabrication techniques allowing for the creation of far more complicated assays and

devices than current practices allow. We then demonstrated Xylograph’s capabilities run a

dilution assay which correctly generated concentrations at a 33% increments.

Given Xylograph is a first of its kind, there are inherent limitations. Currently,

Xylograph only supports a subset of the instructions BioScript employs. For instance,

Xylograph doesn’t support the detect or heat instructions. This is, in part, a result of both

93

design libraries not supporting the necessary components and fabrication techniques not

supporting off-chip operations; not to mention any of the physical constraints imposed on

microfluidic devices, e.g., relative resistances across channels.

While BioScript makes it easy to design assays, not all assays can be fabricated

by Inkwell. There are certain assays that are correct programs, that can be compiled, and

even designed, but are not valid devices.

Our experimental setup does not include the time taken to fabricate or execute the

device as the fabrication of the device is dependent upon too many variables: the placement

and routing algorithms used to synthesize the device, the actual device fabrication technique

(photo-lithography, CNC mill, etc), or what type of device is being fabricated (continuous

or active flow) in addition to assembly and setup.

94

1 manifest hcl

2 manifest buffer

3

4 instructions:

5 acid = dispense hcl

6 buf = dispense buffer

7 dilute = mix acid with buf

8

9 dispose dilute

(a)

1 components: {

2 input_1 ,

3 input_2 ,

4 mixer_1 ,

5 output_1 },

6 netlist: {

7 (input_1 , mixer_1),

8 (input_2 , mixer_1),

9 (mixer_1 , output_1) }

(b)

(c) (d)

(e)

Figure 5.1: Fabricating flow-based devices begins with a BioScript program depicted in
Fig. 5.1a. After selecting components, the BioScript compiler builds a netlist: Fig. 5.1b. A
synthesis tool then attempts to both place the components on a device Figure 5.1c and to
route the connections prescribed in the netlist Fig. 5.1d. If both placement and routing are
successful, the device can be fabricated (Fig. 5.1e) using any available fabrication processes.

95

Device
Fabrication

BioScript

CompilationAssay

1 Component
Selection &
Generation

2 Inkwell

Placement Routing

3

Assay
Execution

4

Figure 5.2: Overview of Xylograph[133, 119], which begins with an assay expressed in
the BioScript programming language. The compiler (1) then selects components (2) while
translating the assay into ParchMint, a form ingestible by Inkwell. Inkwell then attempts
to solve the placement and routing problems specific to the input assay (3). If the assay
yields a valid design, it can then be fabricated and used to execute the original assay (4).

96

Input

Output

Compiler
LLVM Intermediate
Representation

Optimizations

BioScript Intermediate
Representation

Optimizations

C++ Python BioScript

x86 x64 ARM MFSim Parchmint

Figure 5.3: The job of a compiler: converting an input language (C++, Python) to machine
code a specific architecture (x86, x64, ARM) can execute. The left side of the dotted
line compares the compilation process for traditional computer architectures with that of
microfluidic architectures. Relying on traditional compiler techniques allows BioScript to
target different architectures.

97

Input 1

Input 2

Output
cv1

cv2

cv3 cv4 cv6
cv7

cv5

(a)

Input 1

Input 2

Output
cv1

cv2

cv3 cv4 cv6
cv7

cv5

(b)

Input 1

Input 2

Output
cv1

cv2

cv3 cv4 cv6
cv7

cv5

(c)

Input 1

Input 2

Output
cv1

cv2

cv3 cv4 cv6
cv7

cv5

(d)

Figure 5.4: The activation sequence required for loading 2 fluids, input 1 and input 2
(Figs. 5.4a and 5.4b) and mixing them (Figs. 5.4c and 5.4d). Red denotes valves that are
in a “closed” state while green denote an “open” valve.

(a) (b) (c)

Figure 5.5: Figures 5.5a and 5.5b record the RGB histogram of the yellow and blue chan-
nels before the mix operation, respectively. Figure 5.5c shows the color histogram for the
resulting mixed fluid.

98

1 manifest hcl

2 manifest buffer

3

4 instructions:

5

6 acid [2] = dispense hcl

7 buff [2] = dispense buffer

8 fifty_orig = mix acid [1]

with buff [1]

9 fifty = split fifty_orig

into 2

10 all_acid = split acid [0]

into 2

11 all_buff = split buff [0]

into 2

12 acid_66 = mix fifty [0]

with all_acid [1]

13 acid_33 = mix fifty [1]

with all_buffer [1]

14 dispose all_acid [0]

15 dispose all_buff [0]

16 dispose acid_66

17 dispose acid_33

(a)

(b)

(c)

Figure 5.6: Fig. 5.6a depicts the code required to build a dilution tree resulting in fluids
of 0%, 33%, 66%, and 100% dilutions. Figure 5.6b is the corresponding Inkwell placement
and routing masks. Finally, Fig. 5.6c is the fabricated device.

99

(a) (b)

(c)

(d) (e) (f) (g)

Figure 5.7: Figures 5.7a and 5.7b record the RGB histograms of the input to the dilution
mixer. Figure 5.7c provides a visual of the output fluids, while Figs. 5.7d to 5.7g show
the color histograms for each of the output ports on the device. Starting with Figs. 5.7a
and 5.7d, we see an almost identical histogram; the same holds true for Figs. 5.7b and 5.7g.
The histogram for Fig. 5.7e shows a markedly redder mixture, while Fig. 5.7f depicts a
markedly greener mixture. As expected, the ranges are distributed correctly, proving correct
dilutions at 0%, 33%, 66%, and 100% respectively.

100

Chapter 6

ChemStor

6.1 Introduction

Many common chemicals can undergo dangerous reactions when combined with incompat-

ible chemicals during storage or disposal. For example, millions of tons of nitric acid are

produced every year, making it a ubiquitous chemical in many research and industrial set-

tings. Likewise, millions of tons of organic solvents are produced every year and used in

many different applications. But when nitric acid is mixed with organic solvents, hazardous

chemical products, fires, and explosions can result. While all chemists are (hopefully!)

trained to avoid intentionally mixing nitric acid and organic solvents, accidents sometimes

occur when these chemicals are unintentionally mixed in a chemical storage location or a

waste disposal container.[1, 165, 170, 175] Furthermore, nitric acid and organic solvents are

just a few of the millions of chemicals that can undergo dangerous reactions when combined

during storage or disposal. Incidents due to improper storage or disposal of chemicals occur

101

with alarming frequency,[13, 148, 2, 169, 3] with consequences like second-degree burns[1]

and destroyed laboratories.[148]

This paper introduces ChemStor , an open-source, automated chemical storage and

disposal system that is provably safe with respect to proper laboratory safety protocols.

For a given set of chemicals and containers, ChemStor either provides a specific storage or

disposal configuration that is safe, or informs the user that no safe storage/disposal configu-

ration is possible. Specifically, ChemStor informs users which specific cabinet or bin should

be used to store or dispose of each chemical, thereby easing the burden of safety protocols

that users must keep in their minds, while simultaneously minimizing the space required for

chemical storage and disposal. ChemStor can be integrated with electronic laboratory note-

books, voice assistant tools, and many other existing and emerging technologies. Finally,

ChemStor can enhance safety in a wide range of settings, not only research laboratories

and industrial facilities, but also homes (where each year, mixing incompatible pool cleaning

chemicals leads to an estimated 4,500 injuries alone[31]).

6.2 Overview of ChemStor

In this section, we summarize the operation of ChemStor in the context of a specific safety

incident. In 1997, while one of the authors (WHG) was a student at the University of

Tennessee, Knoxville, students in an undergraduate chemistry laboratory performed the

Belousov-Zhabotinsky (BZ) reaction:

3 CH2(CO2H)2 + 4 BrO3
− Ce2+−−−→ 4 Br− + 9 CO2 + 6 H2O (6.1)

102

The BZ reaction is commonly studied in laboratory classes due to its unusual oscillatory

nature. As is typically done, the students at UT Knoxville combined aqueous solutions of

malonic acid and potassium bromate along with a cerium ammonium nitrate catalyst. When

the reactants are combined as aqueous solutions, the reaction is benign, and the laboratory

class concluded without incident. However, during post-lab cleanup, spilled reactants in

dry form were swept from around the laboratory balances and into a waste container. This

container was subsequently placed beneath a leaky sink, which began adding drops of water

to the mixture of dry reactants after the laboratory was empty. The resulting reaction

was extremely exothermic and caused a fire that resulted in significant damage to the

laboratory[13].

How could ChemStor have prevented this incident? More specifically, at the end

of the laboratory class, after the dry reagents used in the BZ reaction were combined

into the same waste container, how could ChemStor warn the teaching assistants that they

should avoid any situation that might add water to this container (like placing the container

beneath a leaky sink)?

The first step involves defining which chemicals are currently in which storage

containers. Fig. 6.1a depicts the chemical storage situation at the end of the class, with the

three dry reagents used in the BZ reaction (malonic acid, potassium bromate, and cerium

ammonium nitrate) combined in a single chemical storage container, and the teaching as-

sistant contemplating placing this container beneath a sink where water might be added to

it.

103

Container 1

Cerium
Ammonium
Nitrate

Malonic
Acid

Potassium
Bromate

(a)

Cerium
Ammonium
Nitrate

Water

Malonic
Acid

Potassium
Bromate

Malonic
Acid

(b)

Cerium
Ammonium
Nitrate

Water

Malonic
Acid

Potassium
Bromate

Malonic
Acid

(c)

Water

Container 2

Cerium
Ammonium
Nitrate

Malonic
Acid

Potassium
Bromate

Container 1

(d)

Figure 6.1: Using ChemStor to safely dispose of leftover reactants from performing the
Belousov-Zhabotinsky (BZ) reaction. This simple scenario (based on real-life events that
culminated in a lab-destroying fire [13]) begins with three reactants (cerium ammonium
nitrate, malonic acid, and potassium bromate) combined in dry form in a single container
(A). A teaching assistant considers placing this container beneath a leaky sink drain, which
will add water to the mixture. At this point, ChemStor constructs a chemical interaction
graph (B) containing vertices for each chemical in the proposed mixture. In this graph,
chemicals that may react with each other are linked with solid lines, and chemicals that
are identical and can be combined are linked with dotted lines. After ChemStor calculates
the chromatic number of the graph and colors the graph (C), the chemicals can be safely
added to different containers based on their vertex colors (D). At this point, ChemStor
would notify the teaching assistant that water should not be added to the container with
the BZ reactants, the teaching assistant would avoid placing the container in a wet location,
and a significant laboratory accident would have been avoided.

104

Next, ChemStor builds a chemical interaction graph G (Fig. 6.1b) containing 3

sets: a set of vertices, V ; and two different sets of edges, E and A:

• The vertices, V , are the individual chemicals in this scenario. Specifically, we can

define the vertices v = cerium ammonium nitrate, u = malonic acid, w = potassium

bromate, and z = water. We can furthermore say that v ∈ V , u ∈ V , w ∈ V , and

z ∈ V , or that v, u, w, z are members of, or are “in,” the set of vertices V . (The “∈”

symbol, as well as the other standard Boolean logic and set theory symbols used in

this work, are defined in Table 6.1.)

• The set E is the set of edges that represent unsafe combinations of chemicals, or

“interference” edges. Because mixing v, u, and w without z will not result in a

dangerous reaction, it can be said that (v, u) /∈ E; or that there is no edge between

v and u. Similarly, there is no edge between the other combinations of the dry BZ

reactants, so (u,w) /∈ E and (v, w) /∈ E. Interference edges are denoted as solid lines

between vertices in Fig. 6.1b. In this example the teaching assistant is considering

possibly adding water to a container that already contains the dry BZ reagents (z

and z ∈ V). Because z (water) will lead to a dangerous reaction when added to the

combined dry BZ reagents, there are edges between each of the BZ reactants and

water, so (v, z) ∈ E, (u, z) ∈ E, and (w, z) ∈ E, as shown in Fig. 6.1b.

• The set A is the set of edges that represent instances of the same chemical, properly

defined as “affine” edges. The dotted line in Figure 6.1b represents an affine edge.

In this scenario, the edge represents some additional malonic acid (a) that requires

disposal. Thus, a ∈ V , and (u, a) ∈ A because both u and a are malonic acid and

105

are chemically identical. The set of affine edges enables ChemStor to save chemical

storage volume space by combining u and v, assuming the container for u or v has

enough space. ChemStor represents this as ∀(u, v) ∈ A (∀ reads “for all”).

Now that the chemical interaction graph G has been built, ChemStor can calcuate

the smallest number of containers required for safe disposal of the chemicals in G. ChemStor

accomplishes this by calculating the graph’s chromatic number, χ(G), a step in “coloring”

the graph. Graph coloring is a mathematical problem that aims to color a graph’s vertices

with the minimal number of different colors, while guaranteeing that no two vertices that

share an edge also share the same color. For safe disposal or storage of chemicals, the only

edges that are of consequence are the interference edges, or the solid edges in Fig. 6.1b. This

graph is trivially small and can be colored by hand using two colors, as shown in Fig. 6.1c.

However, graph coloring belongs to a class of problems that are incredibly difficult to solve

efficiently, the so-called NP-complete problems, so as more chemicals are added to the graph,

the computational effort required to color the graph grows astronomically.

Finally, the graph’s chromatic number (the number of different colors on the col-

ored graph) denotes the minimum number of containers required to safely dispose of the

chemicals in the graph. In this example, ChemStor recommends placing water in a separate

container, not in the container with the dry BZ reagents (Fig. 6.1d). If this information was

then communicated to the teaching assistant, they might avoid placing the container in a

location where water could be added, thereby avoiding a significant laboratory accident.

106

T
a
b

le
6.

1:
C

om
m

on
n

ot
at

io
n

in
se

t
th

eo
ry

an
d

B
o
ol

ea
n

lo
gi

c.

N
o
ta

ti
o
n

P
la

in
E

n
g
li

sh
E

x
a
m

p
le

O
u

tc
o
m

e

|A
|

C
a
rd

in
al

it
y

|A
|

N
u

m
b

er
of

el
em

en
ts

in
th

e
se

t
A

∈
S

et
m

em
b

er
sh

ip
1
∈
N

S
ta

te
m

en
t

of
fa

ct
—

1
is

a
m

em
b

er
of

th
e

se
t

of
n

at
u

ra
l

n
u

m
b

er
s

⊆
S

u
b

se
t

o
r

eq
u

a
l

A
⊆
B

D
et

er
m

in
es

w
h

et
h

er
al

l
th

e
el

em
en

ts
in

se
t

A
ar

e
al

so
in

se
t

B
A
\B

S
et

d
iff

er
en

ce
A
\B

R
et

u
rn

s
th

e
el

em
en

ts
in
B

th
at

ar
e

n
ot

in
A

∧
B

o
ol

ea
n

A
N

D
X
∧
Y

E
va

lu
at

es
tr
u
e

if
an

d
on

ly
if

b
ot

h
p

re
d

ic
at

es
X

an
d
Y

ar
e
tr
u
e

∨
B

o
o
le

a
n

O
R

X
∨
Y

E
va

lu
at

es
tr
u
e

if
ei

th
er

/a
n

d
b

ot
h

p
re

d
ic

at
es
X

,
Y

ar
e
tr
u
e

¬
B

o
o
le

a
n

N
O

T
¬X

N
eg

at
es

th
e

p
re

d
ic

at
e
X

.
If
X

is
tr
u
e,

th
en
¬X

ev
al

u
at

es
to

fa
ls
e

∀
F

o
r

al
l

∀a
(a
>

1)
D

efi
n

it
io

n
of

th
e

n
at

u
ra

l
n
u

m
b

er
s

∃
T

h
er

e
ex

is
ts

∀(
m
∈
N

)∃
(n
∈
N

)(
n
>
m

)
T

h
e

se
t

of
n

at
u

ra
l

n
u

m
b

er
s

co
n
ti

n
u

es
a
d

in
fi

n
it

u
m

107

6.3 Methods

In this section, we present details on the necessary data structures, algorithms, and con-

straints used by ChemStor to determine the safe disposal and storage of chemicals.

6.3.1 Chemical Compatibility

To obtain information about which types of chemicals are compatible or incompatible with

each other, ChemStor relies on a chemical classification system created jointly by the US

Environmental Protection Agency (EPA) and National Oceanic and Atmospheric Adminis-

tration (NOAA)[56]. This system categorizes over 9,800 chemicals into 68 reactivity groups

that have similar properties. Mixing materials from certain reactivity groups can produce

materials from other reactivity groups; for example mixing acids and bases induces a strong

reaction that produces salt and water. The EPA/NOAA categorization assigns one of three

outcomes to the combination of chemicals: Incompatible, Compatible, or Caution. We write

interact(x, y) = if chemicals x and y cause an adverse reaction () when mixed, or are In-

compatible. Chemical combinations that result in Caution are either deferred to the expert

user or treated as Incompatible.

6.3.2 Chemical Interaction Graph

Let G(V,E,A) be the chemical interference graph representing a storage problem. V is the

set of chemicals we desire to store, E is the set of interference edges between incompatible

chemicals, and A is the set of affinity edges between unique instances of identical chemicals.

An interference edge (v, u) is added to E if, for any two chemicals v, u, interact(v, u) =

108

as noted in 6.3.1. An affinity edge (v, w) is added to A if v and w represent distinct

instances of the exact same chemical (i.e., there is more than one container of a certain

chemical we wish to store). The chemical interaction graph may be extended to include a

set P ⊆ V of vertices and Q ⊆ E of edges representing chemicals already in storage and

their corresponding edges, respectively.

6.3.3 Chemical Storage

Let C = {c1, c2, . . . , ck} be the set of cabinets for chemical storage. Each cabinet contains

a finite set of shelves. Let S(cm) denote the set of shelves within cabinet cm ∈ C, where

smn denotes the nth shelf in cm. Each shelf smn ∈ S(cm) has an immutable capacity, denoted

maxCapacity(smn) with which it can use to store chemicals. The capacity of each cabinet

is the sum of the capacities of its shelves. The capacity of a shelf currently occupied by

chemicals is currCapacity(smn).

Affinity-adjacent chemicals may be combined into the same container. The cost

of a container is orders of magnitude less than the cost of a cabinet; as such, we assume an

infinite supply of containers but a finite supply of cabinets.

Let cvol(x) denote the current volume chemical x occupies within its container,

and let combine(y, z) be the volume of the combined quantities of chemicals y and z, which

in either case may be less than the volume of their respective containers. Two instances of

the same chemical v and w can be combined by coalescing their respective vertices in G.

109

6.3.4 Chemical Disposal

Let D = {d1, d2, . . . , dk} be the set of containers for chemical disposal. Each container has

a maximum volume associated with it, denoted maxVolume(dm). The current volume of the

container dm is currVolume(dm).

Thus, if (v, u) ∈ E, then v and u cannot be combined in the same container dm

(e.g., interact(v, u) =), so a new container must be added: dm+1. If (v, u) /∈ E ∧ vol(v) +

currVolume(dm) ≤ maxVolume(dm), then v can be combined with u in the container dm.

Affinity-adjacent chemicals are assumed to be combined into the same container, assuming

the maximum volume of the container allows it.

6.3.5 Characterization of a Solution to the Chemical Storage Problem

Given a chemical interference graph G, ChemStor computes a pair of functions f : V →

{1, 2, . . . |C|} and g : V → N+ which assigns each chemical (vertex) to a specific storage

location within a cabinet and on a shelf, or (cabinet, shelf). If (f(v), g(v)) = (m,n), then

chemical v is assigned to shelf smn in cabinet cm, 1 ≤ n ≤ |S(cm)|.

A legal chemical storage solution must satisfy the Chemical Reactivity Constraint,

which states that two interfering chemicals cannot be stored in the same cabinet:

f(v) 6= f(u) ∀(v, u) ∈ E (6.2)

110

A more permissive variant of the Chemical Reactivity Constraint allows two interfering

chemicals to be stored in the same cabinet, but on different shelves:

p1 = f(v) 6= f(u)

p2 = f(v) = f(u) ∧ g(v) 6= g(u)

p12 = p1 ∨ p2 ∀(v, u) ∈ E

(6.3)

A legal chemical storage solution must also satisfy the Storage Capacity Constraint,

which states that the sum of the capacities of the containers assigned to each shelf in each

cabinet cannot exceed that shelf’s storage capacity:

∑
v∈V |f(v)=m, g(v)=n

vol(v) ≤ maxCapacity(smn)

1 ≤ m ≤ |C|

1 ≤ n ≤ |S(cm)|

(6.4)

6.3.6 Satisfiability Modulo Theories

ChemStor uses a class of logical formula solvers, Satisfiability Modulo Theories (SMT), to

solve a given storage or disposal problem instance. An SMT solver determines whether a

problem instance is “decidable”, or can be answered by a simple “true” or “false”. SMT

problems support linear inequalities (e.g., x+5y−2z ≤ 5), equalities involving uninterpreted

terms or functions (e.g., f(u, v) = f(g(v), u)), Boolean logic (e.g., a∧ b), and in some cases

quantifiers (e.g., ∀a(a ∈ N)(a > 0)).

SMT-based problems are expressed as a series of mathematical constraints. These

constraints define the valid range of values variables can take for a solution. SMT equations

111

are very expressive and can take one or many of the form(s) noted above. Once these

equations are defined, they are used as input to an SMT solver. If the solver can find a

solution which satisfies the constraints, it provides a model, or the values of all the variables.

If no solution can be found, the solver simply returns “false”.

6.3.7 SMT Constraints

To use a SMT solver to solve a ChemStor problem instance, we first convert the Chemical

Storage Problem, described in 6.3.5, into a set of SMT equations. Each chemical v must

be assigned to exactly one shelf smv
nv

in exactly one cabinet cmv . We accomplish this using

the following constraints:

mv ∈ Z, 1 ≤ mv ≤ |C| (6.5)

nv ∈ Z, 1 ≤ nv ≤ |S(ck)| ∧ k == mv
(6.6)

If v is a previously stored chemical, then the values for mv and nv are known a priori and

are encoded as SMT constants.

The second constraint, the Chemical Reactivity Constraint, guarantees that no

pair of chemicals stored in the same cabinet can interact dangerously, and can be expressed

as an SMT constraint as follows:

∀u, v ∈ V |mu == mv interact(u, v) 6= . (6.7)

The more permissive variant of this constraint, Eq. (6.3), guarantees that no pair of chem-

icals stored in the same shelf in the same cabinet can interact dangerously, and can be

112

expressed as an SMT constraint as follows:

∀u, v ∈ V |mu == mv ∧ nu == nv, interact(u, v) 6= . (6.8)

Finally, the Storage Capacity Constraint (Eq. (6.4)) expresses the Storage Capacity

Constraint in a form that is already SMT-compatible.

6.3.8 Coalescing Strategy

As defined in 6.3.2, an affinity edge (u, v) ∈ A represents two containers that store identical

chemicals. Let t(u) denote the chemical “type” of u. In ChemStor ’s case, the reactivity

groups described in 6.3.1 comprise the different “types” to which chemicals may belong,

like “acid” and “base.” In Eq. (6.4), vol(v) represents the volume of the container that holds

chemical v. Let cvol(v) ≤ vol(v) denote the volume of the chemical held in the container.

To reduce demands on limited storage space, it may be possible to consolidate multiple

instances of the same chemical (u and v) into u’s container if

cvol(u) + cvol(v) ≤ vol(u). (6.9)

Here, the user no longer needs to store v’s container, and ChemStor can eliminate all of v’s

associated SMT constraints.

We implement this feature as a coalescing (vertex merging) operation applied to

the chemical interference graph prior to calling the SMT solver; in practice, coalescing

opportunities could be incorporated directly into the SMT formulation as well.

Figure 6.2 illustrates coalescing. Here u represents 150 mL of hydrochloric acid in

a 300 mL container and v represents 150 mL of hydrochloric acid in a 300 mL container.

113

Hydrochloric
Acid

Volume: 150mL
Max: 300mL

v

Hydrochloric
Acid

Volume: 150mL
Max: 300mL

v’

Acetonitrile
Volume: 100mL
Max: 300mL

u

(a)

Hydrochloric
Acid

Volume: 300mL
Max: 300mL

v

Acetonitrile
Volume: 100mL
Max: 300mL

u

(b)

Figure 6.2: Demonstrating the coalescing strategy. The affine edge (dotted line) in (A)
allows ChemStor to combine those chemicals into one vertex as shown in (B), as long as
the volumes v + v′ ≤ maxVolume(v, v′).

Without coalescing, the shelves would use a combined 600 mL of volume to store u and v.

However, with coalescing, ChemStor combines them into a single container, reducing the

storage requirement to 300 mL.

6.3.9 De-Coalescing Strategy

In some cases, it may be necessary to split one chemical container into two or more contain-

ers; ChemStor addresses this behavior through de-coalescing. As a motivating example,

suppose that a user tries to store 300 mL of hydrocholoric acid in a cabinet with three

shelves, as shown in Fig. 6.3. Due to pre-existing chemicals allocated to storage, only 100

mL of space is available on each shelf. In this case, it makes sense to split the hydrochlo-

ric acid into three 100 mL containers; otherwise, a legal storage solution cannot be found.

We implement this strategy using de-coalescing (vertex splitting). ChemStor is allowed to

114

de-coalesce a vertex v into a given number of p parts, each having a volume no more than

maxVolume(v)/p.

Let cm be a cabinet that adheres to the “strict” Chemical Reactivity Constraint,

as noted in Eq. (6.2). Let Q be the set of shelves in cm that are not at their maximum

capacity. In order to de-coalesce a chemical v, there must be sufficient volume over all the

shelves in Q to store all of v, as noted in Eq. (6.10):

maxVolume(v) ≤
∑
q∈Q

maxVolume(q)− currVolume(q) (6.10)

If this constraint is met, ChemStor finds a partitioning of v into p parts {v1, v2, .., vp} by

dividing maxVolume(v) by the greatest common divisor of the available volumes amongst

all shelves in Q:

p =

⌈
maxVolume(v)

GCD({currVolume(q)−maxVolume(q)∀q ∈ Q)

⌉
(6.11)

Each of these p parts can then be stored easily on the shelves in Q:

∀vi ∈ {v1, v2, ..., vp}, f(vi), g(vi) = (cm, q)|q ∈ Q (6.12)

If there are q shelves that do not interact negatively with v whose combined available capac-

ity is greater than maxVolume(v), but whose individual available capacities are smaller than

maxVolume(v), then we can split v into an equal number of p parts, where p is maxVolume(v)

divided by the greatest common divisor of the available capacities of the q shelves. We can

then de-coalesce as described above, and the resulting p instances of chemical v can be

stored on the q shelves either directly or after further coalescing.

115

100mL of
Space

Hydrochloric
Acid

Volume: 300mL
Max: 300mL

v

(a)

Hydrochloric
Acid

Volume: 100mL
Max: 300mL

v’

Hydrochloric
Acid

Volume: 100mL
Max: 300mL

v

Hydrochloric
Acid

Volume: 100mL
Max: 300mL

v’’

(b)

Figure 6.3: Demonstrating the de-coalescing strategy. To store a chemical whose volume
exceeds the capacity of any one shelf (A), ChemStor de-coalesces vertices and splits the
chemical into p parts to derive a feasible storage configuration (B).

6.3.10 No Solutions

There are instances when ChemStor might not converge to a legal solution. In some cases,

this may be in part due to constraints imposed by the set of chemicals pre-assigned to

storage locations. One possibility is to unassign all of these vertices and generate a new

SMT problem instance. If this second instance is successfully solved, then a legal storage

solution has been found, albeit one that may require a significant rearrangement of chemicals

stored in the cabinets. If the second instance cannot be solved, then the user is informed

that no legal storage solution is possible using the existing resources.

6.4 Results

We implemented ChemStor using the Python programming language and z3[20] as our

SMT solver. All experiments were performed on a 64-bit Windows 10 Dell Laptop with an

Intel(R) Core(TM) i5-7200U CPU @ 2.50 GHz with 8.00 GB of RAM. The code is available

at https://github.com/lilott8/BioScript.

116

https://github.com/lilott8/BioScript

To test the efficacy of ChemStor , we used it to reproduce a number of real-world

destructive chemical storage and disposal incidents. In some cases, details regarding the

storage resources were sparse or non-existent; in these examples, we made reasonable as-

sumptions about common storage cabinet sizes and quantities, chemical volumes, and chem-

ical taxonomies. For each real-world incident in Table 6.2, we averaged run times across 100

runs. In each case, ChemStor is able to derive a safe and valid storage or disposal solution

in a fraction of a second.

Table 6.3 reports the ability of ChemStor to handle storage problems which neces-

sitate the use of our coalescing and de-coalescing strategies (i.e., valid solutions are unable

to be found without combining or splitting containers of chemicals). ChemStor was able

to find a safe storage configuration for all the synthetic storage problems where one exists,

denoted by “Yes” in the Valid Solution Found column. In the case of the two synthetic

failures, ChemStor was unable to find a safe storage configuration, as was expected. The

two failing test cases demonstrate problem instances where a valid solution is impossible

and the likelihood of an unsafe incident is significant. In these two cases, the coalescing and

de-coalescing strategies would not prove helpful as the volume constraint on a shelf prevents

a chemical from being safely stored. As in Table 6.2, we average run times over 100 runs,

and note that every test returns in a few milliseconds.

117

T
a
b

le
6
.2

:
R

es
u

lt
s

fr
o
m

u
si

n
g

C
h
em

S
to

r
to

so
lv

e
ch

em
ic

al
st

or
ag

e
an

d
d

is
p

os
al

p
ro

b
le

m
s

fr
om

re
al

-l
if

e
in

ci
d

en
ts

.
In

th
es

e
in

ci
d

en
ts

,
fa

u
lt

y
st

or
ag

e
o
r

d
is

p
o
sa

l
co

n
fi

gu
ra

ti
on

s
ca

u
se

d
la

b
fi

re
s,

ex
p

lo
si

on
s,

or
h
u

m
an

h
ar

m
an

d
in

cu
rr

ed
si

gn
ifi

ca
n
t

d
am

ag
es

to
la

b
sp

ac
es

.
A

ll
ru

n
ti

m
es

w
er

e
av

er
ag

ed
ac

ro
ss

10
0

te
st

s.
C

h
em

S
to

r
w

as
ab

le
to

fi
n

d
a

sa
fe

ch
em

ic
al

st
or

ag
e

or
d

is
p

os
al

co
n

fi
g
u

ra
ti

on
fo

r
ea

ch
in

ci
d

en
t

in
a

fe
w

m
il

li
se

co
n

d
s.

In
c
id

e
n
t

A
v
g
.

R
u

n
N

o
.

o
f

N
o
.

o
f

N
o
.

o
f

S
o
lu

ti
o
n

T
im

e
(m

s)
C

h
e
m

ic
a
ls

C
a
b

in
e
ts

S
h

e
lv

e
s

F
o
u

n
d

T
et

ra
ch

ol
or

et
h
y
le

n
e+

N
it

ri
c

A
ci

d
[1

33
]

5.
52

3
2

1
4

Y
es

H
ex

an
e

E
x
p

lo
si

on
[3

]
2.

10
5

7
1

7
Y

es
M

et
h

an
ol

+
N

it
ri

c
A

ci
d

[1
3
3]

2.
38

6
2

1
2

Y
es

B
en

ze
n

e+
U

re
a+

B
en

zo
tr

ic
h

lo
ri

d
e[

13
3]

4.
45

0
3

1
3

Y
es

L
it

h
iu

m
A

lu
m

in
u

m
H

y
d

ri
d

e
F

ir
e[

2]
7.

04
3

3
1

3
Y

es
H

2
O

2
+

S
u

lf
u

ri
c

A
ci

d
+

A
ce

to
n

e[
13

3]
10

.0
86

3
1

4
Y

es
F

or
m

a
ld

eh
y
d

e+
B

en
ze

n
e[

1
3
3]

11
.3

38
3

1
4

Y
es

U
n

iv
.

of
T

en
n

es
se

e,
K

n
ox

v
il

le
F

ir
e[

13
]

23
.1

77
4

1
4

Y
es

B
ro

ke
n

B
ea

ke
r

o
f

B
a
ri

u
m

O
x
id

e[
16

9]
1.

27
2

11
3

3
Y

es
L

ab
F

ir
e

a
t

O
h

io
S

ta
te

U
n

iv
er

si
ty

[1
48

]
1.

24
1

9
2

3
Y

es

118

T
a
b

le
6
.3

:
S

y
n
th

et
ic

te
st

s
d

em
on

st
ra

ti
n

g
th

e
effi

ca
cy

of
C

h
em

S
to

r
’s

co
al

es
ci

n
g

an
d

d
e-

co
al

es
ci

n
g

st
ra

te
gi

es
.

A
ll

ru
n

ti
m

es
w

er
e

av
er

ag
ed

a
cr

o
ss

10
0

te
st

s.
W

e
cr

af
te

d
te

st
s

fo
r

th
e

ed
ge

s
ca

se
:

re
st

ri
ct

iv
e

p
la

ce
m

en
t,

re
la

x
ed

p
la

ce
m

en
t,

co
al

es
ci

n
g

su
cc

es
s

or
fa

il
u

re
,

a
n

d
d

ec
o
a
le

sc
in

g
su

cc
es

s
or

fa
il

u
re

.
If

a
so

lu
ti

on
co

u
ld

n
ot

b
e

fo
u
n

d
,

th
e

co
rr

es
p

on
d

in
g

co
lu

m
n

is
m

ar
ke

d
w

it
h

a
“N

o”
.

T
e
st

A
v
g

R
u

n
N

o
.

o
f

N
o
.

o
f

N
o
.

o
f

S
o
lu

ti
o
n

S
o
lu

ti
o
n

T
im

e
(m

s)
C

h
e
m

ic
a
ls

C
a
b

in
e
ts

S
h

e
lv

e
s

E
x
is

ts
F
o
u

n
d

F
u

ll
C

a
b

in
et

0.
64

5
1

4
Y

es
Y

es
C

om
p

at
ib

le
C

h
em

ic
a
ls

39
.5

4
5

3
4

Y
es

Y
es

C
om

b
in

e
T

w
o

T
es

ts
14

2.
96

8
4

4
Y

es
Y

es
P

as
s

C
o
a
le

sc
in

g
4.

94
1

1
1

Y
es

Y
es

P
as

s
D

ec
oa

le
sc

in
g

10
.6

0
1

1
3

Y
es

Y
es

F
a
il

C
oa

le
sc

in
g

3.
14

1
1

1
N

o
N

o
F

a
il

D
ec

oa
le

sc
e

4.
77

1
1

2
N

o
N

o

119

6.5 Conclusions

ChemStor automatically generates chemical disposal and storage configurations for labo-

ratory, industrial, and domestic settings that guarantee safe storage and disposal. In all

of our test cases, ranging from real-world to synthetic, ChemStor converged in less than

one second, which indicates that realistic storage/disposal problem instances yield SMT

problem instances that can be solved rapidly. This is important, as it enables ChemStor to

provide real-time advice to users before dangerous storage and disposal mistakes are made.

In its current form, ChemStor has some significant limitations. For example,

ChemStor doesn’t account for chemical properties like concentrations or temperatures; ob-

viously these properties heavily influence the reactivity of the chemicals. Also, the notion

of a “cabinet” in ChemStor is abstract, and differentiating between, say, a refrigerator and

a room-temperature shelf is an important distinction when storing a chemical with a flash

point near room temperature. Finally, the ChemStor “container” is an abstract volume and

does not capture the real-world container dimensions that dictate shelf or cabinet capacity.

Future versions of ChemStor should address these shortcomings, and since ChemStor is an

open-source project, we welcome others to add additional capabilities to the software and

use it in their own projects.

In the near future, ChemStor can be incorporated into the various technological

assistants that are gaining popularity in workplaces and homes. For example, by including

ChemStor in an electronic laboratory notebook, the notebook software could automatically

suggest chemical disposal strategies after each experiment. Cameras in augmented reality

120

systems could actively scan the workplace and use ChemStor to identify unsafe chemi-

cal storage situations before accidents occur, and microphones could listen for employees’

questions about storage and disposal. These scenarios are not that far-fetched—software

developers are already working on voice-based assistants for chemists [128], and integrating

ChemStor into these tools seems relatively straightforward. Finally, including ChemStor ’s

recommendations in home voice assistants like Apple’s Siri and Amazon’s Alexa could signif-

icantly reduce the number of chemical-related injuries and accidents that occur in homes.

121

Chapter 7

Conclusion

LoC technology is poised to fundamentally transform biology and chemistry. How-

ever, the usability and necessary abstractions that are required were lacking. This thesis

directly addressed the usability and abstraction problem by introducing BioScript , a fully-

functional DSL targeting droplet-based pLoC technologies. BioScript includes a type sys-

tem that can guarantee that incompatible chemicals are never mixed together and that

chemicals are used only once. We then introduced the necessary analysis required for

BioScript to support functions, including recursive functions. Further, we extended the

BioScript compiler to support the automated design and fabrication of flow-based (p)LoC

devices. Lastly, we introduce ChemStor , an extension to BioScript ’s type system which

guarantees the safe storage and disposal of chemicals. With these abstractions in place,

(p)LoC devices are easier to program and/or design and guaranteed to operate safely.

122

Appendix A

Assay Execution Videos

A.1 BioScript on Physical Hardware

A.1.1 Image Probe Synthesis

Image probing synthesis is a technique using radioactivity or fluorescence to tag a DNA

or RNA fragment to detect complimentary nucleotide substances. Image probing synthesis

finds use in microbial ecology, allowing scientists to better identify species, genera, or mi-

croorganisms. Appendix E.1.12 details the corresponding BioScript assay, with the physical

execution on a DropBot device is available on our video repository.

A.1.2 Titration

Titration is a common laboratory exercise that allows a scientist to determine the con-

centration of a reaction. It is a way to reverse-engineer the concentration of an unknown

solvent. This experiment is carried out by taking the titrant, a chemical that has a known

123

https://drive.google.com/drive/folders/1healxeasxyqvQYANPVPjkSPgeWmZQO46?usp=sharing

concentration and volume, with a chemical whose concentration is unknown. A scientist

mixes the two together until the reaction reaches “neutralization” — which usually results

in a simple color change of the mixed chemicals. The assay is expressed in Appendix A.1.2,

and the video is available on our video repository.

1 manifest hcl

2 manifest naoh

3 module ph

4

5 instructions:

6

7 acid [2] = dispense hcl

8 base [2] = dispense naoh

9 titration = mix acid [1] with base [1]

10 reagent = split titration into 2

11 acids = split acid [0] into 2

12 bases = split base [0] into 2

13 thirty_three = mix reagent [0] with bases [1]

14 sixty_six = mix reagent [1] with acids [1]

15

16 one = detect ph on acids [0]

17 two = detect ph on bases [0]

18 three = detect ph on thirty_three

19 four = detect ph on sixty_six

20

21 dispose acids [0]

22 dispose bases [0]

23 dispose thirty_three

24 dispose sixty_six

A.2 MFSim Simulated Videos

Below is a list of the videos generated while gathering data. We are not claiming these

as novel or interesting contributions. They are merely provided to demonstrate how the

simulator executes a given assay.

• Urine Opiate Panel with initial positive indication:

https://1drv.ms/v/s!AqwZF7jQGx_IgahNYojptiZr4RpjOg

124

https://drive.google.com/drive/folders/1healxeasxyqvQYANPVPjkSPgeWmZQO46?usp=sharing
https://1drv.ms/v/s!AqwZF7jQGx_IgahNYojptiZr4RpjOg

• Urine Opiate Panel with initial negative indication:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRtiOKGuSTm0qXX0g

• PCR Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IhNgWWxzt8GwtfICcFw

• Image Probe Synthesis:

https://1drv.ms/v/s!AqwZF7jQGx_IhNgbKsUIzDGqfyOhbw

• Neurotransmitter Sensing:

https://1drv.ms/v/s!AqwZF7jQGx_IhNgZjBF4vlsnDr1uCA

• PCR Droplet Replenishment Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRqfq1dLhbBUIL9RQ

• Probabilistic PCR Full:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRo-xDbVT_Q6UsXPg

• Probabilistic PCR Early Exit:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRpLXveGI8Qr7BWrw

• Broad Spectrum Opiate Panel:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRs4f6laDxl6T_QJQ

• Fentanyl ELISA Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IgahJFK519Id1HCad4g

• Ciprofloxacin ELISA Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IgahKrD6EDWPbsy9G0g

125

https://1drv.ms/v/s!AqwZF7jQGx_IhJRtiOKGuSTm0qXX0g
https://1drv.ms/v/s!AqwZF7jQGx_IhNgWWxzt8GwtfICcFw
https://1drv.ms/v/s!AqwZF7jQGx_IhNgbKsUIzDGqfyOhbw
https://1drv.ms/v/s!AqwZF7jQGx_IhNgZjBF4vlsnDr1uCA
https://1drv.ms/v/s!AqwZF7jQGx_IhJRqfq1dLhbBUIL9RQ
https://1drv.ms/v/s!AqwZF7jQGx_IhJRo-xDbVT_Q6UsXPg
https://1drv.ms/v/s!AqwZF7jQGx_IhJRpLXveGI8Qr7BWrw
https://1drv.ms/v/s!AqwZF7jQGx_IhJRs4f6laDxl6T_QJQ
https://1drv.ms/v/s!AqwZF7jQGx_IgahJFK519Id1HCad4g
https://1drv.ms/v/s!AqwZF7jQGx_IgahKrD6EDWPbsy9G0g

• Heroin ELISA Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IgahIrCW0z08KR1111A

• Morphine ELISA Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IgahG3PHVTctW7u0rOw

• Oxycodone ELISA Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IgahHIgmGgR43A-l7EA

126

https://1drv.ms/v/s!AqwZF7jQGx_IgahIrCW0z08KR1111A
https://1drv.ms/v/s!AqwZF7jQGx_IgahG3PHVTctW7u0rOw
https://1drv.ms/v/s!AqwZF7jQGx_IgahHIgmGgR43A-l7EA

Appendix B

BioScript Proofs

B.1 Helper Lemmas

Lemma 5 (Name extension)

∀ Γ, X, i,X ′, X ′′.

Γ, X1 ` i,X2 ∧ X1 ⊆ X ′1 ⇒ ∃X ′2.

Γ, X ′1 ` i,X ′2 ∧ X2 ⊆ X ′2

and

∀ Γ, X, s,X ′, X ′′.

Γ, X1 ` s,X2 ∧ X1 ⊆ X ′1 ⇒

∃X ′2.

Γ, X ′1 ` s,X ′2 ∧ X2 ⊆ X ′2

Proof. Trivial by mutual induction on s and i.

127

Lemma 6

For every Γ, X, i, X ′, s, and X ′′, if

Γ, X ` i,X ′, X ′′ ⊆ X ′ and Γ, X ′′ ` s,X ′′′

there exists X ′′′′ such that

Γ, X ` i; s,X ′′′′ and X ′′′ ⊆ X ′′′′

Proof. Direct from Lemma 5 and the rule T-Inst.

Lemma 7 (Typing •)

For every Γ, X, s1, X ′, s2, and X ′′

Γ, X ` s1, X ′ ∧ Γ, X ′ ` s2, X ′′ ⇒ Γ, X ` s1 • s2, X ′′

Proof. Trivial by induction on s1.

Lemma 8

For every Γ, X, s1, X ′, s2, and X ′′, if

Γ, X ` s1, X ′, X ′′ ⊆ X ′ and Γ, X ′′ ` s2, X ′′′

there exists X ′′′′ such that

Γ, X ` s1 • s2, X ′′′′ and X ′′′ ⊆ X ′′′′

Proof. Direct from Lemma 5 and Lemma 7.

Lemma 9 (Canonical Forms)

For every Γ, X and v,

• If Γ, X ` v : Mati, then v ∈Mati.

• If Γ, X ` v : R, then v ∈ R.

128

• If Γ, X ` v : N, then v ∈ N.

Proof. Immediate from case analysis on the structure of v and using the inversion lemma,

Lemma 10.

Lemma 10 (Inversion on typing of terms)

1. If Γ, X ` x : T ,

then x : T ∈ Γ and x ∈ X.

2. If Γ, X ` t1 ⊕ t2 : T ,

then Γ, X ` t1 : T and Γ, X ` t1 : T and T = N ∨ T = R

3. If Γ, X ` detect module on x for t : T ,

then there exists Mati such that Γ, X ` x : ∪Mati and Γ, X ` t : R and T = R

4. If Γ, X ` mat : T , then there exists i such that T = Mati

5. If Γ, X ` r : T , then T = R

6. If Γ, X ` n : T , then T = N

Proof. Immediate from case analysis on the type derivation rules.

Lemma 11 (Inversion on typing of statements and instructions)

1. For all Γ, X, i, s, X ′′,

If

Γ, X ` i; s,X ′′,

then, there exists X ′ such that

129

Γ, X ` i,X ′ and

Γ, X ′ ` s,X ′′.

2. For all Γ, X, x, t, X ′,

If

Γ, X ` x := t,X ′

then, there exists T , T ′ such that

x : T ∈ Γ,

Γ, X ` t : T ′,

T ′ ⊆ T ,

T ′ = R ∨ T ′ = N ∨ t = mat, and

X ′ = X ∪ {x}

or

t = x′ and

X ′ = X \ {x′} ∪ {x}.

3. For all Γ, X, x, x1, x2, t, X ′,

If

Γ, X ` x := mix x1 with x2 for t,X
′

then, there exist is and js such that

Γ, X ` x1 : ∪Mati,

Γ, X ` x2 : ∪Matj,

Γ, X ` t : R,

130

interact-abs(Mati,Matj) ⊆ Γ(x), and

X ′ = X \ {x1, x2} ∪ {x}.

4. For all Γ, X, x, x1, .., xn, X ′,

If

Γ, X ` 〈x1, .., xn〉 := split x into n,X ′

then, there exist is such that

Γ, X ` x : ∪Mati,

Γ(x) ⊆ Γ(x1), ..,Γ(x) ⊆ Γ(xn), and

X ′ = X \ {x} ∪ {x1, .., xn}.

5. For all Γ, X, t, s1, s2, X ′′′,

If

Γ, X ` if t then s1 else s2, X
′′′

then, there exists X ′ and X ′′ such that

Γ, X ` t : N,

Γ, X ` s1, X ′,

Γ, X ` s2, X ′′, and

X ′′′ = X ′ ∩X ′′.

6. For all Γ, X, t, s, X ′,

If

Γ, X ` while t s,X ′

then,

Γ, X ` t : N

131

Γ, X ` s,X ′′,

X ⊆ X ′′ and

X ′ = X.

Proof. Immediate from case analysis on the type derivation rules.

Lemma 12

For every σ, t and t′ if (σ, t)→ t′ then t′ 6∈ X

Proof. Immediate from the term transition rules.

132

Helper Definitions

The conservative property of the abstract interact-abs function:

∀mati,matj , r.

mati ∈Mati ∧matj ∈Matj ⇒

interact(mati,matj , r) = ⇒ interact-abs(Mati,Matj) undefined

interact(mati,matj , r) 6= ⇒ interact(mati,matj , r) ∈ interact-abs(Mati,Matj)

The type of the functions used for evaluation:

detect : Mati →Module→ R→ R

interact : Mati →Matj → interact-abs(Mati,Matj)

split : Mati → N→Mati

We define the consistency condition between the static typing environment Γ and the run-

time store σ as:

consistent(Γ, X, σ) = ∀x, T.

(x : T) ∈ Γ ∧ x ∈ X ⇒

σ(x) ∈ T

133

B.2 Proof of Progress

Lemma 13 (Progress of Terms)

For every Γ, X, t or T ,

if

Γ, X ` t : T

then

∀σ. consistent(Γ, X, σ)⇒ ∃t′. (σ, t)→ t′ or

t is a value.

Proof.

Proof by induction on t and case analysis thereafter.

We assume

(1) Γ, X ` t : T

Case for the rule T-Var:

We have

(2) t = x

(3) x : T ∈ Γ

(4) x ∈ X

We assume

(5) consistent(Γ, X, σ)

From [3], [4] and [5]:

(5) σ(x) ∈ T

134

By the rule E-Var on [5]:

(6) (σ, x)→ σ(x)

By the rule E-Var on [6] and [2]:

(6) (σ, t)→ σ(x)

Case for the rule T-Math:

(2) t = t1 ⊕ t2

(3) Γ ` t1 : T

(4) Γ ` t2 : T

(5) T = R ∨ T = N

By I.H. on t1:

Case 1: t1 is not a value:

(6) ∀σ,X. consistent(σ,X,Γ)⇒ ∃t′1. (σ, t1)→ t′1

We assume that

(7) consistent(σ,X,Γ)

and prove that

∃t′, (σ, t)→ t′

From [6] and [7], there exists t′1 such that

(8) (σ, t1)→ t′1

From the rule E-MathR1 on [8]:

(9) (σ, t1 ⊕ t2)→ t′1 ⊕ t2

From [9] on [2]

135

(σ, t)→ t′1 ⊕ t2

Case 2:

(10) t1 is a value v1:

By Lemma 9 on [3], [5], [10]

(11) v1 ∈ N ∨ v1 ∈ R

By I.H. on t2:

Case 2.1: t2 is not a value:

(12) ∀σ,X. consistent(σ,X,Γ)⇒ ∃t′2, (σ, t2)→ t′2

We assume that

(13) consistent(σ,X,Γ)

and prove that

∃t′, (σ, t)→ t′

From [12] and [13], there exists t′2 such that

(14) (σ, t2)→ t′2

From the rule E-MathR2 on [14]:

(15) (σ, v1 ⊕ t2)→ v1 ⊕ t′2

From [15], [2], [10]:

(σ, t)→ v1 ⊕ t′2

Case 2.2:

(16) t2 is a value, v2:

By Lemma 9 on [4], [5], [16]

(17) v2 ∈ N ∨ v2 ∈ R

136

From the rule E-Math on [11] and [17]:

(18) (σ, v1 ⊕ v2)→ v1 ⊕ v2

From on [17], [10], [16]

(σ, t)→ v1 ⊕ v2

Case for the rule T-Detect:

t = detect modulei on x for t′

Similar to the the rule T-Math rule, by induction hypothesis in t′ and then using the

rule E-Detect and the rule E-DetectR. The consistency condition is used to derive

the first premise of the rule E-Detect.

Case for the rule T-Mat:

mat is a value.

Case for the rule T-Real:

r is a value.

Case for the rule T-Nat:

n is a value. Proof.

Case analysis on the typing derivation:

Case for the rule T-Skip:

s = skip

137

Case for the rule T-Inst:

s = i; s′

Γ, X ` i,X ′′

Immediate from Lemma 14.

Lemma 14 (Progress for Instructions)

For every Γ, X, i, s, X ′,

if

Γ, X ` i,X ′

then

∀σ. consistent(Γ, X, σ)⇒

∃σ′, s′. (σ, i; s)→ (σ′, s′)

Proof.

We have that

(1) Γ, X ` i,X ′

Case analysis on the typing derivation:

Case for the rule T-Assign-1:

(2) i = (x := v)

(3) x : T ∈ Γ

(4) Γ, X ` t : T ′

(5) T ′ ⊆ T

From the rule E-Assign

(6) (σ, x := v; s)→ (σ[x 7→ v]; s)

138

From [6], [2]

(σ, i; s)→ (σ[x 7→ v]; s)

Case for the rule T-Assign-2:

Similar to the previous case. The reduction uses the rule E-Assign′

Case for the rule T-Assign-3:

(2) i = (x := t)

(3) x : T ∈ Γ

(4) Γ, X ` t : T ′

(5) (T ′ = R ∨ T ′ = N) ∧ t 6∈ V ∪ X

(6) T ′ ⊆ T

By Lemma 13 on [4]:

Case 1:

(7) ∀σ. consistent(Γ, X, σ)⇒ ∃t′. (σ, t)→ t′

We assume that

(8) consistent(Γ, X, σ)

We prove that

(σ, i; s)→ (σ′, s′)

From [7] and [8], there exists t′ such that

(9) (σ, t)→ t′

139

From the rule E-AssignR on [9] and [5]:

(10) (σ, (x := t); s)→ (σ′, (x := t′); s)

From [2] on [10]:

(σ, i; s)→ (σ′, (x := t′); s)

Case 2:

(11) t is a value, v.

Contradiction with [5].

Case for the rule T-Mix:

(2) i = (x := mix x1 with x2 for t)

The proof is similar to the case for the rule T-Assign. Lemma 13 is applied to the type

derivation for t. There are two cases. Case 1: If t steps, the rule E-MixR is applicable.

Case 2: If t is a value, the rule E-Mix is applicable. Lemma 10 and the consistency

condition is used to show that x1 and x2 are both material values σ(x1) and σ(x2) in

the store. In addition, from the case analysis on the typing derivation, we have that

interact-abs(Mati,Matj) is defined; thus, by the conservative property of the abstract

interaction interact(σ(x1), σ(x2)) 6= .

Case for the rule T-Split:

(2) i = (〈x1, .. xn〉 = split x1 into n)

140

The consistency condition is used to show that x is a material value in the store. Then,

the rule E-Split is applicable.

Case for the rule T-If:

(2) i = if t then s1 else s2

We apply Lemma 13 to the type derivation for t. There are two cases. Case 1: If

t steps, the rule E-IfR is applicable. Case 2: If t is a value, by Lemma 9 on the

typing judgement for t, we know that it is a natural number. If it is non-zero, the rule

E-IfTrue is applicable; otherwise the rule E-IfFalse is applicable.

Case for the rule T-While:

(2) i = while t s

The rule E-While is applied without any premise.

Lemma 15 (Progress for Statements)

For every Γ, X, s, X ′,

if

Γ, X ` s,X ′

then either s is skip or

141

∀σ. consistent(Γ, X, σ)⇒

∃σ′, s′. (σ, s)→ (σ′, s′)

Proof.

We have that

(1) Γ, X ` s,X ′

Case analysis on s:

Case s = skip

Conclusion is immediate.

Case

(2) s = i; s′

From [1] and [2],

(3) Γ, X ` i; s′, X ′

By Lemma 11 on [3], there exists X ′′ such that

(4) Γ, X ` i,X ′′

(5) Γ, X ′′ ` s′, X ′

By Lemma 14 on [4],

(6) ∀σ. consistent(Γ, X, σ)⇒

∃σ′, s′′. (σ, i; s′)→ (σ′, s′′)

The conclusion is immediate form [2] and [6].

142

B.3 Proof of Preservation

Lemma 16 (Preservation of Terms)

For every Γ, X, t, T and σ,

if

Γ, X ` t : T and

(σ, t)→ t′ and

consistent(Γ, X, σ)

then

Γ, X ` t′ : T

Proof.

We have

(1) Γ, X ` t : T

(2) (σ, t)→ t′

(3) consistent(Γ, X, σ)

Straightforward induction on the derivation of Γ, X ` t : T and then case analysis on the

final rule in the derivation of (σ, t)→ t′

Case for the rule T-Var:

From the rule T-Var:

(4) t = x

(5) x : T ∈ Γ

143

(6) x ∈ X

From the rule E-Var:

(7) t′ = σ(x)

From [3], [5], and [6]

(7) σ(x) ∈ T

By case analysis on the value σ(x) and the rule T-Mat,

the rule T-Real and the rule T-Nat

Γ, X ` σ(x) : T

Case for the rule T-Math:

(4) t = t1 ⊕ t2

(5) Γ, X ` t1 : T

(6) Γ, X ` t2 : T

(7) T = R ∨ T = N

Case analysis on [2]:

Case for the rule E-MathR1:

(8) t′ = t′1 ⊕ t2

(9) (σ, t1)→ t′1

By I.H. on [5], [9], and [3]:

(10) Γ, X ` t′1 : T

From the rule T-Math on [8], [10], [6], [7]:

(11) Γ, X ` t′ : T

144

Case for the rule E-MathR2:

(12) t′ = v1 ⊕ t′2

(13) (σ, t2)→ t′2

By I.H. on [6], [13], and [3]:

(14) Γ, X ` t′2 : T

From the rule T-Math on [12], [5], [14]:

(15) Γ, X ` t′ : T

Case for the rule E-Math:

(16) t1 = v1

(17) t2 = v2

(18) (v1 ∈ N ∧ v2 ∈ N) ∨ (v1 ∈ R ∧ v2 ∈ R)

(19) v1 ⊕ v2 = v

(20) t′ = v

From [18], we consider the case:

(21) v1 ∈ N ∧ v2 ∈ N

The other case is similar.

From [21], [19]:

(22) v ∈ N

From [20], [22] and the rule T-Nat:

(23) Γ, X ` t′ : N

From Lemma 10 on [5], [16] and [21]

(24) T = N

145

From [23] and [24]:

(23) Γ, X ` t′ : T

Case for the rule T-Detect:

(4) t = detect modulei on x for t′

We consider the two cases for [2]: Case for the rule E-DetectR: Induction hypothesis

is applied to t′ and then the rule T-Detect is applied. Case for the rule E-Detect:

Immediate from the rule T-Real.

Case for the rule T-Mat:

(4) t = mat

mat is a value and does not step.

Case for the rule T-Real:

(4) t = r

r is a value and does not step.

Case for the rule T-Nat:

(4) t = n

n is a value and does not step.

146

Lemma 17 (Preservation of Statements)

For every Γ, X, σ, s, X ′′, σ′, s′,

if

Γ, X ` s,X ′′ and

(σ, s)→ (σ′, s′) and

consistent(Γ, X, σ)

then there exists X ′ such that

Γ, X ′ ` s′, X ′′ and

consistent(Γ, X ′, σ′)

Proof.

We have

(1) Γ, X ` s,X ′′

(2) (σ, s)→ (σ′, s′)

(3) consistent(Γ, X, σ)

Case Analysis on [1]:

Case for the rule T-Skip:

Contradiction in [2]: The statement skip does not step.

Case for the rule T-Inst:

(4) Γ, X ` i,X ′

(5) Γ, X ′ ` s′′, X ′′

147

(6) s = i; s′′

Case Analysis on [4]:

Case for the rule T-Assign-1:

(7) i = (x := v)

(8) x : T ∈ Γ

(9) Γ, X ` t : T ′

(10) X ′ = X ∪ {x}

(11) T ′ ⊆ T

From [6], [7]:

(12) s = (x := v); s′′

Case analysis on [2]:

Case for the rule E-Assign:

(13) t = v

(14) s′ = s′′

Case analysis on v:

Case (15) v = r

By Lemma 10 on [9], [13] and [15]

(16) T ′ = R

From [16], [11]

(17) {R} ⊆ T

From [15], [17]

148

(18) v ∈ T

From [3], [10], [8], [18]

(19) consistent(Γ, X ′, σ[x 7→ v])

From [5], [14]

(20) Γ, X ′ ` s′, X ′′

The conclusion is [20] and [19].

Case T ′ = N

Similar to the previous case.

Case t = mat

Similar to the previous case.

Case for the rule E-AssignR:

(σ, v)→ t′

There is no reduction rule for values. Contradiction.

Case for the rule T-Assign-2:

The reduction is with the the rule E-Assign′. Similar to the case for the rule T-

Assign-2, the consistency of σ with Γ and X and that T ′ ⊆ T implies the consistency

of (σ \ {x′})[x 7→ σ(x′)] with Γ and X \ {x′} ∪ {x}.

149

Case for the rule T-Assign-3:

(7) i = (x := t)

(8) x : T ∈ Γ

(9) Γ, X ` t : T ′

(10) (T ′ = R ∨ T ′ = N) ∧ t 6∈ V ∪ X

(11) T ′ ⊆ T

(12) X ′ = X ∪ {x}

From [6], [7]:

(13) s = (x := t); s′′

Case analysis on [2]:

Case for the rule E-AssignR:

(14) s′ = (x := t′); s′′

(15) (σ, t)→ t′

By Lemma 16 on [9], [15], and [3]:

(16) Γ, X ` t′ : T

By Lemma 12 on [15]

(17) t′ 6∈ X

From [17] and either the rule T-Assign-1 or the rule T-Assign-3 on [8], [16],

[10], [11]:

(18) Γ, X ` x := t′, X ∪ {x}

From [18] and [12]:

(19) Γ, X ` x := t′, X ′

150

From the rule T-Inst on [19], [5], and then [14]:

(20) Γ, X ` s′, X ′′

The conclusion is [20], [3].

Case for the rule E-Assign:

t = v

Contradiction with [10].

Case for the rule E-Assign′:

t = x

Contradiction with [10].

Case for the rule T-Mix:

(7) i = (x := mix x1 with x2 for t)

(8) Γ, X ` x1 : ∪Mati

(9) Γ, X ` x2 : ∪Matj

(10) Γ, X ` t : R

(11) interact-abs(Mati,Matj) ⊆ Γ(x)

(12) X \ {x1, x2} ∪ {x}

Case analysis on [2]: There are two cases.

Case of the rule E-MixR:

151

By Lemma 16, the type of t is preserved for t′. Thus, the rule T-Mix is applied

to the new mix instruction. The assumed consistency condition is preserved

since the store σ stays unchanged in the step.

Case of the rule E-Mix:

We already have the typing judgement for the remaining statement s′′ in [5].

By Lemma 10 on [8] and the consistency condition, there exists i such that

σ(x1) ∈ Mati where Γ(x1) = ∪Mati. Similarly, there exists j, σ(x2) ∈ Matj

where Γ(x2) = ∪Matj . Since interact-abs(Mati,Matj) is defined, from the

conservative property of the abstract interact-abs function, we have:

interact(σ(x1), σ(x2), r) ∈ interact-abs(Mati,Matj)

Thus, from [11], we have

interact (σ(x1), σ(x2), r) ∈ Γ(x)

From this and the consistency assumption for σ, we have

conistent(Γ, X ∪ {x}, σ[x 7→ interact(σ(x1), σ(x2), r)])

Therefore, we have

conistent(Γ, X \ {x1, x2} ∪ {x}, σ \ {x1, x2} [x 7→ interact(σ(x1), σ(x2), r)])

152

Case for the rule T-Split:

(7) i = (〈x1, .. xn〉 = split x into n)

(8) Γ, X ` x : ∪Mati

(9) Γ(x) ⊆ Γ(x1), ..,Γ(x) ⊆ Γ(xn)

(10) X ′ = X \ {x} ∪ {x1, .., xn}

Case analysis on [2]: There is only one case. Case of the rule E-Split: We already have

the typing judgement for the remaining statement s′′ in [5]. By Lemma 10 on [8], we

have Γ(x) = ∪Mati and x ∈ X. From the consistency condition, we have σ(x) ∈ Γ(x).

From the type of the split function, we have split(σ(x), n) ∈ Γ(x). From this and [9],

we have that for every j ∈ {1..n}, split(σ(x), n) ∈ Γ(xj). From this and the consis-

tency assumption for σ, we have conistent(Γ, X ∪ {x1, .., xn}, σ[xi 7→ split(σ(x), n)]).

Therefore, we have conistent(Γ, X \ {x} ∪ {x1, .., xn}, (σ \ {x})[xi 7→ split(σ(x), n)]).

Case for the rule T-If

(7) i = if t then s1 else s2

(8) Γ, X ` t : N

(9) Γ, X ` s1, X1

(10) Γ, X ` s2, X2

(11) X ′ = X1 ∩X2

153

Case analysis on [2]: There are three cases.

Case of the rule E-IfR:

By Lemma 16, the type of t is preserved for t′. Thus, the rule T-If is applied

to the new if instruction. The assumed consistency condition is preserved since

the store σ stays unchanged in the step.

Case of the rule E-IfTrue:

From [11], we have X1 ⊆ X ′. From this and [9], by Lemma 5, we have Γ, X `

s1, X
′. From this and [5], by Lemma 7, we have Γ, X ` s1 • s′′, X ′′. The

assumed consistency condition is preserved since the store σ stays unchanged

in the step.

Case of the rule E-IfFalse:

Similar to the previous case.

Case for the rule T-While:

(7) i = while t s′′′

(8) Γ, X ` while t s′′′, X

(9) Γ, X ` t : N

(10) Γ, X ` s′′′, X ′′′

(11) X ⊆ X ′′′

154

(12) X ′ = X

Case analysis on [2]: There is only one case.

Case for the rule E-While:

(13) s′ = if t then (s′′′ • while t s′′′; s′′) else s′′.

By Lemma 8 on [10], [11] and [8], we have

(14) Γ, X ` (s′′′ • while t s′′′), X1

(15) X ⊆ X1

From [5] and [12], we have

(16) Γ, X ` s′′, X ′′

By Lemma 6 on [14], [15] and [16], we have

(17) Γ, X ` (s′′′ • while t s′′′; s′′), X2

(18) X ′′ ⊆ X2

By the rule T-If on [9], [17], [16], we have

(19) Γ, X ` if t then (s′′′ • while t s′′′; s′′) else s′′, X2 ∩X ′′

From [19], [13] and [18], we have

Γ, X ` s′, X ′′

The assumed consistency condition [3] is preserved since the store σ

stays unchanged in the step.

155

B.4 Proof of Soundness

Lemma 18 (Soundness of Type Inference for Terms)

For every Γ, X, t, T , C and m,

if

Γ, X ` t : T C

m is a model for C

then

m(Γ), X ` t : m(T)

Proof.

Hypothesis:

(1) Γ, X ` t : T C

(2) m is a model for C

Structural induction on [1]:

Case the rule CT-Var:

Trivial

Case the rule CT-Math:

(3) Γ, X ` t1 : T1 C1

(4) Γ, X ` t2 : T2 C2

(5) C = C1 ∪ C2 ∪ {T1 = T2 = N ∨ T1 = T2 = R}

156

(6) T = T1

(7) t = t1 ⊕ t2

From [2] and [5]:

(8) m is a model for C1.

(9) m is a model for C2.

By I.H. on ([3], [8]), ([4], [9]):

(10) m(Γ), X ` t1 : m(T1)

(11) m(Γ), X ` t2 : m(T2)

From [5], [2]:

m(T1) = m(T2) = N ∨ m(T1) = m(T2) = R

We consider the first disjunct. The case for the second one is similar.

(12) m(T1) = m(T2) = N

From [12], [10] and [11]:

(13) m(Γ), X ` t1 : N ∧ m(Γ), X ` t2 : N

By the rule T-Math on [13], [14]:

(15) m(Γ), X ` t1 ⊕ t2 : N

From [15], [6], [7] and [12]:

(16) m(Γ), X ` t : m(T)

Case the rule CT-Detect:

157

Similar to the previous case. The only interesting step is that considering the syntax of

types T , the equality m(T1) ∩ {R,N} = ∅ implies m(T1) = ∪Mati.

Case the rule CT-Mat:

Trivial

Case the rule CT-Real:

Trivial

Case the rule CT-Nat:

Trivial

Lemma 19 (Soundness of Type Inference for Statements)

For every Γ, X, s, C, X ′′, and m,

if

Γ, X ` s,X ′′ | C

m is a model for C

then

m(Γ), X ` s,X ′′

Proof.

Hypothesis:

158

(1) Γ, X ` s | C

(2) m is a model for C

Structural induction on [1]:

Case the rule CT-Skip:

Trivial.

Case the rule CT-Inst:

(3) s = i; s′

(4) Γ, X ` i,X ′ | C1

(5) Γ, X ′ ` s′, X ′′ | C2

(6) C = C1 ∪ C2

From [2] and [6]:

(7) m is a model for C1

(8) m is a model for C2

By I.H. on [5]:

(9) m(Γ), X ′ ` s,X ′′

We need to show

(10) m(Γ), X ` i,X ′

and then by the rule T-Inst on [9], [10]:

(11) m(Γ), X ` i; s′, X ′′

and then by from [10], [11]:

159

m(Γ), X ` s,X ′′

Now assuming [4] and [7] that is

(4) Γ, X ` i,X ′ | C1

(7) m is a model for C1

we show that

m(Γ), X ` i,X ′

Case analysis on [4]:

Case the rule CT-Assign-1:

(12) i = (x := v)

(13) x : T ∈ Γ

(14) Γ, X ` v : T ′ | C ′

(15) X ′ = X ∪ {x}

(16) C1 = C ′ ∪ {T ′ ⊆ T}

From [7] and [16]:

(17) m is a model for C ′.

(18) m(T ′) ⊆ m(T)

From [13]:

(19) x : m(T) ∈ m(Γ)

From Lemma 18 on [14] and [17]:

160

(20) m(Γ), X ` mat : m(T ′)

By the rule T-Assign on [19], [20], and [18]:

(21) m(Γ), X ` x := mat,X ∪ {x}

From [21], [15] and [12]:

m(Γ), X ` i,X ′

Case the rule CT-Assign-2:

Similar to the previous case. The the rule T-Assign-2 is used.

Case the rule CT-Assign-3:

Similar to the case the rule CT-Assign-1. To use the rule T-Assign, in contrast

to the case the rule CT-Assign-1 that proved t = v, the disjunct T ′ = R ∨ T ′ = N

is proved to use the rule T-Assign-3.

Case the rule CT-Mix:

(12) Γ, X ` x1 : T | C

(13) Γ, X ` x2 : T ′ | C ′

(14) Γ, X ` t : T ′′ | C ′′

(15) i = (x := mix x1 with x2 for t)

(16) X ′ = X \ {x1, x2} ∪ {x}

161

(17) C1 = C ∪ C ′ ∪ C ′′ ∪ {T ∩ {R,N} = ∅, T ′ ∩ {R,N} = ∅, T ′′ = R

Mati ∈ T ∧Matj ∈ T ′ ⇒ interact-abs(Mati,Matj) ⊆ Γ(x)}

From [7] and [17]:

(18) m is a model for C.

(19) m is a model for C ′.

(20) m is a model for C ′′.

(21) m(T) ∩ {R,N} = ∅

(22) m(T ′) ∩ {R,N} = ∅

(23) m(T ′′) = R

(24) Mati ∈ m(T) ∧Matj ∈ m(T ′)⇒ interact-abs(Mati,Matj) ⊆ m(Γ(x))

From Lemma 18 on [12] and [18]:

(25) m(Γ), X ` x1 : m(T)

From Lemma 18 on [13] and [19]:

(26) m(Γ), X ` x2 : m(T ′)

From Lemma 18 on [14] and [20]:

(27) m(Γ), X ` t : m(T ′′)

From [21], there exists is such that:

(28) m(T) = ∪Mati

From [22], there exists js such that:

(29) m(T ′) = ∪Matj

From [25] and [28]:

(30) m(Γ), X ` x1 : ∪Mati

162

From [26] and [29]:

(31) m(Γ), X ` x2 : ∪Matj

From [27] and [23]:

(32) m(Γ), X ` t : R

From [24], [28], and [29]:

(33) interact-abs(Mati,Matj) ⊆ Γ(x)

By the rule T-Mix on [30], [31], [32], and [33]:

(34) Γ, X ` x := mix x1 with x2 for t,X \ {x1, x2} ∪ {x}

From [34], [15] and [16]:

(34) Γ, X ` i,X ′

Case the rule CT-Split:

Similar to the case for the rule CT-Mix. The Lemma 18 is applied to the constraint

typing judgement for x.

Case the rule CT-If:

Immediate from applying the Lemma 18 on t and the induction hypothesis on s1

and s2.

Case the rule CT-While:

Immediate from applying the Lemma 18 on t and the induction hypothesis on s.

163

B.5 Proof of Completeness

Lemma 20 (Completeness of Type Inference for Terms)

For all Γ, X, t, T , and C,

if

m(Γ), X ` t : T

Γ, X ` t : T ′ | C

then

m is a model for C

m(T ′) = T

Proof.

Hypothesis

(1) m(Γ), X ` t : T

(2) Γ, X ` t : T ′ | C

Proof by induction on the given constraint typing derivation [2].

Case for the rule CT-Var:

(3) t = x

(4) x : T ∈ Γ

(5) x ∈ X

164

(6) C = ∅

By the inversion Lemma 10 on [1]:

(7) x : T ′ ∈ m(Γ)

(8) x ∈ X

From [4] and [7]:

(7) T ′ = m(T)

The conclusion is immediate from [6] and [7].

Case for the rule CT-Math:

(3) Γ, X ` t1 : T1 C1

(4) Γ, X ` t2 : T2 C2

(5) C = C1 ∪ C2 ∪ {T1 = T2 = N ∨ T1 = T2 = R}

(6) T ′ = T1

By the inversion Lemma 10 on [1]:

(7) m(Γ), X ` t1 : T

(8) m(Γ), X ` t2 : T

T = N ∨ T = R

We consider the case for the first disjunct:

(The case for the second one is similar.)

(9) T = N

By induction hypothesis on [7] and [3]:

(10) m is a model for C1

165

(11) m(T1) = T

By induction hypothesis on on [8] and [4]:

(12) m is a model for C2

(13) m(T2) = T

From [11], [13] and [9]:

(14) m(T1) = m(T2) = N

From [5], [10], [12] and [14]:

(15) m is a model for C.

From [6], [11], and [9]:

(16) m(T ′) = T

The conclusion is [15] and [16].

Case for the rule CT-Detect:

Similar to the case for the rule T-Math. By induction hypothesis on x and t.

Case for the rule CT-Mat

Trivial.

Case for the rule CT-Real:

Trivial.

166

Case for the rule CT-Nat:

Trivial.

Lemma 21 (Completeness of Type Inference for Statements)

For all Γ, X, s, X ′, C, and m,

if

m(Γ), X ` s,X ′

Γ, X ` s,X ′′ | C

then

m is a model for C.

Proof.

Hypothesis

(1) m(Γ), X ` s,X1

(2) Γ, X ` s,X2 | C

We show that

m is a model for C.

Induction on the derivation of [2]:

Case for the rule CT-Skip:

Trivial.

167

Case for the rule CT-Inst:

(3) s = i; s′

(4) Γ, X ` i,X ′ | C1

(5) Γ, X ′ ` s′, X2 | C2

(6) C = C1 ∪ C2

From [1] and [3]:

(7) m(Γ), X ` i; s′, X1

By the inversion Lemma 11 on [7]:

(8) m(Γ), X ` i,X ′′

(9) m(Γ), X ′′ ` s′, X2

By induction hypothesis on [9] and [5]:

(10) m is a model for C2

We will show that from [8] and [4]:

(11) m is a model for C1

From [6], [10] and [11]:

m is a model for C

Hypothesis:

(8) m(Γ), X ` i,X ′′

(4) Γ, X ` i,X ′ | C1

Conclusion:

m is a model for C1

168

Case analysis on derivation of [4]:

Case for the rule CT-Assign-1:

(12) i = (x := v)

(13) x : T ∈ Γ

(14) Γ, X ` v : T ′ | C ′

(15) X ′ = X ∪ {x}

(16) C1 = C ′ ∪ {T ′ ⊆ T}

From [8] and [12]:

(17) m(Γ), X ` x := v,X ′′

By the inversion Lemma 11 on [17]:

(18) x : T ′′ ∈ m(Γ)

(19) m(Γ), X ` v : T ′′′

(22) T ′′′ ⊆ T ′′

(23) X ′′ = X ∪ {x}

From [18], [13]:

(24) m(T) = T ′′

By Lemma 20 on [19], [14]:

(25) m is a model for C ′

(26) m(T ′) = T ′′′

From [22], [24] and [26]

169

(27) m(T ′) ⊆ m(T)

From [16], [24], [25] and [27]

m is a model for C1

Case for the rule CT-Assign-2:

Similar to the case for the rule CT-Assign-1.

Case for the rule CT-Assign-3:

Similar to the case for the rule CT-Assign-1.

Case for the rule CT-Mix:

(12) i = (x := mix x1 with x2 for t)

(12) Γ, X ` x1 : T | C

(13) Γ, X ` x2 : T ′ | C ′

(14) Γ, X ` t : T ′′ | C ′′

(15) C1 = C ∪ C ′ ∪ C ′′ ∪

{T ∩ {R,N} = ∅, T ′ ∩ {R,N} = ∅, T ′′ = R

Matk ∈ T ∧Matl ∈ T ′ ⇒ interact-abs(Matk,Matl) ⊆ Γ(x)}

From [8] and [12]:

(16) m(Γ), X ` x := mix x1 with x2 for t,X
′′

170

By the inversion Lemma 11 on [16]:

(17) m(Γ), X ` x1 : ∪Mati

(18) m(Γ), X ` x2 : ∪Matj

(19) m(Γ), X ` t : R

(20) interact-abs(Mati,Matj) ⊆ m(Γ(x))

By Lemma 20 on [17], [12]:

(21) m is a model for C

(22) m(T) = ∪Mati

By Lemma 20 on [18], [13]:

(23) m is a model for C ′

(24) m(T ′) = ∪Matj

By Lemma 20 on [19], [14]:

(25) m is a model for C ′′

(26) m(T ′′) = R

From [22], [24], and [20]:

(27) Matk ∈ m(T) ∧Matl ∈ m(T ′)⇒ interact-abs(Matk,Matl) ⊆ m(Γ(x))}

From [22], [24], and [26]:

(28) m(T) ∩ {R,N} = ∅, m(T ′) ∩ {R,N} = ∅, m(T ′′) = R

From [15], [21], [23], [25], [28] and [27]:

m is a model for C1

171

Case for the rule CT-Split:

Similar to the case for the rule CT-Mix.

Case for the rule CT-If:

Immediate from the induction hypothesis on s1 and s2 and Lemma 20 on t.

Case for the rule CT-While:

Immediate from the induction hypothesis on s and Lemma 20 on t.

172

Appendix C

Syntax Study

C.1 Syntax Study: ELISA Protocols

The enzyme-linked immunosorbent assay (ELISA) is a test that uses antibodies and color

changes to identify a substance. ELISA assays are commonly performed by interacting a

group of chemicals with an immobile antibody to detect the presence and concentration of

particular opiates. A technique was introduced, to allow these assays to be performed on

DMFB technology by baking the enzyme directly onto the top plate of the DMFB, requiring

further syntactic extensions to declare stationary substances and to explicitly move mobile

substances to interact with them.

Fig. C.1 shows an example ELISA assay, which is one of the steps of the larger

hierarchical opiate-detection decision tree. The operator will need to swap out top plates

with different antigens for each ELISA assay, or use a very large electrowetting array to

support a top plate to which all necessary antigens for all of the ELISA assays are affixed.

173

Biologists use many equivalent terms that mean the same thing as Mix. BioScript

supports several of these terms, including Tap and Vortex, as shown in Fig. C.1. The

execution engine recognizes these terms as being equivalent and converts them all to its

own internal mix operation.

The repeat operation is part of BioScript ’s core instruction set. It allows the

programmer to specify a sequence of instructions that will be repeated a constant number

of times, which is far more common in biochemistry than in general computer programming.

Thus, instead of the complex, unconstrained loop syntax employed by modern programming

languages, we have opted for a simple syntax to make BioScript accessible to scientists with

limited programming experience.

The Incubate and Heat operations leverage the external heaters that are integrated

into or placed near the DMFB. A DMFB that lacks heating capabilities cannot perform this

ELISA assay. Thus, the compiler writer must specialize a language syntax for each DMFB

variant based on its integrated peripherals.

The final operation in any ELISA is the detection phase that compares the reading

obtained from the sample to a reading obtained from a control. This provides a certain

measurement of the presence and concentration of the opiate in the sample. In the hier-

archical decision tree immunoassay, the result of this comparison determines which ELISA

assay to execute next.

174

1 Stationary: Anti -Fentanyl

2

3 Move 20uL of Urine Sample to Anti -Fentanyl

4 Move 100uL of Fentanyl -Conjugate to Anti -Fentanyl

5 Tap Anti -Fentanyl for 60s

6 Incubate Anti -Fentanyl at 23 C for 60min

7 Drain Anti -Fentanyl

8

9 Repeat 6 times {

10 Move 350uL of Distilled Water to Anti -Fentanyl

11 Vortex Anti -Fentanyl for 45s

12 Drain Anti -Fentanyl

13 }

14

15 Move 100uL of TMB Substrate to Anti -Fentanyl

16 Incubate Anti -Fentanyl at 23C for 30min

17 Mix Anti -Fentanyl with 100uL of Stop Reagent

18 for 60s

19 Negative Reading = Measure the fluorescence of

20 Anti -Fentanyl for 30min

21 Drain Anti -Fentanyl

Figure C.1: Fentanyl ELISA

175

Appendix D

Type System Tests

D.1 Real world Assays

listings D.1 to D.4 are BioScript representations of real-world assays resulting in hazardous

incidents[7] that put scientists’ safety in jeopardy. BioScript could have prevented all of

these incidents; guaranteeing the safety of the scientists executing these assays. We include

the typing annotations to denote which chemical reactive group(s) a chemical belongs —

or in BioScript ’s context, the concrete type of the chemical.

Listing D.1: An incident involving the mixing tetrachloroethylene and nitric acid, mixing

these chemicals would result in a corrosive, flammable, explosive, toxic gas.

1 [Halogenated Organic Compounds; Hydrocarbons , Aliphatic Unsaturated]

manifest tetrachloroethylene

2 [Acids , Strong Oxidizing] manifest nitric_acid

3

4 instructions:

5

6 a = dispense tetrachloroethylene

7 b = dispense nitric_acid

8

9 c = mix a with b for 40s

176

Listing D.2: An incident involving the mixing methanol and nitric acid, mixing these chem-

icals would result in an explosive, toxic, flammable gas.

1 [Alcohols and Polyols] manifest methanol

2 [Acids , Strong Oxidizing] manifest nitric_acid

3

4 instructions:

5

6 a = dispense methanol

7 b = dispense nitric_acid

8

9 c = mix a with b for 40s

Listing D.3: While mixing diaminopropane and potassium hydride together results in a

benign reaction, mixing the resultant mixture with nitrogen produces an intense explosion.

1 [Not Chemically Reactive] manifest nitrogen

2 [Amines , Phosphines , and Pyridines] manifest diaminopropane

3 [Metal Hydrides , Metal Alkyls , Metal Aryls , and Silanes] manifest

potassium_hydride

4

5 instructions:

6

7 a = dispense nitrogen

8 b = dispense diaminopropane

9 c = dispense potassium_hydride

10

11 d = mix b with c for 20s

12 e = mix a with d for 15s

Listing D.4: An incident involving the mixing of dichlore and calcium hypo. Mixing these

chemicals together results in a flammable, toxic explosion.

1 [Acids , Carboxylic; Halogenated Organic Compounds] manifest dichlore

2 [Salts , Basic; Oxidizing Agents , Strong] manifest calcium_hypo

3

4 instructions:

5

6 a = dispense dichlore

7 b = dispense calcium_hypo

8

9 c = mix a with b for 20s

177

D.2 Synthetic Preventions

The examples in listings D.5 to D.11 are representative of synthetic assays that BioScript ’s

type system would prevent from executing. These assays result in hazardous incidents.

Again, the typing annotations are included for demonstrating reactive groups to which the

respective chemicals belong.

Listing D.5: Mixing hydrochloric acid with nitric acid results in a toxic, flammable, explo-

sion.

1 [Acids , Strong Oxidizing] manifest nitric_acid

2 [Acids , Strong Non -oxidizing; Water and Aqueous Solutions] manifest

hydrochloric_acid

3

4 instructions:

5

6 a = dispense nitric_acid

7 b = dispense hydrochloric_acid

8

9 c = mix a with b for 40s

Listing D.6: Mixing hydrochloric acid with isoproponal results in a excessive heat, ultimately

yielding an explosion.

1 [Alcohols and Polyols] manifest isoproponal

2 [Acids , Strong Non -oxidizing; Water and Aqueous Solutions] manifest

hydrochloric_acid

3

4 instructions:

5

6 a = dispense isoproponal

7 b = dispense hydrochloric_acid

8

9 c = mix a with b for 40s

Listing D.7: Formaldehye is self-reactive, yielding in explosive, toxic gases.

1 [Aldehydes; Polymerizable Compounds] manifest formaldehyde

2

3 instructions:

4

178

5 a = dispense formaldehyde

6 b = dispense formaldehyde

7

8 c = mix a with b for 40s

Listing D.8: Mixing benzoin with urea is safe. However, adding formaldehyde will result in

an intense explosion.

1 [Alcohols and Polyols; Hydrocarbons , Aromatic; Ketones] manifest benzoin

2 [Amides and Imides] manifest urea

3 [Aldehydes; Polymerizable Compounds] manifest formaldehyde

4

5 instructions:

6

7 a = dispense benzoin

8 b = dispense urea

9 c = dispense formaldehyde

10

11 d = mix a with b for 40s

12 e = mix c with d for 40s

Listing D.9: Mixing formaldehyde with benzene is benign. However, adding more formalde-

hyde to the solution could result in an intense explosion, as formaldehyde is self-reactive.

1 [Hydrocarbons , Aromatic] manifest benzene

2 [Aldehydes; Polymerizable Compounds] manifest formaldehyde

3

4 instructions:

5

6 a = dispense benzene

7 b = dispense formaldehyde

8 c = dispense formaldehyde

9

10 d = mix a with b for 40s

11 e = mix c with d for 20s

Listing D.10: Reacting benzene with urea results in a benign solution. However, introducing

hydrochloric acid will generate a toxic gas.

1 [Hydrocarbons , Aromatic] manifest benzene

2 [Amides and Imides] manifest urea

3 [Acids , Strong Non -oxidizing; Water and Aqueous Solutions] manifest

hydrochloric_acid

4

5 instructions:

6

7 a = dispense benzene

179

8 b = dispense urea

9 c = dispense hydrochloric_acid

10

11 d = mix a with b for 40s

12 e = mix c with d for 20s

Listing D.11: Mixing hydrogen peroxide and sulfuric acid will result in a corrosive, toxic,

explosive gas that will explode. Adding acetone will only further exacerbate the issue.

1 [Oxidizing Agents , Strong; Water and Aqueous Solutions] manifest

hydrogen_peroxide

2 [Acids , Strong Oxidizing] manifest sulfuric_acid

3 [Ketones] manifest acetone

4

5 instructions:

6

7 a = dispense hydrogen_peroxide

8 b = dispense sulfuric_acid

9 c = dispense acetone

10

11 d = mix a with b for 20s

12 e = mix c with d for 10s

D.3 Synthetic Successes

listings D.12 and D.13 are example assays where BioScript ’s type system will allow the assay

to execute. We include typing annotations to describe the reactive groups the respective

chemicals belong.

Listing D.12: Reacting benzene with urea results in a benign solution.

1 [Hydrocarbons , Aromatic] manifest benzene

2 [Amides and Imides] manifest urea

3

4 instructions:

5

6 a = dispense benzene

7 b = dispense urea

8

9 c = mix a with b for 40s

180

Listing D.13: Reacting benzene with urea results in a benign solution. Introducing ben-

zotrichloride still produces a safe reaction.

1 [Hydrocarbons , Aromatic] manifest benzene

2 [Amides and Imides] manifest urea

3 [Aryl Halides] manifest benzotrichloride

4

5 instructions:

6

7 a = dispense benzene

8 b = dispense urea

9 c = dispense benzotrichloride

10

11 d = mix a with b for 40s

12 e = mix d with c for 20s

181

Appendix E

Languages

We now present common assays expressed in Antha[164], Aquacore[9], BioCoder[44], and

BioScript which are used in laboratories:

• Glucose Detection: Appendices E.1.13, E.2.1, E.3.4 and E.4.1

• Polymerase Chain Reaction (PCR):Appendices E.1.14, E.2.2, E.3.1 and E.4.3

• Imaging Probe Synthesis: Appendices E.1.12, E.2.3, E.3.5 and E.4.2

• Neurotransmitting Sensing: Appendices E.1.15, E.2.4, E.3.6 and E.4.4

• Probabilistic PCR: Appendices E.1.2 and E.3.2

• PCR with droplet replenishment: Appendices E.1.1 and E.3.3

182

E.1 BioScript Assays

E.1.1 PCR droplet Replenishment

• PCR droplet Replenishment Assay:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRqfq1dLhbBUIL9RQ

1 manifest PCRMasterMix

2 manifest Template

3

4 instructions:

5

6 PCRMix = mix 50 uL of PCRMasterMix with 50 uL of Template for 1s

7

8 repeat 50 times {

9 heat PCRMix at 95c for 20s

10 volumeWeight = detect weight on PCRMix

11

12 if (volumeWeight <= 50) {

13 replacement = mix 25uL of PCRMasterMix with 25uL of Template for

5s

14 heat replacement at 95c for 45s

15 PCRMix = mix PCRMix with replacement for 5s

16 }

17

18 heat PCRMix at 68c for 30s

19 heat PCRMix at 95c for 45s

20 }

21

22 heat PCRMix at 68c for 5m

E.1.2 Probabilistic PCR

• Probabilistic PCR Full:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRo-xdbVT_Q6UsXPg

• Probabilistic PCR early exit:

https://1drv.ms/v/s!AqwZF7jQGx_IhJRpLXveGI8Qr7BWrw

183

https://1drv.ms/v/s!AqwZF7jQGx_IhJRqfq1dLhbBUIL9RQ
https://1drv.ms/v/s!AqwZF7jQGx_IhJRo-xdbVT_Q6UsXPg
https://1drv.ms/v/s!AqwZF7jQGx_IhJRpLXveGI8Qr7BWrw

1 module fluorescence

2 manifest PCR_Master_Mix

3 manifest Buffer

4 manifest PCRMix

5

6 instructions:

7

8 PCR_Master_Mix = mix 50uL of PCRMix with 50uL of Buffer

9

10 heat PCR_Master_Mix at 94c for 2m

11

12 repeat 20 times {

13 heat PCR_Master_Mix at 94c for 20s

14 heat PCR_Master_Mix at 50c for 40s

15 }

16 DNA_Sensor = detect fluorescence on PCR_Master_Mix for 30s

17 if (DNA_Sensor <= 85) {

18 dispose PCR_Master_Mix

19 }

20

21 repeat 20 times {

22 heat PCR_Master_Mix at 94c for 20s

23 heat PCR_Master_Mix at 50c for 40s

24 }

25 heat PCR_Master_Mix at 70c for 5m

E.1.3 Broad Spectrum Opiate

1 module fluorescence

2

3 manifest Anti_Morphine

4 manifest Anti_Oxy

5 manifest Anti_Fentanyl

6 manifest Anti_Ciprofloxcin

7 manifest Anti_Heroin

8 manifest UrineSample

9

10 instructions:

11

12 us1 = dispense 10uL of UrineSample

13 us2 = dispense 10uL of UrineSample

14 us3 = dispense 10uL of UrineSample

15 us4 = dispense 10uL of UrineSample

16 us5 = dispense 10uL of UrineSample

17

18 a = mix us1 with Anti_Morphine

19 b = mix us2 with Anti_Oxy

20 cc = mix us3 with Anti_Fentanyl

21 d = mix us4 with Anti_Ciprofloxcin

22 e = mix us5 with Anti_Heroin

23

24 MorphineReading = detect fluorescence on a for 5s

184

25 OxyReading = detect fluorescence on b for 5s

26 FentanylReading = detect fluorescence on cc for 5s

27 CiproReading = detect fluorescence on d for 5s

28 HeroinReading = detect fluorescence on e for 5s

29

30 dispose Anti_Morphine

31 dispose Anti_Oxy

32 dispose Anti_Fentanyl

33 dispose Anti_Ciprofloxcin

34 dispose Anti_Heroin

E.1.4 Ciprofloxacin eLISA

1 module fluorescence

2

3 manifest ciprofloxacin_enzyme

4 manifest distilled_water

5 manifest ciprofloxacin_conjugate

6 manifest tmb_substrate

7 manifest urinesample

8 manifest stop_reagent

9

10 instructions:

11

12 us = dispense 20uL of urinesample

13 cfc = dispense ciprofloxacin_conjugate

14 cfe = dispense ciprofloxacin_enzyme

15

16 a = mix us with cfe

17 b = mix cfc with a for 60s

18 heat b at 23c for 60m

19 dispose b

20

21 repeat 5 times {

22 water = dispense 250uL of distilled_water

23 cfe = dispense ciprofloxacin_enzyme

24 temp = mix 250uL of water with cfe for 45s

25 dipose temp

26 }

27 tmb = dispense 50uL of tmb_substrate

28 cfe = dispense ciprofloxacin_enzyme

29

30 d = mix tmb_substrate with cfe

31 heat d at 25c for 30m

32

33 cfe = dispense ciprofloxacin_enzyme

34 stop = dispense 100uL of stop_reagent

35 e = mix cfe with stop for 60s

36

37 urine_reading = detect fluorescence on e for 5m

38 dispose e

185

E.1.5 Diazepam eLISA

1 module fluorescence

2

3 manifest diazepam_enzyme

4

5 manifest urinesample

6 manifest diazepam_antibody

7 manifest distilled_water

8 manifest stop_reagent

9 manifest hrp_conjugate

10 manifest tmb_substrate

11

12 instructions:

13

14 urine = dispense 50uL of urinesample

15 dpe = dispense diazepam_enzyme

16 a = mix urine with dpe for 60s

17 anti = dispense 100uL diazepam_antibody

18 b = mix a with anti for 60s

19 heat b at 23c for 30m

20 dispose b

21

22 repeat 3 times {

23 water = dispense 250uL of distilled_water

24 dpe = dispense diazepam_enzyme

25 a = mix water with dpe for 45s

26 dispose a

27 }

28

29 hrpc = dispense 150uL of hrp_conjugate

30 dpe = dispense diazepam_enzyme

31 cc = mix hrpc with dpe

32 heat cc at 23c for 15m

33 dispose cc

34

35 repeat 3 times {

36 water = dispense 250uL of distilled_water

37 dpe = dispense diazepam_enzyme

38 a = mix water with dpe for 45s

39 dispose a

40 }

41

42 tmb = dispense 100uL of tmb_substrate

43 dpe = dispense diazepam_enzyme

44 d = mix tmb with dpe

45 heat d at 23c for 15m

46

47 stop = dispense 100uL of stop_reagent

48

49 reagent = mix d with stop for 60s

50 Negative_Reading = detect fluorescence on reagent for 30m

51 dispose d

186

E.1.6 5-4-7 Dilution

1 manifest substance_a

2 manifest substance_b

3 manifest substance_c

4 manifest dilutant1

5 manifest dilutant2

6 manifest dilutant3

7

8 instructions:

9

10 first_dilute = mix substance_a with dilutant1

11 x = split first_dilute into 2

12

13 dispose x2

14

15 second_dilute = mix x1 with dilutant2

16 y = split second_dilute into 2

17 dispose y2

18

19 third_dilute = mix y1 with dilutant3

20 z = split third_dilute into 2

21 dispose z2

22

23 fourth_dilute = mix substance_b with substance_c

24 a = split fourth_dilute into 2

25 dispose a2

26

27 final_dilute = mix third_dilute with fourth_dilute

28 b = split final_dilute into 2

29 dispose b2

E.1.7 Fentanyl eLISA

1 module fluorescence

2

3 manifest antigen

4

5 manifest urine_sample

6 manifest fentanyl_conjugate

7 manifest tmb_substrate

8 manifest distilled_water

9 manifest stop_reagent

10

11 instructions:

12

13 a = mix 20uL of urine_sample with antigen

14 b = mix 100uL of fentanyl_conjugate with a for 60s

15 heat b at 23c for 60m

16 dispose b

17

18 repeat 6 times {

187

19 z = mix 350uL of distilled_water with a for 45s

20 dispose z

21 }

22

23 a = mix 100uL of tmb_substrate with a

24 heat a at 23c for 30m

25

26 a = mix a with 100uL of stop_reagent for 60s

27 negative_reading = detect fluorescence on a for 30m

28 dispose a

E.1.8 Morphine eLISA

1 module fluorescence

2

3 manifest morphine_enzyme

4

5 manifest urine_sample

6 manifest morphine_conjugate

7 manifest distilled_water

8 manifest tmb_substrate

9 manifest morphine_enzyme

10 manifest stop_reagent

11

12 instructions:

13

14 a = mix 20uL of urine_sample with morphine_enzyme

15 b = mix 100uL of morphine_conjugate with morphine_enzyme for 60s

16 heat b at 23c for 60m

17

18 repeat 6 times {

19 b = mix 350uL of distilled_water with morphine_enzyme for 45s

20 dispose b

21 }

22

23 cc = mix 100uL of tmb_substrate with morphine_enzyme

24 heat cc at 23c for 30m

25 d = mix cc with 100uL of stop_reagent for 60s

26

27 urine_reading = detect fluorescence on d for 30m

28 dispose d

E.1.9 Morphine eLISA with Control Samples

1 module fluorescence

2

3 manifest Antigen1

4 manifest Antigen2

5 manifest Antigen3

6

7 manifest morphine_conjugate

188

8 manifest negative_standard

9 manifest diluted_sample

10 manifest positive_standard

11 manifest distilled_water

12 manifest tmb_substrate

13 manifest stop_reagent

14

15 instructions:

16

17 a = mix 20uL of negative_standard with Antigen1

18 b = mix 20uL of positive_standard with Antigen2

19 cc = mix 20uL of diluted_sample with Antigen3

20

21 a = mix 100uL of morphine_conjugate with a for 60s

22 b = mix 100uL of morphine_conjugate with b for 60s

23 cc = mix 100uL of morphine_conjugate with cc for 60s

24

25 heat a at 23c for 60m

26 heat b at 23c for 60m

27 heat cc at 23c for 60m

28

29 dispose a

30 dispose b

31 dispose cc

32

33 repeat 6 times {

34 aa = mix 350uL of distilled_water with Antigen1 for 45s

35 bb = mix 350uL of distilled_water with Antigen2 for 45s

36 cc = mix 350uL of distilled_water with Antigen3 for 45s

37

38 dispose aa

39 dispose bb

40 dispose cc

41 }

42

43 aa = mix 100uL of tmb_substrate with Antigen1

44 bb = mix 100uL of tmb_substrate with Antigen2

45 cc = mix 100uL of tmb_substrate with Antigen3

46

47 heat aa at 23c for 30m

48 heat bb at 23c for 30m

49 heat cc at 23c for 30m

50

51 aa = mix stop_reagent with 100uL of aa for 60s

52 bb = mix stop_reagent with 100uL of bb for 60s

53 cc = mix stop_reagent with 100uL of cc for 60s

54

55 negative_reading = detect fluorescence on aa for 30m

56 positive_reading = detect fluorescence on bb for 30m

57 sample_reading = detect fluorescence on cc for 30m

58

59 dispose aa

60 dispose bb

61 dispose cc

189

E.1.10 Heroin eLISA

1 module fluorescence

2

3 manifest heroin_enzyme

4 manifest heroin_conjugate

5 manifest urine_sample

6 manifest tmb_substrate

7 manifest distilled_water

8 manifest stop_reagent

9

10 instructions:

11

12 a = mix 20uL of urine_sample with 1uL of heroin_enzyme for 10s

13 a = mix 100uL of heroin_conjugate with a for 60s

14 heat a at 23c for 60m

15 dispose a

16

17 repeat 6 times {

18 b = mix 350uL of distilled_water with heroin_enzyme for 45s

19 dispose heroin_enzyme

20 }

21

22 cc = mix 100uL of tmb_substrate with heroin_enzyme

23 heat cc at 23c for 30m

24 cc = mix stop_reagent with 100uL of cc for 60s

25

26 urine_reading = detect fluorescence on cc for 30m

27 dispose cc

E.1.11 Oxycodone eLISA

1 module fluorescence

2

3 manifest heroin_enzyme

4 manifest oxycodone_enzyme

5

6 manifest oxycodone_conjugate

7 manifest urine_sample

8 manifest tmb_substrate

9 manifest distilled_water

10 manifest stop_reagent

11

12 instructions:

13

14 a = mix 20uL of urine_sample with oxycodone_enzyme

15 a = mix 100uL of oxycodone_conjugate with a for 60s

16 heat a at 23c for 60m

17 dispose a

18

19 repeat 6 times {

20 a = mix 350uL of distilled_water with oxycodone_enzyme for 45s

190

21 dispose a

22 }

23

24 b = mix 100uL of tmb_substrate with oxycodone_enzyme

25 heat b at 23c for 30m

26 b = mix 100uL of stop_reagent with b for 60s

27

28 urine_reading = detect fluorescence on oxycodone_enzyme for 30m

29 dispose b

E.1.12 Image Probe Synthesis

1 manifest ion_exchange_beads

2 manifest fluoride_ions_f

3 manifest mecn_solution

4 manifest VEXZGXHMUGYJMC -UHFFFAOYSA -N

5

6 instructions:

7

8 aa = mix 10uL of ion_exchange_beads with 10uL of fluoride_ions_f for 30s

9

10 heat aa at 100c for 30s

11 heat aa at 120c for 30s

12 heat aa at 135c for 3m

13

14 aa = mix aa with 10uL of mecn_solution for 30s

15

16 heat aa at 100c for 30s

17 heat aa at 120c for 50s

18

19 aa = mix aa with 10uL of VEXZGXHMUGYJMC -UHFFFAOYSA -N for 60s

20 heat aa at 60c for 60s

E.1.13 Glucose detection

1 module fluorescence

2

3 manifest reagent

4 manifest glucose

5 manifest distilled_water

6 manifest Sample

7

8 instructions:

9

10 result1 = mix 10uL of glucose with 10uL of reagent for 10s

11 reading1 = detect fluorescence on result1 for 30s

12 a = mix distilled_water with reagent for 30s

13 dispose a

14

15 result2 = mix 10uL of glucose with 20uL of reagent for 10s

16 reading2 = detect fluorescence on result2 for 30s

191

17 a = mix distilled_water with reagent for 30s

18 dispose a

19

20 result3 = mix 10uL of glucose with 40uL of reagent for 10s

21 reading3 = detect fluorescence on result3 for 30s

22 a = mix distilled_water with reagent for 30s

23 dispose a

24

25 result4 = mix 10uL of glucose with 80uL of reagent for 10s

26 reading4 = detect fluorescence on result4 for 30s

27 a = mix distilled_water with reagent for 30s

28 dispose a

29

30 result5 = mix 10uL of Sample with 10uL of reagent for 10s

31 reading5 = detect fluorescence on result5 for 30s

32 a = mix distilled_water with reagent for 30s

E.1.14 PCR

1 module fluorescence

2 manifest pcr_mixture

3

4 instructions:

5

6 a = dispense pcr_mixture

7

8 heat a at 95c for 5s

9

10 repeat 20 times {

11 heat a at 53c for 15s

12 heat a at 72c for 10s

13 }

14

15 x = detect fluorescence on a for 3m

16

17 dispose a

E.1.15 Neurotransmitter Sensing

1 module Capillary_Electrophoresis

2

3 manifest Sample

4 manifest Reagent

5

6 instructions:

7

8 mixture = mix Sample with Reagent for 50s

9 Perform Capillary_Electrophoresis (9 cm at 223 V/cm) on Mixture

Seperate with electrophoresis buffer

10 Measure the fluorescence of Mixture for 10s

192

E.2 AquaCore Assays

E.2.1 Glucose Detection

1 Input port ip1 ;Standard glucose

2 Input port ip2 ;Reagent

3 Input port ip3 ;Sample

4 RESULT [1..5] ; dry array for final results

5 glucose -detection {

6 input s1 , ip1

7 input s2 , ip2

8 input s3 , ip3

9 move mixer1 , s1, 1;5s

10 move mixer1 , s2, 1;5s

11 mix mixer1 , 10;10s

12 move sensor1 , mixer1 ;5s

13 sense.OD sensor1 , RESULT [1] ;30s

14

15 move mixer1 , s1, 1 ;5s

16 move mixer1 , s2, 2;5s

17 mix mixer1 , 10;10s

18 move sensor1 , mixer1 ;5s

19 sense.OD sensor1 , RESULT [2] ;30s

20

21 move mixer1 , s1, 1 ;5s

22 move mixer1 , s2, 4 ;5s

23 mix mixer1 , 10 ;10s

24 move sensor1 , mixer1 ;5s

25 sense.OD sensor1 , RESULT [3] ;30s

26

27 move mixer1 , s1, 1 ;5s

28 move mixer1 , s2, 8 ;5s

29 mix mixer1 , 10 ;10s

30 move sensor1 , mixer1 ;5s

31 sense.OD sensor1 , RESULT [4] ;30s

32

33 <dry routine to get best line fit for RESULT [1..4] > move mixer1 , s3, 1

;5s

34 move mixer1 , s2, 1 ;5s

35 mix mixer1 , 10 ;10s

36 move sensor1 , mixer1 ;5s

37 sense.OD sensor1 , RESULT [5] ;30s

38

39 <dry routine to get concentration from line given RESULT [5]>

40 }

E.2.2 PCR

1 Input port ip1 ;PCR mixture

193

2 Input port ip2 ;CE separation medium

3

4 RESULT [] ;dry array for final results

5

6 PCR {

7 input s1 , ip1

8 input s2 , ip2

9

10 move heater1 , s1 ;5s

11 dry -mov r1 , 20

12 dry -label loop:

13 incubate heater1 , 95, 5 ;6s

14 incubate heater1 , 53, 15 ;17s

15 incubate heater1 , 72, 10 ;12s

16 dry -dec r1

17 dry -bgt loop

18

19 move separator1.buf , s2 ;5s

20 move separator1 , heater1 ;5s

21

22 separate.CE separator1 , 236, 5, 180

23 sense.FL sensor1 , RESULT ;180s

24 }

25 Total time = 895s

E.2.3 Imaging Probe Synthesis

1 Input port ip1 ;Ion exchange beads (in buffer)

2 Input port ip2 ;Fluoride ions F-

3 Input port ip3 ;MeCN solution

4 Input port ip4 ;HCl

5

6 Imaging -Probe -Synthesis {

7 input s1 , ip1

8 input s2 , ip2

9 input s3 , ip3

10 input s4 , ip4

11

12 move mixer1 , s1

13 move mixer1 , s2

14 mix mixer1 , 30

15

16 move heater1 , mixer1

17 concentrate.EV heater1 , 100, 30

18 concentrate.EV heater1 , 120, 30

19 concentrate.EV heater1 , 135, 180

20

21 move mixer1 , s3

22 move mixer1 , heater1

23 mix mixer1 , 30

24

25 move heater1 , mixer1

26 incubate heater1 , 100, 30

194

27 incubate heater1 , 120, 50

28 move mixer1 , heater1

29

30 move mixer1 , s4

31 mix mixer1 , 60

32 move heater1 , mixer1

33 concentrate.EV heater1 , 60, 60

34 }

35 Total time = 548s #reservoirs = 4

36 ASLoC area = 13mm x 9mm = 117 mm2

E.2.4 Neurotransmitter Sensing

1 Input port ip1 ;Sample

2 Input port ip2 ;Reagent(OPA)

3 Input port ip3 ;Elecrtrophoresis buffer

4

5 RESULT [] ;dry array for final results

6

7 neurotransmitter -sensing {

8 input s1 , ip1

9 input s2 , ip2

10 input s3 , ip3

11

12 move mixer1 , s1 ;5s

13 move mixer1 , s2 ;5s

14 mix mixer1 , 50 ;50s

15

16 move separator1.buf , s3 ;5s

17 move separator1 , mixer1 ;5s

18

19 separate.CE separator1 , 223, 9, 22

20 sense.FL sensor1 , RESULT ;22s

21

22 }

23 Total time = 92s #reservoirs = 3

24 ASLoC area = 2.5cm x 1.5cm = 3.75 cm2 + CE column

E.3 BioCoder Assays

E.3.1 PCR

1 void PCR(){

2 BioSystem bioCoder;

3

4 Fluid *PCRMix = bioCoder.new_fluid (" PCRMasterMix", Volume(

MICRO_LITER ,10));

5 Fluid *SeperationMedium = bioCoder.new_fluid (" Seperation Medium",

Volume(MICRO_LITER ,10));

195

6 Container* tube = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML);

7

8 bioCoder.first_step ();

9 bioCoder.measure_fluid(PCRMix ,tube);

10

11 bioCoder.next_step ();

12 bioCoder.incubate(tube ,95,Time(5,SECS));

13

14 bioCoder.next_step ();

15 bioCoder.LOOP (20);

16

17 bioCoder.next_step ();

18 bioCoder.incubate(tube ,53,Time(15,SECS));

19

20 bioCoder.next_step ();

21 bioCoder.incubate(tube ,72,Time(10,SECS));

22 bioCoder.END_LOOP ();

23

24 bioCoder.next_step ();

25 bioCoder.ce_detect(tube ,5,236, SeperationMedium);

26

27 bioCoder.next_step ();

28 bioCoder.measure_fluorescence(tube ,Time(3,MINS));

29

30 bioCoder.next_step ();

31 bioCoder.end_protocol ();

32 }

E.3.2 Probabilistic PCR

1 void ProbablisticPCR ()

2 {

3 BioSystem bioCoder;

4

5 Fluid *PCRMix = bioCoder.new_fluid (" PCRMasterMix", Volume(

MICRO_LITER ,10));

6

7 Container* tube = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML);

8

9 bioCoder.first_step ();

10 bioCoder.measure_fluid(PCRMix ,tube);

11

12 for(int i = 0 ; i < initial; ++i) {

13 bioCoder.next_step ();

14 bioCoder.store_for(tube ,94,Time(SECS ,45));

15

16 bioCoder.next_step ();

17 bioCoder.store_for(tube ,65,Time(SECS ,45));

18 }

19

20 for(int i = initial; i <= Threshold; ++i) {

21 std::cout <<i<<std::endl;

22 bioCoder.next_step ();

196

23 bioCoder.store_for(tube ,94,Time(SECS ,45));

24

25 bioCoder.next_step ();

26 bioCoder.store_for(tube ,65,Time(SECS ,45));

27

28 bioCoder.next_step ();

29 bioCoder.measure_fluorescence(tube ,Time(SECS ,5) ,"DNASensor ");

30

31 bioCoder.IF(" DNASensor",GREATER_THAN , .85);

32 for(int j = i; j < Total+(Threshold -i); ++j) {

33 bioCoder.next_step ();

34 bioCoder.store_for(tube ,94,Time(SECS ,45));

35

36 bioCoder.next_step ();

37 bioCoder.store_for(tube ,65,Time(SECS ,45));

38 }

39

40 bioCoder.next_step ();

41 bioCoder.drain(tube ," Amplified PCR");

42 bioCoder.END_IF ();

43

44 }

45

46 bioCoder.drain(tube ,"waste ");

47 bioCoder.end_protocol ();

48

49 bioCoder.PrintLeveledProtocol ();

50 bioCoder.PrintTree ();

51 bioCoder.PrintTreeVisualization (" ProbablisticPCR ");

52 }

E.3.3 PCR Droplet Replenish

1 void PCRDropletReplacement ()

2 {

3 int TotalThermo = 9;

4 BioSystem bioCoder;

5

6 Fluid *PCRMix = bioCoder.new_fluid (" PCRMasterMix", Volume(

MICRO_LITER ,10));

7 Fluid *Template = bioCoder.new_fluid (" Template", Volume(MICRO_LITER

,10));

8

9 Container* tube = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML);

10 // Container* tube2 = bioCoder.new_container(

STERILE_MICROFUGE_TUBE2ML);

11

12 bioCoder.first_step ();

13 bioCoder.measure_fluid(PCRMix ,tube);

14

15 bioCoder.next_step ();

16 bioCoder.vortex(tube ,Time(SECS ,1));

17 bioCoder.measure_fluid(Template ,tube);

197

18

19 bioCoder.next_step ();

20 bioCoder.vortex(tube , Time(SECS ,1));

21

22 bioCoder.next_step ();

23 bioCoder.store_for(tube ,95,Time(SECS ,45));

24

25 bioCoder.next_step ();

26 bioCoder.LOOP(TotalThermo);

27

28 std::cout <<"Debug statement2"<<std::endl;

29 bioCoder.next_step ();

30 bioCoder.store_for(tube ,95,Time(SECS ,20));

31

32 bioCoder.next_step ();

33 bioCoder.weigh(tube ," weightSensor ");

34

35 bioCoder.next_step ();

36 bioCoder.IF(" WieghtSensor",LESS_THAN , 3.57);

37 bioCoder.next_step ();

38 bioCoder.measure_fluid(PCRMix , tube);

39

40 bioCoder.next_step ();

41 bioCoder.store_for(tube , 95,Time(SECS ,45));

42

43 bioCoder.next_step ();

44 bioCoder.vortex(tube , Time(SECS ,1));

45 bioCoder.END_IF ();

46

47 bioCoder.next_step ();

48 bioCoder.store_for(tube ,50,Time(SECS ,30));

49

50 bioCoder.next_step ();

51 bioCoder.store_for(tube ,68,Time(SECS ,45));

52 std::cout <<"Debug statement3"<<std::endl;

53 bioCoder.END_LOOP ();

54 std::cout <<"Debug statement4"<<std::endl;

55

56

57 bioCoder.next_step ();

58 bioCoder.store_for(tube ,68,Time(MINS ,5));

59 std::cout <<"Debug statement5"<<std::endl;

60 bioCoder.next_step ();

61 bioCoder.drain(tube ,"PCR");

62 std::cout <<"Debug statement6"<<std::endl;

63 bioCoder.end_protocol ();

64

65

66 std::cout <<"Debug statemen7"<<std::endl;

67 bioCoder.PrintLeveledProtocol ();

68 bioCoder.PrintTree ();

69 bioCoder.PrintTreeVisualization (" PCRReplacement ");

70

71 }

198

E.3.4 Glucose Detection

1 void GlucoseDetection (){

2 BioSystem bioCoder;

3

4 Fluid *Glucose = bioCoder.new_fluid ("Ion exchange beads", Volume(

MICRO_LITER ,160));

5 Fluid *Reagent = bioCoder.new_fluid (" Fluoride ions",Volume(

MICRO_LITER ,50));

6 Fluid *Sample = bioCoder.new_fluid ("HCL",Volume(MICRO_LITER ,10));

7

8 Container* tube = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML);

9 Container* tube2 = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML)

;

10 Container* tube3 = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML)

;

11 Container* tube4 = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML)

;

12 Container* tube5 = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML)

;

13

14 bioCoder.first_step ();

15 bioCoder.measure_fluid(Glucose ,Volume(MICRO_LITER ,10),tube);

16 bioCoder.measure_fluid(Glucose ,Volume(MICRO_LITER ,10),tube2);

17 bioCoder.measure_fluid(Glucose ,Volume(MICRO_LITER ,10),tube3);

18 bioCoder.measure_fluid(Glucose ,Volume(MICRO_LITER ,10),tube4);

19 bioCoder.measure_fluid(Glucose ,Volume(MICRO_LITER ,10),tube5);

20

21 bioCoder.measure_fluid(Reagent ,Volume(MICRO_LITER ,10),tube);

22 bioCoder.measure_fluid(Reagent ,Volume(MICRO_LITER ,20),tube2);

23 bioCoder.measure_fluid(Reagent ,Volume(MICRO_LITER ,40),tube3);

24 bioCoder.measure_fluid(Reagent ,Volume(MICRO_LITER ,80),tube4);

25

26 bioCoder.measure_fluid(Sample ,Volume(MICRO_LITER ,80),tube5);

27

28 bioCoder.next_step ();

29 bioCoder.measure_fluorescence(tube ,Time(5,SECS));

30 bioCoder.measure_fluorescence(tube2 ,Time(5,SECS));

31 bioCoder.measure_fluorescence(tube3 ,Time(5,SECS));

32 bioCoder.measure_fluorescence(tube4 ,Time(5,SECS));

33 bioCoder.measure_fluorescence(tube5 ,Time(5,SECS));

34

35 bioCoder.next_step ();

36 bioCoder.end_protocol ();

37 }

E.3.5 Image Probe Synthesis

1 void ImageProbSynthesis (){

2 BioSystem bioCoder;

3

199

4 Fluid *IonBeads = bioCoder.new_fluid ("Ion exchange beads", Volume(

MICRO_LITER ,10));

5 Fluid *Fluoride = bioCoder.new_fluid (" Fluoride ions",Volume(

MICRO_LITER ,10));

6 Fluid *HCL = bioCoder.new_fluid ("HCL",Volume(MICRO_LITER ,10));

7 Fluid *MeCNSolution = bioCoder.new_fluid ("MeCN solution",Volume(

MICRO_LITER ,10));

8

9 Container* tube = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML);

10

11 bioCoder.first_step ();

12 bioCoder.measure_fluid(IonBeads ,tube);

13 bioCoder.measure_fluid(Fluoride ,tube);

14

15 bioCoder.next_step ();

16 bioCoder.vortex(tube ,Time(30,SECS));

17

18 bioCoder.next_step ();

19 bioCoder.incubate(tube ,100, Time(30,SECS));

20

21 bioCoder.next_step ();

22 bioCoder.incubate(tube ,120, Time(30,SECS));

23

24 bioCoder.next_step ();

25 bioCoder.incubate(tube ,135, Time(3,MINS));

26

27 bioCoder.next_step ();

28 bioCoder.measure_fluid(MeCNSolution ,tube);

29

30 bioCoder.next_step ();

31 bioCoder.vortex(tube ,Time(30,SECS));

32

33 bioCoder.next_step ();

34 bioCoder.incubate(tube ,100, Time(30,SECS));

35

36 bioCoder.next_step ();

37 bioCoder.incubate(tube ,120, Time(50,SECS));

38

39 bioCoder.next_step ();

40 bioCoder.measure_fluid(HCL ,tube);

41

42 bioCoder.next_step ();

43 bioCoder.vortex(tube ,Time(60,SECS));

44

45 bioCoder.next_step ();

46 bioCoder.incubate(tube ,60,Time(60,SECS));

47

48 bioCoder.next_step ();

49 bioCoder.end_protocol ();

50 }

E.3.6 Neurotransmitter Sensing

200

1 void neurotransmitterSensing (){

2 BioSystem bioCoder;

3

4 Fluid *Sample = bioCoder.new_fluid("Sample", Volume(MICRO_LITER ,10))

;

5 Fluid *Reagent = bioCoder.new_fluid("Reagent",Volume(MICRO_LITER ,10)

);

6 Fluid *SeperationMedium = bioCoder.new_fluid("Seperation Medium",

Volume(MICRO_LITER ,10));

7

8 Container* tube = bioCoder.new_container(STERILE_MICROFUGE_TUBE2ML);

9

10 bioCoder.first_step ();

11 bioCoder.measure_fluid(Sample ,tube);

12 bioCoder.measure_fluid(Reagent ,tube);

13

14 bioCoder.next_step ();

15 bioCoder.vortex(tube ,Time(50,SECS));

16

17 bioCoder.next_step ();

18 bioCoder.ce_detect(tube ,9,223, SeperationMedium);

19

20 bioCoder.next_step ();

21 bioCoder.measure_fluorescence(tube ,Time(10,SECS));

22

23 bioCoder.next_step ();

24 bioCoder.end_protocol ();

25 }

E.4 Antha Assays

E.4.1 Glucose Detection

1 protocol Glucose_Detection

2 import (

3 "github.com/antha -lang/antha/antha/anthalib/wtype"

4 // LHComponent type

5 "github.com/antha -lang/antha/antha/anthalib/wutil"

6 "github.com/antha -lang/antha/antha/anthalib/mixer"

7 // sample function is imported from mixed

8 // Input parameters

9 Parameters (

10 Reagent_volume1 Volume // 10ul

11 Reagent_volume2 Volume // 20ul

12 Reagent_volume3 Volume // 40ul

13 Reagent_volume4 Volume // 80ul

14 Glucose_volume Volume // 10ul

15 Sample_volume Volume // 10ul

16)

17 // Data which is returned from this protocol , and data types

18 Data ()

201

19 // Physical Inputs to this protocol with types

20 Inputs (

21 Glucose *wtype.LHComponent

22 Reagent *wtype.LHComponent

23 Sample *wtype.LHComponent

24)

25 // Physical outputs from this protocol with types

26 Outputs (

27 Result1 *wtype.LHComponent

28 Result2 *wtype.LHComponent

29 Result3 *wtype.LHComponent

30 Result4 *wtype.LHComponent

31 Result5 *wtype.LHComponent

32)

33

34 Requirements {}

35 // Conditions to run on startup

36 Setup {}

37 // The core process for this protocol , with the steps to be performed

38 // for every input

39 Steps {

40

41 glucose := mixer.Sample(Glucose , Glucose_volume)

42 reagent := mixer.Sample(Reagent , Reagent_volume1)

43

44 Result1 = mixer.Mix(glucose , reagent) // cannot specify duration of

mixture

45 // cannot measure fluorescence to get a reading

46

47 glucose := mixer.Sample(Glucose , Glucose_volume) //get new sample

of Glucose

48 reagent := mixer.Sample(Reagent , Reagent_volume2) //get new sample

of Reagent

49

50 Result2 = mixer.Mix(glucose , reagent) // mix new samples

51 // would measure fluorescence here

52

53 glucose := mixer.Sample(Glucose , Glucose_volume) //get new sample

of Glucose

54 reagent := mixer.Sample(Reagent , Reagent_volume3) //get new sample

of Reagent

55

56 Result3 = mixer.Mix(glucose , reagent) // mix new samples

57 // would measure fluorescence here

58

59 glucose := mixer.Sample(Glucose , Glucose_volume) //get new sample

of Glucose

60 reagent := mixer.Sample(Reagent , Reagent_volume4) //get new sample

of Reagent

61

62 Result4 = mixer.Mix(glucose , reagent) // mix new samples

63 // would measure fluorescence here

64 sample := mixer.Sample(Sample , Sample_volume) //get new sample of

Sample

202

65 reagent := mixer.Sample(Reagent , Reagent_volume1) //get new sample

of Reagent

66 Result5 = mixer.Mix(sample , reagent) // mix new samples

67 // would measure fluorescence here

68 }

69 Analysis {}

70 Validation {}

E.4.2 Imaging Probe Synthesis

1 protocol Imaging_Probe_Synthesis

2 import (

3 "github.com/antha -lang/antha/antha/anthalib/wtype" // LHComponent

type

4 "github.com/antha -lang/antha/antha/anthalib/wutil"

5 "github.com/antha -lang/antha/antha/anthalib/mixer"

6 // sample function is imported from mixed

7

8 // Input parameters

9 Parameters (

10 Ion_volume Volume

11 Flouride_volume Volume

12 MeCN_volume Volume

13 HCl_volume Volume

14)

15

16 // Data which is returned from this protocol , and data types

17 Data ()

18 // Physical Inputs to this protocol with types

19 Inputs (

20 Ion_exchange_beads *wtype.LHComponent

21 Fluoride_ions_F - *wtype.LHComponent

22 MeCN *wtype.LHComponent

23 HCl *wtype.LHComponent

24)

25 // Physical outputs from this protocol with types

26 Outputs (

27 Mixture *wtype.LHComponent

28)

29 Requirements {}

30 // Conditions to run on startup

31 Setup {}

32 // The core process for this protocol , with the steps to be performed

33 // for every input

34 Steps {

35 ibv := mixer.Sample(Ion_exchange_beads , Ion_volume)

36 fif := mixer.Sample(Flourid_ions_F -, Flouride_volume)

37

38 mixture := mixer.Mix(ibv , fif) // cannot specify time for mixture

39

40 mixture = Incubate(mixture , 100, 30, false) //heat 100 for 30s

41 mixture = Incubate(mixture , 120, 30, false) //heat 120 for 30s

203

42 mixture = Incubate(mixture , 135, 180, false) //heat 135 for 3

minutes

43

44 mecn := mixer.Sample(MeCN , MeCN_volume)

45

46 mixture = mixer.Mix(mixture , mecn)

47

48 mixture = Incubate(mixture , 100, 30, false) // incubate 100 for 30s

49 mixture = Incubate(mixture , 120, 50, false) // incubuate 120 for 50s

50

51 hcl := mixer.Sample(HCl , HCl_volume)

52

53 mixture = mixer.Mix(mixture , hcl)

54

55 mixture = Incubate(mixture , 60, 60, false) // heat 60 for 60s

56

57 Mixture = mixture

58 }

59

60 Analysis {}

61

62 Validation {}

E.4.3 PCR

1 protocol PCR

2

3 import (

4 "github.com/antha -lang/antha/antha/anthalib/wtype"

5 "github.com/antha -lang/antha/antha/anthalib/mixer"

6 "github.com/antha -lang/antha/antha/AnthaStandardLibrary/Packages/

enzymes"

7 "fmt"

8 "github.com/antha -lang/antha/antha/AnthaStandardLibrary/Packages/

text"

9 "github.com/antha -lang/antha/antha/AnthaStandardLibrary/Packages/

search"

10 "github.com/antha -lang/antha/antha/AnthaStandardLibrary/Packages/

sequences"

11)

12

13 /*type Polymerase struct {

14 wtype.LHComponent

15 Rate_BPpers float64

16 Fidelity_errorrate float64 // could dictate how many colonies are

checked in validation!

17 Extensiontemp Temperature

18 Hotstart bool

19 StockConcentration Concentration // this is normally in U?

20 TargetConcentration Concentration

21 // this is also a glycerol solution rather than a watersolution!

22 }

23 */

204

24 // Input parameters for this protocol (data)

25 Parameters (

26 // PCRprep parameters:

27 ReactionVolume Volume

28 FwdPrimerConc Concentration

29 RevPrimerConc Concentration

30 Additiveconc Concentration

31 TargetpolymeraseConcentration Concentration

32 Templatevolume Volume

33 DNTPconc Concentration

34

35 // Reaction parameters: (could be a entered as thermocycle

parameters type possibly ?)

36 Numberofcycles int

37 InitDenaturationtime Time

38 Denaturationtime Time

39 // Denaturationtemp Temperature

40 Annealingtime Time

41 AnnealingTemp Temperature // Should be calculated from primer and

template binding

42 Extensiontime Time // should be calculated from template length and

polymerase rate

43 Extensiontemp Temperature

44 Finalextensiontime Time

45 Targetsequence string

46 FwdPrimerSeq string

47 RevPrimerSeq string

48)

49 // Data which is returned from this protocol , and data types

50 Data (

51 FwdPrimerSites [] search.Thingfound

52 RevPrimerSites [] search.Thingfound

53)

54 // Physical Inputs to this protocol with types

55 Inputs (

56 FwdPrimer *wtype.LHComponent

57 RevPrimer *wtype.LHComponent

58 DNTPS *wtype.LHComponent

59 PCRPolymerase *wtype.LHComponent

60 Buffer *wtype.LHComponent

61 Template *wtype.LHComponent

62 Additives []* wtype.LHComponent // e.g. DMSO

63 OutPlate *wtype.LHPlate

64)

65

66 // Physical outputs from this protocol with types

67 Outputs (

68 Reaction *wtype.LHComponent

69)

70 Requirements {}

71 // Conditions to run on startup

72 Setup {}

73 // The core process for this protocol , with the steps to be performed

74 // for every input

75 Steps {

205

76 FwdPrimerSites = sequences.FindSeqsinSeqs(Targetsequence , [] string{

FwdPrimerSeq })

77 RevPrimerSites = sequences.FindSeqsinSeqs(Targetsequence , [] string{

RevPrimerSeq })

78

79 if len(FwdPrimerSites)==0 || len(RevPrimerSites)==0{

80 errordescription := fmt.Sprint(

81 text.Print (" FwdPrimerSitesfound :", fmt.Sprint(FwdPrimerSites

)),

82 text.Print (" RevPrimerSitesfound :", fmt.Sprint(RevPrimerSites

)),

83)

84 Errorf(errordescription)

85 }

86 // Mix components

87 samples := make ([]* wtype.LHComponent , 0)

88 bufferSample := mixer.SampleForTotalVolume(Buffer , ReactionVolume)

89 samples = append(samples , bufferSample)

90 templateSample := mixer.Sample(Template , Templatevolume)

91 samples = append(samples , templateSample)

92 dntpSample := mixer.SampleForConcentration(DNTPS , DNTPconc)

93 samples = append(samples , dntpSample)

94 FwdPrimerSample := mixer.SampleForConcentration(FwdPrimer ,

FwdPrimerConc)

95 samples = append(samples , FwdPrimerSample)

96 RevPrimerSample := mixer.SampleForConcentration(RevPrimer ,

RevPrimerConc)

97 samples = append(samples , RevPrimerSample)

98

99 for _, additive := range Additives {

100 additiveSample := mixer.SampleForConcentration(additive ,

Additiveconc)

101 samples = append(samples , additiveSample)

102 }

103 polySample := mixer.SampleForConcentration(PCRPolymerase ,

TargetpolymeraseConcentration)

104 samples = append(samples , polySample)

105 reaction := MixInto(OutPlate , "", samples ...)

106 // thermocycle parameters called from enzyme lookup:

107 polymerase := PCRPolymerase.CName

108 extensionTemp := enzymes.DNApolymerasetemps[polymerase]["

extensiontemp "]

109 meltingTemp := enzymes.DNApolymerasetemps[polymerase][" meltingtemp "]

110 // initial Denaturation

111 r1 := Incubate(reaction , meltingTemp , InitDenaturationtime , false)

112

113 for i:=0; i < Numberofcycles; i++ {

114 // Denature

115 r1 = Incubate(r1, meltingTemp , Denaturationtime , false)

116 // Anneal

117 r1 = Incubate(r1, AnnealingTemp , Annealingtime , false)

118 // extensiontime := TargetTemplatelengthinBP/PCRPolymerase.

RateBPpers

119 // we 'll get type issues here so leave it out for now

120 // Extend

206

121 r1 = Incubate(r1 , extensionTemp , Extensiontime , false)

122 }

123 // Final Extension

124 r1 = Incubate(r1 , extensionTemp , Finalextensiontime , false)

125 // all done

126 Reaction = r1

127 }

128

129 // Run after controls and a steps block are completed to

130 // post process any data and provide downstream results

131 Analysis {}

132 // A block of tests to perform to validate that the sample was processed

correctly

133 // Optionally , destructive tests can be performed to validate results on

a

134 // dipstick basis

135 Validation {}

E.4.4 Neurotransmitter Sensing

1 protocol Neurotransmitter_Sensing

2

3 import (

4 "github.com/antha -lang/antha/antha/anthalib/wtype" // LHComponent

type

5 "github.com/antha -lang/antha/antha/anthalib/wutil"

6 "github.com/antha -lang/antha/antha/anthalib/mixer" // sample function

is imported from mixed

7

8 // Input parameters

9 Parameters (

10 Sample_volume //no val specified

11 Reagent_volume //no val specified

12 electrophoresis_buffer_volume //no val specified

13)

14

15 // Data which is returned from this protocol , and data types

16 Data ()

17

18 // Physical Inputs to this protocol with types

19 Inputs (

20 Sample *wtype.LHComponent

21 Reagent *wtype.LHComponent

22 electrophoresis_buffer *wtype.LHComponent

23)

24 // Physical outputs from this protocol with types

25 Outputs (

26 Mixture *wtype.LHComponent

27)

28

29 Requirements {}

30

31 // Conditions to run on startup

207

32 Setup {}

33

34 // The core process for this protocol , with the steps to be performed

35 // for every input

36 Steps {

37

38 sample := mixer.Sample(Sample , Sample_volume)

39 reagent := mixer.Sample(Reagent , Reagent_volume)

40

41 Mixture = mixer.Mix(sample , reagent) // cannot specify duration of

mixture

42 // cannot perform capillary electrophoresis

43 // cannot measure fluorescence to get a reading

44 }

45 Analysis {}

46 Validation {}

208

Bibliography

[1] AIHA. internet.

[2] AIHA. internet.

[3] AIHA. internet.

[4] Mirela Alistar and Urs Gaudenz. Opendrop: An integrated do-it-yourself platform
for personal use of biochips. Bioengineering, 4(2), 2017.

[5] Mirela Alistar and Paul Pop. Synthesis of biochemical applications on digital mi-
crofluidic biochips with operation execution time variability. Integration, 51:158–168,
2015.

[6] Mirela Alistar, Paul Pop, and Jan Madsen. Synthesis of application-specific fault-
tolerant digital microfluidic biochip architectures. IEEE Trans. on CAD of Integrated
Circuits and Systems, 35(5):764–777, 2016.

[7] American Industrial Hygiene Association. http://bit.ly/2eZtf1m, 2016. Accessed:
2016-11-08.

[8] Ahmed M. Amin, Raviraj Thakur, Seth Madren, Han-Sheng Chuang, Mithuna Thot-
tethodi, T. N. Vijaykumar, Steven T. Wereley, and Stephen C. Jacobson. Software-
programmable continuous-flow multi-purpose lab-on-a-chip. Microfluid Nanofluidics,
15(5):647–659, Nov 2013.

[9] Ahmed M. Amin, Mithuna Thottethodi, T. N. Vijaykumar, Steven Wereley, and
Stephen C. Jacobson. Aquacore: a programmable architecture for microfluidics. In
Dean M. Tullsen and Brad Calder, editors, 34th International Symposium on Com-
puter Architecture (ISCA 2007), June 9-13, 2007, San Diego, California, USA, pages
254–265. ACM, 2007.

[10] Scott C. Ananian and Arthur C. Smith. The Static Single Information Form. PhD
thesis, Massachusetts Institue of Technology, 1999.

[11] Vaishnavi Ananthanarayanan and William Thies. Biocoder: A programming language
for standardizing and automating biology protocols. Journal of Biological Engineering,
4, NOV 2010.

209

http://bit.ly/2eZtf1m

[12] Kenneth Appel and Wolfgang Haken. The solution of the four-color-map problem.
Scientific American, 237(4):108–121, 1977.

[13] Chemical & Engineering News Archive. Letters. Chemical & Engineering News
Archive, 76(24):4, 1998.

[14] Ronald C Backer, Joseph R Monforte, and Alphonse Poklis. Evaluation of the dri®
oxycodone immunoassay for the detection of oxycodone in urine. Journal of analytical
toxicology, 29(7):675–677, 2005.

[15] Evgenij. Barsoukov and J. Ross Macdonald. Impedence spectroscopy: Theory, exper-
iments, and applications. Wiley-Interscience, 2005.

[16] Amar S. Basu. Droplet morphometry and velocimetry (dmv): a video processing soft-
ware for time-resolved, label-free tracking of droplet parameters. Lab Chip, 13:1892–
1901, 2013.

[17] Kiarash Bazargan, Ryan Kastner, and Majid Sarrafzadeh. Fast template placement
for reconfigurable computing systems. IEEE design & Test of Computers, pages 68–
83, 2000.

[18] Biddut Bhattacharjee and Homayoun Najjaran. Droplet sensing by measuring the
capacitance between coplanar electrodes in a digital microfluidic system. Lab Chip,
12:4416–4423, 2012.

[19] Nirveek Bhattacharjee, Arturo Urrios, Shawn Kang, and Albert Folch. The upcoming
3d-printing revolution in microfluidics. Lab on a Chip, 16(10):1720–1742, 2016.

[20] Nikolaj Bjørner and Leonardo de Moura. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems,(TACAS’08), 2008.

[21] Swimming Pool Help Blog. Swimming pool chemical incident. http://bit.ly/

2gghGZI, 2016. accessed: 2016-11-01.

[22] Karl-Friedrich Böhringer. Modeling and controlling parallel tasks in droplet-based
microfluidic systems. IEEE Trans. on CAD of Integrated Circuits and Systems,
25(2):334–344, 2006.

[23] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. SSI properties
revisited. ACM Trans. Embedded Comput. Syst., 11(S1):21, 2012.

[24] Benoit Boissinot, Philip Brisk, Alain Darte, and Fabrice Rastello. Ssi properties
revisited. ACM Transactions on Embedded Computing Systems (TECS), 11(1):21,
2012.

[25] Max Born and Emil Wolf. Principles of optics: electromagnetic theory of propagation,
interference and diffraction of light. Elsevier, 2013.

210

http://bit.ly/2gghGZI
http://bit.ly/2gghGZI

[26] Preston Briggs, Keith D Cooper, and Linda Torczon. Improvements to graph color-
ing register allocation. ACM Transactions on Programming Languages and Systems
(TOPLAS), 16(3):428–455, 1994.

[27] Philip Brisk, Foad Dabiri, Roozbeh Jafari, and Majid Sarrafzadeh. Optimal reg-
ister sharing for high-level synthesis of ssa form programs. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, 25(5):772–779, 2006.

[28] Philip Brisk, Ajay K Verma, and Paolo Ienne. An optimal linear-time algorithm for
interprocedural register allocation in high level synthesis using ssa form. IEEE Trans-
actions on Computer-Aided Design of Integrated Circuits and Systems, 29(7):1096–
1109, 2010.

[29] Rowland Leonard Brooks. On colouring the nodes of a network. In Mathematical
Proceedings of the Cambridge Philosophical Society, volume 37, pages 194–197. Cam-
bridge University Press, 1941.

[30] Arnold Cahn and Paul Hepp. Das antifebrin, ein neues fiebermittel. Centralblatt für
Klinische Medizin, 7:561–564, 1886.

[31] CDC. Pool chemical injuries lead to over 4,500 emergency department visits each
year. Pool Chemical Injuries Lead to Over 4,500 Emergency Department Visits Each
Year, May 2019.

[32] Gregory J. Chaitin. Register allocation & spilling via graph coloring. In Proceedings
of the SIGPLAN ’82 Symposium on Compiler Construction, Boston, Massachusetts,
USA, June 23-25, 1982, pages 98–105, 1982.

[33] Gregory J. Chaitin, Marc A. Auslander, Ashok K. Chandra, John Cocke, Martin E.
Hopkins, and Peter W. Markstein. Register allocation via coloring. Comput. Lang.,
6(1):47–57, 1981.

[34] ChemAxon. http://www.chemaxon.com, 2016. Marvin was used for characterizing
chemical structures, substructures and reactions, Marvin 16.10.3.

[35] Ying-Han Chen, Chung-Lun Hsu, Li-Chen Tsai, Tsung-Wei Huang, and Tsung-Yi
Ho. A reliability-oriented placement algorithm for reconfigurable digital microfluidic
biochips using 3-d deferred decision making technique. IEEE Trans. on CAD of
Integrated Circuits and Systems, 32(8):1151–1162, 2013.

[36] Minsik Cho and David Z. Pan. A high-performance droplet routing algorithm for
digital microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems,
27(10):1714–1724, 2008.

[37] Marek Chrobak and Thomas H Payne. A linear-time algorithm for drawing a planar
graph on a grid. Information Processing Letters, 54(4):241–246, 1995.

[38] Peter Cooreman, Ronald Thoelen, Jean Manca, M. vandeVen, V. Vermeeren,
L. Michiels, M. Ameloot, and P. Wagner. Impedimetric immunosensors based on
the conjugated polymer ppv. Biosens. Bioelectron., 20:21512156, 2005.

211

http://www.chemaxon.com

[39] Michael E Cournoyer. A risk determining model for hazardous material opera-
tions: Part ii. In Probabilistic Safety Assessment and Management, pages 1534–1540.
Springer, 2004.

[40] Michael E Cournoyer and Marvin M Maestas. Addressing safety requirements through
management walkarounds. Chemical Health and Safety, 11(6):12–16, 2004.

[41] Michael E Cournoyer, Marvin M Maestas, Donivan R Porterfield, and Patrick Spink.
Chemical inventory management: The key to controlling hazardous materials. Chem-
ical Health and Safety, 12(5):15–20, 2005.

[42] Brian Crites, Karen Kong, and Philip Brisk. Diagonal component expansion for flow-
layer placement of flow-based microfluidic biochips. ACM Transactions on Embedded
Computing Systems (TECS), 16(5s):126, 2017.

[43] Brian Crites, Radhakrishna Sanka, Joshua Lippai, Jeffrey McDaniel, Philip Brisk,
and Douglas Densmore. Parchmint: A microfluidics benchmark suite. In 2018 IEEE
International Symposium on Workload Characterization (IISWC), pages 78–79. IEEE,
2018.

[44] Christopher Curtis and Philip Brisk. Simulation of feedback-driven pcr assays on
a 2d electrowetting array using a domain-specific high-level biological programming
language. Microelectronic Engineering, 148:110–116, 2015.

[45] Christopher Curtis, Daniel Grissom, and Philip Brisk. A compiler for cyber-physical
digital microfluidic biochips. In Proceedings of the 2018 International Symposium on
Code Generation and Optimization, pages 365–377. ACM, 2018.

[46] Christopher Curtis, Daniel T. Grissom, and Philip Brisk. A compiler for cyber-
physical digital microfluidic biochips. In Proceedings of the 2018 International Sym-
posium on Code Generation and Optimization, CGO 2018, Vösendorf / Vienna, Aus-
tria, February 24-28, 2018, pages 365–377, 2018.

[47] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control depen-
dence graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, 1991.

[48] Leonardo De Moura and Nikolaj Bjørner. Z3: An efficient smt solver. Tools and
Algorithms for the Construction and Analysis of Systems, pages 337–340, 2008.

[49] Jie Ding, Krishnendu Chakrabarty, and Richard B. Fair. Scheduling of microfluidic
operations for reconfigurabletwo-dimensional electrowetting arrays. IEEE Trans. on
CAD of Integrated Circuits and Systems, 20(12):1463–1468, 2001.

[50] Daniel A. Dobbs, Robert G. Bergman, and Klaus H. Theopold. Piranha solution
explosion, 1990.

[51] Christopher M. Dobson. Chemical space and biology. Nature, 432(7019):824, 2004.

212

[52] Ralph Duncan. A survey of parallel computer architectures. Computer, 23(2):5–16,
1990.

[53] Jamil El-Ali, Peter K Sorger, and Klavs F Jensen. Cells on chips. Nature,
442(7101):403–411, 2006.

[54] Jamil El-Ali, Peter K Sorger, and Klavs F Jensen. Cells on chips. Nature,
442(7101):403, 2006.

[55] Elsevier. Reaxys, 2009.

[56] Environmental Protection Agency & National Oceanic and Atmospheric Administra-
tion. https://cameochemicals.noaa.gov/, 2016.

[57] D. Falconnet, A. Niemistö, R. J. Taylor, M. Ricicova, T. Galitski, I. Shmulevich, and
C. L. Hansen. High-throughput tracking of single yeast cells in a microfluidic imaging
matrix. Lab on a Chip, 11(3):466–473, 2011.

[58] ”F.G.”. Tinting maps. The Athenæum, 1389:726, 1854.

[59] Luis M. Fidalgo and Sebastian J. Maerkl. A software-programmable microfluidic
device for automated biology. Lab Chip, 11(9):1612–1619, May 2011.

[60] Michael J Flynn. Some computer organizations and their effectiveness. IEEE trans-
actions on computers, 100(9):948–960, 1972.

[61] Ryan Fobel, Christian Fobel, and Aaron R. Wheeler. Dropbot: An open-source
digital microfluidic control system with precise control of electrostatic driving force
and instantaneous drop velocity measurement. Applied Physics Letters, 102(19), 2013.

[62] Barbara L Foster. The chemical inventory management system in academia. Chemical
Health and Safety, 12(5):21–25, 2005.

[63] Michal Galdzicki, Kevin P Clancy, Ernst Oberortner, Matthew Pocock, Jacque-
line Y Quinn, Cesar A Rodriguez, Nicholas Roehner, Mandy L Wilson, Laura Adam,
J Christopher Anderson, et al. The synthetic biology open language (sbol) provides a
community standard for communicating designs in synthetic biology. Nature biotech-
nology, 32(6):545–550, 2014.

[64] Bruce Gale, Alexander Jafek, Christopher Lambert, Brady Goenner, Hossein Moghim-
ifam, Ugochukwu Nze, and Suraj Kamarapu. A review of current methods in microflu-
idic device fabrication and future commercialization prospects. Inventions, 3(3):60,
2018.

[65] Jie Gao, Xianming Liu, Tianlan Chen, Pui-In Mak, Yuguang Du, Mang-I Vai,
Bingcheng Lin, and Rui P. Martins. An intelligent digital microfluidic system with
fuzzy-enhanced feedback for multi-droplet manipulation. Lab on a Chip, 13:443–451,
2013.

213

https://cameochemicals.noaa.gov/

[66] Fănică Gavril. Algorithms for minimum coloring, maximum clique, minimum covering
by cliques, and maximum independent set of a chordal graph. SIAM Journal on
Computing, 1(2):180–187, 1972.

[67] Lal George and Andrew W. Appel. Iterated register coalescing. ACM Trans. Program.
Lang. Syst., 18(3):300–324, 1996.

[68] LM Gibbs. Chemtracker consortium–the higher education collaboration for chemical
inventory management and regulatory reporting. Chemical Health and Safety, 12(5):9–
14, 2005.

[69] Georges G. E. Gielen, editor. Proceedings of the Conference on Design, Automation
and Test in Europe, DATE 2006, Munich, Germany, March 6-10, 2006. European
Design and Automation Association, Leuven, Belgium, 2006.

[70] Jian Gong and Chang-Jin Kim. Direct-referencing two-dimensional-array digital mi-
crofluidics using multilayer printed circuit board. J. Microelectromech. Syst., 17:257–
264, 2008.

[71] Daniel Grissom and Philip Brisk. Path scheduling on digital microfluidic biochips. In
Patrick Groeneveld, Donatella Sciuto, and Soha Hassoun, editors, The 49th Annual
Design Automation Conference 2012, DAC ’12, San Francisco, CA, USA, June 3-7,
2012, pages 26–35. ACM, 2012.

[72] Daniel Grissom and Philip Brisk. Fast online synthesis of digital microfluidic biochips.
IEEE Trans. on CAD of Integrated Circuits and Systems, 33(3):356–369, 2014.

[73] Daniel Grissom, Christopher Curtis, and Philip Brisk. Interpreting assays with control
flow on digital microfluidic biochips. ACM Journal on Emerging Technologies (JETC)
in Computing Systems, 10, April 2014.

[74] Daniel Grissom, Christopher Curtis, Skyler Windh, Calvin Phung, Navin Kumar,
Zachary Zimmerman, ONeal Kenneth, Jeffrey McDaniel, Nick Liao, and Philip Brisk.
An open-source compiler and pcb synthesis tool for digital microfluidic biochips. In-
tegration, the VLSI Journal, 51:169–193, 2015.

[75] Daniel Grissom, Kenneth O’Neal, Benjamin Preciado, Hiral Patel, Robert Doherty,
Nick Liao, and Philip Brisk. A digital microfluidic biochip synthesis framework. In
VLSI and System-on-Chip (VLSI-SoC), 2012 IEEE/IFIP 20th International Confer-
ence on, pages 177–182. IEEE, 2012.

[76] Ben. Hadwen, G. R. Broder, D. Morganti, A. Jacobs, C. Brown, J. R. Hector, Y. Kub-
ota, and H. Morgan. Programmable large area digital microfluidic array with inte-
grated droplet sensing for bioassays. Lab Chip, 12(18):3305–3313, Sep 2012.

[77] Carl L Hansen, Morten O A Sommer, and Stephen R. Quake. Systematic investigation
of protein phase behavior with a microfluidic formulator. Proceedings of the National
Academy of Sciences of the United States of America, 101(40):14431–6, 2004.

214

[78] Rebecca Hasti and Susan Horwitz. Using static single assignment form to improve
flow-insensitive pointer analysis. In ACM SIGPLAN Notices, volume 33, pages 97–
105. ACM, 1998.

[79] Peter Hornbeck. Enzyme-linked immunosorbent assays. Current protocols in im-
munology, pages 2–1, 1991.

[80] Yi-Ling Hsieh, Tsung-Yi Ho, and Krishnendu Chakrabarty. Biochip synthesis and dy-
namic error recovery for sample preparation using digital microfluidics. IEEE Trans.
on CAD of Integrated Circuits and Systems, 33(2):183–196, 2014.

[81] Kai Hu, Bang-Ning Hsu, Andrew Madison, Krishnendu Chakrabarty, and Richard B.
Fair. Fault detection, real-time error recovery, and experimental demonstration for
digital microfluidic biochips. In Enrico Macii, editor, Design, Automation and Test
in Europe, DATE 13, Grenoble, France, March 18-22, 2013, pages 559–564. EDA
Consortium San Jose, CA, USA / ACM DL, 2013.

[82] Tsung-Wei Huang and Tsung-Yi Ho. A fast routability- and performance-driven
droplet routing algorithm for digital microfluidic biochips. In 27th International Con-
ference on Computer Design, ICCD 2009, Lake Tahoe, CA, USA, October 4-7, 2009,
pages 445–450. IEEE Computer Society, 2009.

[83] Tsung-Wei Huang, Chun-Hsien Lin, and Tsung-Yi Ho. A contamination aware droplet
routing algorithm for the synthesis of digital microfluidic biochips. IEEE Trans. on
CAD of Integrated Circuits and Systems, 29(11):1682–1695, 2010.

[84] Paul J. Hung, Philip J. Lee, Poorya Sabounchi, Robert Lin, and Luke P. Lee. Contin-
uous perfusion microfluidic cell culture array for high-throughput cell-based assays.
Biotechnology and Bioengineering, 89(1):1–8, 2005.

[85] Paul J Hung, Philip J Lee, Poorya Sabounchi, Robert Lin, and Luke P Lee. Contin-
uous perfusion microfluidic cell culture array for high-throughput cell-based assays.
Biotechnology and bioengineering, 89(1):1–8, 2005.

[86] Mohamed Ibrahim and Krishnendu Chakrabarty. Efficient error recovery in cyber-
physical digital-microfluidic biochips. IEEE Trans. Multi-Scale Computing Systems,
1(1):46–58, 2015.

[87] Mohamed Ibrahim and Krishnendu Chakrabarty. Error recovery in digital microflu-
idics for personalized medicine. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition, DATE 2015, Grenoble, France, March 9-13,
2015, pages 247–252, 2015.

[88] Mohamed Ibrahim, Krishnendu Chakrabarty, and Kristin Scott. Synthesis of cyber-
physical digital-microfluidic biochips for real-time quantitative analysis. IEEE Trans.
on CAD of Integrated Circuits and Systems, 36(5):733–746, 2017.

[89] Takashi Ito and Shinji Okazaki. Pushing the limits of lithography. Nature,
406(6799):1027, 2000.

215

[90] Michael J. Schertzer, Ridha Ben Mrad, and Pierre Sullivan. Automated detection of
particle concentration and chemical reactions in ewod devices. Sensors and Actuators
B: Chemical, 164:1–6, 03 2012.

[91] Christopher Jaress, Philip Brisk, and Daniel Grissom. Rapid online fault recovery
for cyber-physical digital microfluidic biochips. In 33rd IEEE VLSI Test Symposium,
VTS 2015, Napa, CA, USA, April 27-29, 2015, pages 1–6, 2015.

[92] Mais J. Jebrail, Ronald F. Renzi, Anupama Sinha, Jim Van De Vreugde, Carmen
Gondhalekar, Cesar Ambriz, Robert J. Meagher, and Steven S. Branda. A solvent re-
plenishment solution for managing evaporation of biochemical reactions in air-matrix
digital microfluidics devices. Lab Chip, 15:151158, 2015.

[93] Erik C. Jensen, Bharath P. Bhat, and Richard A. Mathies. A digital microfluidic
platform for the automation of quantitative biomolecular assays. Lab Chip, 10(6):685–
691, Mar 2010.

[94] Yousheng Jiang, Xuanyun Huang, Kun Hu, Wenjuan Yu, Xianle Yang, and Liqun
Lv. Production and characterization of monoclonal antibodies against small hapten-
ciprofloxacin. African Journal of Biotechnology, 10(65):14342–14347, 2011.

[95] Roxan Joncour, Nicolas Duguet, Estelle Métay, Amadéo Ferreira, and Marc Lemaire.
Amidation of phenol derivatives: a direct synthesis of paracetamol (acetaminophen)
from hydroquinone. Green Chemistry, 16(6):2997–3002, 2014.

[96] Oliver Keszocze, Robert Wille, Krishnendu Chakrabarty, and Rolf Drechsler. A gen-
eral and exact routing methodology for digital microfluidic biochips. In Diana Mar-
culescu and Frank Liu, editors, Proceedings of the IEEE/ACM International Con-
ference on Computer-Aided Design, ICCAD 2015, Austin, TX, USA, November 2-6,
2015, pages 874–881. IEEE, 2015.

[97] Oliver Keszocze, Robert Wille, and Rolf Drechsler. Exact routing for digital microflu-
idic biochips with temporary blockages. In Yao-Wen Chang, editor, The IEEE/ACM
International Conference on Computer-Aided Design, ICCAD 2014, San Jose, CA,
USA, November 3-6, 2014, pages 405–410. IEEE, 2014.

[98] Faisal I Khan and Paul R Amyotte. How to make inherent safety practice a reality.
The Canadian Journal of Chemical Engineering, 81(1):2–16, 2003.

[99] Sunghwan Kim, Paul A Thiessen, Evan E Bolton, Jie Chen, Gang Fu, Asta Gindulyte,
Lianyi Han, Jane He, Siqian He, Benjamin A Shoemaker, et al. Pubchem substance
and compound databases. Nucleic acids research, 44(D1):D1202–D1213, 2015.

[100] Eric Klavins. Aquarium, your protocols will be assimilated. http://klavinslab.

org/aquarium.html, 2014. Accessed: 2017-11-13.

[101] Ali Lashkaripour, Christopher Rodriguez, Luis Ortiz, and Douglas Densmore. Perfor-
mance tuning of microfluidic flow-focusing droplet generators. Lab on a Chip, 2019.

216

http://klavinslab.org/aquarium.html
http://klavinslab.org/aquarium.html

[102] Ali Lashkaripour, Ryan Silva, and Douglas Densmore. Desktop micromilled microflu-
idics. Microfluidics and Nanofluidics, 22(3):31, 2018.

[103] Thomas Lederer, Stefan Clara, Bernhard Jakoby, and Wolfgang Hilber. Integration
of impedance spectroscopy sensors in a digital microfluidic platform. Microsystem
Technologies, 18(7):1163–1180, Aug 2012.

[104] Yiyan Li, Hongzhong Li, and R. Jacob Baker. Volume and concentration identification
by using an electrowetting on dielectric device. IEEE DCAS, pages 1–4, 2014.

[105] Yiyan Li, Hongzhong Li, and R. Jacob Baker. A low-cost and high-resolution droplet
position detector for an intelligent electrowetting on dielectric device. Journal of
Laboratory Automation, 20(6):663–669, 2015. PMID: 25609255.

[106] Zipeng Li, Kelvin Yi-Tse Lai, John McCrone, Po-Hsien Yu, Krishnendu Chakrabarty,
Miroslav Pajic, Tsung-Yi Ho, and Chen-Yi Lee. Efficient and adaptive error recovery
in a micro-electrode-dot-array digital microfluidic biochip. IEEE Trans. on CAD of
Integrated Circuits and Systems, PP(99), 2017.

[107] Chen Liao and Shiyan Hu. Multiscale variation-aware techniques for high-performance
digital microfluidic lab-on-a-chip component placement. IEEE Trans Nanobioscience,
10(1):51–58, Mar 2011.

[108] Gabriel Lippmann. Relations entre les phénomènes électriques et capillaires. Gauthier-
Villars, 1875.

[109] Chia-Hung Liu, Kuang-Cheng Liu, and Juinn-Dar Huang. Latency-optimization syn-
thesis with module selection for digital microfluidic biochips. In Norbert Schuhmann,
Kaijian Shi, and Nagi Naganathan, editors, 2013 IEEE International SOC Confer-
ence, Erlangen, Germany, September 4-6, 2013, pages 159–164. IEEE, 2013.

[110] L. Luan, R.D. Evans, N.M. Jokerst, and R.B. Fair. Integrated optical sensor in a
digital microfluidic platform. IEEE Sensors, 8:628–635, 2008.

[111] Lin Luan, Matthew White Royal, Randall Evans, Richard B. Fair, and Nan M. Jok-
erst. Chip scale optical microresonator sensors integrated with embedded thin film
photodetectors on electrowetting digital microfluidics platforms. Sensors Journal,
IEEE, 12:1794–1800, June 2012.

[112] Yan Luo, Bhargab B. Bhattacharya, Tsung-Yi Ho, and Krishnendu Chakrabarty.
Design and optimization of a cyberphysical digital-microfluidic biochip for the poly-
merase chain reaction. IEEE Trans. on CAD of Integrated Circuits and Systems,
34(1):29–42, 2015.

[113] Yan Luo, Krishnendu Chakrabarty, and Tsung-Yi Ho. Error recovery in cyberphysical
digital microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems,
32(1):59–72, 2013.

217

[114] Yan Luo, Krishnendu Chakrabarty, and Tsung-Yi Ho. Real-time error recovery in
cyberphysical digital-microfluidic biochips using a compact dictionary. IEEE Trans.
on CAD of Integrated Circuits and Systems, 32(12):1839–1852, 2013.

[115] Elena Maftei, Paul Pop, and Jan Madsen. Tabu search-based synthesis of digital
microfluidic biochips with dynamically reconfigurable non-rectangular devices. Design
Autom. for Emb. Sys., 14(3):287–307, 2010.

[116] Elena Maftei, Paul Pop, and Jan Madsen. Module-based synthesis of digital microflu-
idic biochips with droplet-aware operation execution. JETC, 9(1):2, 2013.

[117] Chi-Liang Mao, Keith D Zientek, Patrick T Colahan, Mei-Yueh Kuo, Chi-Ho Liu,
Kuo-Ming Lee, and Chi-Chung Chou. Development of an enzyme-linked immunosor-
bent assay for fentanyl and applications of fentanyl antibody-coated nanoparticles for
sample preparation. Journal of pharmaceutical and biomedical analysis, 41(4):1332–
1341, 2006.

[118] Joshua S. Marcus, W. French Anderson, and Stephen R. Quake. Microfluidic single-
cell mRNA isolation and analysis. Analytical Chemistry, 78(9):3084–3089, 2006.

[119] J McDaniel, B Crites, C Curtis, and PL Brisk. Design automation for flow-based mi-
crofluidic biochips. Mini-Symposium: Continuous-Flow Biochips: Technology, Test-
ing, and Design for Fault-Tolerance and Reliability, page 1, 2018.

[120] Jeffrey McDaniel, Auralila Baez, Brian Crites, Aditya Tammewar, and Philip Brisk.
Design and verification tools for continuous fluid flow-based microfluidic devices. In
18th Asia and South Pacific Design Automation Conference, ASP-DAC 2013, Yoko-
hama, Japan, January 22-25, 2013, pages 219–224, 2013.

[121] Jeffrey McDaniel, Brian Crites, Philip Brisk, and William H. Grover. Flow-layer
physical design for microchips based on monolithic membrane valves. IEEE Design
& Test, 32(6):51–59, 2015.

[122] Jeffrey McDaniel, Brian Crites, Philip Brisk, and William H Grover. Flow-layer
physical design for microchips based on monolithic membrane valves. IEEE Design
& Test, 32(6):51–59, 2015.

[123] Jeffrey McDaniel, Christopher Curtis, and Philip Brisk. Automatic synthesis of mi-
crofluidic large scale integration chips from a domain-specific language. 2013 IEEE
Biomedical Circuits and Systems Conference, BioCAS 2013, pages 101–104, 2013.

[124] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Sciences, 17(3):348–375, 1978.

[125] Wajid Hassan Minhass, Jeffrey McDaniel, Michael Raagaard, Philip Brisk, Paul Pop,
and Jan Madsen. Scheduling and fluid routing for flow-based microfluidic laboratories-
on-a-chip. IEEE Trans. on CAD of Integrated Circuits and Systems, PP(99), 2017.

218

[126] Hyejin Moon, Sung Kwon. Cho, Robin L. Garrell, and Chang-Jin Kim. Low voltage
electrowetting-on-dielectric. J. Appl. Phys., 92:40804087, 2002.

[127] Frieder Mugele and Jeanchristophe Baret. Electrowetting: from basics to applications.
Journal of Physics: Condensed Matter, 17:R705–R774, 2005.

[128] Rick Mullin. Alexa and your phone are getting schooled in chemistry. Chemical &
Engineering News, 97, 2019.

[129] Kary B. Mullis, Henry A. Erlich, Norman Arnheim, Glenn T. Horn, Randall K. Saiki,
and Stephen J. Scharf. Process for amplifying, detecting, and/or-cloning nucleic acid
sequences, July 28 1987. US Patent 4,683,195.

[130] Miguel Angel Murran and Homayoun Najjaran. Capacitance-based droplet position
estimator for digital microfluidic devices. Lab Chip, 12:2053–2059, 2012.

[131] Joo Hyon Noh, Jiyong Noh, Eric Kreit, Jason Heikenfeld, and Philip D. Rack. Toward
active-matrix lab-on-a-chip: programmable electrofluidic control enabled by arrayed
oxide thin film transistors. Lab Chip, 12(2):353–360, Jan 2012.

[132] Kenneth O’Neal, Daniel Grissom, and Philip Brisk. Force-directed list scheduling for
digital microfluidic biochips. In Srinivas Katkoori, Matthew R. Guthaus, Ayse Kivil-
cim Coskun, Andreas Burg, and Ricardo Reis, editors, 20th IEEE/IFIP International
Conference on VLSI and System-on-Chip, VLSI-SoC 2012, Santa Cruz, CA, USA,
October 7-10, 2012, pages 7–11. IEEE, 2012.

[133] Jason Ott, Tyson Loveless, Chris Curtis, Mohsen Lesani, and Philip Brisk. Bioscript:
programming safe chemistry on laboratories-on-a-chip. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):128, 2018.

[134] Jens Palsberg and Christina Pavlopoulou. From Polyvariant flow information to in-
tersection and union types. Journal of Functional Programming, 11(3):263–317, 2001.

[135] Nicole Pamme. Continuous flow separations in microfluidic devices. Lab on a chip,
7(12):1644–59, 2007.

[136] Nicole Pamme. Continuous flow separations in microfluidic devices. Lab on a Chip,
7(12):1644–1659, 2007.

[137] Sudip Poddar, Sarmishtha Ghoshal, Krishnendu Chakrabarty, and Bhargab B. Bhat-
tacharya. Error-correcting sample preparation with cyberphysical digital microfluidic
lab-on-chip. ACM Trans. Design Autom. Electr. Syst., 22(1):2:1–2:29, 2016.

[138] Michael G. Pollack, Alexander D. Shenderov, and Richard B. Fair. Electrowetting-
based actuation of droplets for integrated microfluidics. Lab on a Chip, 2(2):96–101,
2002.

[139] Jay Rappaport and James Lichtman. Ongoing development of a chemical/biological
inventory and safety management solution for temple university. Chemical Health and
Safety, 5(12):4–8, 2005.

219

[140] Hong Ren, Richard Fair, and Michael G. Pollack. Automated on-chip droplet dis-
pensing with volume control by electro-wetting actuation and capacitance metering.
Sensors and Actuators B, 98:319–327, 03 2004.

[141] Andrew J. Ricketts, Kevin M. Irick, Narayanan Vijaykrishnan, and Mary Jane Irwin.
Priority scheduling in digital microfluidics-based biochips. In Gielen [69], pages 329–
334.

[142] Pranab Roy, Hafizur Rahaman, and Parthasarathi Dasgupta. A novel droplet rout-
ing algorithm for digital microfluidic biochips. In R. Iris Bahar, Fabrizio Lombardi,
David Atienza, and Erik Brunvand, editors, Proceedings of the 20th ACM Great Lakes
Symposium on VLSI 2009, Providence, Rhode Island, USA, May 16-18 2010, pages
441–446. ACM, 2010.

[143] Pranab Roy, Hafizur Rahaman, and Parthasarathi Dasgupta. Two-level clustering-
based techniques for intelligent droplet routing in digital microfluidic biochips. Inte-
gration, 45(3):316–330, 2012.

[144] Saman Sadeghi, Huijiang Ding, Gaurav J. Shah, Supin Chen, Pei Yuin Keng, Chang-
Jin CJ Kim, and R. Michael van Dam. On chip droplet characterization: A practical,
high-sensitivity measurement of droplet impedance in digital microfluidics. Analytical
Chemistry, 84(4):1915–1923, 2012. PMID: 22248060.

[145] Michael I. Sadowski, Chris Grant, and Tim S. Fell. Harnessing qbd, programming lan-
guages, and automation for reproducible biology. Trends in Biotechnology, 34(3):214
– 227, 2016. Special Issue: Industrial Biotechnology.

[146] Radhakrishna Sanka, Haiyao Huang, Ryan Silva, and Douglas Densmore. Mint-
microfluidic netlist. 2016.

[147] Jaclyn Elizabeth R Santos, Franz Nicolas N Alfonso, Fernando C Mendizabal Jr,
and Fabian M Dayrit. Developing a chemical and hazardous waste inventory system.
Journal of Chemical Health and Safety, 18(6):15–18, 2011.

[148] William G. Schulz. internet, 2005.

[149] Micha Sharir, Amir Pnueli, et al. Two approaches to interprocedural data flow analysis.
New York University. Courant Institute of Mathematical Sciences , 1978.

[150] Steve C. Shih, Irena Barbulovic-Nad, Xuning Yang, Ryan Fobel, and Aaron R.
Wheeler. Digital microfluidics with impedance sensing for integrated cell culture
and analysis. Biosens Bioelectron, 42:314–320, Apr 2013.

[151] Steve C. Shih, Ryan Fobel, Paresh Kumar, and Aaron R. Wheeler. A feedback control
system for high-fidelity digital microfluidics. Lab Chip, 11:535–540, 2011.

[152] Yong Jun Shin and Jeong Bong Lee. Machine vision for digital microfluidics. Review
of Scientific Instruments, 81(1), 2 2010.

220

[153] Sılvia Silva, Maria Luısa Lima, and Conceicao Baptista. Osci: an organisational and
safety climate inventory. Safety science, 42(3):205–220, 2004.

[154] Jeremy Singer. Static Program Analysis based on Virtual Register Renaming. PhD
thesis, University of Cambridge, UK, 2005.

[155] Hugo Sinha, Angela B. V. Quach, Philippe Q. N. Vo, and Steve C. Shih. An automated
microfluidic gene-editing platform for deciphering cancer genes. Lab Chip, pages 11–
12, 2018.

[156] Aaron Smith, Jim Burrill, Jon Gibson, Bertrand Maher, Nick Nethercote, Bill Yoder,
Doug Burger, and Kathryn S McKinley. Compiling for edge architectures. In Code
Generation and Optimization, 2006. CGO 2006. International Symposium on, pages
11–pp. IEEE, 2006.

[157] Larisa N. Soldatova, Wayne Aubrey, Ross D. King, and Amanda Clare. The exact
description of biomedical protocols. Bioinformatics, 24, JUL 2008.

[158] Vugranam C. Sreedhar, Roy Dz-Ching Ju, David M. Gillies, and Vatsa Santhanam.
Translating out of static single assignment form. In Static Analysis, 6th International
Symposium, SAS ’99, Venice, Italy, September 22-24, 1999, Proceedings, pages 194–
210, 1999.

[159] Vijay Srinivasan, Vamsee Pamula, and Richard Fair. Droplet-based microfluidic lab-
on-a-chip for glucose detection. Analytica Chimica Acta, 507:145–150, 04 2004.

[160] Fei Su and Krishnendu Chakrabarty. Module placement for fault-tolerant
microfluidics-based biochips. ACM Trans. Design Autom. Electr. Syst., 11(3):682–
710, 2006.

[161] Fei Su and Krishnendu Chakrabarty. High-level synthesis of digital microfluidic
biochips. JETC, 3(4), 2008.

[162] Fei Su, William L. Hwang, and Krishnendu Chakrabarty. Droplet routing in the
synthesis of digital microfluidic biochips. In Gielen [69], pages 323–328.

[163] Ian I. Suni. Impedance methods for electrochemical sensors using nanomaterials.
TrAC Trends in Analytical Chemistry, 27(7):604 – 611, 2008. Electroanalysis Based
on Nanomaterials.

[164] Synthace. Antha-lang, coding biology. https://www.antha-lang.org, 2016. ac-
cessed: 2016-11-01.

[165] Environmental of Health Texas Tech University and Safety. internet.

[166] William Thies, John Paul Urbanski, Todd Thorsen, and Saman Amarasinghe. Ab-
straction layers for scalable microfluidic biocomputing. Natural Computing, 7(2):255–
275, 5 2007.

221

https://www.antha-lang.org

[167] Darci J Trader and Erin E Carlson. Taming of a superbase for selective phenol desily-
lation and natural product isolation. The Journal of organic chemistry, 78(14):7349–
7355, 2013.

[168] Marc A. Unger, Hou Pu Chou, Todd Thorsen, Axel Scherer, and Stephen R. Quake.
Monolithic microfabricated valves and pumps by multilayer soft lithography. Science,
288(5463):113–116, 2000.

[169] Center for Laboratory Safety University of California. internet, 2018.

[170] Division of Research Safety University of Illinois. internet.

[171] John Paul Urbanski, William Thies, Christopher Rhodes, Saman Amarasinghe, and
Todd Thorsen. Digital microfluidics using soft lithography. Lab Chip, 6:96–104, 2006.

[172] Stefan Van Der Walt, S Chris Colbert, and Gael Varoquaux. The numpy array: a
structure for efficient numerical computation. Computing in Science & Engineering,
13(2):22, 2011.

[173] Philippe Q. N. Vo, Mathieu C. Husser, Fatemeh Ahmadi, Hugo Sinha, and Steve C.
Shih. Image-based feedback and analysis system for digital microfluidics. Lab Chip,
17:3437–3446, 2017.

[174] Mitchell Wand. Finding the source of type errors. In Proceedings of the 13th ACM
SIGACT-SIGPLAN symposium on Principles of programming languages, pages 38–
43. ACM, 1986.

[175] Environmental Health Washington University in St. Louis and Safety. internet.

[176] Matthew White Royal, Nan M. Jokerst, and Richard Fair. Droplet-based sensing: Op-
tical microresonator sensors embedded in digital electrowetting microfluidics systems.
Sensors Journal, IEEE, 13:4733–4742, 12 2013.

[177] Max Willsey, Ashley P Stephenson, Chris Takahashi, Pranav Vaid, Bichlien H Nguyen,
Michal Piszczek, Christine Betts, Sharon Newman, Sarang Joshi, Karin Strauss, et al.
Puddle: A dynamic, error-correcting, full-stack microfluidics platform. In Proceedings
of the Twenty-Third International Conference on Architectural Support for Program-
ming Languages and Operating Systems, ASPLOS, volume 19, 2019.

[178] Angela R. Wu, Tiara L.A. Kawahara, Nicole A. Rapicavoli, Jan van Riggelen, Eme-
lyn H. Shroff, Liwen Xu, Dean W. Felsher, Howard Y. Chang, and Stephen R. Quake.
High throughput automated chromatin immunoprecipitation as a platform for drug
screening and antibody validation. Lab on a Chip, 12(12):2190, 2012.

[179] Y Xia and G M Whitesides. Soft Lithography. Annual Reviews in Materials Science,
28(1):153–184, 1998.

[180] Tao Xu and Krishnendu Chakrabarty. Integrated droplet routing and defect tolerance
in the synthesis of digital microfluidic biochips. JETC, 4(3), 2008.

222

[181] Tao Xu, Krishnendu Chakrabarty, and Fei Su. Defect-aware high-level synthesis and
module placement for microfluidic biochips. IEEE Trans. Biomed. Circuits and Sys-
tems, 2(1):50–62, 2008.

[182] Paul Yager, Thayne Edwards, Elain Fu, Kristen Helton, Kjell Nelson, Milton R. Tam,
and Bernhard H. Weigl. Microfluidic diagnostic technologies for global public health.
Nature, 442(7101):412–418, 2006.

[183] Hailong Yao, Qin Wang, Yiren Shen, Tsung-Yi Ho, and Yici Cai. Integrated functional
and washing routing optimization for cross-contamination removal in digital microflu-
idic biochips. IEEE Trans. on CAD of Integrated Circuits and Systems, 35(8):1283–
1296, 2016.

[184] Alireza Ahmadian Yazdi, Adam Popma, William Wong, Tammy Nguyen, Yayue Pan,
and Jie Xu. 3d printing: an emerging tool for novel microfluidics and lab-on-a-chip
applications. Microfluidics and Nanofluidics, 20(3):50, 2016.

[185] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Placement of defect-tolerant
digital microfluidic biochips using the t-tree formulation. JETC, 3(3), 2007.

[186] Ping-Hung Yuh, Chia-Lin Yang, and Yao-Wen Chang. Bioroute: A network-flow-
based routing algorithm for the synthesis of digital microfluidic biochips. IEEE Trans.
on CAD of Integrated Circuits and Systems, 27(11):1928–1941, 2008.

[187] Yang Zhao and Krishnendu Chakrabarty. Cross-contamination avoidance for droplet
routing in digital microfluidic biochips. IEEE Trans. on CAD of Integrated Circuits
and Systems, 31(6):817–830, 2012.

[188] Yang Zhao, Tao Xu, and Krishnendu Chakrabarty. Integrated control-path design and
error recovery in the synthesis of digital microfluidic lab-on-chip. JETC, 6(3):11:1–
11:28, 2010.

223

	List of Figures
	List of Tables
	Introduction
	Background & Related Work
	Digital Microfluidic Biochips (DMFBs).
	DMFB Compilation
	Interprocedural Register Allocation in High Level Synthesis

	Continuous Flow Devices
	High-level Languages for Programmable Chemistry
	Ontologies
	Laboratory Automation
	Device-Specific Languages for LoCs

	Fabrication Methods
	Laminates
	Molding
	3D Printing
	Nanofabrication

	Automated Laboratory Safety

	BioScript
	Introduction
	Overview
	BioScript Syntax and Semantics
	Example: PCR with Droplet Replenishment
	Example: Synthesizing Acetaminophen
	Type Systems and Safety
	Software & Hardware Architecture

	Type System
	Syntax
	Operational Semantics
	Type Checking System
	Type Inference System

	Implementation
	BioScript
	The Type System
	Code Generation

	Evaluation
	Language
	Type System Evaluation
	Compilation Time
	Simulation Results

	Conclusion and Future Work
	Type System
	Compiler

	Extensions to BioScript
	Introduction
	Overview
	Compilation Phase
	Synthesis Phase

	Compiler Design
	Context Insensitive Call Graph Analysis
	Context Sensitive Call Graph Analysis

	SIMD Semantics
	Implementation

	Conclusion

	Targeting Continuous-Flow Microfluidic Devices
	Introduction
	System Design
	Designing an Assay
	Component Selection & Generation
	Designing a Device
	Device Fabrication & Assay Execution
	Application Mapping

	Results & Discussion
	Small Dilution Mixer — the ``Mini-Mixer''
	Medium Dilution Tree

	Future Work
	Conclusion

	ChemStor
	Introduction
	Overview of ChemStor
	Methods
	Chemical Compatibility
	Chemical Interaction Graph
	Chemical Storage
	Chemical Disposal
	Characterization of a Solution to the Chemical Storage Problem
	Satisfiability Modulo Theories
	SMT Constraints
	Coalescing Strategy
	De-Coalescing Strategy
	No Solutions

	Results
	Conclusions

	Conclusion
	Assay Execution Videos
	BioScript on Physical Hardware
	Image Probe Synthesis
	Titration

	MFSim Simulated Videos

	BioScript Proofs
	Helper Lemmas
	Proof of Progress
	Proof of Preservation
	Proof of Soundness
	Proof of Completeness

	Syntax Study
	Syntax Study: ELISA Protocols

	Type System Tests
	Real world Assays
	Synthetic Preventions
	Synthetic Successes

	Languages
	BioScript Assays
	PCR droplet Replenishment
	Probabilistic PCR
	Broad Spectrum Opiate
	Ciprofloxacin eLISA
	Diazepam eLISA
	5-4-7 Dilution
	Fentanyl eLISA
	Morphine eLISA
	Morphine eLISA with Control Samples
	Heroin eLISA
	Oxycodone eLISA
	Image Probe Synthesis
	Glucose detection
	PCR
	Neurotransmitter Sensing

	AquaCore Assays
	Glucose Detection
	PCR
	Imaging Probe Synthesis
	Neurotransmitter Sensing

	BioCoder Assays
	PCR
	Probabilistic PCR
	PCR Droplet Replenish
	Glucose Detection
	Image Probe Synthesis
	Neurotransmitter Sensing

	Antha Assays
	Glucose Detection
	Imaging Probe Synthesis
	PCR
	Neurotransmitter Sensing

	Bibliography

