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Abstract

This report conteiins transparencies of a presentation on the design process in the Uni
versity of California Irvine's Behavioral-Synthesis Environment. The human-interface
aspects of the environment are discussed in detail and several design-process examples
are given to demonstrate the power and usefulness of this environment for behavioral
synthesis.
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1 Introduction

This presentation describes a decision support environment (DSE) for behavioral syn
thesis.

1.1 Motivation

Two observations motivate the need for a decision support environment for behavioral
synthesis:

1. Complete automation of the design process through every level of abstraction is
not an immediately practical goal.

2. The human designer s insights into design strategy should be used to maximum
effect in all phases of behavioral synthesis.

The first point is a conclusion derived more from the lack of observable uses of auto
mated behavioral synthesis systems in commercial domains, rather than from the lack
of existing systems in research and academia. Although it certainly can not be de
nied that progress has been considerable in this research area [Sh89] [DeRa86] [BrCaSS],
a practical solution to the problem of automating behavioral synthesis is still distcint
[CaWo91]. To develop a feasible approach to the problem, we have substituted the goal
ofa completely automated, "push-button" synthesis system with one which attempts to
maximally utilize the human designer's methods and experience.



Decision Support Environment

Motivation

1. Complete automation of the design process through every level
of abstraction is not an immediately practical goal.

2. The designer's insights into design strategy should be used to
maximum effect in all phases of behavioral synthesis.



1.2 Goals

There are two primary goals in the development of our environment for decision support
in behavioral synthesis:

1. To allow user decisions and user control in every task of the design process. These
tasks axe —but not limited to - unit selection: the proper hardware components
are selected from a library; scheduling: the behavior is divided into timesteps
according to resources and timing constraints; binding: behavioral operators and
variables are bound to physical components; and floorplanning: layout and routing
techniques are performed on the physical design representation ([GDWL92]).

2. To provide rapidfeedback ofuseable physical design characteristics and quality mea
sures to every level ofdesign abstraction. Area and delay quality measures tell the
designer whether or not the design meets space and time constraints. Critical path
estimation reduces design development time by focusing the designer's attention
on critical performance areas. Clock period estimation is used in a variety of ways
to provide the designer with the necessary information for decisions in scheduling,
binding, and floorplanning.

Decisions made by the user should generate immediate feedback as to the quality and
functionality of the resulting design. As the design process progresses to more detailed
and less abstract descriptions, the designer's experience must be utiUzed to make the
kinds of decisions no automated tool can perceive or predict.



Decision Support Environment
Goais

1. To allow user decisions and user control throughout every phase
of the design process.

• Unit selection
• Scheduling
• Binding
• Floorplanning

2. To provide rapid feedback of useable design characteristics and
quality measures to the user at every level of design abstraction.

• Area
• Delay
• Critical path
• Clock period



1.3 The Decision Support Environment

The DSE supports three basic levels of interaction:

1. Graphical design capture, whereby the designer enters and/or modifies the desired
behavior or structure with the aid of multiple design views,

2. Feedback of quality measures and design hints automatically derived by the system
from the current design

3. The ability to incorporate automatic synthesis tools into the design process so that
tedious, well-understood problems can be rapidly solved by automatic algorithms



A Decision Support Environment
for Behaviorai Synthesis

1. Graphical design capture

2. Quality measures and hints

3. Combined interactive and automatic synthesis



2 DSE Displays

2.1 The State-Actions Table

The state-actions table displays the behavior and schedule of the design in a tabular
format. Ageneral definition of each column in the table follows (A more detailed de
scription of the state-actions table can be found in [HaCG93]):

1. PS is the present state.

2. SCOND gives the condition for a next-state transition.

3. NS is the next state. The condition may be any valid expression resulting in a
boolean result. The condition may be any valid expression resulting in a boolean
value.

4. ACOND shows the assignment condition for each action. The condition may be
any valid expression resulting in a boolean value.

5. ACTIONS lists all operations in the behavior.

6. ORDER gives a level ordering of the actions within a given state and may be used
by the user to explicitly indicate a dependency between actions.

7. CV lists the condition vector under which the results of the action will be used.

8. The AC # field assigns numbers to actions and is needed to make actions easier
to reference in other fields.

9. DEPENDENCY (INP DEP/ObT DEP) field describes global dependencies among
actions in terms of the numbers given in the AC # field. Numbers to the left of
the / list the input dependencies (writes) of the operands in the corresponding
action. Numbers to the right of the / list the output dependencies (reads) of the
action's output variable.

The PS, SCOND, NS, ACOND, ACTIONS, and ORDER fields are user-specified
through use of the menus shown below the table. The remaining fields are automatically
derived by the system once the behavior is complete. The QM/stats field represents
different quality measures, statics, and metrics that will be described in more detail
later on.

The state-actions graphical display is user-configurable in two ways.

1. Any column may be turned off at the user's discretion; for example, if screen-space
limitations are a concern.

2. Any column may be interchanged with any other column



State-Actions Table

User Input System Derived
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2.2 The State-Actions Table: An Example

To get a feeling for how a behavioral description is specified in the state-actions table,
let us look at a description of Armstrong's controlled counter. This is a 4-bit counter
that consists of five main logic blocks: a 2-bit control register (COA'ft). a decoder, a
4-bit limit register (T/A/), a 4-bit comparator, and a 4-bit counter (CAT). On the
rising edge of the STRB signal, the counter stores the 2-bit control input signal COA'.
It then performs the following operations based on the value of the control signal:

1. Clear the counter (COA' = "00").

2. Load inputs from the DATA signals into the LIM register on the falling edge of
the STRB signal (COA^ =--0r').

3. Increment the count on the rising edge of the CLK signal {CON ="10").

4. Decrement the count on the rising edge of the CLK signal (COA" = "Tl").

The behavior of the controlled counter consists of both synchronous and asyn
chronous parts. The latching of storage units in the synchronous part is performed
during the rising edge of the CLK signal. The asynchronous part is performed on the
rising and falling edges of the STRB signal.

The first action in the state-table specifies the latching of the control input COA'
into a 2-bit control register CONR on the rising edge of the STRB signal. Since
COAT is clocked with the STRB signal instead of the CLK signal, CONR acts as the
asynchronous part of the design.

The second action specifies that whenever the value of CONR is "00", CAT should
be cleared. Since there is no information about synchronization in the specification,
CNT is cleared asynchronously.

The third action specifies the behavior of the counter when CONR is "01". Since
LIM is also asynchronous, DATA is assigned to LIM without CLK in the assignment
condition. Instead, the value is latched into LIM on the falling edge of the STRB
signal.

The fourth action specifies the behavior of the counter when CONR is "10". The
counter counts up by incrementing the value of CNT on the rising edge of the CLK
signal. The increment is performed only if the limit LIM is not reached.

The fifth action specifies the behavior of the counter when CONR equals "11". The
counter counts down by decrementing the value of CNT on the rising edge of the CLK
signal. The decrement is performed only if the limit LIM is not reached.

The last action specifies the output of the counter COUT. The value of CNT is
used for this output.



Example: 4-bit Controlled counter (Armstrong)

STRB-rM CONR - CON

CONR.*00- CNT--0000'

STRBIallIngand CONR - *01'

CLK'risingand CONR- *10and CNT U UM CNT - CNT ♦ *0001

CLK rising and CONR . *11 *and CNT). LIM CNT - CNT - *0X1

COUT-CNT



2.3 Component Selection and Allocation

The component selection and allocation display allows the designer to select components
from acomponent library and add instances of those to the current design's component
set. The Selection window lists the available component categories and the kinds and
ranges of the parameters for each component. The designer must select parameters
values, such as bitwidth, style and/or kinds of functions performed, in order to specify
a unique component type. The Current component set window lists aU component
types currently m use in the design.

The ^location window lists all component instances physically present in the target
esign Each instance is broken down into categories (type, unit, width), and the number

of instances in each category is displayed in parentheses. Each instance may also be
selected to display the list of function performed, pin-to-pin delay, and area information
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2.4 The Connectivity Table and Floorplan

The connectivity table lists component instances along the Yaxis and buses (intercon
nections) along the X axis. A connection between an instance and a bus exists if an
instance s input or output port is present in the corresponding entry. The user may
add, delete, or reassign connections in order to optimize the number of interconnections
needed.

The floorplan display shows the floorplan of the target design. When an instance
is allocated, its layout is positioned randomly within the display initially. Afterwards,
the user may reposition the instance anywhere in the design within design rule limits.
Rotating an instance's layout in 90 degree increments is also permitted. The user may
also relocate external i/o pads along the chip boundary to reduce routing area or delay.

During the binding process, connections between instances are represented as point-
to-point connections within the floorplan. After binding, the user may route or reroute
wires within the floorplan.

A set of quality measures about the physical design are constantly updated and
shown at the bottom of the floorplan display. These are

1. Total area

2. Functional unit area

3. Storage unit area

4. Interconnect unit area

5. Wasted area (white space)

6. The length of the critical path

7. Total wire length

The four displays described, the state-actions table, the component selection and
allocation display, the connectivity table, and the floorplan display, are integrated tightly
together such that actions or highlighting in one display is reflected (if relevant) in the
others. For example, if the critical state is highlighted in the state-actions table (next
slide), the floorplan display will highlight the components and connections involved.

The next section describes the state-based quality-measures and statistics available
to the designer from the state-actions display.



Connectivity Tabie and Floorplan
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3 Displays for State-Based Quality-Measures and
Statistics

3.1 Delay

The menu causes abar graph to be displayed alongside the state table show-
ginformation about state delay. Delay is represented graphically along the Xaxis

and delay statistics are shown below the graph. The thick-lined outer boxes show the
maximurn delay of each state. Within each box, the delay is further broken down by
actions^ For example, msUte 1the action F=D*E+E is the longest path, so the width
of Its shaded box extends the length of the thick-lined state-delay box. Each action can

example the same action is shown at the bottom of the slide with the delay for writing
F, the delay of the multiply operation, and the delay of the addition shown.



State-Based Quality-Measures and Statistics
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3.2 Occurrence

The OCCURRENCE menu lists operators along with their bitwidths and allows the
user to select any subset to be displayed graphically. The slide shows the bar graph
resulting from selecting "+(16)" (all occurrences of a16-bit +operation) and -(16) (all
occurrences of a 16-bit operation).



State-Based Quality-Measures and Statistics

OCCURRENCE
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3.3 Lifetime

The LIFETIME mexm lists the variables nspH in k^k • 'ni



State-Based Quality-Measures and Statistics
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3.4 Utilization

The UTILIZATION menu requires the user to a select a component type (functional,
Storage, interconnect) or a specific component instance. Selecting INSTANCE from
the utilization menu prompts the user to select a specific component instance from the
Allocation Table. In this example, since FUNCTION UNIT was selected, all instances of
type function-unit are selected. The utilization graph shows the states in which those
instances are active. At the bottom of the graph a utilization percentage is shown,
defined as the number of states in which the instance is active divided by the total
number of states.



State-Based Quality-Measures and Statistics
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4 User Scenarios

This section discuses the use of quality metrics and design views in the DSE to capture
and optimize an intended design. Instead of browsing through all quality metrics and
design views offered by the DSE, let us consider a typical design scenario and discuss
views and quality metrics that can be useful in each step of the scenario.

The example scenario consists of the following steps: specify table, optimize utiliza
tion of operators and variables, minimize state delay, minimize execution time, allocate
functional and storage unit resources, bind functional and storage units, allocate inter
connect units, bind interconnect units, finalize floorplanning, check the quality metrics
and repeat any steps if necessary. Each step in the scenario is described in detail in the
following sections.

4.1 Specify Table

The first step is to specify the behavior of the intended hardware in the form of a
state table. The state table is constructed initially without considering the amount of
resources that are available or needed for the design. In other words, the user should not
pay attention to the amount of resources that are required in each state or to the amount
of resources that can be shared across states. Thus, the initial description generally
contains a small number of states. States are introduced only when the sequencing
of control in the design is needed. For example, in a control dominated or interface
circuit, states are used to control the sequencing of hand-shaking events. In contrast,
^ates should not be introduced when specifying algorithmic behaviors, such as filters
Ti = E,

Once the state table is completely specified or at least the crucial part of the design
has been specified, the next step is to refine or reschedule the state table to minimize
required hardware resources and shorten state delays. At this early stage in the design
scenario only behavioral information is available. Nonetheless, each behavioral construct
has Its corresponding hardware implementation. For example, behavioral operators will
be implemented with functional units and behavioral variables will be implemented with
registers or memory. Thus, reducing the number of operators and variables implies that
the required hardware wiU likely be reduced. Similarly, reducing the number of operators
per state shortens state delays and the clock period in turn.



Typical Scenario

specify tabi*

Optimlza utilization of
operators and variables

Minimize state delay

Mlnlmlza axecutlon time

Allocate resources

(functional & storage units)

Define seeds for binding

Bind operators and variables
(using closeness hints)

Allocate Irrterconnect unlta

Bind Interconnect units

Floorplaning

Metrics check

Return to any point



4.2 Reducing behavioral operators

A behavioral operator can be implemented in hardware with a functional unit that
performs that operation. For example, each addition operator used in the state table
can be implemented with an ALU. In order to determine the total number of functional
units required to implement a typeofbehavioral operator, we have to find the maximum
number of instances of that operator used in a state. By tahing the maximum number
of instances we are assuming that operators which are used in different state can share
the same functional unit. Hence, in order to reduce the required number of functional
units we have to reduce the maximum number ofoperators used in a state.

The number of agiven operator type used in each state can be found from the quality
metric "Occurrence of operators". For example, a maximum number of 4 additions are
performed in state STl, In addition, selecting the metric also highlights the actions in
each state that use the selected operator. In order to reduce the number of operators
used in each state, the highlighted actions must be moved to new states. In the example,
three new states have been added and a single addition action moved to each one. Thus,
the maximum number of additions is reduced from 4 to 1.



Reducing Behavioral operators

Reducing occ. of operators => Reducing functional unit resources
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4.3 Reducing behavioral variables

Behavioral variables are generally implemented as storage units. In the implementation,
variables that have non-overlapping life time can share the same storage unit. Thus, one
way to reduce the total number of storage units required in the design is to schedule the
usage of variables such that minimal life time overlapping occurs. To aid minimizing
storage units, the DSE offers the "Lifetime ofvariables" quality metric to identify states
in which a selected variable is "alive" (i.e., states where the variable holds useful data).
For example, a state table with the lifetimes of variables XI, X2 and X3 is shown. In
addition, the example also show the "Union" lifetime of the three variables. The values
shown in the "Union" lifetime graph are basically the sum of the lifetime values of each
of the variables. Thus, values shown in the union metric suggest possible mergings of
variables that have non-overlapping lifetime. The maximum value of the union metric
implies the minimum number of registers required to implement all variables in the
design. Thus, the example would required 3 registers.

To reduce the number of storage units that are used to implement variables, we
reschedule by swapping the action 03 = XI + X2 in state ^T3 with the action X3 =
/I + /3 in ST2. The rescheduling reduces the lifetimes of variables X2 and X3 such that
it is possible to merge variables X2 and X3. We can perform the merging by replacing
variables X2 and X3 with a new variable X4. Hence, the maximum value of the union
metric is reduced from 3 to 2.



Reducing Behavioral Variables Usage

Reducing max. life all vars => Reducing registers
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4.4 Reducing clock period

The performance of a synchronous design is proportional to the clock period, where
the clock period is defined as the maximum time needed to execute a state. The DSE
provides a quality metric to measure the clock period, the "Delay per state" metric.
Each value is the time needed to completely execute all actions in that state. Since at
this stage of the scenario only behavioral information is available, delay information is
estimated. An example state table with the quality metric "Delay per state" is shown.
The delay ofa multiplier is assumed to be 40 ns, the delay of an adder is assumed to be
20ns and the setup time of a register is assumed tobe 5ns. Each value of the "Delay per
state" is estimated as the sum of the operator delays and the register setup time. For
example, the delay of ST\ is estimated as 65 ns due to the chaining of a multiplication
(40 ns.), an addition (20 ns.) and the register setup time (5 ns.). Since this state has
the maximum value of the "Delay per state" metric, the clock period of the design is
also 65ns.

In addition to displaying delay per state, the DSE will also highlight actions that
determine the delay of a selected state. For example, the two chained actions in state
ST\ requiring a total delay time of 65 ns are shown. We can reduce this delay by moving
the action (01 = X\ *X2) to state 5T3. By doing so, the "Delay per state" of state
5T1 is reduced to 25 ns, since only addition is now performed in this state. On the
other hand, the delay of STZ increases from 25 ns. to 45 ns. which is the maximum of
the addition and multiplication delays since both operators are performed concurrently.
The maximum value of "Delay per state" for the new schedule is reduced from 65 ns.
to 45 ns.; thus, the new clock period is 45 ns.



Reducing Clock Period

Reducing max. Delay/state => Reducing clock period
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Reducing execution time

The total execution time of a design is the time required to execute all states that lie
on the critical path from the starting state to the final state. Thus, one way to reduce
execution time is to reduce the number ofstates on the critical path. To accomplish this,
first we have to identify states that are on the critical path by using the quality metric
"Critical execution path". An example of a state table with the "Critical execution
path" metric is shown.

The critical execution path of this example consists of four states that are sequential
executed one after another. Since this is a synchronous design, the state transition is
assumed to be performed at the rising edge of every clock. Thus, if the design is in
state ST\ then on the rising edge of the clock the new state will be ST2. In ST2, if
the condition C is false then none of the actions executed will be assigned to storage
units. Hence, all actions performed in 5T2, when C is false, are useless. Therefore, if C
is false we should skip state ST2 by jumping from STl directly to 5X3. Thus, we can
reschedule the state by changing the transition from 5X1 to 5X2 only when C is true;
otherwise 5X1 transits to 5X3 when O is false. The result of the rescheduling is shown.
The rescheduling changes the critical execution path from 4 states to 3 states, and the
totai execution time has been reduced from 120 ns. to 90 ns.



Reducing Execution Time

Reducing max. # states on critical execution path => Reducing execution time
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4.6 Selection of type and quantity of component

Having a scheduled state table that satisfies resources constraints, the next step is to
allocate hardware components that can be used to implement the operators and variables
in the description. The first task in allocation is to determine the type and quantity of
such components. We can determine the type and quantity of functional units by using
the occurrence of operators metric. To determine the number of storage units we can
use the variable lifetime metric. The example shows a scheduled state table with the life
times of all variables, occurrences of addition and occurrences of multiplication quality
metics. The maximum value of the life times of all variables is 2. Thus, the design would
required 2 registers to implement. The maximum occurrence of additions is 1, hence,
1 adder is required. Similarly, the maximum occurrence of multiplications is 1, which
means 1 multiplier is required.



Selection of Type and Quantity of Component

ST1

C ST2 T X1 = 11 + 12

Z ST3 RESET = '1" X2sl2

ST2 T

T

T

ST4
T

T

T

T

T

03 = XI + X2

02 s 12 * X2

ST3 ST4
01 = XI • 12

X3 = 11 + 13

ST4 ST1 X2 s X3 4.12

w

w 2 1

MAX: 2 MAX:1 MAX: 1

2 Registers, 1 Adder, 1 Multiplier



4.7 Selection of implementation style

The next task in allocation is to select the implementation style for each component.
The selection might depend on the area and/or the performance of the design. The
example shows a selection of implementation style for the adder and the multiplier
based on the performance of the design. Since the clock period is constrained by the
delay ofthe multiplier, we can reduce the clock period by selecting either a high-speed, a
multi-clock, or a pipelined implementation for it. In this example we select a two-stage
pipelined implementation for the multiplier because the outputs of the multiplications,
02 in state ST2 and 01 in state 5T3, are not used in the immediately successive states.
Addition, by comparison, is not a time consuming operation, and we can select a slow
implementation for the adder. In this example we select a ripple implementation for the
adder.



Selection of implementation Style

ST2 X1 = II ♦ 12

ST3 I RESETS-r X2sl2

03 S X1 + X2

02 S 12 * X2

01 s X1 * 12

X3 s II1.13

X2 : X3 4.12

MAX: 45

Fast multiplier (e.g., 2 statges-pipelined multiplier)

Slow adder (e.g., Ripple adder)



4.8 Selection of bitwidth for allocated components

At this point in the design scenario we have allocated components and selected compo
nent types and implementation styles. The next task is to determine the bitwidth of
each allocated component. For each allocated component we can determine the bitwidth
ofeach operator by using the "Occurrence of units with given bitwidth" metric. The ex
ample shows a 3-state design with 6 addition operations. The bitwidth ofeach addition
operation is shown in parenthesis. The metric shows that there are two 8-bit additions
performed in state 5TI and Sn and one 6-bit addition performed in 572. Thus, using
an 8-bit adder, the two 8-bit additions and the 6-bit addition can be performed with the
same 8-bit adder. The same procedure can be used for the allocation of a 4-bit adder.
Hence, the resulting allocation for this example would be one 8-bit adder and one 4-bit
adder.



Selection of Bitwidth for Allocated Components

Bitwidth

/ 8 bit addition! 6 bit additioni 4 bit addition 2bit addition
CT-i A= B+(8) C ^

D=E+(2)F ^ 1
3- G=H+(4)I

J = A+{6)D

ST3 +(®) ^ -4N=0+(4)P ^ 1

Resources: one 8-bit adder, one 4-bit adder



Binding of functional and storage units

tn ''r'! each or all components have been allocated. In addition
that have been discussed earlier (e.g.. Occurrence of operators Lifeime of variables, etc.), the DSE also offers hints for binding operators and variables to

allocated components. These hints suggest the ne.xt operator or variable to be bound or
suggest, different binding configurations that can improve the design cost. The binding
hints can be divided into two category: hints for constructive binding and hints for
iterative improvement in binding.

Hints for constructive binding are used to select aparticular unbound operator or a
variab e. To use these hints the user selects as aseed acomponent or a register that

newly ^located or that already has some bound operators/variables. The user then
asks the DSE to suggest an unbound operator/variable that bears a '̂closeness" to the

Wndbg- <:l°se°ess measures available for constructive
1. Closeness in bitwidth

The DSE will select an unbound operator/variable that has abitwidth less then or
equal to the selected seed. The example shows an 8-bit ALUl seed that has pre-

.oT"™; TawI. - •"»!» +. " .1.. op«.o,
2. Closeness in sources and sinks

This measure selects an operator/variable that has the most number of common
sources or common sinks as operators/variables that have been previously bound
to the seed component. Such abinding should reduce the number of interconnect

the riw that using the closeness in sources and sinks measure,the DSE will select +3 as the hint for the next binding. This is because +3 has
two common sources with (4) and +2 (E).

3. Closeness in dependencies

Closeness in dependencies is defined as the number of dependency edges between
an operator/variable and operators/variables that are bound to the selected com
ponent. Let us consider the data flow graph of the example state table, -ha has
one dependency on AWl from +„ while +, has two dependencies, which are due
to -Hi and +2. Thus, the closeness in dependencies measure wiU suggest -H4 as the
next binding candidate for ALUl.

In addition to constructive binding hints, the DSE also provide hints for improving the
cost of the design by changing the binding of operators or variables. There are three
kind of design costs that can be improved, namely, gain in the number of interconnect
units, gam in the number of drivers on an interconnect unit, and gain in the number of
routing tracks. \\^en one of these three is selected the DSE will suggest an alternate
binding for aset of operators/variables and their corresponding functional/storage units
that will improve the selected design cost.



Binding of Functional and Storage Units

ST1 A = 8+1(8) A

^72 D=E+2(8) F
S-ra Y= E+3(6)A

Z = A+4(8)D

Using constructive hints:

Seeds

Binding

ALU1 ♦It+Z

Closeness bitwidth ALU1 =>+4

Closeness same source/sink ALU1 => +3

Closeness Max. dependency ALU1 => +4



4.10 Allocating and binding of interconnect units

During operator and variable binding, interconnect units are automatically added to the
connectivity table. These interconnect units ensure that data transfer between bound
operators/variables is possible. The example shows the connectivity table after binding
operator *i and *2 to MULT, and variables A to register i21, D to i?4 and B to i?3.
The two interconnect units introduced, ni and n2, are "virtual nets", meaning that they
do not have a real implementation, yet. Thus, the next step in the design scenario is to
allocate interconnect units to implement these virtual nets. The procedure is the same
as allocation for functional or storage units. The user selects the implementation style
{i.e. one level bus, two level bus, one level multiplexor, two level multiplexor, etc.) and
the bitwidth for each virtual net. After the interconnect unit has been allocated, the
virtual net is bound to the allocated unit. The binding is then reflected in the floor plan
by changing the "dotted" virtual nets to "solid" routing tracks.



Allocation and Binding of Interconnect Units

Creation ofvirtual nets after operators and variables binding

ST1 A = B '1 C

ST2 0 s E *2 F

Binding *1 to MULT, Ato R1 ^
*2 to MULT, 0 to R4, and B to R3

n11 n2 I Total #drjvers
Mult^

R1 I

R2
R3
R4 I

Fan in

Fan out

Floorplan after Interconnect binding



4.11 Final floorplanning

Once all operators, variables and virtual nets have been bound, the floorplan shows
the placement of components, I/O pads, routing and wasted area. The next thing
the user may wish to do is to improve the floorplan by changing the placement of
components, altering the positions of 1/0 pads, or rerouting buses. Feedback from these
changes is reflected directly in the floorplan view by quality metrics displaying total
functional unit area, total routing area, total wasted area, etc. The example shows the
floorplan of adesign before apossible improvement and the floorplan of the same design
after. The improvement was accomplished by rearranging input and output ports and
by reassigning pin positions for the data path stack.





5 Conclusion

This report presents an introduction to the Decision Support Environment (DSE) which
supports designs from the behavioral level on down to the floorplan level. This report
emphasizes interactivity by illustrating the use of different design views and qudity
metrics in a typical design scenario. The DSE provides highly integrated views and an
environment that allows the user to work in any abstraction of the design and yet be
able to relate objects in different abstractions. Finedly, the DSE offers numerous quality
metrics and hints that assist the user in making complex design decisions.

Using the DSE, a designer can explore the design space quickly, and expect to reduce
design time by 50%, cind the number of iterations in the design cycle to only few. In
addition, the DSE provides excellent design documentation covering the main design
abstractions from the state table through the floorplan. The relationships inherent in
the environemnt between components or objects of different abstractions allows the
user of the DSE to determine implementation information for each behavior operators
and variables, or to determine behavioral operations that <ire implemented by each
hardware component. For example, the user can determine the component that is used
to implement an add operation in the behavior, and at the same time, he/she can find
out the exact placement of that component in the floor plan. Last but not the least,
DSE can be used as a front end for other automatic synthesis tools.



Decision Support Environment
Conclusion

Aided design capture from Behavior to Floorplan
• Highly Integrated Multi-view

• Quality metrics

Gain:
• Expected 50% reduction in design time

• Expected iarge reduction in number of Iterations in the design cycle
• Excellent documentation

• Good front end for other synthesis tools
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