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ABSTRACT

This report presents a methodology to obtain optimal reservoir

operation policies for a large-scale reservoir system. The model

maximizes the system annual energy generation while satisfying con-

straints imposed on the operation of the reservoir network. The model

incorporates the stochasticity of river flows and keeps future operating

schedules up-to-date with the actual realization of those random

variables. It yields medium-term (one-year ahead) optimal release

policies that allow the planning of activities within the current water

year, with the possibility of updating preplanned activities to account

for uncertain events that affect the state of the system. The solution

approach is a sequential dynamic decomposition algorithm that keeps

computational requirements and dimensionality problems at low levels.

The model is applied to a nine-reservoir portion of the California

Central Valley Project and the results are compared with those from

conventional operation methods currently in use, showing that the use of

the model can improve the levels of energy production (about 30 percent

increase) while the optimal release policies meet satisfactorily all

other functions of the reservoir system. Sensitivity analysis is

conducted to assess the optimality of the solutions and several alterna-

tive formulations of the model are developed and tested, the results

showing the robustness of the optimal policies to the choice of model.

-xiii-



CHAPTER 1

INTRODUCTION

Optimal operation of reservoir systems is of fundamental importance

for the adequate fUnction of regional economies and environments as well

as for the well being of the population served by such reservoir devel-

opments. Reservoirs provide a wide variety of indispensable services

that affect every facet of modern society. Those services include the

provision of water supply for human consumption, agricultural and

industrial activities, hydropower generation, flood control prtection,

ecological and environmental enhancement, navigation, and recreation.

Large-scale reservoir developments have made possible the economic

growth and flourishment of entire regions and nations. In parallel with

the increasing expansion of population centers and economic activity,

the demands exerted on the water stored by the reservoirs has been

augmenting steadily. With the size of the systems almost at a maximum

possible due to water availability limitations -- with the most suitable

locations for development already harnessed -- and with tighter budge-

tary constraints, it has become mandatory to operate the reservoir

systems in an efficient manner, so as to effectively and reliably

provide their intended services to the public.

Efficient operation of reservoir systems, although desirable, is by

no means a trivial task. First, there are multiple components (reser-

voirs, canals, rivers, pumping plants, et.c,) that must be operated

jointly. Second, there exist many, usually conflicting, interests and

constraints that influence the management of the system. Third, there
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exist uncontrollable and uncertain elements that determine the reser-

voirs' operation such as streamflows. Fourth, conditions such as water

demands, institutional regulations, and even infrastructural elements of

the system, are continuously evolving due to the inherent dynamic nature

of society and technology.

In the context of a much needed efficient management of reservoir

systems, mathematical optimization models for reservoir operation become

a natural ally, a valuable tool for improved planning of complex

operational schedules for any reservoir system. Several aspects make

optimization models prone to suitable use in reservoir management: the

usually well defined structure and links between the physical components

of the system, the quantitative nature of demands and constraints

imposed on the system, and the advent of sophisticated computational

equipment.

Modeling of reservoir management constitutes an elegant and classic

example of the application of optimization theory to resource alloca-

tion. Reservoir management modeling, however, cannot be accomplished

without problems of its own; among which predominantly figure its

stochastic nature (streamflows, demands, etc.), the large size of the

models (dimensionality), and the limitations of mathematical tools that

force the modeler to compromise between accurate system modeling and

complexity of the resulting optimization models.

This report is devoted to the development and application of a

large-scale optimization model for the management of the northern

portion of the California Central Valley Project (NCVP). The NCVP is a

mul tireservoir, multipurpose system that constitutes the backbone of

central and northern California water supply development. The product
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of this research is a model for computing monthly water release policies

that would maximize the annual system hydropower generation while

satisfying all constraints imposed on the operation of the NCVP.

Emphasis is given to the following items throughout the development of
the model:

(i) The optimization model must be able to represent the physical

features of the system as closely as possible and include the pertinent

links that exist between its different components. Those links are of

hydraulic, hydrological, and operational nature. Links of operational

nature refer to the effects that water releases from any reservoir have
on the operation of any other reservoir.

(La ) The model must be tractable both numerically and a.n its

implementability. The number and nature of the computations as well as

the computer storage requirements have been kept to a practical manage-

able size, despite the fact that the model is aimed at large-scale

problems. Also, the model has been developed to match the real opera-

tion conditions faced by the reservoir managers of the NCVP. The

mathematical development of the model is kept at a general level (and

subsequently tailored to the NCVP) , so that the approach can be extended

and applied to other systems with minor modifications.

(iii) The uncertainty of streamflows is handled in a simple way,

and allows to keep the operating policy up to date with the actual

evolution of the reservoir storages.

(iv) Along with the task of incorporating streamflow stochasticity

and maintaining an adequate resemblance of the real operating scenario,

conceptual rigor has not been sacrificed. Included in the analysis are
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convergence, type of optimality achieved (local or global), computa-

tional and computer storage burdens, existence of multiple optimal

solutions, and a discussion of the advantages and disadvantages of the

method relative to some popular competing models.

(v) Test of the model with a large-scale model (the NCVP) under

different scenarios: below-average, average, and above-average stream-

flow conditions.

This study develops the optimization model for the monthly opera-

tion of the system, within a one-year horizon. That is the way in which

many systems, including the NCVP, are managed: tentative or guiding

operation policies are released at the beginning of every water year

that represent the best judgement of the managing staff as to what must

be done in the incoming water year. As the year progresses, at the

beginning of each month, the policy to be followed the rest of the year

is revised to accomodate the actual evolution of the system and correct

the departures from what originally was expected to occur (due to

streamflow variability, changes in the system I s constraints, etc.).

To summarize, the objectives of this study are: (1) to develop a

model to find optimal (monthly) operation policies for reservoir

systems; (2) to apply the model to a large-scale reservoir system

(NCVP), including streamflow stochasticity and actual operating con-

straints; and (3) to analyze the theoretical and computational features
of the solution algorithm .

. The remaining of the report is organized as follows. Chapter 2

defines the background terminology used in this work to set a common

ground of understanding. Chapter 3 is a literature review of research

done in large-scale reservoir system operation. Chapter 4 describes the
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solution algorithm that constitutes the backbone of the optimization

model (the progressive optimality algorithm, FOA). Chapter 5 contains

the application of the POA to the NCVP. The objective function,

constraints, and the structure of the mathematical model are presented.

The streamflow forecasting model is also included in this chapter.

Chapter 6 gives a discussion of results. Chapter 7 contains extensions

of the model developed in Chapter 5. Those extensions include the use

of system-dependent features and nonlinearities in the objection

function and constraints. Those extensions are the product of the

findings from the analysis of results in Chapter 6. Chapter 8 is a

summary and final statement of important conclusions and further

research needed. Appendix A contains physical data for the system as

well as streamflow record. Finally, Appendix B shows listings of the

computer programs.
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CHAPTER 2
TERMINOLOGY

This chapter defines basic concepts that are employed in optimiza-

tion models contained in this report.

2.1 Control or Decision Variable

The control variable in the reservoir operation problem is the

volume of water released (through penstocks) and ~pilled during a month.

The decision of the amount of water to release and spill is made at the

beginning of each month.

2.2 State Variable

The state variable is the water stored in a reservoir at any time.

The models use beginning- and end-of-month storages. For a multireser-

voir network, the state of the system is represented by a vector-valued
state variable.

2.3 Constraints

Constraints are bounds or equalities that must be satisfied by

state and decision variables or any function of those variables. They

originate from technical, physical, institutional, or other considera-

tions.

2.4 Feasible Region

A feasible region is a set of decision and state variables that

satisfy all the system1s constraints. If a solution (or a multiple set

of solutions) exists, it must be contained within the feasible region.
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2.5 Objective Function

An objective function is a scalar-valued function that maps the set

of feasible decision variables into the real numbers, Rl. It measures

the consequences or performance of a decision taken during any month and

consequently the total performance achieved by the sequence of decisions

made within a year.

2.6 Convex Set

If for any two points !1' ~2 of a set K and a scalar a E [0, 1]

the linear combination x = Ci.~1 + (1 - Ci.)3'!.2 is also in K, then K is a

convex set. Constrained minimization problems in which the objective
function is convex and the set of constraints defines a concave set are

termed convex programming problems. Linear programming (LP) and posi-

tive semidefinite linearly-constrained quadratic programming (PSD-QP)

problems are examples of convex problems. For a maximization problem,

the conditions to qualify as a convex problem are a concave objective

function and a convex feasible set.

2.7 Optimization Model

The optimization model consists of the objective function and

constraints of a problem and its solution algorithm.

2.8 Global and Local Optima

A feasible point ~~.•.is a global optimum if f(~~") > f(~) for all ~

contained in the feasible region, in which f(') is the value of the
obj~ctive function. A strong local optimum is a point x such that

f(2) > f(~) for all ~ in the neighborhood of x such that {~3 112. - ~12

~ r}, in which r is a small number. Outside this neighborhood there may

be points such that f(x) ~ fex), in which x is a feasible point.- -
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2.9 Initial Policy

Many optimization techniques require an initial (starting) value

for each of the variables of the optimization problem. In general, that

initial value will not be a local or global optimum, but it must be

feasible. In the reservoir operation problems considered in this

report, the initial policy will be a sequence of reservoir storage

vectors from the first month to the last month. Corresponding to that

sequence of state variables is a sequence of decision variables (reser-

voir releases). Selection of initial policies will be discussed in
Chapter 5.

2.10 Optimal Policy

A release policy consists of a sequence of release (penstock and

spills) decisions, i.e., a sequence of vector-valued decision variables

from the first month to the last month. Associated with a release

policy is a state trajectory, a sequence of vector-valued state vari-

abLe s. The state trajectory is unique only if there is a one-to-one

mapping between decision and state variable, in which case the system is

invertible. A release policy is optimal if the objective fUnction is
maximized by such release policy.

2.11 MUltiple Optimal Solutions

Some convex programming problems (e.g., LP and PSD-QP) have an

infinite number of (feasible) solutions that are all optimal. That set

of optimal solutions is also convex. An important consequence of the

existence of muLt i.pLe optimal solutions is that many alternative ways

exist to achieve the same level of performance.
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CHAPTER 3
REVIEW OF RESERVOIR OPERATION MODELS

This chapter reviews large-scale reservoir operation optimization

models. The models are grouped into deterministic and stochastic

models. That grouping is somewhat arbitrary because many models combine

deterministic and stochastic features or deterministic, stochastic,

simulation, and some system-dependent empirical techniques. Stochastic

models will be characterized by the explicit inclusion of stochastic

variability (usually, streamflow) in the objective function and/or the

constraints.

In general, operation models of large-scale reservoir systems

involve heavy computational and computer storage requirements. Some

kind of sequential or decomposition scheme usually is adopted to

succesfully implement the solution algorithms. A discussion of some of

those algorithms is presented in Chapter 4. In short, Sections 3.1 and

3.2 contain reviews of proposed deterministic and stochastic reservoir

operation models, respectively. For the·sake of brevity, the reviews do

not exhaust the numerous approaches that have been proposed. Finally,

Section 3.3 briefly discusses major difficulties associated with reser-

voir operation models.

3.1 Determistic Models

Hall et al. (1969) were among the first investigators to propose a

deterministic model for the monthly operation of a reservoir system.

They used a version of Larson 1 s (1968) state increment dynamic pro-

gramming (SIDP) to solve for the monthly releases of a two-reservoir

system. A historical low flow record was used to determine the annual
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firm energy. Roefs and Bodin (1970) proposed an analytical model that

uses a combination of streamflow simulation, deterministic optimization,

and multivariate analysis of the deterministic results. A brief dis-

cussion was included on the convexity of the model's objective fUnction

(the power formula). However, model's results were not provided.

Larson and Korsak (1970) and Korsak and Larson (1970) presented

applications of dynamic programming successive approximations (DPSA) to

a hypothetical four-reservoir system. They provided rigorous conditions

for convergence and global optimality of the DPSA approach, conditions

that have been unfortunately overlooked by most subsequent applications

of DPSA by other investigators. Heidari et al.. (1971) reported on the

application of SIDP to Larson's simple four-reservoir system. They

attributed the theoretical foundation of their study to Jacobson and

Mayne (Jacobson, 1968a, 1968b, 1968cj Jacobson and Mayne, 1970), but we

prefer to cLassify their method as a simplified version of Larson's

SIDP, the so-called direct iterative SIDP (see Larson and Casti, 1982,

for a recapitulation of SIDP). By using heuristic arguments, it was

reported that convergence was achieved at a (unique) global optimum.

However, subsequent research (e.g., Nopmongcol and Askew, 1976) showed

multiple optimal solutions for the same problem.

Fults and Hancock (1972) used SIDP to obtain the daily operation

policy of a two-reservoir system. The optimality of the results was

checked by a heuristic approach in which different initial policies were

inp~t to the model, reportedly yielding the same value of the objective

function. That approach, however, is not a proof of the convexity of

the objective function, as concluded by Fults and Hancock (this topic is

discussed further in Chapter 4). Liu and Tedrow (1973) presented a
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method that uses conventional dynamic programming (DP), a multivariable

search technique, and simulation to develop rule curves. They simulated

a two-reservoir system under extreme dry and wet conditions to develop a

feasible operating range.

Hicks et al. (1974)

obtain monthly operation

developed a nonlinear programming model to

policies for the Pacific Northwest hydro-

electric system, consisting of 10 large reservoirs and 26 smaller rlln-

of-the-river poundages. They used a modified conjugate gradient method

to solve a problem with a nonlinear objective function and linear

constraints. Assertion was made that only local optima are guaranteed.

The optimization period used historical low flows. The optimization

model yielded results on energy production that were about one percent

greater than those obtained from a cut-and-dry approach. CPU execution

time was reported to be considerable, 41 minutes per run.

Becker and Yeh (1974) used a linear programming-dynamic programming

(LP-DP) approach for the monthly operation of a five-reservoir portion

of the California Central Valley Project (CVP). The performance index

consisted of minimization of potential energy losses of water backed up

in the reservoirs. They argued that this type of criterion is justified

by the high relative value of firm energy in comparison with that of

firm water. Streamflows were assumed to be known for the one-year

ahead planning horizon. By assuming that two of the reservoirs are kept

at constant elevation throughout the year and a third reservoir is

operated by a rule curve, the number of state variables was reduced to

two, allowing an efficient implementation of the model. The model

yielded a 35% energy production increase over contract levels. Fults et
a1. (1976) applied SrDP to a four-reservoir system in northern

in which a highly nonlinear objective function representedCalifornia,
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power production. Two different initial policies gave different release

policies, indicating the existence of multiple local optima. Because

neither release policy yielded a global optimum, the authors concluded

that SlOP does not apply to that reservoir system. However, it is not

clear whether that was caused by the fact that the conditions for global

optimality of SrDP were not met or by an inadequate state increment

step, or both. The previously cited work of Fults and Hancock (1972)

dealt with a subsystem of the four-reservoir system of Fults et aL,

(1976) in which SIDP reportedly converged to a global optimum.

Nopmongcol and Askew (1976) reported an application of what they
termed multilevel incremental dynamic programming to Larson and Korsak's

(1970) hypothetical four-reservoir example. It will be argued in

Chapter 4 that this optimization scheme is Larson's OPSA. Nopmongcol

and Askew argued that the approach of Heidari et al. (1971) is different

from Larson and Korsak's (1970) SIDP and based their argument on the way

that the time intervals were treated (fixed time steps). We prefer to

think that the fixed step is a particular case of Larson's SlOP scheme

and continue to classify the approach of Heidari et al. as merely SIDP.

Further, Nopmongcol and Askew incorrectly argued that global optimality

depends on their proposed multilevel scheme when, in fact, global

optimality can only be achieved if Korsak and Larson's (1970) conditions

are met, regardless of whether one or more levels are used in the
solution.

Yeh et a1. (1978) employed a combination of SIDP and DPSA (called

IDPSA, after an abbreviation for SIDP-DPSA) to find optimal hourly

operational cri teria for the northern portion of the CVP system. They

used a three-level approach in which monthly schedules (Becker and Yeh,
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1974) were used as input to the daily model (Yeh et al., 1976) and the

results of the daily model served as a basis to the hourly model. In

essence, the system is decomposed into smaller subsystems and DPSA is

used to advance the solution towards a local optimum. Each separate

subsystem optimization is obtained by SIDP. The model also used an

expanded approximate LP with a subsequent adjustment technique to

develop an initial feasible policy, which is subsequently used to start

the DPSA iterations. Results showed that the output from the approxi-

mate LP problem differed only by about 0.25 percent from the value of

the objective function obtained after the IDPSA had converged to a local

optimum. That is, the initial and final policies led to approximately

the same solutions. It is argued that the tightly constrained feasible

region did not leave much room for substantial improvements. No com-

parative results were given for different system decompositions and/or

different initial policies. Although the necessary conditions for

optimality (Larson and Korsak, 1970; Korsak and Larson, 1970) are

difficult to evaluate in practice, the absence of different system

decomposition and initial policy results does not allow an evaluation of
the global optimality of the solution.

Murray and Yakowitz (1979) extended the differential dynamic

programming (DDP) technique of Jacobson and Mayne (1970) by introducing

linear constraints into DDP. The constrained DDP (denoted plainly as

DDP) will be described in Chapter 4. Despite some attractive properties

of DDP, results are not available on the application of the method to a

real large-scale reservoir system.

Turgeon (1981) applied the principle of progressive optimality

algorithm (POA) to maximize energy production in a system of four reser-

voirs in series. He considered deterministic inflows in an hourly
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operation model which incorporated time delays in the continuity equa-

tion. He erroneously asserted that convexity is not needed to obtain a

global solution. Turgeon (1982a) also presented a modified version of

SIDP (for a fixed time interval) in conjuction with DPSA (see Yeh et

al., 1978) to the monthly operation of four reservoirs in series. The

approach guarantees convergence to a global optimum for convex problems.

However, Turgeon (1982a) did not provide a proof of the convexity of the

problem under consideration. In particular, Turgeon's object.i.ve

function is nondifferentiable on the decision variable and includes the

energy head, which is usually a nonlinear function of reservoir storage

and the latter is in turn related to the decision variable by the

continuity equation. Under those circumstances, it is not possible to

argue that a global optimum was obtained because convexity was not shown

to hold. Indeed, since the solution procedure is DPSA, Korsak and

Larson's (1970) conditions for global optimality must hold in order to
obtain a global optimum.

Yeh and Becker (1982) presented a multiobjective technique for the

operation of a portion of the CVP system. The technique requires the

subjective criterion of a decision maker to choose among the multiple

objectives served by the system. The constraint method of solution, in

essence an iterative LP-DP approaCh, is used to solve the multiobjective

programming problem. Due to the multiobjective nature of the problem

and the effect that the decisions of a manager exert on the solution, it

is difficult to establish the optimality of the approach unless exten-
sive simulation runs are made.

Yazicigil et a1. (1983) reported an application of LP to the daily

operation of a fOUr-reservoir system. The approach used concepts

developed by the Corps of Engineers for water conservation such as
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balancing and zoning (Hydrologic Engineering Center, 1977). The concept

of noninferior set was also used to establish tradeoff curves between

different objectives. The optimality of the approach depends on the

preset rules established by the Corps of Engineers.

Marino and Mohammadi (1983b) extended the monthly operation model

of Becker and Yeh (1974) to allow for maximization of both water

releases and energy from the reservoir system. The proposed model is a

combination of LP (used for month-by-month optimization) and DP (used

for annual optimization). At every stage of the DP, a series of LPrs

are solved. Because the contract levels of water and energy are usually

based on conservative estimates of natural inflows, the system is likely

to be capable of providing more than those contract levels. To allow

for the extra water releases and energy production, the values of the

right-hand side of the contract constraints (in the LP model) are

parametrically increased from the contract levels to the maximum

possible levels in each month. To select the best beginning-of-month

reservoir storage, a forward DP is used so that the water releases and

energy produced during the month are maximized. The efficiency of the

algorithm is improved through the use of parametric LP (reduces computa-

tion time) and an iterative solution procedure (reduces computation time

and storage requirements). Those efficiency measures allowed the use of

minicomputers (Marino and Mohammadi, 1983c), which are more suitable for

frequent updating purposes (because of their lower cost). The use of

the model was illustrated for Shasta and Folsom reservoirs (CVP). In

addition, Mohammadi and Marino (1983a) reported on an efficient algo-

rithm for the monthly operation of a multipurpose reservoir with a

choice of objective functions. They considered water and energy

maximization over the year, maximization of annual water and energy with
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flood control considerations, and maximization of water and energy for

months with relatively high water and energy demands. The choice of

objective functions gives the reservoir operator flexibility to select

the objective that would best satisfy the needs of the demand area.

Finally, Mohammadi and Marino (1983b) presented a daily operation model

for maximization of monthly water and energy output from a system of two

parallel reservoirs. The daily model uses optimum monthly water and

energy contract levels obtained from the monthly release policy. Those

contract levels are adjusted to allow for differences between the daily

and monthly forecast of inflow. The efficiency of the algorithm allowed

the use of minicomputers. The model was applied to Shasta and Folsom

reservoirs (CVP) l with computation time requirements of less than two
minutes.

3.2 Stochastic Models

It is emphasized that the division between stochastic and determi-

nistic models is rather thin. Interest herein is centered on applica-

tions to large-scale reservoir systems. 'ReVelle et al. (1969) presented

one of the first attempts to incorporate stochasticity into reservoir

operation. The pivotal idea was to use a linear decision relationship

between storage and release (linear decision rule, LDR) and to express

the constraints of the system as probabilistic entities (chance

constraints, CC) which are subsequently converted to deterministic

equivalents. Many subsequent papers exploited the LDR approach (e.g.,

ReVelle and Kirby, 1970; Eastman and ReVelle, 1973; Gundelach and

ReVelle, 1975), but most are aimed at determining the capacity of a

single reservoir. The main difficulties with the CC-LDR approach arise

from the fact that since storages and releases are random variables and
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almost any constraint on the operation of a system contains those

variables, it is quite possible that some of those constraints will

involve functions of storages and/or releases for which the distribution

function is not known or cannot be derived and thus the deterministic

equivalent cannot be developed. In additionJ if storages and/or

releases appear in the objective function of the modelJ then the

expected value of returns is the relevant performance index that must be

maximized. Usually, that leads to unsurmountable computational work for

rnultistate problems. Furthermore, the choice of the reliability levels

in the CC is rather arbitrary. The most serious drawback of LDR is that

it forces the (random) state of the system (storage) to be equal to the

sum of release and a constant, which is conceptually incorrect. Loucks

et a1. (1981) provided a list of references dealing with CC-LDR or some

modification of the approach.

Takeuchi and Moreau (1974) described a combination of LP, sto-

chastic DP, and simulation to obtain monthly operation policies that

minimize short-term and long-term expected losses of a five-reservoir

system. Drawbacks of the approach are the need for loss functions and

the discretization of state variables. The approach also requires the

knowledge or development (by using simulation) of joint conditional

density functions of reservoir states given that anyone reservoir is in

a fixed state. The authors did not perform sensitivity analysis to

establish the type of solution obtained. Perhaps J the most serious

drawback of the technique is its large computational requirements.

Colorni and Fronza (1976) were the first to use the concept of

reliability programming for the monthly operation of a single reservoir.

They used a single reliability constraint to express the reliability of
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the system. Unlike the CC approach discussed earlier, the reliability

level is part of the solution and thus is not specified beforehand.

Turgeon (1980) presented applications of system decomposition

(DPSA) and aggregation/decomposition for the weekly operation of six

reservoir-hydroplants in a stochastic environment. The decomposition

approach works only for systems composed of parallel subsystems of

reservoirs in series along rivers. In the decomposition technique, each

subsystem is lwnped into a composite equivalent and thus the (weekly)

operation policies are developed for each composite subsystem as a whole

rather than for each single reservoir. He claimed that DPSA yields
nonoptimal results if a local feedback scheme is used but renders near

optimal results when open-loop control is utilized. That is a rather

surprising result because feedback or closed-loop controls usually

perform better than its open-loop counterpart under stochastic dis-

turbances; feedback control allows for self correction whereas the

preplanned open-loop control does not (Bertsekas, 1976). The aggrega-

tion/decomposition scheme lumps all but one of the parallel subsystems

into a composite unit and solves a two+stat.e variable problem. The

process is repeated for all complexes and then an adjustment is made to

the solution of the aggregation phase to obtain a final solution.

Results showed that the aggregation/decomposition method is superior to

the decomposition technique for a six-reservoir system. CPU time was

about 150 minutes per run by each method. It is ascertained that
coarser state discretization would lead to smaller processing times but

that could hamper the convergence to a global optimum (if it exists).

Simonovic and Marino (1980) extended Colorni and Fronza t s (1976)

monthly operation model to allow for two reliability constraints, one
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for flood protection and the other for drought protection. The solution

procedure consisted of an LP optimization and a two-dimensional

Fibonaccian search technique. The search technique was used to select

the reliability levels, and the LP was used to determine the releases

for those reliabilities and thus evalute the objective function.

Simonovic and Marino (1981) also developed a methodology for the

development of risk-loss functions in the reliability programming

approach to a single reservoir. Flood and drought risk-loss functions

were developed by using economic data. The reliability programming

model was later applied to a three-reservoir system by Simonovic and

Marino (1982). Fixed reliability levels for each month in each reser-

voir were used to overcome computer storage requirements. Large memory

requirements are needed for multireservoir systems; only local optim-

ality can be guaranteed by the approach.

Marino and Simonovic (1981) developed a two-step algorithm for the

design of a mUltipurpose reservoir. The model was formulated as a CCLP

which maximized downstream releases. The first step transforms the CC

model into its deterministic equivalent through the use of an iterative

convolution procedure. The second step finds the optimum size of the

reservoir by solving the deterministic LP developed in step one. The

model allows the use of random inflows and random demands together with

other deterministic demands.

Marino and Mohammadi (1983a) improved the work of Simonovic and

Marino (1980, 1981, 1982) by developing a new reliability programming

approach for the monthly operation of a single mUltipurpose reservoir.

The model uses CCLP and DP and differs from other reliability pro-

gramming approaches with respect to the following three points. First,
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the development of risk-loss functions is not necessary. Development of

risk-loss functions usually requires economic data that are often

unreliable. Second, the reliability levels are not assumed to be

constant throughout the year, and are different from month to month.

This will eliminate the need for unnecessary extra releases in summer

for high flood reliabilities, and extreme low releases during winter for

high drought reliabilities. Third, the reliability of the hydroelectric

energy production is included in the model. Most other existing

stochastic models include energy production in the objective function

and maximize the expected revenue of the produced energy.

Bras et a1. (1983) devised a version of stochastic DP with a
continuous updating of flow transition probabilities and system

The innovative feature is the update of the transitionobjectives.

probabilities of the flow states by considering the most recent
information on the streamflow process. The method is used to find

operating rules for a single reservoir. The updating stochastic DP

(called "adaptLve") was compared with the traditional steady-state

method and a heuristic approach, and the objective function was varied

to reflect different operating scenarios. For the realistic case in

which spillage is considered, the heuristic approach yielded a higher

firm energy than the traditional and the (adaptive) stochastic DP

methods and there is indication that no advantage is derived from using

the adaptive scheme. The type of optimality obtained is not addressed

by ~he authors, but it obviously depends on the state and inflow dis-

cretization among other things (see, e.g., Knowles, 1981, for optimality

conditions in control problems).
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3.3 Discussion

The literature review in Sections 3.1 and 3.2 indicates that the

methods that most satisfactorily handle the problems of dimensionality

that arise in large-scale systems are mostly in the deterministic

domain. Stochastic DP has been confined to one or two reservoirs; its

worst handicap is that it requires discretization of state and inflows.

For multistate systems, the storage requirements increase exponentially,

severely limiting the applicability of stochastic DP, The reliability

programming approach (e.g., Simonovic and Marino, 1982) possesses

significant computational requirements. For cases in which some finite

increment is used to search for the solution of the reliability pro-

gramming problem, the storage requirements increase exponentially in

size when fine grids are used. In the deterministic framework, some

methods overcome the dimensionality problem and for several there exi.st

well established convergence and optimality criteria (Korsak and Larson,

1970; Murray, 1978). Unfortunately, those criteria exist under restric-

tive conditions (see Chapter 4).

Most researchers have not presented an

obtained to reservoir operation problems

unique, local, or global?). Although the

analysis of the solutions

(i.e., are the solutions

theoretical postulates of

optimality are difficult to check in many practical applications,

testing of solutions (involving the effects of i ) different initial

policies, Li) alternate decomposition schemes, and iii) different grid

sizes in some discretization schemes) usually is not reported. The

existence of multiple solutions usually is not addressed. Perhaps, the

key to a better understanding and successful implementation of the

proposed reservoir operation models lies in the ability to take advan-

tage of special system-dependent features that may lead to modeling
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simplifications (e.g., treating spillages as a function of storages,

linearizing constraints, and considering storages of regulating reser-

voirs as constant) and in performing post-optimality analysis of the
results.

Incorporation of the stochastic nature of streamflows in a suitable

way into reservoir operation models needs further research. In this

regard, seemingly contradictory findings have been reported but in

effect those findings are compatible. For instance, by considering a

time horizon that varied from a month to a year, Yeh et aI, (1982)

concluded that accurate streamflow forecasts lead to considerable

benefits. In contrast, by using a time horizon of fifty-three years,

Bras et al, (1983) found that no benefits were derived from inflow

forecasts. Those apparently contradictory results bring to the surface

the difference between short-term and long-term planning studies for

reservoir operation. The major inference to be drawn is that for short-

term time scales, especially for prediction of incoming flows during wet

periods, it makes a great difference to have good inflow forecasts. For

long-term studies, the dynamics of the system will center around average

inflow values, making any type of forecasting scheme of marginal value.

The time framework of a study also raises an important question.

When is an operation policy a real-time control scheme? Strictly

speaking, real-time or on-line operation of a dynamic system requires

two basic elements (Meier et al., 1971): an optimal state estimator and

a control scheme that maximizes a given objective function. This issue

has been exhaustively studied in the control literature (see, e.g., IEEE

Transactions on Automatic Control, 1971) and frequently approached by

using a Kalman filter for the state-space solution imbedded into a
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quadratic optimization scheme. Studies (Yeh et al., 1976, 1978; Bras et

al., 1983) that have some ingredients of dynamic control (e.g., updated

inflow forecasts) are essentially static operating modes. This is

because the adaptive capability of a closed-loop control is not

exploited. Yazicigil (1980) used a technique that has some attractive

updating features. His optimization technique finds an optimal policy

that is conditioned on today!s forecasts and the actual state of the

system. That policy is implemented for the current period (day) and is

updated as soon as the applied control and stochastic inflow deviate the

system from its expected state. That leads to a sequential solution of

the optimization model at the beginning of each period. The research

reported herein follows an analogous approach to a large-scale system to

develop operation policies that are conditioned on updated flow fore-

casts and actual (observed) state values. Jamieson and Wilkinson (1972)

outlined the principles of a sound real-time reservoir operation model.

Unfortunately, the implementation of such a model has not been reported.

In addition, Labadie et al. (1975) and Wenzel et a1. (1976) presented

attractive formulations for the real-time operation of flood-control

reservoirs. Again, no results for on-line application have been
reported.

In summary, some of the major difficulties associated with past

research in reservoir operation modeling are: (i) the problem of
dimensionality that practically has vanished stochastic DP from large-

scale applications; (ii) the choice of adequate performance criteria and

the assessment of the optimality of the results; and (iii) the incorpor-

ation of stochasticity (should stochasticity be handled in a a priori
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way (chance constraints), in a a posteriori way (reliability program-

ming) , in a static manner (stochastic DP), by simulation, or by some

sequential updating scheme?).
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CHAPTER 4

A REVIEW OF SOLUTION PROCEDURES

As indicated in the previous chapter, many optimization models have

been proposed for the operation of reservoir systems. This chapter

discusses some methods that have been successful, to some extent, in

coping with large-scale systems: discrete dynamic programming (DP) , the

backbone of more sophisticated methods; state increment dynamic pro-

gramming (SIDP); dynamic programming successive approximations (DPSA);

differential dynamic programming (DDP); linear quadratic Gaussian method

(LQG); nonlinear programming (NLP); and progressive optimality algorithm

(POA). The main interest of the discussion is to highlight the relative

advantages and disadvantages of the methods. Special attention is given

to storage and computational requirements.

4.1 Formulation of the Problem

A general reference problem can be written as

maximize
:!:!:t' 'It

E [f F(~t'
~t t=l

(4.1)

subject to

(4.2)

(4.3)

(4.4)
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The objective function, eq. (4.1), is to be ma~imized for some optimal

control ~t' The control !:!tis deterministic and m-dimensional. The

expectation E is with respect to a random n-dimensional state variable

~t' The function F is generally nonlinear, time variant, and scalar

valued. Notice that eq. (4.1) is written in the form of a closed-loop

control, in which !:!tis a function of a realization of ~t' Equa-

tion (4.2) is the dynamics of the system, or the continuity equation in

reservoir operation jargon. It describes the evolution of the system

when a control ~t is applied to the system and a random disturbance ~t
affects the state of the system. Equation (4.3) is the observation
process, or that which can be observed about the state of the system

because the measurement of state variables is not always complete (i.e.,

not all the components of the states may be observed) and is noise

corrupted by ~t' Equation (4.4) states that the control variable ~t

must lie within a prescribed region U of the m-dimensional space Rm.
-t

Notice that the general case described by eqs. (4.1)-(4.4) is in

practice unsolvable. That is because the functions are arbitrarily

complex and the noises ~t and ~t are, in theory, also arbitrarily
distributed. Many simplifications of the general case are important

because they may give reasonable approximations to the real world. In

contrast to the stochastic closed-loop control is the open-loop

formulation. Stochastic open-loop control differs from closed-loop

control in that the former does not depend on the state of the system to

decide on the actions to take. In general, that leads to suboptimal

policies with respect to the closed-loop policies. In reservoir opera-

tion, deterministic open-loop control is the most frequent adopted

method. This type of deterministic problem can be written as
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maximize
.!:!:t' \It

(4.5)

subject to

(4.6)

(4.7)

(4.8)

in which eg. (4.8) describes the feasible set for the state ~t and the

meaning of the other equations can be inferred from the earlier general
case.

The explicit incorporation of stochasticity makes the problem much

more complex because i) information must be obtained about the statisti-

cal properties of the random variables, and ii) in the closed-loop

control there exists a coupled problem of state estimation and control
optimization. The structure of the general stochastic problem,

eqs. (4.1)-(4.4), reveals that for given distributions of the state ~t
and the noise v ,

-t the distribution of ~t+1 depends on the type of

function fl and the control ~t' Thus, from this perspective, the chance

constraint approach of specifying probability ranges for the state

variables may lead to improper distribution-function modeling. On the

other hand, any deterministic problem of the form given by eqs. (4.5)-

(4.8) could, in theory, be expressed as a gigantic nonlinear programming

model with rn x N variables in which m is the dimension of '!:!:tand N is

the number of time periods. Some of the reliability programming models
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discussed in Section 3.2 fall in this category. Other methods attempt

to skip the large-size formulation and recur to sequential algorithms to

achieve a solution (e.g., DP, SIDP, and DPSA) , but not without intro-

ducing problems of their own. Some methods (e.g., some versions of

stochastic DP and the POA) take a middle course of action by trying to

capture the stochastic nature of a real-world system with some type of

forecasting and continuous update of the states of the system. That is

a compromise between the real stochastic problem and its deterministic

counterpart.

Interestingly, the deterministic problem can be as difficult to

solve as any other problem. For large-scale modeling, no matter which

model is chosen, computational burden is a real hurdle. For any

specific system, a careful analysis of available methods (or development

of new methods) must be pursued before making a decision on which solu-

tion technique to adopt. The following discussion on some popular

models points out some of the relative advantages and disadvantages of

several optimization schemes.

4.2 Discrete Dynamic Programming (DP)

Deterministic DP is one of the first methods used to find optimal

policy sequences and state trajectories of optimization problems of a

sequential nature (Bellman, 1957; Bellman and Dreyfus, 1962). The

fundamental basis of DP for solving problems stated as in eqs. (4.5)-

(4.8) is the principle of optimality: "If an optimal trajectory is

broken into two pieces, then the last piece is itself optimal.11 This

simple statement holds the key for the sequential approach that can be

used to solve many dynamic problems. It is also the basis for more

advanced computational algorithms (e.g., SIDP, DPSA, stochastic DP,

POA) .
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Dreyfus and Law (1977) and Larson (1982) discussed DP in detail.

In essence, DP determines an optimal trajectory recursively, either in a

backward or forward fashion. Assume that a backward recursion is used.

The method constructs a sequence of decisions ~t for t = N, N-l, ..., 1.
The values that each state variable (~t) can take are a finite number of

discrete values (d). Assume that d is the same for each component of

~t' The optimal policy {~t} is constructed by using the relation

(4.9)

in which FN+1 = C (a given constant), t = N, N - 1, •.. , 1, Vt is the

current return obtained from taking a decision ~t when the state is ~t'

and Ft+1Co
) is the optimal return (from period t + Ion) derived from

state which in turn is equal i.e. , the value

obtained from the dynamics of the sytem [see eq. (4.6)] for ~t and ~t'

Thus, by concatenating the present stage optimal decision with a

corresponding optimal trajectory for the subsequent stages, an optimal

trajectory is obtained for periods t, t + 1,..., N (the initial and

final states can be either fixed or free, depending on the nature of the

problem). To select a policy in eq. C4.6), the constraints on state and

control variables are checked to ensure that a feasible decision (~t) is
being made. If a decision is infeasible, then that decision is dis-
carded and others are examined.

From the preceding brief description, two advantages of DP are

readily observed: i) functions such as Ft' Vt, f3' and others can be of

arbitrary form, namely nondifferentiable, time variant, nonlinear, etc.,

and ii) the method can handle constraints with complex mathematical
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structures. However, those advantages usually cannot be exploited when

the number of state variables is greater than two. Chow et aI, (1975)

showed that the storage requirements to evaluate the recursive equation

[eq. (4.9)] at each stage, or period, is

(4.10)

in which d is the number of feasible values that each component of the

state vector can take and n is the dimension of the state vector ~t'

The memory required to store the current optimal values of the decision

variables for each feasible value of the state variables at all stages

(so that the optimal trajectory can be retrieved) is

nT = Nmd (4.11)

in which m is the dimension of the decision vector (!:!.t)and N is the

number of periods in which !:!'tmust be determined (i.e., the number of

optimization periods). Equations (4.10) and (4.11) show that storage

requirements grow exponentially with n. That constitutes the most

serious drawback for the application of DP, the so-called curse of

dimensionality. The necessary conditions for optimality of DP follow

from the classical calculus of variations (Bellman and Dreyfus, 1962)

and the maximum principle (Pontriagyn et aL, , 1962). In practice,

however, it is difficult to check and/or satisfy those conditions.

Usually, the ability to detect a local optimum depends on the adequacy

of the state discretization.
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4.3 State Increment Dynamic Programming (SIDP)

Larson introduced the SIDP approach in 1968. Some investigators

(Heidari et a1., 1971; Chow et a1., 1975) have used the term discrete

differential dynamic programming (DDDP) to describe Larson's SrDP with a

fixed time step while others (Hall et al., 1969; Turgeon, 1982a, 1982b)

have termed the approach incremental dynamic programming (IDP). In

essence, SIDP is an iterative technique in which the recursive equation

of DP [eq. (4.9)] is used to search for an improved trajectory among the

admissible discrete states in the neighborhood of a trial traj ectory.

Those admissible states near the state trajectory form a so-called

corridor. In determining the optimum trajectory in the corridor, the

constraints on state and decision variables must be satisfied. The

following three steps describe the SrDP technique (Turgeon, 1982b):

1) Find an initial feasible trajectory and denote it by {~~O)}.

2) Solve the recursive equation of DP [eq. (4.9)] for

x = x(O)_ a x(O) and x(O) + a in which a is a preselected vector of
-t -t - '-t' -t

increments. The recursive DP equation can be either forward (Hall et

a1., 1969) or backward (Turgeon, 1982a) in time. The solution of

eq. (4.9) for all t is denoted by {~~1)}.

3) If 1~~I) - ~~O)I ~~, e ~ 0 (any other criterion could be

used), Vt, then stop. Otherwise, set {x(O)} = {x(I)} and go to step 2.
-t -t

Figure 4.1 shows some of the elements of SrDP for n = 1. Concep-

tually, SrDP does not add anything to DP except for the iterative search

a Lgor t t.hm. Despite the iterative character of SIDP, it can be estab-

lished that the storage requirements to evaluate eq. (4.9) at each stage

are
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(4.12)

and the corresponding memory requirements (T) are

T = Nm(3)n (4.13)

Thus, memory requirements vary exponentially with n. There may be

storage difficulties when n ~ 3, or even n ~ 2. In addition, computa-

tions must be made K times, in which K is the number of iterations

needed to converge to an optimal trajectory. Unfortunately, the
convergence of SrDP is at best linear (Murray and Yakowitz, 1979) and K
may become substantially large. Further, the selection of the increment

a is critical in this algorithm. A poorly chosen value of ~ (which can

vary from iteration to iteration and/or from period to period) may lead
to nonoptimal solutions. Turgeon (1982a) developed a procedure to

select ~ so that convergence to a local optimum is guaranteed. He

showed that for a convex objective function (and linear constraints) his

modified SrDP leads to a global convergence.

4.4· Dynamic Programming Successive Approximations (DPSA)

In the DPSA approach, a problem of several control variables is

decomposed into a number of subproblems containing only one control

variable (Korsak and Larson, 1970; Larson and Korsak, 1970). The

algorithm proceeds as follows:

1) Denote the ith component of the n-dimensional state variable by
ixt. Select feasible control and trajectory sequences (initial policy)

and denote them by {~~O)} and {~~O)}, respectively. The state variables

are discretlzed whereas the controls are not.
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2)

xj (t ) ,

iSelect one component of the state vector, say xt. All states

j"l:i, t==I,2, •.. ,N, are kept fixed at the values ~~O).

Maximize the objective function over all X~IS, t == 1, 2, ..., N, by some

method (e.g., one-dimensional DP or SIDP) in the usual way except that

now there are n controls (decision variables) to vary at each time

stage. The maximization is subject to the n-l fixed states x~, j *" i,

thereby leaving one degree of freedom in the controls to allow the
.. f ivarlatlon 0 xt' For this purpose, it is necessary to have a one-to-one

mapping between the controls and the states expressed by the continuity

equation (i.e., the system must be invertible).

3) After the optimal control and trajectories are developed by
. h iusrng testate component xt' the method proceeds with step 2 for a

different state component x{ until all the components (i == 1, 2,..., n)

have been treated once.

4) Repeat steps 2 and 3 until no further improvement can be made.

Bellman (1957) and Bellman and Dreyfus (1962) showed that decom-

position schemes of the type of DPSA converge in a finite number of

iterations. Korsak and Larson (1970) showed that there exist necessary

and sufficient conditions for global optimality. Because of the

popularity of DPSA in reservoir operation studies, it is worthwhile to

swrunarize those optimality conditions. First, the law of motion or

continuity equation [eq. (4.6)] must be linear, e.g.,

(4. 14)

in which $t and rt are suitably dimensioned matrices and the rt's are

nonsingular. Second, the objective function [see eq. (4.5)J is given by
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maximize
!t~ ~t

N
" 1e T Q + T R ) A B~ 2!t t!t ~t t ~t + t ~t + t ~tt=1

(4.15)

Equation (4.15) can be expressed as a function of the x 's only by-t
substituting by -1

~t+1)~~t ~t = f (!t' the inverse, unique mapping

between control and state variables. Furthermore, all the matrices Qt
and Rt in eq. (4.15) must be positive definite (if the matrices are

positive semidefinite, the optimality conditions are only necessary for

a local optimum). Notice that eq. (4.15) must be a quadratic strictly

convex function for the necessary and sufficient conditions to hold.

Third, the objective function must be bounded for all feasible values of

~t and ~t' Fourth, the decision and state variables must be continuous.

The preceding four conditions are very restrictive. From a review of

the literature on reservoir studies, it appears that no investigation

fits those restrictions. That implies that whatever results are

obtained when the necessary and sufficient conditions are violated, the

only way to ascertain something about the optimality of those results is

through well designed, heuristic approaches or sensitivity analyses.

In addition to the optimality issue, there are other difficulties

that arise in the practical implementation of DPSA. One difficulty is
ithe selection of the x 's (i.e., how is the system going to be decom-
t

posed?). In some systems, the topology of the network gives a clue as

to the selection of an adequate decomposition scheme, but this is not

always the case. If DP is selected to solve the one-dimensional

problems that arise from the DPSA decomposition, then the storage

requirements (P) are
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P ::;:2(n-I)d (4.16)

factor (n-I) appears from the fact that while

ixt' i ::;:1, 2, ..., n. The

x~ is being maximized, the

in which d is the number of discrete values of

remaining xi's (j * i) are being held fixed, and the total value of the

objective function depends on the effect that changes on u~ (j * i) have

on the objective function. The memory requirements (T) can be expressed

by

T ::;:ndN (4.17)

Equations (4.16) and (4.17) show that the curse of dimensionality is

beaten by DPSA. However, the number of calculations of the program may

become severely large because each iteration consists of a complete

sweep of one-dimensional problems for ievery xt (i ::;:1, 2, ..., n).

Furthermore, because the convergence rate (improvement from iteration to

iteration) is slow, the number of iterations would be relatively large,

especially if the initial feasible policy is not near the optimum.

As indicated in Section 3.2, several reservoir operation models

have made use of a combination of srDP and DFSA. Lower-dimensional

problems that arise from the decomposition have been solved by tech-

niques that require discretization of the state variables, thus

hampering the convergence properties of the algorithm. It is evident

that those lower-dimensional optimizations could be approached by some

type of algorithm that does not require discretization (e. g., LP and

quadratic programming).
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4.5 Differential Dynamic Programming (DDP)

The DDP method was developed by Jacobson and Mayne (1970). The

extension made by Murray and Yakowitz (1979) to include linear

constraints into the problem is discussed herein. The DDP algorithm to

solve linearly constrained problems can be summarized as follows:

1) Set the iteration counter k equal to zero. Construct a

feasible control sequence {~~k)}and a state trajectory {~~k)}.Set the

time index t equal to N (the last stage).

,2) Recalling the objective function as stated in eq. (4.5), obtain

a second-order Taylor series expansion of F(~N'~) about ~~k) and ~k)
and denote it by f(~N' ~). Then the following quadratic programming

problem is solved

maximize f(!N' ~)
~

(4.18)

subject to

(4.19)

Notice that eq. (4.18) is maximized with respect to~. The states !N

and !N+1 are treated as constant. Murray and Yakowitz (1979) solved

eqs. (4.18) and (4.19) by using F'l.et.che r t s (1981) active set method.

The solution is of the form

(4.20)
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Store them-dimensional vector ~N and the m x n matrix ~N' The approxi-

mation to the optimal value of F is denoted by

(4.21)

in which ~ is defined by eq. (4.20)

3) Proceeding in a backward fashion, set t = t - 1 and define

(4.22)

Perform a second-order Taylor series expansion of Q about ~~k) and ~~k)
~

and denote it by Q(~t' ~t)' Solve the quadratic programming problem

maximize ~(~t' ~t) (4.23)
~t

subject to

~t E Ut (4.24)

maintaining ~t as a constant. The solution of eqs. (4.23) and (4.24) is
of the form

~t = ~t + ~t ~t (4.25)

Store ~t and ~t' Approximate Q(~t' ~t) by Q(~t' ~t + ~t ~t)'
4) Set Vt = Q(~t' ~t + ~t ~t) and t = t-l. Go to eq. (4.22) of

step 3. Hepeat the loop defined by steps 3 and 4 until a complete sweep
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(from t = N to t = 1) is attained. At this point, a complete sequence

of parameters {~t' ~t}' for all t, is stored.
5) Construct a successor policy {~t

(k+1) } b . 1y recurs i.ve y

calculating

(k+l) =
~t ~t + ~t ~t (4.26)

and

(k+l )
~t+l

= f( (k+l) (k+l»
~t '~t (4.27)

in which ~l is given. If the two consecutive control policies satisfy

an adequate convergence criterion, then stop. Otherwise, set t = Nand

go to step 2. In practice, the forward run of step 5 usually requires a

modification to avoid infeasible successor policies. This is achieved

by solving a (forward) sequence of quadratic programming problems, as

outlined in Murray (1978) and Murray and Yakowitz (1979).

It is evident from the preceding discussion that DDP is an involved

method to implement. The main potential shortcoming of DDP in multi-

reservoir problems is that it requires second-order differentiability

for the objective function and first-order differentiability for the

constraints. If that is not possible to achieve, then numerical

differentiation must be used, which can erode the fast convergence

propert.Le s credited to DDP. Although the active set method can be

readily implemented for positive semidefinite matrices in the quadratic

objective function, it is difficult to encounter that situation in

reservoir operation problems (see Chapter 5). It turns out that the
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active set method for the indefinite case is relatively more complicated

than for the semidefinite case and it guarantees local optimality at

best (Fletcher, 1981). On the other hand, DDP has some good properties

that apply to differentiable, positive definite cases. First, the

memory and computational requirements grow proportionally with mn and
3m , respectively, in which m and n are the respective dimensions of ~t

and ~t' 3The computational requirements of DDP are given by 2am NK in

which a is a constant independent of m and K is the number of complete

iterations (from t = N to t = 1). The storage requirement is approxi-

mately given by

T ;::cNm(n+l) (4.28)

in which c is a positive constant greater than one. Clearly, from

eq. (4.28), there is no dimensionality problem. Second, there is no

need to discretize the state and/or decision variables. Third, the

convergence rate of the method is quadratic (Murray, 1978). Fourth, the

continuity equation needs not be invertible. Fifth, the DDP converges

to a global optimum, provided that the objective function is strictly

convex.

4.6 Linear Quadratic Gaussian Method (LQG)

The previous solution procedures (DP, SIDP, DPSA, and DDP) were

discussed within a deterministic context. This section reviews a

claisical solution approach (LQG) to stochastic optimal control

problems. The LQG method assumes a linear continuity equation, a

quadratic objective function, and Gaussian disturbances to the system

under consideration. It is a true real-Lime (or on-line) feedback
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control approach that deals in a natural way with the coupled state

estimation-control (closed loop) optimization. The theoretical back-

ground of the approach goes back to Kalman and Koepcke (1958) and

further advances were made in the 19601s.

The discussion that follows is based on the works of Meier et al.

(1971), Dorato and Levis (1971), and Willems (1978). The problem under

consideration can be stated as

minimize
~t' Vt

E

~t' ~t
(4.29)

subject to

(4.30)

~t :::Ct ~t + Qt (4.31)

In eq , (4.29), the expectation is taken with respect to the random

variables !t and ~t; Qt is a symmetric (n x n) positive semidefinite

matrix; Rt and S are symmetric (m x m and n x n, respectively) positive

definite matrices; !t is the n x 1 state vector; ~t is the m x 1 control

vector; and ~t is the r x 1 (r ~ n) measurement process. In eq. (4.30),

the continuity equation, $t and Bt are suitably dimensioned (known)
matrices with ¢It nonsingular; ~t is a (normal) random noise with

E(~t) :::0, E(~t eT) ~t Ott'
T (Vt) , T o and Qt::: and E(~t Qt) = 0 E(~t ~o) :::

-t

is a (normal) random noise with E(Qt) ::: 0, ECQt Q~) = e a (Vt) andtt
0; ~O is Lhe initial state at time t ;;,;0 with E(~O) = ~ and
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- - TE(!O - !O)(!O- !O) = LO' and Ott is the Kronecker delta. In
eq. (4.31), the observation process, Ct is an n x n matrix and ~t is the

measurement noise. Equation (4.31) expresses the fact that the

controller may not be able to observe !t exactly, but only can measure

it with some error. The key to the solution of the LQG problem

[eqs. (4.29)-(4.31)] relies upon the separation principle (Wonham, 1970;

Joseph and Tou, 1961). Basically, the separation principle states that

the solution of the stochastic problem can be divided into two parts:

control (the selection of the optimum decision to input into the system)

and estimation (the computation of the state conditional probability

density function).

To give the solution of the problem, it is necessary to define the

conditional mean (i, )
-tIt

and the conditional variance (Ltlt) of the

state:

(4.32)

(4.33)

The estimation problem can be solved by using a Kalman filter (Kalman,

1960; Kalman and Bucy , 1961; Jazwinsky, 1970; GeLb , 1974). The esti-

mator is

(4.34)
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with initial value gOI a = ~a' in which Kt+1 is the Kalman gain matrix
given by

(4.35)

where

(4.36)

with initial value L
OI

-1 = La' Notice that the on-line estimation can
proceed only in one direction: forward in time. This is accomplished by

using eqs. (4.34)-(4.36) recursively.

The solution of the control part of the problem can be obtained by

applying the principle of optimality to eq. (4.29). That is, a recur-

sive (backward) equation is solved at each period t,

min
~t

+ " E [It+1 C2.t+11 t+1) I 2.tlt ' ~t]}
~t+11 t+1

(4.37)

Tstarting with the terminal condition IN+1 C2.N+11N+1) = ~N+1 S ~N+1' It
can be shown (Meier and Larson, 1971; Willems, 1978) that the optimal

*control ~t that minimizes eq. (4.37), for all t, is

*~t = -Gt gtlt (4.38)
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in which gtlt is obtained from eq. (4.34) and

(4.39)

The matrix Pt+1 can be obtained recursively by using the relation

with Pt+1 :;;;S. The fundamental result is that the optimal control is

given by a linear function of the optimal state estimator, It is
~ ~

evident that ~~ is a closed-loop control, ~~(~t) :;;;-G gtlt' The solu-

tion to the linear quadratic problem when the state is known exactly

(i.e., there is no measurement error) is also linear and given by
J..

~~ :;;;-G ~t' i.e., ~t is substituted for gtlt' Moreover, in the linear

quadratic problem, the disturbance ~t [see eq. (4.30)] needs not be
Gaussian.

The preceding discussion reveals that some computations must be

made on-line while a significant portion of the calculations can be made

off-line (e.g., Kt' Lt+llt' Gt, and Pt for all t), even at the predesign
level, Assuming that r :;;;m :;;;n, the storage requirements of the method

are proportional to in which N is the number of stages under

consideration. The computational work is about an3(n+1)N in which a is

a positive real number greater than one. Notice that for a :;;;4 and

n :;;;'10, the number of multiplications at each stage (period) is about

44,000. That number does not include other arithmetic and logic

operations. Thus, the computational work seems to be the issue to be

deal~ wi~h In this technlque (see Mendel, 1971, and Samant and Sorenson,
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1974, for exact storage and computational requirements under different

circumstances).

4.7 Nonlinear Programming (NLP)

Nonlinear programming is a very important and diverse branch of

optimization theory, but it is far better suited for static optimization

(Le., time-independent problems). It does not work for stochastic

real-time control problems, of which reservoir operation is an example.

In fact, applications of NLP to reservoir operation always convert the

problem into a deterministic framework by using chance constraints, or

by forecasting or simulating inflows or other random variables. The

mathematical structure of the model is then written as if the problem

were deterministic and some NLP algorithm is used to obtain a solution.

The most adverse factor in this procedure is that the naturally dynamic

problem, after its conversion into a gigantic NLP model, is expressed in

terms of rnNdecision variables (m is the number of decision variables at

each period and N is the number of optimization periods). Usually, that

implies heavy computational work. For instance, if the resulting

problem were a quadratic programming problem and Fletcherts (1981)

active set method were used for its solution, the computational burden

would be on the order of (mN)3. If the same problem were attacked by a

sequential scheme (e.g., the progressive optimality algorithm, POA, of

Section 4.8), then the number of calculations would be on the order of

m3NK, in which K is the number of iterations needed to attain conver-

gence. To illustrate, if m = 5, N = 50, and K = 6 (typical in the POA) ,

then the NLP and POA approaches would result in 2503 and 300 x 53

calculations, respectively.
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4.8 Progressive Optimality Algorithm (POA)

The progressive optimality algorithm (POA) solves a multistage

dynamic problem as a sequence of two-stage optimization problems. It is

based on the principle of progressive optimality (PPO) (Howson and

Sancho, 1975) which states that: "The optimal path has the property

that each pair of decision sets is optimal in relation to its initial

and terminal values. II The PPO is derived from Bellman's (1957)

principle of optimality.

This section presents an extension of the work of Howson and Sancho

(1975) to the case in which there exists bounds on state and decision

variables. Also discussed in this section are some powerful programming

features of the POAthat can be used to accelerate its convergence rate.

Section 4.9 contains proofs of the convergence of the FDAfor bounded

states and decisions. Specifically: (L) if a solution to a multistage

dynamic problem exists, then the POA converges to that solution in a

finite number of steps; and (ii) if the objective function is strictly

concave and the constraints define a convex set (interest here is in

maximization), then a global optimum is obtained. These proofs are

extensions of those given by Howson and Sancho (1975) for the uncon-

strained (after substitution of the law of motion into the obj ective

function) problem.

Before outlining the solution approach, several of the favorable

features of the POAare summarized:

1) The decision and state variables need not be discretized.

2) The two-stage optimization problem (objective function and

constraints) can be solved by any adequate algorithm, either of the DP

or NLP families. Thus, the objective function and constraints can be of



47

arbitrary form, although for convergence to a global optimum the problem

must be concave (or convex for the case of minimization).

3) The dynamics of the system need not be invertible for the

application of the POA, although that implies the possible existence of

multiple solutions.

4) Time delays in the continuity equation can be incorporated

easily, as done by Turgeon (1981).
5) Convergence rates depend on the scheme utilized in the two-

stage maximization. When a fast convergent algoritlun like Fletcher!s

(1981) active set method is used, the POA convergence rate is better

than linear and perhaps close to quadratic if a good initial policy is

chosen; however, it has not been possible to establish quadratic con-

vergence rigorously. Actual applications of the POA (Chapters 5 and 7)
have shown convergence in less than nine iterations, five being the
average.

6) Assuming that the active set method is used to solve the two-

stage optimization problem, the computation effort to complete one

iteration (from time t = 1 to t = N) is 3an N and 3b(2m + n) N for
invertible and noninvertible continuity equations, respectively, in

which a and b are positive constants larger than one and independent of

m and n, the respective dimensions of the decision and state variables.

7) Storage requirements are proportional to uN and (2m + n)N for

invertible and noninvertible cases, respectively. Those requirements

account for the storage of current state trajectories. Parameter

(transition matrices in the continuity equation) storage requirements

vary greatly from one application to another, but for most applications

(e.g., reservoirs without pumped storage) they are proportional to n2

and (2m + n)2 for invertible and noninvertible cases, respectively.
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Consider the problem:

N
maximize L F (~t' !::!t)

t=l
(4.41)

subject to

(4.42)

(4.43)

(4.44)

fixed (4.45)

in which ~t is an n-dimensional state vector, !:!tis an m-d imens i onaI

decision vector, ~t and !:!tare £easibl: sets, t denotes time (t, = 1,

2, ..., N + 1), and F and f are functions of arbitrary form (nonconcavity

implies that local optimum is guaranteed only). For simplicity, assume

that f in eq. (4.42) is invertible (this assumption can be relaxed as
shown in Chapters 5 and 7).

According to the PPO, a solution to the problem given by

eqs . (4.41)- (4.45) is accomplished by maximizing a sequence of over-
lapping two-stage problems:

maximize
u l' U-t- -t

(4.46)
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subject to

(4.47)

u E U-t-1 -t-l (4.48)

~tE!:!t (4.49)

~t E ~t (4.50)

x-t-1 = ,/k) x-t-1' -t+1 = x(k)-t+1 (4.51)

Notice that the maximization in eq. (4.46) is with respect to ~t-l and

~t' As indicated in egs. (4.48)-(4.50), ~t-1' ~t) and ~t must belong to
feasible sets. Further, as specified in eg. (4.51), the beginning and
ending states are fixed.

The problem [egs. (4.46)-(4.51)] can be converted to a maximization

problem written in terms of the state variables only by using the
expressions

u-t-l (4.52)

(4.53)

in which -1
f is the inverse continuity equation (eq. 4.47). By

substituting egs. (4.52) and (4.53) into egs. (4.46), (4.48), and (4.49)
one obtains
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(4.54)

subject to

(4.55)

(4.56)

(4.57)

x-t-1
= (k)

!t-l' !t+1
(k)

= !t+1 (4.58)

in which k denotes the iteration number.

The solution steps of the POA algorithm are:

1) The initial and final states !l and !N+1 are fixed. Set the
iteration counter k equal to one (k = 1). Find an initial feasible

policy {~~k)} and its corresponding state trajectory r!~k)}.

2) Solve the problem given by eqs , (4.54)-(4.58) by using any
convenient method.

3)
~k

Denote the solution obtained in step 2 by !t' s t (k+1):;;:;
e !t

Increase the time index by one (i.e., set t equal to t + 1) and go to

step 2. Repeat steps 2 and 3 until a complete iteration is performed

(t :;;:;1 through t = N). This is the end of the kth iteration.
(k) (k-1) 1124) Perform a convergence test, e.g., II ~t - ~t 2 ~ ~,

I:: -+ 0, for all t. If the test is satisfied, stop; otherwise, increase

the iteration index, k :;;:;k +1, set t = 1, and go to step 2, or stop if k
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has exceeded a specified limit. Notice that at the end of each itera-

tion the new values {:!.~k+l)}are used to derive the corresponding

control sequence {~~k+l)} by means of the continuity equation.

Figure 4.2 shows a general block diagram for the POA.

Some remarks about the POA are necessary. First, it would appear

that the iterations progress from t = 1 to t:::N, but this is not
necessarily so. The algorithm can be modified in such a way that

successive local optimizations are made at some periods in which

relatively higher improvements in the objective function are observed.

Once the rate of improvement falls below some preset value (e.g.,
10 percent improvement in the objective function with respect to the

previous iteration), the algorithm would advance towards ending the

iteration at t = N. Figures 4.3 and 4.4 show two different advancing

schemes. This flexibility of the POA, to be able to take full advantage

of localized conditions, accelerates the overall convergence rate at
little expense in programming complexity. Second, time lags in the
continuity equation are incorporated in a straightforward manner.

Consider reservoir i which is directly connected to (downstream)
reservoir j. Let d.. be the travel time between reservoirs i and j; XJt':tJ

respective state and decision variables for reservoir j atand the

time t; and u!_d .. the decision for reservoir i at time t - d. ,. The1.J lJ
continuity equation for reservoir j can he then written as

(4.59)

in which y{ is the sum of diversions/accretions, net losses, and runoff

into reservoir j. Equations similar to (4.59) must be written for every
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CONVERGENCEROUTINE

Fig. 4.2 Standard progressive optimality algorithm (POA) flow diagram.
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~~3)).
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Modified POA (To achieve state !i5): (L) ~l and !~1) yield

(2) CO") (2) d (1) . ld (2) C"·") d (2) . ld~2 j 11!2 an ~4 Y1e !3 ; 1~1 ~1 an !3 Yle

;./3); (Lv) x(3) and /1) yield ;./3). (v) x and x(3) yield
-2 -2 -5 -3' -1 -3
(4) (0 ) C4) d (1 ) . ld (4) d ( ii ) d (4)~2 j V1 ~2 an ~ Y1e ~3 ; an v i i. ~1 an ~3

yield ~i5)). This scheme should be used when significant

improvements (e.g., 10% improvement in the objective function

Fig. 4.4

....

with respect to the previous iteration) arise from the two-

stage problem involving periods 1 and 2).
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reservoir in the network and the POA must be programmed so that previous

decisions (~t-d) are retrieved from storage to be used in the continuity
equation, eq. (4.59).

4.9 Convergence Proofs of the POA for Bounded States and Decisions

It is assumed that the law of motion is invertible and that the

objective function and constraints define a concave problem so that each

two-stage maximization has a unique, global optimum.

Theorem 1. The PDA produces monotonically increasing approxi-

mations to the optimal value which is the upper bound of the approxima-
tions. Proof: Let {.s:t}, t ::2, 3, ... , N (El' ::x and EN+1 :;:3!.N+1are-1
fixed) be an initial approximation to the optimal sequence rit}, t ::1,
2, ... , N, N+1 -with 3!.1::x and 3!.N+1 ::~N+l fixed. Define-1

IN(~l):: maximwn
~2" •. , ~N

(4.60)

Then,

IN(~l):: maximum
~2"'" ~N

:;:maximum
~2

N+l
maximum L: F(~t_l' ~t)]
~3"'" ~N t::3

::maximum
~2

(4.61)
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from Bellman's principle of optimality. From the POA,

(4.62)

-1in which !2 is the optimal value obtained for !2' given ~1 and E.3'

during the first iteration sweep. In a similar manner,

(4.63)

in which ~; is the optimal value of ~3' given ~; and ~4' during the
first iteration sweep. Similarly,

-n -n-1 + F(n-1 -n-l -n x. ) F(x. , -n-1F ex. l' x . ) x. , !j+l ) ~ max [F(~j_l' + !j+l) ]-J- -J -j x. -j -j
-J

-n -n -n -n-1 (4.64)= Fex. l' x. ) + Fex., ~j+l )-J- -j -j

-n -n -n-1in which x. is the optimal value of x., given x. 1 and x'+1 (the nth and-J -J -j- -J

(n - l)th iteration values for x. 1 and x'+I' respectively), during the
-J - -J

nth ·iteration. Therefore, for the nth iteration,
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-n-1 -n-l -n-l -n-1F(~I'~2 ) + F(~2 '~3 ) + ... + F(~N '~N+l)

(4.65)

(4.66)

The last relation shows that indeed the iterations are monotonically

increasing and bounded above by the optimal value.

Theorem 2. If the iterations converge in a finite number of

steps, then the resulting {i~}is the optimal trajectory {it}' Proof:

If convergence occurs in a finite number of iterations, then rela-

tion (4.65) becomes an equality that would hold for n + 1, n + 2, etc.,

because a steady state is reached. Denote the steady-state trajectory

by {gt}' Relation (4.65) can be then written as
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+ max
~4

+ max (F(!4' ~s) + ... ))]}
!s

= max {F(~l' ~2) + maximum [F(~l' ~2) +...+ F(!N' !N+l)]}
!2 ~3'!4"'" ~N

= maximum
!2'~3"." !N
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CHAPTER 5

OPTIMAL OPERATION POLICIES FOR THE NCVP

This chapter presents a development of monthly optimal release

policies for the Northern Central Valley Project (NCVP). Special
attention is given to the incorporation of actual characteristics and

operational constraints of the NCVP system into the operation model.

The model was developed by using feedback from the Central Valley

Operations Office of the U.S. Bureau of Reclamation, Sacramento,
California. The model uses a combination of deterministic dynamic

optimization (progressive optimality algorithm, POA) and a continuously

updating streamflow forecasting technique as the basis for determining

monthly operation policies for any water year. The updating technique

allows the revision of previous policies as the stochastic inputs

deviate the system from expected values. Thus, available at all times
are optimal policies that correspond to the actual realized

the system and up to date with the most recent streamflow information.

This chapter is organized as follows. Section 5.1 gives a descrip-
bon of the NCVP system. Section 5.2 presents the streamflow fore-
casting technique used in this study. Section 5.3 develops the optimi-

zation model structure for the NCVP. Finally, Section 5.4 discusses the

selection of an initial operating policy. Discussion of results is
presented in Chapter 6.

5.1 Description of the NCVP System

The system under analysis is composed of the following reservoirs:

Clair Engle, Lewiston, Whiskeytown, Shasta, Keswick, Natoma, Folsom,

New Melones, and Tullock. Figure 5.1 shows a schematic representation
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of the CVP system. The portion of the system analyzed in this study is

shown within the dashed lines.

The NCVP is managed jointly by the U.S. Bureau of Reclamation and

the California Department of Water Resources. It stores flood and

snowmelt waters and releases them at appropriate times to serve dif-

ferent functions. The main purposes of the NCVP are: provision of

water for irrigation (I)) municipal and industrial uses (MI)) environ-

mental control and enhancement (E)) fish and wildlife requirements (F),

river navigation (N), water quality control (WQ) , flood regulation (FC),

hydropower (HP), recreation (R}, and control of ocean intrusion and

erosion. Fults and Hancock (1972, 1974) and Madsen and Coleman (1974)
presented a thorough

description of the CVP.
geographical, institutional, and historical

The discussion herein will be centered on the

nine reservoirs mentioned earlier and, specifically, on the joint opera-

tion of those reservoirs. From now on, the term system will refer to
those nine reservoirs.

Table 5.1 shows basic data of the NCVP. Table 5.2 contains
capacity data of the tunnels, canals, and penstocks that form part of

the system. The reservoirs of the NCVP must operate jointly to perform

the rnul.ti.pLe funct.Lons enwnerated in Table 5.1. The system release

policy is subject to physical and'technical constraints that arise from

the capacity and technology of the facilities, as well as institutional

and environmental regulations. It is evident from Table 5.1 that

Shasta, Clair Engle, Folsom, and New Melones are the larger reservoirs

within the system. Lewiston, Whiskeytown, Keswick, Natoma, and Tullock

play an important role as regulating reservoirs. A regulating reservoir

maintains an adequate flow magnitude downstream of a larger reservoir

and a stable hydraulic head for a downstream power plant.
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Table 5.2. Capacities of Tunnels and Penstocks.

Facility Capacity
(cfs)

Folsom South Canal 3500
Clear Creek Tunnel 3600
Spring Creek Tunnel 4500
Shasta Penstocks 16500
Trinity Penstocks 3500
J. F. Carr Penstocks 3600
Spring Creek Penstocks 4500
Keswick Penstocks 14500
Nimbus Penstocks 5000
Folsom Penstocks 8000
New Melones Penstocks 8300
Tullock Penstocks 1800

1 cfs = 0.02832 m3/s.
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Winter flows in the Trinity River are stored for later release from

Clair Engle Lake. Normally, water behind Trinity Darn (at Clair Engle

Lake) is released through the Trinity Power Plant and regulated down-

stream in Lewiston Reservoir. The major portion of the water reaching

Lewiston Dam is diverted to the Sacramento River watershed via the

II-mile long Clear Creek Tunnel. The remaining water is released to the

Trini ty River to support fishery. Water diverted through Clear Creek

Tunnel exits through the Judge Francis Carr Power Plant in Whiskeytown

Reservoir. It is possible to release water from Whiskeytown Dam to

Clear Creek or make diversions through the Spring Creek Tunnel.

Sacramento River water is stored for later release from Shasta Dam.

Ordinarily, water is released from Shasta Reservoir through the Shasta

Power Plant and flows downstream to Keswick Reservoir. The inflow to

Keswick includes releases from Shasta and Spring Creek Tunnel. Releases

from Keswick may be made through the Keswick Power Plant and flow in

excess of the power plant penstock capacity are spilled to the
Sacramento River.

Folsom Dam stores American River water and releases it under normal

operation through its power house. Excess flows are spilled to the

American River. Part of those releases is diverted by the Folsom South

Canal and the remainder goes into Lake Natoma, which acts as a regulat-

ing reservoir. As much water as possible is released through the Nimbus

Power Plant at Lake Natoma, with any excess water spilled to the
American River. The American and Sacramento Rivers converge near the

city of Sacramento and flow to the Sacramento-San Joaquin Delta to serve
several purposes.
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New Melones Dam stores Stanislaus River flows to release them

during the summer for agricultural use. It also releases water to
maintain water quality standards in the San Joaquin River. Tullock

Reservoir, upstream from New Melones, is primarily a regulating
reservoir.

One of the main functions of the NCVP system is flood control

protection. The flood control pool of the reservoirs is governed by

regulations established by the U.S. Corps of Engineers. Those regula-

tions stipulate that a certain amount of space be held empty in a

reservoir during the period October I-April 30. Table 5.3 summarizes

the flood control regulations for Trinity Dam at Clair Engle Reservoir.

Figures 5.2 through 5.5 show the flood control provisions for Shasta,

Folsom, New Melones, and Tullock, respectively. There are no flood

control regulations for the other reservoirs in the system (Lewiston,

Whiskeytown, Keswick, Natoma, and Tullock) whose main function is flow
regulation.

Nimbus and Keswick Power Plants are low-head installations whereas

the other power plants are high-head facilities. Yeh et al. (1978) gave

a set of performance curves for several of the generating units of the

NCVP. A release of one acre-foot of water from Trinity Dam generates

power at Trinity, J. F. Carr, Spring Creek, and Keswick Power Plants

and, because of the system configuration, represents about five times as

much power as one acre-foot of water released from Folsom Dam. A one-

acre-foot release from Shasta is considered by the U.S. Bureau of

Reclamation (USER) to produce about 1.5 the power that can be obtained

from one acre-foot of water released from Folsom Dam CYeh et al., 1976).
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Table 5.3. Flood Control Provisions for Trinity Dam at Clair Engle Reservoir.

Period
(1)

Reservoir Storage and
Water Surface Elevation

(2)

Maximum Flood
Control Releases

(3)

Nov. I-Feb. 28 Less than 1850 Kaf None required

(elev. 2330.3 ft)
Nov •..1-l-1arch81 1850-2100 Kaf 3600 cfs

(elev. 2330.3-2347.6 ft)
Nov. I-Harch31 2100-2450 Kaf 6000 cfs

(e1ev. 2347.6-2370.1 ft)
Nov. I-Harch 31 Greater than 2450 Kaf 30000 cfs

(e1ev. 2370.1 ft)

According to existing U.S. Corps of Engineers regulations, the reservoir
~vationshou1d be maintained below 2347.6 ft during Nov. I-tmrch 31 each year.

If during the period indicated in column (1) the reservoir is within the
storage levels of column (2), then release the flow in column (3).
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Fig. 5.2 Shasta flood control diagram. See notes on next page (Source:

Central Valley Operations Office, U.S. Bureau of Reclamation,
Sacramento, Ca.).
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Notes

1. Rainflood parameters relate the accumulation of seasonal inflow to the
required flood control space reservation on any given day. Parameter
values are computed daily, from the accumulation of seasonal inflow by
adding the current day's inflow in cubic feet per second (cfs) to 95% of
the parameter value computed through the preceding day. The flood control
diagram is initialized each flood season by assuming a parameter value of
100,000 cfs day on 1 October.

2. Except when releases are governed by the emergency spillway release diagram
currently in force (File No. SA-26-92), water stored in the flood control
reservation, defined hereon, shall be released as rapidly as possible,
subject to the following conditions:

a. That releases are made according to the Release Schedule hereon.
b. That flows in Sacramento River below Keswick Dam do not exceed

79,000 cfs.
c. That flows in Sacramento River at Bend Bridge gage do not exceed

100,000 cfs.
d. That releases are not increased more than 15,000 cfs or decreased more

than 4,000 cfs in any 2-hour period.

3. For example, if the percentage of the flood control space used is 90% and
forecast inflow is 60,000 cis, then release 70,000 cfs.

RELEASE SCHEDULE
0 100~- 90c
0
u 80
"'C 7000-0-<1.) 60l.J...1.f)
-0:::> 50<1)<1.)
.: o 40:::l0
0"'0.

30<1.)(f)
0:- 20
c<1.) 10u~<1.) 0a.. ".

- 70,000 " 79,000
- ~ . ..

60,000 70,000
79,000-

36,000- cfs
-
- 50,000 60,000
-

60,000- RELEASE
- PENSTOCK 36,000 50,000CAPACITY

I 1 I I Io 20 40 60 80 100 120

Actual or Forecast Peak Inflow
in 1,000 CFS

140 ~
for Current Event
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Fii~ 5.3 Folsom flood control diagram. See notes on next page (Source:
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Notes

1. Rainfall parameters define the flood control space reservation on any given
day and are computed daily from the weighted accumulation of seasonal basin
mean precipitation by adding the current dayts precipitation in inches to
97% of the parameter computed the preceding day. Sample computation of
required space is shown below.

Sample Computation of Required Space

Previous dayts Required flood
Precip. weighted precip. Weighted precip. control space

Date (in.) x 0.97 accumulation (Kaf)
7 Nov 0.0 = 0.0 0.00 370,000
8 Nov 1.0 0.00 x 0.97 ::;; 0.0 1.00 380,000
9 Nov 1.5 1.00 x 0.97 ::;; 0.97 2.47 390,000
10 Nov 3.0 2.47 x 0.97 ::: 2.396 5.40 400,000
11 Nov 0.0 5.40 x 0.97 ::: 5.238 5.24 400,000
12 Nov 0.0 5.24 x 0.97 = 5.081 5.08 400,000

7.00 400,000
30 Dec 2.0 7.00 x 0.97 ::;; 6.790 8.79 400,000
31 Dec 1.0 8.79 x 0.97 = 8.526 9.53 400,000
1 Jan 1.0 9.53 x 0.97 ::;; 9.244 10.24 398,200
2 Jan 0.0 10.24 x 0.97 ::;; 9.932 9.93 396,200
3 Jan 0.0 9.93 x 0.97 = 9.634 9.63 394,0004 Jan 0.0 9.63 x 0.97 = 9.341 9.34 391,700

2. Except when larger releases are required by the emergency spillway release
diagram currently in force (File No. AM-1-26-585), water stored within the
flood control reservation, defined hereon, shall be released as rapidly as
possible subject to the following conditions:

a. Outflows at the tailwater of Nimbus Dam in excess of power plant
capacity may not exceed the lesser of 115,000 cfs or the maximum rate
of inflow to Folsom Lake experienced during the current flood event.

b. Between 6 November and 1 December, the maximum release may be limited
to the Folsom power plant capacity if less than 40,000 acre feet of
water is stored in the flood control space.

c. Releases will not be increased more than 15,000 cis or decreased more
than 10,000 cfs during any 2-hour period.
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Notes

1. Whenever water is stored in the Flood Control Space, it shall be released
as rapidly as possible without causing flows in the Stanislaus River at
Orange Blossom Bridge to exceed 8,000 cfs insofar as possible.

2. Whenever water is stored in the Conditional Flood Control Space, releases
shall be made at a sufficient rate, based on anticipated snowmelt runoff,
so that the pool elevation will not exceed 1088 ft subject to the limita-
tions in paragraph 1 above.

3. Control of Stanislaus River flood flows requires coordinated operati~n with
Tullock Reservoir.

4. Reservoir zoning is:

1135.0
TOP OF DAM

Zone
3 NORMAL FULL POOL

(Spill way Crest, Top of Flood
Control Pool).
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I
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Fig. 5.4 New Melones flood control diagram. See notes on next page
(Source: Central Valley Operations Office, U.S. Bureau of
Reclamation, Sacramento, Ca.).
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in which

Zone 1 Normal power and conservation operation: Flows in the Stanislaus River
are not to exceed 3,500 cfs at Orange Blossom Bridge to minimize
damages to adjacent low-lying agricultural lands.

Zone 2 Follow operation procedure in Flood Control Diagram on previous page.
Notify Sacramento District personnel.

Zone 3 Initiate emergency operation and notify local authorities for possible
evacuation of flood plain. The Flood Control and Irrigation Outlet
will be operated to maintain the objective flow (8,000 cfs at
Orange Blossom Bridge) as long as possible by gradually closing the
outlets as pool rises above normal full pool elevation (1088 ft). For
a receding pool, outlets will remain close until objective flow has
been obtained. The outlets will then be opened to maintain a total
flow of 8,000 cfs at Orange Blossom Bridge. When the water surface has
receded to normal full pool elevation, resume flood control operation
as in Zone 2. Notify Sacramento District personnel and request
assistance if desired.
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Fig. 5.5 Tullock flood control diagram (Source: Central Valley

Operations Office, U.S. Bureau of Reclamation, Sacramento,

Ca.).

Notes

1. Water stored in the flood control space will be released as rapidly as
possible without causing flows in the Stanislaus River at Orange Blossom
Bridge to exceed 8,000 cfs.

2. Flood control releases will not be changed more than 1, 000 cfs per hour.

3. Elevations correspond to the Oakdale Irrigation District Stage-Storage Gage
with a datum of 1.5 ft above the 1929 mean sea level.

"
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The total power output of the system is delivered mostly to

Pacific Gas and Electricity (PG & E), which uses it as peaking capacity

to satisfy its power demand. The dependable capacity of the system (the

power generation which under the "most adverse" flow conditions of

record can be relied upon to its share of the power load) has been

established at 860 megawatts (George Link, USBR, personal communication,

1982). The system managers notify PG & E 24 hr in advance of the next-

day release volume and the utility returns a request for scheduling that

release volume in such a way that it best matches PG & E1s load curve.

The dependable capacity of 860 megawatts (Mw) is used in this study to

establish a lower bound on power generation. As will be shown in

Chapter 6, this lower bound results in a redundant constraint due to the

extremely low value of the dependable capacity of the system.

The longest-term operation activities of the CVP are planned for

each water-year. On October 1, the USBR estimates future streamflows

for the next 12 months. Based on that forecast, a tentative release

policy is proposed for the 12-month period. Because actual streamflows

deviate from their expected values and institutional and/or technical

conditions may vary from month to month, streamflow forecasts are

updated at the beginning of each month and the release policy is revised

for the remaining months of the water year. The revised policy is based

on actual (observed) storages, updated streamflow forecasts, and changes

in circumstances (e.g., state and federal directives affect the opera-

tion of the system frequently). The proposed optimization model of the

NCVP (Section 5.3 and Chapter 7) is developed to fit this recurrent

revising scheme for release policies.
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Data Relevant to the Constraints of the System

The optimization model of Sections 5.3 and 7.7 requires a quantita-

tive statement of the constraints on the operation of the system.

Figure 5.6 shows a schematic representation of the NCVP and the points

at which accretions/diversions exist. Table 5.4 contains information on

flow requirements. There exist regulations on maximum and minimum

storages that arise from flood control provisions, recreation, aesthetic

concerns, power plant performance, etc. Table 5.5 shows reservoir

capacity allocation for the system under study. Tables 5.6 and 5.7 give

maximum and minimum storages for the reservoirs, respectively. Those

bounds on storage will be used as constraints in the optimization model

of Section 5.3. The model will also be constrained by the maximum and

minimum reservoir releases shown in Tables 5.8 and 5.9, respectively.

Appendix A contains storage-area-elevation data for all reservoirs in
the system.

Flood control constraints for Shasta and Folsom depend on cumu-

lative rainfall and inflows to the reservoirs. Depending on those

cumulative values, the flood control diagrams for Shasta and Folsom

specify the flood control space to be provided (Figs. 5.2 and 5.3 I

respectively). In this study, the less stringent (upper) curve of the

diagrams will be used to determine the necessary flood control storages.

It will be shown in Chapter 6 that with an adequate streamflow fore-

casting technique (e.g., 15% deviation between actual and forecast

flows), the current flood control provisions are very conservative.

Power generation will be considered in the objective function and

constraints of the optimization model. The amount of power generated by

the system depends on the effective hydraulic head at the intake of the
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turbine l the flow through the penstocks l and the efficiency of the

turbines. Curves that relate the rate of energy production (in

megawatt-hour per kiloacre-foot, Mwh/Kaf) to reservoir storage (in Kaf)

were developed from actual records of operation for the reservoirs since

their power plants began operating. Those curves can be used to compute

the energy generated in any period without having to include constraints

on power production, which are nonlinear and usually create numerical

and analytical difficulties. In addition, the rate of energy production

becomes a linear function of the storage, and the head does not appear

in the energy equation. The rate of energy production vs. reservoir

storage curves were tested with actual operation data for the NCVP. In

comparison with actual energy output, the error in the predicted energy

generation was less than 2 percent. As shown in Chapter 7, it is

straightforward to incorporate nonlinear rates of energy production.

Figures 5.7 through 5.13 show the energy production vs. reservoir

storage curves for all reservoirs but Keswick and Nimbus Power Plant at

Natoma Reservoir. The energy vs. storage relations for those two low-

head installations were developed by using regression analysis from

historical energy production records. The data on Figs. 5.7-5.13 were

approximated by the following linear equations (for Keswick and Nimbus,

the energy rate curves were approximated by linear relations that were

tested against actual operation records):

Trinity (at Clair Engle Lake).

~T = 221 + 0.0858 xT (5.1)
2 94.6%r =



87

:: 2500o
~

1500
Maximum Design Head for __ ~r=- _
Low Head Runner

High Head Runner -.... •
( • points) '"•

Spillway Crest

500

w
~ 2000
cr:
~
(J')

cr:

~cr:
w
(J')
wa:;
W....J
o
Z
W
a::
<t....J
U

•

1000

___ o~~~:...- Minimum for Power

----::~~'--_-- Minimum Design Head for
High Head Runner

. "01-------L-- ..L.- ..l- -'

100 200 300 400 500
AVERAGE PLANT ENERGY OUTPUT (Kwh/af)

".

Fig. 5.7 Trinity power plant (at Clair Engle Lake) gross generation

curve.



.-.-~ 240-
w
(,!)

~ 220
~
(I)

z
~
I-
>-
W:x::
(I)

:c::

260

88

Spillway Crest, el. 1210 ft.
----::::-=-,:------- Reservoi r Co pacity ::

OaD 241.1 x 103 of

Minimum Tailwater, el. 1190 ft.±
- --1.. (controlled by tailrace crest,

e I. "86 t t.)
Reservoir Co pnc i t y s

181.5 X 103 of

200

H istortco I data from
,.--- operating records

o

180

160'----..l...---..L.- __ -L- __ -'-- __ -l- _

400 450 500 550 600 650
AVERAGE PLANT ENERGY OUTPUT (Kwh / of)

".

Fig. 5.8 Judge Francis Carr power plant gross generation curve.



\0-

o
:-t:: 200
w
~
<!
a:
~
(j)

z
~oI-
>-
W:-t::
(j)

::c
~

250

89

Spillway Crest, et. 1210ft.
Reservoir Copoci ty '"
241.1 x 103 of

Historico I data from
operating records

Minimum Operating W.S., el. liOOft.
Reservoir Capacity =

27.5 x 103 of

150

100

50

Fig. 5.9

350 400 450 500 550 600
AVERAGE PLANT ENERGY OUTPUT (Kwh/of)

Spring Creek power plant gross generation curve.



90

5000

TOP OF FLASH80ARDS
, \-.. ::4552 Kaf

4500

40QO

--0 3500~-
W
(,!) Historico I dota from<I:

3000 actual operating records__...oa:::
0J-
(J)

a::: 2500
0>a:::
w
(J)

2000w
0:::

1500

.•
1000

500 ~---t...l..---...l-..-_-l- __ -L...__ --J

200 250 300 350 400 450
AVERAGE PLANT ENERGY OUTPUT (Kwh/af)

."

Fig. 5.10 Shasta power plant 'gross generation curve.



'0 800
~-
llJ
o
<t: 600cr:
~
(/)

0::
o>cr:
llJ
(J)
I.J.J
0::

91

1000 MAXIMUM STORAGE -.- __
1,010,300 af • ..

o. .",'.•

400

Hi starical Data fram
Actual Opernt inq Records.........••.•

200

-- __ c::::::.. MINIMUM POWER POOL

O'----------L-- ..I.- ...L- _

150 200 250 300
AVERAGE PLANT ENERGY OUTPUT (Kwh/af)

Fig. 5.11 Folsom power plant gross generation curve.



3000

- 2500-c
~-
w 2000
(9
<!
a:
0I- 1500(J)

a:
0
> roooa:
w
(J)
wa:

500

'.

92

OL- L- .L- --:-:-:- -=
200 300 400 500 600

AVERAGE PLANT ENERGY OUTPUT (Kwh / of)

Fig. 5.12 New Melones power plant gross generation curve.



93

1--- Maximum Pool

.•.. 500
::x:::

Q)
01
0•... 400-en
•...
0
>•...

ok"H istor ico IQ) 30(f)
opera t ing doteQ.)

a::

20

60

1--- Minimum Pool

50 60 70 80 90 100 110 120 130
.Average Plant Energy Output (Kwh/of)

Fig. 5.13 Tullock power plant gross generation curve.



94

Judge Francis Carr
-~JFC = 575 + 0.9 xL

2r = 99.0%

(5.2)

Spring Creek

~SC = 460 + 0.434 XW
r2 = 98.0%

(5.3)

Shasta

~S = 234 + 0.0462 Xs
r2 = 94.8%

(5.4)

Keswick

~K = 80.3 + 0.6 xK
r2 = 92.0%

(5.5)

Folsom

~F = 201 + 0.120 xF
r2 = 95.8%

(5.6)

Nimbus

~N = 26.3 + 0.8 xN
2r = 91. 0%

(5.7)

New Melones

~NM = 268 + 0.123 xNM
r2 = 98.0%

(5.8)
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Tullock

~TU = 64.9 + 0.931 xTU
2
r = 99.4%

(5.9)

In eq. (5.1), ~T is the energy rate in Mwh/Kaf for Trinity Dam (at

Clair Engle Lake), xT is the average reservoir storage in Kaf during a
specified period, and 2r is the adjusted regression correlation
coefficient. Other terms in eqs . (5.2)-(5.9) are defined similarly.

The treatment of nonlinear energy production rates is fully addressed in
Chapter 7.

Evaporation and direct rainfall input are considered for the larger

reservoirs only, i.e., Clair Engle, Shasta, Folsom, and New Melones.

Historical records of operation for Trinity and New Melones were used to

derive monthly coefficients of net loss rates (evaporation minus direct

rainfall input). For Shasta and Folsom, those coefficients were derived

from data provided by Hall et aL. (1969). Table 5.10 gives net loss

rates data for the reservoirs. The total net loss in any month t (et)
in Kaf is expressed by

(5. 10)

in which At is the average surface area of the reservoir in month t

(kiloacre, Ka) and ct is the net loss rate during month t (ft/month).

It is possible to express eq. (5.10) as a function of average storage if

an area-storage relation is available. Several linear functions that

relate area (A) and storage (x) were obtained for the four reservoirs
mentioned earlier:
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Table 5.10. Reservoir Net Rate Losses, ct (in ft/month).

Month Clair Engle Shasta Folsom New Melones

Jan 0.040 -0.020 -0.020 0.020
Feb 0.047 -0.001 -0.005 0.023
Mar 0.090 0 -0.001 0.050
Apr 0.215 0.002 0.001 0.008
May 0.340 0.005 0.003 0.120
Jun 0.484 0.006 0.004 0.200
Jul 0.715 0.008 0.006 0.260
Aug 0.635 0.007 0.005 0.150
Sep 0.450 0.005 0.004 0.060
Oct 0.170 0.003 0.001 0.030
Nov 0.070 0 0 0.001
Dec 0.022 -0.003 -0.002 0
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Clair Engle

AT = 3.33 + 0.0078 xT
2

r ;;;97.0%
(5.11)

Shasta

AS ;;;3.99 + 0.0061 Xs
2r :;:;96.0%

(5.12)

Folsom

Ay ;;;2.67 + 0.0094 xF
2r ;;;95.0%

(5.13)

New Melones

~ ;;;2.91 + 0.0088 xNM
2r ;;;96.0%

(5.14)

in which area is in Ka and storage in Kaf. Equations (5.11)-(5.14) were

developed from the area-storage data of Appendix A.

By substituting eqs. (5.11)- (5.14) into their respective equiva-

lents to eq. (5.10), the net loss for each month t can be expressed as a
function of average storage (x) as follows:

Clair Engle

(5.15)

Shasta

(5.16)
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Folsom

etF = 2.67 ctF + 0.0094 ctF xtF (5.17)

New Melones

etNM = 2.91 ctNM + 0.0088 ctNM xtNM (5,18)

Benefits Accruing from the Operation of the System

Due to the multiobjective nature of the NCVP operation, multiple

benefits arise from the operation of the system. Flood control benefits

arise from the reduced damage caused by floods that would otherwise

occur without the project. As an example of the services provided to

the public, Madsen and Coleman (1974) estimated that in 1970 the system

averted flood damages for about $55 million (in 1970 dollars).

Irrigation benefits can be measured by the cost of providing an

alternative source of supply. The criterion of alternative cost can

also be applied to economic benefits accruing from hydropower, municipal

and industrial use, and navigation. Jaquette (1978) estimated the cost

of developing new reservoir water supply at $100 per acre-foot. The

issue of benefits computation is more complicated with regard to water

quality and fisheries. The economics of reservoir operation is a topic
that needs further research.

For the purpose of this study, the performance of the system is

measured by the total energy generated during a water year. As shown in

Chapter 6, it is rational to use power revenue as a performance crite-

rion because a large amount of power generation is usually associated

with increased water deliveries for other purposes and with adequate
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flood control storages. It is acknowledged that the use of power gene-

ration as the only performance index is a limited criterion, although

one that in the case of the NCVP operation model leads to an adequate

mathematical structure and satisfactory operation policies as indicated

by the results in Chapters 6 and 7. Chapter 6 and Section 7.8 contain a

detailed discussion of power generation and its relation to releases and
storages.

5.2 Streamflow Forecasting Technique

The worth of streamflow forecasting has been discussed by several

investigators (Jettmar and Young, 1975; Klemes et aL. , 1981). It is

generally agreed that the type of model used to forecast streamflows for

long-term operation is not critical since most statistical models are

good at predicting mean flows, which dominate long-term operational

analysis. The accuracy of short-term forecasts is, however, crucial in

short-term control of stochastic dynamic systems. Wenzel et al. (1976),

Yeh et al. (1982), and others found that good streamflow prediction is

important for short-term reservoir operation, especially in relation to

flood control. Short-term forecast of river flows is of primary impor-

tance in the operation of the NCVP.

For this study, a new technique is developed to forecast river

flows. Forecast flows are used as input to the monthly optimization

model of reservoir operation. The parameters of the forecasting method

(i.e., transition probabilities) are updated each month and future

forecasts are correspondingly updated to include the last information
available.

The conceptual basis of the forecasting method is to view the

realization of monthly flows as replication of a multivariate seasonal

autoregressive CAR) process. In this study, there are five rivers
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feeding the system: Sacramento River at Shasta, American River at

Folsom, Trinity River at Clair Engle, Stanislaus River at New Melones,

and Clear Creek at Whiskeytown. Thus, each month of the ath year, a

five-component streamflow vector, lta' is observed; this constitutes one

realization of the AR process. In the development that follows, ::lta
represents a five-dimensional vector of river flows during month t and

water year a. For example, 12,30 is the river flow in November of the

30th year of flow data. The index t goes from t = 2 to t = 12 and a

varies from 1 to N, the number of years of the flow record. In the NCVP

system, the first component of vector lta corresponds to Shasta, the
second to Folsom, the third to Clair Engle, the fourth to New Melones,

and the fifth to Whiskeytown.

The expression for the first-order AR model is

(5.19)

in which It is a p-component vector wit~ mean E(::lt)= Q (in this study,

lt is a five-dimensional flow vector whose mean has been subtracted); Bt
is a p x p matrix (the "transition" matrix); and ~t is a sequence of

independent random vectors with expected values E(~t) = a and covariance
matrices and independent of Zt-l' Yt-Z'" . Let the

Tcovariance of It be E(Zt It) = Rt. It follows that

If the observations are made for t = 1,2, ..., t and if::l1and the ~tlS

are normal, then the model for the observation period is specified by
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The identification criterion used to estimate the parameters Rt'

Bt' and rt is the maximization of the likelihood function of the process

(Anderson, 1978) given by eq. (5.19). Let 1ta be the p-component vector

of measurements of the ot.h replicate at the tth time point (a = 1,

2, ... , Nand t = 1, 2"." t ) . Assume that ~t and 11 are normally

distributed as N(O, rt) and N(O, R1), respectively. The probability

density function of the sequence 11 ' v2 "'., Y ,a = 1,2, ... , N, isa L.a ta

N 1TI (2rr) 1/2tp I Rlll/2 rr~=2
a = 1

(5.21 )

By taking the logarithm of eq. (5.21) and differentiating with respect

to the elements of Bt, the maximum likelihood estimators (MLE) of B
2
,

B3' •. " Bt are

(5.22)

The MLE of R1, L2, ... , Lt are respectively

(5.23)

and

(5.24)

In eqs , (5.22)-(5.24),

1 N T
C (j) = - "" y v
t N a~l ta L.t-j,a (5.25)
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Clearly, Ct(j) is the sample cross-correlation matrix between the

observations at period t and those at period t-j. Notice that knowledge
A....." .... ,....,

of Rl' It' and Bt allows the computation of R2, ..., R
t

by means of
eq. (5.20).

Application of the AR model to the five streams considered in the

NCVP yielded the parameters Bt (estimate of the transition matrices) and
A

It (estimate of the noise covariance matrices) shown in Table 5.11.

Prediction of future inflows having the last period realization of Zt

(i.e., Zt-1) is accomplished by using the following expression
recursively:

(5.26)

Inflow forecasts computed from eq. (5.26) converge to the historical

means after eight periods. Thus, the best way to use eq. (5.26) is by

updating the forecasts once a value of Zt is observed, i.e., by changing

the base time Zt in eq. (5.26) and considering only the most recently
A A

updated forecasts for operation planning. Also, parameters Bt' It' and

Rt can be modified as new realizations Zt become available so that those

estimates can be kept up-to-date with the most recent information.

Tables 5.12, 5.13, and 5.14 show the results of the application of

this technique to forecast flows at Shasta, Folsom, Clair Engle,

New Melones, and Whiskeytown for a below-average inflow year (1975-

197~), an average inflow year (1974-1975), and an above-average inflow

year (1979-1980), respectively. The results represent the one-step

ahead predictors (i.e., forecasts computed by updating the base Xt from

month to month) and are within ±15% of the actual values. Those are the
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values of inflows that will be used in the optimization model to update

the operation policies every month. The implication of the month-to-

month update is that any operation policy will be followed strictly

during the incoming month only. Thereafter, the policy will be revised

to account for changing conditions (flows, constraints, etc.).
~ A

If the ~t I S were not assumed normal, then the estimators Rt' Bt'

and it would still have the values reported earlier but the estimates

should be interpreted as least squares estimators. Also, if the ~tlS

were not assumed normal, then the approach to forecast streamflows

presented herein will not allow hypothesis testing. Among the hypo-

theses that can be tested with this approach are: i) stationarity (is

Bt = B for all t7); ii) independence between the vectors Zt (is Bt = 0

for all t7); iii) independence of subvectors (i£ :i.~is partitioned as
( 1 2) 1 d 2 . d d ? dZt' :i.t' are the subvectors Zt an Zt ~n epen ent. In other war s, if

Z~ contains the inflows to Shasta, Whiskeytown, and Clair Engle and Z~
1contains the inflows to Folsom and New Melones, are the flows in Zt

independent of those in :i.~7)jiv) order of the model (is a first-order

model adequate?)j and v) whether a parameter matrix Bt remains the same

or changes to another matrix B~ during a set of years (a change in the

matrix could be caused by the construction of a regulating reservoir).

5.3 Optimization Model for the NCVP

This section presents a mathematical formulation of the NCVP

optimization model. The model uses a sequential optimization technique,

the'progressive optimality algorithm (POA), which was described earlier.

The POA solves for an optimal release policy for the nine-reservoir

systern shown in Fig. 5.6. In essence, the way in which any operation
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schedule is used by the NCVP managers is as follows. At the beginning

of a water year, the managers announce the next guiding release policy,

which is updated each month after actual flows and water demands are

known. The random nature of inflows is handled by making statistical

forecasts of flows for the remaining months of the current water year.

Those forecasts are updated monthly to account for the most recent

actual realization of river flows. Updated flow forecasts as well as

actual reservoir storages are input to the model and a revised policy is

found for the remainder of the water year. The performance criterion,

or objective function, of the model consists of maximization of the
power generated throughout the year.

The following notation is used in this section:

= 9-dimensional vector whose components are the beginning of
month storages at each reservoir; i denotes reservoir number,
i = 1, 2,..., 9 (Fig. 5.6).

~t = 9-dimensional control or decision vector that represents water
ireleased through penstocks; its components are ut' Decisions are

made at the beginning of month t.

It = 9-dimensional spillage vector; its icomponents are rt. Spillages
will be treated as decision variables in different ways, according

to alternative models developed in this section and in Chapter 7.

Figure 5.14 shows the relationship between the time index t and the

vectors !t' ~t' and It'
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.El .EZ .E3 .E12
~1 ~2 ~3 !!12
!l !Z !3 !12 !13

t = 1 t = 2 t = 3 t = 12 t = 13
\ \-1\period: 1 ,2 3 12

Figure 5.14. Relation between t and vectors ~t' ~t' and .Et.

Spillage will occur when the maximum flood control level is
exceeded. If the penstock discharge plus the release through other

outlet structures reach the maximum allowable discharge, then the

reservoir level is allowed to reach into the surcharge storage and the

total release is maintained at a maximum until the reservoir is brought

to an adequate level (as specified in the flood control diagram).

Short-term control of large flood events, which occur occasionally, are

best handled by on-line stochastic control methods where decisions must

be taken in a time framework as short as a few minutes. Clearly,
monthly operation schemes cannot capture those fast dynamic events in

the best way. Nonetheless, monthly decision policies are valuable tools
for planning purposes. In fact, it is through those monthly policies
that many reservoir systems plan their future activities.

The first step in developing the optimization model for the opera-

tion of the Nevp system is to write the law of motion, or continuity

equation, for each reservoir in the system (see Fig. 5.6);
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Reservoir 1 (Clair Engle)
1 1 111 1xt+1 ::;xt - U - r + y - ett t t

Reservoir 2 (Lewiston)
2 2 2 2 + 1 + 1 2 R2Xt+l == xt - U - r ut r - e -t t t t t

Reservoir 3 (Whiskeytown)
3 3 33+ 2 3 3 R3xt+1 = xt - ut - rt ut + y - e -t t t

Reservoir 4 (Shasta)
4 4 4 4 4 4xt+1 == xt - U - r + y - ett t t

Reservoir 5 (Keswick)
5 5 5 5 + 3 + 4 + 4 5xt+1 == xt - U - rt ut ut rt - ett

Reservoir 6 (Folsom)
6 6 6 6 + 6 6 R6xt+1 ;:;xt - u - rt Y - e -t t t t

Reservoir 7 (Natoma)
7 7 7 7 + 6 + 6 7 R7Xt+l ::xt - u - r - e -t rt ut t t t

Reservoir 8 (New Melones)
8 8 8 8 + 8 8 R8Xt+l ;:;xt - lit - rt Yt - et - t

Reservoir 9 (Tullock)
9 9 9 9 8 + 8 9xt+1 == xt - u - r + ut r - ett t t

(5.27)

(5.28)

(5.29)

(5.30 )

(5.31)

(5.32)

(5.33)

(5.34)

(5.35)

in which y ::; river
t inflows during month t, et ::net losses, and

.
Rt = water demands. Equations (5.27)-(5.35) can be expressed in vector-
matrix notation as
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(5.36)

in which I denotes the identity matrix and

-1

1 -1

1 -1

-1

r1 = 1 1 -1

-1

1 -1

-1

1 -1

(5.37)

-1

1 -1

(5.38)

-1

1 -1

-1

-1

1 -1

-1

1 -1

Notice that r1 and r2 are nonsingular lower triangular matrices that

considerably simplify the numerical computations. The triangularity of

r 1 and r2 arises from a proper numbering of the network as done in
Fig. 5.6. Equation (5.36) can be rewritten as
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(5.39)

iRecall that et, the net losses for reservoir i during month t, is given

by [see eqs. (5.15)-(5.18)J

(5.40)

in which d! and c! are coefficients [see eqs (5.15)-(5.18)] and

(x!+l + x~) signifies the use of average storage. Substitution of
eq. (5.40) into eq. (5.39) gives

(5.41)

iin which At+l is a diagonal matrix whose (diagonal) elements are 1 + c
t
'

i = 1, 2, ..., 9; Bt is a diagonal matrix whose (diagonal) elements are
i1 - ct; and ~t is the vector

~t = d5 (5.42)t
6 R6 _ d6y -t t t
7 d7-R -t t
8 R8 _ dBy -t t t

_ d9
t

yl _ d1
t t

_R2 _ d2
t t

y~ - R~

y4 _ d4
t t
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Because of the small values of the coefficient [see
eqs. (5.15)-(5.18)], the impact of net losses will be negligible.

However, that may not be true in regions of different climatic condi-

tions. Equation (5.41) can be also stated as

(5.43)

or

(5.44)

in which -1and Ft = At+1'
Equation (5,44) is the law of motion, or the equation of continuity, for

the NCVP system (a linear equation). Vectors ~t and It represent
deterministic control terms and Ft~t is a stochastic disturbance term.

Notice that ~t is a stochastic vector because it includes the random
inflows y!. In addition, it is evident from eq. (5.42) that if water
requirements (Ri) were also considered random, then ~t would includet
only di as a nonrandom term. It is emphasized that in this study, thet
flows are forecast and then a deterministic problem is solved with the
most recent forecast of flows used in the vector ~t' Equations (5.41)
and (5.44) playa central role in the development that follows.

The objective function of the optimization model consists of

maximization of the energy generated during each year. The energy
generated at reservoir i during month t (in Mwh) is

= [ai + bi ( i + i )] ixt Xt+1 ut (5.45)
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in which ~~ is the energy rate given by eqs. (5.1)-(5.9) and u~ is the
penstock release from reservoir i during month t. For the whole
system, the total energy generated during any month t can be expressed
as

(5.46)

in which

Ta = (221.0 575.0 460.0 234.0 80.3 201.0 26.3 268.0 64.9) and contains
ithe constant terms a in eq. (5.45) which are explicitly given in

eqs. (5.1)-(5.9).

B =

0.0429

0.0615

0.4500

0.2170 o
0.0231

0.3000

0.0600
o 0.4000

0.4660

in which the shown diagonal terms are the bits of eq. (5.45) and

are equal to the factor that multiplies the average storage in

eqs. (5.1)-(5.9) divided by two.
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~t ::9-dimensional penstock releases.

Recall that the PDA maximizes a sequence of two-stage problems, i. e. ,

maximize Et-1 + Et for t ::2, 3, ..., 12 subject to a set of constraints.
It follows from eq. (5.46) that

E + E :: [ + B ( + ~t)] Tt-l t ! ~t-l ~t-l

(5.47)

It is clear from eq. (5.41) that

A similar expression can be developed f~r ~t-l' Substitution of those

expressions for ~t and ~t-l into eq. (5.47) yields

Et-1 + Et
T + T + T T r E.t

:: gt E.t E.t!.t-l .at x - ~t B-t

T r !.t-l + T- x B ~t ~Gt~t + kt-t (5.49)

in which

aT r T
- !t+l B r (5.50)
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T T T£t :::- a r - !t-l B r (5.51)

T :::_ aT D + T eT B _ 'iTtFT B T B D + TeKt - t !t+1 t+l - !t-l t ~ t

(5.52)

(5.53)

kt
T aT F + T B Ct+1 !t+l= ~ Ct+1 !t+l - v-t !t+l

T B F v - T T
- !t+l ~ Dt-1 x - ~ F 'it-l-t -t-l

T
B Dt-1 !t-l - !t-l B F 'it-1 (5.54)- x-t-l

Notice that kt is a constant because !t-l and !t+l are held fixed at

every two-stage maximization. Thus, kt plays no role in the two-stage

solutions. Let

e ::: (5.55)

that is, construct an augmented vector containing the variables for

which the optimization is to be made. Equation (5.49) can be now

expressed as
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(5.56)

in which

G + GT -Br -Brt t
HI 1 -rTB 0 0 (5.57)::t 2

_rTB 0 0

where 0 is a 9 x 9 null matrix. By dropping the constant term kt'
eq. (5.56) can be rewritten as

(5.58)

in which

(5.59)

Thus, it has been demonstrated that the two-stage objective function is

quadratic. It is worthwhile to recall that the continuity equation was

used to develop eq. (5.58) and thus it will not appear as a constraint

in the constraint set associated with eq. (5.58).

The final step to complete the formulation of the two-stage opti-

mization problem is to include the constraint set associated with

eq. (5.58). First, recall that the original two-stage problem is

maximize
~t' Et' E.t-1

(5.60)
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subject to

(5.61)

w E W-t-l -t-l' !':'.tE ~t (5.62)

u E U ,-t-1 -t-1 ~t E :Qt (5.63)

(5.64)

(5.65)

in which !t-l' ~t+1 are fixed; !':'.t-l = ~t-l + It-I; !':'.t= ~t + It; ~t is

total release (penstock plus spillage); and ~t-1' ~t' :Qt-l' gt' ~t-1'

~t' and ~t are feasible regions for the corresponding variables. Notice

that eq. (5.60) is written as a function of !t' Et-1' and E
t

in

agreement with eq. (5.49). Equation (5.61), the continuity equation for

months t-l and t, is defined by eq. (5.44). It has been shown that

eq. (5.60) can be written in terms of an augmented vector Qt' as

expressed by eq. (5.58). In developing eq. (5.58), use was made of

eq. (5.44). Equation (5.62) can be expressed in terms of the components

of Q.t by making use of eq. (5.41), i.e., eq. (5.62) (constraints on

total releases) implies

(5.66)
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for month t, or in terms of ~t'

(5.67)

where 0 is the null matrix. The Delta requirements impose another con-
Tstraint on the total release ~t + Et, namely ~ (~t + Et) E Det, i.e. ,

(5.68)

for month t, or in terms of ~t'

cT C x + T[ D (-r + I) 0]8 - cT FEDt+l -t+l E - t -t ~t et (5.69)

Twhere E = [0 0 0 0 1 0 1 0 1] and Det is a set of feasible

values for Delta water deliveries. Similarly, eg. (5.63) can be written

in terms of the components of Qt by using eg. (5.48), i.e., eq. (5.63)

(constraints on penstock releases) implies

(5.70)

for month t, or in terms of ~t'

(5.71)

Clearly, eqs. (5.64) and (5.65) can be converted directly into con-

straints expressed in terms of ~t' i.e., eq. (5.64) implies
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(5.72)

for month t , and eq. (5.65) (constraints on storage values) implies

(5.73)

for month t. The appropriate equations for month t-l are obtained in a

similar manner. All the constraints, eqs. (5.61)-(5,65) and those

expressed by eqs. (5.66)-(5.73), are linear. Constraints on power

generation, which are intrinsically nonlinear, have been avoided by the

way in which energy generation is computed, as explained in Section 5.1.

In any case, nonlinear power constraints can be linearized by using a

Taylor expansion (this is addressed in Chapter 7, which deals with

special features and extensions).

The original two-stage optimization problem, eqs. (5.60)-(5.65),

has been transformed into a quadratic programming problem, namely

maximize
!!t

TIT~t Ht ~t + S e-t -t (5.74)

subject to

(5.75)

[I 0 O]~t-l' [I 0 O]~t+l fixed

in which
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-D -r+I 0t

Ct a -r+I
T -r+I 0)-c (-D- t

T -r+I)-c (C a- t

-D -r 0t

A1 = Dt r 0

(5.76)t
Ct 0 -r

-C 0 rt

0 I a

0 0 I

I 0 0

-I 0 0
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~t - Ct+1 ~t+l + F ~t

~t-l + Dt ~t-1 + F ~t-l
T T-Det + ~ Ct+1 ~t+l - £ F ~t
T T-Det_1 - E Dt-1 ~t-1 - c F ~t-l

~t,max - Ct+1 ~t+1 + F ~t

-u . + C x - F v-t,m~n t+1 -t+l -t

u + D x + F v-t-l,max t-1 -t-l -t-l

-u - D x - F v-t-1,min t-l -t-1 -t-l

R-t-l

X-t,max

-x-t,min

(5.77)

Notice that eq. (5.75) lumps into one expression all the (linear)

constraints on ~t that arise from eqs. (5.61)-(5.65), some of which were

explicitly derived earlier [see eqs. (5.67), (5.69), (5.71), (5.72), and
(5.73)J.

Solution of eqs . (5.74) and (5.75) by the POA would yield the
* ..t....... *

optimal sequences f~t} and accordingly {~~}, {~~}, and fEt}' The vector

~t is of dimension 3 x 9 = 27. Thus, the computational effort involved

in methods such as Fletcher's (1981) active set method would be propor-

tional to a number between al(27)2 and a2(27)3, in which a1 and a2 are

positive real numbers independent of the dimension of ~t (Gill and
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Murray, 1977). The aforementioned computational burden is not limiting

in a fast modern computer but it is still unpleasantly large. Storage

requirements would be proportional to (27)2, a reasonably low number.

To reduce the computational work, without comprimising the validity

of the model, two assumptions can be made and alternative simpler models

associated with those assumptions can be developed. The first assump-

tion deals with net losses. Examination of matrices At+1 and Bt in

eq , (5.43) shows that their (diagonal) coefficients 1 + c~ and 1 - c~,
irespectively, are close to one because the values of ct are in all cases

less than 0.0044. iThis can be verified by substituting the values of ct
(Table 5.10) into eqs. (5.15)-(5.18). Thus, for all practical purposes,

At+1 and Bt can be both set equal to the identity matrix. In effect,

this assumption requires the equation of continuity, eq. (5.44), to have
stationary parameters, i.e.,

x --t (5.78)

By using this assumption, the quadratic objective function of the model

becomes linear, as will be shown later. The second assumption relates

to the handling of spillages. Spillages can be assumed to be at a zero

level whenever reservoir storage is below the maximum permissible flood
control storage. Thus, w = u + r will be expressed-t -t -t simply as

~t = '!:!'t' This assumption is valid for average (normal) and below-

average (dry) inflow years, as will be shown by the numerical results

obtained for the NCVP. For above-average (wet) inflow years, however,
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spillages will occur. This is because inflows will far exceed penstock

releases and spillages must be made to avoid overtopping of the dam.

Thus, under this assumption, spillages can be handled by maximizing with

respect to ~t' When ~t reaches its upper bound during high-inflow

periods, the value of ~t is set equal to penstock capacity. Any excess

release necessary to keep the flood control storage at adequate levels

(following flood control provisions) is called spillage. Clearly, ~t is

not handled explicitly as a decision variable; however, that has little

effect on the solution. This is because it will be zero whenever

storages are within permissible levels since no benefits arise from
spilling water that can be routed through penstocks. For on-line
control of large flood events, where decisions are taken only minutes

apart and the output of the optimization model is used by automatic

mechanisms that control penstock and spillway gates, it is preferable to

use the full optimization model [eqs. (5.74) and (5.75)] that takes care

of penstock, spillage, and all possible constraints automatically. Even

in that situation, excessively high inflows may lead to an intervention

by the operator to override some constraints imposed on the model. That

can happen when storages reach dangerous levels. By treating spillage

in the manner described earlier, the dimension of the decision vector ~t
[eq. (5.74)] is reduced form 27 x 1 to 9 x 1.

Simplified Linear Model

The two assumptions just described lead to a reformulation of the

rnatliematicalstructure of the two-stage problem. The two-stage energy

production Et-1 + Et can be expressed as
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:;:;hT x +
-t -t ct

in which

c :;:;
t

[T T (B )T] T ( ) TG [~T G-~ G - ~t+l G !t-l - !t-l BG !t-l - ~ ~t-l +

T T T T- ~t(BG) ]!t+l + !t+l(BG)!t+l - a G ~t = constant

(5.79)

(5.80)

(5.81)

The development of eqs. (5.79)-(5.81) used the inverse of eq. (5.76) to

express ~t and ~t-l' namely

and

(5.82)

(5.83)
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Interestingly, the objective function (eq. (5.75)] has become a linear

function of the state variable (~t) only. The set of constraints

associated with the two-stage maximization are:

Releases during month t greater than U .-t,mln

(5.84)

Releases during month t-1 greater than Ut 1 .
- - ,filn

u ~U 1 . =>-t-1 -t- .nu.n - Gx ~ - CU . + Gx + Gz )-t -t-l,mln -t-l -t-1 (5.85)

Releases during month t less than U-t,max

u ~ U =>-t -t,max (5.86)

Releases during month t-l less than U-t-l,max

u ~ U-t-l -t-l,max => G~t ~ (U + Gx + Gz )-t-l,max -t-l -t-l (5.87)

Delta requirements during month t

(5.88)

Twhere c = (0 0 0 0 1 0 1 0 1), from Fig. 5.6.

Delta requirements during month t-l
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Tc u ~ De
t
_1- -t-l => - (5.89)

Minimum storages for month t

!t ~Xt .- ,ml.n (5.90)

Maximum storages for month t

x ~ X
-t -t,max (5.91)

Notice that the continuity equations for months t and t-l, respectively,

(5.92)

and

x = x + r u + z-t -t-l 1 -t-l -t-1 (5.93)

have been considered in eq. (5.79), i.e., the continuity equation was

used to develop the objective function. Also, the rates of energy
generation used in developing eq. (5.79) [see eqs , (5.1)-(5.9)] take

into account the effects of head and flow in the generation of power so

that power constraints are not present in the constraint set. In

addition, minimum power delivery (set at 860 Mw dependable capacity in

the NCVP) is extremely low and results in a redundant constraint. It is

stressed that power constraints, when relevant, can always be linearized

by a Taylor expansion. Linearization methods are treated in Chapter 7.
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In summary , the full model [eqs , (5.74) and (5.75)] for the two-

stage maximization has been simplified to the following linear pro-

gramming model (dropping the constant term c
t
):

maximize
~t

subject to

(5.94)

(5.95 )

~t+1' ~t-l fixed

in which

A ==

G

(5.96)

-G
-G

-I

I



~t-l,max + G~t+l + G~t-l
T T- Det + E G~t+l - E G!t

- x .-t,m~n

X-t,max
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(S.97)

Notice that eqs. (5.94) and (5.95) are expressed in terms of a
9-dimensional unknown vector, ~t' Thus, the two fundamental assumptions

discussed previously (neglect net losses and treat spillage as excess
over penstock capacity) have reduced the computational burden
considerably. Equations (S.94) and (S.95) will be solved sequentially

.'-by using the POA. Once the optimal sequence {~~} is known, the optimal
*release policies C!!t1can be readily obtained through the continuity

equation, eq. (S.78).

Simplified Quadratic Modell

Consider the case in which net losses are taken into account (i.e.,

the first assumption used in developing eqs. (5.94) and (5.9S) is

relaxed), but the spillage assumption is maintained. In this case, the

two~stage maximization problem becomes a quadratic maximization problem

with a 9-dimensional decision vector:



subject to

!t+l' ~t-l fixed

in which

T£. D
t

T-c C- t

-ct
-D

t

-I

I
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(5.98)

(5.99)

(5.100)



~t-l,max + Dt-1 !t-l + F~t-l
T + TF- Det + £ Ct+1 ~t+l £ ~t

- Det_1 - £TDt_1 !t-l - £TF~t_1

- X-t,min
X-t,max

133

(5.101)

where kt is defined by eq. (5.54), ~t and Gt are defined by eqs. (5.52)

and (5.53), respectively, and other terms are defined by eqs. (5.84)-
(5.91).

Simplified Quadratic Model 2

If net losses are not considered but spillages are included

becomes
explicitly in the continuity equation, then the two-stage problem

maximize aT H a + ~ a + k'
-t -t ~t -t tQt

subject to

[1 0 0] Qt-1' [I 0 0] Qt+l fixed

(5.102)

(5.103)
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in which

(5.104)

o (5.105)

0 -Br
1 -rTB 0H = -2

-rTB 0

-Br

o

(5.106)

(5.107)

A aT r TSt = - - ~t+1 B r (5.108)

(5.109)

T -1 -1
k~ = - a (-r1 ~t+1 + r1 ~t-l + F ~t-l + F ~t)

+ T B -1 B r-1 Tx r x -x x -x BFv-t+l 1 -t+l -t-l 1 -t-l -t+l -t

- ~t-l B F ~t-l (5.110)

= constant
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~G -f+I 0

G 0 -f+I
T -f+I 0)-£. (-G

T 0 -r-r;-£. (G

-G -f 0

G r 0
A = (5.111)3

G 0 -f

-G 0 r

0 I 0

0 0 I

I 0 0

-I 0 a



~t - G ~t+1 + F ~t

T T-Det_1 - E G ~t-1 - c F ~t-1

U - G ~t+1 + F ~t-t,max

-gt,min + G ~t+1 - F ~t

U +Gx +Fv-t-l,max -t-1 -t-l

-u - G x - F v-t-l,min -t-1 -t-1

X-t,max

-x-t,min

and 0 is a 9 x 9 null matrix.
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(5.112)

Notice that a quadratic programming
problem is obtained, although there is no quadratic term on ~t as is

evident from the matrix H. Also, H is a constant matrix as opposed to
the time-variant matrix H~ of eq. (5.74). Because this development
resembles the one that led to the model given by eqs. (5.74) and (5.75),

the particular constraints of the constraint set (5.103) are obtajned in

forms analogous to those in eqs. (5.67), (5.71), (5.72), and (5.73).

Table 5.15 summarizes the four alternative versions of the optimization
model.

The alternative two-stage maximization problems developed in this

section are not exclusive against each otherj the different formulations



Ta
bl

e
5.1

5.
Ve

rs
io

ns
of

th
e

Op
ti

mi
za

ti
on

Mo
de

l.

Op
ti

mi
za

ti
on

Mo
de

l

As
su

mp
ti

on
Ne

gl
ec

t
Ne

t
Lo

ss
es

of
Ev

ap
o-

ra
ti

on
)

Se
ep

ag
e.

an
d

Di
re

ct
Ra

in
fa

ll
to

th
e

Re
se

rv
oi

r

Sp
il

la
ge

st
re

at
ed

as
Ex

ce
ss

es
ov

er
Pe

ns
to

ck
Ca

pa
ci

ty

Eq
ua

ti
on

s

Fu
ll

Mo
de

l
No

No
(5

.74
)

)
(5

.75
)

Li
ne

ar
Mo

de
l

Ye
s

Ye
s

(5
.94

),
(5

.95
)

Qu
ad

ra
ti

cM
od

el
1

No
Ye

s
(5

.98
i,

(5
.99

)

Qu
ad

ra
ti

cM
od

el
2

Ye
s

No
(5

.10
2)

,
(5

.10
3)

l--
' w '-l



138

can be used for different months according to the validity of the

assumptions built into each of the formulations. For example, because

spillages are not likely to occur during the summer season, either the

linear model or the quadratic model 1 can be used to perform the two-

stage maximization. During flood periods, when it is advisable to

include spillages as part of the decision variables, the two-stage

problem can be solved by using either the full model or the quadratic

model 2. From a numerical point of view, the linear model is the most

attractive due to the well understood nature of linear programming.

Chapter 6 presents some results obtained from the use of the simplified

linear model developed in this section. Chapter 7 gives an application

of a more general quadratic model. The quadratic case introduces a

series of computational complexities that can be resolved by using the

methods in Section 7.8.

5.4 Selection of Initial Operation Policy

Two considerations are usually important in developing an initial

operation policy: (d ) the computational effort should be relatively

small as compared to the total computational work necessary to develop

an optimal policy; and (ii) the initial policy should lie within the

"xadaus of convergence" about a global optimum if it exists, and it

should be "good" enough so as to keep the number of iterations required

for convergence to a local optimum relatively low. For tightly con-

strained systems, the second condition is always met. In fact, for the

proDlem given by eqs. (5.94) and (5.95), any feasible policy will always

converge to a global optimum, as will be discussed in Chapter 6. The

simplest, and usually the best, way to develop an initial operation

policy is by a trial-ana-error approach based on pr ev i ous operational
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experience of the system under different scenarios. That approach was

followed in this study, with the cooperation of the staff of the U.S.

Bureau of Reclamation at Sacramento. There are, of course, other

approaches to develop initial operation policies (see, e.g., Yeh et

al., 1978). Figure 5.15 shows a flow chart of the NCVP optimization

model.
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...
Fig. 5.15 NCVP monthly optimization flow chart.
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CHAPTER 6

DISCUSSION OF RESULTS

This chapter discusses the application of the optimization model,

developed in Chapter 5, to the NCVP system under three different

scenarios: average (1974-75, 1979-80), below-average (1975-76), and

above-average (1973-74) streamflow conditions. Section 6.1 gives sets

of initial storage and release policies for the aforementioned stream-

flow conditions. Section 6.2 discusses the corresponding optimal

release policies. On the basis of those results, Section 6.3 shows that

the operation of the NCVP system can be analyzed by using a simplified
optimization model. The optimal operation policies discussed in this

chapter were computed by using the simplified linear model given by

egs. (5.94) and (5.95). Application of the models of full dimensiona-

lity (i.e., handling releases explicitly) and introduction of nonlinear

energy rates and constraints are given in Chapter 7.

6.1 Initial Policies

Initial operating policies for the NCVP system were developed by

using a trial-and-error procedure that considers some heuristic criteria

used by Nevp managers to set up their release policies. In essence,

desired reservoir storages at the end of the water year are selected and

a feasible (initial) release policy that achieves those targets is

chosen. As the system operation progresses through the year, actual

flow conditions may lead to a revision of the ending storages selected

initially. The overall philosophy is that reservoir storages must be

kept high at the beginning of the dry season (usually, May) to meet

increasing agricultural and Delta water requirements during the summer.
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Also ~ the operation during the rainy season (November-March) is con-

servative in the sense that a substantial flood storage volume is allo-

cated to store eventual large-runoff events. Clearly, there is a

tradeoff between the desire to maintain the reservoir levels below some

specified elevation during the rainy season and the desire to have as

large a storage volume as possible at the beginning of the dry season.

A general rule would be to maintain reservoir storages at the maximum

permissible levels during the rainy season and to make large releases

during the dry season. Interestingly, because most power installations

in the NCVP are of the high-head type, a greater generation of power

will not result from the largest releases but from some optimal reser-

voir elevation associated with moderate releases. The largest releases

would drive reservoir levels below the range at which turbines can
operate efficiently.

Two initial policies (policies I and II) were selected for storage

and corresponding releases. This was done to determine if each initial

policy yields the same optimal release policy. As will be discussed in

Section 6.2, different initial policies generally yield different

optimal release policies. However, all those optimal release policies

give the same value for the objective function of the model (i.e., the

same annual energy generation), thus indicating the 'existence of

muLtipLe optimal solutions. That is a common phenomenon in linear

programming and convex (as opposed to strictly convex) quadratiC
pro~lems.

Tables 6.1-6.14 show initial storage policies and corresponding

initial release policies for the NCVP system. There are two initial

policies (policies I and II) for water years with average (1974-75,
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1979-80) and below-average (1975-76) inflows. A single initial policy

was considered for water year 1973-74, representing above-average

inflows. Development of the initial policies indicated that for below-

average streamflow conditions there is little room for optimizing the

operation of the system, because prevailing low inflows barely meet the

system's demands by releasing flows near their minimum permissible

values. Thus, initial release policies I and II for 1975-76 turn out to

be close to optimal, as will become evident in Section 6.2. For both

average and above-average streamflow conditions, there is a larger

feasible region and the gains from the optimization model can be signif-
icant. During the winter months of an extremely wet year such as

1973-74, the initial policy is nearly optimal because the reservoirs are

at near capacity during those months and total releases are set equal to

maximum permissible flows. In those circumstances, the optimization

model allows the determination of the best feasible release policy that

simultaneously minimizes the spillage and maximizes the power genera-

tion. Because the reservoirs are at a high stage after the winter,

substantial improvements in energy generation can be obtained during the
subsequent summer months.

Some of the initial policies were refined so as to make them near

possible optimal releases whereas others were deliberately set to be

poor (but feasible) initial estimates. This was done to estimate the

number of iterations and CPU time needed by the POA to r~ach optimality.

Inital policies I for average (1974-75, 1979-80) and below-average

(1975-76) inflow years were carefully refined, attempting to be near

their respective optimal policies. In those cases, convergence to the

optimum was attained in six to eight iterations. In contrast, initial
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policies II for average-inflow years 1974-75 and 1979-80 were purposely

developed to be far from good initial policies. That was accomplished

by releasing heavily during wet (winter) months to maintain a year-round

low head and a corresponding decrease in power generation. That is also

nonoptimal from the standpoint of agricultural and Delta requirements,
because those demands are low in the winter and thus larger than

necessary flows will be of no use. This strategy forces summer releases

to be at minimum permissible levels) when an additional acre-foot of

water during this season has a great.ermarginal value than in the rainy

season. Those deliberately-poor initial policies resulted in an
increase in the number of iterations needed to attain convergence,

ranging now from eight to ten iterations. Table 6.15 summarizes the

required iterations and CPU times for the specified initial policies and

inflow conditions. It is evident that the CPU time increases as the

inflow conditions vary from below-average to average. That is because,

for below-average flow conditions, the feasible region becomes so tight

that there is Iittle freedom to optimize any policy. Any feasible

initial policy will be very close to an optimal release policy. As flow

volumes increase to average-flow conditions, there is a corresponding

increase in CPU time. Notice that policies II for average-flow years

1974-75 and 1979-80 (which were deliberately chosen to be inferior to

their counterparts, policies I) also required more CPU time. For

extremely wet conditions such as water year 1973-74, the feasible region

becomes very tight during the winter and that implies a reduction in CPU
time as shown in Table 6.15.
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Table 6.15. Number of Iterations to Attain Convergence and CPU Time
Requirements.

Inflow No. of Iterations Burroughs B7800Condition Policy to Attain Convergence CPU Time (min.)
Average I 6 6.01(1974-75)

II 9 8.94

Average I 8 8.51(1979-80)
II 10 10.32

Below Average I 3 2.98(1975-76)
II 3 2.79

Above Average I 8 7.28(1973-74)
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6.2 Optimal Operation Policies

Optimal state trajectories (i.e., end of month storages) and their

corresponding release policies were obtained by applying the POA to the

initial policies of Section 6.1. Tables 6.16 and 6.17 show the optimal

strategies for average-flow conditions (1974-75) corresponding to the

first initial. policy (policy I, Tables 6.1 and 6.2). Table 6.17 also

shows the energy produced by the optimal policy as well as the monthly

water deliveries to the Delta. Tables 6.18 and 6.19 show similar

information corresponding to the second initial policy (policy II,

Tables 6.3 and 6.4). Clearly, for Clair Engle, Shasta, and New Melones

reservoirs, the optimal state policies (end-of-month storages and

releases) resulting from initial policy I are different from those

resulting from initial policy II. For Folsom reservoir, the optimal

end-of-month storages and release policies are the same for initial

policies I and II. For the remaining five smaller reservoirs, the

end-of-month storages are the same for initial policies I and II, but

their release policies are different. The fact that optimal state

trajectories (call them State I and State II) are equal does not imply

that their corresponding optimal release policies (policy I and

policy II, respectively) will be the same. Optimal release policies

will be the same only if the optimal state trajectories are equal for

all reservoirs in the system. Tables 6.17 and 6.19 also show that the

value of the objective function of the model (total energy generated

during the year) is the same for release policies I and II. This

implies that there are multiple ways of achieving the optimum perform-

ance index. That is not surprising because the problem under analysis

is in essence a large LP problem posed as a dynamic process and solved



Ta
bl

e
6.

16
.

Op
ti

ma
l

St
at

e
Tr

aj
ec

to
ry

Co
rr

es
po

nd
in

gt
o

In
it

ia
lP

ol
ic

y
I,

19
74

-7
5.

Mo
nt

h
Cl

ai
r

En
gl

e
Le

wi
st

on
Wh

is
ke

yt
ow

n
Sh

as
ta

Ke
sw

ic
k

Fo
ls

om
Na

to
ma

Ne
w

Me
lo

ne
s

Tu
ll

oc
k

Oc
t

16
00

.0
14

.7
24

1
30

00
.0

23
.8

60
0

8.
8

16
50

57

No
v

15
16

.7
14

.7
24

1
29

70
.0

23
.8

53
3

8.
8

15
67

57

De
c

14
39

.7
14

.7
24

1
29

69
.0

23
.8

47
3

8.
8

15
04

57

Ja
n

13
88

.4
14

.7
24

1
30

28
.0

23
.8

40
9

8.
8

14
38

57

Fe
b

12
25

.4
14

.7
24

1
30

04
.6

23
.8

38
7

8.
8

13
81

57

Ha
r

12
09

.3
14

.7
24

1
31

53
.7

23
.8

47
7

8.
8

13
67

60

Ap
r

13
80

.0
14

.7
24

1
39

00
.0

23
.8

72
0

8.
8

13
83

61
f--

'
Ma

y
13

40
.0

14
.7

24
1

42
00

.0
23

.8
76

2
8.

8
13

02
67

0\ f--
'

Ju
n

15
24

.0
14

.7
24

1
44

85
.0

23
.8

96
5

8.
8

13
63

67

Ju
l

15
85

.0
14

.7
24

1
42

88
.0

23
.8

10
10

8.
8

14
61

67

Au
g

15
29

.0
14

.7
24

1
38

13
.0

23
.8

96
9

8.
8

13
30

67

Se
p

14
48

.0
14

.7
24

1
32

83
.0

23
.8

78
7

8.
8

11
65

67

Oc
t

13
58

.0
14

.7
24

1
27

55
.0

23
.8

61
7

8.
8

99
5

57

St
or

ag
es

in
Ka

f.



Ta
bl

e
6.

17
.

Op
ti

ma
l

En
er

gy
Pr

od
uc

ti
on

,R
el

ea
se

Po
li

cy
,

an
d

De
lt

a
Re

le
as

es
Co

rr
es

po
nd

in
gt

o
In

it
ia

l

Po
li

cy
I.

19
74

-7
5.

'C
la

ir
En

gl
e

Le
wi

st
on

Wh
is

ke
yt

ow
n

.S
ha

st
a

Ke
sw

ic
k

Mo
nt

h
I En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

Oc
t

I3
16

75
.3

89
.3

41
94

0.
8

71
.3

45
90

1.
5

81
.3

11
15

72
.1

30
0.

0
36

06
3.

4
38

1.
3

No
v

I
32

69
6.

0
94

.0
44

70
5.

5
76

.0
43

47
3.

7
77

.0
11

13
57

.3
30

0.
0

35
65

6.
7

37
7.

0

De
c

I
30

56
9.

7
89

.3
41

94
0.

8
71

.3
45

90
1.

5
81

.3
11

17
5Q

.2
30

0.
0

36
06

3.
4

38
1.

3

Ja
n

I
69

62
4.

6
20

9.
0

11
23

51
.9

19
1.

0
11

46
12

.6
20

3.
0

13
71

69
.9

36
7.

4
53

94
8.

4
57

0.
4

Fe
b

I
41

03
9.

1
12

6.
1

63
58

7.
7

10
8.

1
91

52
0.

7
16

2.
1

26
37

18
.3

70
0.

9
81

62
2.

5
86

3.
0

Ma
r

I
29

65
4.

8
89

.3
41

94
0.

8
71

.3
11

76
04

.9
20

8.
3

25
98

76
.9

65
4.

7
81

62
2.

5
86

3.
0

f-'
Ap

r
I7

05
76

.8
20

9.
0

11
23

51
.9

19
1.

0
13

94
54

.7
24

7.
0

22
06

61
.6

52
4.

0
72

92
1.

2
77

1.
0

C
J\ N

Ma
y

71
86

7.
9

20
9.

0
11

23
51

.9
19

1.
0

12
53

39
.9

22
2.

0
22

07
88

.7
50

8.
0

69
04

3.
4

73
0.

0

Ju
n

74
06

4.
6

20
9.

0
10

70
57

.9
18

2.
0

11
40

48
.0

20
2.

0
28

86
29

.8
66

1.
0

81
62

2.
5

86
3.

0

Ju
1

14
32

60
.1

12
2.

0
54

11
7.

2
92

.0
57

02
4.

0
10

1.
0

32
09

03
.4

76
2.

0
81

62
2.

5
86

3.
0

Au
g

34
87

1.
3

10
0.

0
41

17
6.

1
70

.0
43

47
3.

7
77

.0
31

27
63

.2
78

6.
0

81
62

2.
5

86
3.

0

Se
p

33
79

6.
4

99
.0

42
35

2.
6

72
.0

43
47

3.
7

77
.0

29
35

53
.6

78
6.

0
81

62
2.

5
86

3.
0

To
ta

l
63

69
6.

5
81

58
75

.1
98

18
29

.0
26

52
75

4.
2

79
34

31
.5



Ta
bl

e
6.

17
.

(c
on

ti
nu

ed
)

Fo
ls

om
Na

to
ma

Ne
w
Me

lo
ne

s
Tu

ll
oc

k
De

lt
a

Ho
nt

h
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
Re

le
as

e
.

Oc
t

48
41

6.
4

18
0.

0
59

01
.2

17
7.
0

46
58

4.
6

10
0.

0
11

80
2.

4
10

0.
0

65
8.

3
No

v
47

04
4.

8
18

0.
0

59
01

.2
17

7.
0

45
68

6.
7

10
0.

0
11

80
2.

4
10

0.
0

65
4.

0
De

c
45

70
5.

6
18

0.
0

59
01

.2
17

7.
0

44
89

3.
3

10
0.

0
11

80
2.

4
10

0.
0

65
8.

3
Ja

n
44

77
6.

8
18

0.
0

59
01

.2
17

7.
0

44
13

6.
9

10
0.

0
11

80
2.

4
10

0.
0

84
7.

4
Fe

b
45

51
1.
2

18
0.

0
59

01
.2

17
7.
0

43
70

0.
2

10
0.

0
11

58
3.

9
97

.0
11

37
.0

Ma
r

49
10

7.
6

18
0.

0
59

01
.2

17
7.
0

43
71

2.
5

10
0.

0
12

00
7.

3
99

.0
11

39
.0

Ap
r

86
68

6.
1

29
9.

0
98

68
.6

29
6.

0
43

31
2.

8
10

0.
0

11
70

7.
5

94
.0

11
61

.0
Na

y
92

29
9.

9
30

3.
0

10
00

2.
0

30
0.

0
43

18
9.

8
10

0.
0

12
73

4.
4

10
0.

0
11

30
.0

Ju
n

96
80

8.
5

30
3.

0
10

00
2.

0
30

0.
0

44
16

7.
6

10
0.

0
12

73
4.

4
10

0.
0

12
63

.0
Ju

l
57

55
3.

2
18

0.
0

59
01

.2
17

7.
0

43
96

4.
7

10
0.

0
12

73
4.

4
10

0.
0

11
40

.0
Au

g
92

52
0.

7
30

2.
0

99
68

.7
29

9.
0

42
14

4.
2

10
0.

0
12

73
4.

4
10

0.
0

12
62

.0
Se

p
86

42
7.

7
30

3.
0

10
00

2.
0

30
0.

0
40

08
4.

0
10

0.
0

13
49

5.
2

11
0.

0
12

73
.0

To
ta

l
79

28
58

.5
91

15
1.
7

52
55

77
.1

14
69

41
.2

12
32

3.
0

l-' 0\ W

En
er

gy
in

~1
wh
an

d
re

le
as

es
in

Ka
f.

De
lt

a
re

le
as

es
ar

e
th

e
su

m
of

Ke
sw

ic
k.

Na
to

ma
,a

nd
Tu

ll
oc

k
re

le
as

es
.
Sp

il
la

ge
sa
t
Le

wi
st

on
an

d
Wh

is
ke

yt
ow

nt
o
sa

ti
sf

y
fi

sh
re

qu
ir

em
en

ts
ar

e
as

gi
ve

n
in

Ta
bl

e
5.

4.
To

ta
l
an

nu
al

en
er

gy
eq

ua
ls

7,
36

4,
11

4.
8M
wh

.



Ta
bl

e
6.

18
.

Op
ti

ma
l

St
at

e
Tr

aj
ec

to
ry

Co
rr

es
po

nd
in

gt
o

In
it

ia
lP

ol
ic

y
II

,
19

74
-7

5.

Ho
nt

h
CL

ai
r

En
gl

e
Le

wi
st

on
Wh

is
ke

yt
ow

n
Sh

as
ta

Ke
sw

ic
k

Fo
ls

om
Na

to
ma

Ne
w

Me
lo

ne
s

Tu
ll

oc
k

Oc
t

16
00

.0
14

.7
24

1.
0

30
00

.0
23

.8
60

0.
0

8.
8

16
50

.0
57

.0
No

v
15

16
.7

14
.7

24
1.

0
29

70
.0

23
.8

53
3.

0
8.

8
16

17
.0

57
.0

De
c

13
30

.6
14

.7
24

1.
0

29
69

.0
23

.8
47

3.
0

8.
8

15
74

.0
57

.0
Ja

n
11

59
.6

14
.7

24
1.

0
30

28
.0

23
.8

40
9.

0
8.

8
15

08
.0

57
.0

Fe
b

99
6.

6
14

.7
24

1.
0

29
74

.3
23

.8
38

7.
0

8.
8

14
41

.0
57

.0
Ba

r
95

0.
2

14
.7

24
1.

0
31

53
.7

23
.8

47
7.

0
8.

8
14

14
.0

60
.0

Ap
r

11
20

.9
14

.7
24

1.
0

39
00

.0
23

.8
72

0.
0

8.
8

14
19

.0
61

.0
I-'

Ha
y

12
00

.6
14

.7
24

1.
0

42
00

.0
23

.8
76

2.
0

8.
8

13
22

.0
67

.0
Cj

\
.e

-

Ju
n

14
57

.0
14

.7
24

1.
0

45
52

.0
23

.8
96

5.
0

8.
8

13
73

.0
67

.0
Ju

1
15

61
.0

14
.7

24
1.

0
·4

31
2.

0
23

.8
10

10
.0

8.
8

14
61

.0
67

.0
Au

g
15

29
.0

14
.7

24
1.

0
38

13
.0

23
.8

96
9.

0
8.

8
13

20
.0

67
.0

Se
p

14
48

.0
14

.7
24

1.
0

32
83

.0
23

.8
78

7.
0

8.
8

11
45

.0
67

.0
Oc

t
13

58
.0

14
.7

24
1.

0
27

55
.0

23
.8

61
7.

0
8.

8
99

5.
0

57
.0

St
or

ag
es

in
Ka

f.



Ta
bl

e
6.

19
.

Op
ti

ma
l

En
er

gy
Pr

od
uc

ti
on

,R
el

ea
se

Po
li

cy
,a

nd
De

lt
a

Re
le

as
es

Co
rr

es
po

nd
in

gt
o

In
it

ia
l

Po
li

cy
II

,
19

74
-7

5.

.C
la

ir
En

gl
e

Le
wi

st
on

Hh
is

ke
yt

ow
n

Sh
as

ta
Ke

sw
ic

k
Ho

nt
h

IE
ne

rg
y

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

Oc
t

I
31

67
5.

3
89

.3
41

94
0.

8
71

.3
45

90
1.

5
81

.3
11

57
2.

1
30

0.
0

36
06

3.
4

38
1.

3

No
v

I
69

69
3.

6
20

3.
1

10
88

81
.4

13
5.

1
10

50
70

.9
18

6.
1

11
13

57
.3

30
0.

0
45

97
5.

3
48

6.
1

De
c

I
68

51
6.

4
20

9.
0

11
23

51
.9

19
1.

0
11

34
83

.4
20

1.
0

11
17

59
.2

30
0.

0
47

38
4.

6
50

1.
0

Ja
n

I
65

52
1.

7
20

9.
0

11
23

51
.9

19
l.

0
11

46
12

.6
20

3.
0

14
82

04
.2

39
7.

7
56

81
4.

2
60

0.
7

Fe
b

1
47

62
6.

6
15

6.
4

81
41

1.
0

13
8.

4
10

86
27

.9
19

2.
4

25
18

48
.4

67
0.

6
81

62
2.

5
86

3.
0

Ma
r

1
27

66
9.

6
89

.3
41

94
0.

8
71

.3
11

76
04

.9
20

8.
3

25
98

76
.9

65
4.

7
81

62
2.

5
86

3.
0

I-'
Ap

r
I

28
62

8.
9

89
.3

41
94

0.
8

71
.3

71
87

2.
8

12
7.

3
22

06
61

.6
52

4.
0

61
60

0.
0

65
1.

3
0. \.J

l

Ma
y

I
45

76
2.

5
13

6.
6

69
76

4.
1

.1
18

.6
84

46
3.

3
14

9.
6

19
23

51
.5

44
1.

0
55

85
8.

9
59

0.
6

Ju
n

I
58

17
8.

4
16

6.
0

81
76

4.
0

13
9.

0
89

77
0.

4
15

9.
0

30
88

85
.9

70
4.

0
81

62
2.

5
86

3.
0

Ju
l

I
34

64
9.

0
98

.0
39

99
9.

6
68

.0
43

47
3.

7
77

.0
33

14
46

.4
78

6.
0

81
62

2.
5

86
3.

0

Au
g

I
34

87
1.

3
10

0.
0

41
17

6.
1

70
.0

43
47

3.
7

77
.0

31
27

63
.2

78
6.

0
81

62
2.

5
86

3.
0

Se
p

I
33

79
6.

4
99

.0
42

35
2.

6
72

.0
43

47
3.

7
77

.0
29

35
53

.6
78

6.
0

81
62

2.
5

86
3.

0

To
ta

l
15

46
58

9.
6

81
58

75
.1

98
18

29
.0

26
54

28
0.

3
79

34
31

.5



Ta
bl

e
6.

19
.

(c
on

ti
nu

ed
)

Fo
ls

om
Na

to
ma

Ne
w

He
lo

ne
s

Tu
ll

oc
k

De
lt

a
Ho

nt
h

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

Re
le

as
e

-
Oc

t
48

41
6.

4
18

0.
0

58
94

.1
17

7.
0

23
44

6.
0

50
.0

59
01

.2
50

.0
60

8.
3

No
v

47
04

4.
8

18
0.

0
58

94
.1

17
7.

0
37

13
9.

7
80

.0
94

41
.9

80
.0

74
3.

1

De
c

45
70

5.
6

18
0.

0
58

94
.1

17
7.

0
45

75
4.

3
10

0.
0

11
80

2.
4

10
0.

0
77

8.
0

Ja
n

44
77

6.
8

18
0.

0
58

94
.1

17
7.

0
49

43
0.

0
HO

.O
12

98
2.

6
11

0.
0

88
7.

7

Fe
b

45
51

1.
2

18
0.

0
58

94
.1

17
7.

0
50

12
4.

8
H3

.0
13

13
6.

4
HO

.O
H5

0.
0

Ma
r

49
10

7.
6

18
0.

0
58

94
.1

17
7.

0
49

08
7.

5
11

1.
0

13
34

1.
5

HO
.O

11
50

.0
Ap

r
86

68
6.

1
29

9.
0

98
56

.8
29

6.
0

50
64

2.
3

11
6.

0
13

70
0.

3
11

0.
0

10
57

.3
Ma

y
92

29
9.

9
30

3.
0

99
90

.0
.3

00
.0

47
7H

.7
11

0.
0

14
00

7.
8

HO
.O

10
00

.6

Ju
n

96
80

8.
5

30
3.

0
99

90
.0

30
0.

0
48

65
2.

0
HO

.O
14

00
7.

8
HO

.O
12

73
.0

Ju
1

57
55

3.
2

18
0.

0
58

94
.1

17
7.

0
48

29
3.

5
HO

.O
14

00
7.

8
HO

.O
11

50
.0

Au
g

92
52

0.
7

30
2.

0
99

56
.7

29
9.

0
46

15
5.

7
11

0.
0

14
00

7.
8

11
0.

0
12

72
.0

Se
p

86
42

7.
7

30
3.

0
99

90
.0

30
0.

0
31

96
8.

8
80

.0
11

04
1.

6
90

.0
12

53
.0

To
ta

l
79

28
58

.5
91

04
2.

2
52

84
06

.3
14

73
79

.2
12

32
3.

0
-

f-' 0\ 0\

En
er

gy
in

Mw
h

an
d

re
le

as
es

in
Ka

f.
De

lt
a

re
le

as
es

ar
e

th
e

su
m

of
Ke

sw
ic

k,
Na

to
ma

,a
nd

Tu
ll

oc
k

re
le

as
es

.
Sp

il
la

ge
sa

t
Le

wi
st

on
an

d
Wh

is
ke

yt
ow

nt
o

sa
ti

sf
yf

is
h

re
qu

ir
em

en
ts

ar
e

as
gi

ve
n

in
Ta

bl
e

5.
4.

To
ta

l
an

nu
al

en
er

gy
eq

ua
ls

7,
35

1,
69

1.
7M

wh
.



167

sequentially by the POA.
problems.

It was found that an optimal release policy is achieved by

releasing less water than the maximum possible penstock capacity.

Because hydropower production depends on the storage level (the larger

the head, the greater the energy production for a given discharge), an

optimal release policy is a feasible tradeoff point between a high head

and a small release and a low head and a large release. Such a tradeoff

This is also common in convex quadratic

point is the optimal solution given by the POA. Because the power

installations in the NCVP are of the high-head type, except Nimbus (at
Natoma) and Keswick, the tradeoff point is shifted towards a relatively

high head with a moderate discharge. Figure 6.1 shows a plot of energy

production vs. release for Folsom reservoir. Ths plot was developed by

assuming an initial reservoir storage of 800 Kaf and by releasing a

constant amount of water until the storage reached 200 Kaf. Similar

energy vs. release relations can be developed for the other reservoirs.

If I in addition to hydropower, other benefits of water to downstream

users would have been included in the energy vs. release relation, then

it is reasonable to expect larger releases. Rows of Tables 6.17 and

6.19 corresponding to Clair Engle reservoir illustrate that releases are

relatively moderate as:compared to the total penstock capacity of the
reservoir given in Table 5.2.

It is evident from the results in Tables 6.17 and 6.19 that all

rel~ases are passed through the penstocks, and spillages do not occur.

That presumes, of course, that all the power plants are in operation

100 percent of the time (an optimistic presumption). In practice, idle

power installations can be included in the model by varying penstock
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Fig. 6. I Typical energy vs. release curve (developed by using Folsom

reservoir data).
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capacity in the constraint set, as required by operational conditions.

The point is that if conditions were ideal, Tables 6.16-6.19 would

provide two alternative optimal ways to operate the system. That

establishes an upper bound in the performance of the system (as measured

by power generation) towards which any adopted optimal policy would be
aimed.

Tables 6.20-6.23 show optimal strategies for average-flow year

1979-80. Although the solutions are different for initial policies I

and II, they yield the same total energy for the year. Inflow during

1979-80 is greater than in average-flow year 1974-75 and consequently,
total energy production is also greater in 1979-80 (compare Tables 6.21

and 6.23 with Tables 6.17 and 6.19). Results in Tables 6.21 and 6.23

also show that spillages occured at Lake Natoma and Tullock when annual

inflows increased from 1206 Kaf in 1974-75 to 1734 Kaf in 1979-80.

Figure 6.2 shows a graphical relation of total annual inflow and total
annual energy for the system.

For water year 1975-76 with below-average streamflows, initial

policies I and II are near optimal policies. Because of tight feasible-

region conditions, the benefits from running the optimization model are

marginal. Initial policies I and II yield the same optimal state and

release policies. Tables 6.24 and 6.25 show the optimal end-of-month

storages and releases resulting from initial policy I. The gain in

energy production associated with the optimal policies relative to the

energy production associated with both initial policies I and II is
about 1 percent.

From the results in Tables 6.16-6.25 it is evident that the optimal

state trajectories for the smaller reservoirs are to keep them full all
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Fig. 6.2 Total annual energy vs. total annual inflow for the NCVP.



Ta
bl

e
6.

24
.

Op
ti

ma
l

St
at

e
Tr

aj
ec

to
ry

Co
rr

es
po

nd
in

gt
o

In
it

ia
lP

ol
ic

ie
sI

an
d

II
,

19
75

-7
6.

Mo
nt

h
Cl

ai
r

En
gl

e
Le

wi
st

on
Wh

is
ke

yt
ow

n
Sh

as
ta

Ke
sw

ic
k

Fo
ls

om
Na

to
ma

Ne
w

Me
lo

ne
s

Tu
ll

oc
k

Oc
t

13
58

.0
14

.7
24

1.
0

27
55

.0
23

.8
61

7.
0

8.
8

99
5.

0
57

.0
No

v
12

90
.7

14
.7

24
1.

0
27

81
.0

23
.8

64
2.

0
8.

8
97

0.
0

57
.0

De
c

12
49

.4
14

.7
24

1.
0

27
78

.0
23

.8
63

6.
0

8.
8

95
7.

0
57

.0
Ja

n
12

13
.4

14
.7

24
1.

0
27

72
.0

23
.8

65
2.

0
8.

8
95

1.
0

57
.0

Fe
b

11
57

.4
14

.7
24

1.
0

27
54

.0
23

.8
65

2.
0

8.
8

94
4.

0
57

.0
Ma

r
11

23
.1

14
.7

24
1.

0
28

20
.0

23
.8

68
6.

0
8.

8
93

4.
0

57
.0

Ap
r

11
08

.8
14

.7
24

1.
0

29
56

.0
23

.8
74

0.
0

8.
8

90
5.

0
57

.0
l-'

11
46

.5
14

.7
24

1.
0

30
47

.0
23

.8
72

3.
0

8.
8

81
9.

0
57

.0
-..

.)
Ma

y
-..

.)

Ju
n

11
64

.5
14

.7
24

1.
0

30
52

.0
23

.8
71

2.
0

8.
8

72
1.

0
57

.0

Ju
l

10
05

.5
14

.7
24

1.
0

29
52

.0
23

.8
65

4.
0

8.
8

62
1.

0
57

.0

Au
g

88
4.

0
14

.7
24

1.
0

26
22

.5
23

.8
61

7.
0

8.
8

52
1.

0
57

.0

Se
p

80
2.

0
14

.7
24

1.
0

24
25

.0
23

.8
58

3.
0

8.
8

42
1.

0
57

.0

Oc
t

71
3.

0
14

.7
24

1.
0

18
66

.0
23

.8
55

8.
0

8.
8

32
1.

0
57

.0

St
or

ag
es

in
Ka

f.



Ta
bl

e
6.

25
.

Op
ti

ma
l

En
er

gy
Pr

od
uc

ti
on

,R
el

ea
se

Po
li

cy
;

an
d

De
lt

a
Re

le
as

es
Co

rr
es

po
nd

in
gt

o
In

it
ia

l

Po
li

ci
es

I
an

d
II

,
19

75
-7

6•

.C
la

ir
En

gl
e

Le
wi

st
on

Wh
is

ke
yt

ow
n

.S
ha

st
a

Ke
sw

ic
k

Mo
nt

h
I En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

Oc
t

I
29

88
2.

4
89

.3
41

94
0.

8
71

.3
45

33
6.

9
80

.3
10

85
64

.5
30

0.
0

35
97

6.
4

38
0.

3

No
v

I
29

46
6.

3
89

.3
41

94
0.

8
71

.3
44

77
2.

3
79

.3
10

87
23

.9
30

0.
0

35
88

1.
8

37
9.

3

De
c

I
30

05
2.

2
92

.0
43

52
9.

0
74

.0
43

47
3.

7
77

.0
10

86
61

.5
30

0.
0

35
66

4.
2

37
7.

0

Ja
n

I
29

04
3.

7
90

.0
42

35
2.

6
72

.0
43

47
3.

7
77

.0
10

84
95

.2
30

0.
0

35
66

4.
2

37
7.

0

Fe
b

I
28

47
1.

8
89

.3
41

94
0.

8
71

.3
47

59
5.

3
84

.3
10

88
27

.8
30

0.
0

36
35

4.
8

38
4.

3

Ma
r

I
28

28
5.

6
89

.3
41

94
0.

8
71

.3
48

15
9.

9
85

.3
11

02
27

.7
30

0.
0

36
44

9.
4

38
5.

3
t-'

Ap
r

I
28

37
5.

3
89

.3
41

94
0.

8
71

.3
52

67
6.

6
93

.3
11

18
00

.8
30

0.
0

37
20

6.
2

39
3.

3
" C/O

Ma
y

50
90

2.
6

15
9.

0
82

94
0.

4
.1

41
.0

81
30

1.
5

14
4.

0
11

24
66

.1
30

0.
0

42
00

2.
4

44
4.

0

Ju
n

65
64

5.
4

20
9.

0
10

70
57

.8
18

2.
0

10
55

79
.1

18
7.

0
12

07
52

.3
32

4.
0

48
34

0.
6

51
1.

0

Ju
l

I
43

34
5.

5
14

3.
5

66
76

4.
1

11
3.

5
66

33
9.

3
ll

7.
5

19
75

28
.8

54
4.

5
62

62
5.

2
66

2.
0

Au
g

29
62

6.
3

10
1.

0
41

76
4.

3
71

.0
43

47
3.

7
77

.0
15

61
91

.1
44

5.
5

49
42

8.
5

52
2.

5

Se
p

28
31

3.
4

99
.0

42
35

2.
6

72
.0

43
47

3.
7

77
.0

26
18

34
.0

78
6.

0
81

63
9.

8
86

3.
0

To
ta

l
42

14
10

.5
63

64
64

.8
66

56
56

.3
16

14
07

3.
6

53
72

33
.5



Ta
bl

e
6.

25
.

(c
on

ti
nu

ed
)

Fo
ls

om
Na

to
ma

Ne
w

Me
lo

ne
s

Tu
ll

oc
k

De
lt

a
Ho

nt
h

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

En
er

gy
Re

le
as

e
En

er
gy

Re
le

as
e

Re
le

as
e

-
Oc

t
27

65
4.

0
10

0.
0

32
30

.1
97

.0
19

44
2.

4
50

.0
59

01
.2

50
.0

52
7.

3
-

No
v

27
76

8.
0

10
0.

0
32

30
.1

97
.0

19
32

5.
5

50
.0

59
01

.2
50

.0
52

6.
3

De
c

27
82

8.
0

10
0.

0
32

30
.1

97
.0

19
26

7.
1

50
.0

59
01

.2
50

.0
52

4.
0

Ja
n

27
92

4.
0

10
0.

0
32

30
.1

97
.0

19
22

7.
1

50
.0

59
01

.2
50

.0
52

4.
0

Fe
b

28
12

8.
0

10
0.

0
32

30
.1

97
.0

19
17

4.
8

50
.0

59
01

.2
50

.0
53

1.
3

Ma
r

28
65

6.
0

10
0.

0
32

30
.1

97
.0

19
05

4.
9

50
.0

59
01

.2
50

.0
53

2.
3

Ap
r

28
87

8.
0

10
0.

0
32

30
.1

97
.0

18
70

1.
3

50
.0

59
01

.2
50

.0
54

0.
3

Ha
y

28
71

0.
0

10
0.

0
32

30
.1

97
.0

18
13

5.
5

50
.0

59
01

.2
50

.0
59

1.
3

Ju
n

28
29

6.
0

10
0.

0
32

30
.1

97
.0

17
52

6.
7

50
.0

59
01

.2
50

.0
65

8.
0

Ju
l

27
72

6.
0

10
0.

0
32

30
.1

97
.0

16
91

1.
6

50
.0

59
01

.2
50

.0
80

9.
0

Au
g

27
30

0.
0

10
0.

0
32

30
.1

97
.0

16
29

6.
7

50
.0

59
01

.2
50

.0
66

9.
5

Se
p

26
94

6.
0

10
0.

0
32

30
.1

97
.0

15
68

1.
7

50
.0

59
01

.2
50

.0
10

10
.0

To
ta

l
33

58
14

.0
38

76
1.

2
21

87
45

.3
70

81
4.

4
74

43
.3

t-' "'.0

En
er

gy
in

Mw
h

an
d

re
le

as
es

in
Ka

f.
De

lt
a

re
le

as
es

ar
e

th
e

su
m

of
Ke

sw
ic

k.
Na

to
ma

,
an

d
Tu

ll
oc

k
re

le
as

es
.

Sp
il

la
ge

s
at

Le
wi

st
on

an
d

Wh
is

ke
yt

ow
n

to
sa

ti
sf

y
fi

sh
re

qu
ir

em
en

ts
ar

e
as

gi
ve

n
in

Ta
bl

e
5.

4.
To

ta
l

an
nu

al
en

er
gy

eq
ua

ls
4,

53
8,

97
3.

6M
wh

.



180

year. That stems from the ratio of the capacities of the major reser-

voirs to their corresponding downstream regulating reservoirs. The

largest capacity ratio of the system is 241/2448 ~ 10%, corresponding to

Clair Engle and Whiskeytown reservoirs. When a capacity ratio becomes

less than the largest capacity ratio of the system, all the state
variables corresponding to downstream, smaller, regulating reservoirs

can be treated as constant and equal to the maximum capacity of the

regulating reservoirs. Those nodes in the network can thus be treated
as transmission points only. In that manner, the optimization model
would be considerably simplified, as shown in Chapter 7. The number of
state variables in the NCVP system would be reduced from nine to four:

Clair Engle, Shasta, Folsom, and New Melones. Care must be taken in

reformulating the model in terms of the reduced number of state

variables because the constraints that hold for the operation of the

smaller reservoirs must still be satisfied. For example, if constraints

representing penstock and spillage capacities are not observed, releases

from Shasta reservoir could wash away Keswick reservoir.

Tables 6.26 and 6.27 show the optimal strategies for above-average

flow year 1973-74. Notice that substantial spillage occurs in the

optimal release policies. Also, the higher storage levels and greater

releases that Occur in this year result in an increased total energy

production, as shown in Fig. 6.2. The energy vs. volume of inflow

curve, a fairly straight curve, is applicable to the range of inflow

volumes depicted in Fig. 6.2. For total annual inflow volumes smaller

than 6 Kaf or greater than 22 Kaf , the performance characteristics of

the plant installations would deviate the curve from a straight line.
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Table 6.28 summarizes the energy production levels obtained for
water year 1979-80. The ratio of actual energy (E )a and maximized
energy (E )m varies from 29 percent at New Melones Power Plant to
72 percent at Shasta Power Plant. Those ratios should be interpreted as

an indication of the opportunity that exists to improve energy genera-

tion rather than as a true measure of the suboptimality of actual

policies. That is because actual operation of a power plant considers

idle time due to maintenance and breakdowns, which according to some

studies (e.g., Tudor Engineering Co., 1980) varies from 10 to 40 percent

of the total 8760 hours per year. It was not possible to model power
installation failures due to (i) the randomness of their occurrence and

cause, (ii) the time that the breakdowns last, and (iii) the varying

effect of power plant halts in the integrated energy network. Poor and

limited records on past failures add to the difficulty of including

failures into the optimization model. During idle time, releases are

merely spillage and energy generation does not occur. For example, at

New Melones there were three months of complete halt in the operation of

the power plant and, in addition, legal battles kept the reservoir from
being filled completely, which also affected the actual power production
adversely. Recall that the optimized results were obtained on the

assumption that the plants were on-line 100 percent of the time, which

is the ideal situation. Thus, uncertain factors that affect the opera-

tion of the power plants (e.g., failures, repairs, maintenance, and even

institutional constraints) make practically impossible to assess the
true state of subutilization of the system. By assuming that the E IEa m
ratio is a reasonable estimate of the annual availability factor (the
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ratio of the number of hours a power plant is available for actual

operation to the 8760 hours in a year), an overall ratio E /E = 5.2/a m
8.077 ;:;;;0.64 is obtained. Considering that a typical annual availa-
bility factor is about 0.85 (Tudor Engineering Co., 1980), a value of

E IE ;:;;;0.64 would imply a potential increase of up to 33 percent in thea m
annual energy production of the system. For the actual annual energy

produced during average-flow year 1979-80 (5.2 xl06 Mwh from Table 6.28)
6that would mean potentially a maximum additional 1.9 x 10 Mwh.

Benefits of the optimization model can also be measured in terms of

increased water deliveries to downstream users. For example, the Delta
requires a delivery of 3850 Kaf of water per year. Optimal release
policies in Table 6.21 indicate a total annual release of 14773 Kaf ,

more than three times the required amount. For May-August, when most

agricultural activities take place, additional water could be supplied
for leaching and crop-growing purposes. The Delta requirements for
May-August are about 2698 Ka f (see Table 5.4). For the same period,

optimal releases indicate that 4813 Kaf were delivered in 1979-80. This

suggests the possibility of a conjunctive use of surface water and
groundwater reservoirs. Also, with increased deliveries, cultivated
areas could be expanded or better leaching of salts might be achieved,

resulting in an expanded economic output. Fish spawning, water quality,

and navigation would also benefit from increased water deliveries.

Further insight into the differences between actual operation

pol~cies and those resulting from the optimization model can be gained
from Figs. 6.3 and 6.4. Figure 6.3 shows actual and optimal state
trajectories (for policies I and II) for Shasta reservoir. It is
evident that SUbstantially smaller storages are maintained from November
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Fig. 6.3 Operation of Shasta reservoir (water year 1979-80).
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to February in the optimal policies. That is accomplished by releasing

large volumes of water through the penstocks, resulting in greater

available flood control storages than in the actual operation. Thus,

the level of energy generation during November-February is higher with

the optimal trajectory because the releases are routed through the
penstocks at a larger magnitude relative to the actual operation. Also,

when the high inflows of January-April occur, the actual operation

follows the flood control regulations by spilling large volumes of water

because the empty volume in the flood control pool is not as large as

that attained with the optimal state trajectories. In March-June, the
optimal state trajectories maintain higher storage elevations than in

the actual operation. That also results in increased energy production

because releases during March-June are set at penstock capacity (see

Tables 6.21 and 6.23), with higher storage levels resulting in increased

rates of energy generation. Also in March-June, releases from the

optimal state policies are at near penstock capacity because the inflows

during those months maintain the reservoir filled to near capacity and

releases must be kept high to avoid overtopping. The lower storages

during March-June in the actual operation are due to water spillages

that drive the reservoir level to lower stages. Those spillages reflect

the conservativeness of the actual operation policy. Because they

bypass the power plant, those spillages do not generate energy. In

contrast, the reliance of the optimal trajectories on greater penstock

outflows and smaller spillages reflects (i) the foreknowledge of future

inflows (within a certain range of error) that arises from streamflow

forecast and (ii) the knowledge that for a given release, the higher the
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storage level the higher the energy generation rate. During .Jul.y-

September, there is a steady drawdown of the reservoir storage level in

the actual and optimal policies, reflecting increased demands for water

and energy during the summer. Because the optimal state trajectories

start at a higher elevation in July and end at a slightly lower level in

September than the actual policy, the rate of water release during this

period is higher for the optimal policies. That results in a greater

generation of energy for the optimal policies in the summer as is

evident in Table 6.28. Optimal policies I and II follow a similar

pattern throughout the year and, as shown in Tables 6.21 and 6.23,

result in the same total energy production. The actual state trajectory

shows high peaks in January and February that are due to short-term

floods that raise the reservoir level for a few days. Those floods are

partly spilled and do not contribute to energy generation at the reser-

voir power plant. Those flood events are not captured with the monthly

optimization model. The model considers flood flows through a larger

total monthly inflow. That results in an overestimation of energy

production in the optimization model because flood inflow volumes are

distributed through the month, allowing to be handled as larger penstock

outflows rather than spillages.

Figure 6.4 shows the actual and optimal state trajectories for

Folsom reservoir. The operational features are similar to those d.i.s+

cussed earlier for Shasta reservoir (this is true also for the other two

major reservoirs, Clair Engle and NewMelones). The optimal policy

relies on large penstock releases in October-December, drawing the

storage level low and creating a large empty volume for high inflows

that occur from January to April. During January and February, the
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empty space created by the optimal releases of previous months is filled

by runoff. Penstock releases are kept at a maximum and some spillages

occur to avoid overtopping (see Tables 6.21 and 6.23). In March-June,

the reservoir is kept at near full capacity and releases through the

penstocks are at a maximum. That results in a head-release combination
that yi~lds the largest energy production rates. In contrast, the
actual policy maintains a steadier reservoir elevation through the year,

with large spillages used to accomodate the large winter floods (peaks

shown in Fig. 6.4 for January, February, and March). The main explana-

tion for the significant difference between the actual and optimal
trajectories during February-June is the conservative approach of the

NCVP management with regard to flood control. In essence, the managers

of the system preserve a substantial empty space to "prepare for the

worst.1I The optimization model does not take into account those

intangible considerations. Instead, for specified inflow forecasts,

constraints, and power function, the model chooses a state trajectory

that maximizes energy production. It must be stressed that the NCVP

management considers flood control as the major function of the reser-

voir system and that there are strong institutional pressures to avoid

any possible adverse outcome from unexpected floods. Thus, a comparison

of actual and model policies cannot be made solely on the basis of a

single parameter, namely energy production. Rather, the performance of

the operation model (as measured by power output) must be interpreted as

a possibility for improvement in a real-world context that involves many

factors not considered or reflected in the optimization model.
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CHAPTER 7

SYSTEM-DEPENDENT FEATURES: AN EXTENSION

OF THE OPTIMIZATION MODEL

This chapter develops alternative optimization models that take
advantage of system-dependent features. The models are simpler than

those presented in Chapter 5 because they have fewer decision variables.

In addition, the applicability of the full optimization model is

generalized to the case of nonlinear objective functi.on and/or con-

straints. The resulting model has the minimum possible number of

decision variables, thus being computationally efficient. Section 7.1
presents a full model that considers the simplifications introduced by

the existence of regulating reservoirs. Sections 7.2-7.4 develop linear

and quadratic models that constitute alternative simplifications of the

full model of Section 7.1. Sections 7.5 and 7.6 discuss the necessary

modifications to the model when the objective function and constraints,

respectively, are nonlinear. Section 7.7 gives a complete description

of a general model that handles nonlinearities in the objective function

and/or constraints and treats spillages explicitly as decision varia-

bles. The general model is of minimum dimensionality. Finally,

Section 7.8 shows the results of applying the general model of
Section 7.7 to the NCVP.

7.1 Modeling Regulating Reservoirs

This section develops a simplified full model in which regulating

reservoirs are treated in a special manner. Section 6.2 showed that

Lewiston, Whiskeytown, Keswick, Natoma, and Tullock reservoirs can be

treated as regulating units. Because those reservoirs can be maintained

full throughout the year, they act as transmission nodes in the system
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network. That implies that as many state variables as there are

regulating reservoirs in the system can be eliminated from the

optimization model, greatly simplifying the mathematical structure of
the model.

In general, for a large reservoir-small reservoir subsystem in
series, the adequacy of treating a small reservoir as a regulating unit

depends on the capacity ratio of the subsystem (see Section 6.2). The

largest capacity ratio in the NCVP corresponds to the Clair Engle-

Whiskeytown subsystem, with a value of 0.10. The development that
follows shows that the optimization model presented in Chapter 5 can be
modified to obtain a simpler but completely equivalent model. Although

the development is based on the NCVP system configuration, the princi-

pIes hold for any other reservoir network. The notation introduced in

Chapter 5 will also be used in this chapter.

Reservoir storages in the regulating reservoirs are set equal to

the reservoirs 1 maximum capacities (or any other feasible volume as long

as that volume is fixed). That implies X~ = 14.7, x~ = 241, x~ = 23.8,
7 9xt = 8.8, and xt = 57 Kaf for all t = 1, 2,..., 13. The upper indices

2, 3, 5, 7, and 9 refer to the number of the regulating reservoirs,

which are Lewiston, Whiskeytown, Keswick, Natoma, and Tullock,

respectively. Recall that the equation of continuity, eq, (5.48), is

!:!t (5.48)

To fix the storages at the regulating reservoirs as constant, a re-

ordering of the elements in the vectors of eq. (5.48) must, be made.

Vector ~t is partitioned as follows:



195

= [~~l)J!!t (2)
~t

(7.1)

in which the subvectors ~~1) and ~~2) contain the releases from the
nonregulating and regulating reservoirs, respectively. Similar

partitions can be made for vectors Et' ~t' ~t' and ~t+1' For vectors ~t
(2) (2)and ~t+1' the subvectors ~t and !t+1 contain fixed storages, which are

the capacities of the regulating reservoirs. It is convenient to use

elementary matrices (Householder, 1975) for the automatic implementation

of the reordering. For the NCVP, the elementary matrix S,

s =

1

1

(7.2)

1

1

1

1

1

1

1

reorders the vector !!tin the form

(7.3)

in which

(7.4)
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U(2) = ( 2
-t ut

Notice that u(1) contains
-t

Clair Engle (u!) , 4Shasta (ut), Folsom

(7.S)

the releases from the nonregulating reser-

voirs: 6(ut), and NewMelones

8
(Ut)· A similar reordering can be obtained by premultiplying vectors

!t' !t+1' !t' and ~t by S. Vector reordering also implies a rearrange-

ment of the matices in eq. (5.48),

-1

-1
-1

-1

r
1 = 1 -1 (7.6)

1 -1

1 1 -1
1 -1

1 -1

-1

-1

-1

-1

r2 = 1 -1 0.7)
-1

1 -1

1 -1
1 -1
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1

1

1

(7.8)

1l-c
t

4l-c t
6l-c
t

8l-c
t

1

1

1

1

1

1

(7.9)

1

In ~qs. (7.8) and (7.9), the ones along the diagonal indicate that

losses are considered only for the nonregulating reservoirs. Coeffi-

cients i
ct are as defined in eq. (5.40).

continuity can be written as

The reordered equation of
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1 1 (1) 2 2 (1) At+1 At+1 (1)r11 r12 .l:!t rll r12 It 11 12 ~t+1
= +

1 1 (2) 2 2 (2) At+1 At+1 (2)r21 r22 .l:!t r21 r22 It 21 22 ~t+1

t t (1) (1)
Bll B12 ~t v-t

(7.10)
t t (2) (2)

B21 B22 ~t ~t

in which ri21 2 At+l t are null matrices, and the partitionsr12, 12 ' and BI2
of the matrices are uniquely defined by the partitions of the respective

vectors. It is emphasized that !~~i = !~2) for all periods t. To sim-
(2) (2)plify the notation, both !t+I and!t will be denoted by k from now on.

The energy equation also needs to be modified. That is,

(1)
~t

(1)
!t+I

(1).l:!t

(7.11)
~1

+ +

(2)
~tk k

in which

T
~1 = 4a 6a (7.12)

7a (7.13)
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o

o

(7.14)

The coefficients in eqs. (7.12)-(7.14) are given by the values specified

right after eq. (5.46). For period t-1, Et_1 is similarly expressed by

setting t = t-1 in eq. (7.11). In the FOA, the objective function is

Et-1 + Et for each two-stage maximization. To develop an expression for

Et-1 + Et, it is necessary to substitute the continuity equation
[eq. (7.10)] into the energy equation for periods t (eq. (7.11)] and t-1

[eq. (7.11) with index t replaced by t-1]. Solving for ~t in eq. (7.10)
gives

1 1 -1 1 1 -1r11 r12 rll r12
~t = r2 r + At+1 ~t+1-t

1 1 1 1r21 r22 r21 r22

1 1 -1 1 1 -1rn r12 r
ll r12

Bt x - Yt-t
1 I 1 1r21 r22 r21 r22
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Ht+l 0 (1) t 0
(1)

11 ~t+l 1:111 ~t
=

Ht+l Ht+l k t t k21 22 - 1:121 1:122

N11 0 (1) (1)
Et ~t

(7.15 )

N21 N22
(2)

~t

Substitution of eq. (7.15) into Et [eq. (7.11)] and doing a similar

substitution of £t-l into Et-1 yields

(1) (1)
Et-l Et

Et-1 + Et = k2 + [ (1)T (2)T] + [ O)T (2)T] + T ~tt Et Et gt .9.t .8.
t

(2) (2)
Et-l Et

+ T G T T~t t ~t - !t B Et-l - !t B Et

(7.16)

in which
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k2 = T + T Bll) (Ht+1 _ w(l)) + T T Bll)t (~1 !t+1 11 !t+1 -t (~1 + ~t-1

(- t-1 - wO)) + T T (Ht+1 Ht+1 kMll x (~2 + !: B22) !t+1 + 22-t-1 -t-1 21 -

t k - (2) t t-1 t-1 k - w(2)) (7.17)- M22 ~t + H22 ~ - M21 x - M22-t-1 - -t-l

(7.18)

(7.19)

(7.20)

(7.21)

T ( T + T B ) Mt + ( T + T B ) Ht~t = - a1 !t+I 11 11 ~I ~t-l 11 11

( T kT B ) (Ht Mt) (t+l (1))TB+ ~2 + - 22 21 - 21 + Hll ~t+l - ~t 11

(7.22)

(7.23)
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(- ?L)I .•• ~

In eqs. (7.16)-(7.24), the superscript (1) on subvectors ~t-1' ~t' and

~t+1 has been dropped because those subvectors represent the storage
subvectors for the nonregulating reservoirs.

By defining an augmented vector e ,
-t

_at::: r
-t (7.25)

eq. (7.16) can be rewritten as

Et-1 + Et
T T T a + 8T HZ a + k2 (7.26)= [gt .9.t Etl -t -t t-t t

in which

G + GT B Bt t
H2 1 BT a a (7.27):::t 2

BT 0 a

where matrices (Gt + G~), B, and a have dimensions of 4 x 4, 4 x 9, and

9 x 9, respectively. By dropping the constant term k~ and by defining

E~]' eq. (7.26) can be expressed as

E E::: aT H2 AT et-1 + t -t t ~t + ~t -t (7.28)
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Equation (7.28) is the.objective function of the two-stage maximization,

a quadratic function on ~t' The dimension of the unknown vector ~t is

24 x 1, which is smaller than the analogous decision vector of
eq. (5.56).

The maximization of eq. (7.28) ~s carried out subject to the
following constraints:

Constraints on total releases (penstock plus spillage) for months t and
t-l. For month t,

~t + '!:t E ~t
[
!_kt+1] _ l'1t ["__Xkt]Ht+l + (I - N) Et - ~t E ~t (7.29 )

which can be expressed as

[
!t+1]Ht+l
k

I-N o ] ~t - M~~ - ~t E ~t (7.30)

in which Mt = [M~ Similarly, for month t-l,

o I-N] ~t + H~ ! - ~t-l E ~t-l (7.31)

h' h H = [Ht Ht]~n w ~c t 1 2'

Constraints on penstock releases for months t and t-l. For month t,

H
t+1 [

~_kt+l] - Mt x - Mt k - N r - w E U1 -t 2 -t -t -t (7.32)
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or in terms of ~t)

[
~t+l]Ht+l
k

-N 0] ~t - M~ k - ~t E ~t (7.33 )

Similarly, for month t-l,

-Nr -w EU-t-l -t-l -t-l (7.34 )

or, in terms of ~t

o -N] ~t + H~ k
[

X ]
-t-l

-M -w E U
-t -t-l

k

(7.35)

Constraints on Delta water deliveries for months t and t-l. For
month t)

T [~_kt+l]E Ht+l

T
- c ~t E Det (7.36)

or, in terms of Q,t'

T . It+
J

+ T [_litc Ht+l c
1

k

I-N ole - cT Mt k - cT w_
t

E De
t-t - 2- (7.37)

iri which cT ~ [0 0 0 a 1 0 1 0 1]. Similarly, for month t-1)
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T (!:!t-l+ Et-1) Det_1c E

T M{~:-J+ T Ht + T Ht k + cT (I-N) Et-1~ - c ~ 1 !t ~ 2

T E De
t
_1 (7.38)- c ~t-l

or, in terms of ~t'

(1)

T [Nt + cT lit k T ~t-l Tc 0 I-N] e ~ Mt - c ~t-l E Det_1 (7.39)1 -t - 2-
k

Constraints on spillage releases for months t and t-l. For month t ,

(7.40)

For month t-l,

(7.41)

Constraints on storage volumes for month t,

[I 0 0] ~t E ?;t (7.42)

in which !t-l and !t+l are fixed. In eqs. (7.29)-(7.42), ~t' ~t-l' ~t'

~t-l' Det, Det_I, gt' ~t-l' and ~t are feasible regions.
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In summary J when the storages at the regulating reservoirs are

constant, the Cfull) optimization model is (dropping the constant term
k2)
t

T 2 ATmaximize ~t Ht ~t + ~t ~t (7.43)

subject to

(7.44)

[I 0 OJ ~t+l fixed

in which

_Mt 1-N 01

Ht 0 1-N1

_Mt -N 01

Mt N 01

Ht 0 -N1

h2
_Ht 0 N1

(7.45 )At =
T t-c (-M I-N 0)- 1

-cTCHt 0 I-N)- 1

0 I 0

0 0 I

I 0 0

-I 0 0
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[
~_tk+~!l.t - Ht+! J t+ M2 k + w-t

w + Mt [~:J t
-t-l - H2 ! + ~t-l

U - Ht+1 r:+] + Mt k + w-t .max 2 - -t

-u + Ht+l [~:+1]_M;k + ~t-t,min

U - Ht k + M [~:-1] + w-t-l,max 2 - -t-l

Ht [~t-l]-u + k - M - w-t-l,min 2 k -t-l~2E.t = (7.46)

[~:+1]-De + T H _ cT Mt k - T
t ~ t+l - 2 c ~t

-De - T [~:-1]+ cT Ht k _ T
t-l £. Mt - 2- c ~t-l

~t

R-t-l

x .-t,m~n

-x-t,max
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The POA solves a sequence of problems of the form given by eqs. (7.43)

and (7.44) to obtain optimal operating policies for the NCVP. The model

given by eqs. (7.43) and (7.44) can be expressed in several simplified

forms by using a procedure analogous to that discussed in Section 5.3.

7.2 Simplified Linear Model

A simplified version of eqs. (7.43) and (7.44) is developed in

which (L) net reservoir losses are neglected and (Li ) spillages are

treated as excesses over penstock capacity. As will be shown, the
simplified model has only four unknown variables, reducing the (full)

optimization model to a simple sequence of LP problems.

If net reservoir losses are neglected and spillages are treated as

excesses over penstock capacity, then the equation of continuity can be
expressed as

1 1 (1) 2 2 (1) (1)
f11 f12 ~t f11 f12 E.t ~t+1 ~t ~t

= + oJ (7.47)
1 1 (2) 2 2 (2) (2)f21 f22 !:!'t f21 f22 E.t k k ~t

Equation (7.47) is obtained from eq. (7.10) by setting matrices At+1 and

Bt equal to identity matrices. It follows from eq. (7.47) that
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(1) lill 0 ~t+1 HIl 0~t ~t
=

(2)
H21 H22 k H21 H22 kE.t -

NIl 0
(1) (1)E.t ~t

N21 N22
(2) (2)

£t ~t

= H [!:+1
] _ H [:t] - N r - w (7.48)-t -t

where the matrices Hand N are time-independent. Substitution of

eq. (7.48), without the spillage terms because of assumption (ii), into
eq. (7.11) yields the linear objective function

(7.49)

in which

[ ( ) w(2) _ w(2)]• H21 ~t+1 - ~t-1 - -t-1 -t (7.50 )
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(7.51)

Associated with objective function is the following set of constraints:

Minimum releases for months t and t-l. For month t,

u ~ U . ;;;;>

-t -t,m:Ln (7.52)

or equivalently,

H
[
!_tk+l]HI !t <-- - H k - w - U2 .-t -t,m:Ln (7.53)

in which H = (HI' HZ)' For month t-I,

[

!t-l]- Hl !t ~ - H ~ + (7.54 )

Maximum releases for months t and t-l. For month t,

u ~ U ;;;;>
-t -t,max [!t+l]- H x ~ - H + H k + W +1 -t 2 - -t

k

U-t,max (7.55 )

For month t-l,
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[
~t-l]HI ~t ~ H - H2 k + w + U-t-I -t-l,max
k

(7.56)

Delta water requirements for months t and t-1. For month t,

Tk - c ~t - Det 0.57)

For month t-1,

T
~ - cT H [~:-1]+ T

k - T ~t-l - Det_1- c H !t £ H2 c- 1

where T (0 0 0 0 1 0 1 0 1).c =

(7.58)

Minimum storages for month t,

x ~ X ~ - x ~ - X
-t - -t,min -t - t,min (7.59 )

Maximum storages for month t,

~t ;;;;~t,max (7.60)

with ~t-1' ~t+l fixed. In eqs. (7.52)-(7.60), U ., Ut ,Det,-t,rn~n - ,max
Xt . , and Xt. are feasible sets. In swnmary, the two-stage maximi-- ,m~n - ,max
zation model is (dropping the constant term ct)

ATmaximize ~t !t (7.61)

subject to
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A _xt ~ b- -t (7.62)

in which

HI
-H

1

-H
1

A HIA = T (7.63 )
.s. HI

T-c H- 1

I
-I
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[
2!t

k
+lJ--u . + H H k - w-t,m~n 2 - -t

-u - H [2!tk-l]-t-l,min + H2 ~ - ~t-l

U - H [2!tk+l]+ H2 k + w-t,max -t

[
:!tk-l]~t-1,max + H - H2 ~ + ~t-l

H
[
:!kt+lJ-De + cT

t

[
:!tk-l] T T-De - cT H + _c H2 k - ct-l

T T£ H2 k - c

X-t,max

-x-t,min

~t

(7.64)

~t-l

Equation (7.62) is a compact form of eqs . (7.52)-(7.60). Because the

unknown vector !t is a four-dimensional vector, solution of egs. (7.61)

and (7.62) by the POA is computationally efficient.

7.3 Simplified Quadratic Modell

This section develops a simplified optimization model in which net

reservoir losses are taken into account but spillages are treated as

excesses over penstock capacity. The model is suitable for climatic

conditions in which evaporation becomes an important component of the



214

mass balance at the reservoir and/or geological features cause sub-

stantial seepage. The objective function for the two-stage maximization

becomes

(7.65)

in which k~, ~~, and Gt are given by eqs . (7.17), (7.22), and (7.23),

respectively. The set of constraints on the decision vector ~t of

eq. (7.65) is given by the following expressions:

Constraints on penstock releases for months t and t-1, respectively,

[~t+J_ Mt II kHt+l x - - w E U (7.66)
k 1 -t 2 - -t -t

-M [~:-1]+ Ht
~t + Ht k - w E U (7.67)t 1 2 -t-l -t-l

Constraints on Delta water deliveries for months t and t-1,

respectively,

T [~:+1] T Mt cT Mt k _ T (7.68).s. Ht+1 £. 1 x - c ~t E Det-t - 2-

T [~t-l1+ T Ht T Ht T (7.69 )-c M ~t + £. 2 k - c w E De
t
_
1- t

k J £. 1 -t-1
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Constraints on storage volumes for month t,

~t E ~t (7.70)

Because spillages are not part of the decision vector in the objective

function [eq. (7.65)J, constraints on spillages are not explicitly shown

in the set (7.66)-(7.70). However, the computer program must check

those spillages to ensure that they are within a feasible range when

they occur. In compact form, the model specified by eqs . (7.65)-(7.70)

can be expressed as (dropping the constant term k~)

maximize pT x + xT G x.2.t-t -t t-t (7.71)

subject to

3 ~3A x ;;;b_
tt -t (7.72)

in which

Mt
1

_Ht
1

_Mt
1

Ht
A3

1
= (7.73)t TMt£ 1

THt-c- 1

I

-I
L J
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[
~_tk+1]-u - ~t - Mt2! + Ht+l-t,min

[~_kt-J-u - w + Ht k - M-t-l,min -t 2 - t

[
~_tk+l]U + ~t + M2t!-Ht+l-t,max

[
~_tk-1JU + w - Ht k + Mt-t-l,max -t-1 2 -

[
~kt+l]-Det - cT ~t - £T M~ ! + £T Ht+l

[~_tk-lJ-De - cT w + cT Ht k - cT Mt-l -t-1 - 2 - - t

X-t,max

-x-t,min

(7.74)

Notice that the model expressed by eqs. (7.71) and (7.72) has only four
unknown variables. Equations (7.71) and (7.72) define a quadratic

linearly-constrained problem. Because the problem has only inequality

constraints I it is a linear complementarity problem (Fletcher, 1981),

which can be efficiently solved by simplex-like methods such as Dantzig-

Wolfe and Lemke algorithms. Care must be taken to ensure that Gt is

positive definite before applying these methods. If G is indefinite,t.
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other methods (e.g., the method used in Section 7.8) are more suitable.

The linear complementarity structure applies to the quadratic problems

developed in Section 5.3, the quadratic problem (7.43)-(7.44), and the

quadratic problem to be developed next.

7.4 Simplified Quadratic Model 2

If net reservoir losses are neglected but spillages are included as

part of the decision variables, then the objective function of the model
can be expressed as

maximize E 1 + Et- t (7.75)

in which .©.tis given by eq. (7.25), ct is given by eq. (7.50), £~ is
given by eq. (7.51), and

(7.76)

0.77)

r-N;~B"
-B
11

Nn -Bl~Nll1
A 1H = 0 (7.78)2

l-NilB1: 0 0 J
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where the null matrix in the upper left corner of eq. (7.78) is of

dimension 4 x 4 and the remaining null matrices are of dimension 9 x 9.

The set of constraints can be expressed as

(7.79)

[I 0 O]~t-l' [I 0 O]~t+l fixed

in which

-H I-N 01

HI 0 1-N
-H -N 01

HI N 0

HI 0 -N
.•.. -H 0 N

A~
1 (7.80)::::

T-c (-H I-N 0)- 1
T I-N)-c eH 0- I
0 I 0

0 0 I

I 0 0

-I 0 0
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H
[
~!!t+lJw + W + H2 k --t -t -

[
!t-1]~t-l + ~t-l - H2 k + H- k

[!_tk+l]U + ~t + H2 k - H-t,max

[
!_tk+1]-u - ~t - H2 k + H-t,min

.:Qt-1,max + ~t-1 - H2 !! + H

[~_tk-l]-u . - ~t-1 + H2 !! - H-t-l,m~n

T T T H [!_kt'+1]-Det - C ~t - £ H2! + £

T T £T H [~_tk-1]-Det_1 - £ ~t-l + £ H2!!-

R-t-l

X-t,max

-x-t,min

(7.81)
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.~where the components of At' which arise from the different constraints,

are ordered as in matrix A~ in eg. (7.45). The matrices in eq. (7.80)

are obtained from eq. (7.48), Le., eq. (7.48) can be rewritten as

(1) [!t+l] . [!tl _ [NIl o ][E~l~]~t
= [HI H2] - [HI H2]

N22• £?)(2)
N21~t k k- -

[~~I)J
H [!:+J - H [:t](2)

:: - N r - w (7.82)-t -t
~t

Solutions to problems (7.43)-(7.44), (7.61)-(7.62), (7.71)-(7.72), and

(7.75)-(7.79), are exactly the same as those of their corresponding ana-

logs (5.74)-(5.75), (5.94)-(5.95), (5.98)-(5.99), and (5.102)-(5.103).

The models in Sections 7.1-7.4 are more advantageous than those in

Section 5.3 because they have fewer decision variables and hence there

is a reduction in the computational burden.

7.5 Nonlinearity in the Energy Rate Equation

Development of the optimization models in Chapter 5 and Sec-

tions 7.1-7.4 assumed that the energy generation rate (~t) is a linear

fUnction of reservoir storage (xt). That assumption is reasonable for

the power plants in the NCVP system, in which yearly reservoir levels

commonly vary from about 30 to 80 percent of the reservoir capacity, as

can be observed in Figs. 5.7 - 5.13. For other reservoir systems in

which the energy rate curves depart considerably from a linear trace,

the problem can be approached as explained in this section.
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Assume that the energy rate for reservoir is a quadratic
function of the average reservoir storage,

~i = i + bi( i + i /2) i( i + i /2)2St a xt xt+1 + c xt Xt+l (7.83)

in which ai, bi, and ci are constant coefficients. In order to use the
earlier optimization models, it is necessary to linearize the expression

for ~~ about a value x~,o (which is a scalar variable). iThat is, xt 0,

the beginning of month t.
is the best guess of the optimum value of the storage for reservoir i at

iIt is reasonable to set x 0 equal to thet,
initial guess made to develop the initial policy. A first-order Taylor

series approximation about x! 0 in eq. (7.83) yields,

(7.84 )

in which

(7.85 )

(7.86)

The linearized energy rate equation [eq. (7.84)J would then be used to

form the objective function of the optimization model, which is con-

structed in the usual manner (see, e.g., Section 7.1).
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Suppose that the two-stage maximization problem has been set up and

eq. (7.84) has been used to form the objective function. From earlier

developments in Chapter 5 and Sections 7.1-7.4, the two-stage maximiza-
tion problem is

(7.87)

subject to

(7.88)

[I 0 OlQt_l' [I 0 O]Qt fixed

The problem represented by eqs. (7.87) and (7.88) could be solved by any

convenient quadratic or dynamic programming algorithm (see Section 7.8).

However, after a solution is obtained, it is not possible to advance to

the next two-stage maximization because ITthe vector Qt = (~t 1, £.t1,
£'t-I,I) that solves eqs. (7.87) and (7.88) depends on the assumed vector
~t 0 (the vector of values used to perform the expansion of the energy,
values for all the reservoirs) used earlier to linearize the rates of

. ti,energy generat~on St s. A second solution to the two-stage problem is

about ~t i ',
2Tsolution, ~t = (~t,2

then ca rried out by linearizing the energy rate equation [eq. (7.83)]

1in which ~t 1 is the leading subvector of Qt' The new,
would then be used to perform

another linearization of the energy rate equation about ~t 2 and the,
two-stage problem is solved again. The procedure is repeated until the

subvector xt . used to linearize the energy rate equation in the jth- ,J
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iteration is approximately equal to the solution subvector ~t,j+l
obtained in the jth solution of the two-stage problem. Upon convergence
of xt .- ,J

proceed to the solution of the two-stage problem corresponding to month

(the convergence criterion is chosen by the user), one can

t+l in the usual way of advance as done by the paA.

7.6 Nonlinearities in the Constraints

Nonlineari ties in the constraints of reservoir operation models

typically arise with respect to power generation and spillage releases.

Nonlinear constraints do not invalidate any of the earlier developments
in this chapter or in Chapter 5. In fact, the impact of nonlinear
constraints would be only in the formulation of the two-stage maximiza-

tion model, which now becomes (dropping constant terms in the objective
function)

(7.89 )

subject to

(7.90)

f. (et) E R., i::: 1, ... , r
1. - 1. (7.91)

[I 0 a]~t_l' [I 0 O]~t fixed

Equations (7.90) and (7.91) represent sets of linear and nonlinear

constraints, respectively. There are r nonlinear constraints in which
R. denotes the feasible sets.1. Equation (7.89) can be developed by
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linearizing the energy rate equation, as discussed in the previous
section. If the nonlinear constraints are linearized about values of

the decision vector ~t' then the presence of nonlinear constraints in

the optimization model would lead to an iterative solution of each

two-stage maximization problem. The presence of a nonlinear energy rate

function and/or nonlinear constraints converts the two-stage maximiza-

tion problems into nonlinear problems, as opposed to linear or quadratic
linearly-constrained problems. In principle, those nonlinear problems
could be solved directly by nonlinear methods (Fletcher, 1981;
McCormick, 1983; Wismer and Chattergy, 1983). However, due to the
large-scale nature of those problems, it is more convenient to recourse

to linearization of the objective function and/or constraints and solve

a larger number of simple problems, within the framework of the models
developed earlier.

Because spillage is the only source of nonlinearity in the

constraints of the optimization models considered in this report, a

procedure to handle nonlinearities in the spillage releases will be

discussed. The procedure is also applicable to other types of nonlinear
constraints. Typically, the flow over a spillway can be expressed as

(7.92)

in which oi ::::; a if hi < di 6i ::::; 1 if hi ~ di the index i denotes thet ,
t

,
ith .reservoir, coefficients Ni di and r/ constant, and hi is thec , , are t
reservoir water-SUrface elevation during month t. The introduction of

6i is necessary to prevent the computation of spillage whenever the

reservoir level h~ is below the spillway crest di. Equation (7.92) is
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used for the sake of argument; other functions can be handled similarly,

as will be explained later. A relation expressing h~ as a function of
istorage (xt) can be developed from reservoir storage-elevation data (see

Appendix A). Let that relation be

in which gi is any function that represents the fit between h~ and x~.

Substitution of eq. (7.93) into eq. (7.92) gives

(7.94 )

~ iLinearization of rt in eq. (7.94) about xt a (as in Section 7.5) yields,

(7.95)

in which

(7.96)

(7.97)
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For a system of reservoirs, constraints on spillages during month t can
be expressed as

0.98)

Tin which .£t= [,,1 ...2 ...n]. b ., hct ct ct ' n 1.S the num er of reservoi rs an t e

is a diagonal matrix whose (diagonal) elements are the d~ts,system, Dt
!t is the reservoir storage vector, and !S:tis the vector of feasible
values. Similarly, for month t-1,

(7.99)

Thus, the problem defined by eqs . (7.89)-(7.91) can now be stated in
terms of a set of linear constraints, i.e.,

T ~ AT (7 )maximize ~t Ht ~t + gt ~t .100

subject to

~l ~1
At !::t
Dt o Qt ~ !S:t- c (7.101)-t
D
t
_
1 0 R - c-t-l -t-l

[I o [I a

in which the null matrices in eq. (7.101) are of dimension n x 2n.
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The solution of the two-stage problem represented by eqs, (7.100)

and (7.101) is obtained in an iterative manner. The procedure is as
follows:

1) Set the iteration (counter) index k equal to zero. Expand the

energy rate equation and/or spillage constraints about !t,k [this has
been accomplished already by developing eqs. (7.100) and (7.101)J.

2) Solve the two-stage problem given by eqs. (7.100) and (7.101).

3) If the subvector !t k+l (which is part of the solution ~t k+l, ,
in Step 2) is approximately equal to !t k' proceed with the POA algo-,
rithm for the next (period t+1) two-stage problem. Otherwise linearize

the nonlinear components of the problem about !t k' increase the counter,
k by one, and go to Step 2.

Expressing spillages as a function of average storage results in an

underestimation of the volume of spilled water when there is a rapid

increase in the reservoir's water elevation during any month (from a

level below the spillway crest to another level above the spillway
crest). Similarly, an underestimation of the volume of spilled water

results when there is a sharp decline in the monthly water level of the

reservoir from a point above the spillway crest to another point below

the spillway crest. This underestimation of the volume of spilled water

could cause significant unbalances in the equation of continuity. That

can happen during periods of high inflows into the reservoir. Because

the duration of those high-inflow events is relatively short as compared

to one month, the natural way to overcome the underestimation of

spillage is to shorten the duration of the stages in the POA (e.g., from

one month to fifteen days for periods of high inflows only). The POA

algorithm does not require any modification to handle variable-duration
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stages, except for the way in which the input data are prepared.

Finally, for reservoirs with large surface areas (as in Shasta, Folsom,

Clair Engle, and New Melones), high-inflow volumes result in moderate

increases in water level elevations, thus reducing the likelihood of

inaccurate spillage computation.

The next section illustrates the application of the concepts in

Sections 7.5 and 7.6 to the NCVP system.

7.7 A Full Model of Minimum Dimensionality

This section demonstrates that when the energy rates and spillages

are modeled as nonlinear expressions, the model represented by
eqs . (7.100) and (7.101) can be expressed as a quadratic linearly-

constrained model whose dimensionality (number of unknown variables) is

equal to the number of nonregulating reservoirs. The resulting
quadratic problem is the most general form of the reservoir operation

model that can be obtained because it accounts for nonlinearities in the

objective function and/or constraints, and optimizes both penstock and

spillage releases simultaneously and explicitly. The generalization of

the model results in a problem of minimum dimensionality (four dimen-
sions in the case of the NCVP).

Spillages for months t and t-l, respectively, can be expressed as

(1) Dt 0Et £t ~t
= +

(2)
K 0 0 kr-t· -

r(I) c Dt-1 0 ~t-1-t-1 -t-l
= +

(2)
K 0 0 kr-t-l -

(7.102)

(7.103)
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in which

c2(h2 _ 2
d2)11 fi

t

c3(h3 _
3

d3)11 03
t

c5(h~
5

K = _ d5)11 05 (7.104)

c7(h7 _ 7
d7)11 07t

c9(h~
9_ d9)11 09

where coefficients ~ic , Ili are.as defined in eq. (7.92) and £t' Dt,
£t-l' and Dt-1 are as defined in egs. (7.98) and (7.99), respectively.
P . [(0)(1) (0)2] f hi' d Lat iart i.t.Lons re er to t e nonregu atLng an regu at.i.ng

reservoir subvectors, respectively, and k is the subvector of (fixed)
235 7regulating reservoir storages whose components are Xt' Xt' Xt' Xt' and

9Xt' Those values were defined in Section 7.1.'
The continuity equation for months t and t-1, respectively, can be

expressed as

t 0 Dt 0[!t+! MIl !t £t !t
!!t= Ht+1 - N + - wt t -tk M21 M22 k K 0 0 k

At
0 A (1)

!t+1 MIl ~t ~t
= Ht+l At At ",(2) (7.105)

k M21 M22 k ~t
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o

k

o ~t-l

,,( 1) (1)
w ~t ~t-t

,,(2) = (2) + N 0.108)
w w K-t -t -

0.109)

o

,,(I ) (1)
~t-lw ~t-l-t-::l

,,(2) = (2) + N (7.110)
w ~t-l K-t-l

and Ht+l' Mt' Nt' and ~t are as defined in eq. (7.15).
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The.Tates of energy generation for months t and t-1, respectively,

are

...(1) At
0~t Bll ~t

tt = ...(2) + 0.111)
a 0 1322 k

...(1) At-I
0~t-l Ell ~t

tt-1 :::: + 0.112)...(2)
0 B22 ka -

in which

A(l)T ('1 A4 ...6 ...8) 0.113)a :::: at at at at-t

0.114)

5a 7a 0.115)

o

0.116)

o

o A8
bt-l

0.117)::::

o



2xt

3xt

k 5= xt

7xt

9xt
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(7.118)

(7.119)

where the i!'s and ~!_l's in eqs. (7.113) and (7.114), respectively, are
defined by

(7.120)

(7.121)
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The b~'S and b~_l's of eqs . (7.116) and (7.117), respectively, are

defined by

(7.122)

(7.123)

The and ic 's of eqs , (7.115), (7.118), and (7.120)-(7.123)

are defined in eg. (7.83). The x~'s in eqs , (7.118) and (7.119) are the

constant values of storage at the regulating reservoirs, whose values

were defined in Section 7.1.

From eqs , (7.105), (7.106), (7.111), and (7.112), the energy equa-

tion for the two-stage problem becomes

= tTt + t
T

~ ~t ~t-l ~t-l (7.124)

in which

k* = [_a(2)T+ kT B ] [Ht+1 Ht+1 k
t - 22 21 ~t+l + 22

+ lit k - Mt-1 Mt-1 k _ w(2)] + [A(1)T
22 21 ~t-l - 22 -t-l ~t

(7.125)
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a (1)T fl
-t 11

+ T CRt Ht+l)T _ A(I)T Rt + a~(I)THAt
!t+l 11 11 ~t 11 -t-l 11

(7.126)

(7.127)

The unknown vector x in eq. (7.124) is of dimension 4 x 1. The-t

constraints associated with eq. (7.124) are:

Constraints on total releases for months t and t-I. For month t,

~t + E.t~ ~t

;"t + tit [~:+J+ A=> ~ ~t k - Ht+I
AMI !t 2 ~t

in which

= [:t O]_[~!l o ]
A [ftt ftt]Mt = 1 2 At

o MZl M22

A _GtlA '"~t = ~t

(7.128)

(7.129)

(7.130)

where matrix Dt is defined by eq. (7.98), Mt by eq. (7.107), ~t by

eq. (7.108), and (E.~ !T) by eqs. (7.102) and (7.104), respectively.
For month t-1,
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~t At [!:-l] +
A

< W - k + Mt " (7.131)HI ~t = -t-I H2 ~t-1

in which

At
0 Dt-1 0HllA

[lit lit]A

(7.132)Ht == ;:; +1 2 At At
H21 H22 0 0

A
A

~t-l = A

W --t-1 (7.133)

A

where Dt-1 is defined by eq. (7.103), H
t

by eq. (7.106), and ~t-l by

eq. (7.110).

Constraints on maximum penstock releases for months t and t-l. For
month t,

!:!t~ U-t,max

* _Mt ~ u + Mt k - Ht+l [!:+l] + A

1 ~t -t,max 2 ~t

'in At [Mt At Forwhich HI = M2] • month t-l,1

(7.134)

u ~ U-t-l -t-l,max

~t At
~ HI ~t ~ U - H2 ~ + Mt-t-l,max

"-w-t-l (7.135 )
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Constraints on minimum penstock releases for month t and t-l. For
month t,

!:!'t f; U .-t,m~n

=> ~t ~ U . ~t k + Ht+l [ !:+1] .•..HI :!'t H2 ~ w-t,m~n -t (7.136)

For month t-l,

u f; U .-t-l -t,mln

HAt < U + HAtk - M- 1 :!'t~ --t-l,min 2 - t
A- w-t-l (7.137)

Constraints on Delta requirements for months t and t-l. For month t,

T ""- c ~t (7.138)

For month t~l,
T

£ (~t-l + Et-1) f; Det_1

=> T ~t ;;; -De + cT Ht k T [!t-,] T ~-c H ~t - c 1:1 - c w1 t-l - 2- - t -t-lk

in which T (0 0 0 0 1 0 1 0 1).c =

(7.139)
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Constraints on spillages for months t and t-1. For month t,

For month t-1,

r ~R :» r:-1] + [:-1 :] [:t] s R-t-1 - -t-1 -t-l

:» t:-j~ts R -e:-1]-t-1

Constraints on maximum and minimum storage releases for month t,

x ;;; X
-t -t ,max

-x ~ -X .
-t -t,m1.n

(7.140)

(7.141)

(7.142)

(7.143)

In compact form, the two-stage maximization model can be expressed as
(dropping the constant term k:)

maximize

subject to

~t-l' ~t+l fixed

(7.144)

(7.145 )



in which

~t
MI
'"At
HI
At-M
1

At
HI
At
MI
At-H
1

T :::'T-c M
J..J_ - 1
A~" = T ::::T-c H

- 1

Dt

0

Dt_I

0

I

-I
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(7.146)
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ittk [~:+1] ~W + - Ht+l + W-t 2 - -t

+ lit [~~-J~w +M + W-t-l 2 t -t-1

U . + titk - Ht+l [~~+1]+ W-t,max 2 - -t

U - H~ ~ + Mt [~~-1]+ W-t-l,max -t-l

-Ut . At [~:+J '"M2 ~ + Ht+l - w- ,mln -t

-U-t-l,min

T ;:.
- c w- -t

X-t,max
-x .-t,mln

(7.147)
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For the NCVP system, the dimensionality of the problem given by

eqs. (7.144) and (7.145) is four (i.e., there are four unknown varia-
b l.e s ) • For other systems, the dimensionality will be equal to the

number of nonregulating reservoirs. Because of the simple structure of

the problem (quadratic objective function and linear inequality con-

straints), reliable algorithms can be used to obtain a solution (Gill

and Murray, 1974, 1977).

When the problem represented by eqs. (7.144) and (7.145) is solved,
J_

the solution ~~,I is compared with ~t,O (the vector used to ~erform the
first linearization of the objective function and/or constraints). If

an adequate convergence criterion is satisfied, then advance to the next

two-stage maximization corresponding to period t+l. If convergence is

not attained, a new linearization is performed about ~t l' The,
resulting problem is solved and the convergence is checked to decide

whether to advance to the next two-step maximization or to keep solving

the current (period t) two-stage problem until convergence is obtained.

The model [eqs. (7.144) and (7.145)J should be used whenever

spillages can be expressed as function of storages because that leads to
a "f uII model" of very low dimensionality. If spillages cannot be
expressed as fUnction of storages (either those functions are not

available or it is not proper to model spillages as function of storages

only), then the "EuII modeLs" of Sections 5.3 and 7.1 are alternative

ways of modeling the reservoir system, at the expense of an increase in
the dimensionality of the problem.

The different two-stage maximization formulations developed in

Sections 7.1-7.4 and in this section can be used for different periods
interchangeably. The linear model of Section 7.2 may prove to be the

simplest model to use in the summer season. The full model presented in

this section is a likely choice to be used during flooding events.
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7.8 Application of General Nonlinear Model

The full model of minimum dimensionality developed in Section 7.7

[eqs. (7.144) and (7.145), which includes nonlinear energy generation

rates and spillages, is applied to the NCVP. Water year 1979-80 is

selected for the application with the purpose of comparing the results

with those shown in Figs. 6.3 and 6.4, obtained from the linear model of

Section 5.3 and from actual operation records.

Recall that the model obtained in Section 7.7 is

maximize i~T T * (7.144).9.t~t + ~t lit~t
~t

subject to

~k m·(
At ~t ~ £t (7.145)

~t-1 ' ~t+1 fixed

in which the decision vector ~t is a four-dimensional vector that

contains the storages of Clair Engle, Shasta, Folsom, and New Melones

stacked in that order. The constraint set was linearized and put into

the form of eq. (7.145). A linearization procedure was also used to

state eq. (7.144) as a quadratic function (see details in Sections 7.5-

7.7). Thus, the problem stated by eqs. (7.144)-(7.145) must be solved

iteratively as explained in Section 7.7. Before applying the gene-
ralized model, several tasks must be performed: (L) development of
nonlinear (quadratic) energy rates; (ii) development of spillage

equations; (iii) development of initial policies; and (iv) selection of

a suitable algorithm to solve the quadratic linearly-constrained problem
posed by eqs. (7.144)-(7.145).
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Energy Generation Rates

The motivation for developing quadratic functions for the energy

rate curves shown in Figs. 5.7-5.13 is to obtain a better fit throughout

the entire operation range as compared to the linear functions in

eqs. (5.1)-(5.9). Three of the energy rate curves remain linear, namely

those for Judge Francis Carr Power Plant (Fig. 5.3), Keswick, and

Nimbus, and no quadratic fUnctions need to be developed for those power

plants. By using the data displayed in Figs. 5.7-5.13, the following
energy rates are obtained:

Trinity (at Clair Engle Lake)

~T = 133.0 + 0.228 xT - 0.468 x 10-4 xi
2
r = 99.3%

(7.148)

Judge Francis Carr

~JFC = 606.3 - 0.254 Xw

r2 = 99.8%
(7.149)

Spring Creek
-3~SC = 445.0 + 0.738 Xw - 1.10 x 10

r2 = 99.8%

2x
w (7.150)

Shasta

~S = 169.0 + 0.107 Xs - 0.115 x 10-4 x~
2
r = 99.6%

(7.151)
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Keswick

£K ;;:;80.3 + 0.6 xK
2r ;;:;95.8%

(7.152)

Folsom

£F ;;:;171.0 + 0.265 xF - 0.130 x 10-3 i:
2r ;;:;98.7%

(7.153)

Nimbus

£N ;::;26.3 + 0.80 xN
2r ;;:;91.0%

(7.154)

New Melones

£NM ;::;169.0 + 0.275 xNM - 0.479 x 10-4 x~
r2 = 98.6%

(7.155)

Tullock
t -3sTU;::;63.4 + 1.020 xTU - 1.37 x 10 xTU
r2 ;;:;99.9%

0.156)

In eq. (7.148), £T is the energy rate in MWh/Kaf for Trinity Power Plant

(at Clair Engle Lake), XT is the average reservoir storage in Kaf during

a specified period, and r2 is the adjusted regression correlation

coefficient. Other terms in eqs. (7.149)-(7.156) are defined similarly.

In eq. (7.149), the energy rate depends on the storage of the downstream

Whiskeytown reservoir. This can be explained by realizing that the

storage at Lewiston is fixed and the energy gradient line from the
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intake of Clear Creek tunnel to its discharging point (at Whiskeytown)

is determined by the reservoir elevation at Whiskeytown. Due to the

larger size of Whiskeytown as compared to Lewiston (241 and 14.7 Kaf ,

respectively), it is likely that (slight) changes in elevations would

Occur at Whiskeytown and those changes would determine the differential

head at J. F. Carr Power Plant and consequently its energy production

rate. In fact, that is the case and it explains the negative slope in

eq. (7.149), which is consistent with Fig. 5.8. Since it was found
earlier (Chapter 6) that Whiskeytown acts as a regulating reservoir,

then for all practical purposes the storage at Whiskeytown (xW) can be
assumed fixed and equal to the average storage (xW)' That is the reason

for using xw' rather than xw' in eqs. (7.149) and (7.150). Also, due to

the regulating nature of Keswick, Lake Natoma (where Nimbus Power Plant

is located), and Tullock, the (fixed) storages equal the average

storages and thus the overbar has been omitted in eqs. (7.152), (7.154),

and (7.156). In addition, it is evident that eqs. (7.149), (7.152), and

(7.154) are linear functions (actual operation records yielded linear

relations), as can be appreciated for J. F. Carr Power Plant in

Fig. 5.3; for Keswick and Nimbus, the development of the linear curves

was discussed briefly in Section 5.1. It is clear that the approach
developed in Sections 7.5-7.7 can handle a combination of linear and
nonlinear energy rate functions. The (fixed) storage values for xw' xK'
xN' and given by 3 5 7 and 9 respectively, inxTU are xt' Xt' Xt' xt'
Section 7.1. Notice that the storage at Lewiston has no role in the

expression for energy rates, yet it must be included in the continuity
equation. That leads to minor changes in eqs. (7.144)- (7.145) which
will be considered later in this subsection.
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To set up the system energy production rate in matrix form, an

expression of the form of eq. (7.84) is necessary for each power plant.

By using eqs. (7.148)-(7.156), it is straightforward to develop an

expression of the form of eq. (7.84) for any of the power plants. For

example, for i = 1 (i.e., at Trinity),

~1 ~ ,,1+ £1 1 (7.157)t at t xt

in which

.•.1 133.0 + 0.228 1 + 1 ) 0.468 x 10-4 1 1 2at = (xt ° (x 0 + xt+1)2 , Xt+l 4 t,

_ [°.2228_ 0.468 x 10-4 1 1 ] 12 (xt,o + xt+1) xt,O (7.158)

0.468 x 10-4 1 + 1 )2 (xt,O xt+1 (7.159)

The numerical values appearing in eqs. (7.158) and (7.159) were obtained

from eq. (7.148) and were substituted appropriately by an inspection of

the terms defined in eqs. (7.85) and (7.86). Equation (7.84) for the

case of a linear energy rate [say, eq. (7.149), corresponding to
J. F. Carr Power Plant] is given by

(7.160)

in which a2 = 606.3 and b2 = -0.254. When the energy rate is quadratic

and the reservoir storage is fixed (e.g., at Tullock), eq. (7.84) takes
the form
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(7,161)

9 ~9 9 9 9in which a = 63.4 and b is set equal to b + c xt' i.e.,

b9 = 1.020 - 1.37 x 10-3 x~ (7.162)

The corresponding form of eq. (7.84) for any other power plant can be

developed along the same lines as done in eqs. (7.157)-(7.162).

The discussion on energy rates is completed by providing the
vector-matrix expression of the energy rates for months t and t - 1

[similar to eqs. (7.111) and (7.112), respectively] that are needed in

the two-stage problem. From the development in Section 7.7 that led to

eq. (7.111) and from earlier discussion in this subsection, it follows
that for month t

(7.163)

in which

(1)T
~t = (7.164)

5a 7a a9) = (606.3, 445.0, 80.3, 26.3, 63.4) (7.165)

~1= diag (bt (7.166)
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-3 3diag (-0.254, 0.738 - 1.10 x 10 xt' 0.60, 0.80, 1.020

-3 9- 1.37 x 10 xt) (7.167)

(7.168)

In eq. (7.164), the components a! are given by eq. (7.120). In

eq. (7.166), the symbol diag (', ', ... , .) denotes a diagonal matrix

with elements (',', ... , .), which in this case are given by

eq. (7.122). For month t-1, instead of eqs. (7.164) and (7.166), use

eqs. (7.121) and (7.123), respectively; all other terms are the same as

for eq. (7.163). It should be evident the differences between

(i)

(7.n1) and

2xt plays no

(7.163). Such differences arise from several facts:eq.

role in defining the energy rates in this section;

(ii) the energy rates are of both linear and quadratic types herein,

whereas in Section 7.7 the energy rates were assumed to be quadratic;

and (iii) linearization of energy equations is limited to a few

reservoirs (Clair Engle, Shasta, Folsom, and NewMelones) herein,

whereas in Section 7.7 linearization was performed for all the power

plants. Finally, for month t-l, ~t-l can be analogously developed by

shifting the time index backwards by 1.

Spillage Discharge Equations

Recall form eq. (7.92) that for the ith reservoir, the spillage

discharge as a function of reservoir elevation is

(7.92)
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with all terms already defined in eq. (7.92). To develop the spillway

discharge equations, use was made of the spillway discharge tables in

Appendix A. "Those tables contain discrete values of discharge for

various storage elevations and opening of gates. The spillway struc-

tures in some cases (e.g., Shasta) are not simple overflow structures

and thus the exponent ~ departs from its theoretical value of ~ :::1.5.

In other cases, as in Nimbus, the discharge is the result of a combined

underflow from radial gates and the action of a spillway structure

(gated spillways). For purely underflow gates, the theoretical exponent

~ is 0.5, but due to the more complicated design of the actual struc-
tures, ~ takes values either smaller or greater than 0.5. The reader is

referred to Appendix A for more details on spillway discharge.

The exponential interpolation of the spillway discharge tables

yielded the following equations (flows are in cfs and elevations are in
ft above mean sea level): "

Trinity (at Clair Engle reservoir)
Q ~ 781 (hI - 2370)1.29

t

r2 = 98.4%
(7.169)

Lewiston

Q ~ 412 (h~ - 1871)°·626

r2 :::99.8%
(7.170)

Equation (7.170) was developed for one of two gates with an opening of
2 ft.
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Whiskeytown
Q = 992 (h3 - 1208)1.52

t

r2 = 98.7%
(7.171)

Shasta
Q = 314 Ch~ - 1039)1.56

2
r = 99.9%

(7.172)

Equation (7.172) represents the discharge for one of three drum gates

operating at a setting in which the high elevation point of the gate is
at an elevation of 1039 ft.

Keswick
Q = 720 ChS - 547)°·436

t

r2 = 99.2%
(7.173)

Equation (7.173) gives the discharge for one of four gates operating at
an opening of 2 ft.

Folsom
Q = 242 (h6 _ 420)°·466

t

r2 = 99.9%
(7.174)

Equation (7.174) represents the discharge for one of eight gates

operating at a gate opening of 1 ft.
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Nimbus
Q = 437 (h7 - 110)°·317

t

r2 = 99.9%
(7.175)

Equation (7.175) gives the discharge for one of 18 gates operating at a
normal opening of 1 ft.

New Melones

Q = 420 (h8 - 1088)1.55t
2 = 99.6%r

(7.176)

Tullock

Q = 750
2

r

(h9 _ 495)0.478
t

= 95.0%
(7.177)

Equation (7.177) was obtained from data provided by the Oakdale

Irrigation District. Equations (7.169)-(7.177) need to be (i) converted

from cfs to acre-ft/month before they can be used in the development

that follows and (ii) expressed in terms of storage because the optimiza-

tion is expressed in terms of storage rather than elevation, as was

expressed in eq. (7.94). The spillage equations allow a better modeling

of spilled water if those expressions depend on forecast inflows, i.e.,

depending on the magnitude of the forecast inflow, the spillway dis-

charge equation will be based on a different gate opening. This implies

that in the programming of the spillway discharges, an equation should

be developed for each different gate setting for every reservoir that

has a gated spillway (all reservoirs except Trinity, Whiskeytown, and
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New Melones). That was done in this study, and thus eqs. (7.169)-

(7.177) are an example of one of the several sets of equations that were

used in the solution of the problem.

From the elevation-storage data of Appendix A, shapes of elevation

vs. storage curves were analyzed to determine appropriate interpolation
functions. The interval of interest is for the range of elevations

above the spillway crest, otherwise the spillage would be zero, which

means that only the shape of the elevation vs. storage at high stages is

of concern. Fortunately, from the perspective of numerical simplicity,

the plots were nearly straight lines for all but low elevations.

Figure 7.1 depicts an illustration in which the elevation-storage curve

for Clair Engle shows high nonlinearity for elevations below 2010 ft and

an almost perfect linear curve everywhere else. Similar behavior was

determined to exist in the other major reservoirs (Shasta, Folsom, and

New Melones) for which the elevation-storage curves are needed. A

similar pattern holds for the smaller reservoirs, but for those the

interest is centered at a single elevation because the storage is held

constant and there is no need for elevation-storage curves. The

fOllowing linear fUnctions were developed for the four major reservoirs:

Clair Engle

hI = 2142 + 0.0971 xl
2
r = 97.2%

(7.178)

Shasta
h4 = 871 + 0.0444 x4
2
r = 99.3%

(7.179)
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Fig. 7.1 Elevation vs. storage (Clair Engle reservoir).
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Folsom

h6 = 364 + 0.101 X6

2
r = 99.5%

(7.180)

New Melones

h
8 = 860 + 0.0945 x8

2
r = 99.5%

(7.181)

To complete the information regarding elevation vs. storage, elevations

in ft above mean sea level corresponding to constant storages at

Tullock 2Lewiston, Whiskeytown, Keswick, Natoma, and (xt::: 14.7,
3 5 _ 7 ::: 8.8, and 9 respectively)xt = 241, xt - 23.8, ~\ xt = 57.0 Kaf, are
1901.1, 1210.0, 587.4, 125.1, and 501.6 ft, respectively (from
elevation-storage data in Appendix A). Upon substitution of
eqs. (7.178)-(7.181) into eqs. (7.169), (7.172L 0.174), and (7.176),

respectively, and after subsequent linearization, the following
expressions are obtained:

Clair Engle
1 :.. ...1 + d1 1rt =: ct t xt (7.182)

in which

- d1Y-t~d 1 6
1

xt,O
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• [(2142 + 0.0971 (X!,O : X!+~) _ 2370]0.29 (0.0971) 61 (7.183)

0.184)

Shasta

(7.185)

in which

• [ 871 + 0.0444 C~,O : X~+I)) - 1039]°·56 (0.0444) 64 (7.186)
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=

(7.187)

Folsom

(7.188)

in which

6 6
= (242)[(364 + 0.101 (Xt,O: Xt+1)) _ 420JO.466.- X~,O (0.466)(242)

(7.189)
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= (0.466)(242)[(364 + 0.101 C~'O : X~+1))

- 420]-0.534 (0.101)l 06 (7.190)

New Melones

(7.191)

in which

= [~ ( X~,O +2X~+l)) J 1 55 8(420) 860 + 0.0945 ~ - 1088 . - xt 0 (1.55)(420),

(7.192)

= ( 55)(4 )[(860 0.0945 (
X~,O +2X~+l))1. 20 +

- 1088]°·55 (0.0945) 68 (7.193)
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1In eqs. (7.183) and (7.184), 0 = 1 if the reservoir elevation is above
the spillway crest 1and 0 = 0 otherwise; and x~ 0 is the value of,
storage about which the linearization is made. Similar definitions

apply to eqs. (7.186)-(7.187), (7.189)-(7.190), and (7.192)-(7.193).

The spillway discharge functions for the regulating reservoirs
[egs. (7.170), (7.171), (7.173), (7.175), and (7.177)] need not be

linearized, and together with eqs. (7.182), (7.185), (7.188), and

(7.191) can be used to form the (linear) spillage constraints in matrix

form as indicated by eqs. (7.102) and (7.103), without any modification
whatsoever.

After development of the energy and spillage equations, the two-

stage problem [eqs , (7.144) and (7.145)] must be modified to fit the

particular features of the actual system. It turns out that the only

modification is in the objective function, as was explained after
eq. (7.163). The corollary is that the constraint equation,
eg. (7.145), whose terms were given in eqs. (7.146) and (7.147), remains
unchanged. The objective function, eq. (7.144), takes the following
form:

E + E = t
T u + t

T u
t t-l ~t -t ~t-l -t-l

~t (7.194)

in which
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k~'~ = [!!.A*(2)T kA*T BA* J [Ht+1 Ht+l k _ MAt k _ A(2)
t + - 22 21 ~t+l + 22 22 ~t

(7.195)

**T.9. =

_ xT (S*t-I Mt-l)T _ w(I)T B*t-l
-t-l 11 11 -t-l 11 (7.196)

(7.197)

A-lt(l) A*(2) N*t A* A*
where!!.t '!!. ,BII, B22, and k were defined after eq. (7.163) and

all other terms were defined in Section 7.7. The final form of the

two-stage problem for the NCVP system is (dropping the constant term

(7.198)

subject to
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x x fixed-t-l' -t+l

where the decision (unknown) vector !t is of dimension four.

Ini tial Policies

To initiate the POA, a feasible initial policy is required.

Tables 7.1-7.4 show two different initial policies for water year

1979-80. Because the purpose is to compare the results obtained with

the linear and nonlinear models of Chapter 5 and Section 7.7, respec-

tively, the initial (!1) and ending (~13) storages are equal to those

used in Chapter 6. It can be seen in Tables 7.1-7.4 that the initial

release policies I and II are different; however, unlike the initial

policies of Chapter 6, they could not be made significantly distinct

because once the spillages are written as a function storage one loses

the freedom to manipulate them as decision variables. The motivation

behind the use of different initial policies is to test whether they

lead to the same optimal release policy or not. The development of the

initial policies was based on previous operation experience of the NCVP

and a trial-and-error approach to ensure feasibility.

Solution Algorithm

The master algorithm is the POA, which was described in

Section 4.8. The logic of the POA advances the approximate release

policies {!!~k)}, k::: 0, 1, ... , K, to an optimal policy {!!r~)} which

satisfies user-specified convergence tests. However, the POA assumes

that at every stage, the following two-stage (quadratic) problem is

solved:
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.Hrmaximize kt ~t (7.200)

subject to

J.-\" "thtc

A~n ~t ~ £t (7.201)
x x fixed-t-1' -t+1

The simple quadratic structure of the problem given by eqs. (7.200)

and (7.201) is misleading because, in general, the problem has an

indefinite Hessian matrix (Le., a matrix with positive and negative
eigenvalues). The matrix H:* is reconstructed at every step of the POA

iteration and it is not possible to ensure a priori whether the matrix

is indefinite or not. Thus, it would be inappropriate to apply simple

algorithms (e.g., Lemke's and principal pivoting) that are suitable to

solve the linear complementarity problem, which has a structure similar

to eqs. (7.200)-(7.201), because those algorithms are successful for

positive definite cases only. On the other hand, it is advisable to

take advantage of the quadratic linearly-constrained structure of

eqs. (7.200)-(7.201), rather than to recourse to the more complicated
nonlinear programming methods, which are computationally more
inefficient than quadratic programming (QP) algorithms. Moreover,
nonlinear methods do not achieve a solution in a finite number of steps

as do well designed QP methods, and usually suffer from serious ill-

con~itioning (see Fletcher, 1981, for an assessment of nonlinear
programming). It appears that the best method available to solve
eqs. (7.200)-(7.201) is the active set method as modified by Gill and

Murray (1974, 1977) to handle the general case of indefinite Hessian
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matrix. This study adopts the method presented by Gill and Murray
(1977). The reader is referred to that reference for a thorough

description of the method and its implementation. Also, Fletcher (1981)

gives an excellent exposition of the role of active set methods to solve
QP problems. In essence, at any iteration, the active set method
defines a set of constraints that are active or binding, and solves an

equality-constrained QP problem to obtain the longest feasible step

correction along a direction of negative curvature (Q(k)). At the new

~(k+l) v(k) + _~(k),iterate point, ~ u an analysis of Lagrange mUltipliers

tests whether convergence has been achieved, if not, the information
about 0 (k) and the values of the Lagrange multipliers determine a new

active set of constraints to initiate another iteration. In general
terms, the adopted QP algorithm consists of the following steps:
(i) determine an initial feasible point ~(1) and its corresponding set
of active constraints A (1) (from Section 8.4 of Fletcher, 1981);
(ii) solve an equality-constrained QP problem to determine the correc-

so (Gill and Murray, 1977) ; and
(iii) test for convergence: if all the Lagrange multipliers are ~ 0,

stop, otherwise define the new active set, increase the iteration

superscript by one, and go to step (ii) for the next iteration (Gill and
Murray, 1977) . This active set algorithm finds a solution to
egs. (7.200)-(7.201) in a finite number of steps, is stable numerically,

and uses previous information on any new iteration so as to keep the

com~utational burden as low as possible. The implementation of the FOA

with this method to solve the two-stage problems was carried over to

solve the full model described in Section 7.7. The results are given in

the next subsection. Appendix B includes the computer program used in
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the solution of the full model; the subroutine used to solve the

quadratic two-stage subproblems is part of this program.

Discussion of Results

The optimal state, release trajectories, and energy production for
initial policies I and II are shown in Tables 7.5-7.7 and 7.8-7.10,
respectively. Optimal policies I and II are clearly different except

for the subsystem New Melones-Tullock where initial policies I and II

yielded the same optimal release and state sequences. It is evident

that the regulating reservoirs (Lewiston, Whiskeytown, Keswick, Natoma,

and Tullock) show constant reservoir elevations as specified in the
development of the model in Section 7.7. Both solutions I and II
yielded the same volume of Delta releases as specified in Tables 7.7
and 7.8 (annual total Delta release = 14697 Kaf). The total annual
energy production (the value of the objective function) is almost the
same for policies I and II, 6 67.764 x 10 and 7.772 x 10 MWh, respec-
tively. For all practical purposes, it can be claimed that the two

alternative optimal policies produce' a comparable performance as
measured by energy production. Table 7.11 summarizes the results
obtained from the linear model of Section 5.3 (discussed in Chapter 6)

and the full model of Section 7.7. The linear model results in larger

Delta releases (14773 Kaf) than those obtained with the nonlinear model

(14697 Kaf, for both policies I and II) and also in larger annual energy
666production (8.077 10 MWh as compared to 7.764 x 10 and 7.772 x 10 MWh

for' the two optimal policies of the full model). The larger Delta

releases is an intuitive result because the linear model treats spil-

lages as decision variables whereas the nonlinear model considers them

as functions of storage and the degree of freedom available with respect
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to setting spillage values (as was done in the linear case) is lost.

Clearly) the nonrecoverable spillages occur at Lewiston and Whiskeytown

only because spillages at other reservoirs return to the rivers that

discharge in the Delta. The increased energy achieved with the linear

model has a more subtle explanation. First, Figures 7.2 and 7.3 show

the state trajectories at Shasta and Folsom for the different models.

It is evident that nonlinear policies I and II follow a pattern similar

to the linear policy but, overall, maintain a lower storage elevation.

That is explained by the fact that when spillages are functions of

storage, there is a penalty for achieving higher levels because the

spilled (non-energy producing) water increases exponentially with the

differential of reservoir elevation minus spillway crest elevation.

Second) it can be expected that penstock releases will increase (in the

nonlinear model) to keep reservoir levels from reaching such wasteful
high levels. Because energy production is linear in the penstock

T(recall that Et = St ~t)' it would follow that the nonlinear
model is more likely to generate more energy than the linear model. The

release

resolution of the contradiction established by this argument and the

observed results (which indicate more energy from the linear model) lies

in the fact that energy production is a quadratic function on storages,

through the energy rates, and that offsets the effect of the higher

penstock release, for in the linear case the storages are higher. In

the more realistic nonlinear model, the tradeoff between higher eleva-

tions and smaller releases is more complex than in the linear case,

discussed in Chapter 6. It can be observed in Table 7.11 that values of

E IE (actual over maximized annual energy ratios) are higher for thea m
nonlinear model than for the linear model. The overall E IE ratio for

a IT!
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policy I of the nonlinear model is 5.2/7.764 = 0.671 slightly larger

than the 0.64 obtained in Chapter 6. If it is assumed that the typical

availability factor is 0.85 (see discussion on Chapter 6), then a

potential increase of up to 27% over energy actually produced could be

achieved by using release policies from the nonlinear model. A 27%

increase will be about 1.4 x 106 MWh per year with average inflow condi-
tions. Besides these observations on energy generation, the similar

form of the state trajectory for the linear and nonlinear models suggest

that the overall policy of the latter can be explained with the argu-

ments used in Chapter 6 to justify the optimal trajectory in the former.
Namely, high inflow forecasts result in a drawdown of reservoirs in

December, mainly by routing large volumes of water through penstocks.

Reservoir elevations are relatively steady throughout the winter,

maintained at the best elevation so that the tradeoff between elevation

and discharge is optimal. in the sense that for given conditions, the

total energy would be maximized. The larger volumes of water released

during the summer (4967 Kaf in May-August) than the requirements at the

Delta (2698 Ka£ in May-August) obtained with the nonlinear model (see

policy 11 Table 7.7) point again to the feasibility of an extension of

agricultural activities as discussed in Chapter 6. Finally, at the
expense of a moderate increase in the difficulty of the nonlinear model,

both in its formulation and solution 1 it appears that the nonlinear

model should be preferred over the linear model due to the closer

representation to the actual system that it commands. However, the
results of this section show the robustness of optimal policies to the
choice of model: the nonlinear and linear models produced relatively
close results despite the significant different assumptions 1 mathe-

matical structure, and numerical solution inherent to each model.
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CHAPTER 8
SUMMARY AND CONCLUSIONS

Alternative optimization models have been developed to obtain

reservoir operation policies. Two different models have been used to

find optimal release policies for the NCVP system. Several conclusions
can be drawn from this study:

1) It is possible to increase the annual energy production of the

system for below-average, average, and above-average inflow conditions.

For a sample year of average inflow conditions, an upper bound to the

possible increase of annual energy production was found to be of the
6order of 1.4 - 1.9 x 10 Hwh, from both the linear and nonlinear models,

respectively.

2) Delta and agricultural water deliveries can be increased by
adopting the optimal release policies. For a year of average inflow
conditions, the water released from the system exceeded the agricultural

demands by a factor of 1.6 (for both models). That suggests the
possibility of increasing irrigated areas, providing better leaching of

agricultural fields, and improving conjunctive management of surface
water and groundwater reservoirs.

3) Much of the improvement achieved by the optimal operation

policies developed in this study relative to the actual implemented

operation schedules is due to: (i) an accurate river inflow forecasting

technique j (Lf.) a highly conservative set of flood-control provisions

currently enforced in the operation of the NCVPj and (iii) an integra-

tive analysis, intrinsic in the optimization model, that allows to

represent all the links and constraints that act simultaneously and
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interactively within the system. Clearly, this integral conceptualiza-

tion cannot be achieved by a heuristic approach based solely on
experience.

4) It is difficult to establish a direct comparison between the

optimal and actual implemented operation policies. This is due to the

following reasons: (i) there is a significant amount of idle time in the

power plants of the system that is caused by breakdowns and maintenance.

Those operation halts OCcur randomly during any season of the year. In

addition, those idle periods are difficult to consider in any optimiza-

tion model because it is not known when they will occur, how long they

will last, and what repercussion they will have in the integrated energy

network; (Li) there are legal and institutional regulations that are

highly variable which affect the directives of the NCVP management

staff; and (iii) the managers of the system consider many intangible

effects that cannot be properly considered with a mathematical model.

This is especially true for establishing flood-control regulations,

where a conservative attitude prevails with regard to flood management.

S) The improved performance reported by the use of the optimiza-
tion models should be viewed as an upper bound to the possible gains

that could be derived from the use of mathematical models. The better

the forecasting of river inflows, the greater the annual availability

factor of the power plants. Also, the more knowledgeable the system

managers become with reservoir optimization models, the closer the

per~ormance of the system will be to the upper bounds obtained under the

conditions assumed by the models. Clearly, the use of mathematical

models and the better understanding that emanates from their use should

result in a feedback to the models, with their probable reformulation
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and modification that would bring closer the unpleasant difficulties of

any real-world system and the sophistications inherent to any mathema-

tical model. With regard to the two different models, linear and

nonlinear, the optimal policies proved to be robust to the choice of

model, i.e., the results obtained from both models were relatively
close. However, the nonlinear model gives a better representation of

the physical features of the system. Both models have equal dimension-

ality, although the solution of the two-stage problem in the nonlinear

formulation is more complicated. The implementation of the nonlinear

model is worthwhile because that model can be expected to provide more
reliable results under varying conditions than the linear model.

The experience gained in this investigation has made evident

several areas related to reservoir operation that deserve further study:

1) Reliable forecasts of river inflows. Conceptual hydrologic and

statistical methods that would allow to predict accurate streamflows to

the system are perhaps the most needed element in reservoir operation

planning. Development of techniques for river-flow forecasting is a

major task due to the size of the basins and the difficulties in

modeling the hydrologic elements that interact to determine the volume

of runoff feeding the reservoirs. For short-term events, the use of

satellite information and raingage networks offers a possibility to

improve flood management. Statistical forecasting techniques for real-

time prediction of floods also may prove useful in developing flood-
control strategies.

2) Interrelationships that exist between the functions served by

the reservoir system and the economic environment in which the system is
imbedded. The state of the economy determines to a great extent the
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demands of water for agricultural activities and the energy requirements

for industrial uses. Price schedules of water releases for agricultural

uses also determine to some extent the quantities of water requested by
the agricultural sector.

3) Conjunctive use of surface water and groundwater reservoirs.
Improved management of surface water reservoirs leads to a greater

recharge potential at groundwater basins. Thus, excess releases over

contractual levels could be recharged to groundwater reservoirs rather
than discharged into the ocean.

4) Implementation and installation of software that would automa-
tize the operation of reservoir systems. This is a possible way to

perform better control decisions for routing flood events by integrating

inflow forecasts, control decision making, and execution of control
policies into a unique, coordinated operation.

There has been substantial research published in the past years

dealing with reservoir management. The stage is set to translate the

best of this academic effort into working, operational techniques that

are applied on a day-to-day basis by system managers. There must be a

feedback from researchers to system operators, and vice versa, so that

confidence and experience is gained in the use of optimization models.

The real challenge in reservoir management is to make the best academic

findings and methods operational. The time has come for researchers and

practitioners to share their knowledge and experience to achieve more

eff~ciently the goal that both pursue: a better use of the natural and
societal resources available.
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