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ABSTRACT

This report presents a methodology to obtain optimal reservoir
operation policies for a large-scale reservoir system. The model
maximizes the system annual energy generation while satisfying con-
straints imposed on the operation of thé reservoir network. The model
incorporates the stochasticity of river flows and keéps future operating
schedules up-to-date with the actual réalization of those random
variables. It yields medium-term (one-year ahead) optimal release
policies that allow the planning of activities within the current water
year, with the possibility of updating preplanned activities to acéount
for uncertain events that affect the state of the system. The solution
approach is a sequential dynamic decomposition algorithm that keeps
computational requirements and dimensionality problems at low levels.
The model is applied to a nine-reservoir portion of the California
Central Valley Project and the results are compared with those from
conventional operation methods currently in use, showing that the use of
the model can improve the levels of energy production (about 30 percent
increase) while the optimal release policies meet satisfactorily all
other functions of the reservoir system. Sensitivity analysis is
conducted to assess the optimality of the solutions and several alterna~
tive formulations of the model are developed and tested, the results

showing the robustness of the optimal policies to the choice of model.
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CHAPTER 1

INTRODUCTION

Optimal operation of reservoir systems is of fundamental importance
for the adequate function of regional economies and environments as well
as for the well being of the population served by such reservoir devel-
opments. Reservoirs provide a wide variety of indispensable services
that affect every facet of modern society. Those services include the
provision of water supply for human consumption, agricultural and
industrial activities, hydropower generation, flood control prtection,
ecological and environmental enhancement, navigation, and recreation.
Large~scale reservoir developments have made possible the economic
growth and flourishment of entire regions and nations. In parallel with
the increasing expansion of population centers and economic activity,
the demands exerted on the water stored by the reservoirs has been
augmenting steadily. With the size of the systems almost at a maximum
possible due to water availability limitations =-- with the most suitable
locations for development already harnessed -- and with tighter budge-
tary constraints, it has become mandatory to operate the reservoir
systems in an efficient manner, so as to effectively and reliably
provide their intended services to the public,

Efficient operation of reservoir systems, although.desirable, is by
no means a trivial task. UFirst, there are multiple components (reser-
voirs, canals, rivers, pumping plants, etc.) that must be operated
jointly. Second, there exist many, usually conflicting, interests and

constraints that influence the management of the system. Third, there



exist uncontrollable and uncertain elements that determine the reser-
voirs' operation such as streamflows, Fourth, conditions such as water
demands, institutional regulations, and even infrastructural elements of
the system, are continucusly evolving due to the inherent dynamic nature
of society and technology.

In the context of a much needed efficient management of reservoir
systems, mathematical optimization models for reservoir operation become
a natural ally, a wvaluable tool for improved planning of complex
operational schedules for any reservoir system. Several aspects make
optimization models prone to suitable use in reservoir management: the
usually well defined structure and links between the physical components
of the system, the quantitative nature of demands and constraints
imposed on the system, and the advent of sophisticated computational
equipment.

Modeling of reservoir management constitutes an elegant and classic
example of the application of optimization theory to resource alloca-
tien. Reserveir management modeling, however, cannot be accomplished
without problems of its own; among ;hich predominantly figure its
stochastic nature (streamflows, demands, etc.), the large size of the
modéls (dimensionality), and the limitations of mathematical tools that
force the modeler to compromise between accurate system wmodeling and
complexity of the resulting optimization models.

This report is devoted to the development and application of a
1arge~scale optimization model for the management of the northern
portion of the California Central Valley Project (NCVP). The NCVP is a
multireservoir, multipurpose system that constitutes the backbone of

central and northern California water supply development. The product



of this research is a model for computing monthly water release policies
that would maximize the annual system hydropower generation while
satisfying all constraints imposed on the operation of the NCVP.
Emphasis is given to thérfollowing items throughout the development of
the model:

(i) The optimization model must be able to represent the physical
features of the system as closely as possible and include the pertinent
links that exist between its different components. Those links are of
hydraulic, hydrological, and operational nature. Links of operational
nature refer to the effects that water releases from any reservoir have
on the operation of any other reservoir.

(ii) The model must be tractable both numerically and in its
implementability. The number and nature of the computations as well as
the computer storage requirements have been kept to a practical manage-
able size, despite the fact that the model is aimed at large-scale
problems. Also, the model has been developed to match the real opera=-
tion conditions faced by the reservoir managers of the NCVP. The
mathematical development of the model is kept at a general level (and
subsequently tailored to the NCVP), so that the approach can be extended
and applied to other systems with minor modifications,

(iii) The uncertainty of streamflows is handled in a simple way,
and allows to keep the operating policy up to date with the actual
evolution of the reservoir storages.

) (iv) Along with the task of incorporating streamflow stochasticity
and maintaining an adequate resemblance of the real operating scenario,

conceptual rigor has not been sacrificed. Included in the analysis are



convergence, type of optimality achieved (local or global), computa-
tional and computer storage burdens, existence of multiple optimal
solutions, and a discussion of the advantages and disadvantages of the
method relative to some popular competing models.

(v) Test of the model with a large-scale model (the NCVP) under
different scenarios: below-average, average, and above-average stream-
flow conditions.

This study develops the optimizatidn model for the monthly opera-
tion of the system, within a one-year horizon. That is the way in which
many systems, including the NCVP, are managed: tentative or guiding
operation policies are released at the beginning of every water vyear
that represent the best judgement of the managing staff as to what must
be done in the incoming water year. As the year progresses, at the
beginning of each month, the policy to be followed the rest of the year
is revised to accomodate the actual evolution of the system and correct
the departures from what originally was expected to occur (due to
streamflow variability, changes in thg system's constraints, etc.).

To summarize, the objectives of this study are: (1) to develop a
model to find optimal (monthly) operation policies for reservoir
systems; (2) to apply the model to a large-scale reservoir system
(NCVP), including streamflow stochasticity and actual operating con-
straints; and (3) to analyze the theoretical and computational features
of the solution algorithm.

. The remaining of the report is organized as follows. Chapter 2
defines the background terminology used in this work to set a common
ground of understanding. Chapter 3 is a literature review of research

done in large-scale reservoir system operation. Chapter 4 describes the



solution algorithm that constitutes the backbone of the optimization
model (the progressive optimality algorithm, POA). Chapter 5 contains
the application of the POA to the NCVP. The objective function,
constraints, and the structure of the mathematical model are presented.
The streamflow forecasting model is also included in this chapter.
Chapter 6 gives a discussion of results. Chapter 7 contains extensions
of the model developed in Chapter 5. Those extensions include the use
of systemvdependent features and nonlinearities in the objection
function and constraints. Those extensions are the product of the
findings from the analysis of results in Chapter 6. Chapter 8 is a
summary and final statement of important conclusions and further
research needed. Appendix A contains physical data for the system as
well as streamflow record. Finally, Appendix B shows listings of the

computer programs.



CHAPTER 2

TERMINOLOGY

This chapter defines basic concepts that are employed in optimiza-~

tion models contained in this report.

2.1 Control or Decision Variable

The control wvariable in the reservoir operation problem is the
volume of water released (through penstocks) and épilled during a month.
The decision of the amount of water to release and spill is made at the

beginning of each month.

2.2 State Variable

The state variable is the water stored in a reservoir at any time.
The models use beginning- and end-of-month storages. For a multireser-
voir network, the state of the system is represented by a vector-valued

state variable.

2.3 Counstraints

Constraints are bounds or equalities that must be satisfied by
state and decision variables or any function of those wvariables. They
originate from technical, physical, institutional, or other considera-

tions.

2.4 TFeasible Region

A feasible region is a set of decision and state variables that
satisfy all the system's constraints. If a solution {or a multiple set

of solutions)} exists, it must be contained within the feasible region.



2.5 Objective Function

An objective function is a scalar-valued function that maps the set
of feasible decision variables into the real numbers, Rl. It measures
the consequences or performance of a decision taken during any month and
consequently the total performance achieved by the sequence of decisions

made within a year.

2.6 Convex Set

If for any two points x X, of a set K and a scalar o & fo, 1}

19

the linear combination x = ax

2

+ (1 - a)x,, is also in K, then K is a

1 2

convex set. Constrained minimization problems in which the objective
function is convex and the set of constraints defines a concave set are
termed convex programming problems. Linear programming (LP) and posi-
tive semidefinite linearly-constrained quadratic programming {(PSD-QP)
problems are examples of convex problems. For a maximization problem,
the conditions to qualify as a convex problem are a concave objective

function and a convex feasible set.

2.7 Optimization Model

The optimization model consists of the objective function and

constraints of a problem and its solution algorithm,

2.8 Global and Local Optima

A feasible point x* is a global optimum if f(x*) > f£{x) for all x
contained in the feasible region, in which f£{+) is the value of the
objective function. A strong local optimum is a point ¥ such that
£(&) > f(x) for all x in the neighborhood of X such that {x;{& - =,
£ r}, in which r is a small number. Outside this neighborhood there may

be points such that f{&) £ £(x), in which x is a feasible point.



2.9 Initial Policy

Many optimization techniques require an initial (starting) value
for each of the variables of the optimization problem. In general, that
initial wvalue will not be a local or global optimum, but it must be
feasible.  In the reservoir operation problems considered in this
report, the initial policy will be a sequence of reservoir storage
vectors from the first month to the last month. Corresponding to that
sequence of state variables is a sequence of decision variables (reser-
voir releases). Selection of initial policies will be discussed in

Chapter 5.

2.10 Optimal Policy

A release policy consists of a sequence of release (penstock and
spills) decisions, i.e., a sequence of vector-valued decision variables
from the first month to the last month. Associated with a release
policy is a state trajectory, a sequence of vector-valued state vari-
ables. The state trajectory is unique only if there is a one-to-one
mapping between decision and state variable, in which case the system is
invertible. A release policy is optimal if the objective function is

maximized by such release policy.

2.11 Multiple Optimal Sclutions

Some convex programming problems (e.g., LP and PSD-QP} have an
infinite number of {(feasible) solutions that are all optimal. That set
of ?ptimal solutions is also convex. An important consequence of the
existence of multiple optimal solutions is that many alternative ways

exist to achieve the same level of performance.



CHAPTER 3

REVIEW OF RESERVOIR OPERATION MODELS

This chapter reviews large~scale reservoir operation optimization
models. The models are grouped into deterministic and stochastic
models. That grouping is somewhat arbitrary because many models combine
deterministic and stochastic features or deterministic, stochastic,
simulation, and some system-dependent empirical techniques. Stochastic
models will be characterized by the explicit inclusion of stochastic
variability (usually, streamflow) in the objective function and/or the
constraints.

In general, operation models of large-scale reservoir systems
involve heavy computational and computer storage requirements. Some
kind of sequential or decomposition scheme usually is adopted to
succesfully implement the solution algorithms. A discussion of some of
those algorithms is presented in Chapter 4. In short, Sections 3.1 and
3.2 contain reviews of proposed deterministic and stochastic reservoir
operation models, respectively. For the sake of brevity, the reviews do
not exhaust the numerous approaches that have been proposed. Finally,
Section 3.3 briefly discusses major difficulties associated with reser-

voir operation models,

3.1 Determistic Models

Hall et al. (1969) were among the first investigators to propose a
deterministic model for the monthly operation of a reservoir system.
They used a version of Larson's (1968) state increment dynamic pro-
gramming (SIDP) to solve for the monthly releases of a two-reservoir

system. A historical low flow record was used to determine the annual
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firm energy. Roefs and Bodin (1970) proposed an analytical model that
uses a combination of streamflow simulation, deterministic optimization,
and multivariate analysis of the deterministic results. A brief dis-
cussion was included on the convexity of the model's objective function
{the power formula). However, model's results were not provided.

Larson and Korsak (1970) and Korsak and Larson (1970) presented
applications of dynamic programming successive approximations (DPSA) to
a hypothetical four-reservoir system. They provided rigorous conditions
for convergence and global optimality of the DPSA approach, conditions
that have been unfortunately overlooked by most subsequent applications
of DPSA by other investigators. Heidari et al. (1971) reported on the
application of SIDP to Larson’s simple four-reservoir system. They
attributed the theoretical foundation of their study to Jacobson and
Mayne (Jacobson, 1968a, 1968b, 1968c; Jacobson and Mayne, 1970), but we
prefer to classify their method as a simplified version of Larson's
SIDP, the so-called direct iterative SIDP (see Larson and Casti, 1982,
for a recapitulation of SIDP). By using heuristic arguments, it was
reported that convergence was achieved at a (unique) global optimum.
However, subsequent research (e.g., Nopmongcol and Askew, 1976) showed
mul£iple optimal solutions for the same problem.

Fults and Hancock (1972) used SIDP to obtain the daily operation
policy of a two-reservoir éystem. The optimality of the results was
checked by a heuristic approach in which different initial policies were
input to the model, reportedly yielding the same value of the objective
function. That approach, however, is not a proof of the convexity of
the objective function, as concluded by Fults and Hancock (this topic is

discussed further in Chapter 4). Liu and Tedrow (1973) presented a
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method that uses conventional dynamic programming (DP), a multivariable
search technique, and simulation to develop rule curves. They simulated
a two~reservoir system under extreme dry and wet conditions to develop a
feasible operating range.

Hicks et al. (1974) developed a nonlinear programming model to
obtain monthly operation policies for the Pacific Northwest hydro-
electric system, consisting of 10 large resexvoirs and 26 smaller run-
of-the-river poundages. They used a modified conjugate gradient method
te selve a problem with a nonlinear objective function and linear
constraints., Assertion was made that only local optima are guaranteed.
The optimization period used historical low flows. The optimization
model yielded results on energy production that were about one percent
greater than those obtained from a cut-and-dry approach. CPU execution
time was reported to be considerable, 41 minutes per run.

Becker and Yeh (1974) used a linear programming-dynamic programming
(LP-DP) approach for the monthly operation of a five-reservoir portion
of the California Central Valley Project (CVP}. The performance index
consisted of minimization of potential énergy losseg of water backed up
in the reservoirs. They argued that this type of criterion is justified
by'the high relative value of firm energy in comparison with that of
firm water. Streamflows were assumed to be known for the one-year
ahead plaoning horizon. By assuming that two of the reservoirs are kept
at constant elevation throughout the year and a third reservoir is
ope?ated by a rule cuxrve, the number of state variables was reduced to
two, allowing an efficient implementation of the model. The model
yielded a 35% energy production increase over contract levels. TFults et
al. (1976) applied SIDP to a four-reservoir system in northern

California, in which a highly rnonlinear cbjective function represented
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power production. Two different initial policies gave different release
policies, indicating the existence of multiple local optima. Because
neither release policy yielded a global optimum, the authors concluded
that SIDP does not apply to that reservoir system. However, it is not
clear whether that was caused by the fact that the conditions for global
optimality of SIDP were not met or by an inadequate state increment
step, or both. The previously cited work of Fults and Hancock (1972)
dealt with a subsystem of the four-reservoir system of Fults et al.
(1976) in which SIDP reportedly converged to a global optimum.
Nopmongcol and Askew (1976) reported an application of what they
termed multilevel incremental dynamic programming to Larson and Korsak's
(1970) hypothetical four-reservoir example. It will be argued in
Chapter 4 that this optimization scheme is Larson's DPSA. Nopmongcol
and Askew argued that the approach of Heidari et al. {1971) is different
from Larson and Korsak's (1970) SIDP and based their argument on the way
that the time intervals were treated (fixed time steps). We prefer to
think that the fixed step is a particular case of Larson's SIDP scheme
and continue to classify the approach o£ Heidari et al. as merely SIDP.
Further, Nopmongcol and Askew incorrectly argued that global optimality
depénds on their proposed multilevel scheme when, in fact, glecbal
optimality can only be achieved if Korsak and Larson's (1970) conditions
are met, regardless of whether one or more levels are used in the
solution.
Yeh et al. (1978) employed a combination of SIDP and DPSA (called
IDPSA, after an abbreviation for SIDP-DPSA) to find optimal hourly
operational criteria for the northern portion of the CVP system. They

used a three-level approach in which monthly schedules (Becker and Yeh,
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1974) were used as input to the daily model (Yeh et al., 1976) and the
results of the daily model served as a basis to the hourly model. 1In
essence, the system is decomposed into smaller subsystems and DPSA is
used to advance the solution towards a local optimum. Each separate
subsystem optimization is obtained by SIDP. The model also used an
expanded approximate LP with a subsequent adjustment technique to
develop an initial feasible policy, which is subsequently used to start
the DPSA iteratioms. Results showed that the output from the approxi-
mate LP problem differed only by about 0.25 percent from the value of
the objective function obtained after the IDPSA had converged to a local
optimum. That is, the initial and final policies led to approximately
the same solutions. It is argued that the tightly constrained feasible
region did not leave much room for substantial improvements. No com-
parative results were given for different system decompositions and/or
different initial policies. Although the necessary conditions for
optimality (Larson and KXorsak, 1970; Korsak and Larson, 1970) are
difficult to evaluate in‘ practice, the absence of different system
decomposition and initial policy results-does not allow an evaluation of
the global optimality of the solution.
| Murray and Yakowitz (1979) extended the differential dynamic
programming (DDP) technique of Jacobson and Mayne (1970) by introducing
linear constraints into DDP. The constrained DDP (denoted plainly as
DDP) will be described in Chapter 4. Despite some attractive properties
of QDP, results are not available on the application of the method to a
real large-scale reservoir system.
Turgeon (1981) applied the principle of progressive optimality
algorithm (POA) to maximize energy production in a system of four reser-

voirs 1in series. He considered deterministic inflows in an hourly
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operation model which incorporated time delays in the continuity equa~
tion. He erroneously asserted that convexity is not needed to obtain a
global solution. Turgeon (1982a) alsc presented a modified version of
SIDP (for a fixed time interval) in conjuction with DPSA (see Yeh et
al., 1978) to the monthly operation of four reservoirs in series. The
approach guarantees convergence to a global optimum for convex problems.
However, Turgeon (1982a) did not provide a proof of the convexity of the
problem under consideration. In particular, Turgeon's objective
function is nondifferentiable on the decision variable and includes the
energy head, which is usually a nonlinear function of reservoir storage
and the latter is in turn related to the decision variable by the
continuity equation. Under those circumstances, it is not possible to
argue that a global optimum was obtained because convexity was not shown
to hold. Indeed, since the solution procedure is DPSA, Korsak and
Larson's (1970) conditions for global optimality must hold in order to
obtain a global optimum.

Yeh and Becker (1982) presented a multiobjective technique for the
operation of a portion of the CVP system. The technique requires the
subjective criterion of a decision maker to choose among the multiple
objectives served by the system. The constraint method of solution, in
essence an iterative LP-DP approach, is used to solve the multiobjective
programming problem. Due to the multiobjective nature of the problem
and the effect that the decisions of a manager exert on the solution, it
is difficult to establish the optimality of the approach unless exten-
gsive simulation rums are made.

Yazicigil et al. (1983) reported an applicatiom of LP to the daily
operation of a four-reservoir system. The approach used concepts

developed by the Corps of Engineers for water conservation such as
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balancing and zonihg (Hydrologic Engineering Center, 1977). The concept
of noninferior set was also used to establish tradeoff curves between
different objectives. The optimality of the approach depends on the
preset rules established by the Corps of Engineers.

Marific and Mohammadi {1983b) extended the monthly operation model
of Becker and Yeh (1974) to allow for maximization of both water
releases and energy from the reservoir system. The propesed model is a
combination of LP (used for month-~by~month optimization) and DP (used
for annual optimization). At every stage of the DP, a series of LP's
are solved. Because the contract levels of water and energy are usually
based on conservative estimates of natural inflows, the system is likely
to be capable of providing more than those contract levels. To allow
for the extra water releases and energy production, the values of the
right-hand side of the contract constraints (in the LP model) are
parametrically increased from the contract levels to the maximum
possible levels in each month. To select the best beginning-of-month
reservoir storage, a forwafd DP is used so that the water releases and
energy produced during the month are ma%imized. The efficiency of the
algorithm is improved through the use of parametric LP (reduces computa=-
tioﬁ time) and an iterative solution procedure (reduces computation time
and storage requirements). Those efficiency measures allowed the use of
minicomputers (Marino and Mohammadi, 1983c), which are more suitable for
frequent updating purposes (because of their lower cost). The use of
the_model was illustrated for Shasta and Folsom reservoirs (CVP). 1In
addition, Mohammadi and Marino (1983a) reported on an efficient algo~
rithm for the monthly operation of a multipurpose reservoir with a
choice of objective functions. They considered water and energy

maximization over the year, maximization of annual water and energy with
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flood control considerations, and maximization of water and energy for
months with relatively high water and energy demands. The choice of
objective functions gives the reservoir operator flexibility to select
the objective that would best satisfy the needs of the demand area.
Finally, Mohammadi and Marino (1983b) presented a daily operation model
for maximization of monthly water and energy output from a system of two
parallel reservoirs. The daily model uses optimum monthly water and
energy contract levels obtained from the monthly release poliéy. Those
contract levels are adjusted to allow for differences between the daily
and monthly forecast of inflow. The efficiency of the algorithm allowed
the use of minicomputers. The model was applied to Shasta and Folsom
reservoirs (CVP), with computation time requirements of less than two

minutes,

3.2 Stochastic Models

It is emphasized that the division between stochastic and determi-
nistic models is rather thin. Interest herein is centered on applica-
tions to large-scale reservoir systems. ‘ReVelle et al. (1969) presented
one of the first attempts to incorporate stochasticity into reservoir
operation. The pivotal idea was to use a linear decision relationship
between storage and release (linear decision rule, LDR) and to express
the constraints of the system as probabilistic entities (chance
constraints, CC) which are subsequently converted to deterministic
equivalents. Many subsequent papers exploited the LDR approach (e.g.,
ReVeélle and Kirby, 1970; Eastman and ReVelle, 1973; Gundelach and
ReVelle, 1975), but most are aimed at determining the capacity of a
single reserveoir. The main difficulties with the CC-LDR approach arise

from the fact that since storages and releases are random variables and
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almost any constraint on the operation of 2 system contains those
variables, it is quite possible that some of those constraints will
involve functions of storages and/or releases for which the distribution
function is not known or cannot be derived and thus the deterministic
equivalent cannot be developed. In addition, if storages and/or
releases appear in the objective function of the model, then the
expected value of returns is the relevant performance index that must be
maximized. Usually, that leads to unsurmountable computational work for
multistate problems. Furthermore, the choice of the reliability levels
in the CC is rather arbitrary. The most serious drawback of LDR is that
it forces the (random) state of the system (storage) to be equal to the
sum of release and a constant, which is conceptually incorrect. Loucks
et al. (1981) provided a list of references dealing with CC-LDR or some
modification of the approach.

Takeuchi and Moreau (1974) described a combination of LP, sto-
chastic DP, and simulation to obtain monthly operation policies that
minimize short-term and long-term expected losses of a five-reservoir
system. Drawbacks of the approach are £he need for loss functions and
the discretization of state variables. The approach also requires the
knoﬁledge or development (by using simulation) of joint conditional
density functions of reservoir states given that any one reservoir is in
a fixed state. The authors did not perform sensitivity analysis to
establish the type of solution obtained. Perhaps, the most serious
drayback of the technique is its large computational requirements.

Colorni and Fronza (1976) were the first to use the concept of
reliability programming for the monthly operation of a single reservoir.

They used a single reliability constraint to express the reliability of
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the system. Unlike the CC approach discussed earlier, the reliability
level is part of the solution and thus is not specified beforehand.

Turgeon {(1980) presented applications of system decomposition
(DPSA) and aggregation/decomposition for the weekly operation of six
reservoir-hydroplants in a stochastic environment. The decomposition
approach works only for systems composed of parallel subsystems of
reservoirs in series along rivers. In the decomposition technique, each
subsystem is lumped into a composite equivalent and thus the (weekly)
operation policies are developed for each composite subsystem as a whole
rather than for each single reservoir. He claimed that DPSA yields
nonoptimal results if a local feedback scheme is used but renders near
optimal results when open-loop control is utilized. That is a rather
surprising result because feedback or closed-loop controls usually
perform better than its open-loop counterpart under stochastic dis-
turbances; feedback control allows for self correction whereas the
preplanned open-loop control does not (Bertsekas, 1976). The aggrega=
tion/decomposition scheme iumps all but one of the parallel subsystems
into a composite unit and solves a two-state variable problém; The
process is repeated for all complexes and then an adjustment is made to
the‘ solution of the aggregation phase to obtain a final solution.
Results showed that the aggregation/decomposition method is superior to
the decomposition technique for a six-reservoir system. CPU time was
about 150 minutes per run by each method. It is ascertained that
coarser state discretization would lead to smaller processing times but
that could hamper the convergence to a global optimum (if it exists).

Simonovic and Marino (1980) extended Colorni and Fronza's {1876)

monthly operation model to allow for two reliability constraints, one
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for flood protection and the other for drought protection. The solution
procedure consisted of an LP optimization and a two~dimensional
Fibonaccian search technique. The search technique was used to select
the reliability levels, and the LP was used to determine the releases
for those reliabilities and thus evalute the objective function.
Simonovic and Marino (1981) also developed a methodology for the
development of risk-loss functions in the reliability programming
approach to a single reservoir. Flood and drought risk-loss functions
were developed by using economic data. The reliability programming
model was later applied to a three-reservoir system by Simonovic and
Marido (1982). Fixed reliability levels for each month in each reser-
voir were used to overcome computer storage requirements. Large memory
requirements are needed for multireservoir systems; only local optim-
ality can be guaranteed by the approach.

Marifio and Simonovic (1981) developed a two-step algorithm for the
design of a multipurpose reservoir. The model was formulated as a CCLP
which maximized downstream releases. The first step transforms the CC
model into its deterministic equivalent through the use of an iterative
convolution procedure. The second step finds the optimum size of the
resérvoir by solving the deterministic LP developed in step one. The
model allows the use of random inflows and random demands together with
other deterministic demands.

Marifno and Mohammadi (1983a) improved the work of Simonovic and
Mar;ﬁo (1980, 1981, 1982) by developing a new reliability programming
approach for the monthly operation of a single multipurpose reservoir.
The model uses CCLP and DP and differs from other reliability pro-

gramming approaches with respect to the following three points. First,
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the development of risk-loss functions is not necessary. Development of
risk-loss functions usually requires economic data that are often
unreliable. Second, the reliability levels are not assumed to be
constant throughout the year, and are different from month to month.
This will eliminate the need for unnecessary extra releases in summer
for high flood reliabilities, and extreme low releases during winter for
high drought reliabilities. Third, the reliability of the hydroelectric
energy production is included in the model. Mest other existing
stochastic models include energy production in the objective function
and maximize the expected revenue of the produced energy.

Bras et al. (1983) devised a version of stochastic DP with a
continuous updating of flow transition probabilities and system
objectives. The innovative feature is the update of the transition
probabilities of the flow states by considering the most recent
information on the streamflow process. The method is used to find
operating rules for a single reservoir. The updating stochastic DP
(called "adaptive") was compared with the traditional steady-state
method and a heuristic approach, and the objective function was varied
to reflect different operating scenarios. For the realistic case in
which spillage is considered, the heuristic approach yielded a higher
firm energy than the traditional and the (adaptive) stochastic DP
methods and there is indication that no advantage is derived from using
the adaptive scheme. The type of optimality obtained is not addressed
by the authors, but it obviously depends on the state and inflow dis-
cretization among other things (see, e.g., Knowles, 1981, for optimality

conditions in control problems).
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3.3 Discussion

The literature review in Sections 3.1 and 3.2 indicates that the
methods that most satisfactorily handle the problems of dimensionality
that arise in large-scale systems are mostly in the deterministic
domain. Stochastic DP has been confined to one or two reservoirs; its
worst handicap is that it requires discretization of state and inflows.
For multistate systems, the storage requirements increase exponentially,
severely limiting the applicability of stochastic DP. The reliability
programming apprcach (e.g., Simonovic and Marino, 1982) possesses
significant computational requirements. For cases in which some finite
increment is used to search for the solution of the reliability pro-
gramming problem, the storage requirements increase expomentially in
size when fine grids are used. 1In the deterministic framework, some
methods overcome the dimensionality problem and for several there exist
well established convergence and optimality criteria (Korsak and Larson,
1970; Murray, 1978). Unfortunately, those criteria exist under restric-
tive conditions (see Chapter 4).

Most researchers have not presentéd an analysis of the solutions
obtained to reservoir operation problems (i.e., are the solutions
uniéue, local, or global?). Although the theoretical postulates of
optimality are difficult to check in many practical applications,
testing of solutions (involving the effects of i) different initial
policies, ii) alternate decomposition schemes, and iii) different grid
sizes in some discretization schemes) usually is not reported. The
existence of multiple solutions usually is not addressed. Perhaps, the
key to a better understanding and successful implementation of the
proposed reservoir operation models lies in the ability to take advan-

tage of special system~dependent features that may lead to modeling
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simplifications (e.g., treating spillages as a function of storages,
linearizing constraints, and considering storages of regulating reser-
voirs as constant) and in performing post-optimality analysis of the
results.

Incorporation of the stochastic nature of streamflows in a suitable
way into reservoir operation models needs further research. In this
regard, seemingly contradictory findings have been reported but in
effect those findings are compatible. For instance, by considering a
time horizon that wvaried from a month to a year, Yeh et al. {(1982)
concluded that accurate streamflow forecasts lead to considerable
benefits. In contrast, by using a time horizon of fifty-three years,
Bras et al. (1983) found that no benefits were derived from inflow
forecasts. Those apparently contradictory results bring to the surface
the difference between short-term and long-term planning studies for
reservoir operation. The major inference to be drawn is that for short-
term time scales, especially for prediction of incoming flows during wet
periods, it makes a great difference to have good inflow forecasts. For
long-term studies, the dynamics of the system will center around average
inflow wvalues, making any type of forecasting scheme of marginal value.

| The time framework of a study also raises an important question.
When is an operation policy a real-time control scheme? Strictly
speaking, real-time or on-line operation of a dynamic system requires
two basic elements (Meier et al., 1971): an optimal state estimator and
a control scheme that maximizes a given objective function. This issue
has been exhaustively studied in the control literature (see, e.g., IEEE
Transactions on Automatic Control, 1971) and frequently approached by

using a Kalman filter for the state-space solution imbedded into a
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quadratic optimization scheme. Studies (Yeh et al., 1976, 1978; Bras et
al., 1983) that have some ingredients of dynamic control (e.g., updated
inflow forecasts) are essentially static operating modes. This is
because the adaptive éapability of a closed-loop control is not
exploited. Yazicigil (1980) used a technique that has some attractive
updating features. His optimization technique finds an optimal policy
that is conditioned on today's forecasts and the actual state of the
system. That policy is implemented for the current period (day) and is
updated as soon as the applied control and stochastic inflow deviate the
system from its expected state. That leads to a sequential solution of
the optimization model at the beginning of each period. The research
reported herein follows an analogous approach to a large-scale system to
develop operation policies that are conditioned on updated flow fore-
casts and actual (observed) state values. Jamieson and Wilkinson (1972)
outlined the principles of a sound real-time reservoir operation model.
Unfortunately, the implementation of such a model has not been reported.
In addition, Labadie et al. (1975) and Wenzel et al. (1976) presented
attractive formulations for the real—time operation of flood-contxrol
reservoirs. Again, no results for on-line application have been
repérted.

In summary, some of the major difficulties associated with past
research 1in reservoir operation modeling are: (i) the preoblem of
dimensionality that practically has vanished stochastic DP from large-
scale applications; (ii} the choice of adequate performance criteria and
the assessment of the optimality of the results; and (iii) the incorpor-

ation of stochasticity (should stochasticity be handled in a a priori
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way (chance constraints), in a a posteriori way (reliability program-

ming), in a static manner (stochastic DP), by simulation, or by some

sequential updating scheme?).
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CHAPTER 4

A REVIEW OF SOLUTION PROCEDURES

As indicated in the previous chapter, many optimization models have
been proposed for the operation of reservoir systems. This chapter
discusses some methods that have been successful, to some extent, in
coping with large-scale systems: discrete dynamic programming (DP), the
backbone of more sophisticated methods; state increment dynamic pro-
gramming (SIDP); dynamic programming successive approximations (DPSA);
differential dynamic programming (DDP); linear quadratic Gaussian method
(1QG); nonlinear programming (NLP); and progressive optimality algorithm
(POA). The main interest of the discussion is to highlight the relative
advantages and disadvantages of the methods. Special attention is given

to storage and computational requirements.

4.1 TFormulation of the Problem

A general reference problem can be written as

N
maximize E F(x,, u (x/ ) ' (4.1)
u Yt X t=1 -t Tt
St? 2t
subject to
Xeep = Ep(xp v, v, Ve (4.2)
Teap = £p(%p wp), Ve (4.3)

g(u) € U, vt (4.4)
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The objective function, eq. {4.1), is to be maximized for some optimal

control u The control u, is deterministic and m-dimensional. The

p
expectation E is with respect to a random n-dimensional state wvariable

X, . The function F is generally nonlinear, time wvariant, and scalar

valued. Notice that eq. (4.1) is written in the form of a closed-loop

control, in which u_ is a function of a realizatiom of LA Equa=-

t

tion (4.2) is the dynamics of the system, or the continuity equation in
reservoir operation jargon. It describes the evolution of the system

when a control u_ is applied to the system and a random disturbance Ve

t
affects the state of the system. Equation (4.3) is the observation
process, or that which can be observed about the state of the system
because the measurement of state variables is not always complete (i.e.,
not all the components of the states may be observed) and is noise

corrupted by w Equation (4.4) states that the control variable u

t’ t

must lie within a prescribed region Et of the m-dimensional space R,

Notice that the general case described by eqs. (4.1)-(4.4) is in

practice unsolvable. That is because the functions are arbitrarily
complex and the noises Ve and w, are, in theory, also arbitrarily
distributed. Many simplifications of the general case are important

becéuse they may give reasonable approximations to the real world. In
contrast to the stochastic <c¢losed-loop control is the open-locop
formulation. Stochastic open-loop control differs £from closed-loop
control in that the former does not depend on the state of the system to
dec%de on the actions to take. In general, that leads to suboptimal
policies with respect to the closed-loop policies. In reservoir opera-
tion, deterministic open~loop control is the most frequent adopted

method. This type of deterministic problem can be written as
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maximize g& F(z., u) (4.5)
u., Yt t=1

subject to

Xepp = F3(xe By (4.6)
g (u) € Uy ' (4.7)
g,(x,) € X, (4.8)

in which eq. (4.8) describes the feasible set for the state X, and the
meaning of the other equations c¢an be inferred from the earlier general
case.

The explicit incorporation of stochasticity makes the problem much
more complex because i) information must be obtained about the statisti~
cal properties of the random variables, and ii) in the closed-loop
control there exists a coupled problem of state estimation and control
optimization. The structure of the general stochastic problem,

eqs. (4.1)-(4.4), reveals that for given distributions of the state X

and the noise v the distribution of x

Vo depends on the type of

t+1
function f1 and the control u . Thus, from this perspective, the chance
constraint approach of specifying probability ranges for the state
variables may lead to improper distribution~function modeling. On the
other hand, any deterministic problem of the form given by egqs. (4.5)-
(4.8) could, in theory, be expressed as a gigantic nonlinear programming
model with m x N variables in which m is the dimension of u and N is

the number of time periods. Some of the reliability programming models
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discussed in Section 3.2 fall in this category. Other methods attempt
to skip the large-size formulation and recur to sequential algorithms to
achieve a solution (e.g., DP, SIDP, and DPSA), but not without intro-
ducing problems of their own. Some methods (e.g., some versions of
stochastic DP and the POA) take a middle course of action by trying to
capture the stochastic nature of a real-world system with some type of
forecasting and continuous update of the states of the system. That is
a compromise between the real stochastic problem and its deterministic
counterpart.

Interestingly, the deterministic problem can be as difficult teo
solve as any other problem. For large-scale modeling, no matter which
model is chosen, computational burden is a real- hurdle. TFor any
specific system, a careful analysis of available methods (or development
of new methods) must be pursued before making a decision on which solu-
tion technique to adopt. The following discussion on some popular
models points out some of the relative advantages and disadvantages of

several optimization schemes.

4.2 Discrete Dynamic Programming (DP)

Deterministic DP is one of the first methods used to find optimal
policy sequences and state trajectories of optimization problems of a
sequential nature (Bellman, 1957; Bellman and Dreyfus, 1962). The
fundamental basis of DP for solving problems stated as in egs. (4.5)-
(4.8) is the principle of optimality: "If an optimal trajectory is
broken into two pieces, then the last piece is itself optimal." This
simple statement holds the key for the sequential approach that can be
used to solve many dynamic problems. It is alsc the basis for more
advanced computational algorithms (e.g., SIDP, DPSA, stochastic DF,

POA).
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Dreyfus and Law (1977) and Larson (1982} discussed DP in detail.
In essence, DP determines an optimal trajectory recursively, either in a
backward or forward fashion. Assume that a backward recursion is used.
The method constructs a sequence of decisions u, for t = N, N~-1,..., 1.
The values that each state wvariable (gt) can take are a finite number of

discrete values {(d). Assume that d4 is the same for each component of

X, The optimal policy {gt} is comstructed by using the relation
. - + .
maxzmlze Ft Vt(§t, Et) Ft+1{f3(§t’ Et)] {(4.9)
-t
in which Fuep = C {a given constant), t =N, N-1,..., 1, Vt is the
current return obtained from taking a decision u, when the state is Xio
and Ft+1(~) is the optimal return (from period t + 1 on) derived from
state Xi41 which %n turn is equal to f3(§t, gt), i.e., the value
obtained from the dynamics of the sytem [see eq. (4.6)] for %, and u .

Thus, by concatenating the present stage optimal decision with a
corresponding optimal trajectory for the subsequent stages, an optimal
trajectory is obtained for periods t, t + 1,..., N (the initial and
final states can be either fixed or free, depending on the nature of the
problem). To select a policy in eq. (4.6), the constraints on state and
control variables are checked to ensure that a feasible decision (gt) is
being made. If a decision is infeasible, then that decision is dis-
carded and others are examined.

" From the preceding brief description, two advantages of DP are
readily observed: i) functions such as Ft’ Vt, f3, and others can be of
arbitrary form, namely nondifferentiable, time variant, nonlinear, etc.,

and ii} the method can handle constraints with complex mathematical
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structures. However, those advantages usually cannot be exploited when
the number of state variables is greater than two. Chow et al. {1975)
showed that the storage requirements to evaluate the recursive equation

[eq. (4.9)] at each stage, or period, is
P = 24" (4.10)

in which d is the number of feasible values that each component of the
state vector can take and n is the dimension of the state vector Xy
The memory required to store the current optimal values of the decision

variables for each feasible value of the state variables at all stages

(so that the optimal trajectory can be retrieved) is
T = Nmd" (4.11)

in which m is the dimension of the decision vector (gt) and N is the

number of periods in which u,_ must be determined (i.e., the number of

t
optimization periods). Equations (4.105 and (4.11) show that storage
requirements grow exponentially with n. That constitutes the most
serious drawback for the application of DP, the so-called curse of
dimensionality. The necessary conditions for optimality of DP follow
from the classical calculus of variations (Bellman and Dreyfus, 1962)
and the maximum principle (Pontriagyn et al., 1962). In practice,
however, it dis difficult to check and/or satisfy those conditions.

Usually, the ability to detect a local optimum depends on the adequacy

of the state discretization.
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4.3 State Increment Dynamic Programming (SIDP)

Larson introduced the SIDP approach in 1968. Some investigators
(Heidari et al., 1971; Chow et al., 1975) have used the term discrete
differential dynamic programming (DDDP) to describe Larson's SIDP with a
fixed time step while others (Hall et al., 1969; Turgeon, 1982a, 1982b)
have termed the approach incremental dynamic programming (IDP). 1In
essence, SIDP is an iterative technique in which the recursive equation
of DP [eq. (4.9)] is used to search for an improved trajectory among the
admissible discrete states in the neighborhood of a trial trajectory.
Those admissible states near the state trajectory form a so-called
corridor. In determining the optimum trajectory in the corridor, the
constraints on state and decision variables must be satisfied. The
following three steps describe the SIDP technique (Turgeon, 1982b):

1) Find an initial feasible trajectory and denote it by {ggo)}.

2) Solve the recursive equation of DP [eq. (4.9)] for

0
X = §£ ). a, §£0), and §£0) + & in which o is a preselected vector of
increments. The recursive DP equation can be either forward (Hall et

al., 1969) or backward (Turgeon, 1982a) in time. The solution of
eq.‘(4.9) for all t is denoted by {Egl)}-
3) If lgél) - §£0)I 2&, €>0 (any other criterion could be
used), Vt, then stop. Otherwise, set {EEO)} = {§£1)} and go to step 2.
Figure 4.1 shows some of the elements of SIDP for n = 1. Concep~
tually, SIDP does not add anything to DP except for the iterative search
algorithm. Despite the iterative character of SIDP, it can be estab-

lished that the storage requirements to evaluate eq. (4.9) at each stage

are
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Fig. 4.1 Schematic representation of a trial trajectory {géo)}, the

corridor boundaries {xEO) * n}, and a substitute trial
T

trajectory {Egl)}-



33

P =203)" (4.12)

and the corresponding memory requirements (T) are

T = Nm(3)" (4.13)

Thus, memory requirements vary exponentially with n. There may be
storage difficulties when n 2 3, or even n 2 2. In addition, computa-
tions must be made K times, in which X is the number of iterationms
needed to converge to an optimal trajectory. Unfortunately, the
convergence of SIDP is at best linear (Murray and Yakowitz, 1979) and K
may become substantially large. Further, the selection of the increment
@ is critical in this algorithm. A poorly chosen value of o (which can
vary from iteration to iteration and/or from period to period) may lead
to nonoptimal solutions. ' Turgeon (1982a) developed a procedure to
select 0o so that convergence to a local optimum is guaranteed. He
showed that for a convex objective function (and linear constraints) his

modified SIDP leads to a global convergence.

4.4 Dynamic Programming Successive Approximations (DPSA)

In the DPSA approach, a problem of several control variables is
decomposed into a number of subproblems containing only one control
variable (Korsak and Larson, 1970; ZLarson and Korsak, 1970). The
algorithm proceeds as follows:

" 1) Denote the ith component of the n-dimensional state variable by
xi. Select feasible control and trajectory sequences (initial policy)
and denote them by {EEO)} and {§£0)}, respectively. The state variables

are discretized whereas the controls are not.
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All states
(0}
PR

2) Select one component of the state vector; say xi.
xI(t), j#i, t= 1, 2,..., N, are kept fixed at the values x

Maximize the objective function over all x>

t’s, t=1, 2,..., N, by some

method (e.g., one~dimensional DP or SIDP) in the usual way except that

now there are n controls (decision wvariables) to wvary at each time

J

stage. The maximization is subject to the n-1 fixed states XL

» I # 1,
thereby leaving one degree of freedom inr the controls to allow the
variation of xi. For this purpose, it is necessary to have a one-to-one
mapping between the controls and the states expressed by the continuity
equation (i.e., the system must be invertible).

3) After the optimal control and trajectories are developed by

using the state component xl, the method proceeds with step 2 for a

]

different state component xi

until all the components (i =1, 2,..., n)
have been treated once.
4) Repeat steps 2 and 3 until no further improvement can be made.
Bellman (1957) and Bellman and Dreyfus (1962) showed that decom-
position schemes of the type of DPSA converge in a finite number of
iterations. Korsak and Larson (1970) showed that there exist necessary
and sufficient conditions for global optimality. Because of the
popﬁlarity of DPSA in reservoir operation studies, it is worthwhile to
summarize those optimality conditions. First, the law of motion or
continuity equation [eq. (4.6)] must be linear, e.g.,
f(x

gr B) =@ x v T ow, Ve (4.14)

t t?

in which ¢t and Ft are suitably dimensioned matrices and the Ft's are

nonsingular. Second, the objective function [see eq. (4.5)] is given by
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N
_ T T
maximize i E(Et Qt X, tug Rt Et) + At X, + Bt u, (4.15)
X,, U t=1
=t’ —t
Equation (4.15) can be expressed as a function of the x 's only by

t

by u_ = f_l(

substituting u u

t X §t+1)’ the inverse, unique mapping

between control and state variables. Furthermore, all the matrices Qt
and Rt in eq. (4.15) must be positive definite (if the matrices are
positive semidefinite, the optimality conditions are only necessary for
a local optimum). Notice that eq. (4.15) must be a quadratic strictly
convex function for the necessary and sufficient conditions to hold.
Third, the objective function must be bounded for all feagible values of

X and u

t Fourth, the decision and state variables must be continuous.

g
The preceding four conditions are very restrictive. From a review of
the literature on reservoir studies, it appears that no investigation
fits those restrictions. That implies that whatever results are
obtained when the necessary and sufficient conditions are violated, the
only way to ascertain something about the optimality of those results is
through well designed, heuristié approaches or sensitivity analyses.

In addition to the optimality issue, there are other difficulties
tha£ arise in the practical implementation of DPSA. One difficulty is
the selection of the xi's (i.e., how is the system going to be decom-
posed?). In some systems, the topology of the network gives a clue as
to the selection of an adequate decomposition scheme, but this is not
alwqys the case. If DP is selected to solve the one-dimensional

problems that arise from the DPSA decomposition, then the storage

requirements (P) are
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P = 2(a-1)d (4.16)

i

in which d is the number of discrete values of Xis

i=1, 2,..., n. The
i

factor (n=~1) appears from the fact that while Xy

is being maximized, the
remaining xi’s (j # i) are being held fixed, and the total value of the

objective function depends on the effect that changes on u% (j # i) have

on the objective function. The memory requirements (T) can be exﬁressed

by
T = ndN (4.17)

Equations (4.16} and (4.17) show that the curse of dimensionality is
beaten by DPSA. However, the number of calculations of the program may
become severely large because each iteration consists of a complete

i

sweep of one-dimensional problems for every Xy

(i=1, 2,..., n).
Furthermore, because the convergence rate {improvement from iteration to
iteration) is slow, the number of iterations would be relatively large,
especially 1if the initial feasible poiicy is not near the optimum.

As indicated in Section 3.2, several reservoir operation models
havé made use of a combination of SIDP and DPSA. Lower-dimensional
problems that arise from the decomposition have been solved by tech-
niques that require discretization of the state wvariables, thus
hampering the convergence properties of the algorithm. It is evident
thag those lower-dimensional optimizations could be approached by some

type of algorithm that does not require discretization (e.g., LP and

quadratic programming).
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4.5 Differential Dynamic Programming (DDP)

The DDP method was developed by Jacobson and Mayne (1970). The
extension made by Murray and Yakowitz (1979) to dinclude linear
constraints into the problem is discussed herein. The DDP algorithm to

solve linearly constrained problems can be summarized as follows:

1) Set the iteration counter k equal to =zero. <Construct a
. (k) . (k)
feasible control sequence {Et } and a state trajectory {gt }. Set the

time index t equal to N (the last stage).
.2) Recalling the objective function as stated in eq. (4.5), obtain

) . . (k) (k)

a second-order Taylor series expansion of F(§N, EN) about Xyx and Uy

and denote it by f(EN, HN)' Then the following quadratic programming

problem is solved

maximize ﬁ(EN’ HN) {(4.18)
N

subject to

uy € QN (4.19)

Notice that eq. (4.18) is maximized with respect to EN' The states Ey
and §N+1 are treated as constant. Murray and Yakowitz (1979) solved
eqs. (4.18) and (4.19) by using Fletcher's (1981) active set method.

The sclution is of the form

oy = _qN + 3N Xy (4.20)
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Store the m-dimensional vector Ay and the m x n matrix 5N' The approxi-

mation to the optimal value of ¥ is denoted by
Vy T F(gN, EN) (4.21)

in which Uy is defined by eq. (4.20)

3) Proceeding in a backward fashion, set t =t - 1 and define

Qlry, ue) = Flxy, u) + Vo, [£(x, 8] (4.22)

(k) (k)
t t

Perform a second-~order Taylor series expansion of Q about x and u

and denote it by G(Et’ gt). Solve the quadratic programming problem

maximize Q(Et, Et) {4.23)
u
=t

subject to

u, e U (4.24)

maintaining X, as a constant. The solution of eqgs. (4.23) and (4.24) is

of the form
Et = gt 4 ﬁt '}Et (4.25)
Store @, and B.- Approximate Q(gt, gt) by Q(Et, a, + B Et)'

4) Set Vt = Q(Et’ o+ Bt Et) and t = t-1. Go to eq. (4.22) of

step 3. Repeat the loop defined by steps 3 and 4 until a complete sweep
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(from t = N to t = 1) is attained. At this point, a complete sequence

of parameters {gt, Bt}, for all t, is stored.

5) Construct a successor policy {g£k+1)} by recursively
calculating
w1 =g v x, (4.26)
and
E1(;1:;1) - f(EEkH), Egkﬂ)) (4.27)

in which %y is given. If the two consecutive control policies satisfy
an adequate convergence criterion, then stop. Otherwise, set t = N and
go to step 2. In practice, the forward run of step 5 usually‘requires a
modification to avoid infeasible successor policies. This is achieved
by solving a (forward) sequence of quadratic programming problems, as
outlined in Murray (1978) and Murray and Yakowitz (1979).

It is evident from the preceding discussion that DDP is an involved
method to implement. The main potential shortcoming of DDP in multi-
resérvoir problems is that it requires second-order differentiability
for the objective function and first-order differentiability for the
constraints. If that is not possible to achieve, then numerical
differentiation must be used, which can erode the fast convergence
properties credited to DDP. Although the active set method c¢an be
readily implemented for positive semidefinite matrices in the quadratic

objective function, it is difficult to encounter that situation in

reservoir operation pfoblems (see Chapter 5). It turns out that the
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active set method for the indefinite case is relatively more complicated
than for the semidefinite case and it guarantees local optimality at
best (Fletcher, 1981). On the other hand, DDP has some good properties
that apply to differentiable, positive definite cases. First, the
memory and computational requirements grow proportiomally with mn and
m3, respectively, in which m and n are the respective dimensions of u

t

and x The computational requirements. of DDP are given by ZamBNK in

.
which a is a constant independent of m and X is the number of complete
iterations (from t = N to t = 1). The storage requirement is approxi-

mately given by
T = cNm(n+1) (4.28)

in which ¢ is a positive comstant greater than one. Clearly, from
eq. (4.28), there is no dimensionality problem. Secénd, there is no
need to discretize the state and/or decision variables. Third, the
convergence rate of the method is quadratic (Murray, 1978). Fourth, the
continuity equation needs not be invertible. Fifth, the DDP converges
to a global optimum, provided that the objective function is strictly

convex.

4.6 Linear Quadratic Gaussian Method (LQG)

The previous solution procedures (DP, SIDP, DPSA, and DDP) were
discussed within a deterministic context. This section reviews a
classical solution approach (ILQG) teo stochastic optimal control
problems. The LQG method assumes a linear continuity equation, a
quadratic objective function, and Gaussian disturbances to the system

under consideration. it is a true real-time {or on-iine} feedback
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control approach that deals in a natural way with the coupled state
estimation~control (closed 1loop) optimization. The theoretical back-
ground of the approach goes back to Kalman and Koepcke (1958) and
further advances were made in the 1960's.

The discussion that follows is based on the works of Meier et al.
{1971), Dorato and Levis (1971), and Willems (1978). The problem under

consideration can be stated as

N
. T T T
minimize E 2; X, Qt X, t Et(Et) Rt Et(ét) * Xyt S BNt (4.29)
u , ¥t X, , Z t=1
~t 2t Z¢
subject to
Xewp = Op Xt Bpoug t ey | (4.30)

In eq. (4.29), the expectation is taken with respect to the random

variables x_ and 2z

v 2.5 Qt is a symmetric (n x n} positive semidefinite

matrix; R, and S are symmetric {m x m and n x n, respectively) positive

t

definite matrices; x_ is the n x 1 state vector; u_ is the m x 1 control

t t

vector; and z, is the r x 1 (r £ n) measurement process. In eq. (4.30),

t

the continuity equation, ¢t and Bt are suitably dimensioned (known}

matrices with ¢t nonsingular; &, is a (normal) random noise with

- Ty _ T, _ T, _
E(e,) =0, Ee, &) =, 6., and E(e, 8y) =0 (Vu), E(e, x5) = 0 and 8,

is a (normal) random noise with E(8,) =0, E(8 Qi) =038, (¥1) and
T

- ~ . . . L . . . P . -~ IR —
mkgt EO) - U; x5 1s the initial state at time t = 0 with E{x

o’ X, and
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T

= 3 and 6 is the Kronecker delta. In

E(xy - 24) (x5~ %5) 0 tr

eq. (4.31), the observation process, C_ is an n x n matrix and Qt is the

T
measurement noise. Equation (4.31) expresses the fact that the

controller may not be able to observe x_ exactly, but only can measure

t
it with some error. The key to the solution of the LQG problem
[eqs. (4.29)-(4.31)] relies upon the separation principle (Wonham, 1970;
Joseph and Tou, 1961). Basically, the separation principle states that
the solution of the stochastic problem can be divided into two parts:
control (the selection of the optimum decision to input into the system)
and estimation (the computation of the state conditional probability

density function).

To give the solution of the problem, it is necessary to define the

conditional mean (gtit) and the conditional wvariance (Ztlt) of the
state:
Zeie T §(§t|50’ Zpoeees Zei By Bpeee Beops Epe ) (4.32)
-t
S = E(x. - %, (. ~ % T (4.33)
tle - 7t Sttt tee Seit )

The estimation problem can be solved by using a Kalman filter (Kalman,
1960; Kalman and Bucy, 1961; Jazwinsky, 1970; Gelb, 1974). The esti-

mator is

X + B u, +X

§t+1|t+1 = ¢t =tlt t =t t+1 [Et+1 v Ct(¢t §t|t + Bt Et)] (4.34)
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with initial value X = x,, in which K 4, is the Kalman gain matrix

1] =y
given by
- T T -1

Kt+1 - zt+11t Ct+1(ct+1 zt+11t Ct+1 * et+1) (4.35)
where

: = (I-K_ C_.) (¢ % of + }) (4.36)
t+l|t t+1 Tt+l t "tlt-1 "t t
with initial wvalue Z = 2 . Notice that the on-line estimation can

01-1 0

proceed only in one direction: forward in time. This is accomplished by
using eqs. (4.34)-(4.36) recursively.

The solution of the control part of the problem can be obtained by
applying the principle of optimality to eq. (4.29). That is, a recur-

sive (backward) equation is solved at each peried t,

~ - . AT A T
TGy ) =min f50, 0 Q X *ug Reony
u
-t
* 5 E (Ter Rearpeer) | Bpper Bl (4.37)
=t+l|{t+l
starting with the terminal conditien IN+1(EN+1IN+1) = §§+1 S XN+l It

can be shown (Meier and Larson, 1971; Willems, 1978) that the optimal

A

w

control u, that minimizes eq. (4.37), for all t, is

S

u, = -G

~t t Ztit (4.38)
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in which ¥ is obtained from eq. (4.34) and

tit
- ¢al -1 T
Gy = (By Pryy By * Ry ,Bt Pray O (4.39)
The matrix Pt+1 can be obtained recursively by using the relation
- T _ AT T -1 T
Po=Q * ¢, Py 0 ¢ P B (B P, B +R) BP0 (4.40)

with Pt+1 = 5. The fundamental result is that the optimal control is

given by a linear function of the optimal state estimator. It 1is
wfs

s W
evident that u is a closed-loop control, Et(gt) = -G The solu-

Zere
tion to the linear quadratic problem when the state is known exactly

{(i.e., there is no measurement error) is also linear and given by
b

u, is substituted for ¥

= Ak
[see eq. (4.30)] needs not be

= -G x, i.e., X Moreover, in the linear

t’ t

quadratic problem, the disturbance e,

Gaussian.
The preceding discussion reveals that some computations must be
made on-line while a significant portion of the calculations can be made

off-line (e.g., K, 2 G,, and Pt for all t), even at the predesign

t? T+l Tt

level. Assuming that r = m = n, the storage requirements of the method
are proportional to an in which N is the number of stages under
consideration. The computational work is about ang(n+1)N in which a is
a positive real number greater than ome. Notice that for a = 4 and
n =10, the number of multiplications at each stage (perioed) is about
44,000, That number does not include other arithmetic and logic

operations. Thus, the computational work seems to be the issue to be

dealt with in this technique (see Mendel, 1971, and Samant and Sorenson,
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1974, for exact storage and computational requirements under different

circumstances).

4.7 Nonlinear Programming (NLP)

Nonlinear programming is a very important and diverse branch of
optimization theory, but it is far better suited for static optimization
(i.e., time-independent problems). It does not work for stochastic
real-time control problems, of which reservoir operation is an example,
In fact, applications of NLP to reservoir operation always convert the
problem into a deterministic framework by using chance constraints, or
by forecasting or simulating inflows or other random variables. The
mathematical structure of the model is then written as if the problem
were deterministic and some NLP algorithm is used to obtain a solution.
The most adverse factor in this procedure is that the naturally dynamic
problem, after its conversion into a gigantic NLP model, is expressed in
terms of mN decision variables {m is the number of decision variables at
each period and N is the number of optimization periods). Usually, that
implies heavy computational work. TFor instance, if the resulting
problem were a quadratic programming problem and Fletcher's (1981)
active set method were used for its solution, the computational burden
would be on the order of (mN)g. If the same problem were attacked by a
sequential scheme (e.g., the progressive optimality algorithm, POA, of
Section 4.8), then the number of calculations would be on the order of
mSNK, in which X is the number of iterations needed to attain conver-
gence. To illustrate, if m = 5, N = 50, and K = 6 (typical in the PDA),
3

then the NLP and POA approaches would result in 2503 and 300 x 5

calculations, respectively.
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4.8 Progreséive Optimality Algorithm (POA)

The progressive optimality algorithm (POA) solves a multistage
dynamic problem as a sequence of two-stage optimization problems. It is
based on the principle of progressive optimality (PPO) (Howson and
Sancho, 1975) which states that: "The optimal path has the property
that each pair of decision sets is optimal in relation to its initial
and terminal wvalues." The PPO 1is derived from Bellman's (1957)
principle of oﬁtimality.

This section presents an extension of the work of Howson and Sancho
(1975) to the case in which there exists bounds on state and decision
variables. Also discussed in this section are some powerful programming
features of the POA that can be used to accelerate its convergence rate.
Section 4.9 contains proofs of the convergence of the POA for bounded
states and decisions. Specifically: (i) if a solution to a multistage
dynamic problem exists, then the POA converges to that sclution in a
finite number of steps; and (ii) if the objective function is strictly
concave and the constraints define a convex set (interest here is in
maximization), then a global optimum ks obtained. These proofs are
extensions of those given by Howson and Sancho (1975) for the uncon-
stréined (after substitution of the law of motion into the objective
function) problem.

Before outlining the solution appreach, several of the favorable
features of the POA are summarized:

) 1) The decision and state variables need not be discretized.

2) The two-stage optimization problem {objective function and
constraints) can be solved by any adequate algorithm, either of the DP

or NLP families. Thus, the objective function and constraints can be of
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arbitrary form, although for convergence to a global opﬁimum the problem
must be concave (or convex for the case of minimization).

3) The dynamics of the system need not be invertible for the
application of the POA, although that implies the possible existence of
multiple solutions,

4) Time delays in the continuity equation can be incorporated
easily, as done by Turgeon (1981),

5) Convergence rates depend on the scheme utilized in the two-
stage maximization., When a fast convergent algorithm like'Fletcher's
(1981) active set method is used, the POA convergence rate is better
than linear and perhaps close to quadratic if a good initial policy is
chosen; however, it has not been possible to establish quadratic con-
vergence rigorously. Actual applications of the POA (Chapters 5 and 7)
have shown convergence in less than nine iterations, five being the
average,

6) Assuming that the active set method is used to solve the two-
stage optimization problem, the computation effort to complete one
iteration (from time t =1 to t = N) is ansN and b(2m + n)3N for
invertible and noninvertible continuity equations, respectively, in
whiéh a and b are positive constants larger than one and independent of
m and n, the respective dimensions of the decision and state variables.

7) Storage requirements are proportional to nN and (2m + n)N for
invertible and noninvertible cases, respectively. Those requirements
account for the storage of current state trajectories. Parameter
(transition matrices in the continuity equation) storage requirements
vary greatly from one application to another, but for most applications
(e.g., reservoirs without pumped storage) they are proportional to n2

and (2m + n)2 for invertible and noninvertible cases, respectively.
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Consider the problem:

maximize Eg% F(gt, Et) (4.41)
subject to

Xeep = £(3es ug), Y (4.42)
X, € X, Vt (4.43)
y, € U, Ve (4.464)
Xy» %y, fixed (4.45)

in which ¥, 1s an n-dimensional state vector, 4, is an m-dimensional
decision vector, gt and Ht are feasiblé sets, t denotes time (t = 1,
2,..., N+ 1), aﬁle and f are functions of arbitrary form (noncomcavity
implies that local optimum is guaranteed only). For simplicity, assume
tha£ f in eq. (4.42) is invertible (this assumption can be relaxed as
shown in Chapters 5 and 7).

According to the PPO, a solution to the problem given by

eqs. (4.41)-(4.45) 1is accomplished by maximizing a sequence of over-

lapping two-stage problems:

maximize {F(Et-l’ Et-l) + F(ﬁt’ Et)} (4.46)
Se-10 Y
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subject to

Kepp = F(xp w)s 2, = £(x, 5 1) (4.47)
41 e Yig (4.48)
8 e Y (4.49)
X e X (4.50)
Ze-1 7 3’58-{;’ Bev1 -}EE,E% (4.51)

Notice that the maximization in eq. (4.46) is with respect to u

Y. and

u . As indicated in eqs. (4.48)-(4.50), 4 _y» U, and x, must belong to

v, t
feasible sets. Further, as specified in eq. (4.51), the beginning and

ending states are fixed.

The problem [egs. (4.46)-(4.51)] can be converted to a maximization

problem written in terms of the state variables only by using the

expressions

= -1 _
By =8 (s 20 =g (8) (4.52)
wo= £k L, x) = g (x,) (4.53)
=t =t+1? ~t t -t
in which f ' is the inverse continuity equation (eq. 4.47). By

substituting egs. (4.52) and (4.53) into eqs. (4.46), (4.48), and (4.49)

one obtains
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maximize [r(xt 1> 8¢ 1(x )) + F(xt, gt(xt))] (4.54)
It

subject to

8.1 (%) € U4 (4.55)

8, (x.) e U, (4.56)

X, e X (4.57)

Xeey T Eki’ eer = ~£fi (4.58)

in which k denctes the iteration number.
The solution steps of the POA algorithm are:

1) The initial and final states X, and x are fixed. Set the

1 =N+1
iteration counter k equal to one (k = 1). Find an initial feasible
policy {u( )} and its corresponding state trajectory {x( )}

2) Solve the problem given by egs. (4.54)-(4.58) by using any
convenient method.

3) Denote the solution obtained in step 2 by E:- Set'§£k+1) =X,

Increase the time index by one (i.e., set t equal to t + 1) and go to
step 2. Repeat steps 2 and 3 until a complete iteration is performed

(t = 1 through t = N). This is the end of the kth iteration.

(k) _ ,(k-1), 2
N M I

€ >0, for all t. If the test is satisfied, stop; otherwise, increase

" 4) Perform a convergence test, e.g.

the iteration index, k = k +1, set t = 1, and go to step 2, or stop if k
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has exceeded a specified limit. Notice that at the end of each itera-

tion the new values {§§k+1)}

{gékﬂ) }

are used to derive the corresponding
controel sequence by means of the continuity equation.
Figure 4.2 shows a general block diagram for the POA.

Some remarks about the POA are necessary. First, it would appear
that the iterations progress from t =1 to t = N, but this is not
necessarily so. The algorithm can be modified in such a way that
successive local optimizations are made at some periods in which
relatively higher improvements in the objective function are observed.
Once the rate of improvement falls below some preset value (e.g.,
10 percent improvement in the objective function with respect to the
previous iteration), the algorithm would advance towards ending the
iteration at t = N. Figures 4.3 and 4.4 show two different advancing
schemes. This flexibility of the POA, to be able to take full advantage
of localized conditions, accelerates the overall convergence rate at
little expense in programming complexity. Second, time lags in the
continuity equation are ‘incorporated in a straightforward manner.
Consider reservoir i which 1is directly connected to (downstream)

reservoir j. Let dij be the travel time between reservoirs i and j; xi

and ul the respective state and decision variables for reservoir j at

t
time t; and ut_d the decision for reservoir i at time t = dij' The
ij
continuity equation for reservoir j can be then written as
Iooe g i, i
Xepp S Fp mup tu gt Vi (4.59)

in which yi is the sum of diversions/accretions, net losses, and runoff

into reservoir j. Equations similar to (4.59) must be written for every
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CALL TWO-STAGE . SOLVER
SOLVER ROUTINE A7 ROUTINE
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!
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Fig. 4.2 Standard progressive optimality algorithm (POA) flow diagram.

CALL CONVERGENCE
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Fig. 4.3 Standard POA (To achieve state 5:53): (i) Xy and g_:gl) yield

_::C_%jj, (ii) 552) and EEI) yield g_éz); (iii) _}5_52) and gs(l) yield
X003 (iv) Xy and Egz) yield 3{_53); and (v) 3;_53) and 3{_22) yield

£y,
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Modified POA (To achieve state 555): (i) 3] and gc{gl) yield
35;52); (ii) _}5_52) and 3{_51) yvield 5:52); (iii) x, and §:§2) yield
52('3); (iv) 553) and gc_gl) yield §§3); (v) X, and §§3) yield
_}géa); (vi) 554) and §§1) yield Ega); and (vii) x, and E:gl’)
yield _}555)). This scheme should be used when significant
improvements (e.g., 10% improvement in the objective function

with respect to the previous iteration) arise from the two-

stage problem involving periods 1 and 2).
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reservoir in the network and the POA must be programmed so that previous
decisions (Et-d) are retrieved from storage to be used in the continuity

equation, eq. (4.59),

4.9 Convergence Proofs of the POA for Bounded States and Decisions

It is assumed that the law of motion is invertible and that the
objective function and constraints define a concave problem so that each

two-stage maximization has a unique, global optimum.

Theorem 1. The POA produces monotonically increasing approxi-
mations to the optimal value which is the upper bound of the approxima-
tions. Proof: Let {Et}, t =2, 3,..., N (51’ = %y and g, = Ey,. are

fixed) be an initial approximation to the optimal sequence {gt}, t =1,

2,..., N, N+1 with X =%y and A1 = ANt fixed. Define
N+1
IN(EIJ = maximum 2; F(Et-l’ Et) (4,60)
Kpsevns Ex t=2
Then,
: N+1
IN(El) = maximum 2; F(gt_l, gt)
Xgyeroy Xy t=2
N+l
= maximum [F(gl, 52) + maximum z: F(gt_l, §t)]
Xy Rgyeers Xy t=3

= 1 z
mailmum [F(§1, 52) + IN_I(EZ)], Nz3
~2

* ...+ F(R (4.61)

=Pl x)) * Flyy, x N> Ener)

5)
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from Bellman's principle of optimality. TFrom the POA,

F(El’ 52) + F(gz, 53) S max [F(xl, X ) + F(x
2

Xy 4]

-1 -1
= F(xy, x5) + F(x,, ¢5) (4.62)

; ; -1
in which X, .Y

during the first iteration sweep. In a similar manner,

is the optimal value obtained for x given x. and Cqs

1

=1
F(z,, c4) + Flgy, ;) % max [F(xz, 23) + F(xq, )]
23
- =1
= F(xz, x ) + F(x3, CA) (4.63)
in which %é is the optimal value of Xq, given éé and S during the

first iteration sweep. Similarly,

1

-n-1 —n-1 =n-1 -n
F(xg 12 %y ) + F(ﬁj , §j+1) g zax [F(xJ 1 X ) o+ F(x , §J+1)}
=3
— ! | =1 “n -n-1
= TG ) + Gy, x0,0) (4.64)

in which %? is the optimal value of §j’ given g?-l and xJ (the nth and

(n - 1)th iteration values for §j-1 and x. 417 respectively), during the

nth ‘iteration. Therefore, for the nth iteration,
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-n-1 =n-1 -n-1

F(xy, By )+ PG Xy )t Flay 7y ¥pgyg)
S F(x,, gg) + F(xy, gg) + o+ PRy, Xgq) (4.65)
$ Flx), 2,0 + F(x,, §3) +.o.t F(§N, Eyer) (4.66)

The 1last relation shows that indeed the iterations are monotonically
increasing and bounded above by the optimal value.

Theorem 2. If the iterations converge in a finite number of
steps, then the resulting {%E} is the optimal trajectory {it}. Proof:
If convergence occurs in a finite number of iterations, then rela-
tion (4.65) becomes an equality that would hold for m + 1, n + 2, etc.,
because a steady state is reached. Denote the steady-state trajectory
by {gt}. Relation (4.65) can be then written as

~

-n -n -n - -
Flxy, %)) + Py, 23) +oot Flry, xy,4) = Filxg)

Flzy, 2)) + F(Ry, 23) +...+ FRy, xy,0)

= max [F(x;, x,) + F(x,, %) +...+ F(Ry |, &) + F(&y, x5y,,)]

= max {F(El, 52) + r;ax [F(-}'{-Z’ §3) + F(§3; 34)]}
=2 =3

i F(§4’ X))+t FlRy, xygyy)
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= max {F(El, EZ) + max {F(gz, §3) + max (F(§3, EA)

2y 24 24

+ max (F(ia’ gs) o D13

25
= max {F(ﬁl, ﬁz) + maximum {F(gl, §2) ...t F(§N, §N+1)]}
9 Egr Zpre-or By
N+1
= maximum Egé F(Et-l’ Et)

Xp Xgooos Xy
= IN(gl) from eq. (4.60).

Thus, (R} = {5}
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CHAPTER 5

OPTIMAL OPERATION POLICIES FOR THE NCVP

This chapter presents a development of monthly optimal release
policies for the Northern Central Valley Project (NCVP). Special
attention is given to the incorporatioﬁ of actual characteristics and
operational constraints of the NCVP system into the operation model.
The model was developed by using feedback from the Central Valley
Operations Office of the U.S. Bureau of Reclamation, Sacramento,
California. The model uses a combination of deterministic dynamic
optimization (progressive optimality algorithm, POA) and a comntinuously
updating streamflow forecasting technique as the basis for determining
monthly operation policies for any water year. The updating technique
allows the revision of previous policies as the stochastic inputs
deviate the system from expected values. Thus, available at all times
are optimal policies that correspond to the actual realized states of
the system and up to date with the most recent streamflow information.

This chapter is organized as follows. Section 5.1 gives a descrip-
tion of the NCVP system. Section 5.2 presents the streamflow fore-
casting technique used in this study. Section 5.3 develops the optimi-
zation model structure for the NCVP. Finally, Section 5.4 discusses the
selection of an initial operating policy. Discussion of results is

presented in Chapter 6,

5.1 Description of the NCVP System

The system under analysis is composed of the following reservoirs:
Clair Engle, Lewiston, Whiskeytown, Shasta, Keswick, Natoma, Folsom,

New Melones, and Tullock. Figure 5.1 shows a schematic representation
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of the CVP system. The portion of the system analyzed in this study is
shown within the dashed lines.

The NCVP is managed jointly by the U.S. Bureau of Reclamation and
the California Department of Water Resources. It stores flood and
snowmelt waters and releases them at appropriate times to serve dif-
ferent functions. The main purposes of the NCVP are: provision of
water for irrigation (I), municipal and industrial uses (MI), environ-
mental control and enhancement (E), fish and wildlife requirements {(¥),
river navigation (N), water quality control (WQ), flood regulation (FC),
hydropower (HP), recreation (R), and control of ocean intrusion and
erosion. Fults and Hancock (1972, 1974) and Madsen and Coleman (1974)
presented a thorough geographical, dinstitutional, and historical
description of the CVP. The discussion herein will be centered on the
nine reservoirs mentioned earlier and, specifically, on the joint opera-
tion of those reservoirs. From now on, the term system will refer to
those nine reservoirs.

Table 5.1 shows basic data of the NCVP. Table 5.2 contains
capacity data of the tunnels, canals, ;nd penstocks that form part of
the system. The reservoirs of the NCVP must operate jointly to perform
the. multiple functions enumerated in Table 5.1. The system release
policy is subject to physical and technical constraints that arise from
the capacity and technology of the facilities, as well as institutional
and envirommental regulations. It is evident from Table 5.1 that
Sha;ta, Clair Engle, Folsom, and New Melones are the larger reservoirs
within the system. Lewiston, Whiskeytown, Keswick, Natoma, and Tullock
play an important role as regulating reservoirs. A regulating reservoir
maintains an adequate flow magnitude downstream of a larger reservoir

and a stable hydraulic head for a downstream power plant.
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Table 5,2. Capacities of Tunnels and Penstocks.

Facility Capacity

(cfs)
Folsom South Canal 3500
Clear Creek Tunnel 3600
Spring Creek Tunnel 4500
Shasta Penstocks 16500
Trinity Penstocks 3500
J. F., Carr Penstocks 3600
Spring Creek Penstocks 4300
Keswick Penstocgs 14500
Nimbus Penstocks 5G00
Folson Penstocks 8000
New Melones Penstocks 8300
Tullock Penstocks 1800

1 cfs = 0.02832 m°/s.



64

Winter flows in the Trinity River are stored for later release from
Clair Engle Lake. Normally, water behind Trinity Dam (at Clair Engle
Lake) is released through the Trinity Power Plant and regulated down-
stream in Lewiston Reservoir. The major portion of the water reaching
Lewiston Dam is diverted to the Sacramento River watershed via the
11-mile long Clear Creek Tunnel. The remaining water is released to the
Trinity River to support fishery. Water diverted through Clear Creek
Tunnel exits through the Judge Francis Carr Power Plant in Whiskeytown
Reservoir. It is possible to release water from Whiskeytown Dam to
Clear Creek or make diversions through the Spring Creek Tunnel.

Sacramento River water is stored for later release from Shasta Dam.
Ordinarily, water is released from Shasta Reservoir through the Shasta
Power Plant and flows downstream to Keswick Reservoir. The inflow to
Keswick includes releases from Shasta and Spring Creek Tunnel. Releases
from Keswick may be made through the Keswick Power Plant and flow in
excess of the power plant penstock capacity are spilled to the
Sacramento River.

Folsom Dam stores American River water and releases it under normal
operation through its power house. Excess flows are spilled to the
Amefican River. Part of those releases is diverted by the Folsom South
Canal and the remainder goes into Lake Natoma, which acts as a regulat-
ing reservoir. As much water as possible is released through the Nimbus
Power Plant at Lake Natoma, with any excess water spilled to the
American River. The American and Sacramento Rivers converge near the
city of Sacramento and flow to the Sacramento-San Joaquin Delta to serve

several purposes.
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New Melones Dam stores Stanislaus River flows to release them
during the summer for agricultural use. It also releases water to
maintain water quality standards in the San Joaquin River. Tullock
Reservoir, upstream from New Melones, is primarily a regulating
reservoir.

One of the main functions of the NCVP system is flood control
protection. The flocod contrel pool of the reservoirs is governed by
regulations established by the U.S. Corps of Engineers. Those regula-
tions stipulate that a certain amount of space be held empty in a
reservoir during the period October l-April 30. Table 5.3 summarizes
the flood control regulatioms for Trimity Dam at Clair Engle Reservoir.
Figures 5.2 through 5.5 show the flood control provisions for Shasta,
Folsom, New Melones, and Tullock, respectively. There are no flood
control regulations for the other reservoirs in the system (Lewiston,
Whiskeytown, Keswick, Natoma, and Tullock) whose main function is flow
regulation.

Nimbus and Keswick Power Plants are low-head installations whereas
the other power plants are high-head facilities. Yeh et al. (1978) gave
a set of performance curves for several of the generating units of the
NCVP. A release of one acre-foot of water from Trinity Dam generates
power at Trinity, J. F. Carr, Spring Creek, and Keswick Power Plants
and, because of the system configuration, represents about five times as
much power as one acre-foot of water released from Folsom Dam. A one-
acrg-foot release from Shasta is considered by the U.S. Bureau of
Reclamation (USBR) to produce about 1.5 the power that can be obtained

from one acre~foot of water released from Folsom Dam (Yeh et al., 1976).
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Table 5.3. Flood Control Provisions for Trinity Dam at Clair Engle Reservoir.

Reservoir Storage and Maximum Flood
Period Water Surface Elevation Control Releases
(1) (2) (3)
Nov. 1-Feb. 28 Less than 1850 Kaf None required

(elev. 2330.3 ft)
Nov. .1-March 81 1850-2100 Kaf 3600 cfs
(elev. 2330.3-2347.6 ft)
Nov. l-March 31 2100-2450 Kaf 6000 cfs
(elev, 2347.6~2370.1 ft)
Nov. 1-March 31 Greater than 2450 Kaf 30000 cfs

(elev. 2370.1 £t)

According to existing U.S. Corps of Engineers regulations, the reservoir
elevation should be maintained below 2347.6 ft during Nov. Il-March 31 each year.

If during the periocd indicated in column (1) the reservoir is within the
storage levels of column (2), then release the flow in column (3).
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Rainflood parameters relate the accumulation of seasonal inflow to the
required flood control space reservation on any given day. Parameter
values are computed daily, from the accumulation of seasonal inflow by
adding the current day's inflow in cubic feet per second (cfs) to 95% of
the parameter value computed through the preceding day. The flood control
diagram is initialized each flood season by assuming a parameter value of
160,000 cfs day on 1 October. .

Except when releases are governed by the emergency spillway release diagram
currently in force (File No. SA-26~92), water stored in the flood control
reservation, defined hereon, shall be released as rapidly as possible,
subject to the following conditions:

a. That releases are made according to the Release Schedule hereon.
b. That flows in Sacramentoc River below Keswick Dam do not exceed
79,000 cfs.

c. That flows in Sacramento River at Bend Bridge gage do not exceed
100,000 cfs.

d. That releases are not increased more than 15,000 cfs or decreased more
than 4,000 cfs in any 2-hour period.

For example, if the percentage of the flood control space used is 90% and
forecast inflow is 60,000 cfs, then release 70,000 cfs.

RELEASE SCHEDULE

i | {
o) 20 40 80 80 100 (20 140 —

Actual or Forecast Peak Inflow for Current Event
in 1,000 CFS
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Rainfall parameters define the flood control space reservation on any given
day and are computed daily from the weighted accumulation of seasonal basin
mean precipitation by adding the current day's precipitation in inches to
97% of the parameter computed the preceding day. Sample computation of
required space is shown below.

Sample Computation of Required Space

Previous day's , Required floeod
Precip. weighted precip. Weighted precip. control space
Date (in.) x 0.97 accumnlation (Kaf)

7 Nov 0.0 = 0.0 0.00 370,000
8 Nov 1.0 0.00 x 0.97 = 0.0 1.00 380,000
9 Nov 1.5 1.00 x 0.97 = 0.97 2.47 390,000
10 Now 3.0 2.47 % 0.97 = 2.396 5.40 400,000
11 Nov 0.0 5.40 x 0.97 = 5.238 5.24 400,000
12 Nov 0.0 5.24 x 0.97 = 5,081 5.08 400,000
7.00 400,000
30 Dec 2.0 7.00 x 0.97 = 6.790 8.79 400,000
31 Dec 1.0 8.79 x 0.97 = 8.526 9.53 400,000
1 Jan 1.0 9.53 x 0.97 = 9.244 10.24 398,200
2 Jan 0.0 10.24 x 0.97 = 9.932 9.93 396,200
3 Jan 0.0 9.93 x 0.97 = 9.634 9.63 394,000
4 Jan 0.0 9.63 x 0.97 = 9.341 9.34 391,700

2. Except when larger releases are required by the emergency spillway release

diagram currently in force (File No. AM-1-26-585), water stored within the
flood control reservation, defined hereon, shall be released as rapidly as
possible subject to the following conditions:

a.

Outflows at the tailwater of Nimbus Dam in excess of power plant
capacity may not exceed the lesser of 115,000 c¢fs or the maximum rate
of inflow to Folsom Lake experienced during the current flood event.

Between 6 November and 1 December, the maximum release may be limited
to the Folsom power plant capacity if less than 40,000 acre feet of
water is stored in the flood control space.

Releases will not be increased more than 15,000 cfs or decreased more
than 10,000 cfs during any 2-hour period.
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Notes

1. Whenever water is stored in the Flood Control Space, it shall be released
as rapidly as possible without causing flows in the Stanislaus River at
Orange Blossom Bridge to exceed 8,000 c¢fs insofar as possible.

2. Whenever water is stored in the Conditional Flood Control Space, releases
shall be made at a sufficient rate, based on anticipated snowmelt runcff,
so that the pool elevation will not exceed 1088 ft subject to the limita-
tions in paragraph 1 above.

3. Control of Stanislaus River flood flows requires coordinated operation with
Tullock Reservoir.

4. Reservoir zoning is:
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Fig. 5.4 New Melomes flood control diagram. See notes on next page
(Source: Central Valley Operations Office, U.S. Bureau of

Reclamaticn, Sacramento, Ca.).
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in which

Zone 1

Zone 2

Zone 3

Normal power and comservation operation: Flows in the Stanislaus River
are not to exceed 3,500 cfs at Orange Blossom Bridge to minimize
damages to adjacent low-lying agricultural lands.

Follow operation procedure in Flood Control Diagram on previous page.
Notify Sacramento District personnel.

Initiate emergency operation and notify local authorities for possible
evacuation of flood plain. The Flood Control and Irrigatiom Outlet
will be operated to maintain the objective flow (8,000 cfs at
Orange Blossom Bridge) as long as possible by gradually closing the
outlets as pool rises above normal full pool elevation (1088 ft). For
a receding pool, outlets will remain close until objective flow has
been obtained. The outlets will then be opened to maintain a total
flow of 8,000 cfs at Orange Blossom Bridge. When the water surface has
receded to normal full pool elevation, resume flood control operation
as 1in Zone 2. Notify Sacramento District personnel and request
assistance if desired.
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Fig. 5.5 Tullock flood control diagram (Source: Central Valley

Operations Office, U.S. Bureau of Reclamation, Sacramento,

Ca.).

Notes

1. Water stored in the flood control space will be released as rapidly as

possible without causing flows in the Stanislaus River at Orange Blossom
Bridge to exceed 8,000 cfs.

Flood control releases will not be changed more than 1,000 cfs per hour.

Elevations correspond to the Oakdale Irrigation District Stage-Storage Gage
with a datum of 1.5 ft above the 1929 mean sea level.
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The total power output of the system is delivered mostly to
Pacific Gas and Electricity (PG & E), which uses it as peaking capacity
to satisfy its power demand. The dependable capacity of the system (the
power generation which under the "most adverse" flow conditions of
record can be relied upon to its share of the power load) has been
established at 860 megawatts (George Link, USBR, personal communication,
1982). The system managers notify PG & E 24 hr in advance of the next-
day release volume and the utility returns % request for scheduling that
release volume in such a way that it best matches PG & E's load curve.
The dependable capacity of 860 megawatts (Mw) is used in this study to
establish a lower bound on power generation. As will be shown in
Chapter 6, this lower bound results in a redundant constraint due to the
extremely low value of the dependable capacity of the system.

The longest-~term operation activities of the CVP are planned for
each water-year. On October 1, the USBR estimates future streamflows
for the next 12 months. Based on that forecast, a tentative release
policy is proposed for the 12-month period. Because actual streamflows
deviate from their expected wvalues and.institutional and/or technical
conditions may vary from month to month, streamflow forecasts are
updéted at the beginning of each month and the release policy is revised
for the remaining months of the water year. The revised policy is based
on actual (observed) storages, updated streamflow forecasts, and changes
in circumstances (e.g., state and federal directives affect the opera-
tioQ of the system frequently). The proposed optimization model of the
NCVP (Section 5.3 and Chapter 7) is developed to fit this recurrent

revising scheme for release policies.
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Data Relevant to the Constraints of the System

The optimization model of Sections 5.3 and 7.7 requires a quantita-
tive statement of the constraints on the operation of the system.
Figure 5.6 shows a schemétic representation of the NCVP and the points
at which accretions/diversions exist. Table 5.4 contains information on
flow requirements. There exist regulations on maximum and minimum
storages that arise from flood control provisions, recreation, aesthetic
concerns, power plant performance, etc. Table 5.5 shows reservoir
capacity allocation for the system under study. Tables 5.6 and 5.7 give
maximum and minimum storages for the reservoirs, respectively. Those
bounds on storage will be used as constraints in the optimization model
of Section 5.3. The model will also be constrained by the maximum and
minimum reservoir releases shown in Tables 5.8 and 5.9, respectively.
Appendix A contains storage-area-elevation data for all reservoirs in
the system.

Flood control constraints for Shasta and Folsom depend on cumu-
lative rainfall and inflows to the reservoirs. Depending on those
cumulative values, the flood control éiagrams for Shasta and Folsom
specify the flood control space to be provided (Figs. 5.2 and 5.3,
reséectively). In this study, the less stringent (upper) curve of the
diagrams will be used to determine the necessary flood control storages.
It will be shown in Chapter 6 that with an adequate streamflow fore-
casting technique (e.g., 15% deviation between actual and forecast
flogs), the current flood control provisions are very conservative.

Power generation will be considered in the objective function and
constraints of the optimization model. The amount of power generated by

the system depends on the effective hydraulic head at the intake of the
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turbine, the flow through the penstocks, and the effiéiency of the
turbines. Curves that relate the rate of energy productien (in
megawatt-hour per kiloacre-foot, Mwh/Kaf) to reservoir storage (in Kaf)
were developed from actual records of operation for the reservoirs since
their power plants began operating. Those curves can be used to compute
the energy generated in any period without having to include constraints
on power production, which are nonlinear and usually create numerical
and analytical difficulties. In addition, the rate of energy production
becomes a linear function of the storage, and the head does not appear
in the energy equation. The rate of energy production vs. reservoir
storage curves were tested with actual operation data for the NCVP. 1In
comparison with actual energy output, the error in the predicted energy
generation was less than 2 percent. As shown in Chapter 7, it is
straightforward to incorporate nonlinear rates of energy production.

Figures 5.7 through 5.13 show the energy production vs. reservoir
storage curves for all reservoirs but Keswick and Nimbus Power Plant at
Natoma Reservoir. The energy vs. storage relations for those two low-
head installations were developed by ﬁsing regression analysis from
historical energy production records. The data on Figs. 5.7-5.13 were
appfoximated by the following linear equations (for Keswick and Nimbus,
the energy rate curves were approximated by linear relations that were

tested against actual operation records):

Trinity (at Clair Engle Lake)

Er = 221 + 0.0858 iT (5.1)

v = 94,69
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Judge Francis Carx

ngC = 575 + 0.9 X

r2 = 99,0%

Spring Creek

gsc = 460 + 0.434 Xy
r2 = 98.0%

Shasta

gs = 234 + 0.0462 Xg
% = 94.89

Keswick

gK = 80.3 + 0.6 Ky
r2 = 92.0%

Folsom

gF = 201 + 0.120 Xp
r? = 95.89

Nimbus

EN = 26.3 + 0.8 Xy
r2 = 91.0%

New Melones

gNM = 268 + 0.123 x

% = 98.0%

NM
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Tullock
Ery = 64.9 + 0.931 QTU (5.9)
rz = 99 4%

In eq. (5.1), gT is the energy rate in Mwh/Kaf for Trinity Dam (at
Clair Engle Lake), §T is the average reservoir storage in Kaf during a
specified period, and r2 is the adjusted regression correlation
coefficient. Other terms in eqs. (5.2)-(5.9) are defined similarly.
The treatment of nonlinear energy production rates is fully addressed in
Chapter 7.

Evaporation and direct rainfall input are considered for the larger
reservoirs only, i.e., Clair Engle, Shasta, Folsom, and New Melones.
Historical records of operation for Trinity and New Melones were used to
derive monthly coefficients of net loss rates (evaporation minus direct
rainfall input). For Shasta and Folsom, those coefficients were derived
from data provided by Hall et al. (1969). Table 5.10 gives net loss

rates data for the reservoirs. The total net loss in any month t (et)

in Kaf is expressed by
e, = ¢, A (5.10)

in which At is the average surface area of the reservoir in month t

(kiloacre, Ka) and c, is the net loss rate during month t (ft/month).

t
It is possible to express eq. (5.10) as a function of average storage if
an area-storage relation is available. Several linear functions that

relate area (A) and storage (x) were obtained for the four reservoirs

mentioned earlier:
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Table 5.10. Reservoir Net Rate Losses, e, {in ft/month).

Month Clair Engle Shasta Folsom New Melones
Jan 0.040 -0.020 ~-0.020 0.020
Feb 0.047 -0.001 -0.005 0.023
Mar 0.0%0 0 -0.001 0.050
Apr 0.215 G.002 0.001 0.008
May 0.340 0.005 0.003 0.120
Jun 0.484 0.006 0.004 0.200
Jul 0.715 0.008 0.006 0.260
Aug 0.635 0.007 0.005 0.150
Sep 0.450 0.005 0.004 0.060
Oct 0.170 0.003 0.001 0.030
Nov 0.070 0 0 0.001

Dec 0.022 -0.003 -0.002 0
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Clair Engle

Ap = 3.33 + 0.0078 Xop (5.11)
rz = 97.0%

Shasta

AS = 3,99 + 0.0061 Xg (5.12)
% = 96.0%

Folsom

Ap = 2.67 + 0.0094 iF (5.13)
£ = 95,09

New Melones

Agy = 2.91 + 0.0088 X (5.14)

r2 = 96.0%

NM

in which area is in Ka and storage in Kaf. Equations (5.11)-(5.14) were
developed from the area-storage data of Appendix A

By substituting eqs. (5.11)~(5.14) into their respective equiva-
lenﬁs to eq. (5.10), the net loss for each month t can be expressed as a

function of average storage (k) as follows:

Clair Engle

ecp = 3.33 c p + 0.0078 Cer X (5.15)
Shasta
e.g = 3.99 ¢ o+ 0.0061 c g X, q (5.16)



98

Folsom

ey = 2.67 Cop t 0.,0094 Cop Xep (5.17)
New Melones

e 2.91 Comy T 0.0088 Conm Xenm (5.18)

Benefits Accruing from the Operation of the System

Due to the multiobjective nature of the NCVP operation, multiple
benefits arise from the operation of the system. Flood control benefits
arise from the reduced damage caused by floods that would otherwise
occur without the project. As an example of the services provided to
the public, Madsen and Coleman (1974) estimated that in 1970 the system
averted flood damages for about $55 million (in 1970 dollars).

Irrigation benefits can be measured by the cost of providing an
alternative source of supply. The criterion of alternative cost can
also be applied to ecomomic benefits accruing from hydropower, municipal
and industrial use, and ngvigation. Jaquette (1978) estimated the cost
of developing new reservoir water supply at $100 per acre-foot. The
issue of benefits computation is more complicated with regard to water
quaiity and fisheries. The economics of reservoir operation is a topic
that needs further research,

For the purpose of this study, the performance of the system is
measured by the total emergy generated during a water year. As shown in
Chagter 6, it is rational to use power revenue as a performance crite-
rion because a large amount of power generation is usually associated

with increased water deliveries for other purposes and with adequate
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flood control storages. It is acknowledged that the use of power gene-
ration as the only performance index is a limited criterion, although
one that in the case of the NCVP operation model leads to an adequate
mathematical structure and satisfactory operation policies as indicated
by the results in Chapters 6 and 7. Chapter 6 and Section 7.8 contain a
detailed discussion of power generation and its relation to releases and

storages.

5.2 Streamflow Forecasting Technique

The worth of streamflow forecasting has been discussed by several
investigators (Jettmar and Young, 1975; Klemes et al., 1981). It is
generally agreed that the type of model used to forecast streamflows for
long~term operation is not critical since most statistical models are
good at predicting mean flows, which dominate long-term operational
analysis. The accuracy of short-term forecasts is, however, crucial in
short~term control of stochastic dynamic systems. Wenzel et al. (1976),
Yeh et al. (1982), and others found that good streamflow prediction is
important for short-term reservoir operation, especially in relation to
flood coﬁtrol. Short-term forecast of river flows is of primary impor-
tance in the operation of the NCVP.

For this study, a new technique is developed to forecast river
flows. Forecast flows are used as input to the monthly optimization
model of reservoir operation. The parémeters of the forecasting method
(i.e., transition probabilities) are updated each month and future
forecasts are correspondingly updated to include the last information
available.

The conceptual basis of the forecasting method is to view the
realization of monthly flows as replication of a multivariate seasonal

autoregressive (AR) process. In this study, there are five rivers
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feeding the system: Sacramento River at Shasta, American River at
Folsom, Trinity River at (Clair Engle, Stanislaus River at New Melones,
and Clear Creek at Whiskeytown. Thus, each month of the oth year, a

five-component streamflow vector, is observed; this constitutes one

Lo
realization of the AR process. In the development that follows, Yo
represents a five-dimensional vector of river flows during month t and
water year «. For example, 32,30 is the river flow in November of the
30th year of flow data. The index t goes from t = 2 to T = 12 and «
varies from 1 to N, the number of years of the flow record. In the NCVP
system, the first component of vector Ve corresponds to Bhasta, the
second to Folsom, the third to Clair Engle, the fourth to New Melones,

and the fifth to Whiskeytown.

The expression for the first-order AR model is
Yp ¥ By Yooy g (5.19)

in which Y is a p-component vector with mean E(xt) = 0 (in this study,

Yy is a five-dimensional flow vector whose mean has been subtracted); Bt

is a p x p matrix (the "transition" matrix); and e_ is a sequence of

t

independent random vectors with expected values E(gt) = 0 and covariance

, T, _ .
matrices E(gt Et) = Et, and independent of Yeoq? Ypapr Let the
, T
covariance of Y be E(Xt Xt) = Rt' It follows that
R, =B_R_, B +3 (5.20)
t t Tt-1 "t t )

If the observations are made for t =1, 2,..., T and if ¥y and the gt‘s

are normal, then the model for the observation period is specified by

Ry Byseey By Ty, 5
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The identification criterion used to estimate the parameters Rt’

Bt’ and Zt is the maximization of the likelibood function of the process

(Anderson, 1978) given by eq. (5.19). Let Vi be the p-component vector
of measurements of the «ath replicate at the tth time point (¢ = 1,

2,..., N and t =1, 2,..., T). Assume that e_ and y, are normally

t
distributed as N{Q, Zt) and N{O, Rl), respectively. The probability

density function of the sequence Y1 s Yo 47 1, 2,..., N, is

) Yoqr-

N

1/2tp 1/2 1 1/2 21=1a 71 lo
S @t R VR, 3y

L T
T -1
¥ (tgz Tea = B¢ Zt~1,a> % (tZ ey = Be Xtﬁl’a)> (5.21)

=2

By taking the logarithm of eq. (5.21) and differentiating with respect

to the elements of B , the maximum likelihood estimators (MLE) of B,,

B B_ are

3ot By

2 -1 .
B, =C (1) C (0, t=2,3,...,71 (5.22)

The MLE of Rl’ 22,..., Zt are respectively

R, = C,(0) (5.23)
and

¢ - - h ~T -

2, =C.(0) - B _,(0) By, t =2,3,..., 1 (5.24)

In eqs. (5.22)-(5.24),

€l =§ 2, Yeq Yeoja (5.25)
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Clearly, Ct(j) is the sample c¢ross-correlation matrix between the
observations at period t and those at period t-j. Notice that knowledge

and gt allows the computation of ﬁz,..., ﬁt by means of

Application of the AR model to the five streams considered in the
NCVP yielded the parameters %t (estimate of the transition matrices) and
ﬁt {estimate of the noise covariance matrices) shown in Table 5.11.

Prediction of future inflows having the last period realization of Ye

(i.e., ) is accomplished b usin the following expression
Yeo1 Y g

recursively:

E(¥y4q | ¥.) = By ¥, (5.26)

Inflow forecasts computed from eg. (5.26) converge to the historical
means after eight periods. Thus, the best way to use eq. (5.26) is by
updating the forecasts once a value of Yo is observed, i.e., by changing
the base time ¥, in eq. (5.26) and con§idering only the most recently
updated forecasts for operation planning. Also, parameters ﬁt’ ﬁt’ and
ﬁt can be modified as new realizations Y, become available so that those
estimates can be kept up-to-date with the most recent information.

Tables 5.12, 5.13, and 5.14 show the results of the application of
this technique to forecast flows at Shasta, Folsom, Clair Engle,
New Melones, and Whiskeytown for a below-average inflow year (1975-
1976), an average inflow year (1974-1975), and an above-average inflow
year (1979-1980), respectively. The results represent the one-step

ahead predictors (i.e., forecasts computed by updating the base Ve from

month to month) and are within %15% of the actual values. Those are the
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values of inflows that will be used in the oﬁtimization model to update
the operation policies every month. The implication of the month-to-
month update is that any operation policy will be followed strictly
during the incoming month only. Thereafter, the policy will be revised
to account for changing conditions (flows, constraints, etc.).

~

If the gt’s were not assumed normal, then the estimators Rt’ Et’
and it would still have the values reported earlier but the estimates
should be interpreted as least squares estimators. Also, if the gt’s
were not assumed normal, then the approach to forecast streamflows
presented herein will not allow hypothesis testing. Among the hypo-
theses that can be tested with this approach are: i) stationarity (is
Bt = B for all t?); ii) independence between the vectors Y (is Bt =0
for all t7); iii) independence of subvectors (if XE is partitioned as
(Xi, Xi), are the subvectors zé and Xi independent? In other words, if
Xi containg the inflows to Shasta, Whiskeytown, and Clair Engle and Xi
contains the inflows to Folsom and New Melones, are the flows in Xi
independent of those in Xi?); iv) order of the model (is a first-order
model adequate?); and v) whether a parameter matrix Bt remains the same

or changes to another matrix Bé during a set of years {(a change in the

matrix could be caused by the construction of a regulating reservoir).

5.3 Optimization Model for the NCVP

This section presents a mathematical formulation of the NCVP
optimization model. The model uses a sequential optimization technique,
the ‘progressive optimality algorithm (POA), which was described earlier.
The POA solves for an optimal release policy for the nine-reservoir

system shown in Fig. 5.6. 1In essence, the way in which any operation



110

schedule is used by the NCVP managers is as follows. At the beginning
of a water year, the managers announce the next guiding release policy,
which is updated each month after actual flows and water demands are
known. The random nature of inflows is handled by making statistical
forecasts of flows for the remaining months of the current water year.
Those forecasts are updated monthly to account for the most recent
actual realization of river flows. Updated flow forecasts as well as
actual reservoir storages are input to the model and a revised policy is
found for the remainder of the water year. The performance criterion,
or objective function, of the model consists of maximization of the
power generated throughout the year.
The following notation is used in this section:
X, = 9-~dimensional vector whose components xi are the beginning of

t

month storages at each reservoir; i denotes reservoir number,

i=1, 2,..., 9 (Fig. 5.6).

u, = 9~dimensional control or decision vector that represents water
released through penstocks; its components are ui. Decisions are
maae-at the beginning of month t.

r = 9-dimensional spillage vector; its components are ri. Spillages

will be treated as decision variables in different ways, according

to alternative models developed in this section and in Chapter 7.

Figure 5.14 shows the relationship between the time index t and the

ctors u .
vectors X, U, and Ty
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Figure 5.14. Relation between t and vectors Xy U, and E-

Spillage will occur when the maximum flood control level is
exceeded. If the penstock discharge plus the release through other
outlet structures reach the maximum allowable discharge, then the
reservoir level is allowed to reach into the surcharge storage and the
total release is maintained at a maximum until the reservoir is brought
to an adeguate level (as specified in the flood control diagram).
Short-term control of large flood events, which occur occasionally, are
best handled by on-line stochastic cont£01 methods where decisions must
be taken in a time framework as short as a few minutes. Clearly,
monfhly operation schemes cannot capture those fast dynamic events in
the best way. Nonetheless, monthly decision policies are valuable tools
for planning purposes. In fact, it is through those monthly policies
that many reservoir systems plan their future activities.

The first step in developing the optimization model for the opera-

tion of the NCVP system is to write the law of motion, or continuity

equation, for each reservoir in the system (see Fig. 5.6):
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Reservoir 1 (Clair Engle)

1 1. 1 1., .1 1
Xeep T X T B T F PV " e (5.27)

Reservoir 2 {(Lewiston)

2 _2_ 2 21,1 _ 2 _2
Xegpp = ¥p = Up T Ty + u, + r, - e Rt (5.28)

Reservoir 3 (Whiskeytown)

3 _3_3_3._2_ 3 3 .3
Xepp S Fp T UL m T tu typ - e -R (5.29)

Reservoir 4 {Shasta)

6 _ b 4 b 4 4
Xeep T Fp T Mg T E P Y T8 (5.30)

Reservoir 5 {Keswick)

5 _ .5 5 5 3 4 4 5
Xegp = ¥p = W 7T + uy + u, + ro - e {5.31)

Reservoir 6 (Folsom)

xg+1 = xg - ui - ri + yi - ei - Ri (5.32)
Reservoir 7 (Natoma)

AR R P S 6.5
Reservoir 8 (New Melones)

ERP R D .30
Reservoir 9 (Tullock)

R R N N 5.9

in which Ve = river inflows during month t, e, = net losses, and

Rt = water demands. Equations (5.27)-(5.35) can be expressed in vector-

matrix notation as
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Xeqp SEE P Ty u v Tz (5.36)

in which I denotes the identity matrix and

— -
-1 &
1 -1
1 -1
-1
r, = 1 1 -1 (5.37)
-1
1 -1
~1
1 -1
-1 ]
1 -1
-1
-1
r, = 1 -1 (5.38)
| -1
1 -1
~1
1 -1
- —

Notice that Fl and I"z are nonsingular lower triangular matrices that
considerably simplify the numerical computations. The triangularity of
I"l and Tz arises from a proper numbering of the network as done in
Fig. 5.6. Equation (5.36) can be rewritten as
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Py * Ty Xy =X q =% - 2 (5.39)

Recall that e,

by [see eqs. (5.15)~(5.18)]

the net losses for reservoir i during month t, is given

+ xH) (5.40)

in which di and ct are coefficients [see eqs (5.15)-(5.18)] and

i i . . . .
(Xt+1 + xt) signifies the use of average storage. Substitution of

eq. (5.40) into eq. (5.39) gives

Fou, +T7, r = A B x -v (5.41)

t+1 Ze+1 T P Ep T Y

in which At+1 is a diagonal matrix whose (diagonal) elements are 1 + ci,
i=1, 2,..., 9; Bt is a diagonal matrix whose (diagomal) elements are
1 - ci; and Ye is the vectgr
v - d
:
HEE R
Ve - 4y
v, = - @ (5.62)
ve < R - 4
R -4
SRR
- di
e _
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Because of the small values of the coefficient ci [see
egs. (5.15)-(5.18)], the impact of net losses will be negligible.
However, that may not be true in regions of different climatic condi-

tions. Eguation (5.41) can be also stated as

Aoy Bpay S B B * T u +T, 1+ v, (5.43)
or
Bepp T @ By TP u +P o +F v, (5.44)
in which ¢, = A B.; P, =A L T, p. =al T.. and F = A"}

t 7 T Tt T1e T Sesr 1 Tar T feer T 2f £~ B

Equation (5.44) is the law of motion, or the equation of continuity, for

the NCVP system (a linear equation). Vectors u, and r,_  represent

t t

deterministic control terms and tht is a stochastic disturbance term.
Notice that Ve is a stochastic vector because it includes the random
inflows yi. In addition,lit is evident from eq. (5.42) that if water
requirements (Ri) were also considered random, then Ve would include
only di as a nonrandom texm. It is emphasized that in this study, the
floﬁs are forecast and then a deterministic problem is solved with the

1

most recent forecast of flows used in the vector v Equations (5.41)

e
and (5.44) play a central role in the development that follows.
The objective function of the optimization model consists of

maximization of the energy generated during each year. The energy

generated at reservoir i during month t (in Mwh) is

R T e o T, (5.45)
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in which gi is the energy rate given by egs. (5.1)-(5.9) and ui is the
penstock release from reservoir i during month t. For the whole

system, the total energy generated during any month t can be expressed

as

E_=fa + B(x,_ + x )}T u (5.46)
t - =t St+l =t '

in which

gT = (221.0 575.0 460.0 234.0 80.3 201.0 26.3 268.0 64.9) and contains

the constant terms a® in eq. (5.45) which are explicitly given in

eqs. (5.1)-(5.9).

0.0429
0.4500
0.2170 0
0.0231
B = 0.3000
0.0600
0 0.4000
0.0615
0.4660

. in which the shown diagonal terms are the b''s of eq. (5.45) and
are equal to the factor that multiplies the average storage in

eqs. (5.1)-(5.9) divided by two.
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u, = 9~dimensional penstock releases.

Recall that the POA maximizes a sequence of two-stage problems, i.e.,
maximize E + Et for t =2, 3,..., 12 subject to a set of constraints.

t-1
It follows from eq. (5.46) that

- T
Beop P B = la# Blx ;) + %01 u
+fa+Bx +x_.)1"u (5.47)
= “t T S’ 2t
It is clear from eq. (5.41) that
. -l ~1 -1 -1
Be =Ty Ty v Ty Apyy Beyq - Ty Bux - T v
=l E * iy By "D R - F oy, (5.48)
A similar expression can be developed for Y q Substitution of those
expressions for u, and u,_, into eq. (5.47) yields
‘ _ T T T T
Bpop "B S 9y 5 BBy tg X mx BT oxg
-x BT ¢ 6, %, +k, (5.49)
-t —t=-1 —"t t =t
in which
g =-a -z, BT (5.50)
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By =-a I'-x BT (5.51)
Ez - éT D §E+1 Cz+1 B - Ki F' B - Ei-l B D+ ETCt
T T T T T
X1 Dt—l B - Vel F° B + X1 B Ct (5.52)
Gt = B Ct - B Dt (5.53)
T T T
Ko =2 G X m 8 Fugvx, BC o, Xy
T T . T
TEepg BEY ca Dy x -2 Py,
- XT BD X - % BF v {(5.54)
-t-1 t-1 =t-1 ~t=-1 —-t-1
Notice that kt is a constant because Et-l and X .4 are held fixed at

every two-stage maximization. Thus, k lays no role in the two-stage
¥ g » Ky play

solutions. Let

|®
It
]

(5.55)

that is, construct an augmented vector containing the wvariables for
which the optimization is to be made. Equation (5.49) can be now

expressed as



119

.7 T T T .1
Et"l + Et = [-gt’ 9-t’ Rt] ?.. + gt Ht gt * kt (5:56)
in which
— T —
Gt + Gt ~BI -BI
1 1 T
He =35 P8 0 0 (5.57)
-T'B 0 o

where 0 is a 9 x 9 null matrix. By dropping the constant term kt,

eq. (5.56) can be rewritten as

E +E =6 H 8, + g @ {(5.58)

in which
T T T T
sc = I8 9¢» Bl (5.59)

Thus, it has been demonstrated that the.twovstage objective function is
quadratic. It is worthwhile to recall that the continuity equation was
usea to develop eq. (5.58) and thus it will not appear as a constraint
in the constraint set associated with eq. (5.58).

The final step to complete the formulation of the two-stage opti-
mization problem is to include the constraint set associated with

eq. (5.58). First, recall that the original two-stage problem is

maximize E + E (5.60)
Zpr Lgr Leeg
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subject to

Xe = fioy Geepr ¥eop Yeog)s Xepp = Fp B 9, ) (5.61)
Y1 € Wy Ye € X (5.62)
.41 € gt—l’ e U (5.63)
L e Reepy Eoe Ry (5.64)
X e X (5.65)
in which o1 ¥pqqp are fixed; Wpop S8 P Eogs W=t .5 W, 1is
total release (penstock plus spillage); and W W, U U, R

t~1% —t’ —t-1' =t =t-1’

Rt’ and Xt are feasible regions for the corresponding variables. Notice

that eq. (5.60) is written as a function of Xes Lioqo

agreement with eq. (5.49). Equation (5.61), the continuity equation for

and r. in
months t-1 and t, is defined by eq. (5.44). It has been shown that
eq. (5.60) can be written in terms of an augmented vector Qt, as
expfessed by eq. (5.58). 1In developing eq. (5.58), use was made of
eq. (5.44). Equation (5.62) can be expressed in terms of the components
of Qt by making use of eq. (5.41), i.e., eq. (5.62) (constraints on
total releases) implies

(«T+ Dx, +C_. x D x -Fy g ¥ (5.66)

t+1 =t+1 t -t -t
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for month t, or in terms of gt’

C + [-D (-F +I) O]Qt -Fv, e W (5.67)

t+1 Zt+1 t

where O is the null matrix. The Delta requirements impose another con-

straint on the total release u, +r namely ST(Et + Et) € Det, i.e.,

t’

T T T T
e (-I+Dx +c C ., Xy - ¢ D % - ¢ Fy € De (5.68)
for month t, or in terms of Qt,

¢’ Copy Xy v S LD, (T+1) 0], - T Fy, e De (5.69)
£ e By T E Y L £ t

where ET =[0 0 0 0 1 0 1 0 1] and Det is a set of feasible
values for Delta water deliveries. Similarly, eq. (5.63) can be written
in terms of the components of gt by using eq. (5.48), i.e., eq. (5.63)

(constraints on penstock releases) implies

- I + Ct+ X - D

11 TP X T F Y e Uy (5.70)

for month t, or in terms of Qt,

[-D, ~-T O]§t + Ct+

t - F Ve € gt {(5.71)

1 §t+1

Clearly, eqs. (5.64) and (5.65) can be converted directly into con-

straints expressed in terms of Qt, i.e., eq. (5.64) implies
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o 1 OIQt € R (5.72)

for month t, and eq. (5.65) (constraints on storage values) implies

(5.73)

I b

[T o olg, €

for month t. The appropriate equations for month t-1 are obtained in a
similar manner. All the constraints, eqs. (5.61)-(5.65) and those
expressed by eqs. (5.66)-(5.73), are linear. Constraints on power
generation, which are intrinsically nonlinear, have been avoided by the
way in which energy generation is computed, as explained in Section 5.1.
In any case, nonlinear power constraints can be linearized by using a
Taylor expansion (this is addressed in Chapter 7, which deals with
special features and extensions).

The original two-stage optimization problem, eqs. (5.60)-(5.65),

has been transformed into a quadratic programming problem, namely

T 1 T

max;mlze 8, H 8, +s. 8 B (5.74)
-t

subject to

1, .1

B 8 3 b (5.75)

(I 0 olg,_,, [T 0 0]g,,, fixed

in which



~T+I

-T+I
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-T+I
0)

-T+1)

(5.76)
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— _
We = Cipy 2 P F Y
Wear ¥ 0 2y P E Y
~-De, + ¢ C X cT F v
75 e 1 TS T Y
T T
De 4 - Dy %y -8 Fyo
Y ,max ~ Cer1 Zewy Y F Y
~{J .+ C 'S - Fv
Ei - t,min t+l =t+1 —~L (5.77)
+ +
Yeot,max * De-1 Bee1 *F Yy
“Yeet,min T Peeq Fpop T F Yoo
R,
L
Kt,max
-Kt,min
b -

Notice that eq. (5.75) 1lumps into oné expression all the (linear)
constraints on gt that arise from eqs. (5.61)-(5.65), some of which were
explicitly derived earlier [see eqs. (5.67), (5.69), (5.71), (5.72), and
(5.73)1.

Solution of egs. (5.74) and (5.75) by the POA would yield the
optimal sequences {gt} and accordingly {gz}, {gt}, and {E:}' The vector
gt ig of dimension 3 x 9 = 27. Thus, the computational effort invelved
in $ethods such as Fletcher's (1981) active set method would be propor-
tional to a number between a1(27)2 and a2(27)3, in which a, and a, are

1 2

positive real numbers independent of the dimension of gt (Gill and
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Murray, 1977). The aforementioned computational burden is not limiting
in a fast modern computer but it is still unpleasantly large. Storage
requirements would be proportional to (27)2, a reasonably low number.

To reduce the computationmal work, without comprimising the validity
of the model, two assumptions can be made and alternative simpler models
associated with those assumptions can be developed. The first assump-
tion deals with net losses. Examination of matrices At

+1 and Bt in

eq. (5.43) shows that their (diagonal) coefficients 1+ ci and 1 - ci,
respectively, are close to one because the values of ci are in all cases
less than 0.0044. This can be verified by substituting the values of ci
(Table 5.10) into egs. (5.15)-(5.18). Thus, for all practical purposes,
At+1 and Bt can be both set equal te the identity matrix. In effect,

this assumption requires the equation of contimuity, eq. (5.44), to have

stationary parameters, i.e.,

e 571 Eeey " Ty B ST 2 =6 (e - ox -z (5.78)
By ﬁsing this assumption, the quadratic objective function of the model
becomes linear, as will be shown later. The second assumption relates
to the handling of spillages. Spillages can be assumed to be at a zero
level whenever reservoir storage is below the maximum permissible flood
conErol storage. Thus, w, =u, + r, will be expressed simply as

W, T U This assumption is valid for average (normal) and below-

average (dry) inflow years, as will be shown by the numerical results

obtained for the NCVP. For above-average (wet) inflow years, however,
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spillages will occur. This is because inflows will far exceed penstock
releases and spillages must be made to avoid overtopping of the dam.
Thus, under this assumption, spillages can be handled by maximizing with
respect to 1

When u_ reaches its upper bound during high-inflow

t’ t

periods, the value of u_ is set equal to penstock capacity. Any excess

t
release necessary to keep the flood control storage at adequate levels
(following flood control provisions) is called spillage. Clearly, X is
not handled explicitly as a decision variable; however, that has little
gffect on the solution. This is because r. will be =zero whenever
storages are within permissible levels since no benefits arise from
spilling water that can be routed through penstocks. For on-line
control of large flood events, where decisions are taken only minutes
apart and the output of the optimization model is used by automatic
mechanisms that control penstock and spillway gates, it is preferable to
use the full optimization model [eqs. (5.74) and (5.75)] that takes care
of penstock, spillage, and all possible constraints automatically. Even
in that situation, excessively high inflows may lead to an intervention
by the operator to override some constraints imposed on the model. That
can happen when storages reach dangerous levels. By treating spillage

in the manner described earlier, the dimension of the decision vector gt

feq. (5.74)] is reduced form 27 x 1 to 9 x 1.

Simplified Linear Model

The two assumptions just described lead to a reformulation of the
mathematical structure of the two-stage problem. The two-stage energy

production Et-l + Et can be expressed as
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_ T - T
Bpap T E = lat Bl ) + 201" v )+ [a+ BGx + 2., 0] u
= [a + B(x + x )]T [Gx -6Gx -Gz
2 O - e Ze-1 Ze
+[a+Bx +x 31 [6x .. ~Gx. -6z]
= S S+l “t Zt
_,T
=hox tey
in which
T_ T ) T T T
Qt (Et-l t+1)[BG (BG) ] (Et-l + Et)(BG)
SRS U _ T T
¢, = [-a~G t+1(BG) ] Xooq (BG)x a G Zooq * [a” 6
-z (BG) 1x (BG)x - aT G z, = constant
t+1 t+1 +1 - =t

The development of eqs.

SXpress u. and LN namely

e T (§t+1 TR T2 T,y mx - oz)

and

u = Fnl(x - x -z ) G(x, - x z )
~t-1 1 =t —t-1 —t-1 t t-1 ~t-1

(5.79

(5.80)

(5.81)

(5.79)-(5.81) used the inverse of eq. (5.76) to

(5.82)

(5.83)
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Interestingly, the objective function (eq. (5.75)] has become a linear

function of the state wvariable (Et) only. The set of constraints

associated with the two-stage maximization are:

Releases during month t greater than U

1\

u

U . .
-t —t,min t —t,min

Releases during month t-1 greater than Ht~

> - < -
Be-1 = Ht--l,min = G§t = (U

Releases during month t less than Qt

u, £ U = = Gx, £ (U - Gx

—t 7 —=t,max -t =t ,max

Releases during month t-1 less than U
: —t-1,max

< <
Et-} - gt-l,max = stt = U

Delta requirements during month t

HA

De = ¢ G x

in
1=
v

- (Det -c

- G6x_ - (U + Gz

—t~1,max

t

—~t=1,min

1+

- G%yg

,nax

1

+ Gx

TG b4

—f-

—t+1

t,min

1,min

+ Gx + Gz )

=t-1 —t=1

+ Gzt)

1tz )

T
+ ¢ G Et)

where ST =(000010101), from Fig. 5.6.

Delta requirements during month t-1

(5.84)

(5.85)

(5.86)

(5.87)

(5.88)
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T > _ T < - T + T
€U _,2De , = -c6 x, == (De, P eex | te6z ) (5.89)
Minimum storages for month t
z
Xe 2 Xt min (5.90)
Maximum storages for month t
x, £X (5.91)

2t T —t,max

Notice that the continuity equations for months t and t-1, respectively,

Xepp = X Py ue oz (5.92)

~and
Bp = Zep YTy 8oy F 2 _ (5.93)
have been considered in eq. (5.79), i.e.,, the continuity equation was

usea to develop the objective function. Also, the rates of energy
generation used in developing eq. (5.79) [see eqs. (5.1)-(5.9)] take
into account the effects of head and flow in the generation of power so
that power constraints are not present in the constraint set. In
addition, minimum power delivery (set at 860 Mw dependable capacity in
the NCVP) is extremely low and results in a redundant constraint. It is
stressed that power constraints, when relevant, can always be linearized

by a Taylor expansion. Linearization methods are treated in Chapter 7.
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In summary, the full model [egs. (5.74) and (5.75)] for the two-
stage maximization has been simplified to the following linear pro-

gramming model (dropping the constant term ct):

maximize h' x (5.94)
~t =t
X
—t
subject to
<
A x, = gt (5.95)
Keppr Bpoq fized
in which
G
-G
-G
G
A = (5.96)
c'o
—ETG
~I
I




T ~t,min bz, * G§t+1
- ~t-1,min G*t i th'l
gt,max Xy * 62
b, = §t~1,ma: t 82y ; 62¢ .y (5.97)
- Det + c G§t+1 c th
- De,_, - cTth_l ETGEt-l
h Kt,min
- Kt,max .

Notice that egs. (5.94) and (5.95) are expressed in terms of 2

9-dimensional unknown vector, x Thus, the two fundamental assumptions

e
discussed previously (neglect net losses and treat spillage as excess
over penstock capacity) have reduced the computational burden
considerably. Equations (5.94) and (5.95) will be solved sequentially
by using the POA. Once the optimal sequence {gz} is known, the optimal

..:‘.
release policies {Et} can be readily obtained through the continuity

equation, eq. (5.78).

Simplified Quadratic Model 1

Consider the case in which net losses are taken into account (i.e.,
the first assumption used in developing eqs. (5.94) and (5.95) is
relaxed), but the spillage assumption is maintained. In this case, the
two-stage maximization problem becomes a quadratic maximization problem

with a 9-dimensional decision vector:



maximize 53

X

subject to

17 Epy

in which

132

T
+ +
LN A

fixed

(5.98)

(5.99)

(5.100)
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- + -
Ui min * Cee1 Beap - FY

Yot min = De-1 Fem1 ™ Py

- +
Yt max = Ceer Bpap T EY

+
2 Yeet,max ¥ De-1 %e-1 ¥ F¥y

e

(5.101)

T
+
e+1 Beap T O FY

T
Det_1 -¢D

- De

In

+
t
T
t-1 Zpa1 T EFVL

X .
=t,min

gt,max

where kt is defined by eq. (5.54), 8 and Gt are defined by eqs. (5.52)
and (5.53), respectively, and other terms are defined by egs. (5.84)-

(5.91).

Simplified Quadratic Model 2

If net losses are not considered but spillages are included
explicitly in the continuity equation, then the two-stage problem

becomes

T . ,
max;mlze 8, HE + 5, 8. *t Kk (5.102)

—t
subject to

(5.103)

[1 0 0] 8., fixed
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in which
T _ T T T
B =[x 2 reyd

F_BO -BF =BT
H=2+ |-rl3 o 0

2
-8 o 0
| -

|y
I

A T T T, T, T

By = %i.q (BG - G'B) + Xirq {(G'B - BG) (gt + z

A o__ T T

4y 3P -x, BT

Ao T . T

B a T X1 BT

f - . T - -1 -1
ke =ma Ty x g * T %+ Py +Fy)
T -1 -1 T

TR BTy By m X BT Xy - oxy
"X BF Y,

= constant

T

“t-l)

BFv

6B

t

(5.104)

(5.105)

(5.106)

(5.107)

(5.108)

(5.109)

(5.110)
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~T+1
0)

-+1)

(5.111)
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LN S -
Heag ¥ O Xy P F Y
-De. + ¢ G x CT Fvy
t = T el T = T g
“Dey .y - <6 I < ¥ Yeeq
—t,max G Zre1 *F e
._i 1 Bemin YO Xy T F Y | ' (5.112)
Yeot,max T 0 B Y F Y
“Le-1,min T % Feep T F Yy
-t
~t-1
zst,max
—gt,min
and 0 is a 9 x 9 null matrix. Noticg that a quadratic programming

problem is obtained, although there is no quadratic term on X, as is
evident from the matrix H. Also, H is a constant matrix as opposed to
the. time-variant matrix Hi of eq. (5.74). Because this development
resembles the one that led to the model given by egs. (5.74) and (5.75),
the particular constraints of the constraint set (5.103) are obtained in
forms analogous to those in egs. (5.67), (5.71), (5.72), and (5.73).
Table 5.15 summarizes the four alternative versions of the cptimization
model.

The alternative two-stage maximization problems developed in this

section are not exclusive against each other; the different formulations
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can be used for different months according to the validity of the
assumptions built into each of the formulations. For example, because
spillages are not likely to occur during the summer season, either the
linear model or the quadratic model 1 can be used to perform the two-
stage maximization. During flood periods, when it is advisable to
include spillages as part of the decision variables, the two-stage
problem can be solved by using either the‘full model or the gquadratic
model 2. From a numerical point of view, the linear model is the most
attractive due to the well understood nature of linear programming.
Chapter 6 presents some results obtained from the use of the simplified
linear model developed in this section. Chapter 7 gives an application
of a more general quadratic model. The quadratic case introduces a
series of computational complexities that can be resclved by using the

methods in Section 7.8.

5.4 Selection of Initial Operation Policy

Two considerations are usually important in developing an initial
operation policy: (i) the computational effort should be relatively
small as compared to the total computational work necessary to develop
an optimal policy; and (ii) the initial policy should lie within the
"radius of convergence" about a global optimum if it exists, and it
should be '"good" enough so as to keep the number of iterations required
for comvergence to a local optimum relatively low. For tightly con-
strained systems, the second condition is always met. 1In fact, for the
problem given by eqs. (5.94) and (5.95), any feasible policy will always
converge to a global optimum, as will be discussed in Chapter 6. The
simplest, and usually the best, way to develop an initial operation

policy 1s by a trial-and-error approach based on previous operational
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experience of the system under different scenarios. That approach was
followed in this study, with the cooperation of the staff of the U.S.
Bureau of Reclamation at Sacramento. There are, of course, other
approaches to develop initial operation policies (see, e.g., Yeh et
al., 1978). VFigure 5.15 shows a flow chart of the NCVP optimization

model.
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TBASE= |

]

TRITIAL
CALL ta12
INITIAL POLICY | 5‘;”} RPOOL';}ICJE
1= TBASE +1
FLOW-
CALL FLOW- tel2 FORECAST
FORECAST { ¥} ROUTINE
' taT+i
CALL TWO STAGE . SOLVER
4 ROUTINE

KMax EXCEEDED; T

OPTIMAL POLICY FOR
BASE MONTH= Taase

READ ACTUAL X 1page i

=TeasSE=-|

TBASE= TEASE+

.,

Fig. 5.15 NCVP monthly optimization flow chart.



141

CHAPTER 6

DISCUSSION OF RESULTS

This chapter discussés the application of the optimization model,
developed in Chapter 5, to the NCVP system under three different
scenarios: average (1974-75, 1979-80), below-average (1975-76), and
above-average (1973-74) streamflow conditions. Section 6.1 gives sets
of initial storage and release policies fﬁr the aforementioned stream-
flow conditions. Section 6.2 discusses the corresponding optimal
release policies. On the basis of those results, Section 6.3 shows that
the operation of the NCVP system can be analyzed by using a simplified
optimization model. The optimal operation policies discussed in this
chapter were computed by using the simplified linear model given by
eqs. (5.94) and (5.95). Application of the models of full dimensiona-
lity (i.e., handling releases explicitly) and introduction of nonlinear

energy rates and constraints are given in Chapter 7.

6.1 1Initial Policies

Initial operating policies for thé NCVP system were developed by
using a trial-and-error procedure that considers some heuristic criteria
use& by NCVP managers to set up their release policies. In essence,
desired reservoir storages at the end of the water year are selected and
a feasible (initial) release policy that achieves those targets is
chosen. As the system operation progresses through the year, actual
floy conditions may lead to a revision of the ending storages selected
initially. The overall philosophy is that reservoir storages must be
kept high at the beginning of the dry season (usually, May) to meet

increasing agricultural and Delta water requirements during the summer.
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Also, the operation during the rainy season (November-March) is con-
servative in the sense that a substantial flood storage volume is allo-
cated to store eventual large-runoff events. Clearly, there 15 a
tradeoff between the desire to maintain the reservoir levels below some
specified elevation during the rainy season and the desire to have as
large a storage volume as possible at the beginning of the dry season.
A general rule would be to maintain reservoir storages at the maximum
permissible levels during the rainy season and to make large releases
during the dry season. Interestingly, because most power installatijons
in the NCVP are of the high-head type, a greater generation of power
will not result from the largest releases but from some optimal reser-
voir elevation associated with moderate releases. The largest releases
would drive reservoir levels below the range at which turbines can
operate efficiently,

Two initial policies (policies I and II) were selected for storage
and corresponding releases. This was done to determine if each initial
policy yields the same optimal release policy. As will be discussed in
Section 6.2, different initial policies generally vyield different
optimal release policies. However, all those optimal release policies
givé the same value for the objective function of the model (i.e., the
same annual energy generation), thus indicating the existence of
multiple optimal solutions, That is a common phenomenon in linear
programming and convex (as opposed to strictly convex) quadratic
prohlems.

Tables 6.1-6.14 show initial storage policies and corresponding
initial release policies for the NCVP system. There are two initial

policies (policies I and II) for water years with average (1974-75,
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1979-80) - and below~average (1975-76) inflows. A single initial policy
was considered for water year 1973-74, representing above-average
inflows. Development of the initial policies indicated that for below-
average streamflow conditions there is little room for optimizing the
operation of the system, because prevailing low inflows barely meet the
system's demands by releasing flows near their minimum permissible
values. Thus, initial release policies I and II for 1975-76 turm out to
be close to optimal, as will become evident in Section 6.2. For both
average and above-average streamflow conditions, there is a larger
teasible region and the gains from the optimization model can be signif-
icant. During the winter months of an extremely wet vear such as
1973-74, the initial policy is nearly optimal because the reservoirs are
at near capacity during those months and total releases are set equal to
maximum permissible flows. In those circumstances, the optimization
model allows the determination of the best feasible release policy that
simultaneously minimizes the spillage and maximizes the power genera-
tion. Because the reservoirs are at a high stage after the winter,
substantial improvements in energy generétion can be obtained during the
subsequent summer months.

| Some of the initial policies were refined so as to make them near
possible optimal releases whereas others were deliberately set to be
poor (but feasible) initial estimates. This was done to estimate the
number of iterations and CPU time needed by the POA to reach optimality.
Ini§31 policies I for average (1974-75, 1979-80) and below-average
(1975-76) inflow years were carefully refined, attempting to be near
their respective optimal policies. In those cases, convergence to the

optimum was attained in six to eight iterations. In contrast, initial
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policies II for average-inflow &ears 1974~75 and 1979-80 were purposely
developed to be far from good initial policies. That was accomplished
by releasing heavily during wet (winter) months to maintain a year=-round
low head and a corresponding decrease in power generation. That is also
nonoptimal from the standpoint of agricultural and Delta requirements,
because those demands are low in the winter and thus larger than
necessary flows will be of no use. This strategy forces summer releases
to be at minimum permissible levéls, when an additional acre~foot of
water during this season has 1 greater marginal value than in the rainy
season. Those deliberately-poor initial policies resulted in an
increase in the number of iterations needed to attain convergence,
ranging now from eight to ten iterations. Table 6.15 summarizes the
required iterations and CPU times for the specified initial policies and
inflow conditions. It is evident that the CPU time increases as the
inflow conditions vary from below-average to averége. That is because,
for below-average flow conditions, the feasible region becomes so tight
that there is little freedom to optimize any policy. Any feasible
initial policy will be very close to an optimal release policy. As flow
volumes increase to average-flow conditions, there is a corresponding
inc?ease in CPU time. Notice that policies II for average-flow years
1974-75 and 1979-80 (which were deliberately chosen to be inferior to
their counterparts, policies I) also required more CPU time. For
extremely wet conditions such as water year 1973-74, the feasible region
becgmes very tight during the winter and that implies a reduction in CPU

time as shown in Table 6.15.
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Table 6.15. Number of Iterations to Attain Convergence and CPU Time

Requirements.
Inflow No. of Iterations Burroughs B7800
Condition Policy to Attain Convergence CPU Time {(min.)
Average I 6 6.01
(1974-75) :
IT 9 8.94
Average I 8 8.51
(1979-80)
11 10 10.32
Below Average I 3 2.98
(1975-76)
IT 3 2.79
Above Average I 8 7.28

(1973~74)
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6.2 Optimal Operation Policies

Optimal state trajectories (i.e., end of month storages) and their
corresponding release policies were obtained by applying the POA to the
initial policies of Section 6.1. Tables 6.16 and 6.17 show the optimal
strategies for average-flow conditions (1974-75) corresponding to the
first initial policy {policy I, Tables 6.1 and 6.2). Table 6.17 also
shows the energy produced by the optimal policy as well as the monthly
water deliveries to the Delta. Tables 6.18 and 6.19 show similar
information corresponding to the second initial policy (policy II,
Tables 6.3 and 6.4). Clearly, for Clair Engle, Shasta, and New Melones
reservoirs, the optimal state policies (end-of-month storages and
releases) resulting from initial policy I are different from those
resulting from initial policy II. For Folsom reservoir, the optimal
end-of-month storages and release policies are the same for initial
policies I and II. TFor the remaining five smaller reservoirs, the
end-of-month storages are the same for initial policies I amd II, but
their release policies are different. The fact that optimal state
trajectories (call them State I and Staée II) are equal does not imply
that their corresponding optimal release policies (policy I and
policy IT, respectively) will be the same. Optimal release policies
will be the same only if the optimal state trajectories are equal for
all reservoirs in the system. Tables 6.17 and 6.19 also show that the
value of the objective function of the model (total energy generated
during the year) is the same for release policies I and II. This
implies that there are multiple ways of achieving the optimum perform-
ance index. That is not surprising because the problem under analysis

is in essence a large LP problem posed as a dynamic process and solved
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sequentially by the POA. This is also commonm in convex quadratic
problems.

It was found that an optimal release policy is achieved by
releasing less water than the maximum possible penstock capacity.
Because hydropower production depends on the storage level (the larger
the head, the greater the energy production for a given discharge), an
optimal release policy is a feasible tradeoff point between a high head
and a small release and a low head and a large release. Such a tradeoff
point is the optimal solution given by the POA. Because the power
installations in the NCVP are of the high-head type, except Nimbus (at
Natoma) and Keswick, the tradeoff point is shifted towards a relatively
high head with a moderate discharge. Figure 6.1 shows a plot of energy
production vs. release for Folsom reservoir. Ths plot was developed by
assuming an initial reservoir storage of 800 Kaf and by releasing a
constant amount of water until the storage reached 200 Kaf. Similar
energy vs. release relations can be developed for the other reservoirs.
If, in addition to hydropéwer, other benefits of water to downstream
users would have been included in the energy vs. release relation, then
it is reasonable to expect larger releases. Rows of Tables 6.17 and
6.19 corresponding to Clair Engle reservoir illustrate that releases are
relatively moderate as compared to the total penstock capacity of the
reservoir given in Table 5.2.

It is evident from the results in Tables 6.17 and 6.19 that all
relqases are passed through the penstocks, and spillages do not occur.
That presumes, of course, that all the power plants are in operation
100 percent of the time (an optimistic presumption). In practice, idle

power installations can be included in the model by wvarying penstock
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Fig. 6.1 Typical energy vs. release curve (developed by using Folsom

reservoir data).
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capacity in the constraint set, as required by operational conditions.
The point is that if conditions were ideal, Tables 6.16-6.1% would
provide two altermative optimal ways to operate the system. That
establishes an upper bound in the performance of the system (as measured
by power generation) towards which any adopted optimal policy would be
aimed.

Tables 6.20-6.23 show optimal strategies for average-flow vear
1979-80. Although the solutions arxe different for initial policies I
and II, they yield the same total energy for the year. Inflow during
1979-80 is greater than in average-flow year 1974-75 and consequently,
total energy production is also greater in 1979-80 (compare Tables 6,21
and 6.23 with Tables 6.17 and 6.19). Results in Tables'6.21 and 6.23
also show that spillages occured at Lake Natoma and Tullock when annual
inflows increased from 1206 Kaf in 1974-75 to 1734 Xaf in 1979-80.
Figure 6.2 shows a graphical relation of total annual inflow and total
annual energy for the system.

For water vyear 1975-76 with below-average streamflows, initial
policies I and II are near optimal policies. Because of tight feasible-
region conditions, the benefits from running the optimization model are
maréinal. Initial policies I and II yield the same optimal state and
release policies. Tables 6.24 and 6.25 show the optimal end-of-month
storages and releases resulting from initial policy I. The gain in
energy production associated with the optimal policies relative to the
energy production associated with both initial policies I and II is
about 1 percent.

From the results in Tables 6.16-6.25 it is evident that the optimal

state trajectories for the smaller reservoirs are to keep them full all
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INFLOW TO RESERVOIAS TOTALS
YEAR | NEW MELONES|SHASTA FOLSQM{CLAIR ENGLE WHISKEYTOWN iNFLOWiENERGY
1973-78{ (498 10796 4408 | 2672 771 20148 .14
1974-75] 1208 6405/ 2786 1408 394 1218] 7.35
197876 a70 2600 | 1142 635 139 6057 4.53
1979-80f 1734 6415 | 3972 47 344 13838| 8.0t

INFLOWS N 10% ACRE FERY
ENERGY IN 10% MwH

i)
2 -

0 JI]III-I O VS
O 2 46 81012 1416 18 20 22

ANNUAL TOTAL INFLOW (Kaf)

TOTAL ANNUAL ENERGY FOR NCVP (10° Mwh)
A Y

Fig. 6.2 Total annual energy vs. total annual inflow for the NCVP.
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year. That stems from the ratioc of the capacities of the major reser-
voirs to their corresponding downstream regulating reservoirs. The
largest capacity ratio of the system is 241/2448 = 10%, corresponding to
Clair Engle and Whiskeytown reservoirs. When a capacity ratio becomes
less than the largest capacity ratio of the system, all the state
variables corresponding to downstream, smaller, regulating reservoirs
can be treated as constant and equal to the maximum capacity of the
regulating reservoirs. Those nodes in the-network can thus be treated
as transmission points only. In that manner, the optimization model
would be considerably simplified, as shown in Chapter 7. The number of
state variables in the NCVP system would be reduced from nine to four:
Clair Engle, Shasta, Folsom, and New Melones. Care must bhe taken in
reformulating the model in terms of the reduced number of state
variables because the constraints that hold for the operation of the
smaller reservoirs must still be satisfied. For example, if constraints
representing penstock and spillage capacities are not observed, releases
from Shasta reservoir could wash away Keswick reservoir.

Tables 6.26 and 6.27 show the optiﬁal strategies for above-average
flow year 1973-74. Notice that substantial spillage occurs in the
optimal release policies. Also, the higher storage levels and greater
releases that occur in this year result in an increased total energy
production, as shown in Fig. 6.2. The energy vs. volume of inflow
curve, a fairly straight curve, is applicable to the range of inflow
volumes depicted in Fig. 6.2. For total annual inflow volumes smaller
than 6 Kaf or greater than 22 Kaf, the performance characteristics of

the plant installations would deviate the curve from a straight line.
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Table 6.28 summarizes the energy production levels obtained for
water year 1979~80. The ratioc of actual energy (Ea) and maximized
energy (Em) varies from 29 percent at New Melones Power Plant to
72 percent at Shasta Power Plant. Those ratios should be interpreted as
an indication of the opportunity that exists to improve energy genera-
tion rather than as a true measure of the suboptimality of actual
policies. That is because actual operation of a power plant considers
idle time due to maintenance and breakdowns, which according to some
studies (e.g., Tudor Engineering Co., 1980) varies from 10 to 40 percent
of the total 8760 hours per year. It was not possible to model power
installation failures due to (i) the randommess of their occurrence and
cause, (ii} the time that the breakdowns last, and (iii) the varying
effect of power plant halts in the integrated energy network. Poor and
limited records on past failures add to the difficulty of including
failures into the optimization model. During idle time, releases are
merely spillage and energy generation does not occur. For example, at
New Melones there were three months of complete halt in the operation of
the power plant and, in addition, legal battles kept the reservoir from
being filled completely, which also affected the actual power production
adversely. Recall that the optimized results were obtained on the
assumption that the plants were on-line 100 percent of the time, which
is the ideal situation. Thus, uncertain factors that affect the opera-
tion of the power plants (e.g., failures, repairs, maintenance, and even
institutional constraints) make practically impossible to assess the
true state of subutilization of the system. By assuming that the Ea/Em

ratio is a reasonable estimate of the annual availability factor (the
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ratio of the number of hours a power plant is available for actual
operation to the 8760 hours in a year), an overall ratio Ea/Em = 5.2/
8.077 = 0.64 is obtained. Considering that a typical annual availa-
bility factor is about 0.85 (Tudor Engineering Co., 1980), a value of
Ea/Em = 0.64 would imply a potential increase of up to 33 percent in the
annual energy production of the system. For the actual annual energy
produced during average-flow year 1979-80 (5.2 xlO6 Mwh from Table 6.28)
that would mean potentially a maximum additional 1.9 x 106 Mwh.

Benefits of the optimization model can also be measured in terms of
increased water deliveries to downstream users. For example, the Delta
requires a delivery of 3850 Kaf of water per year. Optimal release
policies in Table 6.21 indicate a total annual release of 14773 Kaf,
more than three times the required amount. For May-August, when most
agricultural activities take place, additionmal water could be supplied
for leaching and crop-growing purposes. The Delta requirements for
May-August are about 2698 Kaf (see Table 5.4). For the same period,
optimal releases indicate that 4813 Kaf were delivered in 1979-80, This
suggests the possibility of a conjunctive use of surface water and
groundwater reservoirs. Also, with increased deliveries, cultivated
areas could be expanded or better leaching of salts might be achieved,
resulting in an expanded economic output. Fish spawning, water quality,
and navigation would also benefit from increased water deliveries.

Further insight into the differences between actual operation
policies and those resulting from the optimization model can be gained
from Figs. 6.3 and 6.4. Figure 6.3 shows actual and optimal state
trajectories (for policies I and II) for Shasta reservoir. It is

evident that substantially smaller storages are maintained from November
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to February in the optimal policies. Tﬁat is accomplished by releasing
large wvolumes of water through the penstocks, resulting in greater
available flood control storages than im the actual operation. Thus,
the level of energy generation during November-February is higher with
the optimal trajectory because the releases are routed through the
penstocks at a larger magnitude relative to the actual operation. Also,
when the high inflows of January-April occur, the actual operation
follows the flood control regulations by spilling large volumes of water
because the empty volume in the flood control pool is not as large as
that attained with the optimal state trajectories. In March-June, the
optimal state trajectories maintain higher storage elevations than in
the actual operation. That also results in increased energy production
because releases during March-June are set at penstock capacity (see
Tables 6.21 and 6.23), with higher storage levels resulting in increased
rates of energy generation.‘ Also in March~June, releases from the
optimal state policies are at near penstock capacity because the inflows
during those months maintain the reservoir filled to near capacity and
releases must be kept high to avoid overtopping. The lower storages
during March-June in the actual operation are due to water spillages
that drive the reservoir level to lower stages. Those spillages reflect
the conservativeness of the actual operation policy. Because they
bypass the power plant, those spillages do not generate energy. In
contrast, the reliance of the optimal trajectories on greater penstock
outflows and smaller spillages reflects (i) the foreknowledge of future
inflows (within a certain range of error) that arises from streamflow

forecast and (ii) the knowledge that for a given release, the higher the
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storage level the higher the energy generation rate., During Juiy~
September, there is a steady drawdown of the reservoir storage level in
the actual and optimal policies, reflecting increased demands for water
and energy during the summer. Because the optimal state trajectories
start at a higher elevation in July and end at a slightly lower level in
September than the actual policy, the rate of water release during this
period is higher for the optimal policies. That results in a greater
generation of energy for the optimal policies in the summer as i§
evident im Table 6.28. Optimal policies I and II fellow a similar
pattern throughout the vyear and, as shown in Tables 6.21 and 6.23,
result in the same total energy production. The actual state trajectory
shows high peaks in January and February that are due to short-term
floods that raise the reservoir level for a few days. Those floods are
partly spilled and do not contribute to energy generation at the reser-
voir power plant. Those flood events are not captured with the monthly
optimization model. The model considers flood flows through a larger
total monthly inflow. That results in an overestimation of energy
production in the optimization model because flood inflow volumes are
distributed through the month, allowing to be handled as larger penstock
outflows rather than spillages.

Figure 6.4 shows the actual and optimal state trajectories for
Folsom reservoir. The operational features are similar to those dis-
cussed earlier for Shasta reservoir (this is true also for the other two
majqr resexvoirs, Clair Engle and New Melones). The optimal policy
relies on large penstock releases in October~December, drawing the
storage level low and creating a large empty volume for high inflows

that occur from January to April. During January and February, the
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empty space created by the optimal releases of previous months is filled
by runoff. Penstock releases are kept at a maximum and some spillages
occur to avoid overtopping (see Tables 6.21 and 6.23). In March~June,
the resexvoir is kept at near full capacity and releases through the
penstocks are at a maximum. That results in a head-release combination
that yields the largest energy production rates. In contrast, the
actual policy maintains a steadier reservoir elevation through the year,
with large spillages used to accomodate the large winter floods (peaks
shown in Fig. 6.4 for January, February, and March). The main explana-
tion for the significant difference between the actual and optimal
trajectories during February-June is the conservative approach of the
NCVP management with regard to flood control. In essence, the managers
of the system preserve a substantial empty space to ‘'prepare for the
worst." The optimization model does not take into account those
intangible considerations. Instead, for specified inflow forecasts,
constraints, and power function, the model chooses a state trajectory
that maximizes energy production. It must be stressed that the NCVP
management considers flood control as tge major function of the reser-
voir system and that there are strong institutional pressures to avoid
any.possible adverse outcome from unexpected floods. Thus, a comparison
of actual and model policies cannot be made solely on the basis of a
single parameter, namely energy production. Rather, the performance of
the operation model (as measured by power output) must be interpreted as
a pQSsibility for improvement in a real-world context that involves many

factors not considered or reflected in the optimization model.
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CHAPTER 7
SYSTEM-DEPENDENT FEATURES: AN EXTENSION

OF THE OPTIMIZATION MODEL

This chapter develops alternative optimization models that take
advantage of system-dependent features. The models are simpler than
those presented in Chapter 5 because they have fewef decision variables.
In addition, the applicability of the .full optimization model is
generalized to the case of nonlinear objective function and/or con-
straints. The resulting model has the minimum possible number of
decision variables, thus being computationally efficient. Sectiom 7.1
presents a full model that considers the simplifications introduced by
the existence of regulating reservoirs. Sections 7.2-7.4 develop linear
and quadratic models that constitute alternative simplifications of the
full model of Section 7.1. Sections 7.5 and 7.6 discuss the necessary
modifications to the model when the objective function and constraints,
respectively, are nonlinear. Section 7.7 gives a complete description
of a general model that handles nonlinearities in the objective function
and/or constraints and treats spillages explicitly as decision varia-
bles. The general model is of minimum dimensionality. Finally,
Section 7.8 shows the results of applying the general model of

Section 7.7 to the NCVP.

7.1 Modeling Regulating Reservoirs

. This section develops a simplified full model in which regulating
reservoirs are treated in a special manner. Sectiom 6.2 showed that
Lewiston, Whiskeytown, Keswick, Natoma, and Tullock reservoirs can be
treated as regulating units. Because those reservoirs can be maintained

full throughout the year, they act as transmission nodes in the system
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network. That implies that as many state variables as there are
regulating reservoirs in the system can be eliminated from the
optimization model, greatly simplifying the mathematical structure of
the model.

In general, for a large reservoir-small resexrvoir subsystem in
series, the adequacy of treating a small reservoir as a regulating unit
depends on the capacity ratio of the subsystem (see Sectiom 6.2). The
largest capacity ratio in the NCVP corresponds to the Clair Engle-
Whiskeytown subsystem, with a wvalue of 0.10. The development that
follows shows that the optimization model presented in Chapter 5 can be
modified to obtain a simplexr but completely equivalent model. Although
the development is based on the NCVP system configurationm, the princi-
ples hold for any other reservoir network. The notation introduced in
Chapter 5 will also be used in this chapter.

Reservoir storages in the regulating reservoirs are set equal to

the reservoirs' maximum capacities (or any other feasible volume as long

as that volume is fixed). That implies xi = 14.7, xg = 241, xi = 23.8,
xz = 8.8, and XZ = 57 Kaf for all t =1, 2,..., 13. The upper indices

2, 3, 5, 7, and 9 refer to the number of the regulating reservoirs,
which are Lewiston, Whiskeytown, Keswick, Natoma, and Tullock,

respectively. Recall that the equation of coatinuity, eq. (5.48), is

-1 -1 -1
B T Ty Torg # Ty Apgy By ~ Ty Bexe - T v (5.48)

To fix the storages at the regulating reservoirs as constant, a re-
ordering of the elements in the vectors of eq. {5.48} must De made.

Vector u_ is partitioned as follows:

t
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u = | 6 (7.1)

in which the subvectors Eél) and E£2) contain the releases from the

nonregulating and regulating reservoirs, respectively. Similar

partitions can be made for vectors Ter Yoo Xio and Xyl For vectors .9
(2) (2) e .

and I the subvectors Xy and X4l contain fixed storages, which are

the capacities of the regulating reservoirs. It is convenient to use

elementary matrices (Householder, 1975) for the automatic implementation

of the reordering. For the NCVP, the elementary matrix §,

- _

-

§ = 1 (7.2)

reorders the vector u, in the form

T _ 1 & 6 8 2 3 5 7 9
(Su )" = (u, u/ Moo U, uloupoupougoup) (7.3)
in which
(1) _ 1 4 6 8
vl = (ut uloug ut) (7.4)
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Notice that _gt(;l)

(7.5)

contains the releases from the nonregulating reser-

voirs: Clair Engle (u}l), Shasta (ui), Folsom (ug), and New Melones

8
(ut

0 Zerrr Ipo

ment of the matices in eq. (5.48),

-1
-1
-1
-1
ro=| 1 -1
1 -1
1 1 -1
1 -1
1
-1
-1
-1
-1
=11 -1
-1
1 -1
1 -1
1
et

). A similar reordering can be obtained by premultiplying vectors

and Y, by S. Vector reordering also implies a rearrange-

(7.6)

(7.7)



losses are considered only for the nonregulating reservoirs.

. i .
cients ct are as defined
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1
]_+Ct
4
1+ct
6
1+Ct
8
1+ct
At+1 = 1
1
S,
1-¢
1-¢
6
1 ct
i-c
Bt = 1
1
e
In egs. (7.8) and (7.9), the ones

in eq. (5

continuity can be written as

(7.8)
1
1
1
(7.9
1
1
1

along the diagonal indicate that
Coeffi-

.40). The reordered equation of
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1 1 (1) 2 2 (1) t+l t+1 (1)
11 i)l % EERRETY N Ar Ao | e
= - +
1 (2) 2 2 (2) t+l  t+l (2)
To1 Tao| |2 Fa1 Toof | 5 b1 Boa | Beed
E L e N 1L
t t (1) (1)
Bin Brof | % e
- - (7.10)
t t (2) {2)
Bo1 Baof | ¢ e
_ JLoo4 L
. , 1 2 t+] t . _
in which F12, le, A12 , and B12 are null matrices, and the partitions
of the matrices are uniquely defined by the partitions of the respective
vectors. It is emphasized that Egii = 552) for all periods t. To sim-

plify the notation, both x

in

(2)
=t+1

The energy equation

(1) (1)
8, B, © 2t e+l
= + +
2y O By k k
which
=l 2 .6 .8
=2 23 S LT WY

also needs to be modified.

S

That is,

and EEZ) will be denoted by k from now on.

(7.11)

(7.12)

(7.13)
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B = = b (7.14)

S —
The coefficients in eqs. (7.12)-(7.14) are given by the values specified

right after eq. (5.46). For period t-1, E is similarly expressed by

t-1
setting t = t-1 in eq. (7.11). In the POA, the objective function is

Et-l + Et for each two-stage maximization. To develop am expression for

Et-l + Et’ it is necessary to substitute the continuity equation

[eq. (7.10)] into the energy equation for periods t [eq. (7.11)] and t-1

[eq. (7.11) with index t replaced by t-1]. Solving for u_ in eq. (7.10)

. t
gives
p - - —
1 1 ]-1 1 1 -1
My Tio iy T1
B = - EERPE By By
1 1 1 1
Ta1 To Fa1 Tap
- -
B ] B .
1 1 {-1 1 1{-1
EERREY: M T2
) By % - Ye
1 1 1 1
Fa1 T2 M1 Ton
- u— . ——iiad
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— p— — s — p— —
F t+1 (1) t (1)
B % | Zen TR N E-
t+] t+1 t t
Hyp Hppf] X Myp Mop || k
R e b w— - L— i
' (1) (1)
N, O Ly e
_ | 1 - ; (7.15)
1 (@ (2)
Fo1 Mo ft Yy

Substitution of eq. (7.15) into Et {feq. (7.11)] and doing a similar

substitution of u, 4 into Et-l yvields

PN -
(1) (1)

L1 Iy

2 7T 2)T nT 2T T
Et-1+Et=kt+[P-£) EE)] +[9t(,) 95)] T B X

(23 (2)

Le-1 It

. .

T T

-% Br (7.16)

in which
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2 T T £+1 (1) T
ke = (g * x4 By (7 Xy - w0 7))+ (a) + 2. Byy)
_ot-1 (1) T £41 t4d
(= Mpy" ®eg WPt (a tkByy) (Hypt xey, tH, K
e - _ {2 t-1 - s A2
Map B -9 +Hyp k-Myy " x g - My, k- weT)) el
(DT _ T T T T
B, [(a) + xe_; By Ny + (ag + KT By) Ny ] (7.18)
2)T T T
pc”T = (g + £ By) Wy) (713)
(T _ T ) i T
9 " = 7 [ay * 2y Byp) Nyp + (3, + k0 Byy) Nyl 520
(T _ .. T . T
4 = [(a, + k B,,) Nyl {701}
o T t T T t
8y = = (ay + Xiyq Byy) My + (ay + x._; Byy) HY)
T T t t+1 (1).T
et W)
(My)" 2 q * W 1) By (7.22)
G, =-B._. M. +B _ HE (7.23)
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_— V.24
B (B11N11 0) (v )]

In egs. (7.16)-(7.24), the superscript (1) om subvectors x and

Epapr Zpo
X1 has been dropped because those subvectors represent the storage
subvectors for the nonregulating reservoirs.

By defining an augmented vector Qt,

Z¢
9t | Ze (7.25)
Lt-1
eq. (7.16) can be rewritten as
T T 7 T .2 2
Et'l t Et = [gt gnt Rt} "'e“"t + gt Ht 91’.’. + kt (7.26)
in which
T
Gt + Gt B B
2 .1 T
Ht =3 B 0 0 (7.27)
B! 0 0

where matrices (Gt + GE), B, and O have dimensions of 4 x 4, 4 x 9, and
9 x 9, respectively. By dropping the constant term ki and by defining

EE = [gi gi Ez], eq. (7.26) can be expressed as

E._,+E =6 H- 6 +3§ 0 (7.28)
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Equation (7.28) is the-objecti&e function of the two-stage maximization,
a quadratic function on gt' The dimension of the unknown vector gt is
24 x 1, which dis smaller than the analogous decision vector of
eqg. (5.56). '

The maximization of eq. (7.28) is carried out subject to the
following constraints:
Constraints on total releases (penstock plus spillage) for months t and

t-1. For month t,

Xe+1 £t
vt € W o= H, - M. + (I ~ N) I, ~ %, € W, (7.29)
k k
which can be expressed as
e+l . . _
He .,y +[-M] I-N 0] 8 - Mk-w € W (7.30)
k
. . t t L,
in which Mt = [M1 MZ}. Similarly, for month t-1,
Ze-1 . .
- M, +[H O I-N] 8 +Hjk-w_, €FW_, (7.31)
k
. , L oeut ot
in which Ht = [H1 Hz].

Constraints on penstock releases for months t and t-1. TFor month t,

t
41 ;X ~M k-Nr -w €U (7.32)
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or in terms of gt’

Ze+1 . .

Hev v N0l 8 My k- e U
k

Similarly, for month t-1,

. . Ee-1

Hy zp *Hy k- My Nz " ¥ € By

k
or, in terms of gt
. . Eeaa
(Hy 0 -N] @ +H)k-HN " ¥oe Yy
k

Constraints on Delta water deliveries for months t and t-1.

month t,

T
¢ (u +r) & De

X1
T T .t t T
8 By ¢ Wpx +Mp k) +ct (I-N) g
k
T
c W € Det
or, in terms of Qt,
X
=t+]
T T t Tt
c Ht+1 +c [-M1 I-N 0] gt -c M2 k -
k

(7.33)

(7.34)

(7.35)

For

(7.36)

(7.37)

in which ¢ =[0 0 0 0 1 0 1 O 1]. Similarly, for month t-1I,



205

T
€ (g *ry) €De
=t-1
T T ,t T t T
= -c M e Hix o te Hy k + ¢ (I-N) e
k
- cT W € De (7.38)
- —t-1 t-1
or, in terms of gt’
5
T ,t T .t T T
¢ [H O I-N]§ +c Hy k- ¢ M ¢ W, € De (7.39)
k
Constraints on spillage releases for months t and t-1. For month t,

[0 I 0] Qt € Bt (7.40)
For month t-1,

[0 0 I} 8., e R 4 (7.41)
Constraints on storage volumes for month t,

[1 0 o] x, e X, (7.42)
in which LS and X 4q 8T€ fixed. In eqs. (7.29)-(7.42), Et’ Et~1’ Qt,
Ht-l’ Det, Det-l’ Bt’ Et-l’ and Kt are feasible regions.
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In summary, when the storages at the regulating reservoirs are

constant, the (full) optimization model is (dropping the constant term

2
kt)
. T .2 T
maximize 8 H_ 8 + 5, 8, (7.43)
subject to
~2 ~2
<
At _e..t = Et (7-44)
[ o ole._,, [1 o o] 8,,, fixed
in which
. —
M1 I-N o
t
H1 0 I-N
t
-My -N 0
t
Ml N 0
t
H1 0 -N
. -H; 0 N -
AT = (7.45)
¢ T, t
-c (-Ml I-N 0)
fat o I-N)
0 I 0
0 0 I
1 0 0
-1 0 0
e pe—



+1
+Mt
k

%)

t
—t-1,min * H2 k- H
. e+t
- +
Dey + & Heyy .
L —
T Xp-1
-De - ¢ M
t- —
1 t k
R¢
Ry
gt,min

-X
—~t,max

|=
+

207

|

=
=
i

|5
1 1

(7.46)
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The POA solves a sequence of problems of the form given by eqs. (7.43)
and (7.44) to obtain optimal operating policies for the NCVP. The model
given by eqs. (7.43) and (7.44) can be expressed in several simplified

forms by using a procedure analogous to that discussed in Sectiom 5.3.

7.2 Simplified Linear Model

A simplified version of eqs. (7.43) and (7.44) is developed in
which (i) net reservoir losses are neglected and (ii) spillages are
treated as excesses over penstock capacity. As will be shown, the
simplified model has only four unknown wvariables, reducing the (full)
optimization model to a simple sequence of LP problems.

If net reservoir losses are neglected and spillages are treated as
excesses over penstock capacity, then the equation of continuity can be

expressed as

o lfo] T2 2ol LT LT Lol
1 1 1 2 2 (1) 1
M1 Tiz ]| % M1 Ti2 | 5 e+l e Ye
= - + » - (7.47)
1 1 (2) 2 2 (2) (2)
Tor Tooliug o1 Toa}l £ k k Y _J

Equation (7.47) is obtained from eq. (7.10) by setting matrices At+1 and

Bt equal to identity matrices. It follows from eq. (7.47) that
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r;é1§‘ Hyp o 0 [z ] [H,; o
__Eéz_)_ fo1 Hpa|| K P21 o
;11 o | _;515- ;_Elf
R
B 2t
= H _ . - H . - N LA (7.48)
where the matrices H and N are time-independent. Substitution of

eq. (7.48), without the spillage terms because of assumption (ii), into

eq. (7.11) yields the linear objective function
E +E =h x +¢ (7.49)

in which

- _ T . T (M, _ T, .T
Co = (@t xeyy Byy) (yy xpy - w7 - (&) + x4 B))

Pyt EEE%) + (Eg £ B,,)
(2) (2)
LACHNES S NI N (7.50)
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ﬁT - (xT T

(DT
by = (xpoq - Beqq) Byy Hyp + [0, LN

11 711 t+1 -t

) (1).T
(Hyp 2oy * 9l ) By

(7.51)

Associated with objective fumction is the following set of constraints:

Minimum releases for months t and t-1. For month t,

e+l
= - - - 2
B # Y min 7 & Hy g - Hyk-w 20 in
k
or equivalently,
e+l
< - - -
By x = 8 Hy B =¥ = Y nin
k

in which H = (Hl, H,). For month t-1,

2

- < - - -
Hyx s - H FHy k%) " Uiy min

Maximum releases for months t and t-1. For month t,

e+t

- H, x - H +H, k+w + 1

=
A
1iIA

B = U max 1 3¢ 2 t | “t,max

k

For month t-1,

(7.52)

(7.53)

(7.54)

(7.55)
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H x = H | -H

. s ktw o+ U (7.56)

t-1 ~t-1,max

Delta water requirements for months t and t-1. For month t,

Ze+1
T > T < I _ T _ T -
¢ v 2De = ¢ H x Sc H ¢ H, k-c" w =~ De (7.57)
k
For month t-1,
~t~1
_ T < . T T _ T _
¢ Hix s-¢ H te Hyk-cw o De, 4 (7.58)
k
where ET =( 0 0 0 1 0 1 0 1).
Minimum storages for month t,
> - < - .
e = §t,min = X = Xt,min (7.59)
Maximum storages for month t,
<
..x_.t = Et,max (760)
with Ko 1» Xipp fized. In egs. (7.52)-(7.60), gt,min’ gt,max’ De,
X ., and X | are feasible sets. In summary, the two-stage maximi-
~t,min —t,Mmax

zation model is (dropping the constant term Et)

~

.. T
maximize Et X, (7.61)

subject to



[

3¢
BA

=

Lew1 Zerl

in which

Ty
il

fixed
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(7.62)

{7.63)
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e+l
mmt,min * i Kk ) H2 k- ¥
Eem1
"t min ~ 8 . tHR-w
e+l
—t,max - H K ¥ H2 k+w
Ee-1
=t-1,max " K B HZ k+ Te-1
Et = . (7.64)
=t+1
~De,_ + cT H - cT H, k - cT W
£t = = 2= = -t
k
~t-1
T T T
Dey_y - H te My k-cw
k
—t,max
”“t,min

Equation (7.62) is a compact form of egs. (7.52)-(7.60). Because the

unknown vector x, is a four~dimensional vector, solution of eqgs. (7.61)

t
and {7.62) by the POA is computationally efficient.

7.3 Simplified Quadratic Model 1

This section develops a simplified optimization model in which net
reservoir losses are taken into account but spillages are treated as
excesses over penstock capacity. The model is suitable for climatic

conditions in which evaporation becomes an important component of the
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mass balance at the reservoir and/or geological features cause sub-
stantial seepage. The objective function for the two-stage maximization

becomes

= 12 T T
Eeopg TE. =K+ A S W . (7.65)

in which ki, EE’ and G are given by egs. (7.17), (7.22), and (7.23),

respectively. The set of constraints on the decision vector L9 of

eq. (7.65) is given by the following expressions:

Constraints on penstock releases for months t and t~1, respectively,

e+l . .
B | | Mrm-My k- €y, (7.66)
-1 . .
-Mt ) + Hl X + H2 k - Wy € gt-l (7.67)

Constraints on Delta water deliveries for months t and t-1,

respectively,
X
L+l
T T .t Tt T
¢ Hoy - Myx, - ¢ M;k-¢ w e De (7.68)
T Et"i] T .t T .t T
e My , J Te v My k-cw y @De (7.69)
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Constraints on storage volumes for month t,
x, € X (7.70)

Because spillages are not part of the decision vector in the objective
function [eq. (7.65)], constraints on spillages are not explicitly shown
in the set (7.66)-(7.70). However, the computer program must check
those spillages to ensure that they are within a feasible range when
they occur. In compact form, the model specified by eqs. (7.65)-(7.70)

can be expressed as (dropping the constant term ki)

maximize EE Xt §E Gt X, (7.71)
subject to
3. .3
AL X £ D (7.72)
in which
t
Ml
t
-Hl
t
My
t
3 g
At = T. t (7.73)
c™
= 1
~ETH§
I
-I
L -
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. e+l
B¢ omin T ¥ "My K H, .
. Ep-1
“ﬂt-l,min Ye * H2 k- Mt
R
. Xt+1
Et,max * ¥e * MZ k- Ht+1 K
-HE Kk + M o
—-t-1,max —t~1 2 ~ t K
3 _ -
by = 7.74)
X
¢+l
T T .t T
Dey e wp - My kv c” H,y .
Xz
~t=-1
T T ,t T
Depg "8 ¥y v Hy k- My ,
—t,max
"—t,min

Notice that the model expressed by eqs. (7.71) and (7.72) has only four
unknown variables. Equations (7.71) and (7.72) define a quadratic
linearly-constrained problem. Because the problem has only inequality
constraints, it is a linear complementarity problem (Fletcher, 1981),
which can be efficiently solved by simplex-like methods such as Dantzig-
Wolfe and Lemke algorithms. Care must be taken to ensure that Gt is

positive definite before applying these methods. If G, is indefinite,
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other methods (e.g., the method used in Section 7.8) are more suitable,
The linear complementarity structure applies to the quadratic problems
developed in Section 5.3, the quadratic problem {(7.43)-(7.44), and the

quadratic problem to be developed next.

7.4 Simplified Quadratic Model 2

If net reservoir losses are neglected but spillages are included as
part of the decision variables, then the objective function of the model

can be expressed as

T LT LT T A .
*E o= [k B8, + 8 HE *¢

B, 4§, (7.75)

maximize Et-

1 t

in which gt is given by eq. (7.25), ¢, is given by eq. (7.50), éi is

t
given by eq. (7.51), and

ST _ ., T, T T
9 = [ ey + k7 By Ny - (3] *+ x40 ByIN s
T
- (32 + k B22)N22] (7.76)
T T T T
By = [- (ay + k" B, 0Ny - (a) * 5. By Ny,
T
(a, + k" B,,)N,,] (7.77)
0 "By Byl
= % -NT.B 0 0 (7.78)
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where the null matrix in the upper left corner of eq. (7.78) is of
dimension 4 x 4 and the remaining null matrices are of dimension 9 x 9.

The set of constraints can be expressed as

A8, s Et ‘ (7.79)
[I o O]Et_l, fI © O]g_t+1 fixed
in which
-H, I-N 0
H1 0 I-N
*Hi -N 0
Hl N 0
H1 0 -N
" -H1 0 N
At = T (7.80)
-C (-—H1 I-N 0)
~£T(H1 0 I-N)
0 I 0
0 0 I
I 0 0
-I 0 0
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e+l
Wy tw +H, k-H
k
Ze-1
Weop V8 " Hy E+ H "
e+
Ht,max * ¥t * H2 k-H K
e+l
Le,min T ¥ T Hy Kt H
k
—t-1
—t-1,max ~t-1 H2 k+H
k
-1
“Bt-1,min " Y.y THy E-H K
-
. T T Zt41
-De, - ¢ w_=-c¢ H. k+ ¢ H
t = -t & fp ETE
k
T T T
Depy & Wy te By k- N
“t
R
Kt,max
"gt,min

(7.81)
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where the components of A;, which arise from the different constraints,
are ordered as in matrix ﬁi in eq. (7.45). The matrices in eq. (7.80)

are obtained from eq. (7.48), i.e., eq. (7.48) can be rewritten as

1 - 1
E:E ) i+l X Ny O 51(; )
w2 Hy ] e | Hy ] I £ (2)
S 2 £ 21 “22] t%

(1)
e Ze+1 Ee
_.t — —_

Solutions to problems (7.43)-(7.44), (7.61)}~(7.62), (7.71)-(7.72}, and
(7.75)-(7.79), are exactly the same as those of their corresponding ana-
logs (5.74)-(5.75), (5.94)-(5.95), (5.98)-(5.99), and (5.102)-(5.103).
The models in Sections 7.1-7.4 are more advantageous than those in
Section 5.3 because they have fewer decision variables and hence there

is a reduction in the computational burden.

7.5 Nonlinearity in the Energy Rate Equation

Development of the optimization models in Chapter 5 and Sec-
tions 7.1-7.4 assumed that the energy generation rate (gt) is a linear
function of reservoir storage (xt). That assumption is reasonable for
the power plants in the NCVP system, in which yearly reservoir levels
commonly vary from about 30 to 80 percent of the reservoir capacity, as
can be observed in Figs. 5.7 - 5.13. For other reservoir systems in
which the energy rate curves depart considerably from a linear trace,

the problem can be approached as explained in this section.
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Assume that the energy rate for reservoir i (gt) is a quadratic

function of the average reservoir storage,

i 2

t+1

i

e+ (7.83)

gt = a" + bl(xt + x.../2) + cl(x; + x../2)

. . i i i s
in which a™, b, and ¢~ are constant coefficients., In order to use the

earlier optimization models, it is necessary to linearize the expression
i

for gi about a value x. (which is a scalar variable). That is, Xt,G

t,0

is the best guess of the optimum value of the storage for reservoir i at

the beginning of month t. It is reasonable to set xt 0 equal to the
b

initial guess made to develop the initial poliecy. A first-order Taylor

. . ] i
series approximation about x

£,0 in eq. (7.83) vields

+ B

iNAi 1 1
gt % a e %¢ (7.84)
in which
. . 1 i .
~1 i b~ i i C i i 2
dp = al v (x gt xg) g (% 0 * Xy
bi ci i i i
i el + ox b4 7.85
2 2 “*t,0 £+1” t,0 ( )
~iopt by 1
b= 7 E—(Xt,o t Xiyq) (7.86)

The linearized energy rate equation [eq. (7.84)] would then be used to
form the objective function of the optimization model, which is con-

structed in the usual manner (see, e.g., Section 7.1).
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Suppose that the two-stage maximization problem has been set up and
eq. (7.84) has been used to form the objective function. From earlier
developments in Chapter 5 and Sections 7.1-7.4, the two-stage maximiza-

tion problem is

. T T
maximize 8 H_ 6 + g 8, (7.87)
subject to
< .
a8, Sb, (7.88)
[I o O}gt-l’ [I o O]gt fixed

The problem represented by eqs. (7.87) and (7.88) could be solved by any
convenient quadratic or dynamic programming algorithm (see Section 7.8).
However, after a solution is obtained, it is not possible to advance to

- . 1T
the next two-stage maximizatioa because the vector Qt = (gt 1 L
. b b

Et-l,l) that solves eqs. (7.87) and (7.88) depends on the assumed vector
Et,o (the vector of values used to perform the expansion of the energy
valﬁes for all the reservoirs) used earlier to linearize the rates of
energy generation gi‘s. A second solution to the two-stage problem is
then carried out by Ilinearizing the energy rate equation [eq. (7.83)]

about %, y» in which R, is the leading subvector of gi. The new
b ?

solution, QﬁT = (ﬁt 2 would then be used to perform
- ?

Teo Leapo)

another linearization of the energy rate equation about X 5 and the
>

two-stage problem is solved again. The procedure is repeated until the

subvector x used to linearize the energy rate equation in the jth

tyJ
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iteration is approximately equal to the solution subvector Xy j+1
y

obtained in the jth solution of the two-stage problem. Upon convergence

of (the convergence criterion is chosen by the user), one can

X, -
~t,]
proceed to the solution of the two-stage problem corresponding to month

t+1 in the usual way of advance as done by the POA.

7.6 Nonlinearities in the Constraints

Nonlinearities in the constraints of reservoir operation models
typically arise with respect to power generation and spillage releases.
Nonlinear constraints do not invalidate any of the earlier developments
in this chapter or in Chapter 5. 1In fact, the impact of nonlinear
constraints would be only in the formulation of the two-stage maximiza-

tion model, which now becomes (dropping constant terms in the objective

function)

maximize gz ﬁt 8, + QE 8, (7.89)
subject to

i 8, s (7.90)
£,8,)€ R, i=1,...,r (7.91)
[1 0 O]Qt_l, [T © O]Qt fixed

Equations (7.90) and (7.91) represent sets of linear and nonlinear
constraints, respectively. There are r nonlinear constraints in which

Ri denotes the feasible sets. Equation (7.89) can be developed by
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linearizing the energy rate equation, as discussed in the previous
section. If the nonlinear constraints are linearized about values of
the decision vector Qt, then the presence of nonlinear constraints in
the optimization model would lead to an iterative solution of each
two-stage maximization problem. The presence of a nonlinear energy rate
function and/or nonlinear constraints converts the two-stage maximiza-
tion problems into nonlinear problems, as opposed to linear or quadratic
linearly-constrained problems. In principle, those nonlinear problems
could be solved directly by nonlinear methods (Fletcher, 1981;
McCormick, 1983; Wismer and Chattergy, 1983). MHowever, due to the
large-~scale nature of those problems, it is more convenient to recourse
to linearization of the objective function and/or constraints and solve
a larger number of simple problems, within the framework of the models
developed earlier.

Because spillage is the only source of nonlinearity in the
constraints of the optimization models considered im this report, a
procedure to handle nonlinearities in the spillage releases will be
discussed. The procedure is also applicable to other types of nonliﬁéar

constraints. Typically, the flow over a spillway can be expressed as

. . . .1,
i~

roo= ¢ @ - ahH st (7.92)
t t

in which &% = 0 if ht < ab, 8" =1 if ht z 4", the index i denotes the
ith ‘reservoir, coefficients El, dl, and nl are constant, and hi is the
reservoir water-surface elevation during month t. The introduction of

i | . .
6" 1is necessary to prevent the computation of spillage whenever the

reservoir level hi is below the spillway crest d-. Equation (7.92) is
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used for the sake of argument; other functions can be handled similarly,
as will be explained later. A relation expressing hi as a function of
storage (xi) can be developed from reservoir storage-elevation data (see

Appendix A). Let that relation be
i_ i, i
by = g (x) (7.93)

. . i, . ' . i i
in which g~ is any function that represents the fit between hi and xt.

Substitution of eq. (7.93) into eq. (7.92) gives

. , \ \ S
r} = El[gl(xi) - gt st (7.94)

i

£ 0 (as in Section 7.5) yields

Linearization of ri in eq. (7.94) about x

v, & et + a; xi (7.95)
in which
Al _ feip i, 4 i ni Teip i, 1
¢ = ¢ le (Xt,O) arto- ¥r,0Nc (g (xt,O)

in -1 4 i
- ¢t" {——%] } 5 (7.96)
dx, i
£,0

. L i .

& = e ety ) - afh ! [—df] } ot (7.97)
! dx
t Xl
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For a system of reservoirs, constraints on spillages during month t can

be expressed as

r. =c¢ +D x £R {7.98)

al

T _ [a

in which S z e

c Et el ct], n is the number of reservoirs in the

. , . . ~i
system, Dt is a diagonal matrix whose (diagonal) elements are the dt's,
B is the reservoir storage vector, and Bt is the vector of feasible

values. Similarly, for month t-1,
r = ¢ + D x =R (7.99)

Thus, the problem defined by eqs. (7.89)~(7.91) can now be stated in

terms of a set of linear constraimts, i.e.,

.. T 4 AT

maximize gt Ht Qt + g, gt (7.100)
subject to

~1 ~1

At Et

< -

D, 08 S|R - ¢ | (7.101)
Deep O Rea1 ™ Seeg

L. . N N

(1 0 o0lg,_,, [T 0 08 fixed

in which the null matrices in eq. (7.101) are of dimension n x 2n.
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The solution of the two-stage problem represented by egs. (7.100)
and (7.101) is obtained in an iterative manner. The procedure is as
follows:

1) Set the iteration (counter) index k equal to zero. Expand the

energy rate equation and/or spillage constraints about X [this has

e,k
been accomplished already by developing eqs. (7.100) and (7.101)].
2) Solve the two-stage problem given by egs. (7.100) and (7.101).

3} If the subvector x (which is part of the seolution 8

“t,k+1 t,k+1

in Step 2) is approximately equal to x proceed with the POA algo-

ek’
rithm for the next (period t+l) two-stage problem. Otherwise linearize
the nonlinear components of the problem about Et,k’ increase the counter
k by one, and go to Step 2.

Expressing spillages as a function of average storage results in an
underestimation of the volume of spilled water when there is a rapid
increase in the reservoir's water elevation during any month (from a
level below the spillway crest to another level above the spillway
crest). Similarly, an underestimation of the volume of spilled water
results when there is a sharp decline iﬁ the monthly water level of the
reservoir from a point above the spillway crest to another point below
the.spillway crest. This underestimation of the volume of spilled water
could cause significant unbalances in the equation of continuity. That
can happen during periods of high inflows into the reservoir. Because
the duration of those high-inflow events is relatively short as compared
to one month, the natural way to overcome the underestimation of
spillage is to shorten the duration of the stages in the POA (e.g., from

one month to fifteen days for periods of high inflows only). The POA

algorithm does not require any modification to handle variable-duration
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stages, except for the way in which the input data are prepared.
Finally, for reservoirs with large surface areas (as in Shasta, Folsom,
Clair Engle, and New Melones), high-inflow volumes result in moderate
increases in water level elevations, thus reducing the likelihood of
inaccurate spillage computation.

The next section illustrates the application of the concepts in

Sections 7.5 and 7.6 to the NCVP system.

7.7 A Full Model of Minimum Dimensionality

This section demonstrates that when the energy rates and spillages
are modeled as nonlinear expressions, the model represented by
egs. (7.100) and (7.101) can be expressed as a quadratic linearly-
constrained model whose dimensionality (number of unknown variables) is
equal to the number of nonregulating reservoirs. The resulting
quadratic problem is the most general form of the reservoir operation
model that can be obtained because it accounts for nonlinearities in the
objective function and/or constraints, and optimizes both penstock and
spillage releases simultaneously and explicitly. The generalization of
the model results in a problem of minimum dimensionality (four dimen-
sions in the case of the NCVP).

Spillages for months t and t-1, respectively, can be expressed as

o] [ 1
Zt St Be 012
- . (7.102)
S 0 ollk
—.t._] — —
b e -
ro T -
(1)
L1 Se-1 Dicr Of | %em
] . (7.103)
(2
E I K 0 0 I k
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in which
[~ 9 =
Ez(hi - a4 62
3.3 30,3
&> - a5
t
5.5  5.0°.5
K=]&m -a)s (7.104)
7.7 7.7
& (n; - 4 s

9
9 3 PN I

s —

where coefficients &, dl, nl are. as defined in eq. (7.92) and S Dps

Crays and Dt-l are as defined in egs. (7.98) and (7.99), respectively.
Partitions [(*)(1) (-)2] refer to the nonregulating and regulating

reservoir subvectors, respectively, and k is the subvector of (fixed)

2 3 5 7

regulating reservoir storages whose components are XKoo By Koy Xp and
xg. Those values were defined in Section 7.1.

The continuity equation for months t and t-1, respectively, can be

expressed as

- m . o
Xe+1 Mg 0] % St D, 0%,
u, = H - - N + - W
e = Rigq SIS t ¥y
k My Myof|k K 0 Ok
- L P I -
r~ = "o -
{ ot ~ (1)
Eea1 M1 0 1% LY
= - - 7.10
! K VSO L IR &2 (7-105)
- 21 22 = —t
it - i b -
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t t-1
Hy, 0 1%, M1 O ] Ze-1
. =
Yo t t t=1 -1
Hyp Hpp ||k o Mppj| K
St-1 FigDeor O |%
- N T ¥
X MorPeep Ok
At t-1 ' A(1)
Hyy 0 X My 0 Ze-1 ¥e-1
At ~t : t=1 t-1 ) (2)
Hyy  Hopl (kK Myyo Myl E W1
in which
~t
M1y +N11Dt 0
~ t
Moy M 1Ny 0e My,

t
11 N11Dt-1 0
t t

21 No1Pey  Hy,

~(1)

Et11 —t*

ST @)

Lo | L
and Ht+1’ M., N, and w, are as defined in eq. (7.15).

(7.106)

(7.107)

(7.108)

(7.109)

(7.110)
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The. rates of energy generation for months t and t-1, respectively,

are
~(1) -t
& Bir 9 M %
& = + (7.111)
t ~(2) - A
~{(1) At-1
| 11 0 |1
Eioy = + (7.112)
t-l A(Z) A A
a 0 B22 k
in which
A(]-)T — A]. All' 66 A8
a. = (at a.  a at) {(7.113)
A(I)T — A1 /\4 A6 A8
Ze-1 e agq) (7.114)

~(2)7T 2
..E.i.,( ) (a 33 a5 a7 ag) (7‘115)
[ -
61
t
0
~4
~t bt
B ® ~6 (7.116)
b
t
O A
b8
- 13
== —
~1
bt—l
. 0]
ba
B§11 = et ~6 (7.117)
b
t-1
O ~
b8
t-1
amnd vennd
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22 7

=
fH
»

where the ét

J\i
! d
s and a

defined by

Q(i) = a3t + Ei(xl +xr ) Ei(xl + x )2
2e-1 2 %0 T Ft-17 TG M0 T -t
bt ci i i i
[T M G xt-l):]xt,O

(7.118)

(7.119)

's in egs. (7.113) and (7.114), respectively, are

(7.120)

(7.121)
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The Bi's and %i_ 's of egs. (7.116) and (7.117), respectively, are

1
defined by
g bi ci i i
= — + .122
by =37 T axg ot R (7.122)
i bi i i
bea1 T3 PR o xRy (7.123)

The ai's, bi's, and c's of eqs. (7.115), (7.118), and (7.120)-(7.123)
are defined in eq. (7.83). The xi‘s in eqs. (7.118) and (7.119) are the
constant values of storage at the regulating reservoirs, whose values
were defined in Section 7.1.

From egs. (7.103), (7.106), (7.111), and (7.112), the energy equa-

tion for the two-stage problem becomes

Be * By = éz g ¥ ﬁzwl Zg-1 7 ki ¥ ﬂiT,Et ¥ EE Ht Zt (7.124)
in which
k= 130T+ i Byp) Dy Eppq + My K - Mgy k- 9
e )
CHE AR SOR NG RS ) (7.125)
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*T ~{1)}T ~t ~(2)T ~T o ~T AT
g = -0 - @ E 8 dy, i)
T b Lttt T A (1T 2t ~(1)T ot
Y Eepy By Hyp ) m g7 By vacly Hy
- T At=1 ,t-1.T _ ~(1)T 3t-1
%y By My )7 - By By (7.126)
m, =s0-t gt - gt out (7.127)

t 11 11 11 711

The unknown vector X, in eq. (7.124) is of dimension & x 1. The

constraints associated with eq. (7.124) are:

Constraints on total releases for months t and t-1. For month t,

st ot “etl A
Ed < - A
M1 %, £ yt + M2 k Ht+1 ; A (7.128)
in which
At
. N Dt 0 M11 0
M, = {Ml 'Mz] = . , - . i (7.129)
21 22
. St
v =6 - (7.130)
£ t K

~
~

where matrix Dt is defined by eq. (7.98), Mt by eq. (7.107), W, by
eq. (7.108), and (Ez KT) by eqs. (7.102) and (7.104), respectively.

For month t-1,



2t ~t
< -
Bz s ¥ - Hy ket
in which
ﬁt
2 g 2 11
H =11 HI-= At
21
A Se-1
W =W -
t-1 t-1 K
where Dt—l is
eq. (7.110).

Constraints on maximum penstock releases

month t,
=
Et - —t,max
. t ~t
= - < +
AMI 2 = —t,max M2

‘in which ﬁ; = [ﬁ

hd
Be-1 = IJ—t--'l,max
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Ze-1 R
+ & (7.131)
. t-1
0 D,y ©
v |t (7.132)
H,, 0 0
(7.133)

defined by eq. (7.103), ﬁt by eq. (7.106), and & _, by

for months t and t-1. For
Ze+1
k - Ht+1 + ¥, {(7.134)
k
"
MZ]. For month t-1,
-1
k + Ht + ¥t (7.135)
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Constraints on minimum penstock releases for month t and t-1. For
month t,
2 —t,min
" . Ze+1
= < - M + - 7.136
My 2 20 i ~ My K+ H . e (7.136)

For month t-1,

3"

He-1 gt,min

+ |

P
HES

t "
1 % % Upog min PHy k- M T E (7.137)

Constraints on Delta requirements for months t and t-1. For month t,

T
>
c (g, + r,) 2 De,
X
2 —t+1
Tt T zt T T a
> . < - - -
¢ Myx $-De - ¢ Mjktc H ) ¢ W, (7.138)
For month t-1,
T >
eyt ry) 2D,
T At T gt VRN Bt B
= o < . - - gy
¢ Hyx $-De, , +c Hjk-c M ) S W (7.139)

in which ST =0 0 0 0 1 0 1 0 1).
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Constraints on spillages for months t and t-1. For month t,

c D Ofix D ¢
r, SRO= | 1 +] © lsro= | Yz <R -] " (7.140)
K o 0|k 0 K
For month t-1,
=t-1 Dt-l 0 -t
r £ R = + £R
t-1 ~=t~1 K 0 0 k —t-1
De-1 St-1
= x, SR - (7.141)
o |7t T Tt-1 K
Constraints on maximum and minimum storage releases for month t,
<
X = §t,max (7.142)
- < -
X 2 gt’min (7.143)

In compact form, the two-stage maximization model can be expressed as

(dropping the constant term k;)

maximize g:T X, + 53 H: X, (7.144)
X
subject to
S Ex
< ‘
A %, Sb, (7.145)



238

in which

x5
-t

br>>
— e

§
[p]
=»
el

A = (7.146)

t

(8]
i
bt 3
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" et+1 .
We t My k- H T
k
" -1 .
Et-l + H2 + Mt . + Y1
| . e+l
- + W
Tt max ¥ M £ Ay k N
At -}Et-l
gt-l,max T kM k "R
N L
Do omin T M Bt Ry k|t
Ap Et—l
“~t-1,min R k e
b, = (%, ]
-4
e+l
T st T T
De, = ¢" My k+c H = %
k
L=
—x -
Ee-1
T st T e
Det*l + E Hz E - E Ht = S Et,
k
S¢
R -
Se-1
~t-1 K
~t,max
“St,min -

(7.147)
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For the NCVP system, the dimensionality of the problem given by
eqs. (7.144) and (7.145) is four (i.e., there are four unknown varia-
bles). For other systems, the dimensionality will be equal to the
number of nonregulating reservoirs. Because of the simple structure of
the problem (quadratic objective function and linear inequality con-
straints), reliable algorithms can be used to obtain a solution (Gill
and Murray, 1974, 1977).

When the problem represented by eqs. (7.144) and (7.145) is solved,

ot

the solution x,

is compared with x
t£,1 =

£,0 (the vector used to'perform the
first linearization of the objective function and/or constraints). If
an adequate convergence criterion is satisfied, then advance to the next
two-stage maximization corresponding to period t+l. If convergence is

K

not attained, a new linearization is performed about §Z,1. Thg
resulting problem is solved and the convergence is checked to decide
whether to advance to the next two-step maximization or to keep solving
the current (period t) two-stage problem until convergence is obtained.

The model [eqs. (7.144) and (7.145)] should be used whenever
spillages can be expressed as function of storages because that leads to
a "full wmodel" of very low dimensionality. If spillages cannot be
expfessed as function of storages (either those functions are not
available or it is not proper to model spillages as function of storages
only), then the '"full models" of Sectioms 5.3 and 7.1 are alternative
ways of modeling the reservoir system, at the expense of an increase in
the dimensionality of the problem.

The different two-stage maximization formulations developed in
Sections 7.1-7.4 and in this section can be used for different periods
interchangeably. The linear model of Section 7.2 may prove to be the

simplest model to use in the summer season. The full model presented in

this section is a likely choice to be used during flooding events.
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7.8 Application of General Nonlinear Model

The full model of minimum dimensionality developed in Section 7.7
legs. (7.144) and (7.145), which includes nonlinear energy generation
rates and spillages, is applied to the NCVP. Water year 1979-80 is
selected for the application with the purpose of comparing the results
with those shown in Figs. 6.3 and 6.4, obtained from the linear model of
Section 5.3 and from actual operation records.

Recall that the model obtained in Section 7.7 is

- *T T %
maximize gq = x + x, H x (7.144)
X
-t
subject to
A g g 145)
t 2 = 2t (7.145
LR fixed

in which the decision wvector x is a four-dimensional vector that
contains the storages of Clair Engle, éhasta, Folsom, and New Melones
stacked in that order. The constraint set was linearized and put into
the form of eq. (7.145). A linearization procedure was also used to
state eq. (7.144) as a quadratic function (see details in Sections 7.5~
7.7). Thus, the problem stated by eqs. (7.144)-(7.145) must be solved
iteratively as explained in Section 7.7. Before applying the gene-
ralized model, several tasks must be performed: (i) development of
nonlinear (quadratic) energy rates; (ii) development of spillage
equations; (iii) development of initial policies; and {iv) selection of
a suitable algorithm to solve the quadratic linearly-constrained problem

posed by eqs. (7.144)-(7.145).
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Energy Generation Rates

The motivation for developing quadratic functions for the energy
rate curves shown in Figs. 5.7-5.13 is to obtain a better fit throughout
the entire operation range as compared to the linear functions in
eqs. (5.1)-(5.9). Three of the energy rate curves remain linear, namely
those for Judge Francis Carr Power Plant (Fig. 5.3), Keswick, and
Nimbus, and no quadratic functions need to be developed for those power
planis. By using the data displayed in Figs. 5,7-5.13, the following

energy rates are obtained:

Trinity (at Clair Engle Lake)

£, = 133.0 + 0.228 QT - 0.468 x 10°% Q% (7.148)
r? = 99.39
Judge Francis Carr
EJFC = 606.3 - 0.254 x_ (7.149)
% = 99.8%
Spring Creek
_ _ -3 .2
Eqp = 445.0 + 0.738 Xy = 1.10 x 1077 7 (7.150)
r? = 99,8%
Shasta
g = 169.0 + 0.107 §S - 0.115 x 1074 ig (7.151)
2

r 99.6%
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Keswick
gK = 80.3 + 0.6 x (7.152)
% = 95.89
Folsom
. = ~3 =2
| gF = 171.0 + 0.265 xp - 0.130 x 10~ xp (7.153)
= 98.79
Nimbus
£ =26.3 + 0.80 x (7.154)
N N
£ = 91.0%
New Melones
= = why =2
gNM = 169.0 + 0.275 Xy = 0-479 x 10 -, (7.155)
% = 98.69
Tullock
- _ -3
gTU = 63.4 + 1.020 Xpy - 1.37 x 10 - (7.156)
2

r = 99.9%

In eq. (7.148), QT is the energy rate in MWh/Kaf for Trinity Power Plant
(at Clair Engle Lake), §T is the average reservoir s?orage in Kaf during
a specified peried, and r2 is the adjusted regression correlation
coefficient. Other terms in egs. (7.149)-(7.156) are defined similarly.
In eq. (7.149), the energy rate depends on the storage of the downstream
Whiskeytown reservoir. This c¢an be explained by realizing that the

storage at Lewiston is fixed and the energy gradient line from the
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intake of Clear Creek tunnel to its discharging point {at Whiskeytown)
is determined by the reservoir elevation at Whiskeytown. Due to the
larger size of Whiskeytown as compared to Lewiston (241 and 14.7 Kaf,
respectively), it is likely that (slight) changes in elevations would
occur at Whiskeytown and those changes would determine the differential
head at J. F. Carr Power Plant and consequently its energy production
rate. In fact, that is the case and it‘explains the negative slope in
eq. (7.149), which is consistent with Fig. 5.8. Since it was found
earlier (Chapter 6) that Whiskeytown acts as a regulating reserveir,
then for all practical purposes the storage at Whiskeytown (xw) can be
assumed fixed and equal to the average storage (§w). That is the reason
for using Xy rather than QW’ in eqs. (7.149) and (7.150). Also, due to
the regulating nature of Keswick, Lake Natoma (where Nimbus Power Plant
is located), and Tullock, the (fixed) storages equal the average
storages and thus the overbar has been omitted in eqgs. (7.152), (7.154),
and (7.156). 1In addition, it is evident that eqs. (7.149), (7.152), and
(7.154) are linear functions (actual operation records yielded linear
relations), as can be appreciated for J. F. Carr Power Plant in
Fig. 5.3; for Keswick and Nimbus, the development of the linear curves
was’discussed briefly in Section 5.1. It is clear that the approach
developed in Sections 7.5-7.7 can handle a combination of linear and

nonlinear energy rate functions. The {fixed) storage values for x

3 XS x?
t’ t’ T’

W Fge

and xg respectively, in

X and Xppy are given by x £

Section 7.1. Notice that the storage at Lewiston has no role in the
expression for energy rates, yet it must be included in the continuity
equation. That leads to minor changes inm eqs. (7.144)-(7.145) which

will be considered later in this subsection.
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To set up the system energy production rate in matrix form, an
expression of the form of eq. (7.84) is nmecessary for each power plant.
By using eqs. (7.148)-(7.156), it is straightforward to develop an
expression of the form of eq. (7.84) for any of the power plants. TFor

example, for i = 1 (i.e., at Trinity),

1

Ll Ll 1
el xal el (7.157)
in which
sla 1330+ ©:228 (1 1 0 0.468 107* ekl 2
£ " ‘ 2 Y¥t,0 T Feet A 2,0 7 Feen
. [0.228 _0.468 x 107" o+t )] Kl (7.158)
2 5 %t,0 7 *e+1’] Ft,0 '
gl _ 0.228 _ 0.468 x 1074 (L 1oy (7.159)
¢ 2 p) t,0 = Ft+i |

The numerical values appearing in egs. (7.158) and (7.159) were obtained
from eq. (7.148) and were substituted appropriately by an inspection of
the terms defined in eqs. (7.85) and (7.86). Equation (7.84) for the
case of a linear energy rate [say, eq. (7.149), corresponding to

J. . Carr Power Plant] is given by

= a” + b" x (7.160)
in which a2 = 606.3 and b2 = -0.254. When the energy rate is quadratic
and the reservoir storage is fixed (e.g., at Tullock), eq. (7.84) takes

the form
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g _ 9 +9 9

. =a +b X, (7.161)
in which 39 = 63.4 and %9 is set egqual to bg + c9 xz, i.e.,
b = 1,020 - 1.37 x 107 x] | (7.162)

The corresponding form of eq. (7.84) for any other power plant can be
developed along the same lines as dome im eqs. (7.157)-(7.162).

The discussion on energy rates is completed by providing the
vector-matrix expression of the energy rates for months t and t - 1
[similar to eqs. (7.111) and (7.112), respectively] that are needed in
the two-stage problem. From the development in Section 7.7 that led to
eq. (7.111) and from earlier discussion in this subsection, it follows

that for month t

é-;(l) ﬁrl:; O 1|

gt = A (2) + ke s (7.163)
a O By, lk

in which

ST - (T _ .1 b .6 .8

a¢ =acctto=(a & a3 &) (7.164)

DT 2 02 3 25 LT %) = (606.3, 445.0, 80.3, 26.3, 63.4) (7.165)

A?’{‘t - At _ ; A
Bj = Bj; = diag (b

by (7.166)

o
o
™+ O

1
t t
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B,, = diag (-0.254, 0.738 - 1.10 x 107 xi, 0.60, 0.80, 1.020
BT =g ) x w) (7.168)

In eq. (7.164), the components ai are given by eq. (7.120). In
eq. (7.166), the symbol diag (-, -*,..., -j denotes a diagonal matrix
with elements (¢, +,..., *), which in this case are given by
eq. (7.122). For month t-1, instead of eqs. (7.164) and (7.166), use
egs. (7.121) and (7.123), respectively; all other terms are the same as
for eq. (7.163). It should be evident the differences between
eq. (7.111) and (7.163). Such differences arise from several facts:
(i) xi plays nro role in defining the energy rates in this section;
(ii) the energy rates are of both linear and quadratic types herein,
whereas in Section 7.7 the energy rates were assumed to be quadratic;
and (iii) linearization of energy equations is limited to a few
reservoirs (Clair Engle, Shasta, Folgom, and New Melones) herein,
whereas in Section 7.7 linearization was performed for all the power

plants. Finally, for month t-1, gt_l can be analogously developed by

shifting the time index backwards by 1.

Spillage Discharge Equations

Recall form eq. (7.92) that for the ith reservoir, the spillage

discharge as a function of reservoir elevation is

. ) . . i,
o= gt (ht - d;)” &t (7.92)
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with all terms already defined in eq. (7.92). To develop the spillway
discharge equations, use was made of the spillway discharge tables in
Appendix A. 'Those tables contain discrete values of discharge for
various storage elevations and opening of gates. The spillway struc-
tures in some cases (e.g., Shasta) are not simple overflow structures
and thus the exponent n departs from its theoretical wvalue of n = 1.5,
In other cases, as in Nimbus, the discharge is the result of a combined
underflow from radial gates and the action of a spillway structure
(gated spillways). For purely underflow gates, the theoretical exponent
n is 0.5, but due to the more complicated design of the actual struc-
tures, n takes values either smaller or greater than 0.5. The reader is
referred to Appendix A for more details on spillway discharge.

The exponential interpolation of the spillway' discharge tables
yielded the following equations (flows are in cfs and elevations are in

ft above mean sea level):

Trinity {(at Clair Engle reservoir)

Q = 781 (hé - 2370y1+29 (7.169)
% = 98.49

Lewiston

Q= 412 (n? - 1871)0-626 (7.170)
% = 99,89

Equation (7.170) was developed for one of two gates with an opening of

2 ft.
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Whiskeytown

Q = 992 (n] - 1208)" 72 (7.171)
r2 = 98.7%

Shasta

Q = 314 (hi - 1039)}-36 (7.172)
r* = 99.9%

Equation (7.172) represents the discharge for one of three drum gates
operating at a setting in which the high elevation point of the gate is

at an elevation of 1039 ft.

Keswick
Q = 720 (hi - 547)0-436 (7.173)
r% = 99.29

Equation (7.173) gives the discharge for one of four gates operating at

an opening of 2 ft.

Folsom

qQ = 242 (hg - 420)0-466 (7.174)
r2 = 99,9%

Equation (7.174) represents the discharge for one of eight gates

operating at a gate opening of 1 ft.
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Nimbus
Q = 437 (hz - 110)0-317 (7.175)
r® = 99,99

Equation (7.175) gives the discharge for one of 18 gates operating at a

normal opening of 1 ft.

New Melones

q = 420 (hﬁ - 1088)1:33 (7.176)
% = 99.69

Tullock

Q = 750 (hi - 4950478 (7.177)
r2 = 95.0%

Equation (7.177) was obtained from data provided by the Oakdale
Irrigation District. Equations (7.169)-(7.177) need to be (i) converted
from cfs to acre-ft/month before they can be used in the development
that follows and (ii) expressed in terms of storage because the optimiza=-
tioﬁ is expressed in terms of storage rather than elevation, as was
expressed in eq. (7.94). The spillage equations allow a better modeling
of spilled water if those expressions depend on forecast inflows, i.e.,
depending on the magnitude of the forecast inflow, the spillway dis-
Chagge equation will be based on a different gate opening. This implies
that in the programming of the spillway discharges, an equation should
be developed for each different gate setting for every reservoir that

has a gated spillway (all reservoirs except Trinity, Whiskeytown, and
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New Melones). That was done in this study, and thus eqs. (7.169)-
(7.177) are an example of one of the several sets of equations that were
used in the solution of the problem.

From the elevation-storage data of Appendix A, shapes of elevation
vs. storage curves were analyzed to determine appropriate interpolation
functions. The interval of interest is for the range of elevations
above the spillway crest, otherwise the spillage would be zero, which
means that only the shape of the elevation vs. storage at high stages is
of concern. Fortunately, from the perspective of numerical simplicity,
the plots were nearly straight lines for all but low elevations.
Figure 7.1 depicts an illustration in which the elevation-storage curve
for Clair Engle shows high nonlinearity for elevations below 2010 ft and
an almost perfect linear curve everywhere else. Similar behavior was
determined to exist in the other major reservoirs (Shasta, Folsom, and
New Melones) for which the elevation-storage curves are needed. A
similar pattern holds for the smaller reservoirs, but for those the
interest is centered at a single elevation because the storage is held
constant and there is no need for elevation-storage curves. The

following linear functions were developed for the four major reservoirs:

Clair Engle

1 1

nl = 2142 + 0.0971 x (7.178)
e = 97.29

Shasta

BY = 871 + 0.0444 x* (7.179)
% = 99.39
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Fig. 7.1 Elevation vs. storage (Clair Engle reservoir).
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Folsom

6 6
h™ = 364 + 0.101 x (7.180)
% = 99.59
New Melones

n® = 860 + 0.0945 x° (7.181)
r2 = 99,5%

To complete the information regarding elevation vs. storage, elevations
in ft above mean sea level corresponding to conmstant storages at
Lewiston, Whiskeytown, Keswick, Natoma, and Tullock (xi = 14.7,
xi = 241, x5 = 23.8, x7 = 8.8, and xi = 57.0 Kaf, respectively) are
1901.1, 1210;0,. 587.4, 125.1, and 501.6 ft, respectively (from
elevation-storage data in Appendix A). Upon  substitution of
egs. (7.178)-(7.181) into egs. (7.169), (7.172), (7.174), and (7.176),

respectively, and after subsequent linearization, the following

expressions are obtained:

Clair Engle

1. .1 21 1
ro 2o+ dt X, {(7.182)

in which
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1 1
X + x
781[:<2142 + 0.0971 (—EigwgﬂﬁEi%)) - 2370]1‘29 - xi o (1.29)(781)
bl

1 1
X + X
. [(}142 + 0.0971 (—519—5——51%)) - 2370}0'29 0.0971)% 81 (7.183)
1 1
. X + x 1
Al o dnletl gl (im0 " Fer1) | t]nt-1[dg 51
t 2 Tl
td 1
£,0
1 1
X + x
= (1.29)(781)[(2142 + 0.0971 (~3¢9—§*—Ei1>)

- 2370}0‘29(0.0971) st (7.184)
Shasta
b b oAb 4
r, ¥ ¢ + dt X, (7.185)
in which

4 4 A 4 A

N I A R | 4n 4 4 4] af3t,0 7 Fen
Ct_cg —.--..2............._____.__d ...xton g............’..........._...._._.___._.

4 4
X + %
314[(&71 + 0.0444 (—319-§m~511)> - 1039}1'56 - x: o (1.56)(314)

4 4
X0 T %

. { 871 + 0.0444 (—WA——E~—Eil)) - 1039]0'56 0.0444) ) & (7.186)
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x4 + x4 4
PR PO FU R B = AR [ e Y - 5
t 2 dx&
t| 4
®e,0
4 4
= + X
= (1.56)(314)[(871 + 0.0444 (M))
- 1039]0'56(0.0444) 5% (7.187)
Folsom
6 . 6 . "6 6
r. = & + dt X, {7.188)
in which
6 6 ¢ 6 6
26 . 126].6 (1t,0 " Fer1)  6|n | 6 6 «6f 6(Ft,0 " Tt
¢ T )¢ |8 2 Xe,0 1 g
61n®-1Ta 6
dxt 6
| %0
B 46
= (242)[(364 +0.101 (J&%u—t—*—l-)) - 420]0'466 - xi o (0.466)(242)
NI
. [(364 + 0.101(W)>— 420}"0'534 0.101)} &° (7.189)
X6 X6
d?; - 1n6a° [gé( t,0 - t+1) | dé]n -1[@_] 166
dx 6
0



- 42é]'°'534 (0.101)( 80

New Melones

8 ., .8 ~8 8
rt & Ct + dt xt
in which
8
.8 _ V.8 8/%,0
¢, = i
8
- d3]ﬂ -1fdg
d
= (420)[(?60 + 0.0945 (
. [ 860 + 0.0945 (
+
-8 _ ) 8.8l 8 (%
dt =inc [g (——’—————mmwz

I}

- 108§]0'55 (0.0945)

(0.466)(242)[(364 + 0.101 (

(1.55)(420)[(860 + 0.0945 (

X

-4

x8
t

6
t

) MR
p)

'78“1[51_8__] 58
8

dxt 3

£
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+ X

.0 t+l
2

8

+ %
0 t+1)) ) 108%]1'55 )

(7.190)

(7.191)

X o (1.55)(420)

)) - 1088]1'55 0.0945)} 65 (7.192)

+

(7.193)
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1

In eqs. (7.183) and (7.184), & = 1 if the reservoir elevation is above

the spillway crest and 61 = 0 otherwise; and xi 0 is the value of
b

storage about which the linearization is made. Similar definitions

apply to egs. (7.186)-(7.187), (7.189)-(7.190), and (7.192)-(7.193).
The spillway discharge functions for the regulating reservoirs
{eqs. (7.170), (7.171), (7.173), (7.175), and (7.177)] need not be
linearized, and together with eqs. (7.182), (7.185), (7.188), and
(7.191) can be used to form the (linear) spillage constraints in matrix
form as indicated by egs. (7.102) and (7.103), without any modification
whatsoever.

After development of the energy and épillage equations, the two-
stage problem [eqs. (7.144) and (7.145)] must be modified to fit the
particular features of the actual system. It turns out that the only
modification is in the objective function, as was explained after
eq. (7.163). The corollary 4is that the constraint equation,
eq. (7.145), whose terms were given in eqs. (7.146) and (7.147), remains

unchanged. The objective function, eq. (7.144), takes the following

form:
_ T T
By v E =& u tE ) u
ok RAT T ek
=k, + 9 % + X Ht X, (7.194)

in which



258

()T AT oF t+1 £+1 o, A(2)
ke =13 TR Byl Myt Xy tHyy kM, k-8
“t t-1 v-1 (2) ST L e+l
Tl ko My Bt Myt k-wetil LG, (" =,
- A(l) - A*(I)T t-1 /\(1)
WRT KT st R(2)T L ART Ak ap ot
a T3 M, - @ tkUBy,) (O, +H )

T A%t LEHIT A (1T 2% (D)t . L% (DT ot
PRy By Hyp Y- W7 BT+ 8 N HY

LT ekl o e-10T | (1)T o¥t-1
Xeep Byp "My ) - wep By (7.196)
S Ok e o ol AR
Ht = Bll Hll Bll Mll (7.197)
K3 K ~hp ~
where gt(l), gk(z), Bli, B22’ and k were defined after eq. (7.163) and

all other terms were defined in Section 7.7. The final form of the

two-stage problem for the NCVP system is (dropping the constant term
Fa

kt )
I T ek

maximize g = X, + 9 Ht X, (7.198)
X
~t

subject to
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A, x. £b (7.199)

Xpopr Xpyp Fixed

where the decision {unknown) vector X, is of dimension four.

Initial Policies

To initiate the POA, a feasible initial policy is required.
Tables 7.1-7.4 show two different initial policies for water‘ year
1979-80. Because the purpose is to compare the results obtained with
the linear and nonlinear models of Chapter 5 and Section 7.7, respec-
tively, the initial (51) and ending (§13) storages are equal to those
used in Chapter 6. It can be seen in Tables 7.1-7.4 that the initial
release policies I and II are different; however, unlike the initial
policies of Chapter 6, they could not be made significantly distinct
because once the spillages are written as a function storage one loses
the freedom to manipulate them as decision variables. The motivation
behind the use of differgﬁt initial policies is to test whether they
lead to the same optimal release policylor not. The development of the
initial policies was based on previous operation experience of the NCVP

and a trial-and-error approach to ensure feasibility.

Solution Algorithm

The master algorithm is the POA, which was described in
Section 4.8. The logic of the POA advances the approximate release
policies {ggk)}, k=20, 1,..., K, to an optimal policy {E£*)} which
satisfies user-specified convergence tests. However, the POA assumes
that at every stage, the following two-stage (quadratic) problem is

solved:
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wk W T T &%
imi + + .200
maximize k_ P T D T (7 )

subject to

(7.201)
o1 Epgq fixed

fhe simple quadratic structure of the problem given by egs. (7.200)
and (7.201) is misleading because, in general, the problem has an
indefinite Hessian matrix (i.e., a matrix with positive and negative
eigenvalues). The matrix Hi* is reconstructed at every step of the POA
iteration and it is not possible to ensure a priori whether the matrix
is indefinite or not. Thus, it would be inappropriate to apply simple
algorithms (e.g., Lemke's and principal pivoting) that are suitable to
solve the linear complementarity problem, which has a structure similar
to egs. (7.200)-(7.201), because those algorithms are successful for
positive definite cases only. On the other hand, it is advisable to
take advantage of the gquadratic linearly-constrained structure of
eqs. {7.200)-(7.201), rather than to recourse to the more complicated
noniinear programming methods, which are computationally more
inefficient than quadratic programming (QP) algorithms. Moreover,
nonlinear methods do not achieve a solution in a finite number of steps
as do well designed QP methods, and usually suffer from serious ill-
coﬁ@itioning (see Tletcher, 1981, for an assessment of nonlinear
programming). It appears that the best method available to solve
egs. (7.200)-(7.201) is the active set method as modified by Gill and

Murray (1974, 1977) to handle the general case of indefinite Hessian
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- matrix. This study adopts the method presented by Gill and Murray
(1977). The reader is referred to that reference for a thorough
description of the method and its implementation. Also, Fletcher (1981)
gives an excellent exposition of the role of active set methods to solve
QP problems. In essence, at any iteration, the active set method
defines a set of constraints that are active or binding, and solves an
equality-constrained QP problem to obtain the longest feasible step

correction along a direction of negative curvature (Q(k)). At the new
(k1) |00, ()

iterate point, x , an analysis of Lagrange multipliers

tests whether convergence has been achieved, if not, the information

Q(k)

about and the values of the Lagrange multipliers determine a new

active set of comstraints to initiate another iteration. In general

terms, the adopted QP algorithm consists of the following steps:

(D

(i) determine an initial feasible point X
(D

and its corresponding set
of active constraints (from Section 8.4 of Fletcher, 1981);
(ii) solve an equality-constrained QP problem to determine the correc-
tion Q(l) so that §(2) = 5(1) + Q(l) {(Gill and Murray, 1977); and
(iii) test for convergence: if all the Lagrange multipliers are £ O,
stop, otherwise define the new active set, increase the iteration
supérscript by one, and go to step (ii) for the next iteration {Gill and
Murray, 1977). This active set algorithm finds a solution to
eqs. (7.200)-(7.201) in a finite number of steps, is stable numerically,
and uses previous information on any new iteration so as to keep the
computational burdem as low as possible. The implementation of the POA
with this method to solve the two-stage problems was carried over to

solve the full model described in Section 7.7. The results are given in

the next subsection. Appendix B includes the computer program used in
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the solution of the full model; the subroutine used to solve the

quadratic two-stage subproblems is part of this program.

Discussion of Results

The optimal state, release trajectories, and energy production for
initial policies I and II are shown in Tables 7.5-7.7 and 7.8-7.10,
respectively. Optimal policies I and II are clearly different except
for the subsystem New Melones-Tullock where initial policies I and II
yielded the same optimal release and state sequences. It is evident
that the regulating reservoirs (Lewiston, Whiskeytown, Keswick, Natoma,
and Tullock) show constant reservoir elevations as specified in the
development of the model in Section 7.7. Both solutions I and II
yielded the same volume of Delta releases as specified in Tables 7.7
and 7.8 (annual total Delta release = 14697 Kaf). The total annual
energy production (the value of the objective function) is almost the
same for policies I and II, 7.764 x 106 and 7.772 % 106 MWh, respec-
tively. For all practical purposes, it can be claimed that the two
alternative optimal policies produce  a comparable performance as
measured by energy production. Table 7.11 summarizes the results
obtained from the linear model of Section 5.3 (discussed in Chapter 6)
and the full model of Section 7.7. The linear model results in larger
Delta releases (14773 Kaf) than those obtained with the nonlinear model
(14697 Kaf, for both policies I and YI) and also in larger annual energy
production (8.077 106 MWh as compared to 7.764 x 106 and 7.772 x 106 MWh
for ' the two optimal policies of the full model). The larger Delta
releases is an intuitive result because the linear model treats spil-

lages as decision variables whereas the nonlinear model considers them

as functions of storage and the degree of freedom available with respect
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to setting spillage values (as was done in the linear case) is lost.
Clearly, the nonrecoverable spillages occur at Lewiston and Whiskeytown
only because spillages at other reservoirs return to the rivers that
discharge in the Delta. The increased energy achieved with the linear
model has a more subtle explanation. First, Figures 7.2 and 7.3 show
the state trajectories at Shasta and Folsom for the different models.
It is evident that nonlinear policies I and II follow a pattern similar
to fhe linear policy but, overall, maintain a lower storage elevation.
That is explained by the fact that when spillages are functions of
storage, there is a penalty for achieving higher levels because the
spilled (non-energy producing) water increases exponentially with the
differential of reservoir elevation minus spillway crest elevation.
Second, it can be expected that penstock releases will increase {in the
nonlinear model) to keep reservoir levels from reaching such wasteful
high 1levels. Because energy production is linear in the penstock
release (recall that E, = gf Et)’ it would follow that the nonlinear
model is more likely to generate more energy than the linear model. The
resolution of the contradiction established by this argument and the
observed results (which indicate more energy from the linear model) lies
in the fact that energy production is a quadratic function on storages,
through the energy rates, and that offsets the effect of the higher
penstock Felease, for in the linear case the storages are higher. 1In
the more realistic nonlinear model, the tradeoff between higher eleva-
tions and smaller releases is more complex than in the linear case,
discussed in Chapter 6. It can be observed in Table 7.11 that values of
Ea/Em (actual over maximized annual energy ratios) are higher for the

nonlinear model than for the linear model. The overall E_/E_ ratio for
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Fig. 7.2 Operation of Shasta reservoir (water year 1979-80).
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policy I of the nonlinear model is 5.2/7.764 = 0.67, slightly larger
than the 0.64 obtained in Chapter 6. If it is assumed that the typical
availability factor is 0.85 (see discussion on Chapter 6), then a
potential increase of up to 27% over energy actually produced could be
achieved by using release policies from the nonlinear model. A 27%
increase will be about 1.4 x 106 MWh per year with average inflow condi-
tions. Besides these observations on energy generation, the similar
form of the state trajectory for the linear and nonlinear models suggest
that the overall policy of the latter can be explained with the argu-
ments used in Chapter 6 to justify the optimal trajectory in the former.
Namely, high inflow forecasts result in a drawdown of reservoirs in
December, mainly by routing large volumes of water through penstocks.
Reservoir elevations are relatively steady throughout the winter,
maintained at the best elevation so that the tradeoff between elevation
and discharge is optimal -in the sense that for given conditions, the
total energy would be maximized. The larger volumes of water released
during the summer (4967 Kaf in May-August) than the requirements at the
Delta (2698 Kaf in May-August) obtainea with the nonlinear model (see
policy I, Table 7.7) point again to the feasibility of an extension of
agricultural activities as discussed in Chapter 6. Finally, at the
expense of a moderate increase in the difficulty of the nonlinear model,
both in its formulation and solution, it appears that the nonlinear
model should be preferred over the linear model due to the closer
rep;esentation to the actual system that it commands. However, the
results of this section show the robustness of optimal policies to the
choice of model: the nonlinear and linear models produced relatively
close results despite the significant different assumptions, mathe-

matical structure, and numerical solution inherent to each model.
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CHAPTER 8

SUMMARY AND CONCLUSIONS

Alternative optimization models have been developed to obtain
reservoir operation policies. Two different models have been used to
find optimal release policies for the NCVP system. Several conclusions
can be drawn from this study:

1) It is possible to increase the annual energy production of the
system for below-average, average, and above-average inflow conditions.
For a sample year of average inflow conditions, an upper bound to the
possible increase of annual energy production was found to be of the
order of 1.4 - 1.9 x 106 Mwh, from both the linear and nonlinear models,
respectively.

2) Delta and agricultural water deliveries can be increased by
adopting the optimal release policies. For a year of average inflow
conditions, the water released from the system exceeded the agricultﬁral
demands by a factor of 1.6 (for both models). That suggests the
possibility of increasing irrigated areas, providing better leaching of
agricultural fields, and improving conjunctive management of surface
water and groundwater reservoirs.

3) Much of the improvement achieved by the optimal operation
policies developed im this study relative .to the actual implemented
operation schedules is due to: (i) an accurate river inflow forecasting
technique; (ii) a highly conservative set of flood-control provisions
currently enforced in the operation of the NCVP; and (iii)} an integra-
tive analysis, intrinsic in the optimization model, that allows to

represent all the links and constraints that act simultaneously and
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interactively within the system. Clearly, this integral conceptualiza-
tion cannot be achieved by a heuristic approach based solely on
experience.

4) It is difficult to establish a direct comparison between the
optimal and actual implemented operation policies. This is due to the
following reasons: (i) there is a significant amount of idle time in the
power plants of the system that is caused by breakdowns and maintenance.
Those operation halts occur randomly during any season of the year. In
addition, those idle periods are difficult to consider in any optimiza-
tion model because it is not known when they will occur, how long they
will last, and what repercussion they will have in the integrated energy
network; (ii) there are legal and institutional regulations that are
highly variable which affect the directives of the NCVP management
staff; and (iii) the managers of the system consider many intangible
effects that cannot be properly considered with a mathematical model.
This is especially true for establishing flood-control regulations,
where a conservative attitude prevails with regard to flood management.

5) The improved performance reported by the use of the optimiza-
tion models should be viewed as an upper bound to the possible gains
that could be derived from the use of mathematical models. The better
the forecasting of river inflows, the greater the annual availability
factor of the power plants. Also, the more knowledgeable the system
managers become with reservoir optimization models, the closer the
performance of the system will be to the upper bounds obtained under the
conditions assumed by the models. Clearly, the use of mathematical
models and the better understanding that emanates from their use -should

result in a feedback to the models, with their probable reformulation
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and modification that would bring closer the unpleasant difficulties of
any real-world system and the sophistications inherent to any mathema-
tical model. With regard to the two different models, linear and
nonlinear, the optimal policies proved to be robust to the choice of
model, i.e., the results obtained from both models were relatively
close. However, the nonlinear model gives a better representation of
the physical features of the system. Both models have equal dimension-
ality, although the solution of the two-stage problem in the nonlinear
formulation is more complicated. The implementation of the nonlinear
model is worthwhile because that model can be expected to provide more
reliable results under varying conditions than the linear model.

The experience gained in this investigation has made evident
several areas related to reservoir operation that deserve further study:

1) Reliable forecasts of river inflows. Conceptual hydrologic and
statistical methods that would allow to predict accurate streamflows to
the system are perhaps the most needed element in reservoir operation
planning. Development of techniques for river-flow forecasting is a
major task due to the size of the basins and the difficulties in
modeling the hydrologic elements that interact to determine the volume
of ¥unoff feeding the reservoirs. For short-term events, the use of
satellite information and raingage networks offers a possibility to
improve flood management, Statistical forecasting techniques for real-
time prediction of floods also may prove useful in developing flood-
congrol strategies,

2) Interrelationships that exist between the functions served by
the reservoir system and the econmomic environment in which the system is

imbedded. The state of the economy determines to a great extent the
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demands of watér for agricultural activities and the energy requirements
for industrial uses. Price schedules of water releases for agricultural
uses also determine to some extent the quantities of water requested by
the agricultural sector.

3) Conjunctive use of surface water and groundwater reservoirs.
Improved management of surface water reservoirs leads to a greater
recharge potential at groundwater basins. Thus, excess releases over
contractual levelé could be recharged to groundwater reservoirs rather
than discharged into ;he ocean.

4) Implementation and installation of software that would automa-
tize the operation of reservoir systems. This is a possible way to
perform better control decisions for routing flood events by integrating
inflow forecasts, control decision making, and execution of control
policies into a unique, coordinated operation.

There has been substantial'research published in the past vyears
dealing with reservoir management. The stage is set to translate the
best of this academic effort into working, operational techniques that
are applied on a day-to-day basis by system managers. There must be a
feedback from researchers to system operators, and vice versa, so that
confidence and experience is gained in the use of optimization models.
The real challenge in reservoir management is to make the best academic
findings and methods operational. The time has come for researchers and
practitioners to share their knowledge and experience to achieve more
efficiently the goal that both pursue: a better use of the natural and

societal resources available.
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