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Deep learning has been revolutionizing information processing in many fields of science 

and engineering owing to the massively growing amounts of data and the advances in deep 

neural network architectures. As these neural networks are expanding their capabilities towards 

achieving state-of-the-art solutions for demanding statistical inference tasks in various 

applications, there appears to be a global need for low-power, scalable and fast computing 

hardware beyond what existing electronic systems can offer. Optical computing might 

potentially address some of these demands with its inherent parallelism, power efficiency, and 

high speed. Recent advances in optical materials, fabrication, and optimization techniques have 

significantly enriched the design capabilities in optics and photonics, leading to various 

successful demonstrations of guided-wave and free-space computing hardware for accelerating 

machine learning tasks using light. While integrated waveguide-based photonic approaches 
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mainly aims to replace the current electronic computing hardware with better alternatives, free-

space optical neural network architectures and related computing techniques offer unique 

advantages particularly for inference tasks in visual computing applications, where the 

information is already in the optical domain. 

This dissertation introduces diffractive optical networks that are designed based on 

Diffractive Deep Neural Networks (D2NN) framework using deep learning to tackle various 

challenges in computational machine vision by providing power-efficient, fast, scalable and 

massively parallel all-optical solutions. First, a series of design advances were devised to 

improve the statistical inference accuracy of diffractive object classifiers. Second, hybrid 

(optical-electronic) neural network systems, which uses diffractive optical networks as front-end 

optical processors preceding back-end electronic neural networks, were investigated to enable 

task-specific camera systems that can perform object classification with fewer pixels, thus with 

less memory and power consumption. In addition, D2NN framework was extended to mitigate 

the adverse impact of possible physical error sources, termed as vaccinated-D2NN (v-D2NN). 

The success of v-D2NN was experimentally demonstrated at THz wavelengths by comparing the 

classification accuracies of 3D-printed nonvaccinated and vaccinated diffractive handwritten 

digit classifiers under the presence of layer-to-layer misalignments. Next, a diffractive all-optical 

object classifier was designed to provide inference accuracy that is invariant under random 

changes on the scale, position and orientation of the input objects with respect to the diffractive 

surfaces. Furthermore, the all-optical information processing capacity of diffractive optical 

networks was studied to prove that the dimensionality of the solution space representing the set 

of all-optical transformations established by a diffractive network increases linearly with the 

number of diffractive surfaces, up to a limit determined by the size of the input/output fields-of-
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view. In parallel, the diffractive optical networks were shown to all-optically perform arbitrary 

complex-valued linear transformations, including space-variant operations, noninvertible and 

nonunitary matrices, with negligibly small errors provided that the total number of diffractive 

neurons is sufficiently large to satisfy space-bandwidth product demands on input and output 

fields-of-view. A diffractive permutation network that can all-optically implement 625 

interconnects between its input and output was fabricated using 3D printing and its performance 

was demonstrated at THz wavelengths.  

Beyond the outlined optical computing and machine learning applications, diffractive 

optical networks can also be utilized to all-optically solve challenging inverse problems in 

computational imaging. Highlighting this aspect, diffractive optical networks that can all-

optically perform phase retrieval to reveal the quantitative phase image (QPI) of weakly 

scattering objects were devised. Based on the conducted analysis, these diffractive QPI networks 

can resolve subwavelength features, ~0.67λ, of an input phase object, with λ denoting the 

wavelength of illumination. Finally, in certain application scenarios, spatial overlap between 

phase objects poses an irreversible information loss due to the superposition of individual phase 

delays. It was demonstrated that diffractive optical networks can be trained to solve this 

challenging problem to infer the classes of spatially overlapping phase objects. Moreover, when 

these diffractive phase object classifiers are combined with electronic deep neural networks, the 

individual phase images of the objects spatially overlapping within the input field-of-view can be 

recovered based on the all-optically synthesized class scores, despite the phase ambiguity.  

All the studies presented in this dissertation demonstrating the success of diffractive optical 

networks in various general-purpose computing, statistical inference and inverse computational 
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imaging tasks can potentially lead them to largely replace conventional optical components in 

the next-generation, task-specific machine vision designs that can achieve a given task with 

fewer pixels, leading to faster, more memory- and power-efficient systems.        
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Chapter 1 Analysis of Diffractive Optical Neural Networks and 

Their Integration With Electronic Neural Networks 
 

Parts of this chapter have previously been published in D. Mengu et al. “Analysis of 

Diffractive Optical Neural Networks and Their Integration With Electronic Neural Networks”. 

IEEE JSTQE, 2020, 26(1), 1–14, 3700114, DOI: 10.1109/JSTQE.2019.2921376. 

Optical machine learning offers advantages in terms of power efficiency, scalability, and 

computation speed. Recently, an optical machine learning method based on diffractive deep 

neural networks (D2NNs) has been introduced to execute a function as the input light diffracts 

through passive layers, designed by deep learning using a computer. In this chapter, I introduce 

improvements to D2NNs by changing the training loss function and reducing the impact of 

vanishing gradients in the error back-propagation step. As a result of these design advances, 

based on five phase-only diffractive layers, the reported diffractive optical networks can 

numerically achieve a classification accuracy of 97.18% and 89.13% for optical recognition of 

handwritten digits and fashion products, respectively; using both phase and amplitude 

modulation (complex-valued) at each layer, the inference performance improves to 97.81% and 

89.32%, respectively. Furthermore, this chapter reports the integration of D2NNs with electronic 

neural networks to create hybrid classifiers that significantly reduce the number of input pixels 

into an electronic network using an ultra-compact front-end D2NN with a layer-to-layer distance 

of a few wavelengths, also reducing the complexity of the successive electronic network. Using a 

five-layer phase-only D2NN jointly optimized with a single fully connected electronic layer, the 

hybrid neural network system achieves a classification accuracy of 98.71% and 90.04% for the 

recognition of handwritten digits and fashion products, respectively, despite the signal is 
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compressed by >7.8 times down to 10 × 10 pixels due to limited space-bandwidth product of the 

focal plane-array. Beyond creating low-power and high-frame rate machine learning platforms, 

D2NN-based hybrid neural networks will find applications in smart optical imager and sensor 

design.  

1.1 Introduction 

Optics in machine learning has been widely explored due to its unique advantages, 

encompassing power efficiency, speed and scalability1–3. Some of the earlier work include 

optical implementations of various neural network architectures4–10, with a recent resurgence11–22, 

following the availability of powerful new tools for applying deep neural networks23,24, which 

have redefined the state-of-the-art for a variety of machine learning tasks. In this line of work, an 

optical machine learning framework has recently been developed and introduced, termed as 

Diffractive Deep Neural Network (D2NN)15, where deep learning and error back-propagation 

methods are used to design, inside a computer, diffractive layers that collectively perform a 

desired task that the network is trained for. In this training phase of a D2NN, the transmission 

and/or reflection coefficients of the individual pixels (i.e., neurons) of each layer are optimized 

such that as the light diffracts from the input plane toward the output plane, it computes the task 

at hand. Once this training phase in a computer is complete, these passive layers can be 

physically fabricated and stacked together to form an all-optical network that executes the 

trained function without the use of any power, except for the illumination light and the output 

detectors.  

In our previous work, we experimentally demonstrated the success of D2NN framework at 

THz part of the electromagnetic spectrum and used a standard 3D-printer to fabricate and 
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assemble together the designed D2NN layers15. In addition to demonstrating optical classifiers, 

we also demonstrated that the same D2NN framework can be used to design an imaging system 

by 3D-engineering of optical components using deep learning15. In these earlier results, we used 

coherent illumination and encoded the input information in phase or amplitude channels of 

different D2NN systems. Another important feature of D2NNs is that the axial spacing between 

the diffractive layers is very small, e.g., less than 50 wavelengths (λ)15, which makes the entire 

design highly compact and flat.  

Our experimental demonstration of D2NNs was based on linear materials, without including 

the equivalent of a nonlinear activation function within the optical network; however, as detailed 

in 15, optical nonlinearities can also be incorporated into a D2NN using non-linear materials 

including e.g., crystals, polymers or semiconductors, to potentially improve its inference 

performance using nonlinear optical effects within diffractive layers. For such a nonlinear D2NN 

design, resonant nonlinear structures (based on e.g., plasmonics or metamaterials) tuned to the 

illumination wavelength could be important to lower the required intensity levels. Even using 

linear optical materials to create a D2NN, the optical network designed by deep learning shows 

“depth” advantage, i.e., a single diffractive layer does not possess the same degrees-of-freedom 

to achieve the same level of classification accuracy, power efficiency and signal contrast at the 

output plane that multiple diffractive layers can collectively achieve for a given task. It is true 

that, for a linear diffractive optical network, the entire wave propagation and diffraction 

phenomena that happen between the input and output planes can be squeezed into a single matrix 

operation; however, this arbitrary mathematical operation defined by multiple learnable 

diffractive layers cannot be performed in general by a single diffractive layer placed between the 

same input and output planes. That is why, multiple diffractive layers forming a D2NN show the 
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depth advantage, and statistically perform better compared to a single diffractive layer trained for 

the same classification task, and achieve improved accuracy as also discussed in the 

supplementary materials of 15. 

Here, we present a detailed analysis of D2NN framework, covering different parameters of its 

design space, also investigating the advantages of using multiple diffractive layers, and provide 

significant improvements to its inference performance by changing the loss function involved in 

the training phase, and reducing the effect of vanishing gradients in the error back-propagation 

step through its layers. To provide examples of its improved inference performance, using a 5-

layer D2NN design (Fig. 1.1), we optimized two different classifiers to recognize (1) hand-

written digits, 0 through 9, using the MNIST (Mixed National Institute of Standards and 

Technology) image dataset25, and (2) various fashion products, including t-shirts, trousers, 

pullovers, dresses, coats, sandals, shirts, sneakers, bags, and ankle boots (using the Fashion 

MNIST image dataset26). These 5-layer phase-only all-optical diffractive networks achieved a 

numerical blind testing accuracy of 97.18% and 89.13% for hand-written digit classification and 

fashion product classification, respectively. Using the same D2NN design, this time with both the 

phase and the amplitude of each neuron’s transmission as learnable parameters (which we refer 

to as complex-valued D2NN design), we improved the inference performance to 97.81% and 

89.32% for hand-written digit classification and fashion product classification, respectively. We 

also provide comparative analysis of D2NN performance as a function of our design parameters, 

covering the impact of the number of layers, layer-to-layer connectivity and loss function used in 

the training phase on the overall classification accuracy, output signal contrast and power 

efficiency of D2NN framework. 
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Furthermore, we report the integration of D2NNs with electronic neural networks to create 

hybrid machine learning and computer vision systems. Such a hybrid system utilizes a D2NN at 

its front-end, before the electronic neural network, and if it is jointly optimized (i.e., optical and 

electronic as a monolithic system design), it presents several important advantages. This D2NN-

based hybrid approach can all-optically compress the needed information by the electronic 

network using a D2NN at its front-end, which can then significantly reduce the number of pixels 

(detectors) that needs to be digitized for an electronic neural network to act on. This would 

further improve the frame-rate of the entire system, also reducing the complexity of the 

electronic network and its power consumption. This D2NN-based hybrid design concept can 

potentially create ubiquitous and low-power machine learning systems that can be realized using 

relatively simple and compact imagers, with e.g., a few tens to hundreds of pixels at the opto-

electronic sensor plane, preceded by an ultra-compact all-optical diffractive network with a 

layer-to-layer distance of a few wavelengths, which presents important advantages compared to 

some other hybrid network configurations involving e.g., a 4-f configuration16 to perform a 

convolution operation before an electronic neural network.  

To better highlight these unique opportunities enabled by D2NN-based hybrid network 

design, we conducted an analysis to reveal that a 5-layer phase-only (or complex-valued) D2NN 

that is jointly-optimized with a single fully-connected layer, following the optical diffractive 

layers, achieves a blind classification accuracy of 98.71% (or 98.29%) and 90.04% (or 89.96%) 

for the recognition of hand-written digits and fashion products, respectively. In these results, the 

input image to the electronic network (created by diffraction through the jointly-optimized front-

end D2NN) was also compressed by more than 7.8 times, down to 10×10 pixels, which confirms 

that a D2NN-based hybrid system can perform competitive classification performance even using 
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a 

 

Fig. 1.1 All-optical diffractive classifier networks. These D2NN designs were based on spatially and 

temporally coherent illumination and linear optical materials/layers. (a) D�NN setup for the task of 

classification of handwritten digits (MNIST), where the input information is encoded in the amplitude 

channel of the input plane. (b) Final design of a 5-layer, phase-only classifier for handwritten digits. (c) 

Amplitude distribution at the input plane for a test sample (digit ‘0’). (d-e) Intensity patterns at the 

output plane for the input in (c); (d) is for MSE-based, and (e) is softmax-cross-entropy (SCE)-based 

designs. (f)	D�NN setup for the task of classification of fashion products (Fashion-MNIST), where the 

input information is encoded in the phase channel of the input plane. (g) Same as (b), except for fashion 

product dataset. (h) Phase distribution at the input plane for a test sample. (i-j) Same as (d) and (e) for 

the input in (h). λ refers to the illumination source wavelength. Input plane represents the plane of the 

input object or its data, which can also be generated by another optical imaging system or a lens, 

projecting an image of the object data onto this plane. 
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relatively simple and one-layer electronic network that uses significantly reduced number of 

input pixels.  

In addition to potentially enabling ubiquitous, low-power and high-frame rate machine 

learning and computer vision platforms, these hybrid neural networks which utilize D2NN-based 

all-optical processing at its front-end will find other applications in the design of compact and 

ultra-thin optical imaging and sensing systems by merging fabricated D2NNs with opto-

electronic sensor arrays. This will create intelligent systems benefiting from various CMOS/CCD 

imager chips and focal plane arrays at different parts of the electromagnetic spectrum, merging 

the benefits of all-optical computation with simple and low-power electronic neural networks 

that can work with lower dimensional data, all-optically generated at the output of a jointly-

optimized D2NN design.  

1.2 Results and Discussion  

Mitigating vanishing gradients in optical neural network training  

In D2NN framework, each neuron has a complex transmission coefficient, i.e., ���(��, ��, ��) =
���(��, ��, ��)���(����(��, ��, ��)), where � and � denote the neuron and diffractive layer number, 

respectively. In 15, ��� and ���   are represented during the network training as functions of two 

latent variables, � and  , defined in the following form: 

 ��� = !�"#$�%&���',  

 ��� = 2) × !�"#$�%& ��', (1.1) 

 

where, !�"#$�%(�) = +,+,-.,  is a non-linear, differentiable function. In fact, the trainable 
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parameters of a D2NN are these latent variables, ��� and  ��, and Eq. (1.1) defines how they are 

related to the physical parameters (��� and ���) of a diffractive optical network. Note that in Eq. 

(1.1), the sigmoid acts on an auxiliary variable rather than the information flowing through the 

network. Being a bounded analytical function, sigmoid confines the values of ��� and ��� inside 

the intervals (0,1) and (0,2)), respectively. On the other hand, it is known that sigmoid function 

has vanishing gradient problem27 due to its relatively flat tails, and when it is used in the context 

depicted in Eq. (1.1), it can prevent the network to utilize the available dynamic range 

considering both the amplitude and phase terms of each neuron. To mitigate these issues, we 

replaced Eq. (1.1) as follows: 

 ��� = 1�23&���'#��45�6781�23&���'9	,  

 ��� = 2) ×  ��,	 (1.2) 

where ReLU refers to Rectified Linear Unit, and M is the number of neurons per layer.  

Based on Eq. (1.2), the phase term of each neuron, ��� , becomes unbounded, but since the 

���(����(��, �� , ��))  term is periodic (and bounded) with respect to ��� , the error back-

propagation algorithm is able to find a solution for the task in hand. The amplitude term, ���, on 

the other hand, is kept within the interval (0,1) by using an explicit normalization step shown in 

Eq. (1.2).  

To exemplify the impact of this change alone in the training of an all-optical D2NN design, 

for a 5-layer, phase-only (complex-valued) diffractive optical network with an axial distance of 

40×λ  between its layers, the classification accuracy for Fashion-MNIST dataset increased from 

reported 81.13% (86.33%) to 85.40% (86.68%) following the above discussed changes in the 
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parameterized formulation of the neuron transmission values compared to earlier results in 15.We 

will report further improvements in the inference performance of an all-optical D2NN after the 

introduction of the loss function related changes into the training phase, which is discussed next. 

We should note that although the results of this paper follow the formulation in Eq. (1.2), it is 

also possible to parameterize complex modulation terms over the real and imaginary parts as in 

28 and a formulation based on the Wirtinger derivatives can be used for error backpropagation. 

Effect of the learning loss function on the performance of all-optical diffractive neural 

networks  

Earlier work on D2NNs15 reports the use of mean squared error (MSE) loss. An alternative 

loss function that can be used for the design of a D2NN is the cross-entropy loss29,30 (see the 

Methods section). Since minimizing the cross-entropy loss is equivalent to minimizing the 

negative log-likelihood (or maximizing the likelihood) of an underlying probability distribution, 

it is in general more suitable for classification tasks. Note that, cross-entropy acts on probability 

measures, which take values in the interval (0,1) and the signals coming from the detectors (one 

for each class) at the output layer of a D2NN are not necessarily in this range; therefore, in the 

training phase, a softmax layer is introduced to be able to use the cross-entropy loss. It is 

important to note that although softmax is used during the training process of a D2NN, once the 

diffractive design converges and is fixed, the class assignment at the output plane of a D2NN is 

still based solely on the maximum optical signal detected at the output plane, where there is one 

detector assigned for each class of the input data (see Figs. 1.1(a), 1.1(f)). 
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When we combine D2NN training related changes reported in the earlier sub-section on the 

parametrization of neuron modulation (Eq. (1.2)), with the cross-entropy loss outlined above, a 

 

Fig. 1.2 Convergence plots and confusion matrices for all-optical D2NN-based classification 

of handwritten digits (MNIST dataset).  (a) Convergence curve and confusion matrix for a 

phase-only, fully-connected D2NN (∆;= �	<) design. (b) Convergence curve and confusion 

matrix for a phase-only, partially-connected D2NN (∆;= �<)  design. (c) and (d) are 
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significant improvement in the classification performance of an all-optical diffractive neural 

network is achieved. For example, for the case of a 5-layer, phase-only D2NN with 40×λ  axial 

distance between the layers, the classification accuracy for MNIST dataset increased from 91.75% 

to 97.18%, which further increased to 97.81% using complex-valued modulation, treating the 

phase and amplitude coefficients of each neuron as learnable parameters. The training 

convergence plots and the confusion matrices corresponding to these results are also reported in 

Figs. 1.2(a) and 1.2(c), for phase-only and complex-valued modulation cases, respectively. 

Similarly, for Fashion-MNIST dataset, we improved the blind testing classification accuracy of a 

5-layer phase-only (complex-valued) D2NN from 81.13% (86.33%) to 89.13% (89.32%), 

showing a similar level of advancement as in the MNIST results. Figs. 1.3(a) and 1.3(c) also 

report the training convergence plots and the confusion matrices for these improved Fashion-

MNIST inference results, for phase-only and complex-valued modulation cases, respectively. As 

a comparison point, a fully-electronic deep neural network such as ResNet-5031 (with >25 

Million learnable parameters) achieves 99.51% and 93.23% for MNIST and Fashion-MNIST 

datasets, respectively, which are superior to our 5-layer all-optical D2NN inference results (i.e., 

97.81% and 89.32% for MNIST and Fashion-MNIST datasets, respectively), which in total used 

0.8 million learnable parameters, covering the phase and amplitude values of the neurons at 5 

successive diffractive layers. 

All these results demonstrate that the D2NN framework using linear optical materials can 

already achieve a decent classification performance, also highlighting the importance of future 

research on the integration of optical nonlinearities into the layers of a D2NN, using e.g., 

plasmonics, metamaterials or other nonlinear optical materials (see the supplementary 

information of 15), in order to come closer to the performance of state-of-the-art digital deep 
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neural networks. 

 

 

 

Fig. 1.3 Same as Fig. 1.2, except the results are for all-optical D2NN-based classification of 

fashion products (Fashion-MNIST dataset) encoded in the phase channel of the input 

plane. 

 



13 

 

Performance trade-offs in D2NN design 

Despite the significant increase observed in the blind testing accuracy of D2NNs, the use of 

softmax-cross-entropy (SCE) loss function in the context of all-optical networks also presents 

some trade-offs in terms of practical system parameters. MSE loss function operates based on 

pixel-by-pixel comparison of a user-designed output distribution with the output optical intensity 

pattern, after the input light interacts with the diffractive layers (see e.g., Figs. 1.1(d) and 1.1(i)). 

On the other hand, SCE loss function is much less restrictive for the spatial distribution or the 

uniformity of the output intensity at a given detector behind the diffractive layers (see e.g., Figs. 

1.1(e) and 1.1(j)); therefore, it presents additional degrees-of-freedom and redundancy for the 

diffractive network to improve its inference accuracy for a given machine learning task, as 

reported in the earlier sub-section.     

This performance improvement with the use of SCE loss function in a diffractive neural 

network design comes at the expense of some compromises in terms of the expected diffracted 

power efficiency and signal contrast at the network output. To shed more light on this trade-off, 

we define the power efficiency of a D2NN as the percentage of the optical signal detected at the 

target label detector	(=>) corresponding to the correct data class with respect to the total optical 

signal at the output plane of the optical network (?). Fig. 1.4(b) and Fig. 1.4(e) show the power 

efficiency comparison as a function of the number of diffractive layers (corresponding to 1, 3 

and 5-layer phase-only D2NN designs) for MNIST and Fashion-MNIST datasets, respectively. 

The power efficiency values in these graphs were computed as the ratio of the mean values of => 

and ? for the test samples that were correctly classified by the corresponding D2NN designs 

(refer to Figs. 1.4(a) and 1.4(d) for the classification accuracy of each design). These results  
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clearly indicate that increasing the number of diffractive layers has significant positive impact on 

the optical efficiency of a D2NN, regardless of the loss function choice. The maximum efficiency 

that a 5-layer phase-only D2NN design based on the SCE loss function can achieve is 1.98% for 

MNIST and 0.56% for Fashion-MNIST datasets, which are significantly lower compared to the 

efficiency values that diffractive networks designed with MSE loss function can achieve, i.e., 

25.07% for MNIST and 26.00% for Fashion-MNIST datasets (see Figs. 1.4(b) and 1.4(e)). Stated 

 

Fig. 1.4 Classification accuracy, power efficiency and signal contrast comparison of MSE 

and SCE loss function based all-optical phase-only D2NN classifier designs with 1, 3 and 5-

layers. (a) Blind testing accuracy, (b) power efficiency and (c) signal contrast analysis of the 

final design of fully-connected, phase-only all-optical classifiers trained for handwritten digits 

(MNIST). (d-f) are the same as (a-c), only the classified dataset is Fashion-MNIST instead. 
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differently, MSE loss function based D2NNs are in general significantly more power efficient all-

optical machine learning systems. 

Next we analyzed the signal contrast of diffractive neural networks, which we defined as the 

difference between the optical signal captured by the target detector (=>) corresponding to the 

correct data class and the maximum signal detected by the rest of the detectors (i.e., the strongest 

competitor (=@A) detector for each test sample), normalized with respect to the total optical signal 

at the output plane (?). The results of our signal contrast analysis are reported in Fig. 1.4(c) and 

Fig. 1.4(f) for MNIST and Fashion-MNIST datasets, respectively, which reveal that D2NNs 

designed with an MSE loss function keep a strong margin between the target detector (=>)  and 

the strongest competitor detector (among the rest of the detectors) at the output plane of the all-

optical network. The minimum mean signal contrast value observed for an MSE-based D2NN 

design was for a 1-Layer, phase-only diffractive design, showing a mean signal contrast of 2.58% 

and 1.37% for MNIST and Fashion-MNIST datasets, respectively. Changing the loss function to 

SCE lowers the overall signal contrast of diffractive neural networks as shown in Figs. 1.4(c) and 

1.4(f). 

Comparing the performances of MSE-based and SCE-based D2NN designs in terms of 

classification accuracy, power efficiency and signal contrast, as depicted in Fig. 1.4, we identify 

two opposite design strategies in diffractive all-optical neural networks. MSE, being a strict loss 

function acting in the physical space (e.g., Figs. 1.1(d) and 1.1(i)), promotes high signal contrast 

and power efficiency of the diffractive system, while SCE, being much less restrictive in its 

output light distribution (e.g., Figs. 1.1(e) and 1.1(j)), enjoys more degrees-of-freedom to 

improve its inference performance for getting better classification accuracy, at the cost of a 
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reduced overall power efficiency and signal contrast at its output plane, which increases the 

systems’ vulnerability for opto-electronic detection noise. In addition to the noise at the detectors, 

mechanical misalignment in both the axial and lateral directions might cause inference 

discrepancy between the final network model and its physical implementation. One way to 

mitigate this alignment issue is to follow the approach in Ref. 15 where the neuron size was 

chosen to be >3-4 times larger than the available fabrication resolution. Recently developed 

micro- and nano-fabrication techniques, such as laser lithography based on two-photon 

polymerization 32, emerge as promising candidates towards monolithic fabrication of 

complicated volumetric structures, which might help to minimize the alignment challenges in 

diffractive optical networks. Yet, another method of increasing the robustness against 

mechanical fabrication and related alignment errors is to model and include these error sources 

as part of the forward model during the numerical design phase, which might create diffractive 

models that are more tolerant of such errors.     

Advantages of multiple diffractive layers in D2NN framework 

As demonstrated in Fig. 1.4, multiple diffractive layers that collectively operate within a 

D2NN design present additional degrees-of-freedom compared to a single diffractive layer to 

achieve better classification accuracy, as well as improved diffraction efficiency and signal 

contrast at the output plane of the network; the latter two are especially important for 

experimental implementations of all-optical diffractive networks as they dictate the required 

illumination power levels as well as signal-to-noise ratio related error rates for all-optical 

classification tasks. Stated differently, D2NN framework, even when it is composed of linear 

optical materials, shows depth advantage because an increase in the number of diffractive layers 

(1) improves its statistical inference accuracy (see Figs. 1.4(a) and 1.4(d)), and (2) improves its 
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overall power efficiency and the signal contrast at the correct output detector with respect to the 

detectors assigned to other classes (see Figs. 1.4(b), (c), (e), (f)). Therefore, for a given input 

illumination power and detector signal-to-noise ratio, the overall error rate of the all-optical 

network decreases as the number of diffractive layers increase. All these highlight the depth 

feature of a D2NN. 

This is not in contradiction with the fact that, for an all-optical D2NN that is made of linear 

optical materials, the entire diffraction phenomenon that happens between the input and output 

planes can be squeezed into a single matrix operation (in reality, every material exhibits some 

volumetric and surface nonlinearities, and what we mean here by a linear optical material is that 

these effects are negligible). In fact, such an arbitrary mathematical operation defined by 

multiple learnable diffractive layers cannot be performed in general by a single diffractive layer 

placed between the same input and output planes; additional optical components/layers would be 

needed to all-optically perform an arbitrary mathematical operation that multiple learnable 

diffractive layers can in general perform. Our D2NN framework creates a unique opportunity to 

use deep learning principles to design multiple diffractive layers, within a very tight layer-to-

layer spacing of less than 50×λ, that collectively function as an all-optical classifier, and this 

framework will further benefit from nonlinear optical materials15 and resonant optical structures 

to further enhance its inference performance. 

In summary, the “depth” is a feature/property of a neural network, which means the network 

gets in general better at its inference and generalization performance with more layers. The 

mathematical origins of the depth feature for standard electronic neural networks relate to 

nonlinear activation function of the neurons. But this is not the case for a diffractive optical 
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network since it is a different type of a network, not following the same architecture or the same 

mathematical formalism of an electronic neural network.  

Connectivity in diffractive optical networks 

In a D2NN design, the layer-to-layer connectivity of the optical network is controlled by 

several parameters: the axial distance between the layers (ΔC), the illumination wavelength (λ), 

the size of each fabricated neuron and the width of the diffractive layers. In our numerical 

simulations, we used a neuron size of approximately 0.53×λ. In addition, the height and width of 

each diffractive layer was set to include 200	 × 	200 = 40E  neurons per layer. In this 

arrangement, if the axial distance between the successive diffractive layers is set to be ~40×λ as 

in 15, then our D2NN design becomes fully-connected. On the other hand, one can also design a 

much thinner and more compact diffractive network by reducing ΔC at the cost of limiting the 

connectivity between the diffractive layers. To evaluate the impact of this reduction in network 

connectivity on the inference performance of a diffractive neural network, we tested the 

performance of our D2NN framework using ΔC = 4×λ	, i.e., 10-fold thinner compared to our 

earlier discussed diffractive networks. With this partial connectivity between the diffractive 

layers, the blind testing accuracy for a 5-layer, phase-only D2NN decreased from 97.18% (ΔC =
40×λ) to 94.12% (ΔC = 4×λ) for MNIST dataset (see Figs. 1.2(a) and 1.2(b), respectively). 

However, when the optical neural network with ΔC = 4×λ  was relaxed from phase-only 

modulation constraint to full complex modulation, the classification accuracy increased to 96.01% 

(Fig. 1.2(d)), partially compensating for the lack of full-connectivity. Similarly, for Fashion-

MNIST dataset, the same compact architecture with ΔC = 4×λ  provided accuracy values of 

85.98% and 88.54% for phase-only and complex-valued modulation schemes, as shown in Figs. 

1.3(b) and 1.3(d), respectively, demonstrating the vital role of phase and amplitude modulation 
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capability for partially-connected, thinner and more compact optical networks.  

Integration of diffractive neural networks with electronic networks: Performance analysis 

of D2NN-based hybrid machine learning systems 

Integration of passive diffractive neural networks with electronic neural networks (see 

e.g., Figs. 1.5(a) and 1.5(c)) creates some unique opportunities to achieve pervasive and low-

power machine learning systems that can be realized using simple and compact imagers, 

composed of e.g., a few tens to hundreds of pixels per opto-electronic sensor frame. To 

investigate these opportunities, for both MNIST (Table 1.1) and Fashion-MNIST (Table 1.2) 

datasets, we combined our D2NN framework (as an all-optical front-end, composed of 5 

diffractive layers) with 5 different electronic neural networks considering various sensor 

resolution scenarios as depicted in Table 1.3. For the electronic neural networks that we 

considered in this analysis, in terms of complexity and the number of trainable parameters, a 

single fully-connected (FC) digital layer and a custom designed 4-layer convolutional neural 

network (CNN) (we refer to it as 2C2F-1 due to the use of 2 convolutional layers with a single 

feature and subsequent 2 FC layers) represent the lower end of the spectrum (see Tables 1.3-1.4); 

on the other hand, LeNet25, ResNet-5031 and another 4-layer CNN33 (we refer to it as 2C2F-64 

pointing to the use of 2 convolutional layers, subsequent 2 FC layers and 64 high-level features 

at its second convolutional layer) represent some of the well-established and proven deep neural 

networks 
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Fig. 1.5 D2NN-based hybrid neural networks. (a) The architecture of a hybrid (optical and 

electronic) classifier. (b) Final design of phase-only optical layers (F; = �	×λ	) at the front-end 

of a hybrid handwritten digit classifier with a 10×10 opto-electronic detector array at the 

bridge/junction between the two modalities (optical vs. electronic). (c) and (d) are same as (a) 

and (b), except the latter are for Fashion-MNIST dataset. Input plane represents the plane of the 

input object or its data, which can also be generated by another optical imaging system or a lens, 

projecting an image of the object data onto this plane.  
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 with more advanced architectures and considerably higher number of trainable 

parameters (see Table 1.3). All these digital networks used in our analysis, were individually 

placed after both a fully-connected (ΔC = 40×λ) and a partially-connected (ΔC = 4×λ) D2NN 

design and the entire hybrid system in each case was jointly optimized at the second stage of the 

hybrid system training procedure detailed in the Methods section (see Fig. 1.6).  

Among the all-optical D2NN-based classifiers presented in the previous sections, the 

fully-connected (ΔC = 40×λ) complex modulation D2NN designs have the highest classification 

accuracy values, while the partially-connected (ΔC = 4×λ) designs with phase-only restricted 

modulation are at the bottom of the performance curve (see the all-optical parts of Tables 1.1 

and 1.2). Comparing the all-optical classification results based on a simple max operation at the 

output detector plane against the first rows of the “Hybrid Systems” sub-tables reported in Tables 

1.1 and 1.2, we can conclude that the addition of a single FC layer (using 10 detectors), jointly-

optimized with the optical part, can make up for some of the limitations of the D2NN optical 

front-end design such as partial connectivity or restrictions on the neuron modulation function. 

The 2nd, 3rd and 4th rows of the “Hybrid Systems” sub-tables reported in Tables 1.1 and 

1.2 illustrate the classification performance of hybrid systems when the interface between the 

optical and electronic networks is a conventional focal plane array (such as a CCD or CMOS 

sensor array). The advantages of our D2NN framework become more apparent for these cases, 

compared against traditional systems that have a conventional imaging optics-based front-end 

(e.g., a standard camera interface) followed by a digital neural network for which the 

classification accuracies are also provided at the bottom of Tables 1.1 and 1.2. From these 

comparisons reported in Tables 1.1 and 1.2, we can deduce that having a jointly-trained optical 
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and electronic network improves the inference performance of the overall system using low-end 

electronic neural networks as in the cases of a single FC network and 2C2F-1 network; also see 

Table 1.3 for a comparison of the digital neural networks employed in this work in terms of (1) 

the number of trainable parameters, (2) FLOPs, and (3) energy consumption. For example, when 

the 2C2F-1 network is used as the digital processing unit following a perfect imaging optics, the 

classification accuracies for MNIST (Fashion-MNIST) dataset are held as 89.73% (76.83%), 

95.50% (81.76%) and 97.13% (87.11%) for 10 × 10, 25 × 25 and 50 × 50 detector arrays, 

respectively. However, when the same 2C2F-1 network architecture is enabled to jointly-evolve 

with e.g., the phase-only diffractive layers in a D2NN front-end during the training phase, blind 

testing accuracies for MNIST (Fashion-MNIST) dataset significantly improve to 98.12% 

(89.55%), 97.83% (89.87%) and 98.50% (89.42%) for 10×10, 25×25 and 50×50 detector arrays, 

respectively. The classification performance improvement of the jointly-optimized hybrid system 

(diffractive + electronic network) over a perfect imager-based simple all-electronic neural 

network (e.g., 2C2F-1) is especially significant for 10×10 detectors (i.e., ~8.4% and ~12.7% for 

MNIST and Fashion-MNIST datasets, respectively). Similar performance gains are also achieved 

when single FC network is jointly-optimized with D2NN instead of a perfect imaging 

optics/camera interface, preceding the all-electronic network as detailed in Tables 1.1 and 1.2. In 

fact, for some cases the classification performance of D2NN-based hybrid systems, e.g. 5-layer, 

phase-only D2NN followed by a single FC layer using any of the 10×10, 25×25 and 50×50 

detectors arrays, shows a classification performance on par with a perfect imaging system that is 

followed by a more powerful, and energy demanding LeNet architecture (see Table 1.3).  

Among the 3 different detector array arrangements that we investigated here, 10×10 

detectors represent the case where the intensity on the opto-electronic sensor plane is severely 
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undersampled. Therefore, the case of 10×10 detectors represents a substantial loss of information 

for the imaging-based scenario (note that the original size of the objects in both image datasets is 

28×28). This effect is especially apparent in Table 1.2, for Fashion-MNIST, which represents a 

more challenging dataset for object classification task, in comparison to MNIST. According to 

Table 1.2, for a computer vision system with a perfect camera interface and imaging optics 

preceding the opto-electronic sensor array, the degradation of the classification performance due 

to spatial undersampling varies between 3% to 5% depending on the choice of the electronic 

network. However, jointly-trained hybrid systems involving trainable diffractive layers maintain 

their classification performance even with ~7.8 times reduced number of input pixels (i.e., 10×10 

pixels compared to the raw data, 28×28 pixels). For example, the combination of a fully-

connected (40×λ layer-to-layer distance) D2NN optical front-end with 5 phase-only (complex) 

diffractive layers followed by LeNet provides 90.24% (90.24%) classification accuracy for 

fashion products using a 10×10 detector array, which shows improvement compared to 87.44% 

accuracy that LeNet alone provides following a perfect imaging optics, camera interface. A 

similar trend is observed for all the jointly-optimized D2NN-based hybrid systems, providing 3-5% 

better classification accuracy compared to the performance of all-electronic neural networks 

following a perfect imager interface with 10×10 detectors. Considering the importance of 

compact, thin and low-power designs, such D2NN-based hybrid systems with significantly 

reduced number of opto-electronic pixels and an ultra-thin all-optical D2NN front-end with a 

layer-to-layer distance of a few wavelengths cast a highly sought design to extend the 

applications of jointly-trained opto-electronic machine learning systems to various fields, 

without sacrificing their performance. 
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On the other hand, for designs that involve higher pixel counts and more advanced 

electronic neural networks (with higher energy and memory demand), our results reveal that 

D2NN based hybrid systems perform worse compared to the inference performance of perfect 

imager-based computer vision systems. For example, based on Tables 1.1 and 1.2 one can infer 

that using ResNet as the electronic neural network of the hybrid system with 50x50 pixels, the 

discrepancy between the two approaches (D2NN vs. perfect imager based front-end choices) is 

~0.5% and ~4% for MNIST and Fashion-MNIST datasets, respectively, in favor of the perfect 

imager front-end. We believe this inferior performance of the jointly-optimized D2NN-based 

 

Table 1.1 Blind testing accuracies (reported in percentage) for all-optical (D2NN only), 

D2NN and perfect imager-based hybrid systems used in this work for MNIST dataset.  
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hybrid system (when higher pixel counts and more advanced electronic networks are utilized) is 

related to sub-optimal convergence of the diffractive layers in the presence of a powerful 

electronic neural network that is by and large determining the overall loss of the jointly-

optimized hybrid network during the training phase. In other words, considering the lack of non-

linear activation functions within the D2NN layers, a powerful electronic neural network at the 

back-end hinders the evolution of the optical front-end during training phase due to its relatively 

superior approximation capability. Some of the recent efforts in the literature to provide a better 

understanding of the inner workings of convolutional neural networks34,35 might help us to 

devise more efficient learning schemes to overcome this “shadowing” behavior in order to 

improve the inference performance of our jointly-optimized D2NN-based hybrid systems. 

Extending the fundamental design principles and methods behind diffractive optical networks to 

operate under spatially and/or temporally incoherent illumination is another intriguing research 

direction stimulated by this work, as most computer vision systems of today rely on incoherent 

ambient light conditions. Finally, the flexibility of the D2NN framework paves the way for 

broadening our design space in the future to metasurfaces and metamaterials through essential 

modifications in the parameterization of the optical modulation functions 36,37.    

1.3 Methods 

Diffractive network architectures 

In our diffractive neural network model, the input plane represents the plane of the input 

object or its data, which can also be generated by another optical imaging system or a lens, e.g., 

by projecting an image of the object data. Input objects were encoded in amplitude channel 

(MNIST) or phase channel (Fashion-MNIST) of the input plane and were illuminated with a 
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uniform plane wave at a wavelength of G to match the conditions introduced in 15 for all-optical 

classification. In the hybrid system simulations presented in Tables 1.1 and 1.2, on the other 

hand, the objects in both datasets were represented as amplitude objects at the input plane, 

providing a fair comparison between the two tables.  

Optical fields at each plane of a diffractive network were sampled on a grid with a 

spacing of ~0.53G in both �  and �  directions. Between two diffractive layers, the free-space 

propagation was calculated using the angular spectrum method15. Each diffractive layer, with a 

neuron size of 0.53G×0.53G, modulated the incident light in phase and/or amplitude, where the 

modulation value was a trainable parameter and the modulation method (phase-only or complex) 

was a pre-defined design parameter of the network. The number of layers and the axial distance 

from the input plane to the first diffractive layer, between the successive diffractive layers, and 

from the last diffractive layer to the detector plane were also pre-defined design parameters of 

each network. At the detector plane, the output field intensity was calculated. 

 

Forward optical model and training loss functions 

The physical model in our diffractive framework does not rely on small diffraction angles 

or the Fresnel approximation and is not restricted to far-field analysis (Fraunhofer diffraction) 

38,39. Following the Rayleigh-Sommerfeld equation, a single neuron can be considered as the 

secondary source of wave H��(�, �, �), which is given by: 

 H��(�, �, �) = � − ��J� K 12)J + 1�GM exp K�2)JG M (1.3) 

where J = Q(� − ��)� + (� − ��)� + (� − ��)� and � = √−1 . Treating the input plane as the 0th 
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layer, then for lth layer (� ≥ 1), the output field can be modeled as: 

 T��(�, �, �) = H��(�, �, �) ∙ ���(�� , ��, ��) ∙VTW�X.(��, ��, ��)W   

 = H��(�, �, �) ∙ |Z| ∙ �[∆\ , (1.4) 

where T��(�, �, �) denotes the output of the ith neuron on lth layer located at (�, �, �) , the ���  
denotes the complex modulation, i.e., ���(��, ��, ��) = ���(��, �� , ��)���(����(�� , ��, ��)) . In eq. 

(1.4), |Z| is the relative amplitude of the secondary wave, and Δ] refers to the additional phase 

delay due to the input wave at each neuron, ∑ TW�X.(��, �� , ��)W , and the complex-valued neuron 

modulation function, ���(�� , ��, ��). 
To perform classification by means of all-optical diffractive networks with minimal post-

processing (i.e., using only a #�� operation), we placed discrete detectors at the output plane. 

The number of detectors 	(_)  is equal to the number of classes in the target dataset. The 

geometrical shape, location and size of these detectors (6.4G×6.4G) were determined before each 

training session. Having set the detectors at the output plane, the final loss value (2) of the 

diffractive neural network is defined through two different loss functions and their impact on 

D2NN based classifiers were explored (see the Results section). The first loss function was 

defined using the mean squared error (MSE) between the output plane intensity, `�-., and the 

target intensity distribution for the corresponding label, a�-., i.e., 

 2 = .b∑ & �̀ �-. − a��-.'�b� ,   (1.5) 

where E refers to the total number of sampling points representing the entire diffraction pattern 

at the output plane.  
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The second loss function used in combination with our all-optical D2NN framework is 

the cross-entropy. To use the cross-entropy loss function, an additional softmax layer is 

introduced and applied on the detected intensities (only during the training phase of a diffractive 

neural network design). Since softmax function is not scale invariant40, the measured intensities 

by D detectors at the output plane are normalized such that they lie in the interval (0,10) for each 

sample. With =�  denoting the total optical signal impinging onto the �cd  detector at the output 

plane, the normalized intensities, =�e, can be found by, 

 =�e = fghij	{fg} × 10.  (1.6) 

In parallel, the cross-entropy loss function can be written as follows: 

 2 = −∑ "� log(��)p� ,   (1.7) 

where �� = +qgr∑ +qgrsg  and "�	refer to the �cd element in the output of the softmax layer, and the �cd 

element of the ground truth label vector, respectively. 

A key difference between the two loss functions is already apparent from eq. (1.5) and eq. 

(1.7). While the MSE loss function is acting on the entire diffraction signal at the output plane of 

the diffractive network, the softmax-cross-entropy is applied to the detected optical signal values 

ignoring the optical field distribution outside of the detectors (one detector is assigned per class). 

This approach based on softmax-cross-entropy loss brings additional degrees-of-freedom to the 

diffractive neural network training process, boosting the final classification performance as 

discussed in the Results section, at the cost of reduced diffraction efficiency and signal contrast 

at the output plane. 

For both the imaging optics-based and hybrid (D2NN + electronic) classification systems 
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presented in Tables 1.1 and 1.2, the loss functions were also based on softmax-cross-entropy. 

Diffractive network training 

All neural networks (optical and/or digital) were simulated using Python (v3.6.5) and 

TensorFlow (v1.10.0, Google Inc.) framework. All-optical, hybrid and electronic networks were 

trained for 50 epochs using a desktop computer with a GeForce GTX 1080 Ti Graphical 

Processing Unit, GPU and Intel(R) Core (TM) i9-7900X CPU @3.30GHz and 64GB of RAM, 

running Windows 10 operating system (Microsoft).  

Two datasets were used in the training of the presented classifiers: MNIST and Fashion-

MNIST. Both datasets have 70,000 objects/images, out of which we selected 55,000 and 5,000 

as training and validation sets, respectively. Remaining 10,000 were reserved as the test set. 

During the training phase, after each epoch we tested the performance of the current model in 

hand on the 5K validation set and upon completion of the 50th epoch, the model with the best 

performance on 5K validation set was selected as the final design of the network models. All the 

numbers reported in this work are blind testing accuracy results held by applying these selected 

models on the 10K test sets.  

The trainable parameters in a diffractive neural network are the modulation values of 

each layer, which were optimized using a back-propagation method by applying the adaptive 

moment estimation optimizer (Adam)41 with a learning rate of 10-3. We chose a diffractive layer 

size of 200×200 neurons per layer, which were initialized with ) for phase values and 1 for 

amplitude values. The training time was approximately 5 hours for a 5-layer D2NN design with 

the hardware outlined above.   
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D2NN-based hybrid network training 

To further explore the potentials of D2NN framework, we co-trained diffractive network 

layers together with digital neural networks to form hybrid systems. In these systems, the 

detected intensity distributions at the output plane of the diffractive network were taken as the 

input for the digital neural network at the back-end of the system.  

To begin with, keeping the optical architecture and the detector arrangement at the output 

plane of the diffractive network same as in the all-optical case, a single fully-connected layer was 

introduced as an additional component (replacing the simplest max operations in an all-optical 

network), which maps the optical signal values coming from D individual detectors into a vector 

of the same size (i.e., the number of classes in the dataset). Since there are 10 classes in both 

MNIST and Fashion-MNIST datasets, this simple fully-connected digital structure brings 

additional 110 trainable variables (i.e., 100 coefficients in the weight matrix and 10 bias terms) 

into our hybrid system. 

We have also assessed hybrid configurations that pair D2NNs with CNNs, a more popular 

architecture than fully-connected networks for object classification tasks. In such an arrangement, 

when the optical and electronic parts are directly cascaded and jointly-trained, the inference 

performance of the overall hybrid system was observed to stagnate at a local minimum. As a 

possible solution to this issue, we divided the training of the hybrid systems into two stages as 

shown in Fig. 1.6. In the first stage, the detector array was placed right after the D2NN optical 

front-end, which was followed by an additional, virtual optical layer, acting as an all-optical 

classifier (see Fig. 1.6(a)). We emphasize that this additional optical layer is not part of the 

hybrid system at the end; instead it will be replaced by a digital neural network in the second 
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stage of our training process. The sole purpose of two-stage training arrangement used for hybrid 

systems is to find a better initial condition for the D2NN that precedes the detector array, which 

is the interface between the fully optical and electronic networks.  

In the second stage of our training process, the already trained 5-layer D2NN optical 

front-end (preceding the detector array) was cascaded and jointly-trained with a digital neural 

network. It is important to note that the digital neural network in this configuration was trained 

from scratch. This type of procedure “resembles” transfer learning, where the additional layers 

(and data) are used to augment the capabilities of a trained model42. 

Using the above described training strategy, we studied the impact of different 

configurations, by increasing the number of detectors forming an opto-electronic detector array, 

with a size of 10×10, 25×25 and 50×50 pixels. Having different pixel sizes (see Table 1.3), all 

the three configurations (10×10, 25×25 and 50×50 pixels) cover the central region of 

approximately 53.3 G ×53.3 G  at the output plane of the D2NN. Note that each detector 

configuration represents different levels of spatial undersampling applied at the output plane of a 

D2NN, with 10×10 pixels corresponding to the most severe case. For each detector configuration, 

the first stage of the hybrid system training, shown in Fig. 1.6(a) as part of Appendix A, was 

carried out for 50 epochs providing the initial condition for 5-layer D2NN design before the 

joint-optimization phase at the second stage. These different initial optical front-end designs 

along with their corresponding detector configurations were then combined and jointly-trained 

with various digital neural network architectures, simulating different hybrid systems (see Fig. 

1.6(b) and Fig 1.5). At the interface of optical and electronic networks, we introduced a batch 

normalization layer applied on the detected intensity distributions at the sensor.  
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For the digital part, we focused on five different networks representing different levels 

complexity regarding (1) the number of trainable parameters, (2) the number of FLOPs in the 

forward model and (3) the energy consumption; see Table 1.3. This comparative analysis 

depicted in Table 1.3 on energy consumption assumes that 1.5pJ is needed for each multiply-

accumulate (MAC)43 and based on this assumption, the 4th column of Table 1.3 reports the 

energy needed for each network configuration to classify an input image. The first one of these 

digital neural networks was selected as a single fully-connected (FC) network connecting every 

pixel of detector array with each one of the 10 output classes, providing as few as 1,000 trainable 

parameters (see Table 1.3 for details). We also used the 2C2F-1 network as a custom designed 

CNN with 2 convolutional and 2 FC layers with only a single filter/feature at each convolutional 

layer (see Table 1.4). As our 3rd network, we used LeNet25 which requires a certain input size of 

32×32 pixels, thus the detector array values were resized using bilinear interpolation before 

being fed into the electronic neural network. The fourth network architecture that we used in our 

comparative analysis (i.e., 2C2F-64), as described in 33, has 2 convolutional and 2 fully-

connected layers similar to the second network, but with 32 and 64 features at the first and 

second convolutional layers, respectively, and has larger FC layers compared to the 2C2F-1 

network. Our last network choice was ResNet-5031 with 50 layers, which was only jointly-

trained using the 50×50 pixel detector configuration, the output of which was resized using 

bilinear interpolation to 224×224 pixels before being fed into the network. The loss function of 

the D2NN-based hybrid system was calculated by cross-entropy, evaluated at the output of the 

digital neural network.  

As in D2NN-based hybrid systems, the objects were assumed to be purely amplitude 

modulating functions for perfect imager-based classification systems presented in Tables 1.1 and 
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1.2; moreover, the imaging optics or the camera system preceding the detector array is assumed 

to be diffraction limited which implies that the resolution of the captured intensity at the detector 

plane is directly limited by the pixel pitch of the detector array. The digital network architectures 

and training schemes were kept identical to D2NN-based hybrid systems to provide a fair 

comparison. Also, worth noting, no data augmentation techniques have been used for any of the 

networks presented in this manuscript. 

Details of D2NN-based hybrid network training procedure 

We introduced a two-stage training pipeline for D2NN-based hybrid classifiers as 

mentioned in the previous sub-section. The main reason behind the development of this two-

stage training procedure stems from the unbalanced nature of the D2NN-based hybrid systems, 

especially if the electronic part of the hybrid system is a powerful deep convolutional neural 

network (CNN) such as ResNet. Being the more powerful of the two and the latter in the 

information processing order, deep CNNs adapt and converge faster than D2NN-based optical 

front-ends. Therefore, directly cascading and jointly-training D2NNs with deep CNNs offer a 

suboptimal solution on the classification accuracy of the overall hybrid system.  

Figure 1.6 illustrates the two-step training procedure for D2NN-based hybrid system 

training, which was used for the results reported in Tables 1.1 and 1.2. In the first step, we 

introduce the detector array model that is going to be the interface between the optical and the 

electronic networks. An additional virtual diffractive layer is placed right after the detector plane 

(see Fig. 1.6(a)). We model the detector array as an intensity sensor (discarding the phase 

information). Implementing such a detector array model with an average pooling layer which has 

strides as large as its kernel size on both directions, the detected intensity, =t, is held at the focal 
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plane array. In our simulations, the size of =t was 10×10, 25×25 or 50×50, depending on the 

choice of the detector array used in our design. To further propagate this information through the 

virtual 1-Layer optical classifier (Fig. 1.6(a)), =t  is interpolated using the nearest neighbour 

method back to the object size at the input plane. Denoting this interpolated intensity as =t′, the 

propagated field is given by u=t′  (see Fig. 1.6(a)). It is important to note that the phase 

information at the output plane of the D2NN preceding the detector array is entirely discarded, 

thus the virtual classifier decides solely based on the measured intensity (or underlying 

amplitude) as it would be the case for an electronic network.  

After training this model for 50 epochs, the layers of the diffractive network preceding 

the detector array are taken as the initial condition for the optical part in the second stage of our 

training process (see Fig. 1.6(b)). Starting from the parameters of these diffractive layers, the 

second stage of our training simply involves the simultaneous training of a D2NN-based optical 

part and an electronic network at the back-end of the detector array bridging two modalities as 

shown in Fig. 1.6(b). In this second part of the training, the detector array model is kept identical 

with the first part and the electronic neural network is trained from scratch with optical and 

electronic parts having equal learning rates (10-3). 
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Fig. 1.6 Hybrid system training procedure.  (a) The first stage of the hybrid system training. 

(b) The second stage of the hybrid system training starts with the already trained diffractive 

layers (first 5 layers) from part (a) and an electronic neural network, replacing the operations 

after intensity detection at the sensor. Note that the spherical waves between the consequent 

layers in (a) and (b) illustrate free space wave propagation. 
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Table 1.2 Blind testing accuracies (reported in percentage) for all-optical (D2NN only), 

D2NN and perfect imager-based hybrid systems used in this work for Fashion-MNIST 

dataset.  
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Digital Neural 

Networks 

Trainable 

Parameters 

FLOPs Energy Consumption 

(J/image) 

Detector 

Configuration 

 

Single FC Layer 

1000 2000 1.5×10-9 10×10 

6250 12500 9.5×10-9 25×25 

25000 50000 3.8×10-8 50×50 

 

2C2F-1 

615 3102 2.4×10-9 10×10 

825 9048 7.0×10-9 25×25 

3345 43248 3.3×10-8 50×50 

 

LeNet25 60840 1×106 7.5×10-7 

10×10 

25×25 

50×50 

 

2C2F-6433 
  

3.3×105 3.1×106 2.4×10-6 10×10 

2.4×106 2.5×107 1.9×10-5 25×25 

9.5×106 8.7×107 6.5×10-5 50×50 

ResNet31 25.5×106 4×109 3×10-3 50×50 

Table 1.3 Comparison of electronic neural networks in terms of the number of trainable parameters 
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 Network architecture 

Layer Type Conv layer 1 Conv layer 2 FC layer 1 FC layer 2 

Activation  ReLU  ReLU  ReLU  Softmax 

Detector 

configuration 

kernel Feature 

map 

Stride kernel Feature 

map 

Stride  Number of 

neurons 

Number of 

neurons 

10×10 

6×6 1 

1 

3×3 1 

 1 

30 10 25×25 2 2 

50×50 2 2 

Table 1.4 Parameters of the custom designed network architecture which we refer to as 2C2F-1.  
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Chapter 2 Misalignment Resilient Diffractive Optical Networks  
 

Parts of this chapter have previously been published in D. Mengu et al. “Misalignment 

Resilient Diffractive Optical Networks” Nanophotonics, vol. 9, no. 13, 2020, pp. 4207-4219 

(2020), DOI: 10.1515/nanoph-2020-0291. In this chapter, the D2NN framework is extended to 

mitigate the impact of physical error sources in the forward optical model of a fabricated 

diffractive network.  

As an optical machine learning framework, D2NN takes advantage of data-driven training 

methods used in deep learning to devise light-matter interaction in 3D for performing a desired 

statistical inference task. Multi-layer optical object recognition platforms designed with this 

diffractive framework have been shown to generalize to unseen image data achieving e.g., >98% 

blind inference accuracy for hand-written digit classification. The multi-layer structure of 

diffractive networks offers significant advantages in terms of their diffraction efficiency, 

inference capability and optical signal contrast. However, the use of multiple diffractive layers 

also brings practical challenges for the fabrication and alignment of these diffractive systems for 

accurate optical inference. Here, we introduce and experimentally demonstrate a new training 

scheme that significantly increases the robustness of diffractive networks against 3D 

misalignments and fabrication tolerances in the physical implementation of a trained diffractive 

network. By modeling the undesired layer-to-layer misalignments in 3D as continuous random 

variables in the optical forward model, diffractive networks are trained to maintain their 

inference accuracy over a large range of misalignments; we term this diffractive network design 

as vaccinated D2NN (v-D2NN). We further extend this vaccination strategy to the training of 

diffractive networks that use differential detectors at the output plane as well as to jointly-trained 
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hybrid (optical-electronic) networks to reveal that all of these diffractive designs improve their 

resilience to misalignments by taking into account possible 3D fabrication variations and 

displacements during their training phase. 

2.1 Introduction 

Deep learning has been redefining the state-of-the-art for processing various signals 

collected and digitized by different sensors, monitoring physical processes for e.g., biomedical 

image analysis44–47, speech recognition48,49 and holography50–53, among many others54–60. 

Furthermore, deep learning and related optimization tools have been harnessed to find data-

driven solutions for various inverse problems arising in, e.g., microscopy61–65, nanophotonic 

designs and plasmonics66–68. These demonstrations and others have been motivating some of the 

recent advances in optical neural networks and related optical computing techniques that aim to 

exploit the computational speed, power-efficiency, scalability and parallelization capabilities of 

optics for machine intelligence applications20,22,69–86.  

Toward this broad goal, Diffractive Deep Neural Networks (D2NN)77–80 have been 

introduced as a machine learning framework that unifies deep learning-based training of matter 

with the physical models governing light propagation to enable all-optical inference through a set 

of diffractive layers. The training stage of a diffractive network is performed using a computer, 

and relies on deep learning and error backpropagation methods to tailor the light-matter 

interaction across a set of diffractive layers that collectively perform a given machine learning 

task, e.g., object classification. Previous studies on D2NNs have demonstrated the generalization 

capability of these multi-layer diffractive network designs to new, unseen image data. For 

example, using a 5-layer diffractive network architecture, >98% and >90% all-optical blind 
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testing accuracies have been reported 79 for the classification of the images of handwritten digits 

(MNIST) 87 and fashion products (Fashion-MNIST) 88 that are encoded in the amplitude and 

phase channels of the input plane, respectively. Successful experimental demonstrations of these 

all-optical classification systems have been reported using 3D-printed diffractive layers that 

conduct inference by modulating the incoming object wave at terahertz (THz) wavelengths. 

Despite the lack of nonlinear optical elements in these previous implementations, 

diffractive optical networks have been shown to offer significant advantages in terms of (1) 

inference accuracy, (2) diffraction efficiency and (3) signal contrast, when the number of 

successive diffractive layers in the network design is increased 78. A similar depth advantage was 

also demonstrated in 80, where instead of a statistical inference task such as image classification, 

the D2NN framework was utilized to solve an inverse design problem to achieve e.g., spatially-

controlled wavelength de-multiplexing of a broadband source. While these multi-layer 

diffractive architectures offer significantly better performance for generalization and application-

specific design merits, they also pose practical challenges for the fabrication and opto-

mechanical assembly of these trained diffractive models.  

Here, we present a training scheme that substantially increases the robustness of 

diffractive optical networks against physical misalignments and fabrication tolerances. Our 

scheme models and introduces these undesired system variations and layer-to-layer 

misalignments as continuous random variables during the deep learning-based training of the 

diffractive model to significantly improve the error tolerance margins of diffractive optical 

networks; this process of introducing random misalignments during the training phase will be 

termed as vaccination of the diffractive network, and the resulting designs will be referred to as 
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vaccinated D2NNs (v-D2NNs). To demonstrate the efficacy of our strategy, we trained diffractive 

network models composed of 5 diffractive layers for all-optical classification of handwritten 

digits, where we utilized in the training phase independent and uniformly distributed 

displacement/misalignment vectors for x, y, and z directions of each diffractive layer. Our results 

indicate that v-D2NN framework enables the design of diffractive optical networks that can 

maintain their object recognition performance against severe layer-to-layer misalignments, 

providing nearly flat blind inference accuracies within the displacement/misalignment range 

adopted in the training.  

To experimentally demonstrate the success of v-D2NN framework we also compared two 

3D-printed diffractive networks, each with 5 diffractive layers that were designed for hand-

written digit classification under monochromatic THz illumination (λ = ~0.75 mm): the first 

network model was designed without the presence of any misalignments (non-vaccinated) and 

the second one was designed as a v-D2NN. After the fabrication of each diffractive network, the 

3rd diffractive layer was on purpose misaligned to different 3D positions around its ideal location. 

The experimental results confirmed our numerical analysis to reveal that the v-D2NN design can 

preserve its inference accuracy despite a wide range of physical misalignments, while the 

standard D2NN design frequently failed to recognize the correct data class due to these 

purposely-introduced misalignments. 

We also combined our v-D2NN framework with the differential diffractive optical 

networks 79 and the jointly-trained optical-electronic (hybrid) neural network systems. 

Differential diffractive classification systems assign a pair of detectors (generating one positive 

and one negative signal) for each data class to mitigate the strict non-negativity constraint of 
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optical intensity, and were demonstrated to offer superior inference accuracy compared to 

standard diffractive designs 79. When trained against misalignments using the presented v-D2NN 

framework, differential diffractive networks are also shown to preserve their performance 

advantages for all-optical classification. However, both differential and standard diffractive 

networks fall short in matching the adaptation capabilities of a hybrid diffractive network system 

that uses a modest, single-layer fully-connected architecture with only 110 learnable parameters 

in the electronic domain, following the diffractive optical front-end.  

In addition to misalignment related errors, the presented vaccination framework can also 

be adopted to mitigate other error sources in diffractive network models, e.g., detection noise and 

fabrication imperfections or artefacts, provided that the approximate analytical models and the 

probability distributions of these factors are utilized during the training stage. We anticipate that 

v-D2NNs will be the gateway of diffractive optical networks and the related hybrid neural 

network schemes towards practical machine vision and sensing applications, by mitigating 

various sources of error between the training forward models and the corresponding physical 

hardware implementations. Furthermore, the presented methodology of designing misalignment 

and noise resilient physical machine learning models can be broadly applicable to other optical 

learning platforms, regardless of their physical dimensions and selected operation wavelengths. 

2.2 Results 

Figure 2.1 illustrates three different types of diffractive optical network-based object 

recognition systems investigated in this work. We focused on 5-layer diffractive optical network 

architectures as shown in Fig. 2.1 that are fully-connected, meaning that the half cone angle of 

the secondary wave created by the diffractive features (neurons) of size, e.g., δ=0.53λ, is large 
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enough to enable communication between all the features on two successive diffractive layers 

that are placed e.g., 40λ apart in axial direction. On the transverse plane, each diffractive layer 

extends from -100×δ to 100×δ on x and y directions around the optical axis, and therefore the 

edge length of each diffractive surface in total is 200×δ (~106.66λ). With this outlined diffractive 

network architecture, the standard D2NN training routine updates the trainable parameters of the 

diffractive layers at every iteration based on the mean gradient computed over a batch of training 

samples with respect to a loss function, specifically tailored for the desired optical machine 

learning application, e.g., cross-entropy for supervised object recognition systems 78, until a 

convergence criterion is satisfied. Since this conventional training approach assumes perfect 

alignment throughout the training, the sources of statistical variations in the resulting model are 

limited to the initial condition of the diffractive network parameter space and the sequence of the 

training data introduced to the network.  

Training and testing of v-D2NNs 

The training of vaccinated diffractive optical networks mainly follows the same steps as 

the standard D2NN framework; except, it additionally incorporates system errors, e.g. 

misalignments, based on their probability distribution functions into the optical forward model. 

In this work, we modelled each orthogonal component of the undesired 3D displacement vector 

of each diffractive layer, D = (Dx , Dy , Dz ), as uniformly distributed, independent random 

variables as follows; 

 Dx	~	U(-Δx,	Δx),  

 Dy	~	U(-Δy,	Δy),  
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 Dz	~	U(-Δz,	Δz), (2.8) 

 

 

Fig. 2.1 Different types of D2NN-based image classification systems. A Standard D2NN framework trained for 

all-optical classification of handwritten digits. Each detector at the output plane represents a data class. B 

Differential D2NN trained for all-optical classification of handwritten digits. Each data class is represented by a pair 
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of detectors at the output plane, where the normalized difference between these detector pairs represents the class 

scores. C Jointly-trained hybrid (optical-electronic) network system trained for classification of handwritten digits. 

The optical signals collected at the output detectors are used as inputs to the electronic neural network at the back-

end, which is used to output the final class scores. D Phase profiles computed by the deep learning-based training for 

a 5-layer diffractive optical network that is vaccinated against both lateral and axial misalignments for the task of 

handwritten digit classification. The layers of this diffractive network were fabricated using 3D printing as shown in 

Fig. 5D and experimentally tested using the setup shown in Fig. 5E. E Same as D, except the diffractive network 

represents a non-vaccinated, error-free design.  

 

where Δ* denotes the shift along the corresponding axis, (*), reflecting the uncertainty in our 

physical assembly/fabrication of the diffractive model. During the training, the random 

displacement vector of each diffractive layer, D, takes different values sampled from the 

probability distribution of its components, DX, DY and DZ, for each batch of training samples. 

Consequently, the location of layer l at ith iteration/batch, L(l,i) , can be expressed as; 

 L(l,i)	 = 	 (Llx, Lly, Llz) 	+ 	(D(l,i)x , D(l,i)y , D(l,i)z ), (2.2) 

where the first and the second vectors on the right-hand side denote the ideal location of the 

diffractive layer l, and a random realization of the displacement vector, D(l,i), of layer l at the 

training iteration i, respectively. The displacement vector of each layer is independently 

determined, i.e., each layer of a diffractive network model can move within the displacement 

ranges depicted in Eq. (2.1) without any dependence on the locations of the other diffractive 

layers.  
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Opto-mechanical assembly and fabrication systems, in general, use different mechanisms 

to control the lateral and axial positioning of optical components. Therefore, we split our 

numerical investigation of the vaccination process into two: the lateral and axial misalignment 

cases. For the vaccination of diffractive optical network models against layer-to-layer 

misalignments on the transverse plane, we assumed Dx and Dy are i.i.d random variables during 

the training, i.e. they are independent with a parameter of Δx = Δy = Δtr, and Dz was set to be 0. 

The axial case, on the other hand, sets Δtr  to be 0 throughout the training leaving 

Dz ~ U(-Δ(z,tr), Δ(z,tr)) as the only source of inter-layer misalignments. 

Following a similar path with the training, the blind testing of the presented diffractive 

network models updates the random displacement vector of each layer l, D(l,m), for each test 

sample m. The reported accuracies throughout our analyses reflects the blind testing accuracies 

computed over the 10K image test set of MNIST digits where each test sample propagates 

through a diffractive network model that experiences a different realization of the random 

variables depicted in Eq. (2.1) for each diffractive layer, i.e. there are 10K different 

configurations that a diffractive network model was misaligned throughout the testing stage. 

Furthermore, similar to the training process, during the blind testing against lateral 

misalignments, it was assumed that Dx and Dy are i.i.d random variables with Δx = Δy = Δtest, 

and similarly, the axial displacements or misalignments were determined by 

Dz ~ U(-Δ(z,test), Δ(z,test)).   

Misalignment analysis of all-optical and hybrid diffractive systems 
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Figures 2.2A and 2.2D illustrate the blind testing accuracies provided by the standard 

diffractive optical network architecture (Fig. 2.1A) trained against various levels of undesired 

axial and lateral misalignments, respectively. Focusing on the testing accuracy curve obtained by 

the error-free design (dark blue) in Figs. 2.2A and 2.2D, it can be noticed that the diffractive 

optical networks are more susceptible to lateral misalignments compared to axial misalignments. 

For instance, when Δtest  is taken as 2.12λ, inducing random lateral fluctuations on each 

diffractive layer’s location around the optical axis, the blind testing accuracy achieved by the 

non-vaccinated standard diffractive optical network decreases to 38.40% from 97.77% (obtained 

in the absence of misalignments). As we further increase the level of lateral misalignments, the 

error-free diffractive optical network almost completely loses its inference capability by 

achieving, e.g. 19.24% blind inference accuracy for Δtest=4.24λ (i.e., the misalignment range in 

each lateral direction of a diffractive layer is -8δ to 8δ). On the other hand, when the diffractive 

layers are randomly misaligned on the longitudinal direction alone, the inference performance 

does not drop as excessively as the lateral misalignment case; for example, even when Δ(z,test) 

becomes as large as 19.2λ, the error-free diffractive network manages to obtain an inference 

accuracy of 49.8%.  

As demonstrated in Fig. 2.2D, the rapid drop in the testing accuracy of diffractive optical 

classification systems under physical misalignments can be mitigated by using the v-D2NN 

framework. Since v-D2NN training introduces displacement errors in the training stage, the 

diffractive optical networks can adopt to those variations preserving their inference performance 

over large misalignment margins. As an example, the 38.40% blind testing accuracy achieved by 

the non-vaccinated diffractive design with a lateral misalignment range of Δtest=2.12λ, can be 

increased to 94.44% when the same architecture is trained with a similar error range using the 
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presented vaccination framework (see the purple line in Fig. 2.2D). On top of that, the vaccinated 

design does not compromise the performance of the all-optical object recognition systems when 

the ideal conditions are satisfied. Compared to the 97.77% accuracy provided by the error-free 

design, this new vaccinated network (purple line in Fig. 2.2D) obtains 96.1% in the absence of 

misalignments. In other words, the ~56% inference performance gain of the vaccinated 

diffractive network under physical misalignments comes at the expense of only 1.67% accuracy 

loss when the opto-mechanical assembly perfectly matches the numerical training model. In case 

the level of misalignment-related imperfections in the fabrication of the diffractive network is 

expected to be even smaller, one can design improved v-D2NN models that achieve e.g., 97.38%, 

which corresponds to only 0.39% inference accuracy loss compared to the error-free models at 

their peak (perfect alignment case) while at the same time providing >4% blind testing accuracy 

improvement under mild misalignment, i.e., Δtest=0.53λ. Similarly, when we compare the blind 

inference curves of the error-free and vaccinated network designs in Fig. 2.2A, one can notice 

that the v-D2NN framework can easily recover the performance of the diffractive digit 

classification networks in the case where the displacement errors are restricted to be on the 

longitudinal axis. For example, with Δ(z,test)=2.4λ, the inference accuracy of the error-free 

diffractive network (dark blue) is reduced to 94.88%, while a vaccinated diffractive network that 

was already trained against the same level of misalignment, Δ(z,tr)=2.4λ (yellow), retains 97.39% 

blind inference accuracy under the same level of axial misalignment.          

Next, we combined our v-D2NN framework with the differential diffractive network 

architecture: the blind testing results of various differential handwritten digit recognition systems 

under axial and lateral misalignments are reported in Figs. 2.2B and Fig. 2.2E, respectively. 

Figure 2.3 also provides a direct comparison of the blind inference accuracies of these two all-
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optical diffractive machine learning architectures under different levels of misalignments. Figs. 

2.3A and 2.3G compare the error-free designs of differential and standard diffractive network 

architectures, which reveal that although the differential design achieves slightly better blind 

inference accuracy, 97.93%, in the absence of alignment errors, as soon as the misalignments 

reach beyond a certain level, the performance of a differential design decreases faster than the 

standard diffractive network. This means that they are more vulnerable against the system 

variations that they were not trained against. Since the number of detectors inside an output 

region-of-interest is twice as many in differential diffractive networks compared to the standard 

diffractive network architecture (see Fig. 2.1A-B), the detector signals are more prone to have 

cross-talk when the diffractive layers are experiencing uncontrolled mechanical displacements. 

With the introduction of vaccination during the training phase, however, differential diffractive 

network models can adapt to these system variations as in the case of standard diffractive optical 

networks. Compared to standard diffractive optical networks, the differential counterparts that 

are vaccinated generate higher inference accuracies when the misalignment levels are small. In 

Fig. 2.3H, for instance, the vaccinated differential design (red curve) achieves 97.3% blind 

inference accuracy while the vaccinated standard diffractive network (blue curve) can provide 

96.91% for the case Δtest = Δtr = 0.53λ. In Fig. 2.3I, where the vaccination range on x and y axis 

is twice as large compared to Fig. 2.3H, the differential network reveals the correct digit classes 

with an accuracy of 96.18% when it is tested at an equal displacement/misalignment uncertainty 

to its vaccination level; on the other hand, the standard diffractive network can achieve 95.79% 

under the same training and testing conditions. Beyond this level of misalignment, the 

differential systems slowly lose their performance advantage and the standard diffractive 

networks starts to perform on par with their differential counterparts. One exception to this 
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behavior is shown in Fig. 2.3K, where the misalignment range of the diffractive layers during the 

training causes cross-talk among the differential detectors at a level that hurts the evolution of 

the differential diffractive network, leading to a consistently worse inference performance 

compared to the standard diffractive design. A similar effect also exists for the case illustrated in 

Fig. 2.3L; however, this time, the standard diffractive optical network design also experiences a 

similar level of cross-talk among the class detectors at the output plane. Therefore, as 

demonstrated in Fig. 2.3L, the differential diffractive optical network recovers its performance 

gain thriving over the standard diffractive network design with a higher optical classification 

accuracy. This performance gain of the differential design depicted in Fig. 2.3L, can be 

translated to the smaller misalignment cases, e.g., Δtest = Δtr = 4.24λ, simply by increasing the 

distance between the detectors at the output plane for differential diffractive optical network 

designs, i.e. setting the region-of-interest covering the detectors to be larger compared to the 

standard diffractive network architecture. 

Figure 2.3 also outlines a comparison of the differential and standard diffractive all-

optical object recognition systems against hybrid diffractive neural networks under various levels 

of misalignments. For the hybrid neural network models presented here, we jointly trained a 5-

layer diffractive optical front-end and a single-layer fully-connected electronic network, 

communicating through discrete detectors at the output plane. To provide a fair comparison with 

the all-optical diffractive systems, we used 10 discrete detectors at the output plane of these 

hybrid configurations, same as in the standard diffractive optical network designs (see Figs. 2.1A 

and 2.1C). The blind inference accuracies obtained by these hybrid neural network systems 

under different levels of misalignments are shown in Figs. 2.2C and 2.2F. When the opto-

mechanical assembly of the diffractive network is perfect, the error-free, jointly-optimized 
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hybrid neural network architecture can achieve 98.3% classification accuracy surpassing the all-

optical counterparts as well as the all-electronic performance of a single-layer fully-connected 

network, which achieves 92.48% classification accuracy using >75-fold more trainable 

connections without the diffractive optical network front-end. As the level of misalignments 

increases, however, the error-free hybrid network fails to maintain its performance and its 

inference accuracy quickly falls. The v-D2NN framework helps the hybrid neural systems during 

the joint evolution of the diffractive and the electronic networks and makes them resilient to 

misalignments. For example, the handwritten digit classification accuracy values presented for 

the standard diffractive networks in Fig. 2.3H (96.91%) and Fig. 2.3I (95.79%) have improved to 

97.92% and 97.15%, respectively, for the hybrid neural network system (yellow curve), 

indicating ~1% accuracy gain over the all-optical models under the same level of misalignment 

(i.e., 0.53λ for Fig. 2.3H and 1.06λ for Fig. 2.3I). As the level of misalignments in the diffractive 

optical front-end increases, the cross-talk between the detectors at the output plane also increases. 

However, for a hybrid network design there is no direct correspondence between the data classes 

and the output detectors, and therefore the joint-training under the vaccination scheme 

introduced in this work directs the evolution of the electronic network model accordingly and 

opens up the performance gap further between the all-optical diffractive classification networks 

and the hybrid systems as illustrated in Figs. 2.3K and 2.3L. A similar comparative analysis, 

along the lines of Figs. 2.2 and 2.3, is also conducted for phase-encoded input objects (Fashion-

MNIST dataset), which is reported in Figs. 2.4 and 2.5.     

Experimental results 
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The error-free standard diffractive network design that achieves 97.77% blind inference 

accuracy for the MNIST dataset as presented in Figs. 2.2A, 2.2D, 2.3A and 2.3G, offers a power 

efficiency of ~0.07% on average over the blind testing samples. This relatively low power 

efficiency is mostly due to the absorption of our 3D printing material at THz band. Specifically, 

~88.62% of the optical power right after the object is absorbed by the 5 diffractive layers, while 

11.17% is scattered around during the light propagation. Due to the limited optical power in our 

THz source and the noise floor of our detector, we trained an error-free standard diffractive 

optical network model with a slightly compromised digit classification performance for the 

experimental verification of our v-D2NN framework. This new error-free diffractive network 

provides a blind inference accuracy of 97.19%, and it obtains ~3× higher power efficiency of 

~0.2%. In addition to improved power efficiency, this new diffractive network model with 97.19% 

classification accuracy also achieves ~10× better signal contrast (ψ)78 between the optical signal 

collected by the detector corresponding to the true object label and its closest competitor, i.e. the 

second maximum signal. The layers of this error-free diffractive network are shown in Fig. 2.1E. 

In addition, the comparison between the error-free, high-contrast standard diffractive optical 

network model and its lower contrast, lower efficiency counterpart in terms of their inference 

performance under misalignments is reported in Fig. 2.6A.    

Following the same power-efficient design strategy, we trained another diffractive optical 

network that is vaccinated against both the lateral and axial misalignments with the training 

parameters (Δtr, Δ(z,tr)) taken as (4.24λ, 4.8λ). As in the case of the error-free design, the 

inference accuracy of this new vaccinated diffractive network shown in Fig. 2.7A is also 

compromised compared to the standard diffractive networks presented in Fig. 2.2D and Fig. 

2.3K since it was trained to improve power efficiency and signal contrast. This design can 
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achieve 89.5% blind classification accuracy for handwritten digits under ideal conditions, with 

the diffractive layers reported in Fig. 2.1D. A comprehensive comparison of the blind inference 

accuracies of the vaccinated diffractive networks shown in Figs. 2.2 and 2.3 and their high-

contrast, high-efficiency counterparts are reported in Fig. 2.6B.  

The experimental verification of our v-D2NN framework was based on the comparison of 

the vaccinated and the error-free standard diffractive optical network designs in terms of the 

accuracy of their optical classification decisions under inter-layer misalignments. To this end, we 

fabricated the diffractive layers of the non-vaccinated and the vaccinated networks shown in Figs. 

2.1D-E using 3D printing. The fabricated diffractive networks are depicted in Figs. 2.7C-D. In 

addition, we fabricated 6 MNIST digits selected from the blind testing dataset that are 

numerically correctly classified by both the vaccinated and the non-vaccinated diffractive 

network models without any misalignments. For a fair comparison, we grouped the correctly 

classified handwritten digits based on the signal contrast statistics provided by the non-

vaccinated design. With μsc, σsc denoting the mean and the standard deviation of the signal 

contrast generated by the error-free diffractive network over the correctly classified blind testing 

MNIST digits, we selected 2 handwritten digits (Set 1) that satisfies the condition 

μsc+σsc < {ψ, ψ′} < μsc+2σsc, where ψ and ψ′ denote the signal contrasts created by the error-

free and the vaccinated designs for a given input object, respectively. The condition on ψ and ψ′ 

for the second set of 3D printed handwritten digits (Set 2), on the other hand, is slightly less 

restrictive, μsc < {ψ, ψ′} < μsc+σsc. By using this outlined approach, we selected 6 experimental 

test objects in total that are equally favorable for both the vaccinated and non-vaccinated 

diffractive networks.   
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To test the performance of the error-free and vaccinated diffractive network designs 

under different levels of misalignments, we shifted the 3rd layer of both diffractive systems to 12 

different locations around its ideal location as depicted in Fig. 2.7B. The perturbed locations of 

the 3rd diffractive layer covers 4 different spots on each orthogonal direction. The distances 

between these locations are 1.2mm (1.6λ) along x and y, and 2.4mm (3.2λ) along z axes. These 

shifts cover a total length of 6.4λ (12 times the smallest feature size) along (x,y) and 12.8λ 

(0.32×40λ) along z axis, respectively.  

Figure 2.7E shows a schematic of our THz setup that was used to test these diffractive 

networks and their misalignment performances. Figure 2.8 reports the experimentally obtained 

optical signals for a handwritten digit ‘0’ from Set 1 and a handwritten digit ‘5’ from Set 2, 

received by the class detectors at the output plane based on the 13 different locations of the 3rd 

diffractive layer of the vaccinated and the error-free networks. The first thing to note is that both 

the vaccinated and non-vaccinated networks can classify the two digits correctly when the 3rd 

layer is placed at its ideal location within the set-up. As illustrated in Fig. 2.8A, as we perturb the 

location of the 3rd layer, the error-free diffractive network fails at 9 locations while the 

vaccinated network correctly infers the object label at all the 13 locations for the handwritten 

digit ‘0’. In addition, the vaccinated network maintains its perfect record of experimental 

inference for the digit ‘5’ despite the inter-layer misalignments as depicted in Fig. 2.8B. The 

error-free design, on the other hand, fails at 2 different locations of its 3rd layer misalignment 

(see Fig. 2.8B). The experimental results for the remaining 4 digits are presented in Figs. 2.9 and 

2.10, confirming the same conclusions. In our experiments, all the objects were correctly 

classified when the 3rd layer was placed at its ideal location. Out of the remaining 72 

measurements (6 objects × 12 shifted/misaligned locations of the 3rd layer), the error-free design 
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failed to infer the correct object class in 23 cases, while the vaccinated network failed only 2 

times, demonstrating its robustness against a wide range of misalignments as intended by the v-

D2NN framework. 

2.3 Discussion 

As an example of a severe case of lateral misalignments, we investigated a scenario 

where each diffractive layer can move within the range (-8.48λ,8.48λ) around the optical axis in 

x and y directions. As demonstrated in Fig. 2.2D and Fig. 2.3G, when the error-free design (dark 

blue) is exposed to such large lateral misalignments, it can only achieve 12.8% test accuracy, i.e., 

it barely surpasses random guessing of the object classes. A diffractive optical network that is 

vaccinated against the same level of uncontrolled layer movement can partially recover the 

inference performance providing 67.53% blind inference accuracy. As the best performer, the 

hybrid neural network system composed of a 5-layer diffractive optical network and a single-

layer fully-connected network can take this accuracy value up to 79.6% under the same level of 

misalignments, within the range (-8.48λ,8.48λ) for both x and y direction of each layer. When we 

compare the total allowed displacement range of each layer within the diffractive network (i.e., 

16.96λ in each direction) and the size of our diffractive layers (106.66λ), we can see that they are 

quite comparable. If we imagine a lens-based optical imaging system and an associated machine 

vision architecture, in the presence of such serious opto-mechanical misalignments, this system 

would also fail due to acute aberrations substantially decreasing the image quality and the 

resolution. Our main motivation to include this severe misalignment case in our analyses was to 

test the limits of the adaptability of our vaccinated systems. 
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Figures 2.11A-B further summarize the inference accuracies of the differential diffractive 

networks and hybrid neural network systems at discrete points sampled from the corresponding 

curves depicted in Figs. 2.3G-L. In Fig. 2.11A, the best inference accuracy is achieved by the 

error-free (non-vaccinated) differential diffractive network model under perfect alignment of its 

layers. However, its performance drops in the presence of an imperfect opto-mechanical 

assembly. The vaccinated, diffractive all-optical classification networks provide major 

advantages to cope with the undesired system variations achieving higher inference accuracies 

despite misalignments. The joint-training of hybrid systems that are composed of a diffractive 

optical front-end and a single-layer electronic network (back-end) can adapt to uncontrolled 

mechanical perturbations achieving higher inference accuracies compared to all-optical image 

classification systems. These results further highlight that, operating with only a few discrete 

opto-electronic detectors at the output plane, the D2NN-based hybrid architectures offer unique 

opportunities for the design of low-latency, power-efficient and memory-friendly machine vision 

systems for various applications. 

On top of the translational layer-to-layer alignment errors, the presented framework can 

also be extended to accommodate 3D rotational misalignments of diffractive layers. While 

undesired in-plane rotations of diffractive layers can be readily addressed based on the 2D 

coordinate transformations performed through unitary rotation matrices incorporated into the 

optical forward model detailed, handling possible out-of-plane rotations of diffractive optical 

network layers requires further modifications to the formulation of wave propagation between 

tilted planes 89,90. Beyond misalignments or displacements of diffractive layers, the presented 

vaccination framework can also be harnessed to decrease the sensitivity of diffractive optical 

networks to various error sources, e.g. detection noise or fabrication defects. At its core, the 
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presented framework can be interpreted as a training regularization method that avoids 

overfitting of a machine learning hardware to the specific 3D physical structure, distances and 

operational conditions, which are often assumed to be deterministic, precise and ideal during the 

training phase. In this respect, beyond its application to practically improve diffractive optical 

neural networks, the core principles introduced in our work can be extended to train other 

machine learning platforms 76,91,92 to mitigate various physical error sources that can cause 

deviations between the designed inference models and their corresponding physical 

implementations.       

In conclusion, we presented a design framework that introduces the use of probabilistic 

layer-to-layer misalignments during the training of diffractive neural networks to increase their 

robustness against physical misalignments. Although the experimental demonstrations of our 

vaccinated design framework were conducted using THz wavelengths and 3D printed diffractive 

layers, the presented principles and methods can readily be applicable to diffractive optical 

networks that operate at other parts of the electromagnetic spectrum, including e.g., visible 

wavelengths. In fact, as the wavelength of operation gets smaller, the impact and importance of 

the presented framework will be better highlighted. We believe the presented training strategy 

will find use in the design of diffractive optical network-based machine vision and sensing 

systems, spanning different applications. 

2.3 Materials and Methods 

THz setup 

The schematic diagram of the experimental setup is given in Fig. 2.7E. The THz wave 

incident on the object was generated through a horn antenna compatible with the source WR2.2 
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modular amplifier/multiplier chain (AMC) from Virginia Diode Inc. (VDI). Electrically 

modulated with 1 kHz square wave, the AMC received an RF input signal that is a 16 dBm 

sinusoidal waveform at 11.111 GHz (fRF1). This RF signal is multiplied 36 times to generate the 

continuous-wave (CW) radiation at 0.4 THz, corresponding to ~0.75 mm in wavelength. The exit 

aperture of the horn antenna was placed ~60 cm away from the object plane of the 3D-printed 

diffractive optical network. At the output plane of the diffractive optical network, we 3D-printed 

an output aperture that has 10 openings, each with a size of 4.8 mm × 4.8 mm, defining the class 

detectors at their relative locations. The diffracted THz light at the output plane was collected 

with a single-pixel Mixer/AMC from Virginia Diode Inc. (VDI). A 10 dBm sinusoidal signal at 

11.083 GHz was sent to the detector as local oscillator for mixing, and the down-converted 

signal was at 1GHz. The 10 openings representing the class detectors was scanned by placing the 

single-pixel detector on an XY stage that was built by combining two linear motorized stages 

(Thorlabs NRT100). The scanning step size was set to be 1 mm within each aperture opening. 

The down-converted signal of single-pixel detector at each scan location was sent to low-noise 

amplifiers (Mini-Circuits ZRL-1150-LN+) to amplify the signal by 80 dBm and a 1 GHz (+/-10 

MHz) bandpass filter (KL Electronics 3C40-1000/T10-O/O) to clean the noise coming from 

unwanted frequency bands. Following the amplification, the signal was passed through a tunable 

attenuator (HP 8495B) and a low-noise power detector (Mini-Circuits ZX47-60), then the output 

voltage was read by a lock-in amplifier (Stanford Research SR830). The modulation signal was 

used as the reference signal for the lock-in amplifier and accordingly, we conducted a calibration 

by tuning the attenuation and record the lock-in amplifier readings. The lock-in amplifier 

readings at each scan location were converted to linear scale according to the calibration. The 
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class scores shown in Figs. 2.8-2.10, were computed as the sum of the calibrated and converted 

lock-in amplifier output at every scan step within the corresponding class detector opening. 

The diffractive optical networks were fabricated using a 3D printer (Objet30 Pro, 

Stratasys Ltd.). Each 3D-printed diffractive optical network consisted of an input object, 5 

diffractive layers and an output aperture array corresponding to the desired locations of the class 

detectors (see Fig. 2.1A). While the active modulation area of our 3D printed diffractive layers 

was 8 cm × 8 cm (106.66λ × 106.66λ), they were printed as light modulating insets surrounded 

by a uniform slab of printed material with a thickness of 0.9 mm. The total size of each printed 

layer was selected large enough to accommodate the introduced shifts on the 3rd diffractive layer 

location (for misalignment testing), with a total size of 12.8 cm × 12.8 cm. 

The output aperture array and the 3D-printed MNIST digits were coated with aluminum 

except the openings and object features. Each aperture at the output plane is a square covering an 

area of 4.8 mm × 4.8 mm, matching the assumed size during the training. The size of the printed 

MNIST digits was 4 cm × 4cm sampled at a rate of 0.4 mm in both x and y directions, matching 

the training forward model. A 3D-printed holder was used to align the 3D printed input object, 5 

diffractive layers and the output aperture. Around the location of the 3rd layer, the holder had 

additional spatial features that allowed us to move this diffractive layer to 13 different locations 

including the ideal one (see Fig. 2.7).  

Forward optical model 

In a diffractive optical network, each unit diffractive feature of a layer represents a 

complex-valued transmittance learned during the training process that optimizes the thickness, h, 

of the features based on the complex-valued refractive index of the 3D-fabrication material, τ = n 
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+ jκ. The characterization of the printing material in a THz-TDS setup revealed the values of n 

and κ as 1.7227 and 0.031, respectively, for a monochromatic THz light at 400 GHz. Our 

formulation represents the complex-valued transmittance function of a diffractive feature on 

layer, l, at coordinates (xq, yq, zl) as; 

 �&�} , �} , ��' = exp ~−2)�ℎ&�} , �} , ��'G � exp ~�(� − ����) 2)ℎ&�} , �} , ��'G � (2.3) 

where h(xq, yq, zl) , nair and zl denote the thickness of a given feature, refractive index of air 

and the axial location of the layer, l, respectively. From the Rayleigh-Sommerfeld theory of 

diffraction, we can interpret every diffractive unit on layer, l, at (xq, yq, zl), as the source of a 

secondary wave, wlq(x, y, z),   

 H}�(�, �, �) = ��J� 	K 12)J + 1�GM exp	(�2)JG ) (2.4) 

where r = ((x-xq)2+ (y-yq)2+ (z-zl)2)0.5. Therefore, the complex field coming out of the qth 

feature of (l+1)th layer, ul+1q(x,y,z) can be written as; 

 T}�-.(�, �, �) = �(�} , �} , ��-.)H}�-.(�, �, �) KV TW� (�}, �} , ��-.)W∈� M (2.5) 

We sampled our diffractive fields and surfaces at a sampling interval of 0.4 mm that is 

equal to 0.53λ. The smallest diffractive feature size was also equal to 0.4 mm. The learnable 

thickness of each feature, h, was defined over an auxiliary variable, ha; 

 ℎ = ��(sin(ℎ�) + 12 (ℎ� − ℎ�)) + ℎ�  (2.6) 
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where hm and hb denote the maximum modulation thickness and base thickness, respectively. 

Taking hb as 0.5 mm and hm as 1 mm, we limited the printed thickness values between 0.5 mm 

and 1.5 mm. The minimum thickness hb was used to mainly ensure the mechanical stability of 

the 3D printed layers against cracks and bending. The operator q(.) represents the quantization 

operator. We quantized the thickness values to 16 discrete levels (0.0625 mm per step). For the 

initialization of the diffractive layers at the beginning of the training, the thickness of each 

feature was taken as a uniformly distributed random variable between 0.9 mm and 1.1 mm, 

including the base thickness.    

The training of the vaccinated diffractive optical networks follows the same optical 

forward model outlined in the previous section, except that it additionally introduces statistical 

variations following the models of the error sources in a diffractive network. The components of 

the 3D displacement vector of the lth diffractive layer, Dl = (Dlx, Dly, Dlz), were defined as 

uniformly distributed random variables defined by Eq. (2.1). The vaccination strategy uses 

different sets of displacement vectors at every iteration (batch) to introduce undesired 

misalignments of the diffractive layers during the training. With D(l,i) = (D(l,i)x, D(l,i)y, D(l,i)z) 

denoting the random displacement that the lth layer experiences at ith iteration, Eq. (2.6) was 

adjusted according to the longitudinal shift of the successive layers, Dz(l,i) and Dz(l+1,i), i.e., 

the light propagation distances between the diffractive layers were varied at every iteration. To 

implement the continuous lateral displacement of diffractive layers, we used: 
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�(�,�)(� + _�(�.�), � + _�(�.�))
= ���(�,�)(T, �)exp	~�2) KT�� + _�(�.�)�
+ ��� + _�(�.�)�M� %T%� 

(2.7) 

where t(l,i)(x,y) denotes the 2-dimensional complex modulation function of layer l, at ith iteration, 

and T(l,i)(u,v) represents its spatial Fourier transform defined over the 2D spatial frequency 

space (u,v). 

Loss functions and class scores 

In our forward training model, without loss of generality, we modeled our detectors as 

ratiometric sensors that capture the ratio of the optical power incident over their active area, Pd, 

and the optical power incident over the object at the input plane, Pobj. Based on this, the optical 

signal vector collected by output detectors, Id, was formulated as: 

 �� = 
����[  (2.8) 

For all three diffractive object classification systems depicted in Fig. 2.1, the cost 

function was defined as the widely-known softmax-cross-entropy (SCE); 

 � = −V"�log	~ ���(!�)∑ ���(!�)A��. ��
��.  (2.9) 

where gc, sc and C denote the binary entry in the label vector, the computed class score for the 

data class, c, and the number of data classes in a given dataset (e.g., C=10), respectively.   
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For the standard diffractive optical network architecture shown in Fig. 2.1A, the number 

of class detectors, Nd, is equal to the number of data classes, C. In this scheme, the class score 

vector, s, was computed by:  

 � = � ��#��(��) + � (2.10) 

where T and ε are constants, i.e., non-trainable hyperparameters used during the training phase. 

The multiplicative factor T was empirically set to be equal to 10 to generate artificial signal 

contrast at the input of softmax function for more efficient convergence of training. The constant 

ε, on the other hand, was used to regularize the power efficiency of the standard diffractive 

object recognition systems. In particular, the standard diffractive neural network models 

presented in Figs. 2.2A, 2.2D and 2.3, as well as in the Figs. 2.4A, 2.4D and 2.5, were trained by 

taking  ε = 10-4 which results in low power efficiency, η, and low signal contrast, ψ. The 3D-

printed diffractive optical networks, on the other hand, were trained by setting ε = 10-3 to 

circumvent the effects of the limited signal-to-noise ratio in our experimental system. Trained 

with a higher ε value, these diffractive networks offer slightly compromised blind testing 

accuracies while providing significantly improved power efficiency, η, and signal contrast, ψ, 

which are defined as: 

 � = =�c	,  

   = =�c − =¡� ,	  (2.11) 
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where Igt and Isc denote the optical signals measured by the class detector representing the 

ground truth label of the input object and its strongest competitor, i.e. the second maximum for a 

correctly classified input object, respectively. A comparison between the inference performances 

of low- and high- contrast variants of vaccinated and non-vaccinated standard diffractive optical 

networks under various levels of misalignments is presented in Fig. 2.6. As depicted in Fig. 2.6A, 

the high contrast, high efficiency standard diffractive networks are more robust against the 

undesired system variations/misalignments compared to their low-efficiency counterparts when 

both networks were trained under error-free conditions. Figure 2.6B, on the other hand, 

compares the standard diffractive network architectures that were tested within the same 

misalignment range used in their training. In this case, the low-contrast, power inefficient 

diffractive networks show their higher inference capacity advantage and adapt to the 

misalignments more effectively than the diffractive classification systems trained to favor higher 

power efficiency.    

In a differential diffractive optical network system, the number of detectors is doubled, i.e. 

Nd=2C , where each pair represents the negative, Id- ,  and positive signal vector, Id+ , 

contributing to the normalized differential signal, I(d,n) (see Fig. 2.1B) defined as: 

 �(�,¢) = ��- − ��X��- + ��X (2.12) 

In parallel, the class scores of a differential diffractive object classification system, s, are 

calculated by replacing the optical signal vector, Id , in Eq. (2.10) with the normalized 

differential signals, I(d,n), depicted in Eq. (2.12). 
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Once the training is completed, these equations are not used in the numerical and 

experimental blind testing, meaning that the class decision is made solely based on max(Pd) and 

max(P(d,n)) in standard and differential diffractive network systems, respectively.   

In the hybrid neural network models, we jointly-trained 5-layer diffractive optical 

networks with an electronic network that has a single-layer fully-connected network with only 

110 (100 multiplicative weights + 10 bias) trainable parameters. During the joint-evolution of 

these two neural networks, we normalized the optical signal collected by the detectors, Id, as 

depicted in Eq. (2.10) with T = 1. These normalized detector signals were then fed into the 

subsequent fully-connected layer in the electronic domain to compute the class scores, s, which 

was used in Eq. (2.9) for computing the classification loss before the error-backpropagation 

through both the electronic and diffractive optical networks. 

Other details of training 

All network models used in this work were trained using Python (v3.6.5) and TensorFlow 

(v1.15.0, Google Inc.). We selected Adam optimizer during the training of all the models, and its 

parameters were taken as the default values in TensorFlow and kept identical in each model. The 

learning rates of the diffractive optical networks and the electronic neural network were set to be 

0.001 and 0.0002, respectively. The data of handwritten digits and fashion-products were both 

divided into three parts: training, validation and testing, containing 55K, 5K and 10K images, 

respectively. All object recognition systems were trained for 50 epochs with a batch size of 50 

and the best model was selected based on the highest classification performance on the validation 

dataset. In the training of MNIST digits, the image information was encoded in the amplitude 
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channel at the object plane, while the Fashion-MNIST objects was assumed to be phase-only 

targets with their gray levels mapped to phase values between 0 and π. 
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Fig. 2.2 The sensitivity of the blind inference accuracies of different types of D2NN-based object classification 

systems against various levels of misalignments. A Standard D2NN systems trained for all-optical handwritten 

digit classification with and without vaccination were tested against various levels of axial misalignments, 

determined by ΔZ,test. B Same as A, except for differential D2NN architectures. C Same as A and B, except for 

hybrid (D2NN-FC) systems comprised of a jointly-trained 5-layer D2NN optical front-end and a single-layer fully-

connected neural network at the electronic back-end, combined through 10 discrete opto-electronic detectors (see 

Fig. 2.1C). The comparison of these blind testing results reveals that as the axial misalignment increases during the 

training, ΔZ,tr, the inference accuracy of these machine vision systems decrease slightly but at the same time they are 

able to maintain their performance over a wider range of misalignments during the blind testing, ΔZ,test. D Standard 

D2NN systems trained for all-optical handwritten digit recognition with and without vaccination were tested against 

various levels of lateral misalignment levels, determined by Δtest. E Same as D except for differential D2NNs 

architectures. F Same as E and F, except for hybrid object recognition systems comprised of a jointly-trained 5-layer 

D2NN optical front-end and a single-layer fully-connected neural network at the electronic back-end, combined 

through 10 discrete opto-electronic detectors. The proposed vaccination-based training strategy improves the 

resilience of these diffractive networks to uncontrolled lateral and axial displacements of the diffractive layers with 

a modest compromise of the inference performance depending on the misalignment range used in the training phase. 
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Fig. 2.3 Comparison of different types of D2NN-based object classification systems trained with the same 

range of misalignments. A Comparison of error-free designs, ΔZ,tr = 0.0λ, for standard (blue), differential (red) and 

hybrid (yellow) object classification systems against different levels of axial misalignments, ΔZ,test. B Comparison of 

standard (blue), differential (red) and hybrid (yellow) object classification systems against different levels of axial 

misalignments when they are trained with ΔZ,tr = 1.2λ. C,D,E and F are same as B, except during the training of the 

diffractive models the axial misalignment ranges are determined by ΔZ,tr, taken as 2.4λ, 4.8λ, 9.6λ and 19.2λ, 

respectively. G Comparison of error-free designs, Δtr = 0.0λ, for standard (blue), differential (red) and hybrid 

(yellow) object recognition systems against different levels of lateral misalignments, Δtest. H Comparison of 

standard (blue), differential (red) and hybrid (yellow) object classification systems against different levels of lateral 

misalignments when they are trained with Δtr = 0.53λ. I,J,K and L are same as H, except the lateral misalignment 

ranges during the training are determined by Δtr, taken as 1.06λ, 2.12λ, 4.24λ and 8.48λ, respectively. 
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Fig. 2.4 The blind inference accuracies achieved by standard, differential and hybrid diffractive network 

systems for the classification of phase-encoded Fashion-MNIST images.  Same as the Figure 2.2, except, the 

image dataset is Fashion-MNIST. Unlike amplitude encoded MNIST images at the input plane, the fashion products 

were assumed to represent phase-only targets at the object/input plane with their phase values restricted between 0 

and π.. 
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Fig. 2.5 Direct comparison of blind inference accuracies achieved by standard, differential and hybrid 

diffractive network systems for the classification of phase-encoded fashion products. Same as the Figure 2.3, 

except, the image dataset is Fashion-MNIST. Unlike amplitude encoded MNIST images at the input plane, the 

fashion products were assumed to represent phase-only targets at the object/input plane with their phase values 

restricted between 0 and π. 

 

Fig. 2.6 The comparison between the low-contrast and high-contrast standard diffractive optical networks.  A 

The inference accuracy values of two error-free standard optical network designs are compared. The low-contrast 

standard diffractive optical network (red) achieves slightly higher inference accuracy when the alignment is perfect. 

The high-contrast diffractive optical network, on the other hand, is slightly more robust against misalignments. B 

Trained with the v-D2NN framework, low-contrast models use their higher inference capacity to adapt to 

misalignments, consistently achieving higher classification accuracies when they are tested under misalignment. 
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Fig. 2.7 Experimental testing of v-D2NN framework. A A diffractive optical network that is vaccinated against 

misalignments. This network is vaccinated against both lateral, Δtr = 4.24λ, and axial, Δz,tr = 4.8λ, misalignments. B 
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The location of the 3rd diffractive layer was on purpose altered throughout our measurements. Except the central 

location, the remaining 12 spots induce an inter-layer misalignment. C The 3D printed error-free design shown in 

Fig. 2.1E. D The 3D printed vaccinated design shown in A and Fig. 2.1D. E The schematic of the experimental 

setup.     
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Fig. 2.8 Experimental image classification results as a function of misalignments. A The experimentally 

measured class scores for handwritten digit ‘0’ selected from Set 1. B Same as A, except the input object is now a 

handwritten digit ‘5’ selected from Set 2. The red dot within the coordinate system shown on the left-hand side 

represents the physical misalignment for each case (see Fig. 2.7B). Red (green) rectangles mean incorrect (correct) 

inference results.  
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Fig. 2.9 Experimental image classification results as a function of misalignments. A The experimentally 

measured class scores for handwritten digit ‘0’ selected from Set 2. B Same as A, except the input object is now a 

handwritten digit ‘7’ selected from Set 2. The red dot within the coordinate system shown on the left-hand side 

represents the physical misalignment for each case. Red (green) rectangles mean incorrect (correct) inference results. 
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Fig. 2.10 Experimental image classification results as a function of misalignments. A The experimentally 

measured class scores for handwritten digit ‘2’ selected from Set 1. B Same as A, except the input object is now a 

handwritten digit ‘3’ selected from Set 2. The red dot within the coordinate system shown on the left-hand side 

represents the physical misalignment for each case. Red (green) rectangles mean incorrect (correct) inference results. 
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Fig. 2.11 Summary of the numerical results for vaccinated D2NNs. A The inference accuracy of the non-

vaccinated (Δtr = 0.0λ) and the vaccinated (Δtr > 0.0λ) differential D2NN systems trained for all-optical handwritten 

digit recognition quantified at different levels of testing misalignment ranges. The v-D2NN framework allows the 

all-optical classification systems to preserve their inference performance over a large range of misalignments. B 

Same as A, except for hybrid (D2NN-FC) systems comprised of a jointly-trained 5-layer D2NN optical front-end and 

a single-layer fully-connected neural network at the electronic back-end combined through 10 discrete opto-

electronic detectors (see Fig. 2.1C). C Vaccination comparison of 3 diffractive network-based machine learning 

architectures depicted in Fig. 2.1; ∆tr = ∆test.     
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Chapter 3 Scale-, Shift- and Rotation-Invariant Diffractive Optical 

Networks 

 

Parts of this chapter have previously been published in D. Mengu et al. “Scale-, Shift- and 

Rotation-Invariant Diffractive Optical Networks” Scientific Reports, DOI: 

/10.1021/acsphotonics.0c01583. In this chapter, I will introduce diffractive optical classification 

networks that shows invariant inference accuracy under random scaling, translation and rotation 

of the input objects.   

Recent research efforts in optical computing have gravitated towards developing optical 

neural networks that aim to benefit from the processing speed and parallelism of optics/photonics 

in machine learning applications. Among these endeavors, Diffractive Deep Neural Networks 

(D2NNs) harness light-matter interaction over a series of trainable surfaces, designed using deep 

learning, to compute a desired statistical inference task as the light waves propagate from the 

input plane to the output field-of-view. Although, earlier studies have demonstrated the 

generalization capability of diffractive optical networks to unseen data, achieving e.g., >98% 

image classification accuracy for handwritten digits, these previous designs are in general 

sensitive to the spatial scaling, translation and rotation of the input objects. Here, we demonstrate 

a new training strategy for diffractive networks that introduces input object translation, rotation 

and/or scaling during the training phase as uniformly distributed random variables to build 

resilience in their blind inference performance against such object transformations. This training 

strategy successfully guides the evolution of the diffractive optical network design towards a 

solution that is scale-, shift- and rotation-invariant, which is especially important and useful for 
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dynamic machine vision applications in e.g., autonomous cars, in-vivo imaging of biomedical 

specimen, among others.   

3.1 Introduction 

Motivated by the success of deep learning55,56 in various applications44–48,50,52–54,58,66,68,93,94, optical 

neural networks have gained an important momentum in recent years. Although optical neural networks 

and related optical computing hardware are relatively at an earlier stage in terms of their inference and 

generalization capabilities, when compared to the state-of-the-art electronic deep neural networks and the 

underlying digital processors, optics/photonics technologies might potentially bring significant 

advantages for machine learning systems in terms of their power efficiency, parallelism and 

computational speed20,22,60,69–71,74,75,81,84,85,92,95,96. Among different physical architectures used for the 

design of optical neural networks20,69–71,77,84,85,97, Diffractive Deep Neural Networks 

(D2NNs)77,79,98,78,99–101,80 utilize the diffraction of light through engineered surfaces/layers to form an 

optical network that is based on light-matter interaction and free-space propagation of light. D2NNs offer 

a unique optical machine learning framework that formulates a given learning task as a black-box 

function approximation problem, parameterized through the trainable physical features of matter that 

control the phase and/or amplitude of light. One of the most convenient methods to devise a D2NN is to 

employ multiple transmissive and/or reflective diffractive surfaces/layers that collectively form an optical 

network between an input and output field-of-view. During the training stage, the complex-valued 

transmission/reflection coefficients of the layers of a D2NN are designed for a given statistical (or 

deterministic) task/goal, where each diffractive feature (i.e., neuron) of a given layer is iteratively adjusted 

during the training phase using e.g., the error back-propagation method73,96,102. After this training and 

design phase, the resulting diffractive layers/surfaces are physically fabricated using e.g., 3D printing or 

lithography, to form a passive optical network that performs inference as the input light diffracts from the 
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input plane to the output. Alternatively, the final diffractive layer models can also be implemented by 

using various types of spatial light modulators (SLMs) to bring reconfigurability and data adaptability to 

the diffractive network, at the expense of e.g., increased power consumption of the system. 

Since the initial experimental demonstration of image classification using D2NNs that are 

composed of 3D-printed diffractive layers77,99, the optical inference capacity of diffractive optical 

networks has been significantly improved based on e.g., differential detection scheme, class-specific 

 

Fig. 3.1 Optical architecture of an all-optical diffractive classifier and geometric object transformations. 

(a) The layout of the diffractive optical networks trained and tested in this study. (b) The object transformations 

modeled during the training and testing of the diffractive optical networks presented in this chapter. 
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designs and ensemble-learning techniques79,98. Owing to these systematic advances in diffractive optical 

networks and training methods, recent studies have reported classification accuracies of >98%, >90% 

and >62% for the datasets of handwritten digits (MNIST), fashion products (Fashion-MNIST) and 

CIFAR-10 images, respectively.79,98 Beyond classification tasks, diffractive networks were also shown to 

serve as trainable optical front-ends, forming hybrid (optical-electronic) machine learning systems78. 

Replacing the conventional imaging-optics in machine vision systems with diffractive optical networks 

has been shown to offer unique opportunities to lower the computational complexity and burden on back-

end electronic neural networks as well as to mitigate the inference accuracy loss due to pixel-pitch limited, 

low-resolution imaging systems.78 Furthermore, in a recent study, diffractive optical networks have been 

trained to encode the spatial information of input objects into the power spectrum of the diffracted 

broadband light, enabling object classification and image reconstruction using only a single-pixel 

spectroscopic detector at the output plane, demonstrating an unconventional, task-specific and resource-

efficient machine vision platform.99 The extension of the diffractive optical networks and the related 

training forward models to conduct inference based on broadband light sources exhibits their potential in 

processing object information at multiple spectral bands simultaneously, e.g. red, green and blue channels 

of CIFAR-10 images in the visible.   

               In all of these existing diffractive optical network designs, the inference accuracies are in 

general sensitive to object transformations such as e.g., lateral translation, rotation, and/or scaling of the 

input objects that are frequently encountered in various machine vision applications. In this work, we 

quantify the sensitivity of diffractive optical networks to these uncertainties associated with the lateral 

position, scale and in-plane orientation/rotation angle of the input objects (see Fig. 3.1). Furthermore, we 

demonstrate a D2NN design scheme that formulates these object transformations through random 

variables used during the deep learning-based training phase of the diffractive layers. In this manner, the 
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evolution of the layers of a diffractive optical network can adapt to random translation, scaling and 

rotation of the input objects and, hence, the blind inference capacity of the optical network can be 

maintained despite these input object uncertainties. The presented training strategy will enable diffractive 

optical networks to find applications in machine vision systems that require low-latency as well as 

memory- and power-efficient inference engines for monitoring dynamic events. Beyond diffractive 

networks, the outlined training scheme can be utilized in other optical machine learning platforms as well 

as in deep learning-based inverse design problems to create robust solutions that can sustain their target 

performance against undesired/uncontrolled input field transformations.   

3.2 Results and Discussion 

In a standard D2NN-based optical image classifier77–79,98,103, the number of opto-electronic 

detectors positioned at the output plane is equal to the number of classes in the target dataset and, 

each detector uniquely represents one data class (see Fig. 3.1a). The final class decision is based 

on the max operation over the collected optical signals by these class detectors. According to the 

diffractive network layout illustrated in Fig. 3.1a, the input objects (e.g., handwritten MNIST 

digits) lie within a pre-defined field-of-view (FOV) of 53.33λ×53.33λ, where λ denotes the 

wavelength of the illumination light. The center of the FOV coincides with the optical axis 

passing through the center of the diffractive layers. The size of each diffractive layer is chosen to 

be 106.66λ×106.66λ, i.e., exactly 2× the size of the input FOV on each lateral axis. The smallest 

diffractive feature size on each D2NN layer is set to be ~0.53λ, i.e., there are 200×200 trainable 

features on each diffractive layer of a given D2NN design. At the output plane, each detector is 

assumed to cover an area of 6.36λ×6.36λ and they are located within an output FOV of 

53.33λ×53.33λ – matching the input FOV size.  
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Based on these design parameters, a 5-layer diffractive optical network with phase-only 

modulation at each neuron achieves a blind testing accuracy of 97.64% for the classification of 

amplitude-encoded MNIST images illuminated with a uniform plane wave. Figure 3.2a 

 

Fig. 3.2 The thickness profiles of the designed diffractive layers constituting (a) the standard design   

(Δc� = 0 ); (b) the shift-invariant design trained with Δc� = 8.48G (purple curve shown in Fig. 3.3); (c) the 

scale-invariant design trained with ¤c� = 0.4 (purple curve shown in Fig. 3.5); (d) the rotation-invariant 

design trained with ]c� = 20° (purple curve shown in Fig. 3.6).  
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illustrates the thickness profiles of the resulting 5 diffractive layers, constituting this standard 

D2NN design. To quantify the sensitivity of the blind inference accuracy of this D2NN design 

against uncontrolled lateral object translations, we introduced an object displacement vector (Fig. 

3.1b), ¦ = (_�, _�), that has two components, defined as independent, uniformly distributed 

random variables: 

 _�~3(−∆�, ∆�) 
 _�~3(−∆�, ∆�) 

 

 

(3.9) 

The standard diffractive network model (shown in Fig. 3.2a) was trained (tr) with ∆�= ∆�=
∆c�= 0, and was then tested under different levels of input object position shifts by sweeping the 

values of ∆�= ∆�= ∆c+¡c from 0 to 33.92λ with steps of 0.53λ. Stated differently, the final test 

accuracy corresponding to each ∆c+¡c value reflects the image classification performance of the 

same diffractive network model that was tested with 10,000 different object positions randomly 

chosen within the range set by ∆c+¡c  (see Fig. 3.3a for exemplary test objects). This analysis 

revealed that the blind inference accuracy of the standard D2NN design (∆c�= 0) which achieves 

97.64% under ∆c+¡c= 0 quickly falls below 90% as the input objects starts to move within the 

range ∓3.5λ (blue curve in Fig. 3.3, defined with ∆c�= 0). As the area covered by the possible 

object shifts is increased further, the inference accuracy of this native network model decreases 

rapidly (see Fig. 3.3). 

In this conventional design approach, the optical forward model of the diffractive 

network training assumes that the input objects inside the sample FOV are free-from any type of 

undesired geometrical variations, i.e., ∆c�= 0. Hence, the diffractive layers are not challenged to 

process optical waves coming from input objects at different spatial locations, possibly 
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overfitting to the assumed FOV location. As a result, the inference performance of the resulting 

diffractive network model becomes dependent on the relative lateral location of the input object 

with respect to the plane of the diffractive layers and the output detectors.  

To mitigate this problem, we adopted a training strategy inspired by data augmentation 

techniques used in deep learning. According to this scheme, each training image sample in a 

batch is randomly shifted, based on a realization of the displacement vector ( ¦ ), and 

subsequently, the loss function is computed by propagating these randomly shifted object fields 

through the diffractive network (see the Methods for details). Using this training scheme, we 

designed 5 different diffractive network models based on different ranges of object displacement, 

i.e., ∆�= ∆�= ∆c�= 2.12λ, 4.24λ, 8.48λ, 16.96λ	��%	33.92λ (see Eq. 3.1). Figure 3.3 illustrates 

the MNIST image classification accuracies provided by these 5 new diffractive network models 

as a function of ∆c+¡c. Comparison between the diffractive network models trained with ∆c�= 0 

(blue) and ∆c�= 2.12λ (red) reveals that due to the data augmentation introduced by the small 

object shifts during the training, the latter can achieve an improved inference accuracy of 98.00% 

for MNIST digits under  ∆c+¡c= 0. Furthermore, the diffractive network trained with ∆c�= 2.12λ 

can maintain its classification performance when the input objects are randomly shifted within a 

certain lateral range (see the right shift of the red curve in Fig. 3.3). Similarly, training a 

diffractive network model with ∆c�= 4.24λ (yellow curve in Fig. 3.3) also results in a better 

classification accuracy of 97.75% when compared to the 97.64% achieved by the standard model 

(∆c�= 0) under ∆c+¡c= 0. In addition, this new diffractive model exhibits further resilience to 

random shifts of the objects within the input FOV, which is indicated by the stronger right shift 

of the yellow curve in Fig. 3. For example, for ∆c+¡c= 3.71λ in Fig. 3.3, the input test objects are 

randomly shifted in x and y by an amount determined by _�~3(−3.71λ, 3.71λ)  and 
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_�~3(−3.71λ, 3.71λ), respectively, and this results in a classification accuracy of 97.07% for 

the new diffractive model (∆c�= 4.24λ), whereas the inference accuracy of the standard model 

(∆c�= 0) decreases to 89.88% under the same random lateral shifts of the input test objects.     

Further increasing the range of the object location uncertainty, e.g., to ∆c�= 8.48λ 

(purple curve in Fig. 3.3), we start to observe a trade-off between the peak inference accuracy 

and the resilience of the diffractive network to random object shifts. For instance, the diffractive 

optical network trained with ∆c�= 8.48λ can achieve a peak classification accuracy of 95.55%, 

which represents a ~2% accuracy compromise with respect to the native diffractive network 

model (∆c�= 0) tested under ∆c+¡c= 0. However, using such a large object location uncertainty 

in the training phase also results in a rather flat accuracy curve over a much larger ∆c+¡c range as 

shown in Fig. 3.3; in other words, this design strategy expands the effective input object FOV 

that can be utilized for the desired machine learning task. For example, if the test objects were to 

freely move within the area defined by ∆�= ∆�= ∆c+¡c= 6.89λ, the diffractive network model 

trained with ∆c�= 8.48λ (purple curve in Fig. 3.3) brings a >30% inference accuracy advantage 

compared to the standard model (blue curve in Fig. 3.3). The resulting layer thickness profiles 

for this diffractive optical network design trained with ∆c�= 8.48λ are also shown in Fig. 3.2b. 

For the case where ∆c� was set to be 16.96λ, the mean test classification accuracy over 

the range 0 < ∆c+¡c< ∆c�  is observed to be 90.46% (see the green curve in Fig. 3.3b). The 

relatively more pronounced performance trade-off in this case can be explained based on the 

increased input FOV. Stated differently, with larger ∆c� values, the effective input FOV of the 

diffractive network is increased, and the dimensionality of the solution space100 provided by a 

diffractive network design with a limited number of layers (and neurons) might not be sufficient 
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to provide the desired solution when compared to a smaller input FOV diffractive network 

design. The use of wider diffractive layers (i.e., larger number of neurons per layer) can be a 

strategy to further boost the inference accuracy over larger ∆c� values (or larger effective input 

FOVs), which will be further discussed and demonstrated later in our analysis below (see Fig. 

3.4b).  

As an alternative design strategy, the detector plane configuration shown in Fig. 3.1a can 

also be replaced with a differential detection scheme79 to mitigate this relative drop in blind 

inference accuracy for designs with large ∆c� . In this scheme, instead of assigning a single 

optoelectronic detector per class, we designate two detectors to each data class and represent the 

corresponding class scores based on the normalized difference between the optical signals 

collected by each detector pair. Figure 3.4a illustrates a comparison between the blind 

classification accuracies of standard (solid curves) and differential (dashed curves) diffractive 

network designs, when they were trained with random lateral shifts of the input objects. For all 

of these designs, except the ∆c�= 33.92G  case, the differential diffractive networks achieve 

higher classification accuracies throughout the entire testing range, showing their superior 

robustness and adaptability to input field variations compared to their non-differential 

counterparts. For example, the peak inference accuracy (95.55%) achieved by the diffractive 

optical network trained with ∆c�= 8.48G (solid purple curve in Fig. 3.4a) increases to 97.33% 

using the differential detection scheme (dashed purple curve in Fig. 3.4a). As another example, 

for ∆c�= 16.96G, the mean classification accuracy of the differential diffractive network over 

0 < ∆c+¡c< ∆c� yields 93.38%, which is ~3% higher compared to the performance of its non-

differential counterpart for the same test range.  
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On the other hand, enlarging the uncertainty in the input object translation further, e.g., 

∆c�= 33.92G, starts to balance out the benefits of using differential detection at the output plane 

(see the solid and dashed blue curves in Fig. 3.4, which closely follow each other). In fact, when 

∆� and ∆� in Eq. 3.1 are large enough, such as ∆c�= 33.92G, the effective input FOV increases 

considerably with respect to the size of the diffractive layers; as we discussed earlier, the use of 

wider diffractive layers with larger numbers of neurons per layer could be used to mitigate this 

and improve inference performance of D2NN designs that are trained with relatively large ∆c� 

values. To shed more light on this, using ∆c�= 33.92G we trained two additional diffractive 

optical network models with wider diffractive layers that cover m=4 and m=9 fold larger number 

of neurons per layer compared to the standard design (m=1) that has 40K neurons per diffractive 

layer; stated differently, each diffractive layer of these two new designs contain (2×200)×(2×200) 

= 4×40K and (3×200)×(3×200) = 9×40K neurons per layer, covering 5 diffractive layers, same 

as the standard D2NN design. The comparison of the blind classification accuracies of these 5-

layer D2NN designs with m=1, 4 and 9, all trained with ∆c�= 33.92G, reveals that an increase in 

the width of the diffractive layers not only increases the input numerical aperture (NA) of the 

diffractive network, but also significantly improves the classification accuracies even under large 

∆c+¡c  (see Fig. 3.4b). For example, the D2NN design with ∆c�= 33.92G  and m=4 achieves 

classification accuracies of 83.08% and 85.76% for the testing conditions, ∆c+¡c= 0.0G  and 

∆c+¡c= ∆c�= 33.92G, respectively. With the same ∆c+¡c values, the diffractive network with m=1, 

i.e., 40K neurons per layer can only achieve classification accuracies of 79.23% and 81.98%, 

respectively. The expansion of the diffractive layers to accommodate 9×40K neurons per layer 

(m=9), further increases the mean classification accuracies over the entire ∆c+¡c  range, as 

illustrated in Fig. 3.4b.  
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Next, we expanded the presented training approach to design diffractive optical network 

models that are resilient to the scale of the input objects. To this end, similar to Eqs. 3.1a and 

3.1b, we defined a scaling parameter, E~3(1 − ¤, 1 + ¤), randomly covering the scale range 

(1 − ¤, 1 + ¤) determined by the hyperparameter, ¤.  According to this formulation, for a given 

value of E, the physical size of the input object is scaled up (E > 1) or down (E < 1); see Fig. 

3.5a.  Based on this formulation, in addition to the standard D2NN design with ¤c� = 0, we 

trained 4 new diffractive network models with ¤c�  = 0.1, 0.2, 0.4 and 0.8. The resulting 

diffractive network models were then tested by sweeping ¤c+¡c from 0 to 0.8 with steps of 0.02 

and for each case, the classification accuracy on testing data attained by each diffractive model 

was computed (see Fig. 3.5b). This analysis reveals that the resulting diffractive network designs 

are rather resilient to random scaling of the input objects, maintaining a competitive inference 

performance over a large range of object shrinkage or expansion (Fig. 3.5b). Similar to the case 

shown in Fig. 3.3, the relatively small values of ¤c� , e.g., 0.1 (red curve in Fig. 3.5b) or 0.2 

(yellow curve in Fig. 3.5b), effectively serve as data augmentation and the corresponding 

diffractive network models achieve higher peak inference accuracies of 97.84% (¤c� = 0.1) and 

97.88% ( ¤c� = 0.2 ) compared to the 97.64% achieved by the standard design ( ¤c� = 0 ). 

Furthermore, the comparison between the shift- and scale-invariant diffractive optical network 

models trained with Δc� = 16.96G (green curve in Fig. 3.3b) and ¤c� = 0.8 (green curve in Fig. 

3.5b) is highly interesting since the effective FOVs induced by these two training parameters at 

the input/object plane are quite comparable, resulting in ~1.87× and 1.8× of the FOV of the 

standard design (Δc� = ¤c� = 0), respectively. Despite these comparable effective FOVs at the 

input plane, the diffractive network trained against random scaling, ¤c� = 0.8, achieves nearly ~6% 

higher inference accuracy compared to the shift-invariant design, Δc� = 16.96G . The mean 
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classification accuracy provided by this scale-invariant diffractive optical network model (¤c� =
0.8) over the entire testing range, 0 < ¤c+¡c < 0.8, is found to be 96.57% (Fig. 3.5b), which is 

only ~1% lower than that of the standard diffractive design tested in the absence of random 

object scaling (¤c+¡c = 0). The difference in adaptation capability of diffractive optical networks 

against random translation and scaling of input objects can be attributed to the changes in the 

effective space-bandwidth product at the input plane induced by these two transformations. 

According to our scaling model, differently scaled versions of the same MNIST digits has 

identical space-bandwidth products, since the larger object also has larger features vice versa, 

preserving the total information content. On the other hand, translation operation does not affect 

the size of local object features, thus preserves the spatial frequency bandwidth. Consequently, 

every possible object location in space expands the total space-bandwidth product at the input 

plane of the subsequent diffractive network, contributing to the difficulty of the inference task at 

hand in a more significant way.   

To explore if there is a large performance gap between the classification accuracies 

attained for de-magnified and magnified input objects, next we separately tested the diffractive 

optical network models in Fig. 3.5b for the case of expansion-only, i.e., E~3(1,1 + ¤) and 

shrinkage-only, i.e., E~3(1 − ¤, 1); see Fig.3. 5c. A comparison of the solid (expansion-only) 

and the dashed (shrinkage-only) curves in Fig. 3.5c reveals that, in general, diffractive networks’ 

resilience toward object expansion and object shrinkage is similar. For instance, for the case of 

¤c� = 0.4  (purple curves in Fig. 3.5c) the mean classification accuracy difference observed 

between the expansion-only vs. shrinkage-only testing is only 0.04% up to the point that the 

testing range is equal to that of the training, i.e., ¤c+¡c = ¤c�. Similarly, for ¤c�= 0.8 the mean 

classification accuracy difference observed between the expansion-only vs. shrinkage-only 
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testing is ~0.75%. When analyzing these results reported in Fig. 3.5c, one should carefully 

consider the fact that for a fixed choice of  ¤  parameter there is an inherent asymmetry in 

expansion and shrinkage percentages; for example, for ¤c+¡c = 0.8, E  can take values in the 

range (0.2,1.8), where the extreme cases of 0.2 and 1.8 correspond to 5× shrinkage and 1.8× 

expansion of the input object, respectively. Therefore, the curves reported in Fig. 3.5c for 

expansion-only vs. shrinkage-only testing naturally contain different percentages of scaling with 

respect to the original size of the input objects. 

Next, we expanded the presented framework to handle input object rotations. Figure 3.6 

illustrates an equivalent analysis as in Fig. 3.3, except that the input objects are now rotating, 

instead of shifting, around the optical axis, according to a uniformly distributed random rotation 

angle, Θ~3(−], ]) , where Θ < 0  and Θ > 0  correspond to clockwise and counterclockwise 

rotation as depicted in Fig. 3.1b, respectively. In this comparative analysis, six different 

diffractive network models trained with ]c�  values taken as 0‐ (standard design), 5‐, 10‐, 20‐, 

30‐ and 60‐ were tested as a function of ]c+¡c taking values between 0‐ and 60‐ with a step 

size of 1‐, i.e., Θ~3(−]c+¡c, ]c+¡c). Similar to the case of scale-invariant designs reported in Fig. 

3.5, these diffractive network models trained with different ]c�  values can build up strong 

resilience against random object rotations, almost without a compromise in their inference. In 

fact, training with ]c�  ≤ 20‐ (red, yellow and purple curves in Fig. 3.6b) improves the peak 

inference accuracy over the standard design (]c� = 0°). When ]c� = 30° (green curve in Fig. 

3.6b), the inference of the diffractive optical network is relatively flat as a function of ]c+¡c , 
achieving a classification accuracy of 97.51% and 96.68% for ]c+¡c = 0⁰  and ]c+¡c = 30⁰ , 

respectively, clearly demonstrating the advantages of the presented design framework. 
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Finally, we investigated the design of diffractive optical network models that were 

trained to simultaneously accommodate two of the three commonly encountered input objects 

transformations, i.e., random lateral shifting, scaling and in-plane rotation. Table 3.1 reports the 

resulting classification accuracies of these newly trained D2NN models, where the inference 

performance of the corresponding diffractive optical network was tested with the same level of 

random object transformation as in the training, i.e., Δc� = Δc+¡c, ¤c� = ¤c+¡c , ]c� = ]c+¡c . The 

results in Table 3.1 reveal that these diffractive network designs can maintain their inference 

accuracies over 90%, building up resilience against unwanted, yet practically-inevitable object 

transformations and variations. The thickness profile of the diffractive layers constituting the 

D2NN designs trained with the object transformation parameter pairs: (Δc� = 2.12G, ]c� = 10°), 
(Δc� = 2.12G, ¤c� = 0.4) and (]c� = 10°, ¤c� = 0.4) reported in Table 3.1 are illustrated in Fig. 

3.7. The confusion matrices provided by these three diffractive network models computed under 

Δc� = Δc+¡c, ¤c� = ¤c+¡c, and ]c� = ]c+¡c, are also reported in Fig. 3.8. 
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Fig. 3.3 Shift-invariant diffractive optical networks. (a) Randomly shifted object samples from the 

MNIST test dataset. Green frame around each object demonstrates the size of the diffractive layers 

(106.66λ×106.66λ). (b)The blind inference accuracies provided by six different diffractive network models 

trained with ∆�= ∆�= ∆c�, taken as 0.0λ (blue), 2.12λ (red), 4.24λ (yellow), 8.48λ (purple), 16.96λ (green), 

33.92λ (light-blue) when they were tested under different levels random object shifts with the control 

parameter,  ∆�= ∆�= ∆c+¡c, swept from 0.0λ to 33.92λ. 
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Fig. 3.4 Different design strategies that can improve the performance of shift-invariant diffractive 

optical networks. (a) The comparison between the inference accuracies of standard (solid curves) and 

differential (dashed curves) diffractive optical networks trained using various ∆c�  values. (b) Blind testing 

classification accuracies of three non-differential, 5-layer D2NN designs that have m×40K optical neurons 

per layer, with m=1, 4 and 9. All these diffractive optical networks were trained using ∆c�= 33.92λ. The 

diffractive network designs with wider diffractive layers and more neurons per layer can generalize more 

effectively to random object translations. 
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Fig. 3.5 Scale-invariant diffractive optical networks. (a) Randomly scaled object examples from the 

MNIST test dataset. Green frame around each object demonstrates the size of the diffractive layers. (b) The 

blind inference accuracies provided by five different D2NN models trained with  ¤ = ¤c� , taken as 0.0 

(blue), 0.1 (red), 0.2 (yellow), 0.4 (purple) and 0.8 (green); the resulting models were tested under different 

levels random object scaling with the parameter,  ¤ = ¤c+¡c, swept from 0.0 to 0.8. (c) The classification 

performance of the diffractive networks in (b) for the case of expansion-only (solid curves) and shrinkage-

only (dashed curves). 
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Fig. 3.6 Rotation-invariant diffractive optical networks. (a) Randomly rotated object examples from the 

MNIST test dataset. Green frame around each object demonstrates the size of the diffractive layers. (b) The 

blind inference accuracies provided by five different diffractive network models trained with  ] = ]c�, taken as 

0‐ (blue), 5‐ (red), 10‐ (yellow), 20‐ (purple), 30‐ (green) and 60‐ (light-blue) when they were tested 

under different levels of random object rotations with the parameter,  ] = ]c+¡c , swept from 0‐ to 60‐, 

covering both clockwise and counter-clockwise image rotations.   
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Table. 3.1 The blind inference accuracy of the D2NN models trained against the combinations of 

the three object field transformations investigated in this work: (upper) shift-rotation, (middle) 

shift-scaling, (lower) rotation-scaling. 
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Fig. 3.10 The thickness profiles of the diffractive networks reported in Table 3.1. (a) Δc� = 2.12G, ]c� =
10°; (b) Δc� = 2.12G, ¤c� = 0.4; (c) ]c� = 10°, ¤c� = 0.4. 



101 

 

 

 

Fig. 3.11 The confusion matrices achieved by the diffractive network designs shown in Fig. S1. (a) Δc� =
Δc+¡c = 2.12G , ]c� = ]c+¡c = 10° ; (b) Δc� = Δc+¡c = 2.12G , ¤c� = ¤c+¡c = 0.4 ; (c) ]c� = ]c+¡c = 10° , ¤c� =
¤c+¡c = 0.4.  
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3.3 Methods  

D2NN framework formulates the all-optical object classification problem from the point-of-

view of training the physical features of matter inside a diffractive optical black-box. In this 

study, we modeled each D2NN using 5 successive modulation layers, each representing a two-

dimensional, thin modulation component (Fig. 3.1a). The optical modulation function of each 

diffractive layer was sampled with a period of 0.53λ over a regular 2D grid of coordinates, with 

each point representing the transmittance coefficient of a diffractive feature, i.e., an optical 

“neuron”. Following earlier work80,99,101,103, we selected the material thickness, ℎ, as the trainable 

physical parameter of each neuron,  

 ℎ = ��(sin(ℎ�) + 12 (ℎ� − ℎ�)) + ℎ� (3.2), 

According to Eq. 3.2, the material thickness over each diffractive neuron is defined as a 

function of an auxiliary variable, ℎ� . The function, �±(. ) , represents the n-bit quantization 

operator and ℎ� , ℎ�  denote the pre-determined hyperparameters of our forward model 

determining the allowable range of thickness values, [ℎ� , ℎ�]. The thickness in Eq. 3.2 is related 

to the transmittance coefficient of the corresponding diffractive neuron through the complex-

valued refractive index (´) of the optical material used to fabricate the resulting D2NN, i.e., 

´(G) = �(G) + ��(G), with G denoting the wavelength of the illumination light. Based on this, 

we can express the transmission coefficient, �&�} , �µ, �W', of a diffractive neuron located at 

(�} , �µ, �W) as;   

 �&�} , �µ, �W' = exp~−2)�ℎ},µWG � exp ~�(� − �¡) 2)ℎ},µWG � (3.3), 
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where ℎ},µW  refers to the material thickness over the corresponding neuron computed using Eq. 

3.2, and �¡ is the refractive index of the medium, surrounding the diffractive layers; without loss 

of generality, we assumed �¡ = 1 (air). Based on the earlier demonstrations of diffractive optical 

networks77,80,99,101,103, we assumed the optical modulation surfaces in our diffractive optical 

networks are made of a material with ´ = 1.7227 + j0.031. Accordingly, the ℎ�  and ℎ�  were 

selected as 2λ and 0.66λ, respectively, as illustrated in Fig. 3.2 and Fig. 3.7.  

The 2D complex modulation function, �(�, �, �W), of a diffractive surface, `W, located at � =
�W, can be written as: 

 �(�, �, �W) =VV�&�} , �µ, �W'µ	 �(� − ¶H�, � − �H� , �W)}  (3.4), 

where the H�  and H�  denote the width of a diffractive neuron in x and y directions, 

respectively (both taken as 0.53λ). �(�, �, �W) represents the 2D interpolation kernel which we 

assumed to be an ideal rectangular function in the following form, 

 �(�, �, �W) = ·1, |�| < �H�2 ���%	|�| < �H�2 �	0,																																										$�ℎ�JH�!� (3.5). 

The light propagation in the presented diffractive optical networks were modeled based on 

the digital implementation of the Rayleigh-Sommerfeld diffraction equation, using an impulse 

response defined as:  

 H(�, �, �) = �J� 	K 12)J + 1�GM exp	(�2)JG ) (3.6), 
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where J = Q�� + �� + ��	. Based on this, the wave field synthesized over a surface at � =
�W-., 3(�, �, �W-.), by a trainable diffractive layer, `W, located at � = �W, can expressed as; 

 3(�, �, �W-.) = 3′(�, �, �W) ∗ H(�, �, �W-. − �W) (3.7), 

where  3′(�, �, �W) = 3(�, �, �W)�(�, �, �W) is the complex wave field immediately after the 

diffractive layer, º, and ∗ denotes the 2D convolution operation. In this optical forward model, 

the layer-to-layer distances were taken as 40λ for the diffractive network architectures that has 

40K neurons on each layer to induce connections between all the neurons of two successive 

layers based on Eq. 3.6. For the diffractive network architectures constituting, m=4 and m=9, 

times larger diffractive layers as depicted in Fig. 3.4b, the layer-to-layer distances were set to be 

(m)0.5 × 40λ preserving the diffraction cone angle of optical connections between the successive 

layers of these network models for a fair comparison. Therefore, the improvement in inference 

accuracy for randomly shifting objects demonstrated in Fig. 3.4b, comes at the expense of using 

larger diffractive layers separated with larger distances increasing the cost and both the lateral 

and axial size of the diffractive network.   

Based on the above outlined optical forward model, if we let the complex-valued object 

transmittance, �(�, �, �4), over the input FOV be located at a surface defined with º = 0, then 

the complex field and the associated optical intensity distribution at the output/detector plane of 

a 5-layer diffractive optical network architecture shown in Fig. 3.1a, can be expressed as 

3(�, �, �») and = = |3(�, �, �»)|�, respectively. In our forward training model, we assumed that 

each class detector collects an optical signal, Γ�, that is computed through the integration of the 

output intensity, =, over the corresponding detector active area (6.4λ×6.4λ per detector). For a 

given dataset with C classes, the standard D2NN architecture in Fig. 3.1a employs C detectors at 
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the output plane, each representing a data class; C=10 for MNIST dataset. Accordingly, at each 

training iteration, after the propagation of the input object to the output plane (based on Eqs. 3.6 

and 3.7), a vector of optical signals, ½ , is formed and then normalized to get ½′  using the 

following relationship:  

 ½′ = ½max	{½} × �¡ (3.8), 

where �¡  is a constant temperature parameter104,105. Next, the class score of the cth data 

class,	ℴ�, is computed as: 

 ℴ� = exp(Γ�e)∑ exp	(Γ�e)�	Á	A	  (3.9). 

In Eq. 3.9, Γ�e denotes the normalized optical signal collected by the detector, Â, computed as 

in Eq. 3.8.  At the final step, the classification loss function, ℒ, in the form of the cross-entropy 

loss defined in Eq. 3.10 is computed for the subsequent error-backpropagation and update of the 

diffractive layers: 

 ℒ = −V "�log	(ℴ�)�	Á	A  (3.10), 

where Ä denotes the one-hot ground truth label vector.   

For the digital implementation of the diffractive optical network training outlined above, we 

developed a custom-written code in Python (v3.6.5) and TensorFlow (v1.15.0, Google Inc.). The 

backpropagation updates were calculated using the Adam106 optimizer with its parameters set to 

be the default values as defined by TensorFlow and kept identical in each model. The learning 

rate was set to be 0.001 for all the diffractive network models presented here. The training batch 



106 

 

sizes were taken as 50 and 20 for the diffractive network designs with 40K neurons per layer and 

wider diffractive networks reported in Fig. 3.4b, respectively. The training of a 5-layer 

diffractive optical network with 40K diffractive neurons per layer takes ~6 hours using a 

computer with a GeForce GTX 1080 Ti Graphical Processing Unit (GPU, Nvidia Inc.) and 

Intel® Core ™ i7-8700 Central Processing Unit (CPU, Intel Inc.) with 64 GB of RAM, running 

Windows 10 operating system (Microsoft). The training of a wider diffractive network presented 

in Fig. 3.4b, on the other hand, takes ~30 hours based on the same system configuration due to 

the larger light propagation windows used in the forward optical model. Since the investigated 

object transformations were implemented through a custom-developed bilinear interpolation 

code written based on TensorFlow functions, it only takes ~50 sec longer to complete an epoch 

with the presented scheme compared to the standard training of D2NNs.      
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Chapter 4 All-optical Information Processing Capacity of 

Diffractive Surfaces 
 

Parts of this chapter have previously been published in O. Kulce et al. “All-optical 

Information Processing Capacity of Diffractive Surfaces”, Light Science & Applications, DOI:. 

10.1038/s41377-020-00439-9. This chapter presents in depth analysis on the multi-layer 

diffractive free-space optical processors and defines the upper bound on their information 

processing capacity. 

The precise engineering of materials and surfaces has been at the heart of some of the recent 

advances in optics and photonics. These advances related to the engineering of materials with 

new functionalities have also opened up exciting avenues for designing trainable surfaces that 

can perform computation and machine learning tasks through light-matter interactions and 

diffraction. Here, we analyse the information processing capacity of coherent optical networks 

formed by diffractive surfaces that are trained to perform an all-optical computational task 

between a given input and output field-of-view. We show that the dimensionality of the all-

optical solution space covering the complex-valued transformations between the input and output 

fields-of-view is linearly proportional to the number of diffractive surfaces within the optical 

network, up to a limit that is dictated by the extent of the input and output fields-of-view. Deeper 

diffractive networks that are composed of larger numbers of trainable surfaces can cover a 

higher-dimensional subspace of the complex-valued linear transformations between a larger 

input field-of-view and a larger output field-of-view and exhibit depth advantages in terms of 

their statistical inference, learning and generalization capabilities for different image 

classification tasks when compared with a single trainable diffractive surface. These analyses 
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and conclusions are broadly applicable to various forms of diffractive surfaces, including, e.g., 

plasmonic and/or dielectric-based metasurfaces and flat optics, which can be used to form all-

optical processors. 
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4.1 Introduction 

The ever-growing area of engineered materials has empowered the design of novel 

components and devices that can interact with and harness electromagnetic waves in 

unprecedented and unique ways, offering various new functionalities 107–120. Owing to the precise 

control of material structure and properties as well as the associated light-matter interaction at 

different scales, these engineered material systems, including, e.g., plasmonics, 

metamaterials/metasurfaces and flat optics, have led to fundamentally new capabilities in the 

imaging and sensing fields, among others 121–130. Optical computing and information processing 

constitute yet another area that has harnessed engineered light-matter interactions to perform 

computational tasks using wave optics and the propagation of light through specially devised 

materials75,92,131,73,69,74,84,70,72,20,22,71,81,77. These approaches and many others highlight the 

emerging uses of trained materials and surfaces as the workhorse of optical computation. 

Here, we investigate the information processing capacity of trainable diffractive surfaces to 

shed light on their computational power and limits. An all-optical diffractive network is 

physically formed by a number of diffractive layers/surfaces and the free-space propagation 

between them (see Fig. 4.1a). Individual transmission and/or reflection coefficients (i.e., neurons) 

of diffractive surfaces are adjusted or trained to perform a desired input-output transformation 

task as the light diffracts through these layers. Trained with deep-learning-based error back-

propagation methods, these diffractive networks have been shown to perform machine learning 

tasks such as image classification and deterministic optical tasks including, e.g., wavelength 

demultiplexing, pulse shaping and imaging77–80,99,101,132. 
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The forward model of a diffractive optical network can be mathematically formulated as a 

complex-valued matrix operator that multiplies an input field vector to create an output field 

vector at the detector plane/aperture. This operator is designed/trained using, e.g., deep learning 

to transform a set of complex fields (forming, e.g., the input data classes) at the input aperture of 

the optical network into another set of corresponding fields at the output aperture (forming, e.g., 

the data classification signals) and is physically created through the interaction of the input light 

with the designed diffractive surfaces as well as free-space propagation within the network (Fig. 

4.1a). 

In this paper, we investigate the dimensionality of the all-optical solution space that is 

covered by a diffractive network design as a function of the number of diffractive surfaces, the 

number of neurons per surface, and the size of the input and output fields-of-view. With our 

theoretical and numerical analysis, we show that the dimensionality of the transformation 

solution space that can be accessed through the task-specific design of a diffractive network is 

linearly proportional to the number of diffractive surfaces, up to a limit that is governed by the 

extent of the input and output fields-of-view. Stated differently, adding new diffractive surfaces 

into a given network design increases the dimensionality of the solution space that can be all-

optically processed by the diffractive network until it reaches the linear transformation capacity 

dictated by the input and output apertures (Fig. 4.1a). Beyond this limit, the addition of new 

trainable diffractive surfaces into the optical network can cover a higher-dimensional solution 

space over larger input and output fields-of-view, extending the space-bandwidth product of the 

all-optical processor. 
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Our theoretical analysis further reveals that, in addition to increasing the number of 

diffractive surfaces within a network, another strategy to increase the all-optical processing 

capacity of a diffractive network is to increase the number of trainable neurons per diffractive 

surface. However, our numerical analysis involving different image classification tasks 

demonstrates that this strategy of creating a higher-numerical-aperture (NA) optical network for 

all-optical processing of the input information is not as effective as increasing the number of 

diffractive surfaces in terms of the blind inference and generalization performance of the 

network. Overall, our theoretical and numerical analyses support each other, revealing that 

deeper diffractive networks with larger numbers of trainable diffractive surfaces exhibit depth 

advantages in terms of their statistical inference and learning capabilities compared with a single 

trainable diffractive surface. 

The presented analyses and conclusions are generally applicable to the design and 

investigation of various coherent all-optical processors formed by diffractive surfaces such as, 

e.g., metamaterials, plasmonic or dielectric-based metasurfaces, and flat-optics-based designer 

surfaces that can form information processing networks to execute a desired computational task 

between an input and output aperture. 

4.2 Results 

Theoretical Analysis of the Information Processing Capacity of Diffractive Surfaces 

Let the Å  and Æ  vectors represent the sampled optical fields (including the phase and 

amplitude information) at the input and output apertures, respectively. We assume that the sizes 

of Å and Æ are Ç� × 1 and Ç� × 1, defined by the input and output fields-of-view, respectively 

(see Fig. 4.1a); these two quantities, Ç� and Ç�, are simply proportional to the space-bandwidth 
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product of the input field and the output field at the input and output apertures of the diffractive 

network, respectively. Outside the input field-of-view (FOV) defined by Ç�, the rest of the points 

within the input plane do not transmit light or any information to the diffractive network, i.e., 

they are assumed to be blocked by, for example, an aperture. In a diffractive optical network 

composed of transmissive and/or reflective surfaces that rely on linear optical materials, these 

vectors are related to each other by �Å = Æ, where � represents the combined effects of the free-

space wave propagation and the transmission through (or reflection off of) the diffractive 

surfaces, where the size of � is Ç� × Ç� . The matrix �  can be considered the mathematical 

operator that represents the all-optical processing of the information carried by the input complex 

field (within the input field-of-view/aperture), delivering the processing results to the desired 

output field-of-view. 

Here, we prove that an optical network having a larger number of diffractive surfaces or 

trainable neurons can generate a richer set for the transformation matrix � up to a certain limit 

within the set of all complex-valued matrices with size Ç� × Ç� . Therefore, this section 

analytically investigates the all-optical information processing capacity of diffractive networks 

composed of diffractive surfaces. The input field is assumed to be monochromatic, spatially and 

temporally coherent with an arbitrary polarization state, and the diffractive surfaces are assumed 

to be linear, without any coupling to other states of polarization, which is ignored. 

Let È� be an Ç × Ç matrix, which represents the Rayleigh-Sommerfeld diffraction between 

two fields specified over parallel planes that are axially separated by a distance %. Since È� is 

created from the free-space propagation convolution kernel, it is a Toeplitz matrix. Throughout 

the paper, without loss of generality, we assume that Ç� = Ç� = ÇÉÊË, Ç ≥ ÇÉÊË and that the 



113 

 

 

 

Fig. 4.1 Schematic of a multi-surface diffractive network. a Schematic of a diffractive optical network that 

connects an input field-of-view (aperture) comprised of Ç� 	points to a desired region-of-interest at the output 

plane/aperture covering Ç�	points, through K diffractive surfaces with N neurons per surface, sampled at a 

period of G 2�⁄ , where G and � represent the illumination wavelength and the refractive index of the medium 

between the surfaces, respectively. Without loss of generality, � = 1 has been assumed in this manuscript. b 

The communication between two successive diffractive surfaces occurs through propagating waves when the 

axial separation (d) between these layers is larger than G. Even if the diffractive surface has deeply sub-

wavelength structures as in the case of e.g., metasurfaces, with a much smaller sampling period compared to 

G 2⁄  and many more degrees of freedom (M) compared to N, the information processing capability of a 

diffractive surface within  a network is limited to propagating modes since d > λ; this limits the effective 

number of neurons per layer to N, even for a surface with M >> N. H and H* refer to the forward and backward 

wave propagation, respectively. 
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 diffractive surfaces are separated by free space, i.e., the refractive index surrounding the 

diffractive layers is taken as n = 1. We also assume that the optical fields include only the 

propagating modes, i.e., travelling waves; stated differently, the evanescent modes along the 

propagation direction are not included in our model since % ≥ λ  (Fig. 4.1b). With this 

assumption, we choose the sampling period of the discretized complex fields to be λ/2, where λ 

is the wavelength of the monochromatic input field. Accordingly, the eigenvalues of È� are in 

the form �[WÎÏ for 0 ≤ ºÑ ≤ º�, where º� is the wavenumber of the optical field133. 

Furthermore, let ÒÓ  be an Ç>W × Ç>W  matrix, which represents the ºth  diffractive 

surface/layer in the network model, where Ç>W is the number of neurons in the corresponding 

diffractive surface; for a diffractive network composed of K surfaces, without loss of generality 

we assume min(Ç>., Ç>�, … , Ç>b) ≥ ÇÉÊË . Based on these definitions, the elements of ÒÓ  are 

nonzero only along its main diagonal entries. These diagonal entries represent the complex-

valued transmittance (or reflectance) values (i.e., the optical neurons) of the associated 

diffractive surface, with a sampling period of λ/2. Furthermore, each diffractive surface defined 

by a given transmittance matrix is assumed to be surrounded by a blocking layer within the same 

plane to avoid any optical communication between the layers without passing through an 

intermediate diffractive surface. This formalism embraces any form of diffractive surface, 

including, e.g., plasmonic or dielectric-based metasurfaces. Even if the diffractive surface has 

deeply sub-wavelength structures, with a much smaller sampling period compared to λ/2 and 

many more degrees of freedom (M) compared to Ç>W, the information processing capability of a 

diffractive surface within a network is limited to propagating modes since % ≥ λ, which restricts 

the effective number of neurons per layer to Ç>W (Fig. 4.1b). In other words, since we assume 

that only propagating modes can reach the subsequent diffractive surfaces within the optical 
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diffractive network, the sampling period (and hence, the neuron size) of λ/2 is sufficient to 

represent these propagating modes in air134. According to Shannon’s sampling theorem, since the 

spatial frequency band of the propagating modes in air is restricted to the (−1/λ, 1/λ) interval, a 

neuron size that is smaller than λ/2 leads to oversampling and over-utilization of the optical 

neurons of a given diffractive surface. On the other hand, if one aims to control and engineer the 

evanescent modes, then a denser sampling period on each diffractive surface is needed, which 

might be useful to build diffractive networks that have % ≪ λ. In this near-field diffractive 

network, the enormously rich degrees of freedom enabled by various metasurface designs with 

Ö ≫ Ç>W can be utilized to provide full and independent control of the phase and amplitude 

coefficients of each individual neuron of a diffractive surface. 

The underlying physical process of how the light is modulated by an optical neuron may vary 

in different diffractive surface designs. In a dielectric-material-based transmissive design, for 

example, phase modulation can be achieved by slowing down the light inside the material, where 

the thickness of an optical neuron determines the amount of phase shift that the light beam 

undergoes. Alternatively, liquid-crystal (LC)-based spatial light modulators (SLMs) or flat-

optics-based metasurfaces can also be employed as part of a diffractive network to generate the 

desired phase and/or amplitude modulation on the transmitted or reflected light115,135. 

Starting from Section Error! Reference source not found., we investigate the physical 

properties of �, generated by different numbers of diffractive surfaces and trainable neurons. In 

this analysis, without loss of generality, each diffractive surface is assumed to be transmissive, 

following the schematics shown in Fig. 4.1a, and its extension to reflective surfaces is 

straightforward and does not change our conclusions. Finally, multiple (back and forth) 
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reflections within a diffractive network composed of different layers are ignored in our analysis, 

as these are much weaker processes compared to the forward propagating modes. 

Analysis of a single diffractive surface 

The input-output relationship for a single diffractive surface that is placed between an input 

and an output FOV (Fig. 4.1a) can be written as: 

 Æ = È��e ÒØÈ�Øe Å = �ØÅ	  (4.10)  

 

where d1 ≥ λ  and d2 ≥ λ  represent the axial distance between the input plane and the 

diffractive surface, and the axial distance between the diffractive surface and the output plane, 

respectively. Here we also assume that d1 ≠ d2; later we discuss the special case of d1 = d2. Since 

there is only one diffractive surface in the network, we denote the transmittance matrix as ÒØ, the 

size of which is Ç>. × Ç>., where L1 represents the diffractive surface. Here, È�Øe is an Ç>. ×
ÇÉÊË  matrix that is generated from the Ç>. × Ç>.  propagation matrix È�Ø  by deleting the 

appropriately chosen Ç>. − ÇÉÊË -many columns. The positions of the deleted columns 

correspond to the zero transmission values at the input plane that lie outside the input field-of-

view or aperture defined by Ç� = ÇÉÊË (Fig. 4.1a), i.e., not included in Å. Similarly, È��e  is an 

ÇÉÊË × Ç>. matrix that is generated from the Ç>. × Ç>. propagation matrix È�� by deleting the 

appropriately chosen Ç>. − ÇÉÊË -many rows, which correspond to the locations outside the 

output FOV or aperture defined by	Ç� = ÇÉÊË in Fig. 4.1a; this means that the output field is 

calculated only within the desired output aperture. As a result, È�Øe  and È��e  have a rank of ÇÉÊË. 
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To investigate the information processing capacity of �Ø based on a single diffractive surface, 

we vectorize this matrix in the column order and denote it as ��Â(�Ø) = ÙØ 136. Next, we show 

that the set of possible ÙØ  vectors forms a min(Ç>., ÇÉÊË� )-dimensional subset of an ÇÉÊË� -

dimensional complex-valued vector field. The vector, ÙØ, can be written as: 

 

where the superscript �  and ⊗  denote the transpose operation and Kronecker product, 

respectively136. Here, the size of È�ØeÛ ⊗È��e  is ÇÉÊË� × Ç>.� , and it is a full-rank matrix with rank 

ÇÉÊË� . In Equation 4.2, ��Â(ÒØ) = ÜØ  has at most Ç>.  controllable/adjustable complex-valued 

entries, which physically represent the neurons of the diffractive surface, and the rest of its 

entries are all zero. These transmission coefficients lead to a linear combination of Ç>.-many 

vectors of È�ØeÛ ⊗È��e , where d1 ≠ d2 ≠ 0. If Ç>. ≤ ÇÉÊË� , these vectors subject to the linear 

combination are linearly independent (see Figure 4.2). Hence, the set of resulting ÙØ  vectors 

generated by Equation 4.2 forms an Ç>. -dimensional subspace of the ÇÉÊË� -dimensional 

complex-valued vector space. On the other hand, if Ç>. > ÇÉÊË� , then the vectors in the linear 

combination start to become dependent on each other. In this case of Ç>. > ÇÉÊË� , the 

dimensionality of the set of possible vector fields is limited to ÇÉÊË�  (also see Figure 4.2). 

  

 ��Â(�Ø) = ÙØ = ��Â&È��e ÒØÈ�Øe '	= &È�ØeÛ ⊗È��e '��Â(ÒØ)	= &È�ØeÛ ⊗È��e 'ÜØ	  

(4.2) 
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This analysis demonstrates that the set of complex field transformation vectors that can be 

generated by a single diffractive surface that connects a given input and output FOV constitutes a 

min(Ç>., ÇÉÊË� )-dimensional subspace of an ÇÉÊË� -dimensional complex-valued vector space. 

These results are based on our earlier assumption that d1 ≥ λ, d2 ≥ λ and d1 ≠ d2. For the special 

case of d1 = d2	≥ λ, the upper limit of the dimensionality of the solution space that can be 

 

Fig. 4.2: Computation of the dimensionality (D) of the all-optical solution space for K=1 diffractive 

surface under various network configurations. The rank values are obtained using the symbolic toolbox of 

MATLAB from �′ matrix. The calculated rank values in each table obey the rule _ = #��(	Ç>.	, ÇÉÊË� 	). _ =
Ç>. results indicate that all the columns of �′ are linearly independent, and therefore any subset of its columns 

are also linearly independent. Therefore, the dimensionality of the solution space for %. ≠ %� is a linear function 

of Ç>. when Ç>. 	≤ ÇÉÊË� , and ÇÉÊË�  defines the upper limit of _ (see Figure 4.5). We also show that the upper 

limit for the dimensionality of the all-optical solution space reduces to ÇÉÊË(ÇÉÊË + 1) 2⁄  when %. = %� for a 

single diffractive layer, E = 1.  
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generated by a single diffractive surface (K=1) is reduced from ÇÉÊË�  to (ÇÉÊË� + ÇÉÊË)/2 due to 

the combinatorial symmetries that exist in the optical path for d1 = d2. 

Analysis of an optical network formed by two diffractive surfaces 

Here, we consider an optical network with two different (trainable) diffractive surfaces (K=2), 

where the input-output relation can be written as: 

Ç� = max(Ç>., Ç>�) determines the sizes of the matrices in Equation 4.3, where Ç>. and Ç>� 

represent the number of neurons in the first and second diffractive surfaces, respectively; d1, d2 

and d3 represent the axial distances between the diffractive surfaces (see Fig. 4.1a). Accordingly, 

the sizes of È�Øe , È�� and È�Þe  become Ç� × ÇÉÊË, Ç� × Ç� and ÇÉÊË × Ç�, respectively. Since 

we have already assumed that min(Ç>., Ç>�) ≥ ÇÉÊË, È�Øe  and È�Þe  can be generated from the 

corresponding Ç� × Ç� propagation matrices by deleting the appropriate columns and rows, as 

described in Section Error! Reference source not found.. Because È�� has a size of Ç� × Ç�, 

there is no need to delete any rows or columns from the associated propagation matrix. Although 

both ÒØ  and Ò�  have a size of Ç� × Ç� , the one corresponding to the diffractive surface that 

contains the smaller number of neurons has some zero values along its main diagonal indices. 

The number of these zeros is Ç� − min(Ç>., Ç>�). 
Similar to the analysis reported in Section Error! Reference source not found., the 

vectorization of �� reveals: 

 Æ = È�Þe Ò�È��ÒØÈ�Øe Å = ��Å	  (4.11) 

 ��Â(��) = Ù� = ��Â&È�Þe Ò�È��ÒØÈ�Øe '	= &È�ØeÛ ⊗È�Þe '��Â&Ò�È��ÒØ'	= &È�ØeÛ ⊗È�Þe '(ÒØÛ ⊗Ò�)��Â&È��'	
  (4.4) 
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where Èß�� is an Ç�� × Ç�� matrix that has nonzero entries only along its main diagonal locations. 

These entries are generated from ��Â&È��' = à��  such that Èß�� 	[�, �] =  à��[�] . Since the 

%��"(⋅) operator forms a vector from the main diagonal entries of its input matrix, the vector 

ÜØ� = %��"(ÒØ ⊗Ò�)  is generated such that ÜØ�[�] = 	 (ÒØ⊗Ò�)[�, �] . The equality (ÒØ⊗
Ò�)à�� = Èß��ÜØ� stems from the fact that the nonzero elements of ÒØ ⊗Ò� are located only 

along its main diagonal entries. 

In Equation 4.4, È�ØeÛ ⊗È�Þe  has rank ÇÉÊË� . Since all the diagonal elements of Èß�� are 

nonzero, it has rank Ç��. As a result, &È�ØÛ ⊗È�Þ'Èß��  is a full-rank matrix with rank ÇÉÊË� . 

Additionally, the nonzero elements of ÜØ� take the form ��[ = �.,���,[, where �.,� and ��,[ are the 

trainable/adjustable complex transmittance values of the �th neuron of the 1st diffractive surface 

and the �th  neuron of the 2nd  diffractive surface, respectively, for � ∈ {1,2, … , Ç>.}  and � ∈
{1,2, … ,Ç>�}. Then, the set of possible Ù� vectors (Equation 4.4) can be written as: 

where àâã is the corresponding column vector of &È�ØeÛ ⊗È�Þe 'Èß��. 

Equation 4.5 is in the form of a complex-valued linear combination of Ç>.Ç>� -many 

complex-valued vectors, àâã. Since we assume min(Ç>., Ç>�) ≥ ÇÉÊË, these vectors necessarily 

form a linearly dependent set of vectors and this restricts the dimensionality of the vector space 

to ÇÉÊË� . Moreover, due to the coupling of the complex-valued transmittance values of the two 

= &È�ØeÛ ⊗È�Þe '(ÒØ⊗Ò�)��Â&È��'	= &È�ØeÛ ⊗È�Þe '(ÒØ⊗Ò�)à��	= &È�ØeÛ ⊗È�Þe 'Èß��%��"(ÒØ ⊗Ò�)	= &È�ØeÛ ⊗È�Þe 'Èß��ÜØ�	  

 Ù� =V��[àâã�,[ 	  
(4.5) 
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diffractive surfaces (��[ = �.,���,[) in Equation 4.5, the dimensionality of the resulting set of Ù� 

vectors can even go below ÇÉÊË� , despite Ç>.Ç>� ≥ ÇÉÊË� . In fact, in the Materials and Methods 

section, we show that the set of Ù� vectors can form an Ç>.+Ç>� − 1-dimensional subspace of 

the ÇÉÊË� -dimensional complex-valued vector space and can be written as: 

where äÓ represents length-ÇÉÊË�  linearly independent vectors and ÂW represents complex-valued 

coefficients, generated through the coupling of the transmittance values of the two independent 

diffractive surfaces. The relationship between Equations 4.5 and 4.6 is also presented as a 

pseudo-code in Tables 4.1-4.3 and Figure 4.3. 

These analyses reveal that by using a diffractive optical network composed of two different 

trainable diffractive surfaces (with neurons Ç>., Ç>�), it is possible to generate an all-optical 

solution that spans an Ç>.+Ç>� − 1 dimensional subspace of an ÇÉÊË� -dimensional complex-

valued vector space. As a special case, if we assume	Ç = Ç>. = Ç>� = Ç� = Ç� = ÇÉÊË , the 

resulting set of complex-valued linear transformation vectors forms a 2Ç − 1  dimensional 

subspace of an Ç�-dimensional vector field. Table 4.1 also provides a coefficient and basis 

vector generation algorithm, independently reaching the same conclusion that this special case 

forms a 2Ç − 1 dimensional subspace of an Ç�-dimensional vector field. The upper limit of the 

solution space dimensionality that can be achieved by a two-layered diffractive network is ÇÉÊË� , 

which is dictated by the input and output fields-of-view between which the diffractive network is 

positioned.  

  

 Ù� = V ÂWäÓåæç-åæèX.
W�. 	  

(4.6) 
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Fig. 4.3: Computation of the dimensionality (D) of the all-optical solution space for K=2 diffractive 

surfaces under various network configurations. The rank values are obtained using the symbolic toolbox of 

MATLAB from �′ matrix. Each result in the presented tables is confirmed through three independent runs of 

the same algorithm with different random initializations, random selection of the neurons and random 

generation of complex-valued transmission coefficients. All the presented rank results numerically confirm _ =
#��(	Ç>. + Ç>� − 1	, ÇÉÊË� ).  
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In summary, these analyses showed that the dimensionality of the all-optical solution space 

covered by two trainable diffractive surfaces (K=2) positioned between a given set of input-

output FOV is given by min(ÇÉÊË� , N>.+N>� − 1) . Different from K=1 architecture, which 

revealed a restricted solution space when d1 = d2, diffractive optical networks with K=2 do not 

exhibit a similar restriction related to the axial distances d1, d2 and d3 (see Fig. 4.3). 

Analysis of an optical network formed by three or more diffractive surfaces 

Next, we consider an optical network formed by more than two diffractive surfaces, with 

neurons of (Ç>., Ç>�, ⋯ , Ç>b) for each layer, where K is the number of diffractive surfaces and 

Ç>W represents the number of neurons in the kth layer. In the previous section, we showed that a 

two-layered network with (Ç>., Ç>�) neurons has the same solution space dimensionality as that 

of a single-layered, larger diffractive network having N>.+N>� − 1 individual neurons. If we 

assume that a third diffractive surface (Ç>ê ) is added to this single-layer network with 

N>.+N>� − 1  neurons, this becomes equivalent to a two-layered network with (Ç>.+Ç>� −
1	, Ç>ê) neurons. The dimensionality of the all-optical solution space covered by this diffractive 

network positioned between a set of input-output fields-of-view is given by 

min(ÇÉÊË� , Ç>.+Ç>�+Ç>ê − 2); also see Fig. 4.4. For the special case of Ç>. = Ç>� = Ç>ê =
Ç� = Ç� = Ç. 

The above arguments can be extended to a network that has K diffractive surfaces. That is, 

for a multi-surface diffractive network with a neuron distribution of (Ç>., Ç>�, ⋯ , Ç>b), the 

dimensionality of the solution space (see Fig. 4.5) created by this diffractive network is given by: 
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which forms a subspace of an ÇÉÊË� -dimensional vector space that covers all the complex-valued 

linear transformations between the input and output fields-of-view. 

The upper bound on the dimensionality of the solution space, i.e., the ÇÉÊË�  term in Equation 

4.7, is heuristically imposed by the number of possible ray interactions between the input and 

output fields-of-view. That is, if we consider the diffractive optical network as a black box (Fig. 

4.1a), its operation can be intuitively understood as controlling the phase and/or amplitude of the 

light rays that are collected from the input, to be guided to the output, following a lateral grid of 

λ/2 at the input/output fields-of-view, determined by the diffraction limit of light. The second 

term in Equation 4.7, on the other hand, reflects the total space-bandwidth product of K 

successive diffractive surfaces, one following another. To intuitively understand the (E − 1) 

subtraction term in Equation 4.7, one can hypothetically consider the simple case of Ç>W =
ÇÉÊË = 1  for all K diffractive layers; in this case, [∑ Ç>WbW�. ] − (E − 1) = 1, which simply 

indicates that K successive diffractive surfaces (each with Ç>W = 1) are equivalent, as physically 

expected, to a single controllable diffractive surface with Ç>=1. 

 

Without loss of generality, if we assume Ç = ÇW  for all the diffractive surfaces, then the 

dimensionality of the linear transformation solution space created by this diffractive network will 

be EÇ − (E − 1), provided that EÇ − (E − 1) ≤ ÇÉÊË� . This means that for a fixed design 

choice of Ç neurons per diffractive surface (determined by, e.g., the limitations of the fabrication 

methods or other practical considerations), adding new diffractive surfaces to the same 

 minëÇÉÊË� , ìVÇ>Wb
W�. í − (E − 1)î 

(4.7) 



125 

 

diffractive network linearly increases the dimensionality of the solution space that can be all-

optically processed by the diffractive network between the input/output fields-of-view. As we 

further increase K such that EÇ − (E − 1) ≥ ÇÉÊË� , the diffractive network reaches its linear 

transformation capacity, and adding more layers or more neurons to the network does not further 

contribute to its processing power for the desired input-output fields-of-view (see Fig. 4.5). 

However, these deeper diffractive networks that have larger numbers of diffractive surfaces (i.e., 

EÇ − (E − 1) ≥ ÇÉÊË� ) can cover a solution space with a dimensionality of EÇ − (E − 1) over 

larger input and output fields-of-view. Stated differently, for any given choice of Ç neurons per 

diffractive surface, deeper diffractive networks that are composed of multiple surfaces can cover 

a EÇ − (E − 1)-dimensional subspace of all the complex-valued linear transformations between 

a larger input field-of-view (Ç′� > Ç�) and/or a larger output field-of view (Ç′� > Ç�), as long as 

EÇ − (E − 1) ≤ Ç′�Ç′�. The conclusions of this analysis are also summarized in Fig. 4.5. 

In addition to increasing K (the number of diffractive surfaces within an optical network), an 

alternative strategy to increase the all-optical processing capabilities of a diffractive network is to 

increase N, the number of neurons per diffractive surface/layer. However, as we numerically 

demonstrate in the next section, this strategy is not as effective as increasing the number of 
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Fig. 4.4: Computation of the dimensionality (D) of the all-optical solution space for K=3 diffractive 

surfaces under various network configurations. The rank values are obtained using the symbolic toolbox of 

MATLAB from �′  matrix. The presented results indicate that it is possible to obtain the maximum 

dimensionality of the solution space, numerically confirming that _ = #��(	Ç>. +	Ç>� +Ç>ê − 2,ÇÉÊË� ). 
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Fig. 4.5: Dimensionality (D) of the all-optical solution space covered by multi-layer diffractive networks. a 

The behavior of the dimensionality of the all-optical solution space with increasing number of layers for two different 

diffractive surface designs, with Ç = Ç.  and Ç = Ç� neurons per surface, where Ç� > Ç.. The smallest number of 

diffractive surfaces, ïKsñ, satisfying the condition, E@Ç − (E@ − 1) ≥ Ç� × Ç� , determines the ideal depth of the 

network for a given N, Ç�  and ÇÊ. For the sake of simplicity, here we assumed  Ç� = Ç� =	ÇÉÊËX�, where 4 different 

input/output fields-of-view are illustrated in the plot, i.e.,	ÇÉÊËX� > ÇÉÊËXê > ÇÉÊËX� > ÇÉÊËX.. ïKsñ refers to the 

ceiling function, defining the number of diffractive surfaces within an optical network design. b The distribution of 

the dimensionality of the all-optical solution space as a function of N and K for 4 different field-of-views, ÇÉÊËX�, and 

the corresponding turning points, Si, which are shown in (a). 
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diffractive surfaces since deep-learning-based design tools are relatively inefficient in utilizing 

all the degrees of freedom provided by a diffractive surface with Ç >> Ç� , Ç�. This is partially 

related to the fact that high-numerical-aperture optical systems are generally more difficult to 

optimize and design. Moreover, if we consider a single-layer diffractive network design with a 

large Nmax (which defines the maximum surface area that can be fabricated and engineered with 

the desired transmission coefficients), even for this Nmax design, the addition of new diffractive 

surfaces with Nmax at each surface linearly increases the dimensionality of the solution space 

created by the diffractive network, covering linear transformations over larger input and output 

fields-of-view, as discussed earlier. These reflect some of the important depth advantages of 

diffractive optical networks that are formed by multiple diffractive surfaces. The next section 

further expands on this using a numerical analysis of diffractive optical networks that are 

designed for image classification. 

Computation of the dimensionality (D) of the all-optical solution space for K = 1, 2 and 3 

In order to calculate D for various diffractive network configurations, we used the symbolic 

toolbox of MATLAB to compute the rank of diffraction related matrices using their symbolic 

representation. 

1-Layer Case (K = 1): 

To compute D for E = 1, we first generate È�ØeÛ ⊗È��e  of Equation 4.2. Note that for E = 1 

only Ç>. −many columns of È�ØeÛ ⊗È��e are included in the computation of ��Â(�Ø). Therefore, 

we consider only those vectors in our computation. We define È′ as the matrix which is subject 

to the rank computation:  
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for # ∈ {0,1, … ,Ç>. − 1}. Here, [: , #(Ç>. + 1)] indicates the column associated with the (# +
1)th neuron in the vectorized form. Hence, in 2D discrete space, # corresponds to a certain 

neuron position and discrete index, [¶>., �>.].  
È′[�, #] takes its values through the multiplication of the appropriate free space impulse 

response functions from the associated input pixel (within Ni) to the (#+ 1)th neuron and from 

the (# + 1)th neuron to the associated output pixel (within No). Thus, a given � corresponds to a 

certain position at the input plane, [¶�, ��], paired with a certain position at the output plane, 

[¶� , ��]. As a result, È′[�,#] can be written as: 

 

where d1 ≠ d2 ≠ 0 and ℎÏ(�, �) is the impulse response of free space propagation, which can be 

written as: 

where J = Q�� + �� + %�.  

In MATLAB, we used various symbolic conversion schemes to confirm that each method 

ends up with the same rank. For a given Ç� = Ç� = ÇÉÊË, Ç>., d1 and d2 configuration, in the 

first four methods, we generated È′ numerically in the double precision. Then we converted it to 

the corresponding symbolic matrix representation using either one of these commands: 

 È′[: ,#] = (È�ØeÛ ⊗È��e )[: , #(Ç>. + 1)]	  (4.8) 

 È′[�,#] 	= ℎÏ.(¶� − ¶>., �� − �>.) ∙ 	ℎÏ�(¶� − ¶>., �� − �>.),      (4.9) 

 ℎÏ(�, �) = −�[�óô �
2) (� 2)G − 1J) %J�					,	 	  

     (4.10) 
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>>sym(È′, ′J′)        (Method 1.a) 

>>sym(È′, ′%′)       (Method 1.b) 

>>sym(È′, ′�′)       (Method 1.c) 

>>sym(È′, ′õ′)       (Method 1.d) 

In the second set of symbolic conversion schemes, in order to further increase the precision 

in our computation, we generated ) symbolically at the beginning as:  

>>sym(��, ′J′)        (Method 2.a) 

>>sym(��, ′%′)       (Method 2.b) 

>>sym(��, ′�′)       (Method 2.c) 

>>sym(��, ′õ′)       (Method 2.d) 

Then we generated È′ of Equation 4.8 using the symbolic ), which ended up with a symbolic 

È′ matrix. Note that, although the second set of methods has a better accuracy in symbolic 

representation, they require more computation memory and time in generating the rank result. So, 

in our rank computations, we used Method 1.a as the common method for all the diffractive 

network configurations reported in Figs. 4.2-4.4. Besides Method 1.a, we also used at least one 

of the remaining seven methods in each diffractive network configuration to confirm that the 

resulting rank values agree with each other.  

Figure 4.2 summarizes the resulting rank calculations for various different K = 1 diffractive 

network configurations, all of which confirm _ = #��(	Ç>.	, ÇÉÊË� 	). _ = Ç>. results reported in 
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Figure 4.2 indicate that all the columns of È′ are linearly independent, and therefore any subset 

of its columns are also linearly independent. This shows that the dimensionality of the solution 

space for %. ≠ %� is a linear function of Ç>. when Ç>. ≤ ÇÉÊË� , and ÇÉÊË�  defines the upper limit 

of _ (also see Fig. 4.5). We also show that the upper limit for the dimensionality of the all-

optical solution space reduces to ÇÉÊË(ÇÉÊË + 1) 2⁄  when %. = %� for a single diffractive layer, 

E = 1. 

2-Layer Case (K = 2): 

For K = 2, we deal with the matrix &È�ØeÛ ⊗È�Þe 'Èß�� of Equation 4.4. We first generated a 

matrix È′ from &È�ØeÛ ⊗È�Þe 'Èß�� such that the columns of &È�ØeÛ ⊗È�Þe 'Èß�� that correspond to 

the zero entries of ÜØ�  are discarded. First, we converted È′ into a symbolic matrix and then 

applied the algorithm presented in Table 4.1 on the columns of È′. Here the #th column of È′ is 

the vector that multiplies the coefficient �.,���,[ of ÜØ� of Equation 4.4 for a certain (�, �) pair, i.e., 

there is a one-to-one relationship between a given # and the associated (�, �) pair.  

Therefore, a given #  indicates a certain neuron position in the first diffractive layer, 

[¶>., �>.], paired with a certain neuron position in the second diffractive layer, [¶>�, �>�]. Similar 

to the K = 1 case, the lth row of È′ corresponds to a certain set of input and output pixels as part 

of Ni and No, respectively, and È′[�,#]	can be written as:  

 

After generating Èe  based on Equation 4.11, we converted it into the symbolic matrix 

representation as described earlier for the 1-layer case, K = 1. Then, we applied the algorithm 

 Èe[�, #] = ℎÏ.(¶� − ¶>., �� − �>.)	∙ 	ℎÏê(¶� − ¶>�, �� − �>�) ∙ 	 	ℎÏ�(¶>. − ¶>�, �>. − �>�)	  

 (4.11)  
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presented in Table 4.1 to generate the basis vectors and their coefficients. Note that, for each 

diffractive network configuration that we selected, we independently ran the same algorithm 

three times with different random initializations, random selection of the neurons and random 

generation of complex-valued transmission coefficients. In all of the rank results that are 

reported in Fig. 4.3, these repeated simulations agreed with each other and gave the same rank, 

confirming _ = #��(	Ç>. +	Ç>� − 1,ÇÉÊË� 	). Also note that, unlike the d1 = d2 case for K = 1, 

different combinations of d1, d2 and d3 values for K = 2 do not change the results or the upper 

bound of D, as also confirmed in Fig. 4.3.      

3-Layer Case (K = 3): 

For K = 3 case, we start with &È�ØÛ ⊗È��'Èß��Þ . Then, we generate the matrix Èe  by 

discarding the columns of &È�ØÛ ⊗È��'Èß��Þ that correspond to the zero entries of ÜØ�Þ. Here, 

the #th column of È′ is the vector that multiplies the coefficient �.,���,[�ê,W for a certain (�, �, º) 
triplet. Hence, there is a one-to-one relationship between a given m and the pixel/neuron 

locations from the first, second and third diffractive layers, which are represented by [¶>., �>.], 
[¶>�, �>�] and [¶>ê, �>ê], respectively. Similar to the K = 1 and K = 2 cases discussed in earlier 

sections, a given row, l, corresponds to a certain set of input (from Ni) and output (from No) 

pixels, [¶�, ��] and [¶� , ��], respectively. Accordingly, Èe[�, #] can be written as:  

 

Then, we applied a coefficient and basis generation algorithm that is similar to Table 4.1, 

where we randomly select the diffractive layer and the neuron in each step of the algorithm to 

 Èe[�, #] = ℎÏ.(¶� − ¶>., �� − �>.)	∙ 	ℎÏ�(¶� − ¶>ê, �� − �>ê) 			∙ 	 	ℎÏ�(¶>. − ¶>�, �>. − �>�) 	 ∙ 	 	ℎÏê(¶>� − ¶>ê, �>� − �>ê)	  

 (4.12)  
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obtain the resulting coefficients and the basis vectors. Then we converted the resulting vectors 

into their symbolic representations as discussed earlier for the K = 1 case and computed the rank 

of the resulting symbolic matrix. For K = 3 the selection order of the 1ö÷, 2nd and 3rd diffractive 

layers in consecutive steps and the location/value of the chosen neuron at each step may affect 

the computed rank. Especially, when Ç>. +	Ç>� + Ç>ê  is close to ÇÉÊË� , the probability of 

repeatedly achieving the upper-bound of the dimensionality of the solution space, i.e., 

#��(	Ç>. +	Ç>� + Ç>ê − 2, ÇÉÊË� 	), using random orders of selection decreases. In Fig. 4.4, we 

present the computed ranks for different K=3 diffractive network configurations; for each one of 

these configurations that we considered in our simulations, we obtained at least one random 

selection of the diffractive layers and neurons that attains full rank, numerically confirming _ =
#��(	Ç>. +	Ç>� + Ç>ê − 2, ÇÉÊË� 	).  

 

The Upper Bound of the Dimensionality (D) of the Solution Space Reduces to 

&�øùú� +�øùú' �⁄  when �Ø = �� for û = Ø 

For K = 1 and the special case of %. = %� = %, we can rewrite È′[�,#]	given by Equation 

4.8 as: 

 

To quantify the reduction in rank due to %. = %�, among ÇÉÊË�  entries of È′′[: , #], let us 

first consider the cases where (¶�, ��) ≠ (¶� , ��) . For a given neuron or # , assuming that 

(¶�, ��) ≠ (¶�, ��) , the number of different entries that can be produced by Equation 4.13 

 Èee[�,#] = ℎÏ(¶� − ¶>., �� − �>.)	ℎÏ(¶� − ¶>., �� − �>.).  (4.13)  
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becomes ü&åýþ�� ', where ü&∙∙' indicates the combination operation and ÇÉÊË = Ç� = Ç�. Stated 

differently, since ℎÏ. = ℎÏ� the order of the selections from (¶�, ��) and (¶�, ��) does not matter, 

making the selection defined by a combination operation, i.e., ü&åýþ�� '. In addition to these 

combinatorial entries, there are ÇÉÊË  additional entries that represent (¶�, ��) = (¶�, ��) . 

Therefore, the total number of unique entries in a column, È′′[: , #], becomes:  

 

This analysis proves that, for K = 1, the upper limit of the dimensionality (D) of the all-

optical solution space for %. = %� reduces from ÇÉÊË�  to (ÇÉÊË� + ÇÉÊË) 2⁄  due to the fact that 

ℎÏ. = ℎÏ� = 	ℎÏ in Equation 4.13.  

Note that, when %. ≠ %�, we have ℎÏ. ≠ ℎÏ�, which directly implies that the combination 

operation in Equation S20 must be replaced with the permutation operation, �&∙∙', since the order 

of selections from (¶�, ��) and (¶� , ��) matters (see Equation S15). Therefore, when %. ≠ %�, 
Equation S20 is replaced with: 

 

which confirms our analyses as well as the results reported in Fig. 4.2.	 
Numerical Analysis of Diffractive Networks 

 

The previous section showed that the dimensionality of the all-optical solution space 

covered by K diffractive surfaces, forming an optical network positioned between an input and 

 ü KÇÉÊË2 M + ÇÉÊË = (ÇÉÊË� + ÇÉÊË) 2⁄ . (4.14) 

� KÇÉÊË2 M + ÇÉÊË = ÇÉÊË�  
(4.15) 
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output field-of-view, is determined by min�ÇÉÊË� , [∑ Ç>WbW�. ] − (E − 1)�.	 However, this 

mathematical analysis does not shed light on the selection or optimization of the complex 

transmittance (or reflectance) values of each neuron of a diffractive network that is assigned for a 

given computational task. Here, we numerically investigate the function approximation power of 

multiple diffractive surfaces in the (N, K) space using image classification as a computational 

goal for the design of each diffractive network. Since NFOV and N are large numbers in practice, 

an iterative optimization procedure based on error back-propagation and deep learning with a 

desired loss function was used to design diffractive networks and compare their performances as 

a function of (N, K). 

For the first image classification task that was used as a test-bed, we formed nine 

different image data classes, where the input field-of-view (aperture) was randomly divided into 

nine different groups of pixels, each group defining one image class (Fig. 4.6a). Images of a 

given data class can have pixels only within the corresponding group, emitting light at arbitrary 

intensities towards the diffractive network. The computational task of each diffractive network is 

to blindly classify the input images from one of these nine different classes using only nine 

large-area detectors at the output field-of-view (Fig. 4.6b), where the classification decision is 

made based on the maximum of the optical signal collected by these nine detectors, each assigned 

to one particular image class. For deep-learning-based training of each diffractive network for 

this image classification task, we employed a cross-entropy loss function (see the Materials and 

Methods section). 

Before we report the results of our analysis using a more standard image classification 

dataset such as CIFAR-10,137 we initially selected this image classification problem defined in 
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Fig. 4.6 as it provides a well-defined linear transformation between the input and output fields-

of-view. It also has various implications for designing new imaging systems with unique 

functionalities that cannot be covered by standard lens design principles. 

Based on the diffractive network configuration and the image classification problem 

depicted in Fig. 4.6, we compared the training and blind testing accuracies provided by different 

diffractive networks composed of 1, 2 and 3 diffractive surfaces (each surface having N = 40K = 

200×200 neurons) under different training and testing conditions (see Figs. 4.7-4.8). Our analysis 

also included the performance of a wider single-layer diffractive network with N = 122.5K > 

3×40K neurons. For the training of these diffractive systems, we created two different training 

image sets (Tr1 and Tr2) to test the learning capabilities of different network architectures. In the 

first case, the training samples were selected such that approximately 1% of the point sources 

defining each image data class were simultaneously on and emitting light at various power levels. 
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Fig. 4.6: Spatially-encoded image classification dataset. a A total of 9 image data classes are shown through 

color coding, defined inside the input field-of-view (80λ × 80λ). Each λ×λ area inside the field-of-view is 

randomly assigned to one image data class. An image belongs to a given data class, if and only if, all of its non-

zero entries belong to the pixels that are assigned to that particular data class. b The layout of the 9 class 

detectors, positioned at the output plane. Each detector has an active area of 25λ × 25λ and for a given input 

image, the decision on class assignment is made based on the maximum optical signal among these 9 detectors. c 

Side view of the schematic of the diffractive network layers as well as the input and output fields-of-view. d 

Example images for 9 different data classes. Three samples for each image data class are illustrated here, 

randomly drawn from the 3 test datasets (Te1, Te50, and Te90) that were used to quantify the blind inference 

accuracies of our diffractive network models (see Fig. 4.7). 
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For this training set, 200K images were created, forming Tr1. In the second case, the training 

image dataset was constructed to include only a single point source (per image) located at 

different coordinates representing different data classes inside the input field-of-view, providing 

us with a total of 6.4K training images (which formed Tr2). For the quantification of the blind 

testing accuracies of the trained diffractive models, three different test image datasets (never 

used during the training) were created, with each dataset containing 100K images. These three 

distinct test datasets (named Te1, Te50 and Te90) contain image samples that take contributions 

from 1% (Te1), 50% (Te50) and 90% (Te90) of the points defining each image data class (see Fig. 

4.6). 

Figure 4.7 illustrates the blind classification accuracies achieved by the different 

diffractive network models that we trained. We see that as the number of diffractive surfaces in 

the network increases, the testing accuracies achieved by the final diffractive design improve 

significantly, meaning that the linear transformation space covered by the diffractive network 

expands with the addition of new trainable diffractive surfaces, in line with our former 

theoretical analysis. For instance, while a diffractive image classification network with a single 

phase-only (complex) modulation surface can achieve 24.48% (27.00%) for the test image set 

Te1, the three-layer versions of the same architectures attain 85.2% (100.00%) blind testing 

accuracies, respectively (see Figs. 4.7a,b). Figure 4.8 shows the phase-only diffractive layers 

comprising the 1- and 3-layer diffractive optical networks that are compared in Fig. 4.7a; Fig. 4.8 

also reports some exemplary test images selected from Te1 and Te50, along with the 

corresponding intensity distributions at the output planes of the diffractive networks. The 

comparison between two- and three-layer diffractive systems also indicates a similar conclusion 
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for the test image set, Te1. However, as we increase the number of point sources contributing to 

the test images, e.g., for the case of Te90, the  

blind testing classification accuracies of both the two- and three-layer networks saturate at nearly 

100%, indicating that the solution space of the two-layer network already covers the optical 

transformation required to address this relatively easier image classification problem set by Te90. 

 

Fig. 4.7: Training and testing accuracy results for the diffractive surfaces that perform image 

classification (Figure 4.6). a The training and testing classification accuracies achieved by optical network 

designs comprised of diffractive surfaces that control only the phase of the incoming waves; the training image 

set is Tr1 (200K images). b The training and testing classification accuracies achieved by optical network 

designs comprised of diffractive surfaces that can control both the phase and amplitude of the incoming waves; 

the training image set is Tr1. c,d same as in a,b, respectively, except that the training image set is Tr2 (6.4K 

images). N = 40K neurons, mN = 122.5K neurons, i.e., m>3. 
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A direct comparison between the classification accuracies reported in Figs. 4.7a,c and 

Figs. 4.7b,d further reveals that the phase-only modulation constraint relatively limits the 

approximation power of the diffractive network since it places a restriction on the coefficients of 

the basis vectors, àâã. For example, when a two-layer, phase-only diffractive network is trained 

with Tr1 and blindly tested with the images of Te1, the training and testing accuracies are 

obtained as 78.72% and 78.44%, respectively. On the other hand, if the diffractive surfaces of the 

same network architectures have independent control of the transmission amplitude and phase 

value of each neuron of a given surface, the same training (Tr1) and testing (Te1) accuracy values 

increase to 97.68% and 97.39%, respectively. 

As discussed in our earlier theoretical analysis, an alternative strategy to increase the all-

optical processing capabilities of a diffractive network is to increase N, the number of neurons 

per diffractive surface. We also numerically investigated this scenario by training and testing 

another diffractive image classifier with a single surface that contains 122.5K neurons, i.e., it has 

more trainable neurons than the 3-layer diffractive designs reported in Fig. 4.7. As demonstrated 

in Fig. 4.7, although the performance of this larger/wider diffractive surface surpassed that of the 

previous, narrower/smaller 1-layer designs with 40K trainable neurons, its blind testing accuracy 

could not match the classification accuracies achieved by a 2-layer (2×40K neurons) network in 

both the phase-only and complex modulation cases. Despite using more trainable neurons than 

the 2-layer and 3-layer diffractive designs, the blind inference and generalization performance of 

this larger/wider diffractive surface is worse than that of the multi-surface diffractive designs. In 

fact, if we were to further increase the number of neurons in this single diffractive surface 

(further increasing the effective numerical aperture of the diffractive network), the inference 

performance gain due to these additional neurons that are farther away from the optical axis will 
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asymptotically go to zero since the corresponding k-vectors of these neurons carry a limited 

amount of optical power for the desired transformations targeted between the input and output 

fields-of-view. 
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Fig. 4.8: 1- and 3-layer phase-only diffractive network designs and their input-output intensity profiles. a 

The phase profile of the single diffractive surface trained with Tr1. b Same as in (a), except that there are 3 

diffractive surfaces trained in the network design. c The output intensity distributions for the 1- and 3-layer 

diffractive networks shown in (a) and (b), respectively, for different input images, which were randomly 

selected from Te1 and Te50. A red (green) frame around the output intensity distribution indicates incorrect 

(correct) optical inference by the corresponding network. N = 40K. 
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Fig. 4.9: The comparison of 1-, 3- and 5-layer diffractive networks trained for CIFAR-10 image 

classification, using MSE and cross-entropy loss functions. a Results for diffractive surfaces that modulate 

only the phase information of the incoming wave. b Results for diffractive surfaces that modulate both the phase 

and amplitude information of the incoming wave. The increase in the dimensionality of the all-optical solution 

space with additional diffractive surfaces of a network brings significant advantages in terms of generalization, 

blind testing accuracy, classification efficiency and optical signal contrast. The classification efficiency denotes 

the ratio of the optical power detected by the correct class detector with respect to the total detected optical 

power by all the class detectors at the output plane. Optical signal contrast refers to the normalized difference 

between the optical signals measured by the ground-truth (correct) detector and its strongest competitor detector 

at the output plane.   
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Another very important observation that one can make in Figs. 4.7c,d is that the 

performance improvements due to the increasing number of diffractive surfaces are much more 

pronounced for more challenging (i.e., limited) training image datasets, such as Tr2. With a 

significantly smaller number of training images (6.4K images in Tr2 as opposed to 200K images 

in Tr1), multi-surface diffractive networks trained with Tr2 successfully generalized to different 

test image datasets (Te1, Te50 and Te90) and efficiently learned the image classification problem 

at hand, whereas the single-surface diffractive networks (including the one with 122.5K trainable 

neurons per layer) almost entirely failed to generalize; see, e.g., Figs. 4.7c,d, the blind testing 

accuracy values for the diffractive models trained with Tr2. 

Next, we applied our analysis to a widely used, standard image classification dataset and 

investigated the performance of diffractive image classification networks comprised of one, three 

and five diffractive surfaces using the CIFAR-10 image dataset137. Unlike the previous image 

classification dataset (Fig. 4.6), the samples of CIFAR-10 contain images of physical objects, 

e.g., airplanes, birds, cats, dogs, etc., and CIFAR-10 has been widely used for quantifying the 

approximation power associated with various deep neural network architectures. Here, we 

assume that the CIFAR-10 images are encoded in the phase channel of the input field-of-view 

that is illuminated with a uniform plane wave. For deep-learning-based training of the diffractive 

classification networks, we adopted two different loss functions. The first loss function is based 

on the mean-squared-error (MSE), which essentially formulates the design of the all-optical 

object classification system as an image transformation/projection problem, and the second one 

is based on the cross-entropy loss, which is commonly used to solve the multi-class separation 

problems in the deep learning literature (refer to the Materials and Methods section for details). 
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The results of our analysis are summarized in Figs. 4.9a and 4.9b, which report the 

average blind inference accuracies along with the corresponding standard deviations observed 

over the testing of three different diffractive network models trained independently to classify 

the CIFAR-10 test images using phase-only and complex-valued diffractive surfaces, 

respectively. The 1-, 3-, and 5-layer phase-only (complex-valued) diffractive network 

architectures can attain blind classification accuracies of 40.55 ∓ 0.10% (41.52 ∓ 0.09%), 

44.47∓0.14% (45.88∓0.28%) and 45.53∓0.30% (46.84∓0.46%), respectively, when they are 

trained based on the cross-entropy loss detailed in the Materials and Methods section. On the 

other hand, with the use of the MSE loss, these classification accuracies are reduced to 

16.25∓0.48% (14.92∓0.26%), 29.08∓0.14% (33.52∓0.40%) and 33.67∓0.57% (34.69∓0.11%), 

respectively. In agreement with the conclusions of our previous results and the presented 

theoretical analysis, the blind testing accuracies achieved by the all-optical diffractive classifiers 

improve with increasing number of diffractive layers, K, independent of the loss function used 

and the modulation constraints imposed on the trained surfaces (see Fig. 4.9). 

Different from electronic neural networks, however, diffractive networks are physical 

machine learning platforms with their own optical hardware; hence, practical design merits such 

as the signal-to-noise ratio (SNR) and the contrast-to-noise ratio (CNR) should also be 

considered, as these features can be critical for the success of these networks in various 

applications. Therefore, in addition to the blind testing accuracies, the performance evaluation 

and comparison of these all-optical diffractive classification systems involve two additional 

metrics that are analogous to the SNR and CNR. The first is the classification efficiency, which 

we define as the ratio of the optical signal collected by the target, ground-truth class detector, Igt, 

with respect to the total power collected by all class detectors located at the output plane. The 
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second performance metric refers to the normalized difference between the optical signals 

measured by the ground-truth/correct detector, Igt, and its strongest competitor, Isc, i.e., (=�c −
=¡�)	/	=�c; this optical signal contrast metric is, in general, important since the relative level of 

detection noise with respect to this difference is critical for translating the accuracies achieved by 

the numerical forward models to the performance of the physically fabricated diffractive 

networks. Figure 4.9 reveals that the improvements observed in the blind testing accuracies as a 

function of the number of diffractive surfaces also apply to these two important diffractive 

network performance metrics, resulting from the increased dimensionality of the all-optical 

solution space of the diffractive network with increasing K. For instance, the diffractive network 

models presented in Fig. 4.9b, trained with the cross-entropy (or MSE) loss function, provide 

classification efficiencies of 13.72∓0.03% (13.98∓0.12%), 15.10∓0.08% (31.74∓0.41%) and 

15.46 ∓ 0.08% (34.43 ∓ 0.28%) using complex-valued 1-, 3- and 5-layers, respectively. 

Furthermore, the optical signal contrast attained by the same diffractive network designs can be 

calculated as 10.83∓0.17% (9.25∓0.13%), 13.92∓0.28% (35.23∓1.02%) and 14.88∓0.28% 

(38.67∓ 0.13%), respectively. Similar improvements are also observed for the phase-only 

diffractive optical network models that are reported in Fig. 4.9a. These results indicate that the 

increased dimensionality of the solution space with increasing K improves the inference capacity 

as well as the robustness of the diffractive network models by enhancing their optical efficiency 

and signal contrast. 

Apart from the results and analyses reported in this section, the depth advantage of 

diffractive networks has been empirically shown in the literature for some other applications and 

datasets, such as, e.g., image classification77,78 and optical spectral filter design80. 
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4.3 Discussion 

In a diffractive optical design problem, it is not guaranteed that the diffractive surface 

profiles will converge to the optimum solution for a given (N, K). Furthermore, for most 

applications of interest such as image classification, the optimum transformation matrix that the 

diffractive surfaces need to approximate is unknown; for example, what defines all the images of 

cats vs. dogs (such as in CIFAR-10 image dataset) is not known analytically to create a target 

transformation. Nonetheless, it can be argued that as the dimensionality of the all-optical solution 

space, and thus the approximation power of the diffractive surfaces increases, the probability of 

converging to a solution satisfying the desired design criteria also increases. In other words, even 

if the optimization of the diffractive surfaces gets stuck in a local minimum, which is practically 

always the case, there is a greater chance that this state will be closer to the globally optimal 

solution(s) for deeper diffractive networks with multiple trainable surfaces.  

Although not considered in our analysis so far, an interesting future direction to 

investigate is the case when the axial distance between two successive diffractive surfaces is 

made much smaller than the wavelength of light, i.e., d << λ. In this case, all the evanescent 

waves and the surface modes of each diffractive layer would need to be carefully taken into 

account to analyze the all-optical processing capabilities of the resulting diffractive network. 

This would significantly increase the space-bandwidth product of the optical processor as the 

effective neuron size per diffractive surface/layer can be deeply subwavelength if the near-field 

is taken into account. Furthermore, due to the presence of near-field coupling between diffractive 

surfaces/layers, the effective transmission or reflection coefficient of each neuron of a surface 

will no longer be an independent parameter as it will depend on the configuration/design of the 

other surfaces. If all of these near-field related coupling effects are carefully taken into account 
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during the design of a diffractive optical network with d << λ, it can significantly enrich the 

solution space of multi-layer coherent optical processors, assuming that surface fabrication 

resolution and the signal-to-noise ratio as well as the dynamic range at the detector plane are all 

sufficient. Despite the theoretical richness of near-field-based diffractive optical networks, the 

design and implementation of such systems bring substantial challenges in terms of their 3D 

fabrication and alignment as well as the accuracy of the computational modelling of the 

associated physics within the diffractive network, including multiple reflections and boundary 

conditions. While various electromagnetic wave solvers can handle the numerical analysis of 

near-field diffractive systems, practical aspects of a fabricated near-field diffractive neural 

network will present various sources of imperfections and errors that might force the physical 

forward model to significantly deviate from numerical simulations.   

In summary, we presented a theoretical analysis on the information processing capacity 

and function approximation power of diffractive surfaces that can compute a given task using 

temporally and spatially coherent light. In our analysis, we assumed that the polarization state of 

the propagating light is preserved by the optical modulation on the diffractive surfaces and the 

axial distance between successive layers is kept large enough to ensure that the near-field 

coupling and related effects can be ignored in the optical forward model. Based on these 

assumptions, our analysis shows that the dimensionality of the all-optical solution space 

provided by multi-layer diffractive networks expands linearly as a function of the number of 

trainable surfaces, K, until it reaches the limit defined by the target input and output fields-of-

view, i.e., min�Ç�Ç� , [∑ Ç>WbW�. ] − (E − 1)�  as depicted in Equation 4.7. To numerically 

validate these conclusions, we adopted a deep learning-based training strategy to design 

diffractive image classification systems for two distinct datasets (Figs. 4.6-4.9) and investigated 
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their performance in terms of blind inference accuracy, learning and generalization performance, 

classification efficiency and optical signal contrast, confirming the depth advantages provided by 

multiple diffractive surfaces compared to a single diffractive layer.  

These results and conclusions, along with the underlying analyses, broadly cover various 

types of diffractive surfaces including e.g., metamaterials/metasurfaces, nanoantenna arrays, 

plasmonics and flat optics based designer surfaces. We believe that the deeply subwavelength 

design features of e.g., diffractive metasurfaces can open up new avenues in the design of 

coherent optical processers by enabling independent control over the amplitude and phase 

modulation of neurons of a diffractive layer, also providing unique opportunities to engineer the 

material dispersion properties as needed for a given computational task. 

4.4 Materials and Methods 

Coefficient and basis vector generation for an optical network formed by two diffractive 

surfaces 

Here we present the details of the coefficient and basis vector generation algorithm for a 

network having two diffractive surfaces with the neurons (Ç>., Ç>�) to show that it is capable of 

forming a vectorized transformation matrix in Ç>.+Ç>� − 1 dimensional subspace of an Ç�Ç�-

dimensional complex-valued vector space. The algorithm depends on consuming the 

transmittance values from the first or the second diffractive layer, i.e., ÒØ or Ò�, at each step after 

its initialization. Choosing a random neuron from ÒØ or Ò� is followed by forming a new basis 

vector. The chosen neuron becomes the coefficient of this new basis vector which is generated 

by using the previously chosen transmittance values and appropriate vectors from àâã (Equation 

4.5). The algorithm continues until all the transmittance values are assigned to an arbitrary 

complex-valued coefficient and using all the vectors of àâã in forming the basis vectors.  
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In Table 4.1, a pseudo-code of the algorithm is also presented. In this table, ü.,W and ü�,W 

represent the sets of the transmittance values that include �.,�  and ��,[  which were not chosen 

before (at the time step k), from the first and second diffractive surfaces, respectively. Also, ÂW =
�.,�  in Step 7 and ÂW = ��,[  in Step 10 are the complex-valued coefficients that can be 

independently determined. Similarly äÓ = ∑ ��,[àâãcè,�∉Aè,�  and äÓ = ∑ �.,�àâã		cç,�∉Aç,� are the 

generated basis vectors at each step, where �.,� ∉ ü.,W  and ��,[ ∉ ü�,W  represent the sets of 

coefficients which are chosen before. The basis vectors in Step 7 and Step 10 are formed through 

the linear combinations of some àâã	vectors. Since the total number of vectors generated by this 

method is Ç>.+Ç>� − 1 < Ç�Ç� (discussed in the following paragraph), it is guaranteed that the 

generated äÓ at each step k is independent from the previously generated basis vectors. 

By examining the algorithm in Table 4.1, it is straightforward to show that the total 

number of generated basis vectors is Ç>.+Ç>� − 1 . That is, at each time step k, only one 

coefficient is chosen and only one basis vector is created. Since there are Ç>.+Ç>�  many 

transmittance values where two of them are chosen together in Step 1, the total number of time 

steps (coefficient and basis vectors) become Ç>.+Ç>� − 1. On the other hand, showing that all 

the Ç>.Ç>�-many àâã vectors are used in the algorithm requires further analysis. Without loss of 

generality, let ÒØ be chosen �. times starting from the time step º = 2 and then Ò� is chosen �� 

times. Similarly, ÒØ  and Ò�  are chosen �ê  and ��  times in the following cycles, respectively. 

Then, this pattern follows until all the Ç>.+Ç>� many transmittance values are consumed. Here 

we show the partition of the selection of the transmittance values from ÒØ and Ò� for each time 

step k into s many chunks, i.e.:  
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In order show that, Ç>.Ç>�-many àâã vectors are used in the algorithm regardless of the 

values of s and ��, we first define 

�� = �� + ��X�	for	even	values	of	i ≥ 2	 	
¶� = �� + ¶�X�	for	odd	values	of	i ≥ 1	 	 

where �4 = 0 and ¶X. = 1. Based on this, the total number of consumed basis vectors 

inside each summation in Table 4.1 (Steps 7 and 10) can be written as: 

 

where each summation gives the number of the consumed àâã  vectors in the 

corresponding chunk. Please note that, based on the partition given by Equation 4.17, ¶¡X. and 

�¡  become equal to Ç>.  and Ç>� − 1,  respectively.  One can show, by carrying out this 

summation, that all the terms except Ç>.Ç>� cancel each other, and therefore �d = Ç>.Ç>�  

 º = ·2,3, …��
±ç , …� 	 ,±è …� 	 ,±� …� 	 ,±� 	… , …Ç>.+Ç>� − 2,Ç>.+Ç>� − 1������������������
±�
� (4.16) 

 �d = 1 +V1}ç
W�� + V ¶.µè-}ç

W�}ç-.
+ V (��}�-µè

W�µè-}ç-.
+ 1) + V ¶êµ�-}�

W�}�-µè-.
	

+ V (��}�-µ�
W�µ�-}�-.

+ 1) + V ¶�µ�-}�
W�}�-µ�-.

+ V (�»}�-µ�
W�µ�-}�-.

+ 1)	
	 +								⋯		

+ V (�¡X�åæç-µ��è
W�µ��è-}���-.

+ 1) + V Ç>.åæç-åæèX.
W�åæç-µ��è-.

	  

(4.17) 

1 
Randomly choose �.,� from the set ü.,. and ��,[ from the set ü�,., and assign desired values 

to the chosen �.,� and ��,[ 
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Table 4.1 Coefficient (ÂW) and basis vector (�W) generation algorithm pseudo-code for an optical network that has 

two diffractive surfaces.   

2 Â.äØ = �.,���,[àâã 
3 k=2 

4 

Randomly choose  ÒØ or Ò� if ü.,W ≠ ∅ and ü�,W ≠ ∅  

Choose ÒØ if ü.,W ≠ ∅ and ü�,W = ∅ 

Choose Ò� if ü.,W = ∅ and ü�,W ≠ ∅ 

5 If ÒØ is chosen in Step 4: 

6           Randomly choose �.,� from the set ü.,W, and assign a desired value to the chosen �.,�  
7  ÂWäÓ = �.,� �∑ 			��,[àâã		cè,�∉Aè,� � 

8 else: 

9           Randomly choose ��,[ from the set ü�,W, and assign a desired value to the chosen ��,[ 
10  ÂWäÓ = ��,[&∑ 			�.,�àâã					cç,�∉Aç,� ' 
11 k = k+1 

12 If ü.,W ≠ ∅ or ü�,W ≠ ∅: 

13            Return to Step 4 

14 else: 

15            Exit 
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Table 4.2 Coefficient and basis vector generation algorithm for a 3-layered diffractive network (K = 3) when 

N�. = N�� = N�ê = N� = N� = N.  
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Table 4.3 Coefficient and basis vector generation algorithm for a K-layered diffractive network when N�. = N�� =
N�ê = N� = N� = N.  
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showing that all the Ç>.Ç>�-many àâã vectors are used in the algorithm. Here we assumed that 

the transmittance values from the first diffractive layer are consumed first. However, even if it 

were assumed that the transmittance values from the second diffractive layer is consumed first, 

the result would not change.  

Optical Forward Model 

In a coherent optical processor composed of diffractive surfaces, the optical 

transformation between a given pair of input/output fields-of-view is established through the 

modulation of light by a series of diffractive surfaces which we modeled as two-dimensional, 

thin, multiplicative elements. According to our formulation, the complex-valued transmittance of 

a diffractive surface, k, is defined as; 

�(�, �, �W) = �(�, �) exp&�2)�(�, �)'	 (4.18) 
where �(�, �) and �(�, �) denote the trainable amplitude and the phase modulation functions of 

diffractive layer k. The values of �(�, �), in general, lie in the interval (0, 1), i.e., there is no 

optical gain over these surfaces, and the dynamic range of the phase modulation is between (0, 

2π). In the case of phase-only modulation restriction, however, �(�, �) is kept as 1 (non-trainable) 

for all the neurons. The parameter �W defines the axial location of the diffractive layer k between 

the input field-of-view at � = 0 and the output plane. Based on these assumptions, the Rayleigh-

Sommerfeld formulation expresses the light diffraction by modelling each diffractive unit on 

layer k at &�} , �} , �W' as the source of a secondary wave: 

H}W(�, �, �) = � − �WJ� 	K 12)J + 1�GM exp	(�2)JG ) (4.19) 
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where J = u&� − �}'� + &� − �}'� + (� − �W)�	. Combining Equations 4.18 and 4.19, 

we can write the light field exiting the qth diffractive unit of layer k+1 as: 

T}W-.(�, �, �) = �&�} , �} , �W-.'H}W-.(�, �, �) V TµW&�} , �} , �W-.'µ	Á	@�
	 (4.20) 

where Sk denotes the set of diffractive units of layer k. From Equation 4.20, the complex wave 

field at the output plane can be written as: 

Tb-.(�, �, �) = V ��&�} , �} , �b'H}b(�, �, �) V TµbX.&�} , �} , �b'µ	Á	@ �ç
!}	∈	@ 

(4.21) 
where the optical field immediately after the object is assumed to be T4(�, �, �). In Equation 

4.21, SK and SK-1 denote the set of features at the Kth and (K-1)th diffractive layers, respectively. 

Image classification datasets and diffractive network parameters 

There are a total of nine image classes in the dataset defined in Fig. 4.6, corresponding to 

nine different sets of coordinates inside the input field-of-view, which covers a region of 80λ × 

80λ. Each point source lies inside a region of λ × λ, resulting in 6.4K coordinates, divided into 

nine image classes. Nine classification detectors were placed at the output plane, each 

representing a data class, as depicted in Fig. 4.6b. The sensitive area of each detector was set to 

25λ × 25λ. In this design, the classification decision was made based on the maximum of the 

optical signal collected by these nine detectors. According to our system architecture, the image 

in the field-of-view and the class detectors at the output plane were connected through diffractive 

surfaces of size 100λ × 100λ, and for the multi-layer (K > 1) configurations, the axial distance, d, 
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between two successive diffractive surfaces was taken as 40λ. With a neuron size of λ/2, we 

obtained N = 40K (200×200), Ni = 25.6K (160×160) and No = 22.5K (9×50×50). 

 

For the classification of the CIFAR-10 image dataset, the size of the diffractive surfaces 

was taken to be approximately 106.6λ × 106.6λ, and the edge length of the input field-of-view 

containing the input image was set to be ~53.3λ in both lateral directions. Unlike the amplitude 

encoded images of the previous dataset (Fig. 4.6), the information of the CIFAR-10 images was 

encoded in the phase channel of the input field, i.e., a given input image was assumed to define a 

phase-only object with the grey levels corresponding to the delays experienced by the incident 

wavefront within the range [0, λ). To form the phase-only object inputs based on the CIFAR-10 

dataset, we converted the RGB samples to greyscale by computing their YCrCb representations. 

Then, unsigned 8-bit integer values in the Y channel were converted into float32 values and 

normalized to the range [0, 1]. These normalized greyscale images were then mapped to phase 

values between [0, 2π). The original CIFAR-10 dataset137 has 50K training and 10K test images. 

In the diffractive optical network designs presented here, we used all 50K and 10K images 

during the training and testing stages, respectively. Therefore, the blind classification accuracy, 

efficiency and optical signal contrast values depicted in Fig. 4.9 were computed over the entire 

10K test set.  

The responsivity of the 10 class detectors placed at the output plane (each representing 

one CIFAR-10 data class, e.g., automobile, ship, truck, etc.) was assumed to be identical and 

uniform over an area of 6.4λ × 6.4λ. The axial distance between two successive diffractive 
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surfaces in the design was assumed to be 40λ. Similarly, the input and output fields-of-view were 

placed 40λ away from the first and last diffractive layers, respectively. 

Loss functions and training details 

For a given dataset with C classes, one way of designing an all-optical diffractive 

classification network is to place C class detectors at the output plane, establishing a one-to-one 

correspondence between data classes and the opto-electronic detectors. Accordingly, the training 

of these systems aims to find/optimize the diffractive surfaces that can route most of the input 

photons, thus the optical signal power, to the corresponding detector representing the data class 

of a given input object. 

The first loss function that we used for the training of diffractive optical networks is the 

cross-entropy loss, which is frequently used in machine learning for multi-class image 

classification. This loss function acts on the optical intensities collected by the class detectors at 

the output plane and is defined as: 

ℒ = −V "�log	(ℴ�)�	Á	A (4.22) 
where "� and ℴ� denote the entry in the one-hot label vector and the class score of class c, 

respectively. The class score ℴ�, on the other hand, is defined as a function of the normalized 

optical signals, �e; 
ℴ� = exp(=�e)∑ exp	(=�e)�	Á	A	 	 (4.23) 
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Equation 4.23 is the well-known softmax function. The normalized optical signals �e are 

defined as 
�hij	{�} × �, where I is the vector of the detected optical signals for each class detector 

and T is a constant parameter that induces a virtual contrast, helping to increase the efficacy of 

training. 

Alternatively, the all-optical classification design achieved using a diffractive network 

can be cast as a coherent image projection problem by defining a ground-truth spatial intensity 

profile at the output plane for each data class and an associated loss function that acts over the 

synthesized optical signals at the output plane. Accordingly, the mean-squared-error (MSE) loss 

function used in Fig. 4.9 computes the difference between a ground-truth intensity profile, 

=��(�, �), devised for class c and the intensity of the complex wave field at the output plane, i.e., 

|Tb-.(�, �)|�. We defined =��(�, �) as: 

=��(�, �) = "1			�õ	�	#	_��	��%	�	#	_��0																		$�ℎ�JH�!� 	 (4.24) 
where _�� and _�� represent the sensitive/active area of the class detector corresponding to 

class c. The related MSE loss function, ℒ�¡+ , can then be defined as: 

ℒ�¡+ = ��$|Tb-.(�, �)|� − =��(�, �)$�%�%� (4.25) 
All network models used in this work were trained using Python (v3.6.5) and TensorFlow 

(v1.15.0, Google Inc.). We selected the Adam106 optimizer during the training of all the models, 

and its parameters were taken as the default values used in TensorFlow and kept identical in each 

model. The learning rate of the diffractive optical networks was set to 0.001. 
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Chapter 5 All-optical Synthesis of An Arbitrary Linear 

Transformation Using Diffractive Surfaces  
 

Parts of this chapter have previously been published in O. Kulce et al. “All-Optical Synthesis 

of an Arbitrary Linear Transformation Using Diffractive Surfaces”, Light Science & 

Applications, DOI: 10.1038/s41377-021-00623-5. This chapter presents a numerical study that 

investigates the capabilities of diffractive optical networks in synthesizing arbitrary linear 

transformations between their input and output fields-of-view.  

Spatially-engineered diffractive surfaces have emerged as a powerful framework to control 

light-matter interactions for e.g., statistical inference and the design of task-specific optical 

components. Here, we report the design of diffractive surfaces to all-optically perform arbitrary 

complex-valued linear transformations between an input (Ç�) and output (Ç�), where Ç� and Ç� 

represent the number of pixels at the input and output fields-of-view (FOVs), respectively. First, 

we consider a single diffractive surface and use a matrix pseudoinverse-based method to 

determine the complex-valued transmission coefficients of the diffractive features/neurons to all-

optically perform a desired/target linear transformation. In addition to this data-free design 

approach, we also consider a deep learning-based design method to optimize the transmission 

coefficients of diffractive surfaces by using examples of input/output fields corresponding to the 

target transformation. We compared the all-optical transformation errors and diffraction 

efficiencies achieved using data-free designs as well as data-driven (deep learning-based) 

diffractive designs to all-optically perform (i) arbitrarily-chosen complex-valued transformations 

including unitary, nonunitary and noninvertible transforms, (ii) 2D discrete Fourier 

transformation, (iii) arbitrary 2D permutation operations, and (iv) high-pass filtered coherent 
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imaging. Our analyses reveal that if the total number (Ç) of spatially-engineered diffractive 

features/neurons is ≥ Ç� × Ç�, both design methods succeed in all-optical implementation of the 

target transformation, achieving negligible error. However, compared to data-free designs, deep 

learning-based diffractive designs are found to achieve significantly larger diffraction 

efficiencies for a given Ç and their all-optical transformations are more accurate for Ç < Ç� ×
Ç� . These conclusions are generally applicable to various optical processors that employ 

spatially-engineered diffractive surfaces. 
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5.1 Introduction 

It is well-known that optical waves can be utilized for the processing of spatial and/or 

temporal information138–143. Using optical waves to process information is appealing since 

computation can be performed at the speed of light, with high parallelization and throughput, 

also providing potential power advantages. For this broad goal, various optical computing 

architectures have been demonstrated in the literature144–158. With the recent advances in 

photonic material engineering, e.g., metamaterials, metasurfaces and plasmonics, the utilization 

of advanced diffractive materials that can precisely shape optical wavefronts through light-matter 

interaction has become feasible159–164. For example, optical processors formed through spatially-

engineered diffractive surfaces have been shown to achieve both statistical inference and 

deterministic tasks, such as image classification, single-pixel machine vision and spatially-

controlled wavelength division multiplexing, among others165–174. 

Since scalar optical wave propagation in free space and light transmission through diffractive 

surfaces constitute linear phenomena, the light transmission from an input field-of-view (FOV) 

to an output FOV that is engineered through diffractive surfaces can be formulated using linear 

algebra172. As a result, together with the free space diffraction, the light transmittance patterns of 

diffractive surfaces (forming an optical network) collectively define a certain complex-valued 

all-optical linear transformation between the input and output FOVs. In this paper, we focus on 

designing these spatial patterns and diffractive surfaces that can all-optically compute a desired, 

target transformation. We demonstrate that an arbitrary complex-valued linear transformation 

between an input and output FOV can be realized using spatially-engineered diffractive surfaces, 

where each feature (neuron) of a diffractive layer modulates the amplitude and/or phase of the 

optical wave field. In generating the needed diffractive surfaces to all-optically achieve a given 
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target transformation, we use both a matrix pseudoinverse-based design that is data-free as well 

as a data-driven, deep learning-based design method. In our analysis, we compared the 

approximation capabilities of diffractive surfaces for performing various all-optical linear 

transformations as a function of the total number of diffractive neurons, number of diffractive 

layers and the area of the input/output FOVs. For these comparisons, we used as our target 

transformations arbitrarily generated complex-valued unitary, nonunitary and noninvertible 

transforms, 2D Fourier transform, 2D random permutation operation as well as high-pass filtered 

coherent imaging operations.  

Our results reveal that when the total number of engineered/optimized diffractive neurons of 

a material design exceeds Ç� × Ç� , both the data-free and data-driven diffractive designs 

successfully approximate the target linear transformation with negligible error; here, Ç� and Ç� 

refer to the number of diffraction-limited, independent spots/pixels located within the area of the 

input and output FOVs, respectively. This means, to all-optically perform an arbitrary complex-

valued linear transformation between larger input and/or larger output FOVs, larger area 

diffractive layers with more neurons or a larger number of diffractive layers need to be utilized. 

Our analyses further reveal that deep learning-based data driven diffractive designs (that learn a 

target linear transformation through examples of input/output fields) overall achieve much better 

diffraction efficiency at the output FOV. All in all, our analysis confirms that for a given 

diffractive layer size, with a certain number of diffractive features per layer (like a building block 

of a diffractive network), the creation of deeper diffractive networks with one layer following 

another, can improve both the transformation error and the diffraction efficiency of the resulting 

all-optical transformation.  
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Our results and conclusions can be broadly applied to any part of the electromagnetic 

spectrum to design all-optical processors using spatially-engineered diffractive surfaces to 

perform an arbitrary complex-valued linear transformation.   

5.2 Results 

Formulation of all-optical transformations using diffractive surfaces 

Let â and & be the column vectors that include the samples of the 2D complex-valued input 

and output FOVs, respectively, as shown in Fig. 5.1.a. Here we assume that the optical wave 

field can be represented using the scalar field formulation175–177. â and & are generated by, first, 

sampling the 2D input and output FOVs, and then vectorizing the resulting 2D matrices in a 

column-major order. Following our earlier notation, Ç� and Ç� represent the number of 

diffraction-limited spots/pixels on the input and output FOVs, respectively, which also define the 

lengths of the vectors â and &. In our simulations, we assume that the sampling period along both 

the horizontal and vertical directions is G 2⁄ , where G is the wavelength of the monochromatic 

scalar optical field. With this selection in our model, we include all the propagating modes that 

are transmitted through the diffractive layer(s).  

To implement the wave propagation between parallel planes in free space, we generate a 

matrix, ÈÏ , where % is the axial distance between two planes (e.g.,	% ≥ G). Since this matrix 

represents a convolution operation where the 2D impulse response originates from the Rayleigh-

Sommerfeld diffraction formulation140, it is a Toeplitz matrix178. We generate this matrix using 

the Fourier relation in the discrete domain as 
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where ' and 'XØ  are the 2D discrete Fourier transform (DFT) and inverse discrete Fourier 

transform (IDFT) matrices, respectively, and the superscript � represents the matrix Hermitian 

operation. We choose the scaling constant appropriately such that the unitarity of the DFT 

operation is preserved, i.e., 'XØ = '( 	178. The matrix, ¦, represents the transfer function of 

free space propagation in the 2D Fourier domain and it includes nonzero elements only along its 

main diagonal entries. These entries are the samples of the function, �[WÎÏ , for 0 ≤ ºÑ =
uº� − &º�� + º��' ≤ º , where º�, º� ∈ [−º, º) . Here º = 2) G⁄  is the wavenumber of the 

monochromatic optical field and &º�, º�'  pair represents the 2D spatial frequency variables 

along �  and �  directions, respectively140. To ignore the evanescent modes, we choose the 

diagonal entries of ¦ that correspond to the ºÑ values for º� ≤ º�� + º�� as zero; since % ≥ G this 

is an appropriate selection. In our model, we choose the 2D discrete wave propagation square 

window size, QÇÏ ×QÇÏ , large enough (e.g., ÇÏ = 144� ) such that the physical wave 

propagation between the input plane, diffractive layers and the output plane is simulated 

accurately 179. Also, since ÈÏ represents a convolution in 2D space, the entries of ', 'XØ and ¦ 

follow the same vectorization procedure applied to the input and output FOVs. As a result, the 

sizes of all these matrices become	ÇÏ × ÇÏ.  

Since the diffractive surfaces are modeled as thin elements, the light transmission through 

surfaces can be formulated as a pointwise multiplication operation, where the output optical field 

of a layer equals to its input optical field multiplied by the complex-valued transmission function, 

�(�, �), of the diffractive layer. Hence, in matrix formulation, this is represented by a diagonal 

 ÈÏ ='XØ¦' ='(¦'	  (5.1) 
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matrix Ò, where the diagonal entries are the vectorized samples of �(�, �). Hence the size of Ò 

becomes Ç> × Ç>, where Ç> is the total number of diffractive features (referred to as neurons) on 

the corresponding layer.  

We also assume that the forward propagating optical fields are zero outside of the input FOV 

and outside of the transmissive parts of each diffractive surface, so that we solely analyze the 

modes that are propagating through the transmissive diffractive layers. This is not a restrictive 

assumption as it can be simply satisfied by introducing light blocking, opaque materials around 

the input FOV and the diffractive layers. Furthermore, although the wave field is not zero outside 

of the output FOV, we only formulate the optical wave propagation between the input and output 

FOVs since the complex-valued transformation (�) that we would like to approximate is defined 

between â and &. As a result of these, we delete the appropriate rows and columns of ÈÏ, which 

are generated based on Equation 5.1. We denote the resulting matrix as ÈÏe .    

Based on these definitions, the relationship between the input and output FOVs for a 

diffractive network that has E diffractive layers can be written as 

 

as shown in Fig. 5.1.a. Here %.  is the axial distance between the input FOV and the first 

diffractive layer, %b-. is the axial distance between the Ecd	layer and the output FOV, and %� for 

�	 ∈ 	 {2,3,⋯	, E} is the axial distance between the (� − 1)cd and �cd diffractive layers (see Fig. 

5.1.a). Also, Ò� for �	 ∈ 	 {1,2, ⋯	, E} is the complex-valued light transmission matrix of the �cd 

layer. The size of ÈÏçe  is Ç>ç × Ç� , the size of ÈÏ )çe  is Ç� × Ç>  and the size of ÈÏge 	is Ç>g ×
Ç>g�ç  for �	 ∈ 	 {2,3, ⋯	, E}, where Ç>g is the number of diffractive neurons at the �cd diffractive 

 &e = ÈÏ )çe ÒbÈÏ e ⋯Ò�ÈÏèe Ò.ÈÏçe â = �eâ (5.2) 
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layer. Note that, in our notation in Equation 5.2, we define &e as the calculated output by the 

diffractive system, whereas & refers to the ground truth/target output in response to â.  The matrix 

�e in Equation 5.2, that is formed by successive diffractive layers/surfaces, represents the all-

optical transformation performed by the diffractive network from the input FOV to the output 

FOV. Note that this formalism does not aim to optimize the diffractive system in order to 

implement only one given pair of input-output complex fields; instead it aims to all-optically 

approximate an arbitrary complex-valued linear transformation, �. 

Matrix pseudoinverse-based synthesis of an arbitrary complex-valued linear 

transformation using a single diffractive surface (û = Ø) 
In this section, we focus on data-free design of a single diffractive layer (E = 1), in order to 

determine the diagonal entries of Ò. such that the resulting transformation matrix, �e which is 

given by Equation 5.2, approximates the transformation matrix �. To accomplish this, we first 

vectorize �e in a column-major order and write it as172 

 

where ⊗ and the superscript � represent the Kronecker product and the matrix transpose 

operator, respectively. Since the elements of ��Â(Ò.) are nonzero only for the diagonal elements 

of Ò., Equation 5.3 can be further simplified as 

 

 ��Â(�e) = Ùe = ��Â&ÈÏèe Ò.ÈÏçe '	= &ÈÏçeÛ ⊗ÈÏèe '��Â(Ò.) 
 

(5.3)  

 Ùe = È′Ü. 

 

(5.4) 
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where Ü.[�] = Ò.[�, �] and Èe[: , �] = ÈÏçeÛ [: , �] ⊗ ÈÏèe [: , �] for �	 ∈ 	 81,2, ⋯	, Ç>ç9, and [: , �] 
represents the �cd column of the associated matrix in our notation. Here the matrix	Èe has size 

Ç�Ç� × Ç>ç and is a full-rank matrix with rank _ = #��&Ç�Ç� , Ç>ç' for %. ≠ %�. If %. = %�, the 

maximum rank reduces to Ç�(Ç� + 1) 2⁄  when Ç� = Ç� 172. We assume that %. ≠ %� and denote 

the maximum achievable rank as _��� , which is equal to Ç�Ç�.    

Based on Equation 5.4, the computation of the neuron transmission values of the diffractive 

layer that approximates a given complex-valued transformation matrix � can be reduced to an 

L2-norm minimization problem, where the approximation error which is subject to the 

minimization is 178 

 

where Ù is the vectorized form of the target transformation matrix �, i.e., ��Â(�) = Ù. We 

included a scalar, normalization coefficient (#) in Equation 5.5 so that the resulting difference 

term does not get affected by a diffraction-efficiency related scaling mismatch between � and �′; 
also note that we assume a passive diffractive layer without any optical gain, i.e., |Ü.[�]| ≤ 1 for 

all �	 ∈ 	 81,2, ⋯	, Ç>ç9. As a result of this, we also introduced in Equation 5.5, #Ü. = Ü*.. 

 ‖Ù −#Ùe‖� = ‖Ù −#ÈeÜ.‖� = ‖Ù −ÈeÜ*.‖� = ‖Ù − Ù,e‖�	
= 1Ç�Ç� V|Ù[�] − #Ùe[�]|�å�å-

��. 	
= 1Ç�Ç� V|Ù[�] − Ù,e[�]|�å�å-

��.  

 

(5.5) 
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Throughout the paper, we use .� − �ße.�	and ‖Ù − Ù,e‖� interchangeably both referring to 

Equation 5.5 and define them as the all-optical transformation error. We also refer to Ù, Ùe and 

Ù,e as the target transformation (ground truth), estimate transformation and normalized estimate 

transformation vectors, respectively. 

If Ç>ç > Ç�Ç�, the number of equations in Equation 5.4 becomes less than the number of 

unknowns and the matrix-vector equation corresponds to an underdetermined system.  If Ç>ç <
Ç�Ç�, on the other hand, the equation system becomes an overdetermined system. In the critical 

case, where Ç>ç = Ç�Ç�, È′ becomes a full-rank square matrix, hence, is an invertible matrix. 

There are various numerical methods for solving the formulated matrix-vector equation and 

minimizing the transformation error given in Equation 5.5 178. In this paper, we adopt the 

pseudoinverse-based method among other numerical methods in computing the neuron 

transmission values in finding the estimate transformation	�′ for all the cases, i.e., Ç>ç > Ç�Ç�, 

Ç>ç < Ç�Ç� and Ç>ç = Ç�Ç�. For this, we compute the neuron values from a given target 

transformation as 

 

where È′/ is the pseudoinverse of È′. This pseudoinverse operation is performed using the 

singular value decomposition (SVD) as 

 

 Ü*. = È′/Ù 

 

(5.6)  

 È′/ = ú0X.1( 

 

(5.7)  
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where 1 and ú are orthonormal matrices and	0 is a diagonal matrix that contains the singular 

values of È′. 1, ú and 0 form the È′ matrix as 

 

To prevent the occurrence of excessively large numbers that might cause numerical artifacts, we 

take very small singular values as zero during the computation of 0X.. After computing Ü*., the 

normalization constant (#) and the physically realizable neuron values can be calculated as: 

 

In summary, the vector Ü. that includes the transmittance values of the diffractive layer is 

computed from a given, target transformation vector, Ù, using Equations 5.6 and 5.9, and then 

the resulting estimate transformation vector, Ùe, is computed using Equation 5.4. Finally, �′, is 

obtained from Ùe by reversing the vectorization operation. 

Deep learning-based synthesis of an arbitrary complex-valued linear transformation using 

diffractive surfaces (û ≥ Ø) 
Different from the numerical pseudoinverse-based design method described in the 

previous section, which is data-free in its computational steps, deep learning-based design of 

diffractive layers utilize a training dataset containing examples of input/output fields 

corresponding to a target transformation �. In a K-layered diffractive network, our optical 

forward model implements Equation 5.2, where the diagonal entries of each Ò� matrix for �	 ∈
	{1,2, ⋯	, E} become the arguments subject to the optimization. At each iteration of deep 

 È′ = 10ú( 

 

(5.8)  

 # = #��� (|Ü*.|)      and      	Ü. = Ü*. #⁄  

 

(5.9) 
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learning-based optimization during the error-back-propagation algorithm, the complex-valued 

neuron values are updated to minimize the following normalized mean-squared-error loss 

function: 

where 

 

refer to the ground truth and the estimated output field by the diffractive network, respectively, 

for the !cd input field in the training dataset, â¡. The subscript Â indicates the current state of the 

all-optical transformation at a given iteration of the training that is determined by the current 

transmittance values of the diffractive layers. The constant 2¡  normalizes the energy of the 

ground truth field at the output FOV and can be written as 

 

Also, the complex valued 2¡,�e  is calculated to minimize Equation 5.10. It can be computed by 

taking the derivative of .&3¡ − &3¡,�e .� with respect to 2¡,�e∗ , which is the complex conjugate of 2¡,�e , 

and then equating the resulting expression to zero,180 which yields: 

 .&3¡ − &3¡,�e .� = 1Ç�V$2¡&¡[�] − 2¡,�e &¡,�e [�]$�å-
��.  

 

(5.10) 

 &¡ = �â¡     and     &¡,�e = ��e â¡ 

 

(5.11) 

 

2¡ = ëV|&¡[�]|�å-
��. î

X	.�
 

(5.12) 
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After the training is over, which is a one-time effort, the estimate transformation matrix 

and the corresponding vectorized form, �e and ��Â(�e) = Ùe, are computed using the optimized 

neuron transmission values in Equation 5.2. After computing Ùe , we also compute the 

normalization constant, #, which minimizes ‖Ù −#Ùe‖�, resulting in: 

 

In summary, an optical network that includes K diffractive surfaces can be optimized 

using deep learning through training examples of input/output fields that correspond to a target 

transformation,	�. Starting with the next section, we will analyze and compare the resulting all-

optical transformations that can be achieved using data-driven (deep learning-based) as well as 

data-free designs that we introduced.   

Comparison of all-optical transformations performed through diffractive surfaces designed 

by matrix pseudoinversion vs. deep learning 

In this section we present a quantitative comparison of the pseudoinverse- and deep 

learning-based methods in synthesizing various all-optical linear transformations between the 

input and output FOVs using diffractive surfaces. In our analysis, we took the total number of 

pixels in both the input and output FOVs as Ç� = Ç� = 64 (�. �.		8	 × 	8) and the size of each ÈÏ 

matrix was 144� × 144� with ÇÏ = 144�. The linear transformations that we used as our 

comparison testbeds are (i) arbitrarily generated complex-valued unitary transforms, (ii) 

 2¡,�e = ∑ 2¡&¡[�]&¡,�e∗ [�]å-��.∑ $&¡,�e [�]$�å-��.
 

(5.13) 

 # = ∑ Ù[�]Ùe∗[�]å�å-��.∑ |Ùe[�]|�å�å-��.  

(5.14)  
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arbitrarily generated complex-valued nonunitary and invertible transforms, (iii) arbitrarily 

generated complex-valued noninvertible transforms, (iv) the 2D discrete Fourier transform, (v) a 

permutation matrix-based transformation, and (vi) a high-pass filtered coherent imaging 

operation. The details of the diffractive network configurations, training image datasets, training 

parameters, computation of error metrics and the generation of ground truth transformation 

matrices are presented in Section 5.4. Next, we present the performance comparisons for 

different all-optical transformations.    

Case 1: Arbitrary complex-valued unitary and nonunitary transforms 

In Figs. 5.1-5.3, we present the results for an arbitrarily selected complex-valued unitary 

transforms that is approximated using diffractive surface designs with different number of 

diffractive layers, E, and different number of neurons, Ç = ∑ Ç>�bW�. . Similarly, Figs. 5.4-5.6 

report a different nonunitary, arbitrarily selected complex-valued linear transforms performed 

through diffractive surface designs. To cover different types of transformations, Figs. 5.4-5.6 

report an invertible nonunitary and a noninvertible (hence, nonunitary) transformation, 

respectively. The magnitude and phase values of these target transformations (�) are also shown 

in Figs. 5.1.b, 5.b.  

To compare the performance of all-optical transformations that can be achieved by 

different diffractive designs, Fig. 5.1.c and Fig. 5.4.c report the resulting transformation errors 

for the above described testbeds (� matrices) as a function of Ç and E. It can be seen that, in all 

of the diffractive designs reported in these figures, there is a monotonic decrease in the 

transformation error as the total number of neurons in the network increases. In data-free, matrix 

pseudoinverse-based designs (E = 1) , the transformation error curves reach a baseline, 
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approaching ~0 starting at Ç = 64�. This empirically-found turning point of the transformation 

error at Ç = 64�  also coincides with the limit of the information processing capacity of the 

diffractive network dictated by _��� = Ç�Ç� = 64�	172. Beyond this point, i.e., for Ç > 64�, the 

all-optical transformation errors of data-free diffractive designs remain negligible for these 

complex-valued unitary as well as nonunitary transformations defined in Fig. 5.1.b and Fig. 5.4.b. 

On the other hand, for data-driven, deep learning-based diffractive designs, one of the 

key observations is that, as the number of diffractive layers (E) ,  increases, the all-optical 

transformation error decreases for the same Ç . Stated differently, deep learning-based, data-

driven diffractive designs prefer to distribute/divide the total number of neurons (Ç)  into 

different, successive layers as opposed having all the Ç neurons at a single, large diffractive 

layer; the latter, deep learning-designed E = 1, exhibits much worse all-optical transformation 

error compared to e.g., E = 4 diffractive layers despite the fact that both of these designs have 

the same number of trainable neurons (Ç). Furthermore, as illustrated in Fig. 5.1 and Fig. 5.4, 

deep learning-based diffractive designs with E = 4  layers match the transformation error 

performance of data-free designs based on matrix pseudoinversion and also exhibit negligible 

transformation error for Ç ≥ 64� = Ç�Ç� . However, when Ç < 64�  the deep learning-based 

diffractive designs with E = 4 layers achieve smaller transformation errors compared to data-

free diffractive designs that have the same number of neurons. Similar conclusions can be made 

in Figs. 5.1.e and 5.4.e, by comparing the mean-squared-error (MSE) values calculated at the 

output FOV using test images (input fields). For Ç ≥ 64� = Ç�Ç�  the deep learning-based 

diffractive designs (E = 4) along with the data-free diffractive designs achieve output MSE 

values that approach ~0, similar to the all-optical transformation errors that approach ~0 in Fig. 
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5.1.c and Fig. 5.4.c. However for designs that have smaller number of neurons, i.e., Ç < Ç�Ç�, 

the deep learning-based diffractive designs with E = 4 achieve much better MSE at the output 

FOV compared to data-free diffractive designs that have same number of neurons (Ç).  
In addition to these, one of the most significant differences between the pseudoinverse-

based data-free diffractive designs and deep learning-based counterparts is observed in the 

optical diffraction efficiencies calculated at the output FOV; see Figs. 5.1.f and 5.4.f. Even 

though the transformation errors (or the output MSE values) of the two design approaches 

remain the same (~0) for Ç ≥ 64� = Ç�Ç� , the diffraction efficiencies of the all-optical 

transformations learned using deep learning significantly outperform the diffraction efficiencies 

achieved using data-free, matrix pseudoinverse-based designs as shown in Figs. 5.1.f and 5.4.f. 

On top of transformation error, output MSE and diffraction efficiency metrics, Figs. 5.1.d, 

and 5.4.d also report the cosine similarity (see Section 4) between the estimated all-optical 

transforms and the ground truth (target) transforms. These cosine similarity curves show the 

same trend and support the same conclusions as with the transformation error curves reported 

earlier; this is not surprising as the transformation error and cosine similarity metrics are 

analytically related to each other as detailed later. For Ç ≥ 64� = Ç�Ç�, the cosine similarity 

approaches 1, matching the target transformations using both the data-free (E = 1) and deep 

learning-based	(E = 4) diffractive designs as shown in Figs. 5.1.d and 5.4.d.   

To further shed light on the performance of these different diffractive designs, the 

estimated transformations and their differences (in phase and amplitude) from the target matrices 

(�) are shown in Figs. 5.2 and 5.5 for different diffractive parameters. Similarly, examples of 

complex-valued input-output fields for different diffractive designs are compared in Figs. 5.3 and 
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5.6 against the ground truth output fields (calculated using the target transformations), along with 

the resulting phase and amplitude errors at the output FOV. From these figures, it can be seen 

that both data-free (E = 1)  and deep learning-based (E = 4)  diffractive designs with the same 

total number of neurons can all-optically generate the desired transformation and output field 

patterns with negligible error when	Ç ≥ 64� = Ç�Ç�. For  Ç < Ç�Ç�, on the other hand, the 

output field amplitude and phase profiles using deep learning-based diffractive designs show 

much better match to the ground truth output field profiles when compared to data-free, matrix 

pseudoinverse-based diffractive designs (see e.g., Figs. 5.3, 5.6). 

In this subsection, we presented diffractive designs that successfully approximated 

arbitrary complex-valued transformations, where the individual elements of target � matrices 

(shown in Fig. 5.1.b and Fig. 5.4.b) were randomly and independently generated as described in 

Section 4.4. Our results confirm that, for a given total number of diffractive features/neurons (Ç) 
available, building deeper diffractive networks where these neurons are distributed across 

multiple, successive layers, one following the other, can significantly improve the transformation 

error, output field accuracy and the diffraction efficiency of the whole system to all-optically 

implement an arbitrary, complex-valued target transformation between an input and output FOV. 

Starting with the following subsection, we focus on some task-specific all-optical 

transformations, which are frequently used in various optics and photonics applications. 
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Fig. 5.1 Diffractive all-optical transformation results for an arbitrary complex-valued unitary transform. 

a. Schematic of a K-layer diffractive network, that all-optically performs a linear transformation between the 

input and output fields-of-views that have N� and N� pixels, respectively. The all-optical transformation matrix 

due to the diffractive layer(s) is given by Ae. b. The magnitude and phase of the ground truth (target) input-

output transformation matrix, which is an arbitrarily generated complex-valued unitary transform, i.e., R.6R. =
R.R.6 = I. c. All-optical transformation errors (see Equation 5.5). The x-axis of the figure shows the total 

number of neurons (N) in a K-layered diffractive network, where each diffractive layer includes N K⁄  neurons. 

Therefore, for each point on the x-axis, the comparison among different diffractive designs (colored curves) is 

fair as each diffractive design has the same total number of neurons available. The simulation data points are 

shown with dots and the space between the dots are linearly interpolated. d. Cosine similarity between the 

vectorized form of the target transformation matrix in (b) and the resulting all-optical transforms (see Equation 

5.16). e. Output MSE between the ground-truth output fields and the estimated output fields by the diffractive 

network (see Equation 5.18).  f. The diffraction efficiency of the designed diffractive networks (see Equation 

5.19). 
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Fig. 5.2 Diffractive all-optical transformations and their differences from the ground truth, target 

transformation (�) presented in Fig. 5.1.b. $∠Z − ∠Z9e$ó indicates the wrapped phase difference between the 

ground truth and the normalized all-optical transformation.  
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Fig. 5.3 Sample input-output images for the ground truth transformation presented in Fig. 5.1.b and the 

optical outputs by the diffractive designs for two different choices of � (� = ��� and � = �	�). The 

magnitude and phase of the normalized output fields and the differences of these quantities with respect to the 

ground truth are shown.  |∠$ − ∠$*e|ó  indicates wrapped phase difference between the ground truth and the 

normalized output field. 
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Case 2: 2D discrete Fourier transform 

Here we show that the 2D Fourier transform operation can be performed using diffractive 

designs such that the complex field at output FOV reflects the 2D discrete Fourier transform of 

the input field. Compared to lens-based standard Fourier transform operations, diffractive 

surface-based solutions are not based on the paraxial approximation and offer a much more  

compact set-up (with a significantly smaller axial distance, e.g., < 50G, between the input-output 

planes) and do not suffer from aberrations, which is especially important for larger input/output 

FOVs.  

The associated transform matrix (�) corresponding to 2D discrete Fourier transform, all-

optical transformation error, cosine similarity of the resulting all-optical transforms with respect 

the ground truth, the output MSE and the diffraction efficiency are shown in Fig. 5.7. For all 

these curves and metrics, our earlier conclusions made in Section 2.4.1 are also applicable. Data-

free (E = 1) and deep learning-based (E = 4) diffractive designs achieve accurate results at the 

output FOV for Ç ≥ Ç�Ç� = 64� , where the transformation error and the output MSE both 

approach to ~0 while the cosine similarity reaches ~1, as desired. In terms of the diffraction 

efficiency at the output FOV, similar to our earlier observations in the previous section, deep 

learning-based diffractive designs offer major advantages over data-free diffractive designs. 

Further advantages of deep learning-based diffractive designs over their data-free counterparts 

include significantly improved output MSE and reduced transformation error for Ç < Ç�Ç� , 

confirming our earlier conclusions made in Section 2.4.1. 
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To further show the success of the diffractive designs in approximating the 2D discrete 

Fourier transformation, in Fig. 5.8 we report the estimated transformations and their differences 

(in phase and amplitude) from the target 2D discrete Fourier transformation matrix for different 

diffractive designs. Furthermore, in Fig. 5.9, examples of complex-valued input-output fields for 

different diffractive designs are compared against the ground truth output fields (calculated using 

the 2D discrete Fourier transformation), along with the resulting phase and amplitude errors at 

the output FOV, all of which illustrate the success of the presented diffractive designs. 

Case 3: Permutation matrix 

For a given randomly generated permutation matrix (
), the task of the diffractive design 

is to all-optically obtain the permuted version of the input complex-field at the output FOV. 

Although the target ground truth matrix (
) for this case is real-valued and relatively simpler 

compared to that of e.g., the 2D Fourier transform matrix, an all-optical permutation operation 

that preserves the phase and amplitude of each point is still rather unconventional and 

challenging to realize using standard optical components. To demonstrate this capability, we 

randomly selected a permutation matrix as shown in Fig. 5.10b and designed various diffractive 

surfaces to all-optically perform this target permutation operation at the output FOV. The 

performances of these data-free and data-driven, deep learning-based diffractive designs are 

compared in Figs. 5.10c-f. The success of the diffractive all-optical transformations, matching 

the target permutation operation is demonstrated when Ç ≥ Ç�Ç� , revealing the same 

conclusions discussed earlier for the other transformation matrices that were tested. For example, 

deep learning-based diffractive designs (E = 4) with Ç ≥ Ç�Ç�  neurons were successful in 

performing the randomly selected permutation operation all-optically, and achieved a 

transformation error and output MSE of ~0, together with a cosine similarity of ~1 (see Fig. 
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5.10). Estimated transforms and sample output patterns, together with their differences with 

respect to the corresponding ground truths are also reported in Figs. 5.11 and 5.12, respectively, 

further demonstrating the success of the presented diffractive designs.  

Case 4: High-pass filtered coherent imaging  

In this sub-section, we present diffractive designs that perform high-pass filtered coherent 

imaging, as shown in Fig. 5.13. This high-pass filtering transformation is based on the Laplacian 

operator described in Section 5.4. Similar to the 2D discrete Fourier transform operation 

demonstrated earlier, diffractive surface-based solutions to high-pass filtered coherent imaging 

are not based on a low numerical aperture assumption or the paraxial approximation, and provide 

an axially compact implementation with a significantly smaller distance between the input-

output planes (e.g.,	< 50G); furthermore, these diffractive designs can handle large input/output 

FOVs without suffering from aberrations. 

Our results reported in Fig. 5.13 also exhibit a similar performance to the previously 

discussed all-optical transformations, indicating that the pseudoinverse-based diffractive designs 

and the deep learning-based designs are successful in their all-optical approximation of the target 

transformation, reaching a transformation error and output MSE of ~0 for Ç ≥ Ç�Ç�. Same as in 

other transformations that we explored, deep learning-based designs offer significant advantages 

compared to their data-free counterparts in the diffraction efficiency that is achieved at the output 

FOV. The estimated sample transformations and their differences from the ground truth 

transformation are shown in Fig. 5.14. Furthermore, as can be seen from the estimated output 

images and their differences with respect to the corresponding ground truth images (shown in Fig. 

5.15), the diffractive designs can accurately perform high-pass filtered coherent imaging for Ç ≥
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Ç�Ç� , and for Ç < Ç�Ç�  deep learning-based diffractive designs exhibit better accuracy in 

approximating the target output field, which are in agreement with our former observations in 

earlier sections. 

5.3 Discussion 

Through our results and analysis, we showed that it is possible to synthesize an arbitrary 

complex-valued linear transformation all-optically using diffractive surfaces. We covered a wide 

range of target transformations, starting from rather general cases, e.g. arbitrarily generated 

unitary, nonunitary (invertible) and noninvertible transforms, also extending to more specific 

transformations such as the 2D Fourier transform, 2D permutation operation as well as high-pass 

filtered coherent imaging operation. In all the linear transformations that we presented in this 

paper, the diffractive networks realized the desired transforms with negligible error when the 

total number of neurons reached Ç ≥ Ç�Ç� . It is also important to note that the all-optical 

transformation accuracy of the deep learning-based diffractive designs improves as the number 

of diffractive layers is increased, e.g., from E = 1, 2 to E = 4. Despite sharing the same number 

of total neurons in each case (i.e., Ç = ∑ Ç>�bW�. ), deep learning-based diffractive designs prefer 

to distribute these Ç trainable diffractive features/neurons into multiple layers, favoring deeper 

diffractive designs overall.  

In addition to the all-optical transformation error, cosine similarity and output MSE 

metrics, the output diffraction efficiency is another very important metric as it determines the 

signal-to-noise ratio of the resulting all-optical transformation. When we compare the diffraction 

efficiencies of different networks, we observe that the data-free, matrix pseudoinverse-based 

designs perform the worst among all the configurations that we have explored (see Figs. 5.1.f, 
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5.4.f, 5.7.f, 5.10.f, and 5.13.f). This is majorly caused by the larger magnitudes of the 

transmittance values of the neurons that are located close to the edges of the diffractive layer, 

when compared to the neurons at the center of the same layer. Since these “edge” neurons are 

further away from the input FOV, their larger transmission magnitudes (|Ü|) compensate for the 

significantly weaker optical power that falls onto these edge neurons from the input FOV. Since 

we are considering here passive diffractive layers only, the magnitude of the transmittance value 

of an optical neuron cannot be larger than one (i.e., |Ü| ≤ 1), and therefore as the edge neurons in 

a data-free design start to get more transmissive to make up for the weaker input signals at their 

locations, the transmissivity of the central neurons of the diffractive layer become lower, 

balancing off their relative powers at the output FOV to be able to perform an arbitrary linear 

transformation. This is at heart of the poor diffraction efficiency that is observed with data-free, 

matrix pseudoinverse-based designs. In fact, the same understanding can also intuitively explain 

why deep learning-based diffractive designs prefer to distribute their trainable diffractive 

neurons into multiple layers. By dividing their total trainable neuron budget (Ç) into multiple 

layers, deeper diffractive designs (e.g., E = 4) avoid using neurons that are laterally further 

away from the center. This way, the synthesis of an arbitrary all-optical transformation can be 

achieved much more efficiently, without the need to weaken the transmissivity of the central 

neurons of a given layer. Stated differently, deep learning-based diffractive designs utilize a 

given neuron budget more effectively and can efficiently perform an arbitrary complex-valued 

transformation between an input and output FOV. 
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In fact, deep learning-based, data-driven diffractive designs can be made even more 

photon efficient by restricting each diffractive layer to be a phase-only element (i.e., |Ü| = 1 for 

all the neurons) during the iterative learning process of a target complex-valued transformation. 

To demonstrate this capability with increased diffraction efficiency, we also designed diffractive 

networks with phase-only layers. These results indicate that much better output diffraction 

efficiencies can be achieved using phase-only diffractive networks, with some trade-off in the 

all-optical transformation performance. The relative increase in the transformation errors and the 

output MSE values that we observed in phase-only diffractive networks is caused by the reduced 

degrees of freedom in the diffractive design since |Ü| = 1 for all the neurons. Regardless, by 

increasing the total number of neurons (Ç > Ç�Ç�), the phase-only diffractive designs approach 

the all-optical transformation performance of their complex-valued counterparts designed by 

deep learning, while also providing a much better diffraction efficiency at the output. Note also 

that, while the phase-only diffractive layers are individually lossless, the forward propagating 

optical fields still experience some power loss due to the opaque regions that are assumed to 

surround the diffractive surfaces (which is a design constraint as detailed in Section 2.1). In 

addition to these losses, the field energy that lies outside of the output FOV is also considered a 

loss from the perspective of the target transformation, which is defined between the input and 

output FOVs. 

In our analysis reported so far, there are some practical factors that are not taken into 

account as part of our forward optical model, which might degrade the performance of 

diffractive networks: (1) material absorption, (2) surface reflections and (3) fabrication 

imperfections. By using materials with low loss and appropriately selected 3D fabrication 

methods, these effects can be made negligible compared with the optical power of the forward 
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propagating modes within the diffractive network. Alternatively, one can also include such 

absorption- and reflection-related effects as well as mechanical misalignments (or fabrication 

imperfections) as part of the forward model of the optical system, which can be better taken into 

account during the deep learning-based optimization of the diffractive layers. Importantly, 

previous experimental studies165–174 reported on various diffractive network applications indicate 

that the impact of fabrication errors, reflection and absorption-based losses are indeed small and 

do not create a significant discrepancy between the predictions of the numerical forward models 

and the corresponding experimental measurements. 

Finally, we should emphasize that for diffractive networks that have more than one layer, 

the transmittance values of the neurons of different layers appear in a coupled, multiplicative 

nature within the corresponding matrix-vector formulation of the all-optical transformation 

between the input and output FOVs 172. Hence, a one-step, matrix pseudoinverse-based design 

strategy cannot be applied for multi-layered diffractive networks in finding all the neuron 

transmittance values. Moreover, for diffractive designs with a large Ç, the sizes of the matrices 

that need to undergo the pseudoinverse operation grow exponentially, which drastically increases 

the computational load and may prevent performing matrix pseudoinverse computations due to 

limited computer memory and computation time. This also emphasizes another important 

advantage of the deep learning-based design methods which can handle much larger number of 

diffractive neurons to be optimized for a given target transformation, thanks to the efficient error 

back-propagation algorithms and computational tools that are available. Similarly, if Ç� and Ç� 

are increased as the sizes of the input and output FOVs are enlarged, the total number of 

diffractive neurons needed to successfully approximate a given complex-valued linear 

transformation will accordingly increase to _ = Ç�Ç� , which indicates the critical number of 
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total diffractive features (marked with the vertical dashed lines in our performance metrics 

related figures).  

5.4 Materials and Methods 

Diffractive network configurations 

In our numerical simulations, the chosen input and output FOV sizes are both 8 × 8  

pixels. Hence, the target linear transforms, i.e., � matrices, have a size of Ç� × Ç� = 64 × 64. 

For a diffractive design that has a single diffractive surface (E = 1), the chosen axial distances 

are %. = G and %� = 4G. For the networks that have two diffractive surfaces (E = 2), the chosen 

axial distances are  %. = G  and %� = %ê = 4G . Finally, for the 4-layered diffractive network 

(E = 4), the axial distances are chosen as %. = G and %� = %ê = %� = 4G. These axial distances 

can be arbitrarily changed without changing the conclusions of our analysis; they were chosen 

large enough to neglect the near-field interactions between successive diffractive layers, and 

small enough to perform optical simulations with a computationally feasible wave propagation 

window size. We chose our 2D wave propagation window as ÇÏ × ÇÏ = 144 × 144, which ends 

up with a size of 144� × 144� for ÈÏ  matrices, resulting in ~430 Million entries in each ÈÏ 

matrix. 

Image datasets and diffractive network training parameters 

To obtain the diffractive surface patterns that collectively approximate the target 

transformation using deep learning-based training, we generated a complex-valued input-output 

image dataset for each target �. To cover a wide range of spatial patterns, each input image in 

the dataset has a different sparsity ratio with randomly chosen pixel values. We also included 

rotated versions of each training image. We can summarize our input image dataset as  
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where S refers to the number of images for each sub-category of the training image set defined 

by º�  for º ∈ {4,8,16,32,48,64}, which indicates a training image where º  pixels out of Ç� 
pixels are chosen to be nonzero (with all the rest of the pixels being zero). Hence, º indicates the 

fill factor for a given image. We choose ` = 15,000 for the training and ` = 7,500 for the test 

image sets. Also, 41 in Equation 5.15 indicates the four different image rotations of a given 

training image, where the rotation angles are determined as 0°, 90°, 180° and 270°. For example, 

16� in Equation 5.15 indicates that randomly chosen 16 pixels out of 64 pixels of an image are 

nonzero and the remaining 48 pixels are zero. Following this formalism, we generated a total of 

360E images for the training dataset and 180E for the test image dataset. Moreover, if a pixel in 

an image was chosen as nonzero, it took an independent random value from the set 

: ê���� , êê��� , ⋯ , ������ , ������;. Here the lower bound was chosen so that the “on” pixels can be well-

separated from the zero-valued “off” pixels.  

In this paper, we used the same input (â) image dataset for all the transformation matrices 

(�) that we utilized as our testbed. However, since the chosen linear transforms are different, the 

ground truth output fields are also different in each case, and were calculated based on & = �â.        
As discussed in Section 2.3, our forward model implements Equation 5.2 and the DFT 

operations are performed using the fast Fourier transform algorithm179. In our deep learning 

models, we chose the loss function as shown in Equation 5.10. All the networks were trained 

using Python (v3.6.5) and TensorFlow (v1.15.0, Google Inc.), where the Adam optimizer was 

 (4� + 8� + 16� + 32� + 48� + 64�) × 41 × ` (5.15)  
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selected during the training. The learning rate, batch size and the number of training epochs were 

set to be 0.01, 8 and 50, respectively.  

Computation of all-optical transformation performance metrics 

 

As our all-optical transformation performance metrics, we used (i) the transformation 

error, (ii) the cosine similarity between the ground truth and the estimate transformation matrices, 

(iii) normalized output MSE and (iv) the mean output diffraction efficiency.  

The first metric, the transformation error, is defined in Equation 5.5, which was used for 

both pseudoinverse-based diffractive designs and deep learning-based designs. The second 

chosen metric is the cosine similarity between two complex-valued matrices, which is defined as 

 

We use the notation 3&�, �ße' interchangeably with 3(Ù, Ù,e), both referring to Equation 

5.16. Note that, even though the transformation error and cosine similarity metrics that are given 

by Equations 5.5 and 5.16, respectively, are related to each other, they end up with different 

quantities. The relationship between these two metrics can be revealed by rewriting Equation 5.5 

as 

 3(Ù, Ù,e) = |〈Ù,Ù,e〉|
u∑ |Ù[�]|�å�å-��. u∑ |Ù,e[�]|�å�å-��.

= |Ù(Ù,e|Q‖Ù‖�Q‖Ù,e‖� 

(5.16)  

 ‖Ù − Ù,e‖� = (Ù − Ù,e)((Ù − Ù,e) = ‖Ù‖� + ‖Ù,e‖� − 21�{Ù(Ù,e} 
 

(5.17)  
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where 1�{∙}  operator extracts the real part of its input. As a result, apart from the vector 

normalization constants, ‖Ù‖� and ‖Ù,e‖�, Equations 5.16 and 5.17 deal with the magnitude and 

real part of the inner product (Ù(Ù,e), respectively. 

For the third metric, the normalized MSE calculated at the output FOV, we used the 

following equation: 

 

where	?[∙] is the expectation operator and `Û is the total number of the image samples in the test 

dataset. The vectors &¡ = �â¡ and &¡e = �′â¡ represent the ground truth and the estimated output 

fields (at the output FOV), respectively, for the !cd input image sample in the dataset, â¡. The 

normalization constant, 2¡ is given by Equation 5.12, and 2¡e, can be computed from Equation 

5.13, by replacing 2¡e and &¡e  by 2¡,�e  and &¡,�e , respectively. 

Finally, we chose the mean diffraction efficiency of the diffractive system as our last 

performance metric, which is computed as   

 

 ?[‖&3 − &3′‖�] = 1`ÛÇ�VV|&3¡[�] − &3¡e [�]|�å-
��.

@>
¡�. 	

= 1`ÛÇ�VV|2¡&¡[�] − 2¡e&¡e [�]|�å-
��.

@>
¡�.  

 

(5.18) 

 ? ?‖&e‖�‖â‖� @ = 1̀
ÛV∑ |&¡e [�]|�å-��.∑ |â¡[�]|�å���. 		@>
¡�.  

(5.19) 
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Random generation of ground truth matrices 

 

To create the unitary transformations, as presented in Fig. 5.1.b, we first generated a 

complex-valued Givens rotation matrix, which is defined for a predetermined �, � ∈ {1,2, ⋯	, Ç�} 
and � ≠ � pair as  

where ]., ]�, ]ê ∈ [0,2)) are randomly generated phase values. Then a unitary matrix was 

computed as 

where (�c, �c) pair is randomly chosen for each t. We used � = 10� in our simulations. As 

a result, for each t in Equation 21, (�c, �c) and (]., ]�, ]ê) were chosen randomly. It is 

straightforward to show that the resulting A matrix in Equation 21 is a unitary matrix.  

To compute the nonunitary but invertible matrices, we first generated two unitary 

matrices AB and AË, as described by Equations 5.20 and 5.21, and then  a diagonal matrix C. 

The diagonal elements of C takes uniformly, independently and identically generated random 

real values in the range [0.3,1], where the lower limit is determined to be large enough to prevent 

 

A�[[�,#] =
DEE
F
EEG

1, if	� = #, � ≠ �	and	� ≠ ��[\ç cos ]ê, 					if	� = # = �	�X[\ç cos ]ê, 					if	� = #	 = ��[\è sin ]ê, 					if	� = �	and	# = �−�X[\è sin ]ê, 					if	� = �	and	# = �0,					otherwise	
 

(5.20) 

A =LA�M[MÛ
c�.  

 

(5.21) 
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numerical instabilities and the upper limit is determined to prevent amplification of the 

orthonormal components of AB and AË. Then, the nonunitary but invertible matrix is generated 

as ABCAË(, which is in the form of the SVD of the resulting matrix. It is straightforward to show 

that the resulting matrix is invertible. However, to make sure that it is nonunitary, we 

numerically compute its Hermitian and its inverse separately, and confirm that they are not equal. 

Similarly, to compute the noninvertible transformation matrix, as shown in e.g., Fig. 5.4.b, we 

equated the randomly chosen half of the diagonal elements of C to zero and randomly chose the 

remaining half to be in the interval [0.3,1]. Following this, we computed the noninvertible matrix 

as ABCAË(, by re-computing new unitary matrices AB and AË, which end up to be completely 

different from the AB and AË matrices that were computed for the nonunitary and invertible 

transform. 

The 2D DFT operation for the square input aperture located at the center of the input 

plane was defined by 

 

where â�¦ and &�¦ represent the 2D fields on the input and output FOVs, respectively, and 

�,#, �, ¶ ∈ "− Qå�� , − Qå�� + 1,⋯ , Qå�� − 1N. Here we assume that the square-shaped input and 

output FOVs have the same area and number of pixels, i.e., Ç� = Ç�. Moreover, since we assume 

that the input and output FOVs are located at the center of their associated planes, the space and 

 

&�¦[�, ¶] = 1QÇ� V V â�¦[�,#]�X[ �óQå�(µ±-}�)		
Qå�� X.

��XQå��

Qå�� X.

±�XQå��
 

(5.22) 
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frequency indices start from −QÇ� 2⁄ . Therefore, the � matrix associated with the 2D centered 

DFT, which is shown in Fig. 5.7.b, performs the transform given in Equation 5.22.  

 

The permutation (
) operation performs a one-to-one mapping of the complex-value of 

each pixel on the input FOV onto a different location on the output FOV. Hence the randomly 

selected transformation matrix (� = 
) associated with the permutation operation has only one 

nonzero element along each row, whose value equals to 1, as shown in Fig. 5.10b. 

Finally, the transformation matrix corresponding to the high-pass filtering operation, as 

shown in Fig. 5.13b, is generated from the Laplacian high-pass filter whose 2D convolution 

kernel is  

 

After generating the 2D matrix by applying the appropriate vectorization operation, we also 

normalize the resulting matrix with its largest singular value, to prevent the amplification of the 

orthonormal components. 

Penalty term for improved diffraction efficiency 

 

To increase the diffraction efficiency at the output FOV of a diffractive network design, 

we used the following modified loss function: 

ì1 4 14 −20 41 4 1í	 
 

(5.23)  
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where 27 is the MSE loss term which is given in Equation 5.10 and 2p is the additional loss 

term that penalizes poor diffraction efficiency:  

 

where O is the diffraction efficiency term which is given by Equation 5.19. In Equations 5.24 

and 5.25, Â7, Âp and � are the user-defined weights. In earlier designs where the diffraction 

efficiency has not been penalized or taken into account during the training phase, Â7 and Âp were 

taken as 1 and 0, respectively. 

 

 

 

 

 

 

 

 

 

 2 = Â727 + Âp2p (5.24)  

 2p = �XPQ (5.25)  
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Fig. 5.4 Diffractive all-optical transformation results for an arbitrary complex-valued nonunitary and 

invertible transform. Follows the caption of Fig. 5.1. 
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Fig. 5.5 Diffractive all-optical transformations and their differences from the ground truth, target 

transformation (�) where, � = A�, is an arbitrary complex-valued nonunitary and invertible transform. 

Follows the caption of Fig. 5.2. 
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Fig. 5.6 Sample input-output images for the ground truth transformation presented in Fig. 5.4b and the 

optical outputs by the diffractive designs for two different choices of � (� = ��� and � = �	�). Follows 

the caption of Fig. 5.3. 
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Fig. 5.7 Diffractive all-optical transformation results for 2D discrete Fourier transform. Follows the 

caption of Fig. 5.1. 
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Fig. 5.8 Diffractive all-optical transformations and their differences from the ground truth, target 

transformation (�) where, � = ø, represents 2D discrete Fourier transform. Follows the caption of Fig. 

5.2. 
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Fig. 5.9 Sample input-output images for the ground truth transformation presented in Fig. 5.7b and the 

optical outputs by the diffractive designs for two different choices of � (� = ��� and � = �	�). Follows 

the caption of Fig. 5.3. 
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Fig. 5.10 Diffractive all-optical transformation results for an arbitrary permutation matrix, � = 
 . 

Follows the caption of Fig. 5.1. 
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Fig. 5.11 Diffractive all-optical transformations and their differences from the ground truth, target 

transformation (�) where, � = 
, represents an arbitrary permutation matrix. Follows the caption of Fig. 

5.2. 
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Fig. 5.12 Sample input-output images for the ground truth transformation presented in Fig. 5.10b and the 

optical outputs by the diffractive designs for two different choices of � (� = ��� and � = �	�). Follows 

the caption of Fig. 5.3. 

 



205 

 
 

 

Fig. 5.13 Diffractive all-optical transformation results for a high-pass filtered imaging operator, � = �É. 

Follows the caption of Fig. 5.1. 
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Fig. 5.14 Diffractive all-optical transformations and their differences from the ground truth, target 

transformation (�) where, � = Èø, represents a high-pass filtered imaging operator. Follows the caption 

of Fig. 5.2. 

 



207 

 
 

 

Fig. 5.15 Sample input-output images for the ground truth transformation presented in Fig. 5.13b and the 

optical outputs by the diffractive designs for two different choices of � (� = ��� and � = �	�). Follows 

the caption of Fig. 5.3. 
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Chapter 6 Diffractive Interconnects: All-Optical Permutation 

Operation Using Diffractive Networks 
 

Parts of this chapter have previously been published in D. Mengu et al. “Diffractive 

interconnects: all-optical permutation operation using diffractive networks”, Nanophotonics. 

DOI: 10.1515/nanoph-2022-0358. This chapter presents the experimental demonstration of 

diffractive permutation networks by extending the findings of the previous study to intensity-to-

intensity transformations. 

Permutation matrices form an important computational building block frequently used in 

various fields including e.g., communications, information security and data processing. Optical 

implementation of permutation operators with relatively large number of input-output 

interconnections based on power-efficient, fast, and compact platforms is highly desirable. Here, 

we present diffractive optical networks engineered through deep learning to all-optically perform 

permutation operations that can scale to hundreds of thousands of interconnections between an 

input and an output field-of-view using passive transmissive layers that are individually 

structured at the wavelength scale. Our findings indicate that the capacity of the diffractive 

optical network in approximating a given permutation operation increases proportional to the 

number of diffractive layers and trainable transmission elements in the system. Such deeper 

diffractive network designs can pose practical challenges in terms of physical alignment and 

output diffraction efficiency of the system. We addressed these challenges by designing 

misalignment tolerant diffractive designs that can all-optically perform arbitrarily-selected 

permutation operations, and experimentally demonstrated, for the first time, a diffractive 

permutation network that operates at THz part of the spectrum. Diffractive permutation networks 
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might find various applications in e.g., security, image encryption and data processing, along 

with telecommunications; especially with the carrier frequencies in wireless communications 

approaching THz-bands, the presented diffractive permutation networks can potentially serve as 

channel routing and interconnection panels in wireless networks.           
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6.1 Introduction 

Permutation is one of the basic computational operations that has played a key role in 

numerous areas of engineering e.g., computing181, communications182, encryption183, data 

storage184, remote sensing185 and data processing136. Historically, electronic integrated circuits 

have been the established implementation medium for the permutation operation and other 

space-variant linear transformations, while the research on optical computing has been mainly 

focused on using the Fourier transform approximation of thin lenses covering various 

applications in space-invariant transformations e.g., convolution/correlation. On the other hand, 

as photonic switching devices and optical waveguide technology have become the mainstream 

communication tools on high-end applications e.g., fiber optic networks, supercomputers and 

data centers, various approaches have been developed towards all-optical implementation of 

permutation operation and other space-variant transformations based on e.g., Mach-Zehnder 

interferometers186, optical switches187, photonic crystals188, holographically recorded optical 

elements189–191, off-axis lenslet arrays192,193 and arrays of periodic grating-microlens doublets194. 

The development of compact, low-power optical permutation and interconnection devices can 

have significant impact on next-generation communication systems e.g., 6G networks195,196, as 

well as other applications such as optical data storage197 and image encrypting cameras198–200. 

With the widespread availability of high-end graphics processing units (GPU) and the 

massively growing amounts of data, the past decade has witnessed major advances in deep 

learning, dominating the field of digital information processing for various engineering 

applications including e.g., image segmentation and classification46,201–203, natural language 

processing204,205, among others206. The statistical inference and function approximation 

capabilities of deep neural networks have also been exploited to produce state-of-the-art 
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performance for computational inverse problems in many imaging and sensing applications 

including e.g., microscopy62,64,93,207–210, quantitative phase imaging50–52,211–213 and 

others44,47,58,63,214–219. Beyond these data processing tasks, deep learning can also provide task-

specific solutions to challenging inverse optical design problems for numerous applications 

including nanophotonics67,68, metamaterials220, imaging and sensing221–226. However, as the 

success and the applications of deep learning grow further, the electronic parallel computing 

platforms e.g., GPUs, hosting deep neural networks and other machine learning algorithms have 

started to bring some limitations due to their power- and bandwidth-hungry operation. Moreover, 

the pace of the advances in computational capacity of the integrated circuits has fallen behind the 

exponential increase predicted by the Moore’s law227. These factors have fueled a tremendous 

amount of effort towards the development of optical machine learning schemes and other 

photonic computing devices that can partially reduce the computational burden on the electronics 

leading to power-efficient, massively parallel, high-speed machine learning systems. While most 

of the arising optical computing techniques rely on integrated photonic devices and systems 

compatible with the integrated waveguide technology20,69,70,74,228–230, an alternative option 

towards exploiting photons for machine learning and the related computing tasks is to use 

complex modulation media and free-space light propagation and diffraction, which is particularly 

suitable for visual computing applications where the information is already carried by the optical 

waves (e.g., of a scene or target object) in free-space138.  

Motivated by these pressing needs, Diffractive Deep Neural Networks (D2NN)77,172 have 

emerged as an optical machine learning framework that utilizes deep learning to engineer light-

matter interactions over a series of diffractive surfaces so that a desired statistical inference or 

deterministic computing task is realized all-optically as the light waves propagate through 
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structured surfaces. According to this framework, the physical parameters determining the phase 

and/or amplitude of light over each independently controllable unit, i.e., the ‘diffractive neuron’, 

are updated through the stochastic gradient descent and error-backpropagation algorithms based 

on a loss function tailored specifically for a given task. The weights of the connections between 

the diffractive neurons/features on successive layers, on the other hand, are dictated by the light 

diffraction in free-space. Once the deep learning-based training, which is a one-time effort, is 

completed using a computer, the resulting transmissive/reflective diffractive layers are fabricated 

using e.g., lithography or 3D printing, to physically form the diffractive network that completes a 

given inference or computational task at the speed of light using entirely passive modulation 

surfaces, offering a task-specific, power-efficient and fast optical machine learning platform.   

Based on the D2NN framework, here we demonstrate diffractive optical network designs that 

were trained to all-optically perform a given permutation operation between the optical 

intensities at the input and output fields-of-view, capable of handling hundreds of thousands of 

interconnections with diffraction limited resolution. We quantified the success of the presented 

diffractive optical networks in approximating a given, randomly-selected permutation operation 

as a function of the number of diffractive neurons and transmissive layers used in the diffractive 

network design. We also laid the foundations toward practical implementations of diffractive 

permutation networks by investigating the impact of various physical error sources, e.g., lateral 

and axial misalignments and unwanted in-plane layer rotations, on the quality/accuracy of the 

optically-realized interconnection weights and the permutation operation. Moreover, we showed 

that the diffractive optical permutation networks can be trained to be resilient against possible 

misalignments as well as imperfections in the diffractive layer fabrication and assembly. Finally, 

we present the first proof-of-concept experimental demonstration of diffractive permutation 
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networks by all-optically achieving a permutation matrix of size 25×25, effectively realizing 625 

interconnections based on 3D-printed diffractive layers operating at the THz part of the spectrum.  

The presented diffractive optical permutation networks can readily find applications in THz-

band communication systems serving as communication channel patch panels; furthermore, the 

underlying methods and design principles can be broadly extended to operate at other parts of the 

electromagnetic spectrum, including the visible and IR wavelengths, by scaling each diffractive 

feature size proportional to the wavelength of light231 and can be used for image encryption in 

security cameras232 and optical data storage systems, among other applications233–236.         

6.1 Results 

Figure 6.1 illustrates the presented free-space permutation interconnect concept designed 

around diffractive optical networks using the D2NN framework. As shown in Fig. 6.1, the 

presented permutation interconnect scheme does not use any standard optical components such 

as lenses, and instead relies on a series of passive, phase-only diffractive surfaces. Due to the 

passive nature of these layers, the diffractive optical network shown in Fig. 6.1 does not consume 

any power except for the illumination light, providing a power-efficient permutation operation in 

a compact footprint of ~600λ along the longitudinal axis), which could be further squeezed as 

needed. The 5-layer diffractive optical permutation network design shown in Fig. 6.1 was trained 

through supervised learning to all-optically realize a desired permutation operation, 
, between 

the light intensity signals at the input and output FOVs, each with Ç� = Ç� = 400  (20×20) 

individual pixels of size 2λ×2λ. Stated differently, this permutation operation controls in total of 

Ç�Ç� = 0.16 million optical intensity connections.  
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Fig. 6.1 The schematic of a 5-layer diffractive permutation network, all-optically realizing 0.16 million 

interconnects between an input and output field-of-view.  The presented diffractive permutation network was 

trained to optically realize an arbitrarily-selected permutation operation between the light intensities over 

Ni=400=20×20 input and No=400=20×20 output pixels, establishing total 0.16 million desired interconnections 

based on 5 phase-only diffractive layers, each containing 40K (200×200) diffractive neurons/features. 
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The supervised nature of the training process of the diffractive permutation network 

necessitates the use of a set of input-output signal pairs (examples that satisfy 
) to compute a 

penalty term and the associated gradient-based updates with respect to the physical parameters of 

each diffractive neuron at every iteration. We set the optical signal of interest at the input and the 

output of the diffractive permutation scheme to be the light intensity, and as a result, the deep 

learning-based evolution of the presented diffractive permutation network shown in Fig. 6.1 was 

driven based on the mean-squared error (MSE) (see Methods section) between the ground-truth 

and the all-optically synthesized output intensity patterns at a given iteration. Since this loss 

function acts only on the light intensity, the diffractive optical network can enjoy an output 

phase-freedom in synthesizing the corresponding transformed optical intensity patterns within 

the output field-of-view. The light intensity, =, is related to the complex-valued field, 3, through 

a nonlinear operation, = = |3|� . If a pair of input-output complex-fields exists for a given 

diffractive network, i.e., {3�±, 3�Rc} and {3�±e , 3�Rce }, then the input field 3�±ee = �3�± +  3�±e  

will create the output field 3�Rcee = �3�Rc +  3�Rce  at the output plane. In terms of the associated 

intensities, however, this direct linear extension does not hold since |�3�Rc|� + | 3�Rce |� ≠
|3�Rcee |� , making it challenging (in terms of the data generalization capability) to design 

diffractive optical networks for achieving a general purpose intensity-to-intensity transformation 

such as a permutation operation. To overcome this generalization challenge, we trained our 

diffractive permutation networks using ~4.7 million randomly generated input/output intensity 

patterns that satisfy the desired 
 , instead of a standard benchmark image dataset (see the 

Methods).  

After the training phase, we blindly tested each diffractive permutation network with test 

inputs that were never used during the training. Figure 6.2 illustrates 6 different randomly 
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generated blind testing inputs along with the corresponding all-optically permuted output light 

intensities. In the first two randomly generated input patterns shown in Fig. 6.2A, there is light 

coming out of all the input pixels/apertures at different levels of intensity. In the next two test 

input patterns shown in Fig. 6.2A, on the other hand, nearly half of the input apertures have 

nonzero light intensity and finally, the last two test inputs contain only 10 and 11 pixels/apertures 

with light propagating towards the 1st layer of the diffractive permutation network. When tested 

on 20K randomly generated blind testing input intensity patterns with different sparsity levels, 

the 5-layer diffractive permutation network shown in Fig. 6.1 achieves 18.61 dB peak-signal-to-

noise ratio (PSNR), very well matching the ideal output response. For this randomly generated 

20K testing data, Figure 6.2B also shows the distribution of PSNR as a function of the number of 

input pixels with nonzero light intensity, which reveals that the diffractive permutation network 

can permute relatively sparser inputs with a higher output image quality, achieving a PSNR of 

25.82 dB.  

In addition to randomly generated blind testing inputs, we further tested the diffractive 

permutation network shown in Fig. 6.1 on 18.75K EMNIST images; note that this diffractive 

network was trained only using randomly generated input/output intensity patterns that satisfy 
 

and the EMNIST images constitute not only blind testing set but also a significant deviation from 

the statistical distribution of the training images. The input field-of-view contains the permuted 

EMNIST images (P -1) and the diffractive network inverts that permutation by all-optically 

performing P to recover the original images at the output plane (see Fig. 6.2). The performance 

of the diffractive permutation network was quantified based on both PSNR and Structural 

Similarity Index Measure (SSIM). With Ç>=40K diffractive neurons on each layer, the 5-layer 

diffractive permutation network shown in Fig. 6.1 provides 19.18 dB and 0.85 for PSNR and 
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Fig. 6.2 Input-output intensity pairs. A The diffractive permutation network shown in Fig. 6.1 was tested 

on two different datasets. The first blind testing dataset contains 20K randomly generated inputs. 6 examples 

from this randomly created testing data are shown here for demonstrating input-output intensity pairs with 

low, moderate and high signal sparsity levels. Beyond successfully permuting randomly generated intensity 

patterns, the performance of the diffractive permutation network was also quantified using permuted 

EMNIST images. None of these test samples were used in the training phase. B Output intensity image 

PSNR with respect to the ground truth intensity patterns as a function of the input signal sparsity in randomly 

generated test dataset. C Same as B, except for EMNIST test images.   



218 

 

 SSIM metrics, respectively, demonstrating the generalization capability of the diffractive 

network to new types of input image data never seen during the training phase.   

Impact of number of diffractive layers and features 

Next, we investigate the performance of diffractive permutation networks as a function of 

the number of diffractive neurons trained within the system. Towards this goal, in addition to the 

5-layer design shown in Fig. 6.1 that has in total of Ç=200K trainable diffractive features, we 

trained diffractive permutation networks consisting of 4, 3 and 2 modulation surfaces. The 

physical design parameters such as the size/width of the diffractive surfaces, layer-to-layer 

distances and the extent of the input and output fields-of-view, were kept identical to the ones in 

the 5-layer network design. In other words, these new diffractive networks are designed and 

trained exactly in the same way as the previous 5-layer network except they contain fewer 

diffractive layers. Figures 6.3A and 6.3B provide a quantitative comparison between these 4 

diffractive permutation networks. While Fig. 6.3A illustrates the mean PSNR and SSIM values 

achieved by each diffractive network for recovering EMNIST images, Fig. 6.3B demonstrates 

the mean-squared-error (MSE) between the desired permutation operation and its optically 

realized version (�pèåå ) as a function of the number of diffractive layers utilized in these 

designs. According to the permutation operator error shown in Fig. 6.3B, the performance 

improvement of the system increases drastically with the additional diffractive layers up to the 4-

layer design that represents a critical point in the sense that the inclusion of a 5th diffractive 

surface brings a relatively small improvement. The reason behind this behavior is the fact that 

the number of diffractive features, Ç, in the 4-layer diffractive permutation network matches the 

space-bandwidth product set by our input and output FOVs, i.e.,  Ç�Ç� =	400×400=160K. In 
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other words, Fig. 6.3B reveals that when the number of phase-only diffractive modulation units 

Ç  matches or exceeds Ç�Ç� , the diffractive optical network can achieve a given linear 

transformation between the input and output intensities with a very low error, i.e., �pèåå ≈ �; 

for example, the MSE between �pèåå and � in the case of a 4-layer design was found to be 

6.63 × 10X�. For Ç < Ç�Ç�, the error between �pèåå and � increases accordingly, as shown in 

Fig. 6.3B. 

The benefit of having Ç ≥ Ç�Ç�  is further revealed in the increased generalization 

capability of the diffractive network as shown in Fig. 6.3A. Since the EMNIST images were not 

used during the training, they represent completely new types of input intensity patterns for the 

presented diffractive optical networks. The SSIM (PSNR) values achieved by the 4-layer 

diffractive network is found as 0.75 (16.41 dB) for the optical recovery of the permuted 

EMNIST images. These numbers are significantly higher compared to the performance of the 3-

layer and 2-layer diffractive designs that can attain SSIM (PSNR) values of 0.46 (12.91 dB) and 

0.30 (12.08 dB) for the same task; furthermore, the 5-layer diffractive network design shown in 

Fig. 6.1 outperforms the others by achieving 0.85 (19.18 dB) for the same performance metrics. 

The visual comparison of the input-output intensity patterns depicted in Fig. 6.3C further 

supports this conclusion, where the noise due to the crosstalk between interconnection channels 

decreases proportional to the number of diffractive layers in the system. 

Vaccination of diffractive permutation networks 

With sufficiently large number of phase-only diffractive neurons/features, the diffractive 

networks can optically realize permutation operations with e.g., 0.16 million channels between 

the input and output pixels as shown in Fig. 6.3. In fact, the number of interconnects that can be  
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Fig. 6.3 The impact of the number of diffractive layers on the approximation accuracy of D2NN for a 

given intensity permutation operation.  A The average SSIM and PSNR values achieved by the diffractive 

permutation network designs based on L=2, L=3, L=4 and L=5 diffractive layers, containing 200×200, i.e., 40K, 

phase-only diffractive neurons/features per layer for the task of optically recovering permuted EMNIST images. 

B The transformation error between the desired intensity permutation (P) and its optically realized counterpart 

(P(D^2 NN)) for the diffractive networks with L=2, L=3, L=4 and L=5 diffractive layers. The transformation error 

decreases as a function of the number of layers in the diffractive network architecture. The L=4-layer diffractive 

permutation network design represents a critical point as it matches the space-bandwidth product requirement of 

the desired permutation operation, i.e., N=Ni No=4×40K=160K, and further increasing the number of layers to 

L=5 brings only a minor improvement. C Examples of EMNIST test images demonstrating the performance of 

the diffractive permutation networks as a function of L.   
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optically implemented through diffractive networks can go far beyond 0.16 million, given 

that the size/width of the diffractive surfaces and the number of diffractive layers can be 

increased further depending on the fabrication technology and the optomechanical constraints of 

the system. In addition, as the number of diffractive layers increases in a diffractive network 

architecture, their forward model can better generalize to new, unseen data as shown in Fig. 6.3A. 

On the other hand, deeper diffractive optical network designs are more susceptible to 

misalignments that are caused by the limitations of the optomechanical assembly and/or the 

fabrication technology that is utilized. It was shown that diffractive optical networks trained for 

statistical inference tasks e.g., all-optical object classification, can be vaccinated against 

misalignments and other physical error sources, when the factors creating these nonideal 

conditions were incorporated into the training forward model, which was termed as vaccinated-

D2NNs or v-D2NNs103. Specifically, v-D2NN expands on the original D2NN framework by 

modeling possible error sources as random variables and integrating them as part of the training 

model so that the deep learning-based evolution of the diffractive surfaces is guided towards 

solutions that are resilient to nonideal physical conditions and/or fabrication errors. Towards 

practical applications of diffractive permutation networks, we quantified the impact of 

optomechanical errors and applied the v-D2NN framework to devise robust solutions that can 

achieve a given interconnect operation despite fabrication tolerances.  

In our numerical study depicted in Fig. 6.4, we considered 4 different misalignment 

components representing the 3D misalignment vector of the �cd diffractive layer, &_�� , _��, _Ñ�' 
and their in-plane rotation around the optical axis denoted as _\�. Each of these 4 misalignment 

components were defined as independent, uniformly distributed random variables, 
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_∗�~3(−Δ∗, Δ∗), with Δ∗ defined as a function of a common auxiliary parameter, �. The lateral 

misalignments parameters, Δ� and Δ�, determining the range of _�� and _��, respectively, were 

set to be 0.67G� , i.e., _��~3(−0.67G�, 0.67G�)  and _��~3(−0.67G�, 0.67G�) , where G 

denotes the wavelength of the illumination light. Similarly, ΔÑ and Δ\ were defined as 24G� and 

4∘� . For instance, if we take � = 0.5 , this means each diffractive layer can 

independently/randomly shift in both �  and �  axes within a range of (−0.335G, 0.335G) . In 

addition, their location over the � direction and their in-plane orientation can randomly change 

within the ranges of (−12G, 12G) and (−2∘, 2∘), respectively (see the Methods section for more 

details).     

To better highlight the impact of these misalignments and demonstrate the efficacy of the 

v-D2NN framework, we trained a new nonvaccinated, i.e., �c� = 0 , diffractive permutation 

network that can all-optically realize a given permutation matrix, 
, representing 10K intensity 

interconnections between 100 input and 100 output pixels of size 4λ×4λ. The error-free training 

model of this diffractive network with �c� = 0  implicitly assumes that when the resulting 

diffractive network is fabricated, the system conditions will exactly match the ideal settings 

regarding the 3D locations of the layers and their in-plane orientations. With an architecture 

identical to the one shown in Fig. 6.1, containing Ç = 200E ≫ Ç�Ç� diffractive neurons, this 

diffractive network can all-optically approximate the permutation matrix, 
, with an MSE of 

1.45 × 10X» in the absence of any misalignment errors, i.e., �c+¡c = 0 (see the green curve in Fig. 

6.4B). However, when there is some discrepancy between the training and testing conditions, i.e., 

�c+¡c > 0, the optically implemented forward transformation, 
¦���, starts to deviate from the 

desired operation 
. For instance, at �c+¡c = 0.125, the transformation error, .
¦��� − 
., can 
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be computed as 3.1 × 10Xê . This negative impact of the physical misalignments on the 

performance of a nonvaccinated diffractive network can also be seen in Fig. 6.4A (green curve), 

which demonstrates the SSIM values achieved by this diffractive network for recovering 

permuted EMNIST images under different levels of misalignments. The high-quality of the 

image recovery (see Fig. 6.4C) at �c+¡c = 0 quantified with an SSIM of 0.99 deteriorates under 

the presence of misalignments, highlighted by the SSIM value falling to 0.49 and 0.30 at �c+¡c =
0.125 and �c+¡c = 0.25, respectively. 

Unlike the nonvaccinated design, the vaccinated diffractive permutation networks can 

maintain their approximation capacity and accuracy under erroneous testing conditions as shown 

in Figs. 6.4A-B. For instance, the SSIM value of 0.49 attained by the nonvaccinated diffractive 

network for the misalignment uncertainty set by �c+¡c = 0.125, increases to 0.88 in the case of a 

diffractive permutation network trained with �c� = 0.25 (red curve in Fig. 6.4A). The difference 

between the image recovery performances of the vaccinated and the nonvaccinated diffractive 

network designs increases further as the misalignment levels increase during the blind testing. 

While the nonvaccinated diffractive network can only achieve SSIM values of 0.3 and 0.19 at 

�c+¡c = 0.25 and �c+¡c = 0.375, respectively, the output images synthesized by the vaccinated 

design (�c� = 0.25) reveals SSIM values of 0.8 at �c+¡c = 0.25 and 0.64 at �c+¡c = 0.375 (see 

Fig. 6.4D). A similar conclusion can also be drawn from Fig. 6.4B, demonstrating the MSE 

values between the desired permutation matrix, 
, and its optically realized counterpart, 
¦���. 

The transformation errors,  .
¦��� − 
., of the vaccinated diffractive network (�c� = 0.25) at 

�c+¡c = 0.125 and at �c+¡c = 0.25 were computed as 5.15 × 10X� and 1.2 × 10Xê, respectively, 
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which are 5-10 times smaller compared to the MSE values provided by the nonvaccinated 

diffractive design at the same misalignment levels.  

The compromise for this misalignment robustness comes in the form of a reduction in the 

peak performance. While the nonvaccinated diffractive network can solely focus on realizing the 

given permutation operation with the highest quality and approximation accuracy, the vaccinated 

diffractive network designs partially allocate their degrees-of-freedom to building up resilience 

against physical misalignments. For example, while the peak SSIM achieved by the 

nonvaccinated diffractive network is 0.99, it is 0.88 for the diffractive permutation network 

vaccinated with �c� = 0.25. The key difference, on the other hand, is that the better performance 

of the nonvaccinated diffractive network is sensitive to the physical implementation errors, while 

the vaccinated diffractive permutation networks can realize the desired input-output 

interconnects over a larger range of fabrication errors or tolerances. A comparison between the 

diffractive layer patterns of the nonvaccinated and vaccinated diffractive permutation networks 

shown in Figs. 6.4C and 6.4D, respectively, also reveals that the vaccination strategy results in 

smoother light modulation patterns; in other words, the material thickness values over the 

neighboring diffractive neurons partially lose their independence and become correlated, causing 

a reduction in the number of independent degrees-of-freedom in the system.  

  



225 

 
 

 

Fig. 6.4 The sensitivity of the diffractive permutation networks against various levels of physical 

misalignments. A SSIM values achieved by 5-layer diffractive permutation networks with and without 

vaccination. B Transformation errors between the desired 100×100 permutation operation (P) and its optically 

synthesized counterpart (P(D^2 NN)) at different levels of misalignments denoted by vtest. C The layers of a 

nonvaccinated diffractive permutation network, i.e., vtr=0, along with the examples of EMNIST test images 

recovered optically through the diffractive permutation operation. D Same as C, except for a vaccinated 

diffractive permutation network based on vtr=0.25. 
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Experimental demonstration of a diffractive permutation network 

To experimentally demonstrate the success of the presented diffractive permutation 

interconnects, we designed a 3-layer diffractive permutation network achieving the desired 

(randomly generated) intensity shuffling operation with Ç� = Ç� = 5�5, optically synthesizing 

625 connections between the input and output FOVs; this network was designed to operate at 0.4 

THz, corresponding to ~0.75 mm in wavelength. During the training, the forward model of this 

diffractive permutation network was vaccinated with �c� = 0.5 against the 4 error sources as 

detailed in Section 2.2 including the 3D location of each diffractive layer and the in-plane 

rotation angle around the optical axis. In addition to these misalignment components, we also 

vaccinated this diffractive network model against unwanted material thickness variations that 

could arise due to the limited lateral and axial resolution of our 3D printer (see the Methods 

section for details). To compensate for the reduction in the degrees-of-freedom due to the 

vaccination scheme, the number of phase-only diffractive features in the permutation network 

was selected to be Ç> =10K diffractive neurons per layer. Therefore, each diffractive layer 

shown in Fig. 6.5A contains 100×100 phase-only diffractive neurons of size ~0.67λ×0.67λ. 

Compared to the diffractive surfaces shown in Figs. 6.1-6.4, the layers of our experimental 

system were set to be 2-times smaller in both the � and � directions to keep the layer-to-layer 

distances smaller while maintaining the level of optical connectivity between the successive 

diffractive surfaces (see Fig. 6.5B). Figures 6.5C and 6.5D illustrate the 3D printed diffractive 

permutation network and the schematic of our experimental setup (see the Methods section for 

details). 
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Fig. 6.5 Experimental demonstration of a diffractive permutation network. A The material thickness 

profiles of the diffractive surfaces of the fabricated diffractive permutation network. B The schematic of the 

experimental architecture illustrating the forward optical model of the diffractive permutation network. C 3D 

printed diffractive permutation network operating at THz part of the spectrum. D The schematic of our 

experimental system. 
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Fig. 6.6 Experimental results. A (left) The desired 25×25 permutation matrix, P, (middle) the optically realized 

permutation operation predicted by the numerical forward model, P_(D^2 NN), and (right) the absolute error 

map between the two matrices. B Comparison between the numerically predicted and the experimentally 

measured output images for the task of recovering intensity patterns describing the letters ‘U’, ‘C’, ‘L’ and ‘A’. 
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Figure 6.6A illustrates the targeted 25×25 permutation matrix (
)  that is randomly 

generated and the numerically predicted 
¦��� along with the absolute difference map between 

these two matrices. According to the numerical forward model of the trained diffractive network 

shown in Fig. 6.5, the transformation error between the 
 and 
¦���, i.e., .
¦��� − 
. is equal 

to 5.99 × 10X� under error-free conditions, i.e., �c+¡c = 0. Furthermore, the forward model of 

the trained diffractive permutation network shown in Fig. 6.5 provides 17.87 dB PSNR on 

average for the test letters ‘U’, ‘C’, ‘L’ and ‘A’, as depicted in Fig. 6.6B. A visual comparison 

between the numerically predicted and the experimentally measured output images of these 4 

input letters (which were never seen by the network before) demonstrates the accuracy of the 

forward training and testing models as well as the success of the presented diffractive 

permutation network design. Interestingly, the PSNR of the experimentally measured images 

was observed to be higher, 19.54 dB, compared to the numerically predicted value, 17.87 dB. 

Our numerical study reported in Fig. 6.4 suggests that this can be explained based on the 

vaccination range used during the training and the amount physical error in the system testing. 

For instance, the SSIM value achieved by the vaccinated diffractive network trained with �c� =
0.5 (yellow curve) at relatively lower physical misalignment levels, e.g., �c+¡c = 0.125, is higher 

compared to its performance under the ideal conditions, i.e., �c+¡c = 0.0, as depicted in Fig. 6.4A.   

6.3 Discussion 

Beyond optomechanical error sources and fabrication tolerances, another factor that might 

potentially hinder the utilization of diffractive permutation networks in practical applications is 

the output diffraction efficiency. For instance, the diffraction efficiency of the 5-layer network 

shown in Fig. 6.1 is ~0.004% which might be very low for some applications. On the other hand, 

this can be significantly increased by using an additional loss term, penalizing the poor 
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diffraction efficiency of the network (see the Methods section for details). The training of these 

diffractive network models is based on a loss function in the form of a linear combination of two 

different penalty terms, ℒe = ℒ + Uℒ+ , where ℒ is a structural loss term enforcing transformation 

quality/accuracy and ℒ+  is the diffraction efficiency related penalty term promoting efficient 

solutions (see the Methods section). As a general trend, the diffraction efficiency of the 

underlying diffractive network model increases as a function of the weight (U) of the efficiency 

penalty term in the loss function. However, since the number of diffractive neurons, hence, the 

degrees-of-freedom in these diffractive network models is very close to Ç�Ç�, the diffraction 

efficiency either does not improve beyond a certain value or the evolution of the diffractive 

layers starts to solely focus on the efficiency instead of the desired permutation operation 

resulting in low performance designs. This unstable behavior can be observed specifically when 

0.235 < U < 0.24. On the other hand, as in the case of vaccinated diffractive network models, if 

the diffractive network architecture contains Ç ≫ Ç�Ç� diffractive neurons, then this instability 

vanishes, providing significant improvements in the output diffraction efficiency without 

sacrificing the performance of the all-optical permutation operation. For instance, the 3D printed 

diffractive permutation network depicted in Fig. 6.6 was trained based on ℒe with U = 0.15 and it 

provides 2.45% output diffraction efficiency, despite the fact that 89.37% of the incident power 

at the input plane is lost due to the absorption of the 3D printing material. With weakly absorbing 

transparent materials used as part of the diffractive network fabrication, a significantly larger 

output efficiency can be achieved.  

Also note that, although we solely focused on diffractive network designs composed of 

dielectric optical modulation surfaces, in principle, some of these layers can be replaced with 

metasurfaces/metamaterials. While the use of metamaterials can provide some additional degrees 
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of freedom, including, for example, the engineering of dispersion, there are some challenges to 

overcome in realizing metamaterial-based diffractive networks. First, metamaterials could lead to 

crosstalk between the secondary wave fields created by adjacent meta-atoms. Although the 

lateral pitch between neighboring meta-units can be increased to partially mitigate this field 

crosstalk problem, such an approach would sacrifice the lateral density of meta-units packed over 

each diffractive surface leading to reduced computational capacity. Moreover, in the presence of 

fabrication errors and imperfections, the scattered light fields might deviate from the predictions 

of the numerical forward model. These nonideal waves generated by a metasurface would then 

excite unwanted diffraction modes over the subsequent layers generating an “avalanche” within 

the diffractive volume, accumulating substantial field errors, especially for deeper network 

designs with 2 ≥ 2. In addition, the physical models of phase and/or amplitude modulation of 

meta-atoms are, in general, valid for waves covering a relatively small numerical aperture (NA). 

As a result, a high NA diffractive network design that utilizes the entire bandwidth of the 

propagation medium (NA=1, for air), would be challenging, as the modulation response of the 

meta-units might deviate from their ideal small angle responses, introducing errors to the forward 

model. Although it is possible to restrict a diffractive network design to work with a lower NA, it 

would increase the overall footprint of the system and reduce the space-bandwidth product that 

can be processed by the diffractive network. 

These challenges, in general, are negligible for dielectric diffractive networks composed of 

λ/2 features on a substrate, as also highlighted by the close match between the numerically 

predicted images and their experimentally measured counterparts shown in Fig. 6.6 and our 

former work70,73,75,77-78. In our optical forward model, the diffractive layers are assumed to be 

thin modulation surfaces, i.e., there is only a single scattering event converting an incident wave 
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field to an outgoing one after each diffractive layer. Practically, though, there are additional 

scattered fields that are ignored in our model, especially when there is a substantial material 

thickness variation between adjacent pixels. However, in our designs, we do not observe a sharp 

material thickness transition between neighboring pixels. This is mainly due to the nature of our 

training process. Specifically, the presented diffractive networks are trained through error-

backpropagation, which computes the variable updates by taking the gradient of the loss function 

with respect to the material thickness over each diffractive unit. In such a process, it is highly 

unlikely that the gradients of two adjacent pixels (λ/2 apart from each other) deviate significantly 

from each other, which effectively causes a smoothening effect on the diffractive surface height 

profiles as they are being optimized through deep learning. This smoothening behavior is even 

more pronounced in the vaccinated diffractive network designs due to the random lateral 

translation of the diffractive layers as part of the training forward model. Therefore, the impact 

of side scattering or field shadowing due to height discontinuities across a given diffractive layer 

design is negligible. In addition, the back-reflected waves can also be ignored, as these are, in 

general, weak processes unless they are specifically enhanced using, e.g., metamaterials or other 

special structures. Therefore, the optical forward model of dielectric diffractive networks can be 

accurately represented within the scalar diffraction theory without needing vectorial modeling of 

light fields or considering weaker multi-reflections. Finally, the evanescent waves and the 

vectorial fields associated with them can be entirely ignored since each successive diffractive 

layer is axially positioned >λ away from the previous layer.  

In summary, we showed that the diffractive networks can optically implement intensity 

permutation operations between their input and output apertures based on phase-only light 

modulation surfaces with Ç ≥ Ç�Ç�  diffractive neurons. Due to the nonlinear nature of the 
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intensity operation, it is crucial to use training input intensity patterns with different levels of 

sparsity to prevent any type of data-specific overfitting during the training phase. Diffractive 

permutation networks with Ç > Ç�Ç�  demonstrate increased generalization capability, 

synthesizing more accurate outputs with .
¦��� − 
. ≈ 0. By using Ç > Ç�Ç�  one can also 

design misalignment and fabrication error insensitive, power-efficient diffractive permutation 

networks, which could play a major role in practical applications, e.g., 6G wireless networks, 

computational cameras, etc. Although this study demonstrated diffractive optical networks 

realizing permutation operations with 0.16 million interconnects, with Ç� = Ç� = 20 × 20, these 

systems are highly scalable to even larger Ç�, Ç� combinations depending on the availability of 

training computer hardware. Since the training of a diffractive optical network is a one-time 

effort, one can use a computing platform with a significantly larger random-access memory 

(RAM) to design much bigger diffractive networks. Alternatively, the forward training model of 

a diffractive network can also be distributed among multiple GPUs for parallel computing with 

increased memory capacity paving the way to significantly larger permutation operations to be 

implemented all-optically. Finally, the incorporation of dynamic spatial light modulators to 

replace some of the diffractive layers in a given design can be used to reconfigure, on demand, 

the all-optically performed diffractive transformation. 

6.4 Materials and Methods 

Experimental setup 

According to the schematic diagram of our experimental setup shown in Fig. 6.5D, the 

THz wave incident on the input FOV of the diffractive network was generated using a horn 

antenna attached to the source WR2.2 modulator amplifier/multiplier chain (AMC) from 
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Virginia Diode Inc. (VDI). A 10 dBm RF input signal at 11.111 GHz (fRF1) at the input of the 

AMC was multiplied 36 times to generate a continuous-wave (CW) radiation at 0.4 THz, 

corresponding to ~0.75 mm in wavelength. The output of the AMC was modulated with 1 kHz 

square wave to resolve low-noise output data through lock-in detection. Since we did not use any 

collimating optics in our setup, the distance between the input plane of the 3D-printed diffractive 

optical network and the exit aperture of the horn antenna was set to be ~60 cm approximating a 

uniform plane wave over the 40λ × 40λ input FOV. At the output plane of the diffractive optical 

network, the diffracted THz light was collected using a single-pixel Mixer/AMC from Virginia 

Diode Inc. (VDI). During the measurements, the detector received a 10 dBm sinusoidal signal at 

11.083 GHz serving as a local oscillator for mixing, and the down-converted signal was at 1GHz. 

The 40λ × 40λ output FOV was scanned by placing the single-pixel detector on an XY stage that 

was built by combining two linear motorized stages (Thorlabs NRT100). At each scan location, 

the down-converted signal coming from the single-pixel detector was fed to low-noise amplifiers 

(Mini-Circuits ZRL-1150-LN+) with a gain of 80 dBm and a 1 GHz (+/-10 MHz) bandpass filter 

(KL Electronics 3C40-1000/T10-O/O) that erases the noise components coming from unwanted 

frequency bands. Following the amplification and filtering, the measured signal passed through a 

tunable attenuator (HP 8495B) and a low-noise power detector (Mini-Circuits ZX47-60). Finally, 

the output voltage value was generated by a lock-in amplifier (Stanford Research SR830). The 

modulation signal was used as the reference signal for the lock-in amplifier and accordingly, we 

performed a calibration to convert the lock-in amplifier readings at each scan location to linear 

scale. During our experiments, the scanning step size at the output plane was set to be ~λ in x 

and y directions. The smallest pixel of the experimentally targeted permutation grid, i.e., the 

desired resolution of the diffractive permutation operation was taken as 8λ × 8λ during the 
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training, corresponding to 5 × 5 discrete input and output signals. Therefore, the output signal 

measured for each input object was integrated over a region of 8λ × 8λ per pixel, resulting in the 

measured images shown in Fig. 6.6B.    

A 3D printer, Objet30 Pro, from Stratasys Ltd., was used to fabricate the layers of the 

diffractive permutation network shown in Fig. 6.5C as well as the layer holders. The active 

modulation area of our 3D printed diffractive layers was 5 cm × 5 cm (~66.66λ × ~66.66λ) 

containing 100 × 100, i.e., 10K, diffractive neurons. These modulation surfaces were printed as 

insets surrounded by a uniform slab of printing material with a thickness of 2.5 mm and the total 

size of each printed layer including these uniform regions was 6.2 cm × 6.2 cm. Following the 

3D printing, these additional surrounding regions were coated with aluminum to block the 

propagation of the light over these areas minimizing the contamination of the output signal with 

unwanted scattered light.   

Optical forward model of diffractive permutation networks 

The material thickness, ℎ, was selected as the physical parameter controlling the complex-

valued transmittance values of the diffractive layers of our design. Based on the complex-valued 

refractive index of the diffractive material, ´ = � + �� , the corresponding transmission 

coefficient of a diffractive neuron located on the �cd layer at a coordinate of (�} , �} , ��) is defined 

as,  

 �&�} , �} , ��' = exp ~−2)�ℎ&�} , �} , ��'G � exp ~−�2)(� − ��)ℎ&�} , �} , ��'G � (6.1) 
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where �� = 1 denotes the refractive index of the propagation medium (air) between the layers. 

The real and imaginary parts of the 3D printing material were measured experimentally using a 

THz spectroscopy system and they were revealed as � = 1.7227 and � = 0.031 at 0.4 THz.  

The optical forward model of the presented diffractive networks relies on the Rayleigh-

Sommerfeld theory of scalar diffraction to represent the propagation of light waves between the 

successive layers. According to this diffraction formulation, the free-space can be interpreted as 

a linear, shift-invariant operator with the impulse response, 

where J = Q�� + �� + �� . Based on Eq. 6.2, ¶cd  diffractive neuron on the �cd  layer, at 

(�} , �} , ��), can be interpreted as the source of a secondary wave generating the field at (�, �, �) 
in the form of, 

The parameter J}�	in Eq. 6.3 is expressed as u&� − �}'� + &� − �}'� + (� − ��)�. When each 

diffractive neuron on layer � generates the field described by Eq. 6.3, the light field incident on 

the �cd diffractive neuron on the (� + 1)cd layer at (�µ, �µ, ��-.) is the linear superposition of the 

all the secondary waves generated by the previous layer �, i.e.,  ∑ Z}� H}�&�µ, �µ, ��-.'} , where Z}�  

is the complex amplitude of the wave field right after the ¶cd neuron of the �cd layer. This field is 

modulated by the multiplicative complex-valued transmittance of the diffractive unit at 

 H(�, �, �) = �J� 	K 12)J + ��GM exp	(�2)�JG ) (6.2) 

 H}�(�, �, �) = � − ��&J}�'� 	~
12)J}� + ��G� exp ~	�2)�J}�G �. (6.3) 
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(�µ, �µ, ��-.), creating the modulated field �&�µ, �µ, ��-.'∑ Z}� H}� &�µ, �µ, ��-.'} . Based on this 

new modulated field, a new secondary wave,   

is generated. The outlined successive modulation and secondary wave generation processes 

occur until the waves propagating through the diffractive network reach to the output plane. 

Although, the forward optical model described by Eqs. 6.1-6.4 is given over a continuous 3D 

coordinate system, during our deep learning-based training of the presented diffractive 

permutation networks, all the wave fields and the modulation surfaces were represented based on 

their discrete counterparts with a spatial sampling rate of ~0.67λ on both x and y axes, that is 

also equal to the size of a diffractive neuron.     

Physical architecture of diffractive permutation networks 

The size of the output and input FOVs of the presented diffractive permutation networks 

were both set to be 40λ × 40λ, defining a unit magnification optical permutation operation. Note 

that the unit magnification is not a necessary condition for the success of the forward operation 

of diffractive optical interconnects but rather a design choice. Without loss of generality, the 

output FOV can be defined centered around the origin, (0,0),  i.e., −20λ < �, � < 20λ . The 

dimensions of the diffractive layers was taken as 133.3λ×133.3λ for the diffractive permutation 

networks presented in Figs. 6.1-6.4, and in all these diffractive network architectures the layer-

to-layer distances were taken as 120λ. The axial distance between the 1st diffractive layer and the 

input FOV was set to be 53.3λ that is also equal to the axial distance from the last diffractive 

layer to the output plane, preserving the symmetry of the system on the longitudinal axis. In the 

 Tµ�-.(�, �, �) = Hµ�-.(�, �, �)�&�µ, �µ, ��-.'VZ}� H}�&�µ, �µ, ��-.'} , (6.4) 
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case of our experimentally validated diffractive design (Fig. 6.5), on the other hand, the active 

modulation surface of the fabricated diffractive layers extends 66.7λ on both � and � directions. 

Accordingly, the layer-to-layer distances were taken as 60λ while the remaining distances were 

kept equal to 53.3λ.  

During the deep learning-based training of all of these diffractive permutation networks, the 

wave fields and the propagation functions depicted in Eqs. 6.2-6.4 were sampled at a rate of 

~0.67λ that is also equal to the size of the smallest diffractive units on the modulation surfaces 

constituting the presented diffractive networks. At this spatial sampling rate, the input and output 

intensity patterns were represented as 2D discrete vectors of size 60×60 denoted by =�±[#, �] and 

=�Rc[#, �], respectively, with # = 1,2,3, … ,60 and � = 1,2,3, … ,60. The underlying complex-

valued wave fields can be written as 3�±[#, �] = Q=�±[#, �]�[∅�V[�,±]  and 3�Rc[#, �] =
Q=�Rc[#, �]�[∅-WM[�,±]. In our forward model, we assumed that the input light has constant phase 

front, i.e., ∅�±[#, �] is taken as an arbitrary constant within the input field-of-view. In alternative 

implementations, without loss of generality, the diffractive permutation network can be trained 

with any arbitrary function of ∅�±[#, �], achieving the same output accuracy levels .
¦��� −

. ≈ 0 using Ç ≥ Ç�Ç�. 

While the light fields, the diffractive layers and the impulse response of the free-space were 

all sampled at a rate of ~0.67λ , the spatial grid/pixel size of a given desired permutation 

operation was set to be larger. Specifically, the permutation pixel size was taken as 2λ×2λ for the 

diffractive networks shown in Figs. 6.1-6.3. On the other hand, the input and output pixel size 

was chosen as 4λ×4λ for the vaccinated and nonvaccinated diffractive permutation networks 



239 

 

shown in Fig. 6.4; and finally, the pixel size was set to be 8λ×8λ for the fabricated diffractive 

permutation network model depicted in Fig. 6.5. 

To train the presented diffractive permutation networks, a structural loss function, ℒ, in the 

form of MSE was used.  

In Eq. 6.5, =�±[!] and =�Rc[!] denote the lexicographically ordered vectorized counterparts of 

the input intensity pattern, i.e., vec(=�±[¶, �]) , and the output intensity pattern, i.e., 

��Â(=�Rc[¶, �]), and 
 represents the desired permutation matrix to be performed all-optically. 

As depicted in Eq. 6.5, the output intensity pattern =�Rc[!] or =�Rc[¶, �] was scaled by a constant 

2 that was calculated at each training iteration as, 

Note that the presented diffractive permutation networks preserve the relative intensity levels. 

Stated differently, our training forward model aims to keep the intensity levels over the output 

and input pixels the same up to a single multiplicative constant, 2.    

To improve the diffraction efficiency of diffractive permutation networks, we defined 

another loss function, ℒe, that is a linear combination of two penalty terms, ℒe = ℒ + Uℒ+, where 

ℒ corresponds to the structural loss defined in Eq. 6.5. ℒ+  is the penalty term that promotes 

higher diffraction efficiency at the output of diffractive networks, and it was defined as, ℒ+ =
�XX, where, 

 ℒ = 1̀V|
=�±[!] − 2=�Rc[!]|�@
¡�. ,	  (6.5) 

 2 = 1̀∑ 
=�±[!]=�Rc[!]@¡�.1̀ ∑ =�Rc[!]�@¡�.
.	  (6.6) 
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The diffractive permutation networks presented in Figs. 6.1-6.4 were trained based on ℒe 
with U = 0; however, the experimentally demonstrated diffractive permutation network model 

was trained with U = 0.15, resulting in an output diffraction efficiency of 2.45% (which includes 

a material absorption loss of 89.37%).  

The supervised deep learning-based training of the presented diffractive permutation 

networks evaluates the loss function ℒe  for a batch of randomly generated input patterns, 

computes the mean gradient and updates the learnable, auxiliary variables,  ℎ�, that determine 

the material thickness over each diffractive neuron, ℎ, through the following relation,  

where ℎ� and ℎ� denote the maximum modulation thickness and the base material thickness, 

respectively. For all the diffractive permutation networks presented in Figs. 6.1-6.4 ℎ�  was 

taken as 2λ. In the design of the 3D-printed diffractive permutation network, however, ℎ� was 

set to be 1.66λ to restrict the material thickness contrast between the neighboring diffractive 

features. The value of ℎ�  was taken as 0.66λ for all the presented designs including the 

fabricated diffractive network.  

Computation of 
¦���, optical transformation errors and performance quality metrics 

 For a given diffractive permutation network design trained to optically implement a 

permutation matrix 
 of size Ç� × Ç�, there are two different ways to compute the permutation 

operation predicted by its numerical forward model. The first way is to propagate Ç different 

 � = ∑ =�Rc[!]@¡�.∑ =�±[!]@¡�. × 100.	  (6.7) 

 ℎ(ℎ�) = sin(ℎ�) + 12 (ℎ� − ℎ�) + ℎ� (6.8) 
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randomly generated independent inputs with Ç ≥ Ç�Ç� and solve a linear system of equations 

for revealing the entries of �pèåå. Alternatively, each input pixel at the input FOV can be turned 

on sequentially and the output intensity pattern synthesized by the diffractive optical permutation 

network as a response to each pixel provides one unique column of �pèåå . These two 

procedures, in general, result in two different �pèåå matrices that closely resemble each other. 

We opted to use the latter procedure due to its simplicity, which turn on each input pixel one at a 

time and records the corresponding output intensity pattern, which, after vectorization, represents 

a column of 
¦���. Following the calculation of 
¦��� predicted by the forward model of a 

trained diffractive permutation network, it was scaled with a multiplicative constant, 2Y , to 

account for the optical losses:           

The all-optical transformation error, .
 − 
¦���.� can be computed based on, 

Denoting the lexicographically ordered vectorized version of a 2D input intensity pattern with 

=�±[!] , the ground truth output intensity can be found by 
=�±[!] . The PSNR between this 

ground-truth vector and the output vector synthesized by the forward optical operation of a given, 

trained diffractive network, =�Rc[!], can be calculated as, 

 2Y =
1Ç�Ç� ∑ ∑ �pèåå[��, ��]�[�� , ��]å-±-å�±�1Ç�Ç� ∑ ∑ �pèåå[��, ��]�å-±-å�±�

.	  (6.9) 

 .
 − 
¦���.� = 1Ç�Ç�VV|2Y�pèåå[��, ��] − �[��, ��]|�å-
±-

å�
±�

.	  (6.10) 
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where 2 is the multiplicative constant defined in Eq. 6.6. The SSIM values were calculated based 

on the built-in function in TensorFlow, i.e., tf.image.ssim, where the two inputs were 2D 

versions of 
=�±[!] and =�Rc[!], representing the ground-truth image and the permuted, all-optical 

output signal, respectively. All the parameters of tf.image.ssim were taken equal to default 

values, except that the size of the Gaussian filter was set to be 5×5, instead of 11×11, and the 

width of the Gaussian filter was set to be 0.75.      

Vaccination framework 

v-D2NN framework aims to design diffractive optical networks that are resilient against physical 

error sources, e.g., misalignments, by modeling these factors as random variables and 

incorporating them into the forward training model. In the training forward model of the 

vaccinated diffractive networks shown in Fig. 6.4, 4 physical error components were modeled 

representing the misalignment of each diffractive layer with respect to their ideal location and 

orientation/angle. The first 3 components represent the statistical variations in the location of 

each diffractive layer in 3D space. Let the ideal location of a diffractive layer, �,  be denoted by 

the vector CZ = (��, �� , ��), then at each training iteration �, v-D2NN framework perturbs CZ with 

a random displacement vector, ¦Z,â = &_��,�, _��,�, _Ñ�,�' . The components of this 3D 

displacement vector were defined as uniformly distributed, independent random variables, i.e.,   

 �`Ç1 = 20�$".4[
\ 1
u∑ |
=�±[!] − 2=�Rc[!]|� �]

^ ,	  (6.11) 
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During the training, for each batch of input images, the 3D displacement vector ¦Z,â is updated 

and accordingly, the location of the layer � is set to be CZ,â = CZ + ¦Z,â, building up robustness to 

physical misalignments.  

Beyond the displacement of diffractive layers, the physical forward model of a diffractive 

network is also susceptible to variations in the orientation of the diffractive layers. Ideally, one 

should include all 3 rotational components, yaw, pitch and roll, however, in this study we only 

considered the yaw component since in our experimental systems, the pitch and the roll can be 

controlled with a high precision. The random angle representing the rotation of a diffractive layer 

� around the optical axis was defined as _\�,�~3(−∆_, ∆_). With 3 shift components depicted in 

Eq. 6.12 and the statistical yaw variation modeled through _\�,� , the vaccinated diffractive 

networks shown in Fig. 6.4 were trained to build resilience against these 4 misalignment 

components. The values of ∆Å, ∆Æ, ∆` and ∆_ determining the misalignment tolerance range were 

defined as a function a common variable �, i.e., ∆Å= ∆Æ= 0.67G�,  ∆`= 24G� and ∆_= 4∘.  
For the design of the experimentally validated diffractive permutation network, on top of these 4 

optomechanical error components (with � = 0.5), we also modeled fabrication errors in the form 

of statistical variations of the material thickness over each diffractive neuron (ℎ). Hence, at a 

 _��,�~3(−∆�, ∆�)	   

 _��,�~3(−∆�, ∆�)	   

 _Ñ�,�~3(−∆�, ∆�)	  (6.12) 
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given iteration, �, the material thickness values over each diffractive unit ℎ(ℎ�), defined in Eq. 

6.8 was perturbed through ℎ�(ℎ�) = ℎ(ℎ�) + _d�, where _d�~3(−0.025ℎ�, 0.025ℎ�). Stated 

differently, the fabricated diffractive layers shown in Fig. 6.5 were designed to be resilient 

against physical errors on the material thickness values over the diffractive neurons within a 

range [−0.0415G, 0.0415G]. 
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Chapter 7 All-optical Phase Recovery: Diffractive Computing For 

Quantitative Phase Imaging 
 

Parts of this chapter have previously been published in D. Mengu et al. “All-optical Phase 

Recovery: Diffractive Computing For Quantitative Phase Imaging”, Advanced Optical Materials, 

DOI: 10.1002/adom.202200281. This chapter presents a numerical study that investigates the 

capabilities of diffractive optical networks in transforming the phase channel of an input objects 

to intensity for revealing quantitative image. 

Quantitative phase imaging (QPI) is a label-free computational imaging technique that 

provides optical path length information of specimens. In modern implementations, the 

quantitative phase image of an object is reconstructed digitally through numerical methods 

running in a computer, often using iterative algorithms. Here, we demonstrate a diffractive QPI 

network that can perform all-optical phase recovery and synthesize the quantitative phase image 

of an object by converting the input phase information of a scene into intensity variations at the 

output plane. A diffractive QPI network is a specialized all-optical processor designed to perform 

a quantitative phase-to-intensity transformation through passive diffractive surfaces that are 

spatially engineered using deep learning and image data. Forming a compact, all-optical network 

that axially extends only ~200-300λ, where λ is the illumination wavelength, this framework can 

replace traditional QPI systems and related digital computational burden with a set of passive 

transmissive layers. All-optical diffractive QPI networks can potentially enable power-efficient, 
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high frame-rate and compact phase imaging systems that might be useful for various applications, 

including, e.g., on-chip microscopy and sensing.           
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7.1 Introduction 

 Optical imaging of weakly scattering phase objects has been of significant interest for 

decades, resulting in numerous applications in different fields. For example, the optical 

examination of cells and tissue samples is frequently used in biological research and medical 

applications, including disease diagnosis. However, in terms of their optical properties, isolated 

cells and thin tissue sections (before staining) can be classified as weakly scattering, transparent 

objects237. Hence, when they interact with the incident light in an optical imaging system, the 

amount of light scattered due to the spatial inhomogeneity of the refractive index is much smaller 

than the light directly passing through, resulting in a poor image contrast at the output intensity 

pattern. One way to circumvent this limitation is to convert such phase objects into amplitude-

modulated samples using chemical stains or tags238. In fact, for over a century, histopathology 

practice has relied on the staining of biological samples for medical diagnosis to bring contrast to 

various features of the specimen. While these methods generally provide high-contrast imaging 

(sometimes with molecular specificity), they are tedious and costly to perform, often involving 

toxic chemicals and lengthy manual staining procedures. Moreover, the use of exogenous stains 

might cause changes in the physiology of living cells and tissue, creating practical limitations in 

various biological applications239. 

The phase contrast imaging principle, invented by Frits Zernike, represents a breakthrough 

(leading to the 1953 Nobel Prize in Physics) on imaging the intrinsic optical phase delay induced 

by transparent, phase objects without using exogenous agents240. Nomarski’s differential 

interference contrast (DIC) microscopy is another method frequently used to investigate phase 

objects without staining241. While both phase contrast imaging and DIC microscopy can offer 

sensitivity to nanoscale optical path length variations, they reveal the phase information of the 
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specimen in a qualitative manner. On the other hand, quantification and mapping of a sample’s 

phase shift information with high sensitivity and resolution allows for various biomedical 

applications242–244. To address this broad need, quantitative phase imaging (QPI) has emerged as 

a powerful, label-free approach for optical examination of, e.g., morphology and spatiotemporal 

dynamics of transparent specimens239. The last decades have witnessed the development of 

numerous digital QPI methods, e.g., Fourier Phase Microscopy (FPM)245, Hilbert Phase 

Microscopy (HPM)246, Digital Holographic Microscopy (DHM)247–252, Quadriwave Lateral 

Shearing Interferometer (QLSI)253 and many others254–263. This transformative progress in QPI 

methods has fostered various applications in, e.g., pathology248, cell migration dynamics242,264 

and growth265, immunology266 and cancer prognosis267–270, among others271–278.   

A QPI system, in general, consists of an optical imaging instrument based on conventional 

components such as lenses, beamsplitters, as well as a computer to run the image reconstruction 

algorithm that recovers the object phase function from the recorded interferometric 

measurements. In recent years, QPI methods have also benefited from the ongoing advances in 

machine learning and GPU-based computing to improve their digital reconstruction speed and 

spatiotemporal throughput279–284. For example, it has been shown that feedforward deep neural 

networks can be used for solving challenging inverse problems in QPI systems, including, e.g., 

phase retrieval50,285,286, pixel super-resolution287 and extension of the depth-of-field52.  

In this work, we report the numerical design of diffractive optical networks77 to replace digital 

image reconstruction algorithms used in QPI systems with a series of passive optical modulation 

surfaces that are spatially engineered using deep learning. The presented QPI diffractive 

networks (Fig. 7.1) have a compact footprint that axially spans ~240λ and are designed using 
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deep learning to encode the optical path length induced by a given input phase object into an 

output intensity distribution that all-optically reveals the corresponding QPI information of the 

sample. Through numerical simulations, we show that these QPI diffractive network designs can 

generalize not only to unseen, new phase images that statistically resemble the training image 

dataset, but also generalize to entirely new datasets with different object features.  

It is important to emphasize that these QPI diffractive networks do not perform phase recovery 

from an intensity measurement or a hologram. In fact, the input information is the phase object 

itself, and the QPI network is trained to convert this phase information of the input scene into an 

intensity distribution at the output plane; this way, the normalized output intensity image directly 

reveals the quantitative phase image of the sample in radians.  

The diffractive QPI designs reported in this work represent proof-of-concept demonstrations of a 

new phase imaging concept, and we believe that such diffractive computational phase imagers 

can find various applications in on-chip microscopy and sensing due to their compact footprint, 

all-optical computation speed and low-power operation.   

7.2 Results 

Revealing the optical phase delay induced by an input object by converting or encoding the 

sample information into an optical intensity pattern at the output plane is a relatively old and 

well-known technique240. Unlike analog phase contrast imaging methods that allow qualitative 

investigation of the samples, modern QPI systems numerically retrieve the spatial map of the 

optical phase delay induced by the sample. However, the fundamental idea of encoding the phase 

information of the object function into the output intensity pattern prevails. For instance, 

coherent QPI methods use optical hardware, commonly based on conventional optical  
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Fig. 7.1 Schematic of a diffractive QPI network that converts the optical phase information of an input 

object into a normalized intensity image, revealing the QPI information in radians without the use of a 

computer or a digital image reconstruction algorithm. Optical layout of the presented 5-layer diffractive QPI 

network, where the total distance between the input and output fields-of-view is 240λ. 
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components such as lenses and beamsplitters, to generate interference between a reference 

wave and the object wave over an image sensor-array, creating fringe patterns that implicitly 

describe the phase function of the input sample. These QPI systems also rely on a phase recovery 

step implemented in a computer that decodes the object phase information by digitally 

processing the recorded optical intensity pattern(s), often using iterative algorithms.  

To create an all-optical QPI solution without any digital phase reconstruction algorithm, we 

designed diffractive networks77,78,166,288,289 that transform the phase information of the input 

sample into an output intensity pattern, quantitatively revealing the object phase distribution 

through an intensity recording. Figure 7.1 illustrates the schematic of a 5-layer diffractive 

network that was trained to all-optically synthesize the QPI signal of a given input phase object 

(see Methods section for training details). This system can precisely quantify and map the optical 

path length variations at the input, and unlike the modern QPI systems, it does not rely on a 

computationally intensive phase reconstruction algorithm or a digital computer.  

For a proof-of-concept demonstration, here we considered the design of diffractive QPI 

networks with unit magnification, such that the input object features in the phase space have the 

same scale as the output intensity features behind the diffractive network. Since the value of the 

output optical intensity will depend on external physical factors such as, e.g., the power of the 

illumination source and the quantum efficiency of the image sensor-array, we used a background 

region (see Methods section) that surrounds the unit magnification output image to obtain a 

reference mean intensity. This mean signal intensity value at this background region is used to 

normalize the output intensity of the diffractive network’s image to reveal the quantitative phase 

information of the sample in radians, i.e., =aYf(�, �) [rad]. Therefore, at the output plane of the 
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diffractive QPI network, we defined an output signal area that is slightly larger than the input 

sample field-of-view, where the edges are used to reveal the intensity normalization factor, 

which makes our diffractive QPI designs invariant to changes in the illumination beam intensity 

or the diffraction efficiency of the imaging system, correctly revealing =aYf(�, �), matching the 

quantitative phase information of the input object in radians.  

Figure 7.2a shows the phase-only diffractive layers constituting a diffractive QPI network 

that is trained using deep learning. In our proof-of-concept numerical experiments, we opted to 

train and test our diffractive network designs on well-known image datasets to better benchmark 

the resulting QPI capabilities. Given a normalized greyscale image from a target dataset, �(�, �), 
the corresponding function of a phase object at the input plane can be written as �[Pób(�,�) where 

|�(�, �)| ≤ 1. The parameter � determines the range of the phase shift induced by the input 

object. The diffractive optical network shown in Fig. 7.2a was trained based on �(�, �) taken 

from the Tiny-Imagenet dataset290 and the parameter, �, was set to be 1 for both training and 

testing, i.e., �c� = �c+¡c = 1.  Figure 7.2b illustrates the QPI signals, =aYf(�, �), for exemplary 

test samples from the Tiny-imagenet dataset, never seen by the diffractive network in the training 

phase, along with the corresponding ground truth images, �(�, �). We quantified the success of 

the QPI signal synthesis performed by the presented diffractive network using the Structural 

Similarity Index Measure (SSIM)291 and the peak signal-to-noise ratio (PSNR). The diffractive 

network shown in Fig. 7.2a provides an SSIM of 0.824±0.050 (mean ± std) and a PSNR of 

26.43dB±2.69 over the entire 10K test samples of the Tiny-Imagenet.  
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Fig. 7.2 Generalization capability of diffractive QPI networks. a, The phase profiles of the diffractive layers 

forming the diffractive QPI network trained using phase-encoded images from Tiny-Imagenet dataset, ϕ(x,y). b, 

Exemplary input object images and the corresponding output QPI signals for the test images, never seen by the 

network during training, taken from the Tiny-Imagenet. Dashed green box indicates that the test images, 

although not seen by the diffractive network before, belong to the same dataset used in the training. c-d, Same as 

b, except that the test images are taken from CIFAR-10 and Fashion-MNIST. Dashed red boxes indicate that 

these test images are from entirely new datasets compared to the Tiny-Imagenet used in the training. The SSIM 

(PSNR) values achieved by the presented diffractive network are 0.824±0.050 (26.43dB±2.69), 0.917±0.041 

(31.98dB±3.15) and 0.596±0.116 (26.94dB±1.5) for the test images from Tiny-Imagenet, CIFAR-10 and 

Fashion-MNIST datasets, respectively. 
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Although our diffractive QPI network design can successfully transform the phase 

information of the samples into quantitative optical intensity information, providing a 

competitive QPI performance without the need for any digital phase recovery algorithm, one 

might argue that the underlying phase-to-intensity transformation performed by the diffractive 

network is data-specific. To shed more light on this, we investigated the generalization 

capabilities of our diffractive network design by further testing its QPI performance over phase-

encoded samples from two completely different image datasets, i.e., CIFAR-10 and Fashion-

MNIST, that were not used in the training phase. As shown in Figs. 7.2c-d, the SSIM and PSNR 

values achieved by the presented diffractive QPI network for quantitative phase imaging of 

CIFAR-10 (and Fashion-MNIST) images are 0.917±0.041 (and 0.596±0.116) and 31.98dB±3.15 

(and 26.94dB±1.5), respectively. Interestingly, the QPI signal synthesis quality turned out to be 

higher for CIFAR-10 images compared to the performance of the same diffractive network on 

the Tiny-Imagenet test samples, even though CIFAR-10 has an entirely different set of objects 

and spatial features (which were never used during the training phase). This could be partially 

attributed to the difference in the original size of the Tiny-Imagenet (64×64-pixel) and CIFAR-

10 (32×32-pixel) images. Considering that the physical dimensions of the input field-of-view in 

our network configuration is 42.4λ×42.4λ, the size of the smallest spatial feature becomes 

��.�ô»� = 0.6625G and  2 × 0.6625G for Tiny-Imagenet and CIFAR-10 datasets, respectively; this 

makes CIFAR-10 test samples relatively easier to image through the diffractive QPI network.  

Next, we numerically quantified the smallest resolvable linewidth and the related phase 

sensitivity of our diffractive QPI network design using binary phase gratings as test objects (see 

Fig. 7.3). Such resolution test targets were not used as part of the training, which only included 

the Tiny-Imagenet dataset. The presented diffractive network performs QPI with diffractive 
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layers of size 106λ×106λ that are placed 40λ apart from each other and the input/output fields-of-

view (see Fig. 7.1). This physical configuration reveals that the numerical aperture (NA) of our 

diffractive network is sin K���X. � .4»ô�×�4ô�M = ~0.8, which corresponds to a diffraction-limited 

resolvable linewidth of 0.625G. Our numerical analysis in Fig. 7.3a showed that the smallest 

resolvable linewidth with our diffractive QPI design was ~0.67G, when the input gratings were 0-

π encoded, closely matching the resolvable feature size determined by the NA of our system; 

also note that the effective feature size of the training samples from Tiny-Imagenet is 0.6625G. 

This analysis means that our training phase was successful in approximating a general-purpose 

quantitative phase imager despite using relatively lower resolution training images, coming close 

to the theoretical diffraction limit imposed by the physical structure of the diffractive QPI 

network.   

The input phase contrast is another crucial factor affecting the resolution of QPI achieved by 

our diffractive network design. To shed more light on this, we numerically tested our diffractive 

QPI network on binary gratings with two different linewidths, 0.67G and 0.75G, at varying levels 

of input phase contrast, as shown in Fig. 7.3b. Based on the resulting diffractive QPI signals 

illustrated in Figs. 7.3a-b, the 0.67G linewidth grating remains resolvable until the input phase 

contrast falls below 0.25π. The last column of Fig. 7.3b suggests that when the contrast 

parameter (�c+¡c) is taken to be 0.1, the noise level in the QPI signal generated by the diffractive 

network increases to a level where the 0.67G linewidth grating cannot be resolved anymore. On 

the other hand, 0.75G  linewidth grating remains to be partially resolvable despite the noisy 

background, even at 0-0.1π phase contrast (i.e., �c+¡c = 0.1). 
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Fig. 7.3 Spatial resolution and phase sensitivity analysis. Input phase image and the corresponding output 

diffractive QPI signal for binary, 0-π phase encoded grating objects. The diffractive QPI network can resolve 

features as small as ~0.67λ. b, Analysis of the relationship between the input phase contrast and the resolvable 

feature size. The diffractive QPI network can resolve 0.67λ linewidth for a phase encoding range that is larger 

than 0.25π. Below this phase contrast, the resolution slowly degrades; for example, at 0-0.1π phase encoding, 

the background noise shadows the QPI signal of the grating with a linewidth of 0.67λ, while a larger linewidth 

(0.73λ) grating is still partially resolvable. 
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We also conducted a similar analysis on the effect of the input phase contrast over the quality 

of QPI performed by the presented diffractive network. By setting the phase contrast parameter 

�c+¡c  to 9 different values between 0.1 and 2.0 for all three image datasets (Tiny-Imagenet, 

CIFAR-10 and Fashion-MNIST), we quantified the resulting SSIM and PSNR values for the 

reconstructed images at the output plane of the diffractive QPI network. Figures 7.4a-c illustrate 

the mean and standard deviations of the SSIM and PSNR metrics as a function of �c+¡c for all 

three image datasets. A close examination of Figs. 7.4a-c reveals that both SSIM and PSNR 

peaks at �c+¡c = 1, which matches the phase encoding range used during the training phase, i.e., 

�c� = �c+¡c = 1. To the left of these peaks, where �c+¡c<	�c� = 1, there is a slight degradation in 

the performance of the presented diffractive QPI network, mainly due to the increasing demand 

in phase sensitivity at the resulting image, =aYf(�, �). With �c� = 1 and 8-bit quantization of 

input signals, the phase step size that the diffractive QPI network was trained with was 
ó��» =

0.0123 radians; however, when �c+¡c deviates from the training, for instance �c+¡c = 0.5, then 

the smallest phase step size that the diffractive network is tasked to sense becomes 
4.�ó��» = 0.0062 

radians. In other words, the diffractive network must be 2× more phase sensitive compared to the 

level it was trained for, causing some degradation in the SSIM and PSNR values as shown in 

Figs. 7.4a-c for �c+¡c<�c� = 1. 

On the other hand, when the input phase encoding exceeds the [0, π] range used during the 

training phase, the degradation in diffractive QPI signal quality is more severe. As �c+¡c 
approaches to 2.0, the errors and artifacts created by the presented diffractive network in 

computing the QPI signal increase. Interestingly, at �c+¡c = 1.99 , the forward optical 

transformation of the diffractive QPI network starts to act as an edge detector. A straightforward  
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Fig. 7.4 The impact of input phase range on the diffractive QPI signal quality. a, A schematic of the 

diffractive QPI network that was trained with α_tr=1.0, meaning that the training images had [0 : π] phase range. 

b, Pairs of ground-truth input phase images (top rows) and the diffractive QPI signal (bottom rows) for different 

images taken from Tiny-Imagenet (top), CIFAR-10 (middle) and Fashion-MNIST (bottom), at different levels 

of phase encoding ranges dictated by (from left-to-right) α_test=2, α_test=1.75, α_test=1.5, α_test=1.25, 

α_test=α_tr=1.0, α_test=0.75, α_test=0.5, α_test=0.25, α_test=0.1. c, The SSIM and PSNR values of the 

diffractive QPI signals with respect to the ground-truth images as a function of α_test. 
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solution to mitigate this performance degradation is to train the diffractive network with 

�c� = 2.0 − #, where # is a small number, meaning that during the training phase, the dynamic 

range of the phase values at the input plane will be within [0, 2π). Figure 7.5 illustrates an 

example of this for a 5-layer diffractive QPI network that was trained with �c� = 1.99. This new 

diffractive network has the same physical layout and architecture as the previous one shown in 

Fig. 7.2. The only difference between the two diffractive QPI networks is the phase range 

covered by the input samples used during their training (�c� = 1.0 vs. �c� = 1.99). Since the 

design evolution of this new diffractive QPI network is driven by input samples covering the 

entire [0, 2π) phase range, in the case of �c+¡c = �c� = 1.99, it provides a much better QPI 

performance compared to the diffractive network shown in Fig. 7.2. This improved diffractive 

QPI performance can also be visually observed by comparing the images shown in Fig. 7.4 and 

Fig. 7.5 under the �c+¡c = 1.99	column.  

7.3 Discussion 

Compared to earlier works on diffractive optical networks that demonstrated amplitude 

imaging77, the presented QPI diffractive networks report significant advances. While a 

conventional amplitude imaging task requires the diffractive network to achieve a point-to-point 

intensity mapping between the input and output fields-of-view, all-optical synthesis of the QPI 

signal describing the phase variations of an input object is a nonlinear operation as it converts the 

input phase information into quantitative output intensity variations, and this nonlinear operation 

(phase-to-intensity transformation) is all-optically approximated through our QPI diffractive 

networks, the magnitude-squared signal detection on the opto-electronic sensor and the 

subsequent normalization step depicted in Eq. 7.4. Furthermore, a vital feature of the presented 

diffractive QPI networks is that their operation is invariant to changes in the input beam intensity 
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Fig. 7.5 The impact of input phase range on the diffractive QPI signal quality. Same as Fig. 7.4, except that 

this diffractive QPI network was trained with α_tr=2.0, meaning that the training images had [0, 2π) phase 

range, instead of [0, π]. 
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 or the power efficiency of the diffractive detection system; by using the mean intensity value 

surrounding the output image field-of-view as a normalization factor, the resulting diffractive 

image intensity =aYf(�, �) reports the phase distribution of the input object in radians. Moreover, 

the presented diffractive optical networks are composed of passive layers, and therefore perform 

QPI without any external power source other than the illumination light. It is true that the 

training stage of a diffractive QPI network takes a significant amount of time (e.g., ~40 hours) 

and consumes some energy for training-related computing. But this is a one-time training effort, 

and in the image inference stage, there is no power consumption per object (except for the 

illumination), and the reconstructed image reveals the quantitative phase information of the 

object at the speed of light propagation through a passive network, without the need for a 

graphics processing unit (GPU) or a computer. One should think of a diffractive network’s 

design, training and fabrication phase (a one-time effort) similar to the 

design/fabrication/assembly phase of a digital processor or a GPU that we use in our computers. 

Another important aspect of the presented diffractive QPI framework is its generalization 

capability over image datasets other than the one used in the training phase, as shown in Fig. 7.2. 

To further test the role of the training dataset in the generalization capability of the diffractive 

QPI system, we trained a new diffractive network with a physical architecture identical to that of 

the QPI diffractive network shown in Fig. 7.2. The only difference was that this new diffractive 

optical network was trained using the Fashion-MNIST dataset instead of the Tiny-Imagenet. 

Compared to the QPI diffractive network shown in Fig. 7.2 (trained with Tiny-Imagenet) that 

achieved (SSIM, PSNR) performance metrics of (0.824±0.050, 26.43dB±2.69), (0.917±0.041, 

31.98dB±3.15) and (0.596±0.116,  26.94dB±1.5) for Tiny-Imagenet, CIFAR-10 and Fashion-

MNIST test datasets, respectively, this new QPI diffractive network (trained with Fashion-
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MNIST) provided (SSIM, PSNR) performance metrics of (0.622±0.085, 19.97dB±2.36), 

(0.699±0.106, 21.38dB±2.7) and (0.816±0.060,  31.26dB±2.12), for the same test datasets, 

respectively. From this comparison, we can conclude that: (1) the QPI diffractive network can be 

trained with other image datasets and successfully generalize to achieve phase recovery for new 

types of test images, and (2) the richness of the phase variations in the training images impacts 

the performance and generalization capability of the QPI diffractive network; for example, the 

QPI diffractive network trained with Tiny-Imagenet achieved relatively better generalization to 

new phase images obtained from CIFAR-10 test dataset when compared to the QPI diffractive 

network trained with Fashion-MNIST. To further quantify the generalization performance of the 

presented QPI diffractive network shown in Fig. 7.2 (trained with Tiny-Imagenet), we blindly 

tested it with phase images of thin Pap (Papanicolaou) smear samples as shown in Fig. 7.6. 

Although, this QPI diffractive optical network was only trained using the phase-encoded images 

from Tiny-Imagenet, it very well generalized to new types of samples, performing quantitative 

phase retrieval and QPI on the phase images of Pap smear samples, with output SSIM and PSNR 

values of 0.663±0.047 and 25.55dB±1.44, respectively (see Fig. 7.6).    

The output power efficiency of the presented QPI networks is mainly affected by two factors: 

diffraction efficiency of the resulting network and material absorption. In this study, we assumed 

the optical material of diffractive surfaces has a negligible loss for the wavelength of operation, 

similar to the properties of optical glasses, e.g., BK-7, in the visible part of the spectrum. Beyond 

the material absorption, another possible source of power loss in a physically implemented 

diffractive network is the surface back-reflections, which might potentially be minimized 

through e.g., anti-reflection thin-film coatings292. For example, the diffractive QPI network 

reported in Fig. 7.2 achieves ~2.9% mean diffraction efficiency for the entire 10K test set of  
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Fig. 7.6 The signal synthesis performance of a QPI diffractive optical network on Pap-smear samples. The 

input images represent the phase channel of Pap-smear samples (monolayer of cells), and the QPI signals 

(output intensity) are synthesized by the diffractive optical network shown in Fig. 7.2. Although, this QPI 

diffractive network model is trained using only the images from Tiny-imagenet, it can blindly achieve SSIM and 

PSNR values of 0.663±0.047 and 25.55dB±1.44, respectively, over these Pap-smear samples. 
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Tiny-Imagenet. It is important to note that during the training of this diffractive QPI network, 

the training cost/loss function was purely based on decreasing the QPI errors at the output plane, 

and there was no other loss term or regularizer to enforce a more power-efficient operation. In 

fact, by including an additional loss term for regulating the balance between the QPI 

performance and diffraction efficiency (see Methods section), we demonstrated that it is possible 

to design more efficient diffractive QPI networks with a minimal compromise on the output 

image quality; see Fig. 7.7, where all the diffractive network designs share the same physical 

layout shown in Fig. 7.1. For example, a more efficient diffractive QPI network design with 6.31% 

power efficiency at the output plane offers QPI signal quality with an SSIM of 0.815±0.0491. 

Compared to the original diffractive QPI network design that solely focuses on output image 

quality, the SSIM value of this new diffractive network has a negligible decrease while its 

diffraction efficiency at the output plane is improved by more than 2-fold. Further shifting the 

focus of the QPI network training towards improved power efficiency can result in a solution 

that can synthesize QPI signals with >11% output diffraction efficiency, also achieving an SSIM 

of 0.771±0.0507 (see Fig. 7.7). We should note here that a standard phase contrast microscope 

also contains some filters, apertures, lenses and other optical components that block and/or 

scatter the sample light, all of which also cause some power loss. However, such conventional 

optical components have very well established fabrication technologies supporting their 

optimized use in a microscope design. With advances in diffractive optical computing, more 

efficient diffractive surface designs293 can be enabled in the future to further increase the output 

diffraction efficiencies of diffractive networks. 
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Fig. 7.7 Diffractive QPI signal quality and the power efficiency trade-off.  We report 4 different diffractive 

QPI network models trained using [0 : π] phase-encoded samples from the Tiny-Imagenet dataset. The SSIM on 

the y-axis reflects the mean value computed over the entire 10K test images of the Tiny-Imagenet dataset. The 

diffractive QPI network that provides the highest SSIM is the network shown in Fig. 7.2, which was trained 

solely based on the structural loss function (Eq. 7.5) totally ignoring the diffraction efficiency of the resulting 

solution. The loss function used for the training of the other 3 diffractive QPI networks includes a linear 

superposition of the structural loss function (Eq. 7.5) and the diffraction efficiency penalty term depicted in Eq. 

7.7. The multiplicative constant γ which determines the weight of the diffraction efficiency penalty was taken as 

0.1, 0.4 and 5.0 for these 3 diffractive QPI networks, providing an output diffraction efficiency of 6.31% , 

8.17% and 11.05%, respectively. 
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Fig. 7.8 The impact of the number (K) of trainable layers on the diffractive QPI signal quality and the 

output diffraction efficiency.  a, Output diffraction efficiency and SSIM as a function of K. There are 5 

different diffractive QPI network designs reported here, with K=1,2,3,4 and 5 trainable, phase-only diffractive 

surfaces; the K=5 diffractive QPI network is the same one shown in Fig. 7.2. b, Exemplary input object images 

from Tiny-Imagenet (top-2 rows), CIFAR-10 (middle-2 rows) and Fashion-MNIST (bottom-2 rows) and the 

corresponding output QPI signals synthesized by the diffractive QPI network designs with K=1,2,3,4 and 5. 
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Another crucial parameter in a diffractive network design is the number of diffractive layers 

within the system; Figure 7.8 illustrates the results of our analysis on the relationship between 

the diffractive QPI performance and the number of diffractive layers within the system. It has 

previously been shown through both theoretical and empirical evidence that deeper diffractive 

optical networks can compute an arbitrary complex-valued linear transformation with lower 

approximation errors, and they demonstrate higher generalization capacity for all-optical 

statistical inference tasks172,294. Figure 7.8 confirms the same behavior: improved QPI 

performance is achieved by increasing the number of diffractive layers, 	E . When E=1, the 

trained diffractive network fails to compute the QPI signal for a given input phase object, as 

evident from the extremely low SSIM values and the exemplary images shown in Fig. 7.6b. On 

top of that, the diffraction efficiency is also very low, ~1%, with a single-layer diffractive 

network configuration (E=1). With E=2 trainable diffractive surfaces, the diffraction efficiency 

stays very low, while the QPI signal quality improves. When we have E=3 diffractive layers in 

our QPI network design, we observe a significant improvement in both the diffraction efficiency 

and the output SSIM compared to E=1 or 2. Beyond E=3, the structural quality of the output 

QPI signal keeps improving as we add more layers to the diffractive network architecture. 

However, this improvement does not translate into better diffraction efficiency as the training 

loss function does not include a power efficiency penalty term. Earlier results reported in Fig. 7.7 

clearly show the impact of adding such a regularizer term in the training loss function for 

improving the diffraction efficiency of the QPI network, reaching >11% power efficiency with a 

minor sacrifice in the structural fidelity of the output images. 

It is also important to note that as the number of diffractive layers increases, the system (if 

the diffractive network is not trained accordingly) becomes more sensitive to physical 
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misalignments that might be induced through e.g., fabrication and/or opto-mechanical errors103. 

To shed further light on this, we tested the sensitivity of the QPI diffractive network shown in 

Fig. 7.2 against axial misalignments of the sensor array at the output plane with respect to the 

diffractive layers. Although, the SSIM and PSNR values of the all-optical QPI signal exhibit a 

decrease when the output image sensor is placed at a different axial location than the correct 

position assumed in the design of the QPI diffractive network. However, one can introduce 

misalignment resilient diffractive designs with the incorporation of “vaccination” in the training 

of the diffractive network, where such misalignments are randomly introduced during the 

training process to guide the optimization of the diffractive surfaces to build resilience toward 

uncontrolled misalignments103. For example, using this vaccination strategy, it has been shown 

that diffractive networks can be trained to provide an extended depth-of-field, mitigating 

performance degradation due to object and/or sensor plane misalignments295,296. The 

incorporation of such vaccination methods into the training stage of diffractive QPI networks 

would in general result in more robust designs against misalignments. Beyond misalignments, 

another practical issue regarding the implementation of diffractive QPI systems that needs to be 

discussed is the bit depth of the phase modulation on the diffractive layers. During the training of 

the QPI diffractive networks, it was assumed that the phase modulation over a diffractive surface 

can take any value in the range [0,2π).  

Although, the diffractive networks analyzed and presented in this study are designed to 

achieve the QPI task with a unit magnification, this is not a limitation of the underlying 

framework. Depending on the targeted spatial resolution, imaging field-of-view and throughput, 

diffractive QPI systems with a magnification larger than 1 can also be devised according to the 

pixel size and the active area of a desired focal-plane-array at the output plane. With the wide 
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availability of modern CMOS image sensor technology that has sub-micron pixel sizes, unit 

magnification imaging systems provide a fine balance between the sample field-of-view and the 

spatial resolution that can be achieved; therefore, unit magnification imaging systems enable 

compact and chip-scale microscopy tools that provide a substantial increase in the sample field-

of-view and volume that can be probed with a decent spatial resolution250.     

In summary, the presented diffractive QPI networks convert the phase information of an 

input object into an intensity distribution at the output plane in a way that the normalized output 

intensity reveals the phase distribution of the object in radians. Being resilient to input light 

intensity variations and power efficiency changes in the diffractive set-up, this QPI network can 

replace the bulky lens-based optical instrumentation and the computationally intensive 

reconstruction algorithms employed in QPI systems, potentially offering high-throughput, low-

latency, compact and power-efficient QPI platforms which might fuel new applications in on-

chip microscopy and sensing. In addition, depending on the application, they can also be trained 

to all-optically perform various machine learning tasks (e.g., image segmentation 297 and phase 

unwrapping) using the phase information channel describing transparent input objects; they can 

also be integrated with electronic back-end neural networks to enable multi-task, resource-

efficient hybrid machine learning systems 78,166. Fabrication and assembly of such diffractive 

QPI systems operating in the visible and near IR wavelengths can be achieved using two-photon 

polymerization-based 3D printing methods as well as optical lithography tools231,298,299.         

7.4 Methods 

Optical forward model of diffractive QPI networks 
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The optical wave propagation in air, between successive diffractive layers, was formulated 

based on the Rayleigh-Sommerfeld diffraction equation. According to this formulation, the free-

space propagation inside a homogeneous and isotropic medium is modeled as a shift-invariant 

linear system with the impulse response, 

where J = Q�� + �� + ��. In Eq. 7.1, the parameters � and G denote the refractive index of 

the medium ( � = 1  for air), and the wavelength of the illumination light, respectively. 

Accordingly, a diffractive neuron, �, located at (��, �� , ��) on ºcd layer can be considered as the 

source of a secondary wave, T�W(�, �, �),  

where the summation in Eq. 7.2 represents the field generated over the diffractive neuron 

located at (��, �� , ��) by the neurons on the previous, (º − 1)cd, layer. From Eq. 7.1, the function 

H�(�, �, �) in Eq. 7.2 can be written as, 

with J = Q(� − ��)� + (� − ��)� + (� − ��)�. The multiplicative term �(��, ��, ��) in Eq. 7.2 

denotes the transmittance coefficient of the neuron, �, which, in its general form, can be written 

as, �(��, ��, ��) = �� exp(�]�). Depending on the diffractive layer fabrication method and the 

related optical materials, both �� and ]� might be a function of other physical parameters, e.g., 

 H(�, �, �) = �J� 	K 12)J + ��GM exp	(�2)�JG ) (7.1) 

 T�W(�, �, �) = H�(�, �, �)�(��, ��, ��)VT}WX.(��, �� , ��)å
}�. 	 (7.2). 

 H�(�, �, �) = � − ��J� 	K 12)J + ��GM exp	(�2)�JG ) (7.3), 
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material thickness in 3D printed diffractive layers and driving voltage levels in spatial light 

modulators. In earlier works on diffractive networks77,80,103,166, it has been shown that it is 

possible to directly train such physical parameters through deep learning. On the other hand, a 

more generic way of optimizing a diffractive network is to define the amplitude ��  and ]�  as 

learnable parameters. In this study, we constrained our analysis to phase-only diffractive surfaces 

where the amplitude coefficients, ��, were all taken as 1 during the entire training. Thus, the only 

learnable parameters of the presented diffractive networks are the phase shifts applied by the 

diffractive features, ]�. For all the diffractive networks that we trained, the initial value of all ]�s 

was set to be 0, i.e., the initial state of a diffractive network (before the training kicks in) is equal 

to the free-space propagation of the input light field onto the output plane.  

The design of diffractive QPI network 

During our deep learning-based diffractive network training, we sampled the 2D space with a 

period of 0.53λ, which is also equal to the size of each diffractive feature (‘neuron’) on the 

diffractive surfaces. Although we described the forward optical model over continuous functions 

in the previous subsection, training of the presented diffractive networks was performed using 

digital computers. Hence, we denote the input and output signals using their discrete counterparts 

for the remaining part of this sub-section with a spatial sampling period of 0.53λ in both 

directions (x and y).  In the physical layout of the presented diffractive optical networks, the size 

of the input field-of-view was set to be 42.4λ×42.4λ, which corresponds to 80×80 2D vectors 

defining the phase distributions of input objects. With �[#, �] denoting an image of size Ö ×Ç 

from a dataset, we applied 2D linear interpolation to compute the 2D vector c[¶, �] of size 

80×80. Note that the values of Ö and Ç depend on the used image dataset. Specifically, for 
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Tiny-Imagenet Ö = Ç = 64, while for CIFAR-10 and Fashion-MNIST datasets, Ö = Ç = 32 

and Ö = Ç = 28, respectively. The scattering function within the input field-of-view of the 

diffractive networks was defined as a pure phase function (see Fig. 7.1) in the form of �[Póc[},µ].    
The physical dimensions of each diffractive layer were set to be 106λ on both x and y axes, i.e., 

each diffractive layer contains 200×200 = 40K neurons. For instance, the 5-layer diffractive 

network shown in Fig. 7.2 has 0.2 million neurons, and hence 0.2 million trainable parameters, 

]�, � = 1,2, . . . ,0.2 × 10». In our forward optical model, we set all the distances between (1) the 

first diffractive layer and the input field-of-view, (2) two successive diffractive layers, and (3) 

the last diffractive layer and the output plane, as 40λ resulting in an NA of ~0.8. With the size of 

each diffractive feature/neuron taken as 0.53λ, the diffraction cone angle of the secondary wave 

emanating from each neuron ensures optical communication between all the neurons on two 

successive surfaces (axially separated by 40λ), while also enabling a highly compact diffractive 

QPI network design. For instance, the total axial distance from the input field-of-view to the 

output plane of a 5-layer diffractive QPI network shown in Fig. 7.1 is only ~240λ.  

The size of the QPI signal area at the output plane including the reference/background region 

was set to be 43.56λ×43.56λ, i.e., the reference region extends on both directions on x and y axes 

by 0.53λ, (43.56λ=42.4λ+2×0.53λ). If we denote the background optical intensity over this 

reference region as �A[J] and the optical intensity within the QPI signal region as �d[¶, �], then 

according to our forward model, �e
�[¶, �] is found by, 

 �e
�[¶, �] = �d[¶, �]f ,	  (7.4) 
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where f = .åg∑ �A[J]åg��.  is the mean background intensity value, Çh  denotes the number of 

discretized intensity samples within the reference region. According to Eq. 7.4, for a given input 

object/sample, the final diffractive QPI signal, �e
�[¶, �]  reports the output phase image in 

radians.  

To guide the evolution of the diffractive layers according to the QPI signal in Eq. 7.4, at each 

iteration of the deep learning-based training of the presented diffractive QPI networks, we 

updated the phase parameters, ]�, using the following normalized mean-squared-error300, 

where, Ç¡	is the total number of discretized samples representing the QPI signal area, i.e., Ç¡ =
80 × 80. The vectors & and &′ are 1D counterparts of the associated 2D discrete signals, &[¶, �] 
and &′[¶, �], computed based on lexicographically ordered vectorization operator. They denote 

the ground-truth phase signal of the input object and the diffractive intensity signal synthesized 

by the QPI network at a given iteration, respectively. Both the ground truth vector, &, and &′ 
cover the output sample field-of-view and the reference signal region surrounding it, hence their 

size is equal to Çh +Ç@ = 82 × 82. The 2D vector &[¶, �] is defined based on the input vector 

c[¶, �]. First, we equalize the size of the two vectors by padding the 80 × 80 vector c[¶, �] to 

the size 82 × 82. The values over the padded region are equal to  
.Pó. This padded vector was 

then scaled with the multiplicative constant �)  such that the 80 × 80  part in the middle 

represents the argument of the phase function �[Póc[},µ]. The reference signal region surrounding 

this 80 × 80 part has all ones, implying that the mean intensity over this area will correspond to 

 ℒ = 1Çh + Ç@ V |&[�] − 2&e[�]|�åg-åi
��. ,	  (7.5) 
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1 rad. By computing the loss function in Eq. 7.5 based on a ground-truth vector that also includes 

the desired reference signal intensity, we implicitly enforce/train the diffractive QPI network to 

synthesize a uniformly distributed intensity over the reference signal area, although this is not a 

requirement for the QPI networks’ operation.  

The multiplicative term, 2, in Eq. 7.5 is a normalization constant that was defined as300, 

The structural loss function, ℒ, in Eq. 7.5 drives the QPI quality, and it was the only loss term 

used during the training of the diffractive networks shown in Figs. 7.2, 7.5 and 7.8. The training 

of the diffractive network designs with output diffraction efficiencies of ≥ 2.9% shown in Fig. 

7.7, on the other hand, use a linear mix of the structural loss in Eq. 7.5 and an additional loss 

term penalizing poor power efficiency, i.e., ℒ′ = ℒ + Uℒµ . The functional form of the power 

efficiency-related penalty ℒµ was defined as,  

where � stands for the percentage of power efficiency, 

with �.  denoting the optical power incident on the 1st diffractive layer and ��Rc =
∑ |&e[�]|�åg-åi��. . The coefficient U is a multiplicative constant that determines the weight of the 

power efficiency-related term in the total loss, ℒ′. The value of U directly affects the diffraction 

 2 = 1Çh + Ç@ ∑ &[�]&e∗[�]åg-åi��.1Çh + Ç@ ∑ |&e[�]|�åg-åi��.
,	  (7.6) 

 ℒµ = �XX ,	  (7.7) 

 � = ��Rc�. × 100,	  (7.8) 
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efficiency of the resulting diffractive QPI network design. Specifically, for the diffractive 

network shown in Fig. 7.2, it was set to be 0. On the other hand, when U was taken as 0.1, 0.4 

and 5.0, the corresponding diffractive QPI network designs achieved 6.31%, 8.17% and 11.05% 

diffraction efficiency (�), respectively (see Fig. 7.7).        

Implementation details of diffractive QPI network training 

The deep learning-based diffractive QPI network training was implemented in Python (v3.7.7) 

and TensorFlow (v1.15.0, Google Inc.). For the gradient-based optimization, we used the Adam 

optimizer with its momentum parameter  . set to 0.5301. The learning rate was taken as 0.01 for 

all the presented diffractive QPI networks. With the batch size equal to 75, we trained all the 

diffractive networks for 200 epochs, which takes ~40 hours using a computer with a GeForce 

GTX 1080 Ti GPU (Nvidia Inc.) and Intel® Core ™ i7-8700 Central Processing Unit (CPU, 

Intel Inc.) with 64 GB of RAM, running Windows 10 operating system (Microsoft). To avoid 

any aliasing in the representation of the free-space impulse response depicted in Eq. 7.1, the 

dimensions of the simulation window were taken as 1024×1024.  

The PSNR image metric was calculated as follows: 

For SSIM calculations, we used the built-in function in Tensorflow, i.e., tf.image.ssim, where the 

two inputs were �)c[¶, �]  and �e
�[¶, �] , representing the ground-truth image and the QPI 

signal synthesized by the diffractive network, respectively. The input parameter “max_val” was 

set to be �) in these SSIM calculations. We should note that for all the images used in our 

 �`Ç1 = 20�$".4[
\ �)
u$�)c[¶, �] − �e
�[¶, �]$�]

^ ,	  
(7.9) 
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performance quantification, the SSIM and PSNR metrics were computed over the same output 

field-of-view, which is approximately 42.4λ×42.4λ. 

  



277 

 

Chapter 8 Classification and Reconstruction of Spatially 

Overlapping Phase Images Using Diffractive Optical Networks 
 

Parts of this chapter have previously been published in D. Mengu et al. “Classification and 

Reconstruction of Spatially Overlapping Phase Images Using Diffractive Optical Networks”, 

Scientific Reports, DOI: 10.1038/s41598-022-12020-y. This chapter expands upon the previous 

chapter and uses the coherent signal processing capabilities of diffractive networks to solve 

phase ambiguity that arises when two phase objects spatially overlap. 

Diffractive optical networks unify wave optics and deep learning to all-optically compute a 

given machine learning or computational imaging task as the light propagates from the input to 

the output plane. Here, we report the design of diffractive optical networks for the classification 

and reconstruction of spatially overlapping, phase-encoded objects. When two different phase-

only objects spatially overlap, the individual object functions are perturbed since their phase 

patterns are summed up. The retrieval of the underlying phase images from solely the 

overlapping phase distribution presents a challenging problem, the solution of which is generally 

not unique. We show that through a task-specific training process, passive diffractive optical 

networks composed of successive transmissive layers can all-optically and simultaneously 

classify two different randomly-selected, spatially overlapping phase images at the input. After 

trained with ~550 million unique combinations of phase-encoded handwritten digits from the 

MNIST dataset, our blind testing results reveal that the diffractive optical network achieves an 

accuracy of >85.8% for all-optical classification of two overlapping phase images of new 

handwritten digits. In addition to all-optical classification of overlapping phase objects, we also 

demonstrate the reconstruction of these phase images based on a shallow electronic neural 
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network that uses the highly compressed output of the diffractive optical network as its input 

(with e.g., ~20-65 times less number of pixels) to rapidly reconstruct both of the phase images, 

despite their spatial overlap and related phase ambiguity. The presented phase image 

classification and reconstruction framework might find applications in e.g., computational 

imaging, microscopy and quantitative phase imaging fields. 
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8.1 Introduction 

Diffractive Deep Neural Networks (D2NN)302 have emerged as an optical machine 

learning framework that parameterizes a given inference or computational task as a function of 

the physical traits of a series of engineered surfaces/layers that are connected by diffraction of 

light. Based on a given task and the associated loss function, deep learning-based optimization is 

used to configure the transmission or reflection coefficients of the individual pixels/neurons of 

the diffractive layers so that the desired function is approximated in the optical domain through 

the light propagation between the input and output planes of the diffractive optical network76,78–

80,103,166,167,169,172,231,302–315. Upon the convergence of this deep learning-based training phase 

using a computer, the resulting diffractive surfaces are fabricated using, e.g. 3D printing or 

lithography, to physically form the diffractive optical network which computes the desired task 

or inference, without the need for a power source, except for the illumination light.  

 A diffractive optical network can be considered as a coherent optical processor, where the 

input information can be encoded in the phase and/or amplitude channels of the sample/object 

field-of-view. Some of the previous demonstrations of diffractive optical networks utilized 3D 

printed diffracted layers operating at terahertz (THz) wavelengths to reveal that they can 

generalize to unseen data achieving >98% and >90% blind testing accuracies for amplitude-

encoded handwritten digits (MNIST) and phase-encoded fashion products (Fashion-MNIST), 

respectively, using passive diffractive layers that collectively compute the all-optical inference at 

the output plane of the diffractive optical network 79,103,302. In a recent work166, diffractive optical 

networks have been utilized to all-optically infer the data classes of input objects that are 

illuminated by a broadband light source using only a single-pixel detector at the output plane. 

This work demonstrated that a broadband diffractive optical network can be trained to extract 



280 

 

and encode the spatial features of input objects into the power spectrum of the diffracted light to 

all-optically reveal the object classes based on the spectrum of the incident light on a single-pixel 

detector. Deep learning-based training of diffractive optical networks have also been utilized in 

solving challenging inverse optical design problems e.g., ultra-short pulse shaping and spatially-

controlled wavelength demultiplexing80,169.  

 In general, coherent optical processing and the statistical inference capabilities of 

diffractive optical networks can be exploited to solve various inverse imaging and object 

classification problems through low-latency, low-power systems composed of passive diffractive 

layers. One such inverse problem arises when different phase objects reside on top of each other 

within the sample field-of-view of a coherent imaging platform: the spatial overlap between 

phase-only thin samples inevitably causes loss of spatial information due to the summation of the 

overlapping phase distributions describing the individual objects, hence, creating spatial phase 

ambiguity at the input field-of-view.  

 Here, we present phase image classification diffractive optical networks that can solve 

this phase ambiguity problem and simultaneously classify two spatially overlapping images 

through the same trained diffractive optical network (see Fig. 8.1). In order to address this 

challenging optical inference problem, we devised four alternative diffractive optical network 

designs (Figs. 8.1b-e) to all-optically infer the data classes of spatially overlapping phase objects. 

We numerically demonstrated the efficacy of these diffractive optical network designs in 

revealing the individual classes of overlapping phase objects using training and testing datasets 

that are generated based on phase-encoded MNIST digits202. Our diffractive optical networks 

were trained using ~jj	 million different input phase images containing spatially overlapping 
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MNIST digits (from the same class as well as different classes); blind testing of one of the 

resulting diffractive optical networks using 10,000 test images of overlapping phase objects 

revealed a classification accuracy of >85.8%, optically matching the correct labels of both phase 

objects that were spatially overlapping within the input field-of-view. 

  In addition to all-optical classification of overlapping phase images using a 

diffractive optical network, we also combined our diffractive optical network models with 

separately trained, electronic image reconstruction networks to recover the individual phase 

images of the spatially overlapping input objects solely based on the optical class signals 

collected at the output of the corresponding diffractive optical network. We quantified the 

success of these digitally reconstructed phase images using the structural similarity index 

measure (SSIM) and the peak-signal-to-noise-ratio (PSNR) to reveal that a shallow electronic 

neural network with 2 hidden layers can simultaneously reconstruct both of the phase objects that 

are spatially overlapping at the input plane despite the fact that the number of detectors/pixels at 

the output plane of the diffractive optical network is e.g., ~20-65 times smaller compared to an 

ideal diffraction-limited imaging system. This means the diffractive optical network encoded the 

spatial features of the overlapping phase objects into a much smaller number of pixels at its 

output plane, which was successfully decoded by the shallow electronic network to 

simultaneously perform two tasks: (1) image reconstruction of overlapping spatial features at the 

input field-of-view, and (2) image decompression. 

 We believe that the presented diffractive optical network training and design techniques 

for computational imaging of phase objects will enable memory-efficient, low-power and high 

frame-rate alternatives to existing phase imaging platforms that often rely on high-pixel count 
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sensor arrays, and therefore might find applications in e.g. microscopy and quantitative phase 

imaging fields. 

8.2 Results 

Spatial overlap between phase objects within the input field-of-view of an optical imaging 

system obscures the information of samples due to the superposition of the individual phase 

channels, leading to loss of structural information. For thin phase-only objects (such as e.g., 

cultured cells or thin tissue sections), when two samples �[\ç(�,�) and �[\è(�,�) overlap with each 

other in space, the resulting object function can be expressed as �[(\ç(�,�)-\è(�,�)), and therefore 

a coherent optical imaging system does not have direct access to ].(�, �) or ]�(�, �), except 

their summation (see Fig. 8.1a). In the context of diffractive optical networks and all-optical 

image classification tasks, another challenging aspect of dealing with spatially overlapping phase 

objects is that the effective number of data classes represented by different input images 

significantly increases compared to a single-object classification task. Specifically, for a target 

dataset with Ö data classes represented through the phase channel of the input, the total number 

of data classes at the input (with two overlapping phase objects) becomes ü �Ö2 � +Ö =
7(7X.)� +Ö, where	ü refers to the combination operation . This means that if the diffractive 

optical network design assigns a single output detector to represent each one of these 

combinations, one would need  
7(7X.)� +Ö individual detectors. With the use of a differential 

detection scheme79 that replaces each class detector with a pair of detectors (virtually 

representing the positive and negative signals), then the number of detectors at the output plane 

further increases to 2 × �7(7X.)� +Ö�.  
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Fig. 8.1 Schematic of a diffractive optical network that can all-optically classify overlapping phase objects 

despite phase ambiguity at the input; this diffractive optical network also compresses the input spatial 

information at its output plane for simultaneous reconstruction of the individual phase images of the 

overlapping input objects using a back-end electronic neural network.  (a), Optical layout of the presented 

5-layer diffractive optical networks that can all-optically classify overlapping phase objects, e.g., phase-encoded 

handwritten digits, despite the phase ambiguity at the input plane due to spatial overlap. The diffractive optical 

network processes the incoming object waves created by the spatially overlapping, phase-encoded digits e.g., ‘6’ 

and ‘7’, to correctly reveal the classes of both input objects (green). A separately trained shallow electronic 

neural network (with 2 hidden layers) rapidly reconstructs the individual phase images of both input objects 

using the optical signals detected at the output plane of the diffractive optical network. (b)-(d), Different 

detector configurations and class encoding schemes at the output plane of a diffractive optical network, devised 

to represent all the possible data class combinations at the input field-of-view created by overlapping phase 

objects. 
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To mitigate this challenge, in this work we introduced different class encoding schemes that 

better handle the all-optical classification of these large number of possible class combinations at 

the input. The output detector layout, D-1, shown in Fig. 8.1b illustrates one alternative design 

strategy where the problem of classification of overlapping phase objects is solved by using only 

2Ö individual detectors with a significant reduction in the number of output detectors when 

compared to 
7(7X.)� +Ö. The use of 2Ö  single-pixel detectors at the output plane (see Fig. 

8.1b), can handle all the combinations and classify the overlapping input phase objects even if 

they belong to the same data class or not. To achieve this, we have two different sets of detectors, 

8_�� , # = 0,1,2, … ,Ö − 19 and 8_��� , # = 0,1,2, … ,Ö − 19, which represent the classes of the 

individual overlapping phase images. The final class assignments in this scheme are given based 

on the largest two optical signals among all the 2Ö detectors, where the assigned indices (#) of 

the corresponding two winner detectors indicate the all-optical classification results for the 

overlapping phase images. This is a simple class decision rule with a look up table of detector-

class assignments (as shown Fig. 8.1b), where the strongest two detector signals indicate the 

inferred classes based on their #.  Stated mathematically, the all-optical estimation of the classes, 

k* = [Â., , Â�, ], of the overlapping phase images is given by, 

where � denotes the optical signals detected by 2Ö individual detectors, i.e., [_��  , _��� ]. With 

the #$%(∗) operation in Eq. 8.1, it can be observed that when the ground truth object classes, Â. 

and Â�, are identical, a correct optical inference would result in Â., = Â�, . On the other hand, when 

Â. ≠ Â�, there are four different detector combinations for the two largest optical signals that 

would result in the same (Â., , Â�, ) pair according to our class decision rule. For example, in the 

 k* =	#$%(�J"#���(�),Ö)	  (8.1) 
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case of the input transmittance shown in Fig. 8.1a, which is comprised of handwritten digits ‘6’ 

and ‘7’, the output object classes based on our decision rule would be the same if the two largest 

optical signals collected by the detectors correspond to: (1) _»�  and _l��, (2) _l�  and _»��, (3) _»�  
and _l�  or (4) _»�� and _l��; all of these four combinations of winner detectors at the output plane 

would reveal the correct classes for the input phase objects in this example (digits ‘6’ and ‘7’).  

 Therefore, the training the diffractive optical networks according to this class decision 

rule requires subtle but vital changes in the ground truth labels representing the inputs and the 

loss function driving the evolution of the diffractive layers compared to a single-object 

classification system. If we denote the one-hot vector labels representing the classes of the input 

objects in a single-object classification system as, ÄØ and Ä�, with an entry of 1 at their Â.cd and 

Â�cd entries, respectively, for the case of spatially overlapping two phase objects at the input field-

of-view we can define new ground truth label vectors of length 2Ö using ÄØ and Ä�. For the 

simplest case of Â. = Â� (i.e., ÄØ = Ä�), the 2Ö-vector Äm is constructed as Äm = 0.5 × [ÄØ, Ä�]. 
The constant multiplicative factor of 0.5 ensures that the resulting vector Äm defines a discrete 

probability density function satisfying ∑ "+��7. = 1. It is important to note that since Â. = Â�, 

we have [ÄØ, Ä�] = [Ä�, ÄØ]. On the other hand, when the overlapping input phase objects are 

from different data classes i.e., Â. ≠ Â�, we define four different label vectors 8ÄÙ, Ää, Äk, Ä�	9 
representing all the four combinations. Among this set of label vectors, we set ÄÙ = 0.5 ×
[ÄØ, Ä�]  and 	Ää = 0.5 × [Ä�, ÄØ] . The label vectors Äk  and 	Ä�  depict the cases, where the 

output detectors corresponding to the input object classes lie within _��  and _��� , respectively. In 

other words, the Â.cd  and Â�cd  entries of Äk  are equal to 0.5, and similarly the (Ö + Â.)cd  and 

(Ö + Â�)cd entries of Ä� are equal to 0.5, while all the rest of the entries are equal to zero.  
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 Based on these definitions, the training loss function (ℒ) of the associated forward model 

was selected to reflect all the possible input combinations at the sample field-of-view (input), 

therefore, it was defined as,   

where ℒ�� , ℒ�� , ℒ��, ℒ�Ï, and ℒ�+ denote the penalty terms computed with respect to the ground 

truth label vectors ÄÙ,	Ää,	Äk,	Ä�, and Äm, respectively, and !"�(. ) is the signum function. The 

classification errors, ℒ��, are computed using the cross-entropy loss316,     

where x refers to one of a, b, c, d, or e,  =�nnn denotes the normalized intensity collected by a 

given detector at the output plane (see the Methods section for further details). The term "��  in 

Eq. (8.3) denotes the #cd entry of the ground truth data class vector, ÄÅ.  

 Based on this diffractive optical network design scheme and the output detector layout D-

1, we trained a 5-layer diffractive optical network (Figs. 8.1,a,b) using the loss function depicted 

in Eq. 8.2 over ~550	#����$� input training images containing various combinations of spatially 

overlapping, phase-encoded MNIST handwritten digits. Following the training phase, the 

resulting diffractive layers of this network, which we term as D2NN-D1, are illustrated in Fig. 

8.2a. To quantify the generalization performance of D2NN-D1 for the classification of 

overlapping phase objects that were never seen by the network before, we created a test dataset, 

T2, with 10K phase images, where each image contains two spatially-overlapping phase-encoded 

test digits randomly selected from the standard MNIST test set, T1. In this blind testing phase,  

 ℒ = (1 − |!"�(Â. − Â�)|) × ℒ�+ + |!"�(Â. − Â�)| ×	#��	{ℒ��, ℒ�� , ℒ�� , ℒ�Ï} (8.2) 

 ℒ�� = −V "�� �$"	( �fonnnn∑ �f�nnn�7W�. )�7
��. 	  (8.3) 
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Fig. 8.2 All-optical classification of spatially-overlapping phase objects using the diffractive optical 

network D2NN-D1, based on the detector layout scheme (D-1).  (a) The thickness profiles of the diffractive 

layers constituting the diffractive optical network D2NN-D1 at the end of its training. This network achieves 

82.70% blind inference accuracy on the test image set T2. (b)-(e), Top: Individual phase objects (examples) and 

the resulting input phase distribution created by their spatial overlap at the input field-of-view. Bottom: The 

normalized optical signals, I, synthesized by D2NN-D1 at its output detectors. The output detectors with the 

largest 2 signals correctly reveal the classes of the overlapping input phase objects (indicated with the green 

rectangular frames). 
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D2NN-D1 achieved 82.70% accuracy on T2, meaning that in 8,270 cases out of 10,000 test 

inputs, the class estimates [Â., , Â�, ] at the diffractive optical network’s output plane were correct 

for both of the spatially overlapping handwritten digits. For the remaining 1730 test images, the 

classification decision of the diffractive optical network is incorrect for at least one of the phase 

objects within the field-of-view. Figures 8.2b-e depict some of the correctly classified phase 

image examples from the test dataset T2 with phase encoded handwritten digits, along with the 

resulting class scores at the output detectors of the diffractive optical network. 

 This blind inference accuracy of the diffractive optical network shown in Fig. 8.2a, i.e., 

D2NN-D1, can be further improved by combining the above outlined training strategy with a 

differential detection scheme, where each output detector in D1 (Fig. 8.1b) is replaced with a 

differential pair of detectors (i.e., a total of 2x2M detectors are located at the output plane, see 

Fig. 8.1c). The differential signal between a pair of detectors shown in Fig. 8.1c encodes a total 

of 2xM differential optical signals and similar to the previous approach of D1, the final class 

assignments in this scheme are given based on the two largest signals among all the differential 

optical signals. With the incorporation of this differential detection scheme, the vector � in Eq. 

8.1 is replaced with the differential signal79, p� = �- − �X,	where �- and �X denote the optical 

signals collected by the 2Ö detector pairs, virtually representing the positive and negative parts, 

respectively.  

 Using this differential diffractive optical network design, which we termed as D2NN-D1d 

(see Fig. 8.1c), we achieved a blind testing accuracy of 85.82% on the test dataset T2. The 

diffractive layers comprising the D2NN-D1d network are shown in Fig. 8.3a, which were trained 

using ~550	#����$�  input phase images of spatially overlapping MNIST handwritten digits, 
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similar to D2NN-D1. Compared to the classification accuracy attained by D2NN-D1, the 

inference accuracy of its differential counterpart, D2NN-D1d, is improved by >3.1% at the 

expense of using 2Ö additional detectors at the output plane of the optical network. Figures 

8.3b-e illustrate some examples of the correctly classified phase images from the test dataset T2 

with phase encoded handwritten digits, along with the resulting differential class scores at the 

output detectors of the diffractive optical network. 

 The blind inference accuracies achieved by D2NN-D1 and D2NN-D1d (82.70% and 

85.82%, respectively) on the test dataset T2, demonstrate the success of the underlying detector 

layout designs and the associated training strategy for solving the phase ambiguity problem to 

all-optically classify overlapping phase images using diffractive optical networks. When these 

two diffractive optical networks (D2NN-D1 and D2NN-D1d) are blindly tested over T1 that 

provides input images containing a single phase-encoded handwritten digit (without the second 

overlapping phase object), they attain better classification accuracies of 90.59% and 93.30%, 

respectively (see the Methods section). As a reference point, a 5-layer diffractive optical network 

design with an identical layout to the one shown in Fig. 8.1a, can achieve a blind classification 

accuracy of ~98%79,103 on test set T1, provided that it is trained to classify only one phase-

encoded handwritten digit per input image (without any spatial overlap with other objects). This 

reduced classification accuracy of D2NN-D1 and D2NN-D1d on test set T1 (when compared to 

~98%) indicates that their forward training model, driven by the loss functions depicted in Eqs. 

8.2-8.3, guided the evolution of the corresponding diffractive layers to recognize the spatial 

features created by the overlapping handwritten digits, as opposed to focusing solely on the 

actual features describing the individual handwritten digits. 
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Fig. 8.3 All-optical classification of spatially-overlapping phase objects using the diffractive optical 

network D2NN-D1d, based on the detector layout scheme D-1d. (a) The thickness profiles of the diffractive 

layers constituting the diffractive optical network D2NN-D1d at the end of its training. This network achieves 

85.82% blind inference accuracy on the test image set T2. (b)-(e), Left: Individual phase objects (examples) and 

the resulting input phase distribution created by their spatial overlap at the input field-of-view. Middle: The 

normalized optical signals synthesized by D2NN-D1d at its output detectors. Right: The resulting differential 

signal. The largest two differential optical signals correctly reveal the classes of the overlapping input phase 

objects (indicated with the green rectangular frames). 
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To further reduce the required number of optical detectors at the output plane of a diffractive 

optical network, we considered an alternative design (D-2) shown in Fig. 8.1d. In this alternative 

design scheme D-2, there are two extra detectors 8_a-, _aX9 (shown with blue in Fig. 1d), in 

addition to Ö  class detectors {_�, # = 1,2, … ,Ö} (shown with gray in Fig. 8.1d). The sole 

function of the additional pair of detectors 8_a-, _aX9  is to decide whether the spatially-

overlapping input phase objects belong to the same or different data classes. If the difference 

signal of this differential detector pair (Fig. 8.1d) is non-negative (i.e., =pq) ≥ =pq�), the diffractive 

optical network will infer that the overlapping input objects are from the same data class, hence 

there is only one class assignment to be made by simply determining the maximum signal at the 

output class detectors: {_�, # = 1,2, … ,Ö} . A negative signal difference between 8_a-, _aX9, on 

the other hand, indicates that the two overlapping phase objects are from different data 

classes/digits, and the final class assignments in this case of =pq) < =pq� are given based on the 

largest two optical signals among all the remaining Ö detectors at the network output,	{_�, # =
1,2, … ,Ö}. Refer to the Methods section for further details on the training of diffractive optical 

networks that employ D-2 (Fig. 8.1d) 

 Similar to earlier diffractive optical network designs, we used ~550	#����$� input phase 

images of spatially overlapping MNIST handwritten digits to train 5 diffractive layers 

constituting the D2NN-D2 network (see Fig. 8.4a). Figures 8.4b-d illustrate sample input phase 

images that contain objects from different data classes, along with the output detector signals that 

correctly predict the classes/digits of these overlapping phase objects; notice that in each one of 

these cases, we have at the output plane =pq) < =pq�  indicating the success of the network’s 

inference. As another example of blind testing, Fig. 8.4e reports the diffractive optical network’s  
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Fig. 8.4 All-optical classification of spatially-overlapping phase objects using the diffractive optical 

network D2NN-D2, based on the detector layout scheme D-2. (a) The thickness profiles of the diffractive 

layers constituting the diffractive optical network D2NN-D2 at the end of its training. This network achieves 

82.61% blind inference accuracy on the test image set T2. (b)-(e), Top: Individual phase objects (examples) and 

the resulting input phase distribution created by their spatial overlap at the input field-of-view. Bottom: The 

normalized optical signals synthesized by D2NN-D2 at its output detectors.  
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inference for two input phase objects that are from the same data class, i.e., digit ‘3’. At the 

network’s output, this time we have =pq) > =pq� , correctly predicting that the two overlapping 

phase images are of the same class; the maximum output signal of the remaining output detectors 

{_�, # = 1,2, … ,Ö} also correctly reveals that the handwritten phase images belong to digit ‘3’ 

with a maximum signal at _ê. This D2NN-D2 design provides 82.61% inference accuracy on the 

test set T2 with 10K test images, closely matching the inference performance of D2NN-D1 

(82.70%) reported in Fig 8.2. In fact, an advantage of this D2NN-D2 design lies in its inference 

performance and blind testing accuracy on test set T1, achieving 93.38% for classification of 

input phase images of single digits (without any spatial overlap at the input field-of-view).      

 We also implemented the differential counterpart of the detector layout D-2, which we 

term as D-2d (see Fig. 8.1e), where the Ö class detectors in D-2 are replaced with Ö differential 

pairs of output detectors. In this configuration D-2d, the total number of detectors at the output 

plane of the diffractive optical network becomes 2Ö + 2  and the all-optical inference rules 

remain the same as in D-2: for =pq) ≥ =pq�, the class inference is made by simply determining the 

maximum differential signal at the output class detectors, and for the case of =pq) < =pq�  the 

inference of the classes of input phase images is determined based on the largest two differential 

optical signals at the network output. Figure 8.5a shows the diffractive layers of the resulting 

D2NN-D2d that is trained based on the detector layout, D-2d (Fig. 8.1e) using the same training 

dataset as before: ~550	#����$� input phase images of spatially overlapping, phase-encoded 

MNIST handwritten digits. This new differential diffractive optical network design, D2NN-D2d, 

provides significantly higher blind inference accuracies compared to its non-differential 

counterpart D2NN-D2, achieving 85.22% and 94.20% on T2 and T1 datasets, respectively. 
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Figures 8.5b-d demonstrate some examples of the input phase images from test set T2 that are 

correctly classified by D2NN-D2d along with the corresponding optical signals collected by the 

output detectors representing the positive and negative parts, �r- and �rX, of the associated 

differential class signals, p�7 = �r- − �rX . As another example, the input phase image 

depicted in Fig. 8.5e has two overlapping phase-encoded digits from the same data class, 

handwritten digit ‘4’, and the diffractive optical network correctly outputs =pq) > =pq�  with the 

maximum differential class score strongly revealing an optical inference of digit ‘4’.    

 Table 8.1 summarizes the optical blind classification accuracies achieved by different 

diffractive optical network designs, D2NN-D1, D2NN-D1d, D2NN-D2 and D2NN-D2d on test 

image sets T2 and T1. Even though D2NN-D1d achieves the highest inference accuracy for the 

classification of spatially overlapping phase objects, D2NN-D2d offers a balanced optical 

inference system achieving very good accuracy on both T1 and T2. These two differential 

diffractive optical network models outperform their non-differential counterparts with superior 

inference performance on both T2 and T1.  

 Next, we aimed to reconstruct the individual images of the overlapping phase objects 

(handwritten digits) using the detector signals at the output of a diffractive optical network; 

stated differently our goal here is to resolve the phase ambiguity at the input plane and 

reconstruct both of the input phase images, despite their spatial overlap and the loss of phase 

information. For this aim, we combined each one of our diffractive optical networks, D2NN-D1, 

D2NN-D1d, D2NN-D2 and D2NN-D2d, one by one, with a shallow, fully-connected (FC) 

electronic network with two hidden layers, forming a task-specific imaging system as shown in 

Fig. 8.6. In these hybrid machine vision systems, the optical signals synthesized by a given 
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Fig. 8.5 All-optical classification of spatially-overlapping phase objects using the diffractive optical 

network D2NN-D2d, based on the detector layout scheme D-2d.  (a) The thickness profiles of the diffractive 

layers constituting the diffractive optical network D2NN-D2d at the end of its training. This network achieves 

85.22% blind inference accuracy on the test image set T2. (b)-(e), Left: Individual phase objects (examples) and 

the resulting input phase distribution created by their spatial overlap at the input field-of-view. Middle: The 

normalized optical signals synthesized by D2NN-D2d at its output detectors. Right: The differential optical 

signal (purple).  
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 diffractive optical network (front-end encoder) are interpreted as encoded representations of 

the spatial information content at the input plane. Accordingly, the electronic back-end neural 

network is trained to process the encoded optical signals collected by the output detectors of the 

diffractive optical network to decode and reconstruct the individual phase images describing 

each object function at the input plane, resolving the phase ambiguity due to the spatial overlap 

of the two phase objects. Figures 8.6a-d illustrate 3 different input images taken from the test set 

T2 for each diffractive optical network design (D2NN-D1, D2NN-D1d, D2NN-D2 and D2NN-D2d) 

along with the corresponding image reconstructions at the output of each one of the electronic 

networks that are separately trained to work with the diffractive optical front-end network. As 

depicted in Fig. 8.6, the electronic image reconstruction networks only have 2 hidden layers with 

100 and 400 neurons, and the final output layers of these networks have 28×28×2 neurons, 

revealing the images of the individual phase objects, resolving the phase ambiguity due to the 

spatial overlap of the input phase images. The quality of these image reconstructions is 

quantified using (1) the structural similarity index measure (SSIM) and (2) the peak signal-to-

noise ratio (PSNR). Table 8.2 shows the mean SSIM and PSNR values achieved by these hybrid 

machine vision systems along with the corresponding standard deviations computed over the 

entire 10K test images (T2). For these presented image reconstructions, we should emphasize that 

the dimensionality reduction (i.e., the image data compression) between the input and output 

planes of the diffractive optical networks (D2NN-D1, D2NN-D1d, D2NN-D2 and D2NN-D2d) is 

39.2×, 19.6×, 65.33× and 35.63×, respectively, meaning that the spatial information of the 

overlapping phase images at the input field-of-view is significantly compressed (in terms of the 

number of pixels) at the output plane of the diffractive optical network. This large compression 

sets another significant challenge for the image reconstruction task in addition to the phase 
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ambiguity and spatial overlap of the target images. With these large compression ratios, the 

presented diffractive optical network-based machine vision systems managed to faithfully 

recover the phase images of each input object despite their spatial overlap and phase information 

loss, demonstrating the coherent processing power of diffractive optical networks as well as the 

unique design opportunities enabled by their collaboration with electronic neural networks that 

form task-specific back-end processors.  

8.3 Discussion 

The optical classification of overlapping phase images using diffractive optical networks 

presents a challenging problem due to the spatial overlap of the input images and the associated 

loss of phase information at the input plane. Interestingly, different combinations of handwritten 

digits at the input present different amounts of spatial overlap, which is a function of the class of 

the selected input digits as well as the style of the handwriting of the person. To shed more light 

on this, we quantified the all-optical blind inference accuracies of the presented diffractive 

optical networks as a function of the spatial overlap percentage, s, at the input field-of-view; see 

Fig. 8.7. In the first group of examples shown in Fig. 8.7a, the input fields-of-view contain digits 

from different data classes (Â. ≠ Â�) and in the second group of examples shown in Fig. 8.7b, the 

spatially overlapping objects are from the same data class, Â. = Â�. The input phase images in T2 

exhibit spatial overlap percentages varying between ~20% and ~100%. Figures 8.7c,d illustrate 

the change in the optical blind inference accuracy of the diffractive optical network, D2NN-D1, 

as a function of the spatial overlap percentage, s, for the first (Â. ≠ Â�) and the second (Â. = Â�) 

group of test input images, respectively. When Â. ≠ Â�  as in Fig. 8.7c, the optical inference 

accuracy is hindered by the increasing amount of spatial overlap between the two input phase 

objects, as in this case, the spatial features of the effective input transmittance function 
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Fig. 8.6 Reconstruction of spatially overlapping phase images using a diffractive optical front-end 

(encoder) and a separately trained, shallow electronic neural network (decoder) with 2 hidden layers.  The 

front-end diffractive optical networks are (a) D2NN-D1, (b) D2NN-D1d, (c) D2NN-D2, and (d) D2NN-D2d, 

shown in Figs. 8.2a, 8.3a, 8.4a and 8.5a, respectively. The detector layouts at the output plane of these 

diffractive optical networks are (a) D-1, (b) D-1d, (c) D-2, and (d) D-2d with 2M, 4M, M+2 and 2M+2 single 

pixel detectors as shown in Figs. 8.1b-d, respectively; for handwritten digits M=10. These four designs create a 

compression ratio of 39.2×, 19.6×, 65.33× and 35.63× between the input and output fields-of-view of the 

corresponding diffractive optical network, respectively. The mean SSIM and PSNR values achieved by these 

phase image reconstruction networks are depicted in Table 8.2 along with the corresponding standard deviation 

values computed over the 10K test input images (T2).  
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Fig. 8.7 The variation in the optical blind inference accuracies of the presented diffractive optical 

networks as a function of the spatial overlap percentage (ξ) between the two input phase objects.  (a) 

Sample input images from the test set T2 containing overlapping phase objects from different data classes along 

with the corresponding overlap percentages, ξ. (b) Same as (a), except the overlapping objects are from the same 

data class. (c) The blind inference accuracy of the diffractive optical network, D2NN-D1, as a function of the 

overlap percentage, ξ, and the histogram of ξ, for test inputs in T2 that contain phase objects from two different 

data classes. (d), Same as (c), except that the test inputs contain phase objects from the same data class. (e) and 

(f), Same as ((c) and (d)), except, the diffractive optical network design is D2NN-D1d. (g) and (h), Same as ((c) 

and (d)), except, the diffractive optical network design is D2NN-D2. (i) and (j), Same as ((c) and (d)), except, 

the diffractive optical network design is D2NN-D2d. 
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significantly deviate from the features defining the individual data classes. In the other case 

shown in Fig. 8.7d, i.e., Â. = Â�, the relationship between the spatial overlap ratio	s and the blind 

inference accuracy is reversed, since, with Â. = Â�, increasing s means that the effective phase 

distribution at the input plane resembles more closely to a single object/digit. The same behavior 

can also be observed for the other diffractive optical networks, D2NN-D1d, D2NN-D2 and 

D2NN-D2d, reported in Figs. 8.7e-f, 8.7g-h, 8.7i-j, respectively.  

Next, to verify and test the generalization of the presented diffractive optical network design 

methods and schemes over different datasets, we trained two new 5-layer diffractive optical 

networks with detector plane designs identical to the D1d and D2d shown in Figs. 8.1c and 8.1e 

for the classification of overlapping, phase-encoded objects from a more challenging dataset, 

Fashion-MNIST. While the D2NN-D1d shown in Fig. 8.3 can achieve 85.82% accuracy for the 

classification of overlapping handwritten digits, its equivalent (see Fig. 8.8) that is trained and 

tested on Fashion-MNIST dataset can attain 73.28% bling testing accuracy. The same 

comparison also reveals a similar drop in classification accuracy for the D2NN-D2d model which 

can classify both of the phase-encoded fashion products in 7221 cases out of 10K blind testing 

input fields-of-view containing overlapping objects from Fashion-MNIST corresponding to 

72.21% accuracy (see Fig. 8.9 for classification examples). On the other hand, considering that a 

total random guessing would result in an accuracy of 1% for classifying two overlapping objects, 

these numbers, despite being lower than the case on handwritten digits, demonstrates the efficacy 

of the presented diffractive optical network design methods. In addition, we combined these two 

new diffractive optical networks classifying overlapping fashion products with shallow, 

electronic image reconstruction networks (with 2 hidden layers) forming hybrid vision systems. 

Despite the lower all-optical classification accuracies, though, the quality of the images 
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reconstructed by the subsequent electronic networks based solely on the all-optical classification 

signals synthesized by the associated diffractive optical networks points to an improvement 

compared to the reconstruction quality achieved for MNIST dataset. For instance, while the 

hybrid machine vision system with D2NN-D1d at the optical front-end can provide 0.57±0.10 

SSIM score and 16.02±2.21 dB PSNR for the reconstruction of handwritten digits, the hybrid 

system with the same electronic and optical network architecture achieves 0.61±0.13 and 

17.80±2.54 dB for the same metrics, respectively. Similar improvement in the phase channel 

reconstruction quality also applies for the hybrid systems using D2NN-D2d as their optical front-

end, which, in the case of Fashion-MNIST dataset, attains 0.59±0.13 and 17.18±2.52 dB for 

SSIM and PSNR, respectively. Exemplary input field-of-view and reconstructed image pairs for 

both these hybrid systems are depicted in Fig. 8.10.   

In summary, to the best of our knowledge, this manuscript reports the first all-optical multi-

object classification designs based on diffractive optical networks demonstrating their potential 

in solving challenging classification and computational imaging tasks in a resource-efficient 

manner using only a handful detectors at the output plane. In the context of optical classification 

and reconstruction of overlapping phase objects, also resolving the phase ambiguity due to the 

spatial overlap of input images, this study exclusively focuses on a setting where the thin input 

objects are only modulating the phase of the incoming waves, and absorption is negligible. 

Without loss of generality, the presented diffractive design schemes with the associated loss 

functions and training methods can also be extended to applications, where the input objects 

partially absorb the incoming light. 
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 Table 8.1 The summary of the optical blind inference accuracies achieved by the presented diffractive optical 

networks on test sets T2 and T1 along with some input examples from these datasets.  

 

 Optical 
Classification 

Image reconstruction 

Diffractive 
optical network 

Number of 
detectors 
(Ö=10) 

Accuracy on T
2
 

(%) 
SSIM PSNR 

(dB) 

D
2
NN-D1 2Ö 82.70 0.52±0.12 15.09±2.32 

D
2
NN-D1d 4Ö 85.82 0.57±0.10 16.02±2.21 

D
2
NN-D2 Ö+2 82.61 0.49±0.10 14.55±2.17 

D
2
NN-D2d 2Ö+2 85.22 0.57±0.12 15.60±2.37 

Table 8.2 The comparison of the presented diffractive optical networks, in terms of (1) all-optical overlapping 

object classification accuracies on T2 and (2) the quality of the image reconstruction achieved through 

separately-trained, shallow, electronic networks (decoder). 
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Fig. 8.8 All-optical classification of spatially-overlapping phase objects selected from the Fashion-MNIST 

dataset (using the D-1d detector layout scheme). (a-e) Same as Fig. 8.3, except that the phase-encoded objects 

that spatially-overlap within the input field-of-view are randomly selected from the Fashion-MNIST dataset. 
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Fig. 8.9 All-optical classification of spatially-overlapping phase objects selected from the Fashion-MNIST 

dataset (using the D-2d detector layout scheme). (a-e) Same as Fig. 8.5, except that the phase-encoded objects 

that spatially-overlap within the input field-of-view are randomly selected from the Fashion-MNIST dataset. 
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Fig. 8.10 Reconstruction of spatially overlapping phase images using a diffractive optical front-end 

(encoder) and a separately trained, shallow electronic neural network (decoder) with 2 hidden layers. The 

front-end diffractive optical networks are (a) D2NN-D1d, and (b) D2NN-D2d shown in Figs. 8.8, and 8.9, 

respectively. The detector layouts at the output planes of these diffractive optical networks are (a) D-1d and (b) 

D-2d with 4M and 2M+2 unique detectors as shown in Figs. 8.1b-d, respectively; for fashion products M=10. 

The mean SSIM and PSNR values achieved by the phase image reconstruction network in (a) are 0.61 and 17.80 

dB, in (b) are 0.59 and 17.18 dB, respectively. 
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8.4 Methods 

Design of diffractive optical networks 

D2NN framework formulates a given machine learning e.g., object classification or inverse 

design task as an optical function approximation problem and parameterizes that function over 

the physical features of the materials inside a diffractive black-box. As is the case in this study, 

this optical black-box is often modeled through a series of thin modulation layers connected by 

the diffraction of light waves. Here, we focused our efforts on 5-layer diffractive optical 

networks as shown in Fig. 8.1a, each occupying an area of  Ø	tu × Ø	tu on the lateral space 

with u  denoting the wavelength of the illumination light. The modulation function of each 

diffractive layer was sampled and represented over a 2D regular grid with a period of 0.53u 

resulting in � = �		 × �			 different transmittance coefficients, i.e., the diffractive ‘neurons’. 

Based on the 0.53u diffractive feature size, we set the layer-to-layer axial distance to be 40u to 

ensure connectivity between all the neurons on two successive layers.    

 Following the framework used in the earlier experimental demonstrations of diffractive 

optical networks based on 3D printed layers80,103,166, we selected the diffractive layer thickness, à, 

as a trainable physical parameter dictating the transmittance of each neuron together with the 

refractive index of the material. To limit the material thickness range during the deep learning-

based training, à is defined as a function of an auxiliary, learnable variable, àÙ, and a constant 

base thickness, àä, 
 à = e�(vwx(àÙ) + Ø� (ày − àä)) + àä	  (8.4), 
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where the function, e∗(. ) represents the *-bit quantization operator and ày  is the maximum 

allowed material thickness. If the material thickness over the âÜà diffractive neuron located at 

(Åâ, Æâ, `â) is denoted by à(Åâ, Æâ, `â), then the resulting transmittance coefficient of that neuron, 

Ü(Åâ, Æâ, `â), is given by, 

where ¢(<) and z(<) are the real and imaginary parts of complex-valued refractive index of the 

diffractive material at wavelength, < . Following the earlier experimental demonstrations of 

diffractive optical networks, in this work we set the ¢(<) and z(<) values to be 1.7227 and 

0.031, respectively103. The parameter ¢� in Eq. 8.5 refers to the refractive index of the medium, 

surrounding the diffractive layers; without loss of generality, we assumed ¢� = Ø (air). Based on 

the outlined material properties, the ày  and àä  in Eq. 8.4 were selected as 2λ and 0.66λ, 

respectively, ensuring that the phase modulation term in Eq. 8.5, (¢(<) − ¢�) �{à(Åâ,Æâ,`â)< , can 

cover the entire [0-2π] phase modulation range per diffractive feature/neuron.  

 In this study, the light propagation between diffractive layers of the presented diffractive 

optical networks was modeled through based on the Rayleigh-Sommerfeld diffraction integral 

which assumes that the propagating light can be expressed as a scalar field, instead of a vector 

field. With the subwavelength features on our diffractive surfaces, due to the scalar field 

assumption, our forward training models do not perform exact calculation of the physically 

synthesized fields. Exact modelling and computation of the light fields diffracted by 

subwavelength features requires the utilization of vector diffraction theory175,176.  On the other 

hand, successful demonstrations of diffractive optical networks with subwavelength diffractive 

 Ü(Åâ, Æâ, `â) = |}~~−�{z(<)à(Åâ, Æâ, `â)< �|}~ Kã(¢(<) − ¢�) �{à(Åâ, Æâ, `â)< M (8.5), 
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neurons have been reported numerous times80,103,166,231,236,302, hinting that the errors introduced 

by the limitations of the scalar diffraction theory might be neglected in practical application 

scenarios in optical computing and machine learning. According to the Rayleigh-Sommerfeld 

theory of diffraction, a neuron located at (Åâ, Æâ, `â) can be viewed as the source of a secondary 

wave,  

where �  denotes the radial distance Q(Å − Åâ)� + (Æ − Æâ)� + (`− `â)� . Based on this, the 

output wave emanating from the âÜà neuron on the ÓÜà layer, �âÓ(Å, Æ, `) can be written as, 

The term ∑ ��ÓXØ(Åâ, Æâ, `â)���Ø  in Eq. 8.9 represents the wave incident on the âÜà neuron on the 

ÓÜà layer, generated by the neurons on the previous, (Ó − Ø)Üà diffractive layer.  

 In this study we also assumed that the transmittance function inside the input field-of-

view, Òâ¢(Å, Æ), covers an area of 53<×53< and without loss of generality, it is illuminated with 

a uniform plane wave. At the output plane, the width of each single-pixel detector was set to be 

6.36< on both x and y directions for all four output detector configurations shown in Figs. 8.1b-d. 

Based on the outlined optical forward model, the diffractive optical networks process the 

incoming waves generated by the complex-valued transmittance function, Òâ¢(Å, Æ), formed by 

the overlapping thin phase objects and synthesize a 2D intensity distribution at the output plane 

for all-optical inference of the classes of the overlapping objects. The optical intensity 

 �â(Å, Æ, `) = `− `â�� 	K Ø�{�+ ¢�ã<M|}~	(ã�{¢��< ) (8.6), 

 �âÓ(Å, Æ, `) = �â(Å, Æ, `)Ü(Åâ, Æâ, `â)V��ÓXØ(Åâ, Æâ, `â)�
��Ø 	 (8.7). 
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distribution within the active area of each output detector is integrated to form elements of the 

vector, � in Eq. 8.1. The number of elements in this optical signal vector, �, is equal to the 

number of output detectors, thus its length is �r , �r,  r+ �  and �r+ �  for D2NN-D1, 

D2NN-D1d, D2NN-D2 and D2NN-D2d, respectively. As part of our forward training model, � is 

normalized to form, �n,    

where the coefficient c in Eq. 8.8 serves as the temperature parameter of the softmax function 

depicted in Eq. 8.3, and it was empirically set to be 0.1 for training of all the diffractive optical 

networks. It is important to note that this normalization step in Eq. 8.8 is only used during the 

training stage, and once the training is finished, the forward inference directly uses the detected 

intensities to decide on the object classes based on the corresponding decision rules. While the 

vector �n is directly used in Eq. 8.3 for the D2NN-D1 network, in the case of D2NN-D1d, �n is split 

into two vectors of length �r, i.e., �- and �X, representing the signals collected by the positive 

and negative detectors, and the associated differential signal is computed as �� = �- − �X . 

Accordingly, during the training of D2NN-D1d, the loss function depicted in Eq. 8.3, were 

computed using �� instead of �n. 
 For the diffractive optical network D2NN-D2, the output of the normalization defined in 

Eq. 8.8 was split into two: �r and �e. The first part, �r, represents the optical signals coming 

from the r class specific detectors in the detector layout D-2 (the gray detectors Fig. 8.1d). The 

latter, �e, contains two entries describing the positive and the negative parts of the indicator 

signals, �¦e) and �¦e� (see the blue detectors Fig. 8.1d). These two extra detectors, 8¦e-, ¦eX9, form 

 �n = �k��}{�}		 (8.8). 
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a differential pair that controls the functional form of the class decision rule based on the sign of 

the difference between the optical signals collected by these detectors. We accordingly determine 

the class assignments as follows, 

 To enable the training of diffractive optical networks according to the class assignment 

rule in Eq. 8.9, we defined a loss function, � = �e + �k, that corresponds to the superposition of 

two different penalty terms, �e and �k. Here, �e	represents the error computed with respect to 

the binary ground truth indicator signal, Äe,  

Accordingly, �e was defined as, 

where �(∙)  denotes the sigmoid function. The classification loss, �k , on the other hand, is 

identical to the cross-entropy loss depicted in Eq. 8.3, except that the vector � is replaced with �r. 

Unlike the previous diffractive optical networks (D2NN-D1 and D2NN-D1d), the forward model 

of the diffractive optical networks trained based on the output detector layout D-2 do not require 

multiple ground truth vector labels. Simply the ground truth label vector of a given input field-

of-view is defined as Ä = ÄØ-Ä��  satisfying the condition, ∑ ÄyrØ = Ø.  

 k* = �[Ù�ÄyÙÅ(�r), Ù�ÄyÙÅ(�r)],					â�	�¦e) ≥ �¦e�			Ù�ÄyÙÅ�(�r),			&Üàm��â�m. �	  
(8.9)  

 Äe = "Ø,					â�	kØ = k�	,			&Üàm��â�mN .	  
(8.10)  

 �e = −Äe ��� K� ��¦e) − �¦e��M − &Ø − Äe' ��� KØ − � ��¦e) − �¦e��M	  (8.11) 
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 In the case of D2NN-D2d, the vector �n contains 3 main parts, �r-, �rX and �e where �r- 

and �rX are length r vectors containing the normalized optical signals collected by the detectors 

representing the positive and negative parts of the final differential class scores  ��r = �r- −
�rX. Accordingly, in the associated forward training model, the intensity vector �r in Eq. 8.9 is 

replaced with the differential signal, ��r.	 
Testing of diffractive optical networks on dataset ÒØ 

During the blind testing of the presented diffractive optical networks on the test set T1, the class 

estimation solely uses the Ù�ÄyÙÅ operation, searching for the highest class-score synthesized 

by the diffractive optical networks, based on the associated output plane detector layouts shown 

in Fig. 8.1. The purpose of this performance quantification using T1 is to reveal whether the 

diffractive optical networks trained based on overlapping input phase objects can learn and 

automatically recognize the characteristic spatial features of the individual handwritten digits 

(without any spatial overlap). For this goal, in the case of D2NN-D1 and D2NN-D1d, the class 

estimation rule in Eq. 8.1 was replaced with, y&�(Ù�ÄyÙÅ(�),r)  and 

y&�(Ù�ÄyÙÅ(��),r), respectively. Since the input images in the test set T1 contain single, 

phase-encoded handwritten digits without the second overlapping phase object, the optical 

signals collected by the detectors, 8¦e-, ¦eX9 , at the output plane of the diffractive optical 

networks D2NN-D2 and D2NN-D2d become irrelevant for the classification of the images in T1. 

Therefore, the decision rule in Eq. 8.9 is simplified to Ù�ÄyÙÅ(�r) and Ù�ÄyÙÅ(��r) for the 

all-optical classification of the input test images in T1 based on the diffractive optical networks 

D2NN-D2 and D2NN-D2d, respectively. 

Architecture and Training of the Phase Image Reconstruction Network 
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The phase image reconstruction electronic neural networks (back-end) following each of the 

presented diffractive optical networks (front-end) include 4 neural layers. The number of neurons 

on their first layer is equal to the number of detectors at the output plane of the preceding 

diffractive optical network (D-1, D-1d, D-2 or D-2d, see Figs. 8.1a-d). The number of neurons, 

on the subsequent 3 layers are 100, 400, 1568, respectively. Note that the output layer of each 

image reconstruction electronic neural network has 2×28×28 neurons as it simultaneously 

reconstructs both of the overlapping phase objects, resolving the phase ambiguity due to the 

spatial overlap at the input plane. Each fully-connected (FC) layer constituting these image 

reconstruction networks applies the following operations:  

where �Z-Ø and �Z denote the output and input values of the ZÜà layer of the electronic network, 

respectively. The operator LReLU stands for the leaky rectified linear unit: 

The batch normalization, BN, normalizes the activations at the output of LReLU to zero mean 

and a standard deviation of 1, and then shifts the mean to a new center, �(Z), and re-scales it with 

a multiplicative factor, �(Z), where �(Z) and �(Z) are learnable parameters, i.e., 

 �Z-Ø = ��{��|��[��{�Z}]}			 (8.12) 

 �Am�1[Å] = " Å, â�	Å ≥ 		. ØÅ,			&Üàm��â�mN .	  
(8.13)  

 
BN[Å] = �(Z) ∙ Å − 	��(Z)u	��(Z)� + �

+ �(Z) 

�� = ØyVÅây
â�Ø ,			 	��� = ØyV(Åâ − ��)�y

â�Ø  

 

(8.14)  
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The hyperparameter � is a small constant that avoids division by 0 and it was taken as Ø	XÞ.  

  The training of the phase image reconstruction networks was driven by the 

reversed Huber (or “BerHu”) loss, which computes the error between two images, Ù(Å, Æ) and 

ä(Å, Æ), as follows: 

The hyperparameter � in Eq. 8.15 is a threshold for the transition between mean-absolute-error 

and mean-squared-error, and it was set to be 20% of the standard deviation of the ground truth 

image.  

 If we let c�(Å, Æ)  and c�(Å, Æ)  denote the first and second output of each image 

reconstruction electronic network (i.e., 28x28 pixels per phase object), the image reconstruction 

loss, ��, was defined as the minimum of two error terms, ��e  and ��ee, i.e., 

 �m�È�(Ù, ä) = V |Ù(Å, Æ) − ä(Å, Æ)|Å,Æ|Ù(Å,Æ)Xä(Å,Æ)|6�
+ V [Ù(Å, Æ) − ä(Å, Æ)]� +����Å,Æ|Ù(Å,Æ)Xä(Å,Æ)|��

 

(8.15)  

 �� = �wx{��e , ��ee},  

 ��e = ��|� ¡ �c�(Å, Æ),cØ(Å, Æ)� + �|� ¡ �c�(Å, Æ),c�(Å, Æ)�¢� ,  

 ��ee = ��|� ¡ �c�(Å, Æ),c�(Å, Æ)� + �|� ¡ �c�(Å, Æ),cØ(Å, Æ)�¢� , (8.16) 
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where cØ(Å, Æ)  and c�(Å, Æ)  denote the ground truth phase images of the first and second 

objects, respectively, which overlap at the input plane of the diffractive optical network. As there 

is no hierarchy or priority difference between the input objects cØ(Å, Æ) and c�(Å, Æ), Eq. 8.16 

lets the image reconstruction network to choose their order regarding its output activations.  

Miscellaneous details of diffractive network training 

With the 0.53G lateral sampling rate in our forward optical model, the transmittance function 

inside the field-of-view, ��±(�, �) , was represented as a 100 × 100	discrete signal. In our 

diffractive optical network training, the 8-bit grayscale values of the MNIST digits were first 

converted to 32-bit double format, normalized to the range [0,1] and then resized to 100 × 100 

using bilinear interpolation. If we denote these normalized and resized grayscale values of the 

two input objects/digits that overlap at the input plane as ].(�, �)  and ]�(�, �)  then the 

transmittance function within the input field-of-view, ��±(�, �),  is defined as, 

 During the training of the presented diffractive optical networks, ].(�, �) and ]�(�, �) 
are randomly selected from the standard 55K training samples of MNIST dataset without 

replacement, meaning that, an already selected training digit was not selected again until all 55K 

samples are depleted constituting an epoch of the training phase. In this manner, we trained the 

diffractive optical networks for 20,000 epochs, showing each optical network approximately 550 

million different ��±(�, �) during the training phase. To generate the input fields in test dataset T2, 

we randomly selected ].(�, �) and ]�(�, �) among the standard 10K test samples of MNIST 

dataset, without replacement, and this was repeated two times providing us the 10K unique phase 

 ��±(�, �) = �[ó\ç(�,�)�[ó\è(�,�)	 (8.17). 
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input images of overlapping handwritten digits constituting T2. In our T2 test set, 8998 inputs 

contain overlapping digits from different data classes, while the remaining 1002 inputs have 

overlapping samples from the same data class/digit. The validation image set, on the other hand, 

contains 5K unique phase input images created by randomly selecting ].(�, �) and ]�(�, �) 
among the standard 10K test samples of MNIST dataset without replacement.  

 The overlap percentage, s, between any given pair of samples, ].(�, �) and ]�(�, �) (see 

Fig. 8.7), is quantified by, 

In Equation 8.18, s. and s� quantify the percentage of the input pixels that contain the spatial 

overlap with respect to ].(�, �) and ]�(�, �), respectively, and the final s is taken as the max of 

these two values.  

 For the digital implementation of the diffractive optical network training outlined above, 

we developed a custom-written code in Python (v3.6.5) and TensorFlow (v1.15.0, Google Inc.). 

The backpropagation updates were calculated using the Adam106 optimizer with its parameters 

set to be the default values as defined by TensorFlow and kept identical in each model. The 

learning rate was set to be 0.001 for all the diffractive optical network models presented here. 

The training batch size was taken as 75 during the deep learning-based training of the presented 

 s. = ∑ ∑ £!"� �]�&�} , �µ'�£µ} ].&�} , �µ'	∑ ∑ ].&�}e, �µe'µe}e × 100  

 s� = ∑ ∑ £!"� �].&�} , �µ'�£µ} ]�&�} , �µ'	∑ ∑ ]�&�}e, �µe'µe}e × 100  

 s = max	{s., s�} (8.18) 
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diffractive optical networks. The training of a 5-layer diffractive optical network with 40K 

diffractive neurons per layer for 20,000 epochs takes approximately 24 days using a computer 

with a GeForce GTX 1080 Ti Graphical Processing Unit (GPU, Nvidia Inc.) and Intel® Core ™ 

i7-8700 Central Processing Unit (CPU, Intel Inc.) with 64 GB of RAM, running Windows 10 

operating system (Microsoft).  
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