
Lawrence Berkeley National Laboratory
Recent Work

Title
COMPUTER CONTROL OF ELECTROCHEMICAL EXPERIMENTS WITH APPLICATION TO
ZINC/NICKEL OXIDE CELLS

Permalink
https://escholarship.org/uc/item/9ng5t82b

Authors
McLarnon, F.R.
Cairns, E.J.

Publication Date
1982-12-01

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/9ng5t82b
https://escholarship.org
http://www.cdlib.org/

LBL-1554~- (1--

Lawrence Berkeley Laboratory
UNIVERSITY OF CALIFORNIA RECEIVED

COMPUTER CONTROL OF ELECTROCHEMICAL EXPERIMENTS
WITH APPLICATION TO ZINC/NICKEL OXIDE CELLS

Marco H. Katz*, Frank R. McLarnon,
and Elton J. Cairns

(*M.S. Thesis)

December 1982
TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may.be borrowed for two weeks.

For a personal retention copy, call

Tech. Info. Divisiof1, fxt. 6782.

ENERGY
AND ENVIRONMENT

DIVISION

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

~
f -en
Vl

') ~ r (~"

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain correct information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any warranty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

COMPUTER CONTROL OF ELECTROCHEMICAL EXPERIMENTS

WITH APPLICATION TO ZINC/NICKEL OXIDE CELLS

by

LBL-15546

Marco H. Katz, Frank R. M~Larnon, and Elton J. Cairns

December 1982

Energy and Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

This work was supported by the Assistant Secretary for
Conservation and Renewable Energy, Office of Energy Systems
Research, Energy Storage Division of the U.S. Department
of Energy under Contract No. DE-AC03-76SF00098.

Abstract

Chapter 1

Chapter 2

Chapter 3

Chapter 4

Conclusions

Acknowledgements

Appendix A

Appendix B

Appendix C

Appendix D

Appendix E

Appendix F

Appendix G

i

TABLE OF CONTENTS

Introduction

Design of the Multiple Electrochemical Cell
Cycling System

Experimental Procedures

Analysis of Results

Hardware System

Memory Usage and the Extended Memory Monitor

The I/O Driver and the I/O Library

The Real-Time Program

The Watchdog Program - Organizing Cycling Regimes

The Data Reducing Programs

Application of the EPA Driving Profile to Zn/NiOOH
Cell Testing

ii

1

13

45

62

85

86

87

110

121

154

357

428

438

ABSTRACT

ii

Computer Control of Electrochemical Experiments

with Application to Zinc/Nickel Oxide Cells

Marc H. Katz

University of California

Berkeley, CA 94720

A computer~controlled test system has been designed and constructed

to allow the simultaneous and continuous cycling of 16 or more electro­

chemical cells. The system offers resolution and stability within

0.025% of full-scale, and response times are typically 1 ms. A wide

variety of charge and discharge regimes, including pulsed charge and

power discharge·profiles, are implemented through various computer algo­

rithms. The software configuration allows two programs to execute con­

currently irt the computer memory and to communicate with each other

through a set o~ codified messages. This arrangement permits flexible

interaction with all experiments and provides on-line data reduction and

display.

The test system has been employed to investigate the effects of

constant-current and various pulsed-current charging modes on the cycle

life and capacity retention of Zn/NiOOH cells cycled at 100% depth-of­

discharge. Test results included cell voltages, potentials of the NiOOH

and Zn electrodes versus Hg/HgO reference electrodes, coulombs, watt­

hours, average voltages, and associated efficiencies. Post-mortem tests

included Zn electrode X-ray studies.

,

iii

A 30ms-ON/90ms-OFF pulse profile, with a 15mA/cm2 peak current den­

sity, improved the operating conditions of the cells by minimizing the

overpotentials on the Zn and NiOOH electrodes. In contrast to all other

charge profiles tested, it eliminated cell shorting (for at least 100

cycles) and slowed the loss of ZnO reserve, thereby preventing rapid

cell capacity decline.

1

CHAPTER 1

INTRODUCTION

The purpose of this work was to design, build, and implement a

minicomputer-based test system to control and monitor a variety of elec-

trochemical experiments. An integrated hardware and software design led

to the construction of a multiple-channel electrochemical cell test sys-

tem, which was adapted for the cycle-life testing of experimental tri-

electrode cells arranged in a configuration similar to that expected in

secondary batteries. Experiments were conducted to determine the effect

of various charging profiles on the lifetime of Zn/NiOOH cells.

1.1 THE Zn/KOH/NiOOH SYSTEM

1.1.1 Overall Reactions

The overall chemical reaction for the Zn/KOH/NiOOH system is (1)

2NiOOH + Zn + H20~ 2Ni(OH) 2 + ZnO

The electrochemical half-reaction at the positive electrode is

The electrochemical half-reaction at the negative electrode is

- D Zn + 20H ~ ZnO + H20 + 2e-

2

The theoretical cell voltage is 1. 74 V and the theoretical specific

energy is 345 Wh/kg, calculated on the basis of the Gibbs free energy

change and the mass of the reactants.

1.1.2 APPLICATIONS

The Zn/NiOOH battery is one of the candidate systems under con­

sideration for the Near~Term Electric Vehicle Battery Project, sponsored

by the u. s. Department of Energy. Battery performance and cost objec­

tives (specified for electric vehicle applications) are compared with

experimental results obtained prior to 1981 (2) in Table 1. Other

potential commercial applications for the Zn/NiOOH system include auto­

motive SLI batteries and other uses where this battery may replace

Pb/Pb02 or Cd/NiOOH batteries.

1.2 CHARACTERISTICS OF THE Zn/NiOOH SYSTEM

The Zn/NiOOH cell offers attractive specific energy and specific

power characteristics: its shortcomings are high cost and unsatisfac­

tory cycle life (3). These weaknesses result from particular charac­

teristics of both the NiOOH and the Zn electrodes.

1.2.1 THE NICKEL OXIDE ELECTRODE

At present, only NiOOH electrodes based on a sintered Ni plaque have

shown satisfactory performance and cycle life (3) when tested in

Zn/NiOOH cells, although attempts are being made to reduce the cost of

this battery by using plastic-bonded NiOOH electrodes (2). The NiOOH

electrode operates at less than full efficiency due to the occurrence of

a parasitic reaction (oxygen evolution) when the electrode is charged.

3

Slow evolution of oxygen also causes self-discharge of the NiOOH elec-

trode (1).

1.2.2 THE ZINC ELECTRODE

1.2.2.1 An overall reaction proposed for the anodic process at the

Zn electrode follows a dissolution-precipitation mechanism (4).

- 2-Zn + 40H. ~ Zn(OH) 4 + 2e Dissolution

2- -Zn(OH) 4 ~ ZnO + 20H + H2o Precipitation

The dissolution reaction consumes four OH- ions, while the NiOOH

electrode discharge reaction produces only two. Thus, a critical factor

during discharge is the presence of a quantity of electrolyte in the

pores of the Zn electrode sufficient to maintain the dissolution reac-

tion rate at an acceptably high level (5).

1.2.2.2 A generic problem of the Zn electrode is the high solubil-

ity of its discharge products in KOH. High concentration of the Zn

species in the electrolyte is linked to the redistribution of Zn upon

cycling (6). During discharge, a 31% KOH electrolyte can reach more

than three times the ZnO saturation concentration (7).

1.2.2.3 The Zn electrode can also evol~e hydrogen on charge, but

the addition of metals such as mercury, lead, cadmium, or thallium has

been found to suppress (6) the undesirable side reaction.

4

1.2.3 FAILURE MECHANISMS

The major failure mechanisms of a Zn/NiOOH cell are associated with

its Zn electrode (3). The most important are: shape change (8,9), den­

sification (6), passivation (10), and dendrite shorting (6).

Several operational parameters that influence· the rate of shape

change hB:ve been described elsewhere (6). Various attempts have been

made to reduce the Zn electrode solubility in KOH electrolyte, e.g.,

additives to the electrode (11) or additives to the electrolyte (12).

The rate of dendrite shorting has been reduced by various methods such

as the operation of sealed cells (13) and the development of separators

that more effectively slow the rate of dendrite penetration (14,15).

1.3 OPERATING CONDITIONS

1.3.1 DISCHARGE MODES

An electric vehicle battery is typically subjected to a variable

load, due to conditions of vehicle acceleration or deceleration, steep

road grades, etc·. A realistic test of an experimental cell designed for

this application is a controlled discharge that employs a power profile,

equivalent to a standard driving profile, adapted to the capacity of the

cell. A typical example is the EPA urban driving profile (16) which

consists of a power load which varies every second, over a total of 1372

seconds. The implementation of such a test is well within the capabil­

ity of modern computer systems. A description of this application can

be found in Appendix G.

5

Simplified driving profiles have been proposed which retain some

realistic testing conditions and make the implementation more straight­

forward (17). However, most of the battery tests are still conducted at

constant current or constant power, conditions which are more appropri­

ate for load-leveling applications.

1.3.2 CHARGE MODES

Contrary to discharge modes, there is no basic limitation on the

variety of possible charge modes for a battery. Important practical

considerations are the availbili ty of hardware and sufficient recharge

time.

> Constant-current charge is popular because of the straightforward

implementation (1). In the Zn/NiOOH cell, when the end of a charge

is approached, gas evolution rates increase, overpotential on the Zn

electrode rises, and an unwelcome dendrite growth condition is esta­

blished.

> During a constant-voltage charge, the current gradually decreases

with increasing time, which prevents excessive overpotential on the

electrodes. The resulting low currents, however, lead to longer

recharge times. For that reason, a combination of constant-current

and constant-voltage is often used (constant voltage-limited current

charge).

> Other methods have been proposed, such as stepped constant-current,

floating, trickle (1), and pulsed-current charging.

method is discussed in the next section.

This last

6

1.4 PULSED CURRENT CHARGING OF Zn/NiOOH CELLS

Although pulsed current has not until recently been systematically

evaluated as an alternate charge method for Zn/NiOOH cells, it has long

been known to improve the characteristics of electroplated deposits of

various metals (18).

Romanov (19) described how the growth of Zn dendrites in alkaline

Zn/NiOOH and Zn/ AgO batteries could be decreased by using AC current

superimposed on DC current. His observations indicated that the best

results were obtained for pulsed currents having' a sufficiently long

off-time, or sufficiently low frequency ((250Hz). Bennion (20) sug­

gested that improvements in dendrite growth suppression with pulsed­

current. charging might be due to a combination of a short, high-current

peak, followed by a sufficiently long rest-time. A high-current peak

creates a relatively large surface overpotential, which increases the

number of nucleation sites and thereby reduces the chance for dendrite

initiation. The rest-time allows local zinc concentration gradients to

relax by diffusion of zinc ions into the depleted diffusion layer, which

prevents the development of excessive concentration polarization, hydro­

gen evolution and dendrite growth.

Chin et. al. (21) studied the effects of pulsed current on the depo­

sition of Zn from an acid zinc chloride solution. They found that

pulsed currents produced an increase in nucleation sites and therefore

more uniform deposits.

was 60Hz.

The frequency employed for these experiments

7

Smithrick (22) described experiments with various pulsed-current

charge profiles and their effect on the cycle life of Zn/NiOOH cells.

He was unable to demonstrate that any pulsed charge method improved cell

cycle life over that associated with constant current. These tests were

conducted at frequencies of 120 to 1000 Hz, and the short off-times of

these pulses might explain the lack of lifetime improvement.

By contrast, 0. Wagner (14) presented results which showed that

pulsed-current charge could, indeed, improve the cycle life of Zn/NiOOH

cells. While Smithrick used relatively high frequencies, Wagner found

an optimized low-frequency pulse of 12Hz, with a 9 to 1 rest-to-pulse

time ratio. Cells charged with this pulse had better capacity retention

and less shape change than those charged at either constant current or

constant voltage.

The experimental conditions utilized by Wagner were not as severe as

those expected in aplications such as electric vehicles. The cells were

cycled at 80% of the rated capacity, which was defined as 68% of the

theoretical capacity. Based on the theoretical capacity, the depth-of­

discharge was therefore only 54%. In addition, the 10-hour recharge

time was relatively long. Therefore, though the reported results show

beneficial effects of the pulsed charging, they cannot be readily

extended to cells cycled at close to 100% depth of discharge.

Appelt and Juerwicz (23) have investigated the effect of pulsed­

current plating conditions on the morphology of electrodeposited zinc.

Optimal current ratios were identified.

8

The aim of this work is to determine the effect of several pulsed

charging modes on cell cycle life under conditions similar to those

expected for the application of Zn/NiOOH batteries in electric vehicles.

9

Table 1

Battery Parameters

Development Expected Vehicle I Zn NiOOH Best

Goals Performance(!) Results at NBTL

Jan. 1981

Specific Energy 56 W-hr/kg 100 miles/charge 68 W-hr/kg

(C/3 rate) (SAE 227a D

Urban Driving)

specific Power 104 W/kg Acceleration 131 W/kg

(at 50% DOD) (30 sec peak) 0 to 30

mph in 8 sec

Cycle Life 800 Cycles)60,000 miles 179 cycles

(80% DOD)

Manufacturer 70 $/kw-hr $2,000 battery

Price cost

(1) Based on DOE/ETV-1 Vehicle with regenerative breaking

10

REFERENCES

1. S. U. Falk, A. J. Salkind, "Alkaline Storage Batteries", Wiley, New

York, 1969.

2. N. P. Yao, c. c. Christianson, F. Hornstra, Proc. of 16th IECEC,

Atlanta, 1981, p.641

3. Albert Rimy, Proc. of 16th IECEC, Atlanta, 1981, p.645

4. w. G. Sunu, D. N. Bennion, J. Electrochem. Soc., 127, 2007 (1980)

S. T. P. Dirkse, L. A. Vander Lugt, N. A. Hampson, J. Electrochem.

Soc., 118, 1606, (1971)

6. J. McBreen, E. J. Cairns, "Adv. Electrochem. & Electrochem. Eng.",

!!, Gerisher and Tobias Ed., Wiley, New York, 1978, pp 273-352.

7. T. B. Dirkse, Technical Report No. AFAPL-TR-72-87, Contract No.

AF33[615]-3292, Calvin College, Grand Rapids, Mich., Dec 1969.

8. J. McBreen, J. Electrochem. Soc., 119, 1620, (1972)

9. K. w. Choi, D. N. Bennion, J. Newman, J. Electrochem. Soc., 123,

16 28 , (19 7 6)

10. M. B. Liu, G. M. Cook, N. P. Yao, J. Electrochem. Soc., 128, 1663,

(1981)

11. Energy Research Corporation, "Annual Report for 1979 on Research,

Development and Demonstration of Nickel/Zinc Batteries for Electric

Vehicle Propulsion", Argonne National Laboratory Report No. ANL/dEPM

79-10, (June 1980)

11

12. R. F. Thornton, E. J. Carlson, J. Electrochem. Soc., 127, 1448,

(1980)

13. J. McBreen, Extended Abstracts, The Electrochemical Society, Prince­

ton, NJ, Vol. 77-1, Abstr. No. 356, p. 909.

14. o. C. Wagner, "High Cycle Life, High Energy Density Nickel/Zinc Bat­

teries", Report No. 3, u. s. Army Electronics Research and Develop­

ment Command, Fort Monmouth, New Jersey, Report No. P50-3C, (Febru­

ary 1980).

15. Gould, Inc., "Annual Report for 1980 on Research, Deveopment, and

Demonstration of Nickel/Zinc Batteries for Electric Vehicle Propul­

sion", Argonne National Laboratory Report No. ANL/OEPM-80-13, (March

1981).

16. EPA Urban Driving Profile, Federal Register, 11/10/70

17. F. Hornstra, E. Berrill, P. Cannon, D. Corp, D. Frederickson, v.

Kremesec, w. Lark, c. Swoboda, and c. Webster, "Results of Simulated

Driving Profiles in the Testing of Near-Term Electric Vehicle Bat­

teries", Proc. EVC Expo '80 Con£., St. Louis, (May 20-22), Paper EVC

No. 8034, Electric Vehicle Council, Washington, D.C. (1980).

18. N. Ibl, F. Leaman Ed., AES 2nd International Symposium on Pulse

Plating, American Electroplaters Society (1980).

19. v. v. Romanov, Zhur. Priklad. Khim., 34(12), 2692 (1961).

12

20. D. N. Bennion, "A Review of Membrane Separators and Zinc/Nickel

Oxide Battery Development", Final Report for Argonne National

.Laboratory, Contract No. 31-109-38-5455 (1980).

21. D. T. Chin, s. Venkatesh, J. Electrochem. Soc., 128, 1439, (1981)

22. J. J. Smithrick, "Effect of Positive Pulse Charge Waveforms on Cycle

Life of Nickel-Zinc Cells", DOE-NASA/1044-79/13, (1979).

23. K. Appelt and J. Jurewicz, "Uber den Einfluss des elektrolytischen

Abscheidungsprozesses von Zn mittel eines Drei-Komponenten­

Impulsstromes , auf die Morphologie der Zinkelektrode des Ni/Zn­

Akkus," Extended Abstracts of the 29th Meeting of the International

Society of Electrochemistry, p. 862 (1978).

13

CHAPTER 2

DESIGN OF THE MULTIPLE ELECTROCHEMICAL CELL CYCLING SYSTEM

2.1 DESIGN CONSIDERATIONS

The low cost and wide commercial availability of microprocessors

make them very powerful tools for use in many applications. When prop-
.

erly configured with memory and input/output peripherals, they provide a

convenient means of controlling and monitoring experiments, which can

require the accumulation of voluminous data over an extended period of

time.

Experiments to evaluate the performance of secondary batteries fall

in the above-mentioned category. Indeed, one of the key parameters in

the assessment of the practicality of a secondary battery is its dura-

bility or cycle life (1). This is determined by repeatedly discharging

and recharging the battery under pre-established operating con~itions
/

until its capacity falls below a certain level. In order to understand

why the battery fails, it is appropriate to monitor cell voltage, the

potential of each electrode versus a reference electrode, temperature,

and other relevant variables throughout the entire length of the experi-

ment. Data can be gathered with strip-chart recorders or other analog

devices, but the accumulated results must then be processed manually,

which is at the very least cumbersome if not inaccurate. It is thus

14

quite natural that, in recent years, much work has been devoted to

establish micro or minicomputer automated battery test systems (2,3,4).

One of the objectives of this work has been to design and construct

a computerized system that can serve as a tool for electrochemical

experiments. It was decided to build the system around an electronic

circuit that provides fast and accurate control of the current that

flows in an electrochemical cell. A minicomputer is programmed to pro­

vide a setpoint for this current and monitor the experiment. Since the

analog control function is elementary (current control) it is the com­

puter that has the important task of organizing the experiment: at the

cost of effort to program the computer, a maximum system flexibility is

derived.

A library o~ hardware-driving software routines has been written to

provide a clean interface between an application program and the exter­

nal hardware functions (TTL input/output, analog to digital and digital

to analog conversion, etc •••). These routines can be called as regular

subroutines of a separate program, and they make the internal workings

of the hardware invisible to the user. These routines permit the pro­

grammer to easily write his own application programs in FORTRAN.

The bulk of this work was dedicated to creating a set of application

programs aimed at the implementation of a cycle life testing system for

electrochemical cells.

The system design is general and can handle testing on various types

of electrochemical cells. However, it has so far only been used for the

testing of experimental Zn/NiOOH cells, and this discussion is,

15

therefore, written with that application in mind. The system can, of

course, be adapted to control and monitor a wide range of experiments.

16

2.2 OVERALL SYSTEM OBJECTIVES

A number of basic capabilities of a test system for cycling electro­

chemical cells are required, and all of them were realized through

appropriate hardware and software design, as is described in later parts

of this chapter (Sections 2.3 and 2.4) and in the appendices.

2.2.1 SYSTEM SIZE

A common cycling test for Zn/NiOOH cells is to charge at the 5-hour

rate and discharge at the 3-hour rate. With short open-circuit periods

between successive charges and discharges, one can then accumulate about

3 cycles a day, or 100 cycles a month. This lengthy duration clearly

dictates the need to test many cells simultaneously. However, as each

cell gradually loses capacity at different rates, it is impossible to

keep their cycling sequence synchronized: therefore, a desirable feature

of the system is the capability to independently control a maximum

number of cells. It was decided to size the system for 8 independent

experiments, each capable of driving a maximum of 2 cells connected in

series.

2.2.2 TESTING MODES

As mentioned in chapter 1, there are many methods to charge or

discharge an electrochemical cell. At times, the cycling mode itself

can be the subject of the experiment. The following testing modes were

. specified:

17

1. Charging at constant current or at constant voltage.

2. Charging with an externally imposed current profile.

3. Discharging at constant current or at constant power.

4. Discharging with an externally imposed current profile.

5. Discharging with a rapidly fluctuating power profile, such as

the EPA urban driving profile (see Appendix G)

It is necessary to select the current, voltage or power levels, the

duration of charge and discharge; the open-circuit resting time; and

other parameters which characterize the overall cycling regime.

2.2.3 CONTINUOUS OPERATION

The system must operate without interruption. This constraint is

/ necessary for consistency in the comparison of various experiments. For

instance, it has been reported that hydroxide concentration gradients

(5) and potential gradients (6) in porous Zn electrodes relax upon

I current interruption (a short-term effect). Longer-term effects, such

as self-discharge of electrodes in cells, have also been reported (7).

These effects can vary according to the state of charge of the cells at

the moment their charge or discharge is interrupted. This phenomenon

complicates the interpretation of the cycling results, underscoring the

need to avoid unscheduled interruptions. Continuous operation creates
'

several constraints:

18

1. Since the test regimes of various cells are not synchronized,

there must be a convenient means to remove a failed cell from

the test loop (or add a new cell to the test loop) without

interrupting other experiments. One cannot wait until all the

cells are in open circuit.

2. The controlling hardware must operate in a stable manner for

long periods of time, and self-heating effects must be minim­

ized since excessive temperature changes can alter the calibra­

tion of electronic parts and thereby reduce the accuracy of the

measurements.

3. Since many concurrent experiments are monitored by the com­

puter, a huge volume of data must be kept in files on large­

capacity storage devices.

2.2.4 CELL PROTECTION

Cells under test must be protected from severe overcharge or over­

discharge conditions:

1. One must be able to assign upper and/or lower limits to any of

the variables measured (voltages, current, temperature, •••), in

order to terminate a charge or discharge when appropriate.

2. After a power outage, when the power is restored, the cells

must be left in open-circuit mode.

I

19

3. In case of a computer program failure or a system crash, the

controlling hardware must automatically disconnect the cells.

2.2.5 TIMESHARING SYSTEM

A computerized test system is not practical if the computer is con­

tinuously controlling experiments and cannot tolerate interruption. It

is important to frequently analyze recorded data, preferably shortly

after they have been taken, to enable corrective action to be taken as

the experiment progresses. An obvious solution to this problem is to

employ a second computer, which has access to the same mass storage dev­

ice as the computer which controls the experiments. One can then run

programs for data retrieval, analysis or graphic display. The second

computer could also be used to write new computer programs or improve

existing ones. Unfortunately, financial constraints dictated against

the purchase of a second machine, and an alternate approach, the instal­

lation of a direct link between our computer and the computing facili­

ties on the U. c. Berkeley campus or the Lawrence Berkeley Laboratory

could not be easily implemented. It was therefore decided to implement

a timesharing system on our computer, which would allow more than one

program to run at the same time. This solution is described in detail

in the software sections.

20

2.3 SYSTEM HARDWARE

A battery or electrochemical cell test system can

schematically be represented as in Fig. 1.

To be computer-controlled, any such system needs a logic control

interface: relays must be switched to connect or disconnect cells

and change the current polarity; and .a setpoint for the applied

current must be provided. It is also necessary to have appropriate

circuit elements dissipate the power which the cells deliver on

discharge (usually a bank of resistors or diodes), and a monitoring

interface for data collection is required.

A cost-sensitive element of these systems is their analog con-

trol circuitry. One possible configuration includes a programmable

power supply for each independent cell under test. Another confi­

guration could employ a custom-made cycler (3,4), with an integrated

power supply and analog and digital control design. In both cases,

one cycler per test unit is required.

A cost barrier to testing many cells is the need to purchase

many programmable power supplies with acceptable specifications (see

below). A cost-effective power delivery configuration was proposed

by the Department for Instrument Science and Engineering, at the

Lawrence Berkeley Laboratory. Two prototype current controllers

were constructed, installed and tested in laboratory operating con­

ditions. These current controllers were designed to operate a mul­

tiple number of cells from only two common unregulated power sup­

plies. With a larger system as objective, a cost analysis was made

I

/ ---

:--------~------ -y---- ------: ---------, ,.- ------L-----

1 I ~~·~·· I H POWER

0

SUPPLY I i i I CE:LL I l I Dl
I LOGn~I-\L

l CONTROL

INTERFACE POWER SUPPLY

POWER SUPPLy

ANALOG
: CONTROL
I : POWER SUPPLy
I I
L __________________ _;_ ___________ , __________ J t_ _____ l ____ j

COMPUTER r--------------1 MONITORING
INTERFACE

FIGURE 1. Schematic Diagram of an Electrochemical Cell Cycling System.

~
POWER

V
DISSIPATING
ELEMENTS

XBL 826-1452

N
........

22

to compare the prototype design with commercial products. Based on

the cost analysis, it was decided to build a system with 8 current

controllers, each one dedicated to 2 cells connected in series.

The hardware system is described in detail in Appendix A, and a

brief summary follows:

The heart of the hardware system is the current con­

troller, which has an analog circuit combined with a logic

circuit. The analog circuit is a feedback control regula­

tor, with a VMOS transistor as linear dissipative control

element. The current is regulated at a value proportional

to a set-point control voltage which is provided by a

local source (for manual control), by the computer, or by

a function generator. The computer monitors the cell

current, polarity, and voltages. The digital logic cir­

cuit switches relays to connect or disconnect a cell, to

place it in charge or discharge mode, or to allow the con­

troller to operate in external mode. Common to all con­

trollers is a logic timer circuit which disconnects every

cell if the computer program fails.

The system has the necessary flexibility and fast (ms)

response time to accommodate a wide variety of cell charge

and discharge waveforms. The system control hardware pro­

vides 0.025% of full-scale resolution in current settings.

Current measurements show less than 0.025% drift of

current due to temperature or circuit instabilities in any

of the current controllers. Current errors due to

23

controller cross-talk are less than 0.025% of full-scale

within 1 msec after an abrupt current change in any other

controller.

' Figure 2 is a photograph of the system. Figure 3 is a photo-

graph of Zn/NiOOH cells under test.

24

CBB 823-2908

FIGURE 2 . Eight Current Controller with Lo gic and Control Bin, Power
Supplies, Voltage Monitor Box and Mini-computer System.

t

r

f

r

f

Figure 3 .

25

CBB 823 -2 906

Zn/NiOOH Cells Under Test.

26

2.4 SYSTEM SOFTWARE

The microcomputer used in this system is an LSI-11/23 model from

Digital Equipment Corporation (DEC). The operating system is RT-

11, also from DEC. An operating system consists of a number of pro­

grams that allow the user to perform the following (among other)

tasks:

1. Write text files on storage devices (disks, tapes,

cassettes, •••);

2. Compile programs written in a high-level language (FORTRAN,

BASIC, •••);

3. Use special subroutine l.il?raries · (mathematical' statisti­

cal, timer routi.nes, ~ ••).;

4. Assemble programs written in assembly language; and

5. Run programs, communicate with line-printers and terminals,

and open and close data-files.

The three major accomplishments in writing software were:

1. The hardware I/O library and hardware I/O driver.

2. The real-time application program.

3. The data-processing programs.

I
' ,

I

'

27

2.4.1 THE HARDWARE I/O LIBRARY AND HARDWARE I/O DRIVER

2.4.1.1 HARDWARE I/O DEVICES

All hardware input/output devices that are interfaced with the

computer are physically connected to memory locations in its core.

The operating system recognizes that a section of the memory is thus

physically tied to the outside world and calls it the I/0 page.

Each device typically uses one or more memory locatidns in the I/O

page: one that contains the information to be transferred, and one

that contains information about how the transfer is to be carried

out (.status register). An I/0 device is simply an integrated cir-

cuit board that is plugged into the computer box. For each device,

the addresses of the memory locations used can be set by means of

dip-switches or proper wire-wrap configurations, which'are located

on the printed-circuit boards. Aside from the disks, the terminals,

the line-printer and the plotter, the following hardware devices are

used (see system hardware, in Appendix A)

1. 2 16-bit parallel I/O cards (input and output).

2. 2 cards with a total of 8 12-bit digital to analog

(D/A) channels (output).

3. 4 cards with a total of 64 12-bit analog to digital

(A/D) channels (input).

4. A programmable clock.

28

With the exception of the programmable clock, the output of

each of the cards is selectively wired to some part of the ana­

log hardware. Therefore, an action on the hardware is achieved

by reading a digital word, writing a digital word, or modifying

the bit pattern in a digital word at the correct address.

2.4.1.2 THE HARDWARE I/O LIBRARY

Ass~mbly language routines were written to organize the

information transfer to and from the appropriate I/O devices,

thereby implementing the following functions:

1. Connect or disconnect a cell (or string of 2 cells in

series) to/from a current controller (1st parallel I/O

card, output).

2.. Switch a controller from/to the charge/discharge mode

(1st parallel I/O card, output).

3. Read the status of a controller, that is computer/local

(1st parallel I/O card, input).

4. Set a controller in the external or normal mode (2nd

parallel I/O card, output)•

5. Run a current through a cell (D/A channel, output).

6. Read the current flowing through a cell, the cell vol­

tage, or the potential difference between each of its

electrodes and a reference electrode (A/D channels,

input).

l

29

7. Follow a variable signal and determine its maximum and minimum value

over a certain period of time (max. 1 sec) (A/D channel, input, +

programmable clock).

Each of these ro.utines can be called from a FORTRk'i user program,

with proper specification of input and output parameters. A typical

example is a routine that establishes the voltage setpoint of a current

controller: the full-scale current rating of the controller (2 A or 10

A) corresponds to the full-scale value of the setpoint voltage (10 V)

which in turn corresponds to the highest decimal number that a 12-bit

D/A card can output (4095). A smaller current is an integer fraction of

4095. To allow the user to avoid such minor complications, the resolu­

tion of which requires some insight into how the computer hardware

operates, an additional set of short FORTRAN routines were written; they

perform the calculations described above and have options to print mes­

sages. For instance, the routine for setting the current is called with

convenient input parameters: the current value, the controller number

and full-scale current rating. A schematic representation of I/O opera­

tions with the I/O library is given in Fig. 4a.

2.4.1.3 THE I/O DRIVER

Appendix B describes the inherent memory restrictions of RT-11, the

need to rely on extended memory support, and the procedure to run vir­

tual jobs. Unfortunately, when virtual jobs are run, a major advantage

is lost: it is not possible to directly access the I/O page. Therefore,

as described in the Appendix B, it was necessary to write an I/O driver.

Fig. 5 schematically shows the difference between normal I/O and I/O

with a driver.

30

1--+
USER LIBRARY OF LIBRARY OF 1-+

APPLICATION ~ FORTRAN 1/0 ASSEMBLY 1/0 1---+ 1/0
DEVICES PROGRAM ROUTINES ~ . ROUTINE 1-+

~

I I
(a)

USER LIBRARY OF 1/0
APPLICATION r++ FORTRAN 1/0 DRIVER DEVICES

PROGRAM ROUTINES

I I
XBL 826-1456

(b)

FIGURE 4. (a) Input/Output with FORTRAN and ASSEMBLY language
I/O Libraries

(b) Input/Output with FORTRAN I/0 Library and I/O Driver.

31

The original FORTRAN library was modified to allow the user to work

with the same FORTRAN calls, thereby insulating the user from the

difference between regular and driver-aided I/O. (Fig. 4a is effec­

tively identical to Fig. 4b).

The I/O library and the I/O driver are described in detail in Appen­

dix c.

FIGURE 5. Schematic Diagram of Regular and Driver Aided Input/Output

I
I

'B
XBL 826-813

w
N

33

2.4.2 THE REAL-TIME APPLICATION PROGRAM

The REAL-TIME program is the core of the testing system. It is a

large program that is resident in the computer memory at all times, and

its task is to continuously control and monitor all the cells under

test. The program is written in FORTRAN and employs the I/O library

described in the previous section. As the tool that controls experi­

ments, the real-time program must be convenient to use, but it must be

as general as possible.

1. A wide selection of experimental parameters is needed so that

the user is not. limited in the variety of experiments he/she

wishes to carry out.

2. The inexperienced user must be provided with a straightforward

way of initiating or interrupting a test and observing how the

test is progressing.

3. For long uninterrupted tests, it is useful to have a way of

interactively altering the test regime.

4. In case of a computer-related failure, easy resumption of all

tests is of great importance.

2.4.2.1 THE REAL-TIME PROGRAM

Each cell under test requires that certain control tasks be per­

formed at regular time intervals. An action timer is assigned to a par­

ticular task (or group of tasks), and it tracks the time of day at which

this task must be carried out. The REAL-TIME program 'sits' in a main

control loop, continuously updates its internal timer (computer clock),

and compares it to the action timers for all cells under test. When it

finds one that is less than or equal to its internal timer, the program

34

updates its internal timer (computer clock), and compares it to the

action timers for all cells under test. When it finds one that is less

than or equal to its internal timer, the program transfers control to a

subroutine which performs the task in question. At the end of the sub­

routine, a time interval (selectable for some tasks) is added to the

internal timer, thereby updating the action timer for that task. For

each cell, the following tasks must be performed:

1. Implementati<?n of a current-control algorithm for any of the follow­

ing charge or discharge modes:

a. constant current

b. constant power

c. constant voltage

d. pulsating current

2. Taking data, checking for limits exceeded, updating data-taking rate

3. Opening or closing data files, storing data

4. Disconnecting the cell from its controller at the end of a charge or

a discharge

5. Connecting the cell with the correct polarity, at the start of a

charge or a discharge

35

6. Checking if the hardware is properly connected (e.g. con­

troller in computer mode)

7. Terminating a test on the cell if appropriate

8. Updating a file with parameters th~t characterize the cell

operation

9. Tracking cycle numbers, date and time

2.4.2.2 FOREGROUND-BACKGROUND; REAL-TIME AND WATCHDOG PROGRAMS

Even with a maximum of 16 cells under test, the REAL-TIME

program is not constantly performing control tasks. In fact,

most of its time is spent updating its timer and comparing it to

the action timers.' RT-11 provides means of taking advantage• of

these inactive periods by allowing the REAL-TIME program to stop

its own execution for a particular length of time. When the

REAL-TIME program stands idle, another program can execute.

This feature of RT-11 is called Foreground-Background (FB)

operation. A foreground (FG) and a background (BG) program

share the computer memory: the FG program has priority, but when

it suspends its execution, the BG program can run. RT-11 also

provides commands that establish a communication path between FG

and BG. Messages can be transferred back and forth, much in the

same way information is transmitted to and from a terminal or a

disk file, by 'read' and 'write' commands.

36

The REAL-TIME application program consists of 2 programs:

the REAL-TIME program (in FG) and a WATCHDOG program (in BG).

The reason for this is related to the way input is directed to a

program. A 'READ from terminal' statement in a program makes

the execution stop until an input is typed on the terminal key­

board. This is not feasible in the context of a REAL-TIME pro­

gram, because it would mean that all control tasks must wait

until all the input has been entered. A convenient way of han­

dling this problem is to have the WATCHDOG program send codified

messages to the REAL-TIME program, upon which the latter takes

the appropriate action.

There are two CRT terminals attached to the system, as

illustrated in Fig. 6. The main terminal is dedicated to the

BG, and it allows input of commands and bidirectional informa­

tion flow with the WATCHDOG program. The second terminal is

dedicated to the FG; it does not allow input of commands, and

information flow is in one direction only. In case of an emer­

gency, the REAL-TIME program can be interrupted by typing ACAC

at the FG terminal.

As illustrated in Fig. 6, a command to run the REAL-TIME

program must be typed on the BG terminal. The program starts,

and it just sits in.the control loop, typing the time on the FG

terminal, because it has no other task to perform. When the

WATCHDOG program runs, a set of questions appear on the BG ter­

minal, pertaining to the various actions that can be initiated.

These are:

BACKGROUND
CRT

INPUT COMMANDS

37

RUN REAL TIME ----.,..,....-. --....

FOREGROUND
CRT

INTERRUPT WITH
~e

XBL 826-1455

FIGURE 6. Foreground-Background Terminal Configuration.

38

1. Initialization of a set of parameters that completely

define the manner in which a cell will run, and getting

a display on the CRT or the line-printer.

2. Modification of some cell operating parameters, such as

data-taking rate, current, maximum A-hrs to pass on

charge or discharge (but no major changes such as the

control mode).

3. Getting a display of the current or newly updated

parameters on the CRT or the line-printer.

4.· Starting a test on a cell or a series string of cells.

There are 2 options:

a. start it with initialized parameters

b. start it with present parameters (only if

cell was alre~dy running)

5. Stopping a test on a cell or a series string of cells.

There are 2 options:

a. stop after a time interval At

b. stop after a certain cycle number, at the

end of a charge or discharge

All actions are implemented through a handshake pro­

cedure between FG and BG, described in detail in Appendix

D. The message-handling components of the REAL-TIME and

WATCHDOG programs automatically abort procedures when gross

mistakes are detected, such as sending messages to start a

cell which is already running, attempting to start a cell

39

by itself when it is physically connected to another, etc.

The user can also abort any procedure previously ini,tiated.

When a cell is started, the REAL-TIME program directs some

output to the FG CRT at regular time intervals: A-hr

count, measurements, and flags that indicate how smoothly

the curr.ent-control procedure is implemented. When no

further action is required, the WATCHDOG program can be

terminated without harm to the REAL-TIME program. One can

then run another program in the BG, as described in section

2.4.3. At any time, the WATCHDOG program can be re-started

and the communication link is automatically established.

A software module interconnection block diagram of the

test system is shown in Fig. 7.

The global structure of the REAL-TIME and WATCHDOG pro­

grams is quite complex. Detailed descriptions are given in

Appendices D and E. However, in order to get a quick over­

view of how to use the programs the reader is referred to

the following sections of this text:

D.l describes the cell parameters

0.2 describes the parameter files

D.3 describes the data-file structure

E.l describes the cycling regimes

40

' ' ' \
\
I
I
I
I

FoaEGROUND 1:, l ~~MUIAGU

---------------------------~----

.1 /
IACKGROUND I

FIGURE 7.

I
I

I

XBL 824-9289

Multiple Electrochemical Cell Test System:
Software Modules Interconnection Block Diagram.

41

E.2 describes the functions of the WATCHDOG program

E.3 gives useful hints on the use of the programs

F.l describes the use of scratch-data-files and

archive files

2.4.2.3 SAFETY, COMPUTER AND PROGRAM CRASHES, RE-START

All cells are controlled by one program, so special

precautions must be taken to prevent failures.

1. Instructions that can cause fatal FORTRAN errors

must not be allowed to execute if an abnormal con­

dition occurs, such as an integer division with a

very small denominator. If no obvious correction

is possible, the affected cell must be discon­

nected.

2. One has to anticipate hardware problems, such as

an occasional I/O error on a data transfer to a

disk.

3. There is no standby power provided for the com­

puter.

The structure of the REAL-TIME program allows for easy

recovery from a crash: indeed, the operational parameters

for each cell are saved on a file and continuously updated,

so that in case of an interruption, a cell can be re­

started from the point at which it stopped.

42

2.4.3 DATA PROCESSING PROGRAMS

As mentioned in section 2.4.2.2., when the WATCHDOG

program is not running, another program can run in the

background. Such a program can be an RT-11 utility pro­

gram; i.e., the Editor or the FORTRAN compiler. It can

also be another real-time program (provided it fits in

memory with the main program) that uses the I/O library, or

any other application program (such as a data-processing

program).

A schematic overall view of the data-storage and

retrieval organization is shown in Fig. 8.

Raw data are stored on separate scratch files for each

cell. A program decodes and displays the contents of a

scratch file on the CRT or line printer. It also can

search for a cycle in the file. Another program decodes

the raw data and stores it in well-organized format in an

archive file. This file contains the name of the cell and

a table of all the cycles stored and their location in the

file. Each cycle has a header which contains A-hr, W-hr

and average voltage information, as well as the number of

variables for each data-point and their identification

(voltage, current, ••), the number of charge and discharge

data-points, etc. An arch! ve file display program and

various plotting programs are described elsewhere (8).

Data-processing programs are described in detail in Appen­

dix F.

FG._!~BG

FG

~------,

I REAL-TIME I
PROGRAM

L ____ J

DATA FOR
A CELL SCRATCH­

FILE

I
I

I

I
I

__ _j t
-~---------------SCR~CH-~LE

BG DISPLAYPROGRAM

FIGURE 8. Data Reduction Software Diagram.

ARCHIVING
PROGRAM

ARCHIVE
FILE

PLOTTING
PROGRAM

ARCHIVE-FILE
DISPLAY PROGRAM

XBL 826-1458

.po
w

44

REFERENCES

1. J. L. Hartman, E. J. Cairns and E. H. Hietbrink, "Elec­

tric Vehicles Challenge Battery Technology", proceed­

ings of the 5th Energy Technology Conference, Washing­

ton D.C, February 1978-;•

2. R. P. Hollandsworth and G. B. Adams, "The Role of

Microcomputers in Secondary Battery Development and

testing", U.S. DOE report No. P0-6527609, Lockheed Mis­

siles and Space Corporation, December 1979.

3. V. c. Jaswa, "Programmable Battery Test Cyclers", GM

report, GM-3065, August 1979.

4. ANL, "The National Battery Test Laboratory", Design

Report, ANL/OEPM-77-4, (1977).

5. T. Katan and P. J. Carlen, "Perturbation and Relaxation

of Concentration Gradients in Porous Zinc Electrodes",

Electrochem. Soc. Symp., Montreal, 1982.

6. J. McBreen, "Zinc Electrode Shape Change in Secondary

Cells", J. Electrochem. Soc., 119, 1620 (1972).

7. S. U. Falk, A. J. Sal kind, "Alkaline Storage Bat­

teries", p.553, Wiley, New York, 1969.

8. J. Nichols, M.S. Thesis, UCB (1982).

I

45

CHAPTER 3

EXPERIMENTAL PROCEDURES

3.1 CELL CONSTRUCTION

3.1.1 CELL CASES AND ELECTRODE PACK

Figures 1 and 2 show one of the cell cases used for experiments.

The cases were constructed from lucite on the basis of a design

described elsewhere (1).

The central portion of the cell case determines the space in which

the electrode pack must fit. After the electrode pack is assembled, it

is placed between two lead plates with plane parallel faces. A brick is

then placed on top of this assembly, to apply an appropriate load of 4

lb/ inch2, and the thickness of the cell pack is measured under that

pressure. The difference between this thickness and the central portion

of the case defines the thickness of a spacer that is subsequently added

to the cell pack. The spacer can be machined from lucite or constructed

from a stack of polyethylene sheets of various thicknesses.

The complete electrode pack consists of a Zn electrode surrounded by

a wick, enclosed with a separator wrap, placed between two NiOOH elec­

trodes, each of which is surrounded by a wick.

46

CBB 82 5-4772

FIGURE 1. Zn/NiOOH Cell

47

CBB 825-4774

FIGURE 2 . Zn/Ni OOH Cell

48

3.1.2 Zn ELECTRODES

The Zn electrodes were generously supplied by Energy Research Cor­

poration (2). Each electrode was X-rayed, and only the most uniform

were selected for experiments. The specifications follow:

Zn mix

Current collector

Silver' tabs

Dimensions

Capacity

Porosity

95% ZnO, 2% PbO, 3% Teflon

0.063mm thick Cu foil,

0.046mm thick lead plate

0.127mm thick, 4.3cm x 0.9cm

6.2cm x 7.0cm, 0.61mm thick

on each face, 16.7 ± 1.3 mA-hr/cm2

(this capacity is calculated as

[mass ZnO (gr) x 0.659 A-hr/grZnO x 1/3

design utilization] for the two faces

of the electrode)

60%, based on Zn

A possible problem with the use of a foil current-collector (rather

than a mesh type) is that the Zn material on one side of the electrode

is electrochemically inaccessible from the other side. The electrode

can then have two faces acting independently from each other.

3.1.3 NiOOH ELECTRODES

The NiOOH electrodes were fabricated by Eagle-Picher Industries (3)

according to the following specifications:

Sintered Ni plaque, chemically impregnated with Ni(OH) 2

Current collector

Nickel tabs

Dimensions

Ni mesh

0.127mm thick, 4.3cm x 0.9cm

6.2cm x 7.0cm, 0.48mm thickness

49

Capacity 16.7 ± 0.1 mA-hr/cm2 (specified)

Two NiOOH electrodes are used in each cell pack. The Ni tabs which

conduct the current flowing in the cell have a non-negligible resis­

tance; the potential of the Ni electrodes, measured somewhere along the

tabs, would therefore include a voltage drop in the tab. For that rea­

son, a Ni wire was spotwelded to the face of one of the electrodes to

provide a separate voltage measurement, as shown in Fig. 2.

3.1.4 ELECTROLYTE

The electrolyte composition was 31wt% KOH (Baker Chemical Co., major

impurity 0.04% K2co3) and 1wt% LiOH (MCB Co.). An excess amount of ZnO

(in excess of saturation (8,9)), was added, and the solution was then

stirred for one week.

3.1.5 SEPARATOR AND WICKS

The wick surrounding the Zn electrode consisted of a layer of Aldex

paper. Its purpose is to keep the electrode together and to supply it

with a reserve of electrolyte.

The separator wrap consisted of the following layers (listed begin­

ning with the layer closest to the Zn electrode):

) 1 layer of microporous polyproplyene, Celgard 3500 (4), used as

a protective layer with low resistivity and good mass-transport

properties.

50

> 1 layer of cellophane PUD0-193 (5) : it has a high absorbency

for electrolyte and a good retention of dissolved Zn.

> 1 layer nickelized microporous polypropylene, Celgard K317 (4),

with the nickelized face adjacent to the Zn electrode. The

function of this separator layer is to act as a barrier for Zn

dendrite growth by creating a local electrochemical couple that

discharges a dendrite while evolv~ng hydrogen on a Ni grain.

> 1 layer of microporous polypropylene, Celgard 3500.

The benefits of using this separator system are described by 0.

Wagner (6).

The wicks used adjacent to the Ni electrodes were fabricated from

non-woven polyamide Pellon #2502K4 (10). Their purpose is to keep the

Ni electrodes supplied with electrolyte through capillary action.

3.1.6 REFERENCE ELECTRODE FILLING THE CELL VENTING

The reference electrode consists of a Pt wire dipped in Hg/HgO in

equilibrium with 31% KOH. It is mounted on a small lucite cell that

screws into the special compartment on one side of the cell case, as

shown in Figure 2. In the original design, a small-diameter hole

extended from that compartment, protruded through the cell wall, and

emerged at the outer side of the electrode pack. That arrangement pro­

vides a potential indicative of the solution at the side of the Ni elec­

trode facing away from the Zn electrode. Therefore, it does not truly

,reflect conditions near the Zn electrode. To circumvent this limita­

tiont a length of O.Smm diameter polyethlyene tubing was extended

51

through the small-diameter hole and through a small hole drilled in one

of the Ni electrodes and terminated between the Ni and Zn electrodes.

The tubing opening was physically separated from the Zn electrode by the

separator wrap; one must then expect to see an increased resistance as a

discharge progresses and the separator becomes depleted in OH-, and

impregnated with dissolved Zn (as Zn(OH)~).

The small-diameter tubes with fittings at the top of the cell case

are employed to fill the cell and to vent gases produced during cycling.

During cell operation, one tube is closed and the other is connected to

a manifold through which C02-free air is supplied. This prevents C0 2

absorption from the air by the electrolyte.

3.2 CELL SPECIFICATIONS

A series of cells were assembled and identified as PWRl to PWR8.

Particular specifications are given in Table 1. The design capacity is

based on one-third of the total ZnO capacity initially present in the

negative electrodes. The theoretical capacity of the NiOOH electrode is

calculated on the basis of 1 electron per Ni atom in the active

material, specified as 1.450 ± 0.01 A-hr (counting both Ni electrodes).

The original intention was to attain equal design and theoretical capa­

cities, or a total Zn theoretical capacity of 3.0 times the theoretical

NiOOH capacity. This was not precisely realized, due to disparities in

the Zn electrode capacities, and the actual capacity ratios were

2.99±0.22.

52

3.3 OPERATING CONDITIONS

3.3.1 FORMATION

Each cell underwent three formation cycles; each was charged for 20

hours at the 10-hour rate (amperes = design A-hr/10 hr) and then

discharged at the 3-hour rate (amperes = design A-hr/3 hr) until the

cell voltage reached zero. During the second half of the charge, the Ni

electrodes evolved oxygen, and during the second half of the discharge,

they evolved hydrogen. Water was subsequently added to compensate for

losses. During the third discharge, the current was gradually reduced

to a small value c-somA), in order to remove the remaining capacity of

the negative electrode before reaching the 0 V limit. Finally, the cell

was charged for 20 hours at the 10-hour rate, to establish the metallic

Zn reserve, and then was placed on a regular cycling test.

53

T A B L E 1

CELL CONSTRUCTION

CELL DESIGN CAPACIT THEORETICAL Zn CAPACITY/ gr ELECTROLYTE/

A-hr THEORETICAL NiOOH CAPACIT A-hr

PWR1 1.523 3.15 8.1

PWR2 1.511 3.12 7.7

PWR3 1.488 3.00 8.5

PWR4 1.519 3.14 8.8

PWR5 1.551 3.21 7.1

PWR6 1.339 2. 77 8.6

PWR7 1.425 2.95 7.1

PWR8 1.455 3.01 7.3

During the formation process, the capacity of the Ni electrodes gen­

erally increases since they are overcharged by about 100%. When regular

cycling starts, the cell is effectively cycled at the NiOOH electrode

capacity, since there is an excess of Zn metal to accommodate discharge

to a depth larger than the design capacity. At a later stage of

cycling, the Zn electrode may limit the cell capacity.

54

3.3.2 CYCLING CONDITIONS

The cells were tested for the effects of various charge profiles on

cycle life. All were cycled with the same conditions on discharge, i.e.

at constant power, with a cutoff voltage of 1.0 v. The power level for

each cell was based on a discharge time of 2.5 hr, and on the Ni capa­

city and the average cell voltage during the last formation cycle.

Thus, the cells were effectively cycled at 100% depth of discharge.

The charge modes compared were constant current versus various

pulsed-current profiles. The average current on charge was based on the

charge time and the NiOOH electrode capacity at the last formation

cycle. Open-circuit periods of 30 minutes were provided at the end of

each half-cycle.

55

A summary of the cycling conditions is provided in Table 2.

Cell

FREQUENCY
(Hz)

ON-TIME
(msec)

OFF-TIME
(msec)

OFF-TIME/
ON-TIME

CHARGE TU't.E
(hours)

AVERAGE CUR-l
RENT (A) I

I

PEAK CURRENTI
DENSITY I
(mA/cm2)* 1

POWER ON
I
I

DISCHAGE <w>j

P\IR1 PWR5

coNSTANTI6o
CURRENT

CONSTANT 8.3
CURRENT

CONSTANT! 8.3
CURRENT

i
CONSTANT! 1
CURRENT I

I
I

4.5 4.5

0.358 0.366

4.1 8.4

1.062 1.070

TABLE 2

CYCLING CONDITIONS

I
PWR3

I
PWR8

I
PWR6

I I
I
I

I ! 8.3 I 8.3 8.3
I I I

I
!

30 13o 30
I
I I

1
9o

I
90 190

i

I 3 I 3 I 3

4.5 4.5 2.25

I 0.653

I
0.336 I 0.336

I

I I

I I 30.1
I I
115.5 115.5

I

I I
I
I

I

I 0.965 I
I

0.988 I 0.988

* Peak current densitites are calculated with respect to

the 2 faces of the Zn-electrode (86.8 cm2 total area)

I
PWR7

I

I P\IR4
I

I PWR2
I

I I
110 8.3 110

I I I
I l l
! !

110 130 110
I I

I
I I I

I I I
190 190 190

I I I
I 3 I 9

I 9 I

2.25 4.5 4.5

0.653 0.352 0.352

I I
I I I
130.1 140.6 140.6

I I
I

I I I
I

I· I I 0.965 1.044 1.044

56

The NiOOH electrodes are known to operate at less than 100% effi­

ciency: on charge they evolve oxygen. Examination of the equilibrium

potentials indicates that there is approximately a 100 mV driving force

for this parasitic reaction.

It is thus necessary to overcharge the NiOOH electrodes in order to

enable them to retain their capacity. This is implemented in the com­

puter program by means of an adjustable factor multiplied by the number

of coulombs passed on the previous discharge to define the coulombs to

be passed on charge. This factor is usually adjusted as cycling

proceeds, to maintain the coulombic efficiency (A-hrs OUT/ A-hrs IN)

approximately equal to the inverse of 1.0 plus the fractional over­

charge. In that way, the NiOOH electrode capacity remains constant.

3.3.3 STATE OF CHARGE -- BALANCING OF A CELL

Tracking of the state of charge of the Zn electrode is necessary to

insure that it is cycled with a sufficient reserve in Zn and ZnO

material. This condition, which is achieved at the onset of regular

cycling, is illustrated in Fig. 3a. The Zn electrode is exercised over

one third of its total capacity. On discharge, Zn metal sufficient to

avoid polarization is required for capacity maintenance. It is also

needed to provide a current conduction path in the electrode, since ZnO

is a poor conductor, and to guarantee the existence of enough nucleation

sites at the initiation of charge. At the end of the charge, enough

reducible ZnO material is needed to avoid severe mass-transfer limiting

conditions and dendrite growth (7).

DESIGN
CAPACITY

57

ZnO

ZnO

Zn

BEGINNING OF CHARGE

ZnO

CHARGE

Zn

DISCHARGE

Zn

END OF CHARGE

ZnO

DESIGN 1 ZnO
CHARGE

Zn

CAPACITY
ZnO DISCHARGE ------- Zn
Zn

Zn Zn

BEGINNING OF CHARGE END OF CHARGE

XB L 826-1499

FIGURE 3. Zn and ZnO Reserves in a Cycled Zn electrode.

(a) Beginning of cell life

(b) Reduction of ZnO reserve capacity after
extended cycling

(a)

(b)

58

With lead added as a hydrogen-suppressing element in the Zn elec­

trode mix, the Zn electrode usually operates more efficiently than the

NiOOH electrode. As a cell is overcharged (see Section 3.3.2), the ZnO

reserve gradually decreases, as illustrated in Fig. 3b.

After a number of cycles, there is inadequate ZnO reserve at the end

of a charge, and one reaches a condition where dendrite growth is

favored (7). To avoid this problem, the cell is completely discharged,

. i.e. until all the Zn metal on the electrode is converted to ZnO. Then,

the Zn reserve is formed again, and regular cycling is resumed. Note

that this problem does not arise in the operation of sealed cells, where

as the oxygen pressure builds up, it recombines with the Zn in the nega­

tive electrode and thereby maintains a sufficiently large ZnO reserve.

Several factors made it difficult to keep track of the state of

charge of the Zn electrodes.

> The amount of hydrogen evolved on charge was unaccounted for.

Some cells were charged with high current density pulses, so

the quantity of vented Hz might be appreciable.

> The amount of Zn that may lose electrical contact with the

current collector is not measured. A Zn dendrite can grow

through the first layer of separator, discharge at the nickel­

ized separator (or stop growing, due to blockage of a nuclea­

tion site when the current is turned off), and at a later time

become disconnected at its base. For some cells analyzed after

the test, the separator wrap was found to contain some Zn

material.

59

> The amount of Zn that gets electrically isolated within an

electrode. Regions of Zn may become surrounded by poorly con­

ductive ZoO and thus become unable to take part in the reac­

tion.

In most cases, when a cell was completely discharged, it was not

possible to recover all of the original capacity. It was not possible

to determine how the above effects had combined to create that situa­

tion, so there was some uncertainty about the amounts of Zn and ZnO

reserves at the end of an experiment.

3.3.4 CYCLING CELLS IN SERIES

Cycling cells in series is not a major problem, unless the capacity

of one cell differs substantially from that of its companion.

3.3.5 POTENTIAL MEASUREMENTS

The electrical connections extending from the electrode terminals

are not impedance-matched with lines connected to the reference elec­

trodes. When a cell is charged with pulsed current, the reference elec­

trode responds sightly more slowly to the pulse, so the differential

electrode versus reference signal is actually a deformed pulse. Unfor­

tunately, the software-based measurement technique used for pulsed

charges was not sufficiently sophisticated to accommodate the problem,

so no valid measurements (versus the reference electrode) could be taken

during pulsing. Voltage measurements that were taken included:

60

1) Cell voltages at current-ON and current-OFF on a pulsed charge.

2) Cell voltages and electrode potentials versus reference on a

constant-current charge.

3) idem, on a constant-power discharge.

4) idem, on open circuit.

The measurement of the Zn electrode potential versus the reference,

made immediately after interruption of the current at the end of charge,

provides useful information. It contains most of the concentration

overpotential and gives some indication of the mass-transfer conditions

at the end of charge. When the potential reached 1.4V (negative) versus

Hg/HgO, i.e. about 75mV overpotential, it was probable that the Zn elec­

trode was operating with a low ZnO reserve.

I

61

REFERENCES

1. J. Nichols, M. s. Thesis, UCB (1982)

2. Energy Research Corporation, Danbury, Connecticut

3. Eagle-Pitcher Industries, Colorado Springs, Colorado

4. Celanese, Summit, New Jersey

5. E. I. DuPont de Nemours, Inc., Wilmington, Delaware

6. 0. C. Wagner, "High Cycle Life, High Energy Density Nickel/Zinc Bat­

teries", Report No. 3, U. S. Army Electronics Research and Develop­

ment Command, Fort Monmouth, New Jersey, Report No. P50-3C, February

1980.

7.

8.

9.

w. G. Sunu and D. N. Bennion, J. Electrochem. Soc., 127, 2007, 1980.

T. P. Dirkse, J. Electrochem. Soc., 106, 154, (1959).

R. F. Thornton and E. T. Carlson, J. Elec trochem. Soc., 127, 1448

(1980).

10. Pellon Corporation, Chelmsford, Massachusetts.

62

CHAPTER 4

ANALYSIS OF RESULTS

4.1 INTRODUCTION

The experiments described in this chapter were carried out with the

purpose of analyzing the effects of three parameters of a pulse-charging

profile:

the off-time

- the off-time/on-time ratio

- the peak current density

As explained in Chapter 1, a high current density can increase the

number of nucleation sites for the charge reaction on the Zn electrode,

thereby reducing dendrite initiation. However, an unwanted side effect

expected is inefficient operation of the electrode. A sufficiently long

off-time improves the mass-transfer conditions for the reaction by

allowing zinc ions to diffuse into the depleted diffusion layer, thereby

reducing dendrite growth.

In most of the experiments the charge time was left at 4.5 hours:

thus, it was not possible to vary only one of the parameters named above

and keep the other two constant.

Section 4.2 of this chapter compares a cell charged at constant

current and two cells charged with a pulsed current. The parameters

varied were the off/on ratio and the current density; the parameter kept

constant was the off-time. Section 4.3 compares the results of two

I

63

duplicate cells. Section 4.4 compares a cell charged at constant

current with one charged with a 60 Hz pulsed current: the purpose of

this comparison was to demonstrate that a short off-time does not

improve cell cycle life. Finally, Section 4.5 gives the results for two

duplicate cells, charged at a regime intermediate between the two

regimes described in Section 4.2. Taken together, Sections 4.2 and 4.5

point to the effect of an increasing peak current density, for a con­

stant off-time.

A summary of pertinent results is given in Table 1. The listed

capacity loss rates are seen to vary by an order of magnitude, ranging

from 0.21 to 2.72 %/cycle. Notation Z or N, seen in the 6th column,

indicates which of the electrodes (Zn or Ni) was limiting the capacity

of the cell at the end of the test. In the discussion that follows, the

notations PWR1, PWR2, etc. will include designations of on/off times and

peak current densities: ms/ms, mA-cm-2•

Cell PWR3 (30/90,15) displayed the most stable performance. As seen

from Table 1, it was the only cell which retained a capacity higher than

75% over its entire test period. It was also the only cell in which the

capacity decline matched the reduction of active area. The cells

charged in the other modes exhibited capacity losses which could not be

explained solely on the basis of the observed active area reduction.

The percentage area reduction was calculated on the basis of X-ray

examination of the Zn electrodes. Figure 1 shows an X-ray of the Zn

electrode in cell PWR4 (10/90,40), both before and after cycling.

64

Figure 2 shows the capacity of cells PWR1 (const 1,4), PWR3

(30/90,15), and PWR4 (10/90,40) plotted versus number of cycles. The

capacities are given as a percentage of the design capacity (calculated

as one-third of the ZnO material in the Zn electrode). The gaps in the

data indicate cycles that were not representative of the behavior of the

cells: e.g.,

1. Due to a software malfunction, cell PWR1 (const 1,4) went

through two very short cycles (49,50).

2. Cell PWR4 (10/90,40) was connected in series with cell PWR2

(10/90,40), which started failing at cycle 21. When cycled on

its own, cell PWR4 returned to a higher capacity, comparable to

that prior to cycle 21.

Peaks in the data are indicative of long discharges implemented to

re-establish the ZnO content of the negative electrode (see Section

3.3.3).

Cell PWR3 (30/90,15) cycled at a constant capacity for most of its

107 cycles. The initial capacity decline was halted by gradual adjust­

ment of the overcharge, up to 7%. Cell PWR4 (10/90,40) began to lose

capacity early in life, and re-establishment of the ZnO reserve at cycle

56 did little to arrest the decline. Cell PWR1 (const 1,4) stayed above

75% of design capacity for about 90 cycles. The ZnO reserve was

recovered twice, and after the second recovery (cycle 75) the capacity

declined rapidly.

Cell

CHARGE MODE
(ms ON/ms OFF)

CHARGE TIME
(Hours)

CHARGE PEAK
CURRENT DENSITY
(mA/cm2)

CHARGE PER PULSE
(A-hr x 10-6)

CYCLES ABOVE
75% CAPACITY**

..
% AREA REDUC-
TION (Cycles)

% AREA LOSS
PER CYCLE

% CAPACITY
LOSS (Cycles)

% CAPACITY
LOSS PER CYCLE

Notes:

T A B L E 1

Zn/NiOOH CELL CYCLING RESULTS

I ~WRl I PWR5 ! PWR3
I . I I I I.
I PWR8 I PWR6 I Pl~R7 I PWR2 I PWR4
I I I
t t - t t t -

I
I I I I

CONSTANT 8.3/8.3 I 30/90 130/90 30/90 I 30/90 I 10/90 10/90
CURRENT I I I I I I I

I I I I
I I

4.5 4.5 I 4.5 I 4.5 2.25 I 2.25 I 4.5 4.5

I
I I I I .,

I I I I
I I I

I
I

I I
I

4.1 8.4 I 15.5 - 30.1 .15.5 30.1 40.6 40.6 I I I
I I I , I
I I

I I I I --- 1.7 11.2 •11.2 21.7 21.7 I 9.7 I 9.7

I '· i I
I I I

90 N I 50 N)107 N "
I 43 N I 31 z I 20 z I 34 z I I I

I I I I

18.5 (107)1 130 (76)
I I , .

25 (100) 19 (107) " 132 (61) I 12 (25) 31 (88)
I I I

J I I
.25 1 .18 I I ' I I I

.481 .17 I " I .39 I .52 I .35

I I I I
I I I I I

I t t

1
49(100) 1'32(107) '122(107) i " j53(75) 161(61) j68(25) j68

I I I I .,.
I I I I . j__ I I r 1 1 1

(88)

r-- I I I I I I . I I .491 .301 .21 I * I .71 I 1.00 I 2.721
.78

* PWR8 incomplete -- still under test

"* N = nickel - electrode limiting at end of test

Z = zinc - electrode limiting at end of test

"' \Jt

66

(a) (b)

FIGURE 1 . X-ray Picture of a Zn Electrode (cell PWR4)

(a) Before cycling

(b) Af ter cycling

XBB 826- 51Hb

r\
~ ._,

>-
1-
H
(..J

< a.
<
(..J

67

100

80 PWR3

60

40

20

0 1-,.,.--"-----'---~---,-J.-- _I_ --"-----L--~---..1.--...l.------1--...J

"' 20 40 60 80 100 1 20

CYCLE

CAPACITY FOR CELLS PWR1J PWR3J PWR4
XBL 826-802

FIGURE 2. All identification and cycling conditions are
given in Table 1. The cells are discharged to a
lV cutoff. Peaks in the data indicate discharges
to re-establish the ZnO content of the negative
electrode. Cells PWRl (canst I, 4), PHR3 (30/90,
15) and PWR4 (10/90, l10) are compared.

68

Figure 3 shows the capacity of cells PWR5 (8/8,8) and PWR7

(30/90,30) versus cycle number. Cell PWR5 held its capacity above 7 5%

of the design value for about 50 cycles, but after a second ZnO reserve

recovery (cycle 57), it displayed very dramatic decline. At cycle 68,

the overcharge was increased to 20%, and then retained at 10% for the

next 25 cycles: the cell did regain some capacity, but did not reach the

original level.

4.2 COMPARISON OF CELLS PWR1 (const I,4), PWR3 (30/90,15) AND PWR4

(10/90,40)

Figures 4 and 5 show cell voltages for the three cells during

charge, at cycles 30 and 69. The charge profiles are typical, and it

appears that the cells behaved quite differently from each other.

It was straightforward to calculate the "resistance'' of the cells

which were charged with pulsed current (PWR3 and PWR4), since the pro­

gram measured the cell voltage immediately prior to current interruption

and within 100 msec after current interruption. No comparable measure­

ments were available for cell PWRl (const 1,4). At cycle 30, the resis­

tance of cell PWR3 (30/90;15) was 12 mQ, and that of cell PWR4

(10/90,40) was 28 mQ (both measured at the end of charge). At cycle 69,

the values were 28 and 45 mn respectively. Note that these measurements

include activation overpotentials and ohmic losses, but mass transfer

overpotentials should be excluded, because they relax more slowly.

Plausible explanations for voltage differences between the charge curves

for PWR3 and PWR4 are

80

I"\
~
v

>- 60
1-
H
(.J

< a..
< 40
(.J

20

0 0

FIGURE 3.

69

20 40 60

CYCLE

80

CAPACITY FOR CELLS P\./RS AND PWR7

Specifications as in Figure 2.
Cells PWR5 (8/8, 8) and PWR7
(30/90, 30) are compared.

P\./RS

100 120

XBL 826-803

70

1) higher ohmic drop due to higher peak current density in

PWR4.

2) higher ohmic resistance (due, for example, to gas bubbles

evolved)

3) higher activation overpotentials.

1"1
>
v

UJ
(!)

<
1-

"""' 0
>
..J

"""' UJ
u

71

P\JR1

1.5

1.0

0.5

0
·
0

0.0 0.2 0.4 0.6 0.8 1.0 1.4 1.6 1.8

A-HRS

CHARGE 30- CELLS PWR1# PWR3# PWR4
XBL 826-804

FIGURE 4. Effect of Various Charging Techniques on Charge
Cell Voltage.

All identification and cycling conditions are
given in Table 1.

PWR3 (30/90, 15) and PWR4 (10/90, 40) are compared.

,...
>
v

IJJ
(!)
<
t-
...1
0
>
...1
...1
IJJ
(.J

72

P\JR4 P\JRI

1.5

1.0

0.5

0
·
0

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1 .8
I

A-HRS

CHARGE 69- CELLS P\JRI~ P\JR3~ P\JR4
XBL 826-805

FIGURE 5. Effect of Various Charging Techniques on Charge
Cell Voltage. Designations as in Figure 4.

73

4.2.1 CELL PWR1 (Constant Current, 4 mA/cm2)

This cell was cycled with a constant-current charge. At cycle 20,

the potential difference between the reference and Zn electrode (meas­

ured at open circuit after charge) was about 1.4V, which typically indi­

cates a shortage of reducible ZnO material at the electrode. This con­

dition gradually led to Zn dendrite growth, albeit slowed by the separa-

tor, until shorting occurred. At that point, the capacity showed a

sharp decline, and even after re-establishment of the ZnO reserve a

similar behavior pattern was observed.

Figure 6 shows charge-discharge voltage plots for cell PWRl at

cycles 10 and 73. The occurrence of a short at cycle 73 is obvious.

Examination of the separator and wicks (after termination of the test)

provided additional evidence that shorts had occurred. Several black

(Zn) spots were visible on the wicks, and the inner layers of the

separator appeared to contain some Zn material. In addition, the nickel­

ized layer of the separator was partly separated from its Celgard sup­

port.

4.2.2 CELL PWR3 (30/90,15)

For this cell, the Zn versus reference potential (measured at open

circuit after charge) reached -1.4 V after 62 cycles, much later than

observed for the cell cycled with constant current (Section 4.2.1). Two

explanations are proposed:

0
>

v

-
0 ...
c
41 ...
0 a..

FIGURE 6.

74

2.5r---------------------------------~------------------~

2.0

1.0

0.0 0

oil ,..,.,..._ potentlol•
r-elotlve to H.rHg0

2 4

Time Ch)

18

5 0 2 3

CELL VOLTAGE AND ELECTRODE POTENTIALS, CYCLES !0 AND 73, CELL PWRt

X8l 826-806

Charge: Left portion of graph

Discharge: Right portion of graph

Constant current, 4 mA/cm2.

75

1) The ZnO reserve required more time to diminish because of an

increase in hydrogen evolution rates during charge (the current

density was equal to four times that employed at constant

current). This phenomenon would prevent the Zn electrode from

operating at 100% efficiency.

2) Even with a small ZnO reserve and a 15 mA/cm2 current den­

sity, a 90.msec rest time after each pulse allowed relaxation

of concentration gradients and improved mass transfer charac­

teristics at the Zn electrode.

On discharge, this cell was never limited by its Zn electrode. Its

separator was in good condition at the end of cycling; no Zn was detect­

able in the inner layers, and no traces of shorts were visible.

4.2.3 CELL PWR4 (10/90,40)

The performance of cell PWR4 was inferior to that of cells PWR1

(canst I,4) and PWR3 (30/90,15). Its Zn versus reference potential

(measured at open circuit after charge) reached -1.4V after only 10

cycles. Between cycles 10 and 20, the cell lost approximately 20% of

its capacity, and the charge-discharge curves indicated that this

decline might be related to cell shorting. The occurrence of shorts was

corroborated by post-test examination of the separator and the wicks.

Cycles 20 to 39 showed low overpotential on the Zn-electrode on

charge.

discharge.

After cycle · 35, the Zn electrode became capacity-limiting on

After cycle 40, this limitation was coupled with a rise in

Zn overpotential on charge. Figure 7 shows two cycles for this cell:

cycle 15 (high overpotential on the Zn electrode on charge, with

76

shorting toward the end of charge), and cycle 40 (high overpotential on

both charge and discharge). For the charge portion of the graph, the

dot-dash curves represent the cell voltage at current ON; the solid

curves correspond to current OFF. As mentioned in Section 3.3.5, no

valid reference electrode measurements could be obtained when pulsed

charging was employed.

It is not unexpected that a cell which is charged at high ~urrent

density can develop problems at its Zn electrode even quite early in

life. Shorting was clearly one problem, but other mechanisms could have

caused the Zn electrode to become the capacity-limiting electrode to a

larger extent than what might be calculated from the reduction of active

area. Some possibilities are:

1) A larger amount of hydrogen evolution resulted in loss of

metallic Zn reserve.

2) Dendrite growth stoppage either by the separator or by current

interruption could lead to isolation of Zn metal from the current

collector.

The separator was in very poor condition; the nickelized layer had

peeled off from its support, and the inner layers appeared to be heavily

loaded with Zn material. This last observation provides support for the

second mechanism of capacity loss.

FIGURE 7.

77

2.5~------------------------------~-----------
oil ~"•'-- potenttole
relott.._ to He/HgO

r·-·.
• 16

2.0

~ t .5
0
>

v

-c ...
c
' ...
0

a..

t .a

0.5

e.a~e--~~~_.--~2~~--~3--~--~4--~--s~e--~--~~~~2~~-3_j

Time (h)

CELL VOLTAGE AND ELECTRODE POTENTIALS, CYCLES 15 & 40, CELL PWR4

Charge: Left portion of graph
Dotted lines: Measurements at current on
Full ~ines: Measurements at current off
No reference electrode measurements

Discharge: Right portion of graph

Cell PWR4 (10/90, 40) is examined.

XBL 826-807

78

4.3 CELLS PWR2 and PWR4 (10ms-on/90ms-off, 40 mA/cm2)

Cell PWR2 was cycled in series with PWR4, and for 20 cycles it

displayed the same electrical behavior, but it subsequently lost capa­

city very rapidly and became limited by its Zn electrode. At cycle 25,

experimentation was terminated. Characteristics of its capacity decline

and failure resembled that of cell PWR4, albeit at an accelerated rate.

4.4 COMPARISON BETWEEN CELLS PWRl (const I,4) AND PWRS (8/8,8)

Cell PWRS was charged with a 60 Hz square pulse of 8.4 mA/cm2 peak

current density (the off/on ratio of this pulse profile is 1, and the

off-time is 8.3 msec). On the basis of evaluations reported in the

literature(l) no major improvements over constant current (cell PWRl)

were expected for this charge method. It is, however, one of the easi-

est charge methods to implement in practice and therefore warrants

study.

The Zn versus reference electrode potential (measured at open cir­

cuit after charge), reached a value of -1.4V at cycle 8 and continued at

<-1.4V for more than 50 cycles. This can be explained by a current den­

sity equal to twice that imposed at constant current, and an off-time

insufficient to compensate for the high current via improved mass­

transfer conditions.

Figure 8 shows typical voltage profiles for this cell. The charging

curves indicate a condition of gas evolution and eventual shorting. The

cell was thus operating at low efficiency.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FIGURE 8.

" " ...
0
>

v

-
0 ...
c
41 ...
0

Q,.

79

2.5~--------~----------------------~------------------~

2.0

1.0

0.5

a.e
0

oil ,..~-- pot-tlol•
,..lotlv• to HefHeO

4

Time Cn)

sa a

1111

3

CELL VOLTAGE AND ELECTRODE POTENTIALS, CYCLES 10, 20, 38, CELL P~RS
XBL 826-BOB

Specifications as in Figure 7.

Cell PWR5 (8/8, 8)

80

After a second restoration of ZnO reserve capacity, the total capa­

city dropped from over 70% to about 35% in 10 cycles. This loss was not

associated with problems at the Zn electrode, and heavy overcharges were

required to gradually restore the capacity to 65%, at which point the

capacity again declined, and the cell operation was terminated.

4.5 CELLS PWR6 (30/90,30) AND PWR7 (30/90,30)

Experiments on these two cells were intended to investigate charging

regimes intermediate between cell PWR3 (30/90, 15.5 mA/cm2) and cells

PWR2 and PWR4 (10/90, 40.6 mA/cm2). The profile was the same as that

employed for PWR3 (30/90,15), but with twice the current density. The

two cells showed poor reproducibility in their cycle life.

Cell PWR7 behaved in a manner quite similar to that of cell PWR4

(10/90,40), and its rate of capacity decline was sightly higher. As was

the case for cells PWR2 (10/90,40) and PWR4 (10/90,40), cell PWR7

(30/90,30) rapidly became limited on discharge due to a high overpoten­

tial at the Zn electrode. Figure 9 shows the charge curves of cells

PWR4 and PWR7 at cycle 26. Higher voltages exhibited by PWR7 can be

explained by the fact that PWR7 passed more than twice the number of

coulombs at current-oN (Table 1), for the same 90 msec current-OFF time.

Cell PWR6 (30/90,30) displayed peculiar behavior: its Zn electrode

was never limiting (neither on charge nor on discharge), and it is sug­

gested that the NiOOH electrode exhibited anomalously low efficiency.

I

I
I

,..,
>
v

w
(.!)
c(
1-
..J a
>
..J
..J
w
(.)

81

1 . 5

A-HRS

CHARGE 26 - CELLS PWR4 & PWR7

?IGURE 9. Effect of Various Charging Techniques on Charge
Cell Voltage

Comparison of cells PWR4 (10/90, 40) and PWR7
(30/90' 15)

t .8

XBL 82&309

82

4.6 SUMMARY OF RESULTS

Various mechanisms can cause a cell to lose capacity. Some of these

are interrelated: shape change (I), densification (II), passivation

(III), dendrite shorting (IV), inefficiency of the Zn electrode (Hz evo­

lution) (V), inefficiency of the NiOOH electrode (02 evolution) (VI),

entrapment of gas bubbles in the electrode pack (VII), loss of active Zn

material due to disconnected dendrites (VIII), isolated Zn on the elec­

trodes (IX), Zn material in the NiOOH electrode (X), etc. Because of

the cumulative effects of these interrelated mechanisms throughout the

cycle life of a cell, it is difficult to isolate the contribution of a

single mechanism to capacity loss and/or final failure. This shortcom­

ing might be overcome by additional data and more extensive ancillary

experiments. Some relevant data might have been gathered from quantita­

tive analysis of the gases evolved during charge; precise mass balances

for the electrodes, the electrolyte and the separator; determination of

the amount of undischarged Zn in the electrode, SEM analysis, etc.

Moreover, the cycling tests performed demonstrated marginal reproduci­

bility in some cases. Though the analysis of accumulated observations

and data has not unequivocally identified major failure mechanisms or

unambiguously associated capacity decline rates with particular

physico-chemical phenomena, it has suggested charging modes which offer

the promise of improved capacity retention of Zn/NiOOH cells.

One conclusion that can be drawn from the experiments is that shape

change did not play a major role in cell failure. The only cell that

did not fail in less than 100 cycles (cell PWR3 - 30/90,15) was also the

only one where shape change rates and capacity decline rates correlated

with each other (see Table 1). The remaining cells exhibited rates of

shape change more rapid than that of cell PWR3, but rates of capacity

I
I
I
I
I
I
I
I
I
I

I
I

83

decline were greater still.

Additional information can be derived from analysis of the voltage

curves, and from the fact that some cells were limited on discharge by

their Zn electrodes, others by their NiOOH electrodes. The latter case

is more likely caused by mechanisms IV, VI, VII, and X, while the former

would be the result of the other mechanisms. Shape change (I) was

already ruled out as a determining factor. The Zn electrodes were suf­

ficiently flexible after test to discard densification (II) effects and,

perhaps, passivation (III) effects, since these are often related. For

every cell, the NiOOH electrodes were weighed after test, and they were

invariably heavier after than before the test, indicating the possible

presence of Zn material in the NiOOH electrodes (X). Since the weight

gains were roughly equal for all Ni electrodes this effect cannot dif­

ferentiate one cell from another.

The cell cycled at constant current (PWRl) probably lost most of its

capacity through shorting. - This is partly due to the fact that the ZnO

reserve was n'ot restored as soon as the overpotential on the Zn elec­

trode began to rise. An important observation was that the separator

was not resistant enough to prevent eventual dendrite penetration. The

cell cycled with square pulse (PWR5 -·8/8,8) at 60Hz also suffered from

shorting, although less pronounced.

84

Cells PWR2 (10/90,40), PWR4 (10/90,40), and PWR7 (30/90,30) were all

limited by their Zn electrode on discharge. All combined a high current

density with a relatively large number of coulombs passed per pulse.

This regime could have favored mechanisms V and VIII (evidence for the

latter case is provided by the presence of Zn material in the separa-

tor). Aside from a short period in the initial portion of the test on

PWR2 and PWR4, the voltage curves did not reveal signs of heavy shorts.

Finally, cell PWR3 (30/90,15) seemed to combine all possible advan­

tages: it was cycled with a 30ms-on/90ms-off charge pulse (which was

good for mass-transfer conditions) and a moderate current density. This

cell did not show evidence of shorting or excessive overpotential on

either electrode, and its ZnO reserve required reestablishment only late

in the · experiment. There were no signs of shorts on the wicks, no Zn

material in the separator, and the voltage curves were very uniform dur­

ing the whole experiment. It can therefore be said that this is a

promising charging mode and is certainly worth further investigation.

REFERENCE

(1) o. c. Wagner, "High Cycle Life, High Energy Density Nickel/Zinc Bat­

teries", Report No. 3, u.s. Army Electronics Research and Develop­

ment Command, Fort Mammoth, New Jersey, Report No. PSD-3C, February

1980.

85

CONCLUSIONS

A multiple electrochemical cell test system has been designed and

constructed. It has been demonstrated to have the capability to simul­

taneously and continuously cycle 16 electrochemical cells under a

variety of test regimes.

A number of Zn/NiOOH cells constructed in this laboratory have been

cycled with various charging modes in order to investigate their possi­

ble effect on cycle life and capacity retention. The cells were cycled

at 100% depth-of-discharge, and the charging modes compared were con­

stant and pulsed currents, with a variation in duty cycle and amplitude.

The best charge method was found to be a 30ms-QN/90ms-OFF charge

pulse, with a 15mA/cm2 peak current density (4.5 hour charge time). Two

cells were charged with this mode. Of these two, one showed signifi­

cantly better capacity retention than any of the other cells cycled

under differing modes, and the second cells is still under test. Appli­

cation of the other testing modes resulted in the following behavior:

1) The rate of capacity decline was higher than the rate of area reduc­

tion, indicating the presence of failure mechanisms other than shape

change.

2) High overpotentials on the Zn and/or NiOOH electrodes on charge,

and/or on the Zn electrode on discharge developed early in the

cells' life.

The two cells cycled with the 30ms-ON/90ms-OFF, 15mA/cm2 pulse did

not exhibit high overpotentials during their cycle life. Thus, this

pulse provided favorable cell cycling conditions and considerably slowed

the rate of failure and capacity-decline mechanisms observed for the

other cells.

86

ACKNOWLEDGEMENTS

My greatest thanks go to Dr. Elton Cairns and Dr. Frank McLarnon for

their patient guidance; to my parents and friends for their love and

support; to Randy Michelson and Joe Katz for their technical advice; and

to Kathy Ellington, Eva Edwards, and Valerie Kelly for their kind and

friendly help.

Financial support by the Assistant Secretary for Conservation and

Renewable Energy, Office of Energy Systems Research, Energy Storage

Division of the u.s. Department of Energy under contract No.

76SF00098 is gratefully acknowledged.

DE-AC03-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

87

APPENDIX A

HARDWARE SYSTEM

A.l SYSTEM DESCRIPTION

A block diagram of the multiple electrochemical cell test system is

shown in Figure 1. The system presently employs 8 current controllers

(n=8) and can accomodate up to 16 cells under test at any one time. The

number of controllers may be easily expanded, as illustrated in Figure

1. The current controller is a set-point type and maintains the current

by means of an analog feedback control loop at a value proportional to

the analog control voltage input.

j

A.1.1 CURRENT CONTROLLER

The current controller provides for selection of either computer or

local (manual) control of both charge and discharge currents. Control

means the current is maintained at the set point level independent of

subsequent changes in the cell's internal impedance, variations in the

external power supply, or current changes in any of the other cells.

Local control is used for setup, test or manual operation. According to

the type of test, control of current may require the current to follow a

constant power or a particular power or current demand. The controller

must have sufficient bandwidth to deliver or sink a current such as

demanded by the EPA power profile (see Figure 2, Appendix G). Pulsed

current waveforms place even more stringent demands on the current con­

troller response time. The current controller time constant of 1 ms

provides a transient response adequate to supply the rapidly fluctuating

currents required for many electrochemical experiments.

n
CURRENT

CONTROLLERS

n
CURRENT
METERING
SHUNTS

88

n
TWISTED PAIRS

OF 1110 WIRE

1----.-""N' +-------------
1-----+-------------

1----.-""N' +-------------
1-----+-------------

40 CONDUCTOa
CONTaOL & LOGIC

POWU SUPPLY CABUI

CONTROLLER LOGIC
POWER SUPPLY &.

COMPUTER INTERFACE

TTL CONTIIOL
& ANALOG

0/A OUTPUll

LSI·ll/23
COMPUTER SYSTEM

n SHIUDED
TWISTED

PAIH

DIFFERENTIAL CURRENT ..
BUFFER AMPLIFIERS

AIIAL.08
INPUT

TO AID

2•n
CELLS

UNDER TEST

n SHIELDED CABLES

VENTED ROOM

XBL 824-9290

FIGURE 1. Multiple Electrochemical Cell Test System Block Diagram.

The interconnection block diagram is illustrated for n
independent current controllers. Cabling is detailed
for each of n controllers with two cells connected in
series under test.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

89

. The task of monitoring both cell current and cell voltages is per­

formed by the computer system. A decision to terminate a test or to

change the direction of current flow is made by software logic. There

are no voltage comparators and hardware logic to control current based

on cell voltages. The current controller is designed to perform the task

of analog current control on a continuous basis. The setpoint control

voltage is usually supplied by the microcomputer system, or it may be
.

supplied by an external function generator, for example, when rapidly

pulsed currents are desired.

Functional control of the current controller is by front panel

switches or 0 to 4V logic level control lines (TTL) from the computer

system. The computer system must provide three output control lines for

each current controller. One output line determines the direction of

the current flow (charge or discharge). A second output control line is

used to connect or disconnect the cells under test by means of a relay.

This provides the ability to completely isolate any cell from any

current source or load. The third output control line specifies the set

point control source: an external function generator, or the computer's

digital to analog converter. Additionally, an input line from each con­

troller to the computer is required to monitor the state of the front

panel switch that assigns computer or local (manual) control.

A. 1. 2 POWER DOWN AND SAFETY

The current controllers must provide for a safe shut-down under con­

ditions of power failure or interruption. A sudden power failure must

not cause hazardous conditions, damage to the cells (overcharge or over­

discharge), or interrupt the test in such a manner that easy resumption

90

of operation is prevented. The controller digital logic is designed so

that when powered up the relay is open, disconnecting the cells under

test from the controller. In the event of a power failure the cells are

disconnected and are not reconnected except by manual command (after

power has been restored). The controller digital logic is designed so

that a disconnect command will reduce the cell current to zero before

the relay may open, which permits use of relatively low-current, inex-

pensive relays. If the computer control program should fail, the con-

troller digital logic timer circuit will disconnect any cells under test

within 2 minutes. The controller disconnect timer must be reset at

least once every 2 minutes by a computer command on any logic level con-

trol line to any current controller.

A.l.3 LOGIC SUPPLY AND INTERFACE

The controller logic power supply and computer interface contains

power supplies with sufficient capacity to energize the digital and ana-
r •

rlog logic in all of the current controllers. E•ch current controller

!requires 3 output control lines from and 1 input line to the computer •

. The computer also must provide an analog set point control voltage. The

itimeout logic protection is naturally located in the interface, and it

is the only digital logic in this device. The interface is a flexible

·and easily-expandable means of distributing, to each controller, the

: input and output (I/O) control lines from standard computer I/O devices

! which are described more fully in Section IV below. In effect, the

interface is a junction board for many mass-terminated 40 pin cables.

Each controller, through the interface, is provided with logic power,

control lines, the analog set point control voltage, and the timer-

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

91

controlled connect/disconnect enable line by means of wired busses and

jumper wires on a printed circuit board. The power supplies have spare

capacity and the wiring may be easily expanded to provide for more than

8 current controllers.

A.1.4 ANALOG RESOLUTION

Presently, many commercial 12 bit (1 part in 4096, 0.025% of full

scale) digital to analog (D/A) voltage sources are available as LSI-

11/23 peripheral devices(1). Choice of this accuracy for the set point

control voltage source implies that all of the other system controls and

measurements should aim for this level of precision. Therefore, the

current controllers must be stable and reproducible to 0.025% of full

scale and any crosstalk due to changes of current in other cells must be

less than 0.025% of full scale.

Cell voltages and metering shunt voltages are converted by differen­

tial type analog to digital (A/D) converters. The Differential Current

and Buffer Amplifier Box (Figure 1) is used to connect the cells and

metering shunts to the A/D converters. The A/D converters have 12-bit

precision with a nominal minus 5 volt to plus 5 volt input range. A

differential amplifier with a gain of 100 is used to convert the (50 mV

full scale) metering shunt voltage to 5 V full scale. At this voltage

level, noise induced by digital signals and clocks in the CPU and disk

drive does not induce significant errors. Additionally, the interface

box contains unity gain buffers with less than 10 pico-ampere input bias

current. These low-current buffer amplifiers are needed for potential

difference measurements between each of a cell's electrodes and its

reference electrode. It is necessary to reduce the load on these low

92

area (high resistance) reference electrodes when the measurements are

made with external equipment, such as a strip chart recorder.

A.2 CURRENT CONTROLLER DESCRIPTION

The current controller circuitry is constructed on a single printed

circuit card and mounted along with the high-power-dissipation control

elements in a size 4 NIM module (2). A block diagram of the current

controller is shown in Figure 2. Inside views of the current controller

NIM bin are shown in Figures 3 and 4. The front panel controls, the

rear panel connectors, and the relay to disconnect from the cell under

test are shown in Figure 5.

A.2.1 CONTROL AND METERING SHUNTS

Full-scale current of the current controller is determined by the

rating of the control shunt. The control shunt is schematically shown

in Figure 2 and may be seen mounted below the bottom of the controller

printed circuit card in Figure 3. Control shunts(3) are available in

standard 1, 2, 3, 5 and 10 ampere sizes and the current controllers have

been tested with each of these shunts. Long- and short-term changes in

current of less than 0.025% of full scale were measured for both charge

and discharge currents. It was appropriate to provide another metering

shunt external to the controller in series with the current lines to the

cells under test. This current metering shunt provides a voltage which

reverses sign when the current direction is changed from charge to

discharge. This voltage is used by the computer system to measure

current, direction, and to confirm that there is in fact an output

current from the controller. We have calibrated these relatively

CONTROLLER
DISCONNECT

FROM
INTERFACE TIMER

~~rg~~~>------1

I
I

COMPUTER/EXTERNAL I
'----1

I
I

93

DIGITAL LOGIC DISCHARGE

I

COMPUTER DIA>------, I

I
I
I
I
I

EXTERNAL L-----FUNCTION)>-----___J
GENERATOR

+

FRONT PANELt LOCAL'j> SET POINT ~---· ______ ---.J_

VOLTAGE

XBL 824-9291

FIGURE 2. Current-Controller block diagram.

Current-controller digital and analog circuitry is shown
with the relay positioned for the cells under test dis­
connected. When connected, relay contacts lA and lB
will be closed. Charge current will then flow from the
charge supply through Ql, Dl, the current metering shunt,
the cells under test, and the charge control (Q2), and it
will return to the supply common via the control shunt.
Discharge current will flow from the discharge supply
through Q3, D2, the cells under test, the current metering
shunt, and the discharge control (Q4), and it will return
to the supply common via the control shunt.

•

94

I
,.

;

XBB 822 -1 570

FTGURE 3. Inside View of the Current Controller, Logic Card and Control

Current Shunt.

This side-view photograph of the current controller shows
t he printed-circuit logic card. The control shunt may be
seen mounted directly on the bottom of the printed-circuit
logic card.

95

XBB 822-1569A

FIGURE 4. Inside view of the Current Controller and Heat Dissipating
Elements.

This photographic view highlights the heat dissipating
elements located inside the current controller. Note that
the charge VMOS switch and discharge control VMOS are
mounted on one heat sink, while the discharge VMOS switch
and the charge control VMOS are mounted on the other heat
sink.

LOCAL
0 • COMPUTER

COMPUTER • ENABLED

96

FIGURE 5. Current Controller, Front and Rear Panels.

XBB 822-1568A

Local (manual) front panel control of all functions is
possible by means of the switches and push buttons shown.
Indicators are provided to clearly display the present status
of the current controller, even while under computer control.
The fuses and relay are mounted on the rear panel for easy
access. A 40-conductor flat ribbon cable passageway is
provided at the lower left of the rear panel. By means of
this cable the current controller is connected to the logic
power supply and computer interface.

97

inexpensive shunts against National Bureau of Standards certified stan-

dards. Errors due to self heating are less than 0.025% .of full scale

except for the 10 ampere shunt at currents in excess of 8 amperes. Self

heating errors are readily reduced by a small current of air·blowing

across the shunt.

A. 2. 2 VMOS CONTROL "

The current controller analog circuit is a simple · feedback control

series regulator type. The linear dissipative element is a VMOS

transistor (4) capable of dissipating 120 watts into an infinite heat

sink. Figure 4 shows the arrangement of heat dissipating elements in

the NIM module. Cooling air flow up through the NIM controllers is pro-
J

vided by an intake fan underneath (cool air intake from in front of the

rack) and an exhaust fan above (exhaust air out to the rear of the

·rack). Cooling air flow is also directed across the .control shunt, and

the digital and analog control logic circuitry is shielded from the heat

dissipating elements by a metal plate (Figures 3 and 4).

The VMOS transistor is' a good linear control element and an effi-

cient switch. By using two VMOS transistors, one as the linear control

element and the other as a switch (Figure 2), one can readily switch the

polarity of the cells under test. One may use a single power supply for

both charge and discharge currents but power dissipation considerations

for the linear control element illustrate the advantages of using

separate charge and discharge power supplies. If we consider the supply

voltage required to charge a cell, see Figure 2, we get:

V(supply) = V(cell) + V(control VMOS) + V(drop) (1).

98

where, V(cell) is the open circuit cell voltage, V(control VMOS) is the

voltage drop across the control VMOS transistor biased in the linear

region, and V(drop) is the sum of all the other voltage drops in the

circuit. V(drop) is increased by the resistive losses in controller

wiring and the cabling to the cells under test. Also included in the

term V(drop) is the forward voltage drop in the steering diode, Dl (Fig­

ure 2). For minimum power dissipation in the control element we should

keep the supply voltage to_the minimum value necessary to insure that

the control element has sufficient voltage to act as a linear control

element. We can rewrite equation (1) as:

V(control VMOS) = V(supply) - V(cell)..,.. V(drop) (2).

If we should now change the polarity of the cell under test, to

discharge it at the same current as was used to charge it, we can write

the voltage across the linear control element as:

V(contro.l VMOS) = V(supply) + V(cell) - V(drop) (3).

V(drop) and the supply voltage will be the same as during charge.

Therefore, initially the power dissipation in the control element will

be larger by the product of the cell voltage times the discharge

current. The increased power dissipation required in the control VMOS

transistor will pose even a larger problem if one should try to test two

cells in series. The use of separate charge and discharge supplies

allows for the minimum amount of power dissipation in the control

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

99

elements and therefore less heat, resulting in longer life, greater

accuracy and increased reliability for the current controller.

•
100

A.2.3 COMMON SUPPLIES

Both charge and discharge power supplies must have current ratings

sufficient to supply the sum of the full scale currents for the current

controllers. Both supplies may be inexpensive since load or line regula­

tion is not required. The supplies must maintain their full load output

voltage"at a value greater than the minimum supply voltage required as

shown in Equation 1. For example, with a 2 ampere full scale current

controller it is possible to change the supply voltage. from a minimum of

4 volts to a maximum of 15 volts and maintain constant current. · (For

this test the open circuit cell voltage was approximately 1.8 volts). At

no time was the change in charge current due to a change in supply vol­

tage greater than 0.025% of full scale. The excellent rejection of sup­

ply voltage :change is also reflected in good current crosstalk perfor-

mance.

A.2.4 CURRENT TIME RESPONSE AND CROSSTALK

Both the time response and crosstalk performance of the current con­

troller may be seen in the photographs of oscilloscope traces shown in

Figure 6. The top waveform is the external analog setpoint control vol­

tage. The charge current response of a 10 ampere full scale current

controller to the 7 volt, 10 millisecond pulse with a 100 millisecond

period is shown .by the middle trace. The 7 ampere change in charge

current settles to within 0.01% of the final value within 5 mil­

liseconds. The bottom trace shows typical current fluctuation caused by

crosstalk to one of the remaining current controllers. At the time of

the most rapid change in current, the common charge power supply voltage

is changed. The current controller response is rapid enough, as. may be

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

101

j
2V/DIV. --,

j
2A/DIV. --,

XBB 822-3738

FIGURE 6. Current Response and Cross Talk Waveforms.

The upper waveform is a 7-volt (external
function generator) set point control
voltage. The middle trace is the corres­
ponding 7-ampere charge current waveform.
The lower trace is typical of the current
change induced in any other current control­
ler output due to the 7-ampere change shown
by the middle trace.

102

seen in Figure 6, to limit the change in current due to crosstalk to

less than 10 milliamperes, for a 7 ampere current change in another con­

troller, with less than 0.4 milliseconds duration. The long term

(greater than 0.4 milliseconds) change in current in any controller due

to a full scale change of current in any other controller has been meas­

ured as less than 0.025% of full scale. Note the lower trace of Figure

6 shows no discernable shift in the steady-state value of the controller

current.

A.2.5 PROTECTION AND EXPANSION

Each of the current controllers has a 15 volt protective diode on

the charge supply input line and 12 volt protection on the discharge

supply input line to prevent an accidental overvoltage condition or

unnecessarily large power dissipation due to an external current supply

failure or improper set up. Each of the supply input lines is fused for

the full scale current as are the controller output lines to the cells

under test.

The modular construction and the relative ease of paralleling VMOS

transistors make it possible to extend the current range of these con­

trollers to higher currents. One could readily drive many heat sink

assemblies of lOA capacity (Figure 4) us~ng appropriate control and

metering shunts.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

103

A.3 COMPUTER HARDWARE DESCRIPTION

A diagram of the LSI-1~/23 (see Section 2.4) and its peripherals is

shown in Figure 7; a description of these peripherals follows.

The LSI-11/23 chosen for this system uses memory with 16-bit words

but has an 18-line addressing bus to allow the CPU to access 128K words

of memory. The system is installed with 128K words of random access

memory.

To accomplish the stand-alone task of current control artd data

analysis, it is most convenient to use hard disks for these large pro­

grams and data files. The two disk drives use two 5.2 megabyte RL01 (1)

hard disks. The other hardware installed for data analysis are a CRT

terminal with graphics capability and a dedicated plotter. A second CRT

is used to display messages from the control program, and a line printer

is installed to aid in program development and tabulate data. The CRTs

and line printer are interfaced with the computer through a four-port

asynchronous serial card, set at 9600 BAUD rate for the terminals and

1200 BAUD rate for the hardcopy plotter.

The control functions described in the current controller section

are supplied by two 4-channel D/A converters (5) for the 0 to 10-volt

set point, and by two 16-bit parallel interface cards (6) for the logic

control lines. The input ports of one of the 16-bit parallel interface

cards are used to determine if the controller is in the appropriate mode

to receive computer commands. At the time that this reading is made,

the controller disconnect timer is reset by an 0.5 ms pulse from the

"data ready" line of the interface card. This is a convenient method to

TWO 5.2·MEGA·BYTE I
DISK DRIVES I

TWO 16·BIT 'IE----~
TIL 1/0 I

\.'--------.1

112BK RAM I

LSI-11/23

TWO 4 CHANNEL
0/A 12·BIT

TTL CONT.OL
• ANALOG I" 0/A OUTPUTS

CONTROLLER LOGIC
POWER SUPPLY ~

COMPUTER INTERFACE

104

I TERMINALs• I
*FOREGROUND CRT.

BACKGROUND CRT WITH GRAPHICS,
PRINTER I. HARD COPY PLOTTER

'-',.----~·1 12·BIT A/D I
"' -~ 64 CHANNELS

ANALOG
INPUT

TO A/0

DIFFERENTI:L CURRENT t---,f---,
BUFFER AMPUFIERS

H
n

CURRENT
METERING

SHUNTS

FULLICALE = 50.¥

2•n
CELLS

UNDER TEST

3 VOLTAGE
MEAIUAEMEJITI

Pl. CELL

DIGITAL

ANALOG

XBL 824-9288

FIGURE 7. Block Diagram for the LSI-11/23 Computer System
and Peripherals.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

105

prevent inadvertent damage to the cells should the software program fail

to control the current.

To identify the end of charge or improper cell voltages, the

software program must be able to continuously monitor the cell voltages.

This capability is provided through a 64 channel A/D converter (7) using

two 8-channel master cards and two 24-channel slave cards. The current

level and polarity are also monitored through the use of the A/D con­

verters, a precision shunt, and the previously-described amplifiers.

REFERENCES

1. Digital Equipment Corporation, Maynard, Massachusetts.

2. NIM - Nuclear Instrumentation Module; see Standard Nuclear

ment Modules adopted by AEC NIM Committee, TID-20893 (Rev.

1974.

Instru-

4), July

3. Control and metering shunts are of 0.25% absolute accuracy and are

manufactured by Weston, Westinghouse, or Empro.

4. VN1206N1 or VN1204N1, N-channel enhancement mode power MOSFET.

Supertex Inc., Sunnyvale, California.

5. DT2766. Data Translation, Natick, Massachusetts.

6. DT2768. Data Translation, Natick, Massachusetts.

106

7. ST-LSI2 and ST-LSI2-ADX. Datel, Mansfield, Massachusetts.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

107

Figure Titles and Captions

1. Multiple Electrochemical Cell Test System-Block Diagram.

An interconnection block diagram for n independent current control­

lers. Cabling is detailed for each of n controllers with two cells

under test in series.

2. Current Controller-Block Diagram.

Current controller digital and analog circuitry is shown with the

relay positioned for the cells under test disconnected. When con­

nected, relay contacts 1A and lB will be closed. Charge current

will flow from the charge supply through Ql, Dl, the current meter­

ing'shunt, the cells under test, the charge control (Q2), and return

to the supply common via the control shunt. Discharge current will

flow from the discharge supply through Q3, D2, the cells under test,

the current metering shunt, the discharge control (Q4), and return

to the supply common via the control shunt.

3. Inside View of Current Controller, Logic Card and Control Current

Shunt.

A side view photograph of the current controller which shows the

printed circuit logic card. The control shunt may be seen mounted

directly to the bottom of the printed circuit logic card.

108

4. Inside View of Current Controller, Heat Dissipating Elements.

A photographic view of the heat dissipating elements side of the

current controller. Note, the charge VMOS switch and discharge con­

trol VMOS are on one heat sink, while the discharge VMOS switch and

the charge control VMOS are on the other heat sink.

5. Current Controller, Front and Rear Panels.

Local (manual) front panel control of all ~ nctions is possible by

means of the switches and push buttons shown. Indicators are pro­

vided to clearly show the present status of the current controller,

even while under computer control. The fuses and relay are mounted

on the rear panel for easy access. A 40 conductor flat ribbon cable

passageway is provided at' the lower left of the rear panel. By

means of this cable the current controller is connected to the logic

power supply and computer interface.

109

6. Current Response and Crosstalk Waveforms.

The top waveform is a 7 volt external function generator set point

control voltage. The middle trace is the corresponding 7 ampere

charge current waveform. The lower trace is typical of the current

change induced in any other current controller output due to the 7

ampere change shown in the middle trace.

7. LSI-ll/23 Computer System and Peripherals.

Interconnection block diagram detailing computer hardware and its
/

interconnections with the current controller and cells under test.

110

APPENDIX B

MEMORY USAGE AND THE EXTENDED MEMORY MONITOR

This appendix assumes that the reader has a basic understanding of

computer systems and a working knowledge of RT-11. The information in

the following discussion can be gathered from the RT-11 documenta­

tion (1). It is, however, scattered throughout various volumes. The

intent of this Appendix is, therefore, to reflect on difficulties

encountered in using the extended memory monitor.

A schematic representation of the physical address space of a 128K -

system, in the RT-11 environment, is given in Fig. 1 (*). A background

job with low-memory overlay structure occupies the memory (2).

Note that none of the memory above 28K is used, with exception of

the I/O page. This is always true in the SJ or FB monitor, unless one

makes use of the virtual array feature.

The size of the real-time program precludes the use of a low memory

overlay structure: the program cannot fit in the lower 28K, either as a

background job, or as a foreground job. Therefore, the use of the XM

monitor is required, and to take full advantage of the 128K of memory

available, one must run virtual jobs. The memory usage of a virtual

(*) All the drawings in this Appendix are modeled on the symbolic

representations used in the RT-11 documentation.

111

PHYSICAL MEMORY

.---------., 128 K
1/0 PAGE

t----------4 124 K

28 K

MONITOR

HANDLERS

USR

FREE SPACE

REGION 2

REGION 1

ROOT

FILE ON DISK

SEGMENT 7

SEGMENT 6

SEGMENT 5

SEGMENT 4

SEGMENT 3

SEGMENT 2

SEGMENT 1

- ROOT

XBL 826-814

FIGURE 1. Background Program with Low Memory Overlay Structure.

Segments 1, 2, 3, 4 share overlay region 1
Segments 5, 6, 7 share overlay region 2

112

background job is shown schematically in Fig. 2.

The concepts of virtual jobs, virtual address space (VAS) and memory

mapping are explained in the RT-11 documentation (3). With FORTRAN pro­

grams, two applications are possible:

1. Declaring arrays virtual in the program. The program is loaded

in the lower 28K, and the system uses page 7 of the virtual

address space to map the different parts of the arrays (4).

2. Linking the program with a virtual overlay structure. The root

of the program is mapped to the lower 28K, and the other VAS-

pages serve as overlay regions. In this case, contrary to

low-memory overlays, the entire code is loaded in the memory.

There is no physical transfer between the memory and a storage

device (5).

Note that virtual arrays and virtual overlays can be used at the

same time in a virtual job.

There are two important considerations pertaining to the use of

memory with a virtual job:

1. The size of the root. This part of the program always resides

in the lower 28K with the monitor, the device handlers and the

USR. Usually, with the XM monitor, only 18K are available for

the user program. This problem is of critical importance when

two programs share the memory (e.g., a foreground and a back­

ground job, or system jobs): indeed, the root of the two pro­

grams together must fit in the available 18K.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A

32 K

4K

OK

\

VIRTUAL
DDRESS SPACE

BG ROOT

113

PHYSICAL ADDRESS SPACE

128 K

1/0 PAGE
124 K

~;. ::::::

I
28 K

MONITOR

HANDLERS

USR

FREE SPACE

- BG ROOT

XBL 826-1460

FIGURE 2. Usage of Physical and Virtual Address Space,
for a Virtual Background Job.

114

A few factors which affect the size of a program's root are:

1. The FORTRAN Object Time System (OTS) routines automat­

ically get loaded in the root; they account for a large

fraction of its size (when the program is complex) and use

many subroutines of the system library.

2. COMMON arrays that are accessed in different overlay

regions are loaded in the root and therefore increase its

size.

3. Storage space for arrays is allocated to the first

routine where they are defined, so it is useful to exclude

them 'from the root. Therefore, a minimal root size can

be obtained in the following way

PROGRAM START

CALL MAIN

END

Program START is defined as the root, ·and subroutine MAIN

(together with all the subroutines it might call) encom­

passes one or more virtual overlays. MAIN is the actual

user program. The root is small, since no local arrays

are loaded in it.

4. Channel areas, queue elements, and interrupt service

routines must be located in the root, but they may not

reside (nor, in the latter case, reference addresses) in

the region between 4K and 8K (6).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

115

2. The total size of the virtual address space. The VAS is 32K

long, and includes 8 pages, each 4K long. When virtual arrays

are used, page 7 automatically becomes unavailable for any

other use. In general, the OTS work area takes up another

page, so that only 5 or 6 pages are left for the root and all

the virtual overlay regions. Since virtual overlay regions
,-

always start on 4K boundaries, there will only be a limited

number of these regions available. For example, for a job with

a 6K root and no virtual arrays, we arrive at the situation

shown in Fig. 3.

In this case, we can have 5 regions smaller than 4K, or 1

region smaller than 4K and 2 regions between 4 and 8K, etc.

Since virtual overlay regions are always at least 4K long, one

can combine small overlay segments into bigger ones and retain

their sizes below 4K. For example

SEGM1,SEGM2,SEGM3/V:1

SEGM4/V: 1

SEGM5/V: 1

Calls between SEGM1, SEGM2 and SEGM3 are legal.

The link commands for the REAL-TIME and WATCHDOG programs are:

R LINK

REALTM.SAV,REALTM=START/P:200./W,CRMESS,CRSTOP/V/I//

REALTM,GO,GDNITE,MSBOSS,HDCONC/V:l

GMOPEN,CHANGE,MSWHO,MSRUN/V:2

CHECK,INPUT,TIMEAS/V:2

116

VIRTUAL ADDRESS SPACE

32 K

OTS WORK AREA
28 K

24 K

20 K

16 K

12 K

8K
UNUSED

~----------- 4K
ROOT

XBL 826-1459

FIGURE 3. Usage of Virtual Address Space for a virtual FORTRAN job.
Pages 0 and 1 are used by the root; page 7 is used by
the OTS work area; pages 2 to 6 are available for mapping.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

117

FINISH,CHOOSE,CC,CVLCIV:2

MSCHNG,MSUPDT,MSWHEN,MSSTOP,MSHOLD,MSNOWIV:2

ANNOUN,IDATE,FILOPC,UPDATEIV:3

CP,CALIBP,EXCON,CALIB,CALIBVIV:3

RESETIV: 3

II

$QBLK

R LINK

WATCHD.SAV=WATCHDIVIIII

MATINIV:l

MODIFIV:l

RUNIV:l

HOLDIV:l

ASKIV:2

II

$QBLK

A schematic view of the memory usage of the 2 programs is given in

Fig. 4.

A particular restriction which affects the size of the root of a

foreground program (such as the REAL-TIME program) is the location of

the USR. Under XM, the USR must not be loaded in the 4K to 8K region;

however, it doe~ load below the foreground root. Since the USR size is

2K, and (as shown in Fig. 4.) the foreground program's upper limit is

around 20K, the maximum size of the foreground root is lOK (even without

a background program running!).

118

128 K
1/0 PAGE

129 K

,..,_
":-'

MAPPED MAPPED

32 K 1\ 32 K

OTS)
V OVERLAY

28 K ""----------
REGION 3

RMON

(~ VOVERLAY HANDLERS (LS, .. .)

REGION 2 1/0 DRIVER
OTS

VOVERLAY

v
-20 K VOVERLAY

REGION 1 REGION 2 ----------- FG
V OVERLAY V OVERLAY

REGION 1 REGION 1 ---------
USR

V OVERLAY

----------v.
FREE REGION 1

----'------- BG ---------

28 K

24 K

20 K

16 K

12 K

{

8K

FG ROOT 4 K

28 K

24 K

20 K

16 K

12 K

8K

4K} BG ROOT

XBL 826·1451

FIGURE 4. Memory Usage for the REAL-TIME (Foreground) and WATCHDOG
(Background) programs.

The REAL-TIME program uses 3 virtual overlay regions;
the WATCHDOG program uses 2 virtual overlay regions.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

119

The main restriction of virtual jobs is that they cannot access the

I/0 page (one is not allowed to map any part of the VAS to the monitor

or I/0 page areas). One way to circumvent this problem is to perform

indirect I/O by using a driver. In that case, I/O transfers are con­

ducted under monitor control in system state (as opposed to user state),

where access to all parts of the memory is allowed. The I/O driver is

described in detail in Appendix c.

120

REFERENCES

1. RT-11 Documentation Directory, Version 4, Vol. 1., Jan. 1980.

Digital Equipment Corporation, Maynard, Massachussetts.

2. RT-11 Documentation, Version 4, Vol. 2a, SUG, PP• 11-18 to 11-

26, March 1980.

sachussetts.

Digital Equipment Corporation, Maynard, Mas-

3. Ibid., Vol. 3B, SSM, pp 4-1 to 4-37.

4. Ibid., Vol. 4, FORTRAN User's Guide, pp 2-3 to 2-8.

5. Ibid., Vol 2A, SUG, pp 11-27 to 11-40, and Vol. 3B, SSM, page 4-35.

6. Ibid., Vol 3B, SSM, page 4-66

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

121

Appendix C

THE I/O DRIVER AND THE I/O LIBRARY

C.1 THE I/O DRIVER

C.1.1 CALLING THE DRIVER

The I/O driver is written in Macro-11 assembly language code using

the standard instruction set for LSI-11/23 computers (1-3). The name of

the driver (or device handler) is HD, and the corresponding system file

is HO.SYS for the SJ and FB monitors, and HDX.SYS, for the XM monitor.

HD must be loaded in memory, just below the monitor and the LS handler,

with the commands INSTALL HD and LOAD HD. HD does not have an inter­

rupt section, which means that it executes an I/O transfer in one con­

tinuous sequence (unlike drivers for disk I/O, •••). As required for

all device handlers, HD is written in position-independent code (PIC).

122

Access to HD is done through the use of 'special function' calls,

which are RT-11 system routines (4). A general procedure for using HD

is given in the following program excerpt:

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

c

c

c

PROGRAM TESTHD
INTEGER DBLK(4),IBUF(l0)
DATA DBLK/3RHD ,0,0,0/

123

get a channel to communicate with HD
MCHAN=IGETC()

open communication path with HD, using channel MCHAN
J=LOOKUP(MCHAN,DBLK)

call HD
I=ISPFNW(ICODE,MCHAN,IWCNT,IBUF(l),IBLK)

END

A description of the parameters follows:

!CODE function code, as an octal number (see next sections)

MCHAN channel through which the program communicates with RD.

DBLK device specification for lookup routine.

IWCNT : number of words in IBUF that are used for this function (max-

imum 10), as described in the next sections.

IBUF(l) : first element of IBUF (=address of IBUF). If a hardware

error occurs, it contains a special error code returned by the

driver.

IBLK dummy argument for the ISPFNW call (any integer number).

The system returns a standard error code for ISPFNW

i - 0 normal - no error

1 attempt to read or write past end-of-file

124

2 hardware error occurred on channel

3 channel specified is not open

When the driver code detects an error in the input parameters, it noti­

fies the system, which sets I=2. In that case only, the driver itself

returns a special error code in IBUF(l).

IBUF(l) = -2

-1

0

> 0

non-existent function code

wrong IWCNT for function

normal return

specific error code for each function,

see next section

The ISPFNW call causes the program execution to halt until the driver

completes the transfer. Three other versions of this call can be used:

ISPFN, ISPFNC, ISPFNF (but more caution is called for because they do

not wait for the driver to finish).

C.l.2 DRIVER FUNCTIONS AND HARDWARE CONNECTIONS

C.l.2.1 TALK Function-

1. Action: CONNECT(ON)/DISCONNECT(OFF) a controller, set

charge/discharge

2. Hardware: 1st parallel I/O card, output

3. Octal code: 200 ·

125

4. Word count: 4

5. Input arguments:

1. IBUF(2): 1 for ON, 0 for OFF

2. IBUF(3): 1 for eH, 0 for DS

3. IBUF(4): current controller (ee) number: 1 to 8

6. Output arguments: none

7. Error codes(IBUF(l))

1. 1 IBUF(2) not = 0 or 1

2. 2 IBUF(3) not = 0 or 1

3. 3 IBUF(4) (1 or) 8

8. Hardware connections: Bits 0 and 1 of the 16-bit I/O output register

go to eel; bits 2 and 3 to ee2; bits 4 and 5 to ee3; etc.

for eel

bit 0 ON/OFF bit

bit set is ON, bit clear is OFF

bit 1 eH/DS bit

bit set is DS, bit clear is eH

e.1.2.2 LISTEN Function -

1. Action: read status of a controller: local or computer mode

2. Hardware: lst parallel I/O card, input

126

3. Octal code: 201

4. Word count: 3

5. Input arguments: IBUF(3) CC number 1 to 8

6. Output arguments: IBUF(2) 0 for computer mode, 1 for local mode

7. · Error codes(IBUF(1)) 1 IBUF(3) < 1 or) 8

8. Hardware connections: Bit 0 of the 16-bit I/O output register comes

from CC1; bit 1 from CC2; bit 2 from CC3; etc.

for CC1 : bit 0 : bit set is local,

bit clear is computer mode

C.1.2.3 DAC Function -

1. Action: send a voltage setpoint to a controller

2. Hardware: D/A cards, output

3. Octal code: 202

4. Word count: 3

5. Input arguments:

1. IBUF(2)

2. IBUF(3)

CC number : 1 to 8

integer word : 0 to 4095.

6. Output arguments: none

I

127

7. Error codes (IBUF(1)):

1. 1 IBUF(2) < 1 or) 8

2. 2 IBUF(3) < 0 or) 4095.

8. Hardware connections: 4095 gives the full-scale voltage setpoint,

that is 10 V, and it corresponds to the full-scale current rating of

the controller (2 A or 10 A). A smaller current is an integer frac­

tion of 4095.

C.1.2.4 ADC Function -

1. Action: read an A/D channel, and return an integer result that

is the average of a number of readings.

2. Hardware: A/D cards, input

3. Octal code: 203

4. Word count: 7

5. Input arguments:

1. IBUF(2)

2. IBUF(~)

3. IBUF(4)

4. IBUF(5)

channel number : 0 to 63.

range : 1,2,4,8 (+/- 5 V, +/- 2.5 V,

+/- 1.25 V, +/- .625 V)

number of average readings for the

measurement 1,2,4,8,16

delay count between each of the averaged

readings : (a number of times a delay

loop is executed) : 0 to highest integer

number

128

6. Output arguments:

1. IBUF(6) average result (integer)

2. IBUF(7) remainder (= 0 if result is not an

average, that is only 1 measurement)

7. Error codes (IBUF(1)):

1. 1 I:SUF(2) < 0 or > 63.

2. 2 IBUF(3) not = 1,2,4,8

3. 3 IBUF(4) not = 1,2,4,8,16

4. 4 IBUF(S) < 0

8. Hardware connections: see buffer box wiring diagram, Table 1. A

master A/D card and a slave expander give a total of 32 differential

channels, numbered 0 to 31. There are 2 such pairs of cards. The

driver recognizes that A/D channels 32 to 63 are actually channels 0

to 31 of the 2nd pair of cards.

C.1.2.5 EXTERNAL Function -

1. Action: put a controller in normal or external mode

2. Hardware: 2nd parallel I/O card, output

3. Octal code: 204

4. Word count: 4

5. Input arguments:

1. IBUF(2) 1 for EXT, 0 for NORMAL

2. IBUF(3) dummy argument 0 or 1

3. IBUF(4) CC number : 1 to 8

I

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

129

6. Output arguments: none

7. Error codes (IBUF(l)) . .
1. 1 IBUF(2) not = 0 or 1

2. 2 IB,UF(3) not = 0 or 1

3. 3 IBUF(4) (1 or)8

8. Hardware connections : Bit 8 of the 16-bit I/0 output register goes

to CCS; bit 10 to CC6; bit 12 to CC7; and bit 14 to CC8; only these

4 controllers are presently wired up for that function

for CCS : bit 8 : bit set is local,

bit clear is computer mode

C.1.2.6 ADT Function-

1. Action: read an A/D channel for a certain time (see C.1.2.4), and

return minimum or maximum value

2. Hardware: A/D cards and programmable clock

3. Octal code: 205

4. Word count: 10

5. Input arguments:

1.. IBUF(2) channel number : 0 to 63.

2. IBUF(3) range : 1,2,4,8 (see C.1.2.4)

3. IBUF(4) number of averaged readings for each

measurement : 1,2,4,8,16

4. IBUF(S) delay count between each of the readings

(see C.1.2.4)

5. IBUF(6)

6. IBUF(7)

6. Output arguments:

1. IBUF(8)

2. IBUF(9)

3. IBUF(10)

7. Error codes (IBUF(1)):

130

1 for maximum, 0 for minimum

total time, in .1 msec units maximum

is 10,000 (= 1 sec)

integer result (minimum or maximum)

remainder (see C.1.2.4)

number of averaged measurements compared

for max/min determination (total number

of readings = IBUF(10) * IBUF(4))

1. 1 IBUF(2) (0 or) 63.

2. 2

3. 3

4. 4

5. 5

IBUF(3) not= 1,2,4,8

IBUF(4) not= 1,2,4,8,16

IBUF(S) not = 0 or 1

IBUF(6) > 10,000 (time > 1 sec)

8. Hardware connections: see c.1.2.4

C.1.2.7 Test Program For The I/0 Driver-

A test program is available to check the I/O functions described

above. It is called with the command R TESTHD: the user specifies the

octal code number and the appropriate word count, and enters the input

arguments. The program returns a line with the input arguments (IBUF(1)

to (10)), a line with the ISPFNW return code, and a line with the output

arguments (IBUF(1) to (10)).

131

C.l.3 INSTALLING. THE DRIVER

The file that contains the driver code is called HD.MAC. When the

driver is modified, it needs to be re-installed: this should be done

for the SJ/FB and the XM monitors.

For SJ/FB:

MACRO/CROSSREFERENCE/SHOWiMEB DLX:SYCND.DIS+DLX:HD/OBJ/LIST

LINK/EXECUTE:HD.SYS HD/MAP

INSTALL HD

LOAD HD

For XM:

MACRO/CROSSREFERENCE/SHOW:MEB DLX:(XM+SYCND+HD)/OBJ:HDX/LIST:HDX

LINK/EXECUTE:HDX.SYS HDX/MAP

INSTALL HD

LOAD HD

DLX is DLO or DLl. At link time, a message will appear: 'global HDINT

undefined', because there is no interruption section in the driver.

C.l.4 DRIVER CODE

.TITLE HD
;HD HANDLER
.!DENT /V04.01/

V04.01

.SBTTL PREAMBLE SECTION
• MCALL • DRDEF
.DRDEF HD,377,SPFUN$,0,167770,400
TLK$FN•200 ;TALK code
LSN$FN=201 ;LISTEN code
DAC$FN~202 ;DAC code
ADC$FN•203 ;ADC code
EXT$FN•204 ;EXTERNAL code
ADT$FN=205 ;ADT code
CLK$FN•206 ;CLOCK code, non-existent function
HDPAR1•172342 ;PARl register location

·'

TLKOUT=167772
LSNIN=167774
EXTOUT=167762
DACOUT=170400
CLKCSR=170420
CLKBPR=170422
;MARCO KATZ december
.SBTTL HEADER SECTION
.DRBEG HD

132

;output register of 1st parallel I/O card
;input register of 1st parallel I/O card
;output register of 2nd parallel I/0 card
;output register of DAC card
;clock status register
;clock buffer/preset register

1981

.SBTTL I/O INITIALIZATION SECTION
MOV HDCQE,R4 ;get pointer to current queue element
MOV Q$BUFF(R4),R5 ;put buffer address (virtual) in R5

• IF NE,MMG$T
MOV @#HDPAR1,-(SP) ;save old PAR1 on stack
MOV Q$PAR(R4),@#HDPAR1 ;put new value in PAR1 (map to

;buffer)
.ENDC

CLR (R5)' ;set error code = 0 (1st word in BUFFER)
MOVB Q$FUNC(R4),R3 ;put function number in R3
BIC 11177 400, R3 ;keep bits 0 to 7

F1 CMP R3, IITLK$FN ; talk function ?
BNE F2
JMP TLK ;if yes, branch to it

F2 CMP R3,11LSN$FN ;listen function ?
BNE F3
JMP LSN ;if yes, branch to it

F3 CMP R3,11DAC$FN ;D/A conversion ?
BNE F4
JMP DAC ;if yes, branch to it

F4 CMP R3,11ADC$FN ;A/D conversion ?
BNE F5
JMP ADC ;if yes, branch to it

F5 CMP R3 , liE XT $FN ;external function ?
BNE F6
JMP EXT ;if yes, branch to it

F6 CMP R3, IIADT$FN ;timed A/D conversion ?
BNE F7
JMP ADT ;if yes, branch to it

F7 CMP R3, IICLK$FN ;general clock access ?
BNE SPFNER ;if no, wrong code
JMP CLK ;if yes, branch to it

;not implemented yet
SPFNER : MOV 11177776, (R5) ;function code is no good

;error code is -2
JMP HDERR

.SBTTL TALK SECTION

' ;This section of the handler sets a current controller ON/OFF - CH/DS.
;First, it checks for a right number of parameters passed and checks
;if they are consistent with the specifications.
;A controller is set ON/OFF? \0 /DS, by toggling 2 bits in the 16-bit
;I/O output register. Bits 0 & 1 are for CC1 (0 for ON/OFF and 1 for
;CH/DS), bits 2 & 3 are for CC2 (idem) •••
;R4 and RO indicate what type of action is being taken.

133

;The code moves a 1-bit to the correct position and, according to the
;hardware specifications, sets or clears it in the output register:

ON, DS : set (RO=O)
OFF, CH : clear (RO=l)

;For OFF, the code only takes care of the ON/OFF bit (R4=0), for
;ON, it first handles the CH/DS bit (R4=1), then the ON/OFF bit (R4=0).
;RS points to the 1st element of the parameter buffer.
;This section of the handler also sets a controller NORMAL-EXTERNAL,
;when it is called with function "external". Setting NORMAL is like
;setting OFF, setting EXTERNAL is like setting ON.

TLK MOV
BR

EXT MOV
TTLK CMP

BEQ
MOV
JMP

TTLKl BIT
BEQ
MOV
JMP

TTLK2 BIT
BEQ
MOV
JMP

TTLK3 CMP
BLT
CMP
BLE

TTLK3E: MOV
JMP

TALK MOV
MOV
TST
BEQ
MOV

TLKRPT: MOV
ASL
MOV
JSR
TST
BNE

ON BIS
BR

OFF BIC
CHECK TST

BGT
JMP

MODE DEC
CLR
BR

FORM TST
BEQ

/ITLKOUT, R3
TTLK
IIEXTOUT, R3
Q$WCNT(R4), 114
TTLKl
11177777, (RS)
HOERR
/1177776,2(R5)
TTLK2
Ill, (RS)
HOERR
11177776,4 (RS)
TTLK3
/i2,(R5)
HOERR
6(R5), Ill
TTLK3E
6(R5), 1110
TALK
/13,(R5)
HOERR
2(R5),R4
lll,RO
R4
TLKRPT
4(R5),RO
6(R5),Rl
Rl
Ill ,R2
PC,FORM
RO
OFF
R2, (R3)
CHECK
R2, (R3)
R4
MODE
HDDONE
R4
RO
TLKRPT
R4
NEXT

;put out address of 1st I/O card in R3
;go
;put out address of 2nd I/O card in R3
;4 words in buffer ?
;if yes, branch to next test
;error code is -1

;is ON/OFF = 0 or = 1 ?
;if yes, branch to next test
;error code is 1

;is CH/DS = 0 or = 1 ?
;if yes, branch to next test
;error code is 2

;is CC < 1 ?
;if yes, branch to error
;is CC < or = 8. ?
;if yes, branch to action
;error code is 3

;move ON/OFF to R4
;move 1 to RO
;is R4 = 0 ? (ON/OFF setting)
; if yes, branch
;if no, move CH/DS to RO
;move CC II to Rl
;multiply by 2 : we now have a counter
;move 1 to R2 (bit in far-right postn.)
;jump
;is RO = 0 ?
;if not, we need to clear the bit
;if yes, we need to set the bit
;branch
;clear bit
;is R4 =- 0 ?
;if not, continue
;branch to I/0 completion section
;make R4 = 0 (ON/OFF setting)
;clear RO (prepare for ON setting)
;go and go it
;is R4 = 0 ? (ON/OFF setting)
;if yes, branch

NEXT
DEC
DEC
BEQ
ASL

Rl
Rl
TLI<DON
R2

BR NEXT
TLKDON: RTS PC
.SBTTL LISTEN SECTION
,

134

;decrement counter
;decrement counter
;if counter 0, bit in right position
;if not, move bit to the left
;repeat
;return to main routine

;This section of the handler checks the status of a current
;controller (computer/local).
;First, it checks for a right number of parameters passed and
;checks if they are consistent with the specifications.
;The code looks at one bit of the 16-BIT I/O register : bit 0
;is for CCl (clear is computer, set is local), bit 1 for CC2, •••
;RS points to the 1st element of the parameter buffer.

LSN : CMP
BEQ
MOV
JMP

TLSN1 CMP
BLT
CMP
BLE

TLSN1E: MOV
JMP

LISTEN: MOV
MOV

LSNRPT: DEC
BEQ

ASR
BR

LSNDON: BIC
MOV
JMP

Q$WCNT(R4),t13
TLSN1
11177777, (RS)
HDERR
4(R5), Ill
TLSN1E
4(R5), lllO
LISTEN
Ill, (RS)
HOERR
@IILSNIN, RO
4(R5),Rl
Rl
LSNDON

RO
LSNRPT
lll77776, RO
R0,2(R5)
HDDONE

.SBTTL DAC SECTION . ,

;3 words in buffer ?
;if yes, branch to next test
;error code is -1

;is CC < 1 ?
;if yes, branch to error
;is CC < or = 8. ?
;if yes, branch to action
;error code is 1

;move input register to RO
;move GC II to Rl
;decrement Rl
;branch if bit for this
;controller (in RO)
;is in far-right position
;if not yet, rotate RO to the right
;do it again
;keep only LSB of RO
;move RO to output argument
;branch to I/O completion section

;This section of the handler writes to 1 of the 8 channels
;of the D/A converter.
;First, it checks for a right number of parameters passed
;and checks if they are consistent with the specifications.
;RS points to the 1st element of the parameter buffer.

DAC CMP Q$WCNT(R4), 113 ;3 words in buffer ?
BEQ TDACl ;if yes, branch to next test
MOV lll77777, (RS) ;error code is -1
JMP HDERR

TDAC1 CMP 2(R5),tll ;ch II < 1 ?
BLT TDAC1E ;if yes, branch to error
CMP 2(R5),1110 ;ch II < or = 8 ?
BLE . TDAC2 ;if yes, branch to next test

135

TDAClE: MOV Ill, (R5) ;error code is 1
JMP liD ERR

TDAC2 TST 4(R5) ;integer word < 0 ?
BLT TDAC2E ;if yes, branch to error
CMP 4 (R5), 1/4095. ;integer word < or = 4095. ?
BLE DACGO ; if yes, branch to action

TDAC2E: MOV 112' (R5) ;error code is 2
JMP HDERR

DACGO : MOV 2(R5),RO ; put ch II in RO
DEC RO ;reduce ch 1-basis to ch 0-basis
ADD RO,RO ;ADDRESS=DACOUT+2*CHII
ADD i/DACOUT, RO ;RO = address of ch
MOV 4(R5),Rl ;Rl = integer word

;DATA TRANSLATION DAC REQUIRES COMPLEMENT DIGITAL WORD
COM Rl ;complement integer word
MOV Rl ,@RO ;write integer word to ch
JMP HDDONE ;branch to I/O completion section

• SBTTL ADC SECTION

;This section of the handler reads 1 of the 64 A/D channels
;(0 to 63). It averages 1,2,4,8 or 16 readings (with a delay
;between the readings). First, it checks for a right number
;of parameters passed and checks if they are consistent with
;the specifications. There are 2 pairs of A/D cards: each
;pair has a total of 32 channels (0 to 31.). The channel
;number is treated as follows: bits 0 to 4 are decoded, which
;gives a channel number from 0 TO 31, then bits 5 & 6 are
;decoded to see if the channel in question is on the 1st or
;2nd pair of A/D cards, so that the right A/D registers are used.
;The gain number is added to a base address, resulting in a
;pointer to a byte that contains the correct octal gain word
;(0 for gain 1, 100 for 2, 200 for 4, 300 for 8).
;Then channel and gain are or-ed in the same register and output
;to the appropriate command/status register.
;After each reading, the code executes a short loop, for a
;number of times equal to the delay count. When all readings
;are taken, the average is computed: first, the remainder of
;the division is found, then the division is performed
;2, 4, 8, 16 times.
;R5 points to the first element of the parameter buffer.
;part of this section also serves for function ADT.

ADC CMP Q$WCNT (R4), U7 ;7 words in buffer ?
BEQ TADC1 ;if yes, branch to next
MOV U1 77777, (R5) ;error code IS -1
JMP HDERR

TADC1 BIT U177700 ,2 (R5) ;is ch II > or = 0 and <
BEQ TADC2 ;if yes, branch to next
MOV U1, (R5) ; error code is 1
JMP HDERR

TADC2 CMP 4(R5) ,1110 ;is range) 8 ?
BGT TADC2E ;if yes, branch to error
MOV 4(R5),RO ;put range in RO

test

or =
test

63.

JSR PC,PWR2 ;test for range 1 or power of 2

?

TST
BEQ

TADC2E: MOV
JMP

TADC3 : CMP
BGT
MOV
JSR
TST
BEQ

TADC3E: MOV
JMP

TADC4 : TST
BGE
MOV
JMP

ADCGO MOV
MOV
MOV
BIC
ROR
ROR
ROR
ROR

BIC
MOV
ADD
ADD
MOV

MOV
ADD
ADD
MOVB

BIC

BIS
CMP
BEQ

ADTRPT: MOV
CLR

ADCRPT: CLR

MOV
MOV

LOOP TST
BPL
ADD
DEC
BEQ

WAIT DEC

RO
TADC3
112, (R5)
HOERR
6(R5),1f20
TADC3E
6(R5) ,RO
PC,PWR2
RO
TADC4
113, (R5)
HOERR
10(R5)
ADCGO
114, (R5)
HOERR
R3,-(SP)
2(R5) ,R4
R4,R2
111777 40, R4
R2
R2
R2
R2

11177771, R2
PC,R3
IICDSTAT-. ,R3
R2,R3
(R3),R2

4(R5),RO
PC,RO
IIGAINAD-. , RO
(RO),R1

lf177400,Rl

Rl,R4
(SP),IfADT$FN
ADTGO
6(R5),RO
R3
(R2)

10(R5),Rl
R4,2(R2)
(R2)
LOOP
2(R2),R3
RO
ADTADC
Rl

136

;is there an error ?
;if no, branch to next test
;error code is 2

;is average count > 16. ?
;if yes, branch to error
;put average count in RO
;test for average count 2 or power of 2
;is there an error ?
;if not, branch to next test
;error code is 3

;is delay count > or = 0 ?
;if yes, branch to action
;error code is 4

;put function code on stack
;move ch II to R4
;copy it to R2
;keep only bits 0 to 4 in R4 (0. to 31.)
;rotate R2 to the right until bit 5
;falls on bit 1 and bit 6 on bit 2.
;These 2 bits give an offset-value (0,2)
;that is used to get the address of the
;right A/D registers (card 1,2)
;keep bits 1 & 2 in R2
;PIC code
;put address of the command/status
;register (for this channel) in R2.
;the gain/ch & A/D data register (for
;this channel) is 2+(R2)
;move gain to RO
;PIC code
;add base address of gain words to RO
;transfer byte, with right bit settings
;for the required gain, to R1
;clear high byte of R1
;(necessary because of sign extension
;in previous operation)
;set these bits in R4
;ADT function ?
;if yes, branch to ADT section
;move If of readings to RO
;initialize result-register
;load program controller mode in
;command register (see DATEL hardware)
;move # of delay counts to R1
;load MUX address with channel and range
;end of conversion ?
;if no, loop
;update result-register
;all measurements taken ?
; if yes, jump
;decrement time-lapse counter

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

BGT
BR

ADTADC: CMP
BEQ

RES MOV
MOV
NEG

BIC
NEG

AGAIN ASR
BE~

ASR
BR

ADCDON: CMP
BEQ
MOV
MOV
TST
JMP

GAINAD: .WORD
.WORD
.WORD
.WORD
.WORD

CDSTAT: • WORD

.WORD

WAIT
ADCRPT
(SP), IIADT$FN
ADTCHK
6(R5) ,RO
R3 ,R4
RO

RO,R4
RO
RO
ADCDON
R3
AGAIN
(SP), IIADT$FN
ADTDON
R3 ,12 (R5)
R4 ,14 (R5)
(SP)+
HDDONE
0
000100
000200
0
000300
170440

170450

.SBTTL ADT SECTION

137

; if) 0, wait
;jump for more readings
;ADT function ?
;if yes, branch to ADT section
;move II of meas. to RO
; copy R3 to R4
;create a masking word that will give
;the remainder OF R3/RO
;get remainder
;restore RO
;shift RO to the right
;if O, jump
; shift R3 to the right (R3 /2)
;do it again
;ADT function ?
;if yes, branch to ADT section
;move quotient to output argument
; move remainder " "
;restore stack
;branch to I/0 completion section
;high byte is gain 1
;low byte is gain 2
;low byte is gain 4

;low byte is gain 8
;command/status register, card 1
;gain/channel & A/D data register for
;card 1 is 170442
;idem, card 2
;idem, card 2 (170452)

;This section of the handler reads an A/D channel (see ADC
;section for specifications) continuously for 0 to 10,000
;times .1 msec, and returns the maximum or minimum of all
;recorded measurements. First, it ;checks for a right number
;of parameters passed and checks if they are consistent with
;the specifications. In ADC, measurements are taken by groups
;of 1,2,4,8 or 16. This is also the case here, but no average
;value is computed until the end. R5 points to the first
;element of the parameter buffer. This function shares a lot
;of code with function ADC.
,
;This function shares a lot of code with function ADC.

ADT

TADTl

TADT2

CMP
BEQ
MOV
JMP
BIT
BEQ
MOV
JMP
CMP

Q$WCNT(R4), 1112
TADT1
11177777, (R5)
HDERR
11177776,12 (R5)
TADT2
115, (R5)
HDERR
14(R5) ,#10000.

;10. words in buffer ?
;if yes, branch to next test
;error code is -1

;is min/max ~ 0 or 1 ?
;if yes, branch to next test
;error code is 5

;is time > 1 sec. ?

BGT
TST
BLE
JMP

TADT2E: MOV
JMP

ADTGO : TST
BEQ
MOV
BR

ADTMIN: MOV
ADTNXT: MOV

NEG
MOV
CLR
MOV
BR

ADTCHK: TST
BEQ
CMP
BLE
BR

ADTLOW: CMP
BGT

ADTOK : MOV
ADTTIM: INC

TSTB
BPL
MOV
BR

ADTDON: MOV
MOV
MOV
TST
JMP

ADTRES: .BLKW
ADTNUM: • BLKW . ,

TADT2E
14(R5)
TADT2E
TADC1
lt6, (R5)
HOERR
12(R5)
ADTMIN
Ill 00000, ADTRE S
ADTNXT
lt077777 ,ADTRES
14(R5),RO
RO
RO, @IICLKBPR
ADTNUM
lf31,@1fCLKCSR
ADTRPT
12(R5)
ADTLOW
R3,ADTRES
ADTTIM
ADTOK
R3,ADTRES
ADTTIM
R3,ADTRES
ADTNUM
@IICLKCSR
ADTRPT
ADTRES,R3
RES

R3,16(R5)
R4,20(R5)
ADTNUM, 22 (R5)
(SP)+
HDDONE
1
1

138

;if yes, branch to error
;is time > 0 ?
;if no, branch to error
;branch to tests in ADC section
;error code is 6

;are we dealing with a lower limit ?
· ; if yes, branch
;put small neg. II in result storage loc.
;branch to next action
;put large pos. If in result. storage loc.
;put II of clock counts in RO
;negate RO
;load buffer/preset register
;clear counter for If of measurements
;start clock for single interval
;branch to ADC section for A/D conv.
;are we dealing with a lower limit ?
;if yes, branch
;Is result > maximum ?
;if no, branch for time check
;if yes, branch for result update
;IS result < minimum ?
;if no, branch for time check
;update result
;increment counter for If of meas.
;time elapsed ?
;if no, branch back to ADC section
;put result in R3
;branch to ADC section to compute final
;result (quotient+remainder)
;move quotient to output argument
;move remainder " "
;move II OF meas.
;restore stack
;branch to I/O completion section
;storage location for result
;# OF measurements

;Subroutine PWR2 checks if the contents of RO is 1 or a
;power of 2, in which case it returns RO = 0. Otherwise,
;it returns RO not = 0 • . ,
PWR2 CLC

ROR
BCS
BNE

INC
CARSET: RTS

RO
CARSET
PWR2

RO
PC

;clear carry
;rotate RO to the right
;if carry bit set, branch
;if not set, and RO not = 0,
;not done yet
;if not set, and RO = 0, then
;original content of RO was 0
;set error flag
;if what remains of RO is not = O,
;then original content was not a power
;of 2. return

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

139

.SBTTL I/O COMPLETION SECTION
HDERR : MOV HDCQE,R4 ;get pointer to current queue element

BIS #HDERR$,@Q$CSW(R4) ;set error bit in CSW
HDDONE: TST R5 ;do nothing
.IF NE,MMG$T

MOV (SP)+,@#HDPARl ;restore PARl
.ENDC

.DRFIN HD ;jump to monitor
.SBTTL HANDLER TERMINATION SECTION

.DREND HD
.END

140

C.2 THE I/0 LIBRARY

The I/O library is called HDLIB, and it consists of 7 rou-

tines: SET, GET, PLACE, IMPOSE, RLOGG, EXT, RMLOGG. A user program

which uses the library must be linked with HDLIB, and must have the fol-

lowing commands in its main routine (see C.1.1). The files containing

the separate routines are named SET.HD, GET.HD, etc ••• , and the library

file is HDLIB.OBJ.

PROGRAM MAIN
COMMON/HNDLER/MCHAN
INTEGER DBLK (4)
DATA DBLK (4)
DATA DBLK/3RHD ,0,0,0/

0

C get a channel and open communication path with Hd
MCHAN=IGETC()
J=LOOKUP (MCHAN,DBLK)

C call to any library function

END

c.2.1 SET

CALL SET(IONOFF,IMODE,ICC)

1. Action: connect/disconnect current controller, set charge/discharge

(see c.1.2.1- TALK function). Type or print a message.

2. Input parameters:

1. IONOFF 1 for on, 0 for off

2. !MODE 1 for ch, 0 for ds

3. ICC controller number, 1 to 8

141

3. Output parameters: none

4. Error codes: none

C.2.2 GET

CALL GET(ICOM,ICC)

1. Action: read the status of a controller, local or computer mode

(see c.1.2.2 -LISTEN function)

2. Input parameters: ICC current controller number, 1 to 8

3. Output parameters: !COM 0 for computer mode, 1 for local mode.

4. Error codes: none.

C.2.3 PLACE

CALL PLACE(ICC,CURR,IFULL,IERR)

1. Action: set a current controller current (see C.1.2.3 - DAC func-

tion), type or print a message.

2. Input parameters:

1. ICC

2. CURR

3. !FULL

current controller number, 1 to 8

value of current, in A (real number)

full-scale current for controller (integer

number)

3. Output parameters: none

142

4. Error codes (IERR):

1. 0 no error, current set

2. 1 non-existent controller number, or non-matching

(controller and full-scale current)

3. 2 current requested lower than 0.

4. 3 current requested higher than full-scale

C.2.4 IMPOSE

CALL IMPOSE(ICC,CURR,IFULL,IERR)

This subroutine is identical to PLACE, with the difference that no

message is typed or printed.

C.2.5 RLOGG

RESULT=RLOGG(ICHAN,IRAN,IAV,IDEL)

1. Action: read an A/D channel, and return a result that is the aver­

age of a number of readings (see C.1.2.4 - ADC function)

2. Input parameters:

1. ICHAN

2. IRAN

3. IAV

4. IDEL

A/D channel number, see Fig.

A/D range : 1,2,4,8 (+/- 5 V,

+/- 2.5 V, +/- 1.25 V, +/- .625 V)

number of averaged readings for a

measurement : 1,2,4,8,16. If entered wrong, it is

set to 1.

delay counts between each of the average readings

(-number of times a delay loop is executed) : 0 to

highest integer. If entered wrong, it is set to 0.

143

3. Output parameters: none -- function result RLOGG. 0 is returned

if a wrong channel or range number are specified.

4. Error codes: none

5. Note: All results returned are voltages, including measurements on

current channels. An additional conversion is needed in these

cases, taking into account that current measurements are made on 50

mV shunts, and that these signals are amplified by a factor 100.

Therefore: CURR = (RESULT (V) I 5 (V)) * !FULL

with !FULL the full-scale current of the controller.

C.2.6 EXT

CALL EXT(IEXT,ICC)

1. Action: set a controller in normal or external mode (see c.1.2.5

- EXTERNAL function). Type or print message.

2. Input parameters:

1. !EXT

2. ICC

1 for external, 0 for normal

current controller number, 1 to 8

3. Output parameters: none

4. Error codes: none

C.2.7 RMLOGG

RESULT•RMLOGG(ICHAN,IRAN,IAV,IDEL,MAXMIN,ITIME)

144

1. Ac.tfon: read an A/D channel for a certain time, and return minimum

or maximum value (see C.1.2.6. - ADT function ; see C.2.5 - RLOGG)

2. Input parameters:

1. ICHAN, IRAN, IAV, IDEL : see C.2.5 - RLOGG

2. MAXMIN 1 for maximum, 0 for minimum

3. ITIME

3. Output arguments:

total time in .1 msec units

mum is 10,000 (• 1 sec)

maxi-

none -- function result RMLOGG. 0 is returned

if ICHAN, IRAN, MAXMIN or ITIME are incorrectly specified.

4. Error codes: none

5. Note: see c.2.5

C.2.8 I/O LIBRARY CODE

Notes:

1) Some of the routines type (CRT) or print (line-printer) mes­

sages. They work with a logical unit NN, equal to 30. Before

running a program that uses the I/O library, the user must

assign that logical unit either to the CRT (TT) or the line­

printer (LS).

2) The routines are not commented : the code is very simple and

written on the specifications given in this Appendix.

145

SUBROUTINE SET(IONOFF,IMODE,ICC)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(4)
IBUF(2)=IONOFF
IBUF(3)=IMODE
IBUF(4)=ICC
NN=30
WRITE(NN,1000) ICC

1000 FORMAT(lX,'SET CURRENT CONTROLLER ',I2,' IN')
GOT0(5,10)IONOFF+1

5 WRITE(NN,2000)
2000 FORMAT('+',T3l,'DISCONNECT MODE')

GOTO 25
10 GOTO(l5,20)IMODE+l
15 WRITE(NN,3000)
3000 FORMAT('+',T3l,'DISCHARGE MODE')

GOTO 25
20 WRITE(NN,4000)
4000 FORMAT('+',T3l,'CHARGE MODE')
25 II=ISPFNW("200,MCHAN,4,IBUF(l),l0)

RETURN
END

SUBROUTINE GET(ICOM,ICC)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(3)
NN==30
IBUF(3)=ICC
II=ISPFNW("20l,MCHAN,3,IBUF(l),l0)
ICOM=IBUF(2)

D GOTO 1
GOTO 15

1 CONTINUE
D WRITE(NN,1000)ICC
1000 FORMAT(1X,'CURRENT CONTROLLER ',I2,' IS IN')
D GOT0(5,10)ICOM+1
5 WRITE(NN,1100)
1100 FORMAT('+',T30,'COMPUTER MODE')
D RETURN
10 WRITE(NN,1200)
1200 FORMAT('+',T30,'LOCAL MODE')
15 RETURN

END

SUBROUTINE PLACE(ICC,CURR,IFULL,IERR)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(3)
NN=-30
IBUF(2)==ICC

. IERR=-0

146

IF(ICC.GT.4.AND.IFULL.NE.10) GOTO 15
IF(ICC.LT.5.AND.IFULL.NE.2) GOTO 15
VOLT=(CURR/IFULL)*4095.
IVOLT=VOLT
IF((VOLT-IVOLT).GT •• 5) IVOLT=IVOLT+1
IBUF(3)=IVOLT
IF(IVOLT.GT.4095)GOTO 5
IF(IVOLT.LT.O)GOTO 10
II=ISPFNW("202 ,MCHAN ,3, IBUF(1), 10)
WRITE(NN,500)ICC,CURR

500 FORMAT(1X,'CURRENT CONTROLLER MODULE# ',I2,/,
11X,'CURRENT IS SET TO ',F10.5,' A')
RETURN

5 WRITE(NN,1000)
1000 FORMAT(1X,'CURRENT HIGHER THAN FULL-SCALE')

REWIND NN
IERR=3
RETURN

10 WRITE(NN,2000)
2000 FORMAT(1X,'CURRENT LESS THAN ZERO')

REWIND NN
IERR=2
RETURN

15 WRITE(NN,3000) ICC,IFULL
3000 FORMAT(1X,'NON-MATCHING CONTROLLER#(' ,I1,') AND RANGE (',I2,

1' A)')
REWIND NN
IERR=1
RETURN
END

SUBROUTINE IMPOSE(ICC,CURR,IFULL,IERR)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(3)
IBUF(2)=ICC
IERR=O
IF(ICC.GT.4.AND.IFULL.NE.10) IERR=l
IF(ICC.LT.S.AND.IFULL.NE.2) IERR=l
IF(IERR.NE.O) RETURN
VOLT=(CURR/IFULL)*4095.
IVOLT=VOLT
IF((VOLT-IVOLT).GT •• 5) IVOLT=IVOLT+1
IBUF(3)=IVOLT
IF(IVOLT.GT.4095) IERR=3
IF(IVOLT.LT.O) IERR=2
IF(IERR.NE.O) RETURN
II=ISPFNW("202,MCHAN,3,IBUF(l),l0)
RETURN
END

147

FUNCTION RLOGG(ICHAN,IRAN,IAV,IDEL)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(7)
IF(IAV.NE.l.AND.IAV.NE.2.AND.IAV.NE.4.AND.IAV.NE.8.
1AND.IAV.NE.16) IAV=1
IF(IDEL.LT.O.OR.IDEL.GT.32000) IDEL=O
IBUF(2)=ICHAN
IBUF(3)=IRAN
IBUF(4)=IAV .
IBUF(5)=IDEL
IBUF(6)=0
IBUF(7)=0
II=ISPFNW("203,MCHAN,7,IBUF(1),10)
IRES=IBUF(6)
IREM=IBUF(7)
RLOGG=(FLOAT(IRES)+FLOAT(IREM)/FLOAT(IAV)+2048.)*(10./IRAN)
1/4096.-5./IRAN
RETURN
END

SUBROUTINE EXT(IEXT,ICC)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(4)
IBUF(2)=IEXT
IBUF(3)=0
IBUF(4)=ICC
NN=-30
WRITE(NN,1000) ICC

1000 FORMAT(1X,'SET CURRENT CONTROLLER ',I2,' IN')
GOT0(5,10) IEXT+1

5 WRITE(NN,2000)
2000 FORMAT('+',T31,'NORMAL MODE')

GOTO 20
10 WRITE(NN,3000)
3000 FORMAT('+',T31,'EXTERNAL MODE')
20 II=ISPFNW("204,MCHAN,4,IBUF(1),10)

RETURN
END

FUNCTION RMLOGG(ICHAN,IRAN,IAV,IDEL,MAXMIN,ITIME)
COMMON/HNDLER/MCHAN
DIMENSION IBUF(10)
IF(IAV.NE.1.AND.IAV.NE.2.AND.IAV.NE.4.AND.IAV.NE.8.
LAND.IAV.NE.16) IAV=1
IF(IDEL.LT.O.OR.IDEL.GT.32000) IDEL=O
IBUF(2)•ICHAN
IBUF(3)-IRAN
IBUF(4)=-IAV
IBUF(5)•IDEL
IBUF(6)=MAXMIN

IBUF(7)=ITIME
IBUF(8)=0
IBUF(9)=0

148

II=ISPFNW("205 ,MCHAN, 10, IBUF(1), 10)
IRES=IBUF(8)
IREM=IBUF(9)
RMLOGG=(FLOAT(IRES)+FLOAT(IREM)/FLOAT(IAV)+2048.)*(10./IRAN)
1/4096.-5./IRAN
RETURN
END

149

T A B L E 1

BUFFER BOX INTERCONNECTIONS AND A/D CHANNELS ASSIGNMENTS

B.B CH. A/D CH. P1-1 CONN. COLOUR (ANALOG RETURN)
------ ------- --------- ----------------------
NC 1 RED(BLK)
1 AV 7 L, 3 WHT(BLK)

7 ll 5 GRN (BLK)
1 DIFF 6 L 7 BLU (BLK)

6 H 9 YEL (BLK)
1B (R-) 5 L 11 BRN (BLK)

5 H 13 ORG (BLK)
1B (+R) 4 L 15 WHT (RED)

4 H 17 GRN (RED)
1B (+-) 3 L 19 BLU (RED)

3 H 21 YEL (RED)
1A (R-) 2 L 23 BRN (RED)

2 H 25 ORG (RED)
lA (+R) 1 L 27 WHT (GRN)

1 H 29 BLU (GRN)
lA (+-) 0 L 31 YEL (GRN)

0 H 33 BRN (GRN)
NC 35 ORG (GRN)
NC 37 BLU (WHT)
NC 39 YEL (WHT)

B.B CH. A/D CH. P2-1 CONN. COLOUR (ANALOG RETURN)
--- ---- ---- ------------
2A (+-) 8 H 1 RED (BLK)

8 L 3 WHT(BLK)
2A (+R) 9 H 5 GRN (BLK)

9 L 7 BLU (BLK)
2A (R-) 10 H 9 YEL (BLK)

10 L 11 BRN (BLK)
2B (+-) 11H 13 ORG (BLK)

11L 15 WHT (RED)
2B (+R) 12 H 17 GRN (RED)

12 L 19 BLU (RED)
2B (R-) 13 H 21 YEL (RED)

13 L 23 BRN (RED)
2 DIFF 14 H 25 ORG (RED)

14 L 27 WHT (GRN)
2 AV 15 H 29 BLU (GRN)

15 L 31 YEL (GRN)
3A (+-) 16 H 33 BRN (GRN)

16 L 35 ORG (GRN)
3A (+R) 17 H 37 BLU (WHT)

17 L 39 YEL (WHT)
3A (R-) 18 H 41 BRN (WHT)

18 L 43 ORG (WHT)
3B (+-) 19 H 45 YEL (BLU)

19 L 47 BRN (BLU)
NC 49 ORG (BLU)

150

B.B CH. A/D CH. P3-1 CONN. COLOUR (ANALOG RETURN)
------ ------ --------- ----------------------
3B (+R) 20 H 1 RED (BLK)

20 L 3 WHT (BLK)
3B (R-) 21 H 5 GRN (BLK)

21 L 7 BLU (BLK)
3 DIFF 22 H 9 YEL (BLK)

22 L 11 BRN (BLK)
3 AV 23 H 13 ORG (BLK)

23 L 15 WHT (RED)
4A (+-) 24 H 17 GRN (RED)

24 L 19 BLU (RED)
4A (+R) 25. H 21 YEL (RED)

25 L 23 BRN (RED)
4A (R-) 26 H 25 ORG (RED)

26 L 27 WHT (GRN)
4B (+-) 27 H 29 BLU (GRN)

27 L 31 YEL (GRN)
4B (+R) 28 R 33 BRN (GRN)

28 L 35 ORG (GRN)
4B (R-) 29 H 37 BLU (WHT)

29 L 39 YEL (WHT)
4 DIFF 30 H 41 BRN (WHT)

30 L 43 ORG (WHT)
4 AV 31 H 45 YEL (BLU)

31 L 47 BRN (BLU)
NC 49 ORG (BLU)

B.B CH. A/D CH. P1-2 CONN. COLOUR (ANALOG RETURN)
---- ---- --- -------
NC 1 RED (BLK)
5 AV 39 L 3 WHT (BLK)

39 H 5 GRN (BLK)
5 DIFF 38 L 7 BLU (BLK) .

38 H 9 YEL (BLK)
5B (R-) 37 L 11 BRN (BLK)

37 H 13 ORG (BLK)
5B (+R) 36 L 15 WHT (RED)

36 H 17 GRN (RED)
5B (+-) 35 L 19 BLU (RED)

35 H 21 YEL (RED)
5A (R-) 34 L 23 BRN (RED)

34 H 25 ORG (RED)
5A (+R) 33 L 27 WHT (GRN)

33 H 29 BLU (GRN)
5A (+-) 32 L 31 YEL (GRN)

32 H 33 BRN (GRN)
NC 35 ORG (GRN)
NC 37 BLU (WHT)
NC 39 YEL (WHT)

B.B CR. A/D CR. P2-2 CONN. COLOUR (ANALOG RETURN)

151

------ ------ ---------- ---------------------
lA (+-) 40 R 1 RED (BLK)

40 L 3 WHT (BLK)
lA (+R) 41 R 5 GRN (BLK)

41 L 7 BLU (BLK)
lA (R-) 42 R 9 YEL (BLK)

42 L 11 BRN (BLK)
lB (+-) 43 R 13 ORG (BLK)

43 L 15 WHT (RED)
lB (+R) 44 R 17 GRN (RED)

44 L 19 BLU (RED)
lB (R-) 45 R 21 YEL (RED)

45 L 23 BRN (RED)
1 DIFF 46 R 25 ORG (RED)

46 L 27 WHT (GRN)
1 AV 47 R 29 BLU (GRN)

47 L 31 YEL (GRN)
7A (+-) 48 R 33 BRN (GRN)

48 L 35 ORG (GRN)
7A (+R) 49 R 37 BLU (WHT)

49 L 39 YEL (WHT)
7A (R-) 50 R 41 BRN (WHT)

50 L 43 ORG (WHT)
7B (+-) 51 R 45 YEL (BLU)

51 L 47 BRN (BLU)
NC 49 ORG (BLU)

B.B CR. A/D CR. P3-2 CONN. COLOUR (ANALOG RETURN)
--- ---- ---- -------------
7B (+R) 52 R 1 RED (BLK)

52 L 3 WHT(BLK)
7B (R-) 53 R 5 GRN (BLK)

53 L 7 BLU (BLK)
7 DIFF 54 R 9 YEL(BLK)

54 L 11 BRN (BLK)
7 AV 55 R 13 ORG ·c BLK)

55 L 15 WHT(RED)
8A (+-) 56 R 17 GRN (RED)

56 L 19 BLU (RED)
8A (+R) 57 R 21 YEL (RED)

57 L 23 BRN (RED)
8A (R-) 58 R 25 ORG (RED)

58 L 27 WHT (GRN)
8B (+-) 59 R 29 BLU (GRN)

59 L 31 YEL (GRN)
8B (+R) 60 R 33 BRN (GRN)

60 L 35 ORG (GRN)
8B (R-) 61 R 37 BLU (WHT)

61 L 39 YEL (WHT)
8 DIFF 62 R 41 BRN (WHT)

62 L 43 ORG (WHT)
8 AV 63 R 45 YEL (BLU)

63 L 47 BRN (BLU)
NC 49 ORG (BLU)

152

CALIBRATION FACTORS FOR SHUNTS

FACTOR = NOMINAL RESISTANCE / MEASURED RESISTANCE

FOR 2 A SHUNT, NOMINAL RESISTANCE IS 25 MILLI-QHMS
FOR 10 A SHUNT, NOMINAL RESISTANCE IS 5 MILLI-QHMS

cc.

1
2
3
4
5
1
7
8

AMPS.

2
2
2
2

10
10
10
10

FACTOR

.999
1.001

.999

.998
1.000
1.000
1.002
1.002

153

REFERENCES

1. RT-11 Documentation Directory, Version 4, Vol. 3A, MAC, Jan. 1980.

Digital Equipment Corporation, Maynard, Massachusetts.

2. Microcomputers and Memories, Chapter 4 Instruction Set, 1982.

Digital Equipment Corporation, Maynard, Massachusetts.

3. RT-11 Documentation, Version 4, Vol. 3B, SSM, Chapter 7, March 1980.

Digital Equipment Corporation, Maynard, Mass.

4. Ibid, Vol. 3A, REF, pp. 3-48 to 3-54.

154

APPENDIX D

THE REAL-TIME PROGRAM

A full description of the REAL-TIME program is given in this Appen­

dix. The REAL-TIME program runs in conjunction with the WATCHDOG pro­

gram (described in Appendix E) and is written in FORTRAN IV programming

language for LSI-11/23 computers (1,2). The maximum number of cells

that can operate simultaneously is 16. In that situation, there are 2

cells in series on each of the 8 current controllers.

0.1 CELL PARAMETERS

Each cell under test is characterized by a set of parameters which

describe the cell condition. The parameters are accessed everywhere in

the program: they are stored in 6 arrays, A and B (INTEGER), JT

(INTEGER*4), VAL, QO and Q (REAL), in a COMMON block called PASS. A

display of the arrays and their significance is given in Table 1. Index

J goes from 1 to 16, corresponding to all possible cell numbers. Some

parameters are automatically updated by the program, and some can be

changed by the user, as described in the next section and in Appendix E.

In Table 1, it is necessary to recognize the distinction between the

channels 1 to 5 and the A/D channels. The former set of numbers are

assigned to a certain variable measured, i.e., 1 for the cell voltage, 2

for the positive versus reference potential, 3 for the reference versus

negative potential, 4 for the current, and 5 for .the temperature. In

the latter case, the A/D channel numbers are related to physical connec­

tions in the system, and they range from 0 to 63, as described in Appen­

dix C (Table 1).

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

A(l,J)

A(2,J)

A(3,J)

A(4,J)

A(S,J)

A(6,J)

A(7 ,J)
A(8,J)

A(9,J)
A(10,J)
A(ll,J)
A(12,J)
A(13,J)

A(14,J)
A(15,J)
A(l6,J)
A(17,J)
A(18,J)
A(19,J)
A(20,J)
A(21,J)
A(22,J)
B(l,J)

B(2,J)

B(3,J)

155

TABLE 1 -- CELL PARAMETERS

0 CELL IS NOT IN TEST LOOP
1 CELL IS IN TEST LOOP
2 AN ERROR WAS DETECTED THAT CANNOT BE

CORRECTED,
TERMINATE OPERATION AND SET TO 0

0 CELL IS IN OPEN-CIRCUIT
1 CELL IS IN ACTIVE MODE
0 CELL IS DISCHARGING
1 CELL IS CHARGING
FLAG FOR STORAGE OF DATA ON FILE (AT EVERY
OTHER DATA-RECORD)
3 DATA JUST WRITTEN TO FILE
2 1ST DATA-RECORD
1 : 2ND DATA-RECORD, WRITE TO FILE, RESET TO 3
1 : DATA FILE OPEN FOR CELL J
0 : NO DATA FILE OPEN FOR CELL J
NUMBER OF DATA-RECORDS STORED IN PRESENT BLOCK
(SEE A(7,J))
BLOCK NUMBER TO BE WRITTEN ON DATA FILE
FLAG FOR DATA-TAKING RATE ADJUSTMENT ROUTINE
0 : START OF CHARGE OR DISCHARGE
) 0 : OTHERWISE
CURRENT CONTROLLER ASSOCIATED WITH CELL J
FULL SCALE CURRENT VALUE FOR 50 MV SHUNT(IN A)
CELL WITH WHICH CONNECTED, 0 IF NONE
NUMBER OF A/D CHANNELS ACTIVE
CHANNEL 1(CELL VOLTAGE) : CORRESPONDING A/D
CHANNEL NUMBER
CHANNEL 1 : A/D RANGE
CHANNEL 2(+REF) : IDEM
CHANNEL 2 : IDEM
CHANNEL 3(REF-) : IDEM
CHANNEL 3 : IDEM
CHANNEL 4(CURRENT) : IDEM
CHANNEL 4 : IDEM
CHANNEL S(TEMPERATURE) : IDEM
CHANNEL 5 : IDEM
CHANNEL(1-5) WATCHED FOR REGULATION OF DATA­
TAKING RATE ON DISCHARGE
CHANNEL(1-5) WATCHED FOR REGULATION OF DATA­
TAKING RATE ON CHARGE
DISCHARGE MODE

1 :CONSTANT CURRENT
2 :IDEM, 1 HALF-CYCLE
3 :IDEM, 2 CELLS IN SERIES
4 :CONSTANT POWER
5 :IDEM, 1 HALF-CYCLE
6 :IDEM, 2 CELLS IN SERIES
7 :PULSED CURRENT
8 :IDEM, 1 HALF-CYCLE
9 :IDEM, 2 CELLS IN SERIES

B(4,J)

B(5,J)
B(6,J)
B(7,J)

B(8,J)
B(9,J)
B(10,J)

B(ll,J)
B(12,J)

B(13,J)
B(14,J)

JT(1 ,J)
JT(2,J)
JT(3,J)
JT(4,J)

JT(5,J)
JT(6,J)
JT(7,J)
JT(8,J)

JT(9,J)
JT(10,J)

VAL(1,J)

VAL(2,J)

VAL(3,J)
VAL(4,J)
VAL(S,J)
VAL(6,J)
VAL(7,J)
VAL(8,J)
VAL(9,J)
VAL(10,J)
VAL(ll,J)

}
,

}
,

156

CHARGE MODE
1 CONSTANT CURRENT
2 IDEM, 1 HALF-CYCLE
3 IDEM, 2 CELLS IN SERIES
4 CONSTANT VOLTAGE - LIMITED CURRENT
5 IDEM, 1 HALF-CYCLE
6 IDEM, 2 CELLS IN SERIES
7 PULSED CURRENT
8 IDEM, 1 HALF-CYCLE
9 IDEM, 2 CELLS IN SERIES

CHANNELS(1-5) PROGRAMMED FOR LIMITS ON DS.

+CHANNEL IS UPPER LIMIT, -CHANNEL LOWER LIMIT
E.G +1 IS UPPER LIMIT ON CELL VOLTAGE

-3 IS LOWER LIMIT ON REF-

CHANNELS(1-5) PROGRAMMED FOR LIMITS ON CH.

IDEM
NOT SPECIFIED
NOT SPECIFIED
USED TO STORE B(2,J) WHEN OPERATION IN CVLC­
MODE (B(2,J) IS THEN 4)
VOLTAGE CHANNEL(1-3) FOR CONST. POWER DS.
CONTROLLED VOLTAGE CHANNEL(1-3) FOR CVLC-MODE

TIME FOR TAKING NEXT DATA
TIME FOR NEXT CURRENT CONTROL
TIME FOR COMPLETION OF PRESENT STATE
TIME INTERVAL BETWEEN SUCCESSIVE STORAGE OF
DATA-RECORDS
DURATION OF CHARGE
DURATION OF DISCHARGE
DURATION OF OPEN-CIRCUIT
TIME INTERVAL BETWEEN SUCCESSIVE PASSES
THROUGH THE CURRENT CONTROL ROUTINE
TIME FOR RESETTING THE CONTROLLER DISCONNECT TIMER

.TIME INTERVAL BETWEEN SUCCESSIVE RUNS THROUGH
THE DATA-TAKING ROUTINE

INTERVAL THAT REGULATES THE DATA-TAKING RATE
ON DISCHARGE
INTERVAL THAT REGULATES THE DATA-TAKING RATE
ON CHARGE
CALIBRATION VALUE FOR CURRENT CONTROLLER J
CHARGE EXCESS FACTOR

LIMITS ON DISCHARGE

LIMITS ON CHARGE

CURRENT ON DISCHARGE (IF CONTROLLED)

VAL(l2,J)
VAL(l3,J)
VAL(l4,J)
QO(l,J)
Q0(2,J)
Q(l,J)
Q(2,J)

157

CURRENT ON CHARGE (IF CONTROLLED)
POWER VALUE FOR CONSTANT POWER DISCHARGE
VOLTAGE VALUE FOR CVLC-MODE
MAXIMUM A-HRS TO BE PASSED ON DISCHARGE
MAXIMUM A-HRS TO BE PASSED ON CHARGE
A-HRS PASSED ON DISCHARGE
A-HRS PASSED ON CHARGE

158

D.2 PARAMETER FILES

The program works with 2 files that contain information about the

parameters described in the previous section. The names of these files

are FMAT.UNF and GMAT.UNF, and they are of similar format. Their pur­

pose is to provide a procedure to place a cell in operation. There are

2 ways in which one can start a test: (See also Sections 2.4.2.1 and

E.2.7.(RUN))

1. The "initialize" mode:

2.

1. A new cell goes under test, at cycle 1.

2. A cell that was running at cycle n is started at

cycle n+1, but with a different cycling mode.

The "re-start" mode : a cell is started exactly where

it left off:

1. If the cell was interrupted on a charge, continue

the charge.

2. If the cell was interrupted at the end of a charge,

start a discharge.

3. Etc •••

FMAT.UNF and GMAT.UNF are used in the following way:

1. When a user wants to place a new cell under test, or completely

respecify the way a cell is operating, he must run the INITIALIZA­

TION ~ection of the WATCHDOG program (see Appendix E). The answers

to all questions asked by this routine are stored in the appropriate

slot of FMAT.UNF, for the appropriate cell number. The user can do

this at any time, even when a cell with that same number is running.

The parameters are stored in FMAT.UNF, but no action is taken by the

159

REAL-TIME program. When the user operates the RUN section of the

WATCHDOG program (Appendix E), in the "initialize" mode, the REAL-

TIME program opens FMAT. UNF, gets the information for the cell,

stores it in the 6 parameter arrays, puts the cell in the test loop,

and closes FMAT.UNF.

2. The REAL-TIME program regularly updates GMAT. UNF, with the cell

parameters modified during operation. For each cell, it also stores

the date, time of day and cycle number. If a cell's operation is

stopped, either through a normal stop request or through a program

crash, GMAT.UNF contains a last update of all the information needed

to immediately re-start the cell. To implement, the user must run

the RUN section of the WATCHDOG program in the "re-start" mode. the

REAL-TIME program keeps GMAT.UNF open at all times, so it just

retrieves the information for that cell and puts it in the parameter

arrays.

3. Cell parameters can be changed selectively, by running the CHANGE
I

section of the WATCHDOG program, and GMAT. UNF is automatically

updated.

A diagram of the structure of FMAT.UNF and GMAT.UNF is shown in

Table 2. The files are defined with a record size equal to 1 real

n\DD.ber. The (*) mark means that the information is defined. only in

GMAT.UNF and not in FMAT.UNF. JMAX is the maximum n\DD.ber of cells,

which is set to 16. ICYCLE(J) is the cycle number at which cell J

is running. If cycle numbers for cell J are updated at the beginning of

a charge, MCYCLE(J)•l; if at the beginning of discharge, MCYCLE(J)=O.

160

PARAMETER FILE STRUCTURE

RECORD STORAGE CELL

1 JMAX
2 DATE DAY,MONTH(*) 1
3 DATE YEAR, -- (*) 1
4 TIME(*) 1
5 A(1,1),A(2,1) 1

15 A(21,l).A(22,1) 1
16 B(1,l),B(2,1) 1

22 B(13,l);B(14,1) 1
23 JT(1,1) 1

32 JT(l0,1) 1
33 VAL(l,l) 1

..
46 VAL(l4,1) 1
47 QO(l,l) 1
48 Q0(2,1) 1
49 Q(l,l) 1
50 Q(2,1) 1
51 DATE DAY,MONTH(*) 2

2+(J-1)*49 DATE DAY,MONTH(*) J

50+(J-1)*49 Q(2,J) J

785 Q(2,16) 16
786 ICYCLE(l),MCYCLE(l) (*) 1
787 ICYCLE(2),MCYCLE(2) (*) 2

801 ICYCLE(l6),MCYCLE(16) (*) 16

161

D.3 DATA-FILE STRUCTURE

Each cell under test stores data in its own scratch data file. The

data file for cell J (J ranging from 1 to 9) is called DATOJO.UNF, for

cell JJ (JJ from 10 to 16), DATJJO.UNF. Table 3 shows the structure of

a block on a scratch-file. A block is 256 words long, which is equal to

128 real words. The last 8 real words serve as a pointer and A-hr

storage area. Therefore, there are only 120 real words available to

store data. In this example, at each measuring time, 4 A/D channels

were measured (VCEL,+REF,REF- CURR) and the results stored. Therefore,

each data-record is 5 real words long, and the maximum number of data-

records in each block is 120/5 = 24.

TABLE 3 -- DATA FILE STRUCTURE
0 ••••••

4

8
[+REF

12 •••••

X • • • • •
X+4. • • •

.

.
+REF

X+8 ••••

[CH POINTER]
120 ••••

A-HR DS
124 ••••

[MONTH] [DAY]

REF-

[MONTH] [DAY]
REF-

OC POINTER]
A-HR CH] [.

[YEAR] [CYCLE]

TIME
CURR

(e.g. start
of charge)

VCEL

TIME

(e.g. start of
[YEAR] [CYCLE] discharge)

CURR TIME

DS POINTER] [NSTOP
INTERR

162

A date specification and a cycle number are stored as the 1st record

of each charge or discharge (not open-circuit). Charge, discharge, or

open-circuit data may not necessarily start in the beginning of a block.

Pointers indicate where in the block the three types of data start. If

one or two types of data are not stored on that block, their respective

pointers are 0. Pointers are defined in terms of number of data-records

(here: 5 real words each) since the beginning of the block. The date

specification is counted as a data-record.

This type of storage does not allow the same data-type to be stored

twice in different parts of a block (e.g. open-circuit data after charge

and after discharge). In that case, a block is left only partially

filled, and data storage continues on the next block. A pointer is

used, NSTOP, that points to the last data-record stored on the block.

NSTOP "" 0 when block full, and data continue without

interruption on next block

> 0 when data-taking interrupted at that record

(non-matching times with eventual data on

next block)

< 0 when block is not completely full and data

continue without interruption on next block

• 300 when no valid data in the block

At certain times, a cell~s operation needs to be interrupted: when

that cell is put back in operation, data-storage starts at a new block.

However, the program that decodes data must have some information indi­

cating that there was an interruption between the end of a block and the

start of the subsequent one, and that the times are not matched. A

163

flag, INTERR, is provided for that purpose.

INTERR = 1 when data-taking has been interrupted at the

end of the block, and resumed (non-matching

times) with the start of the next block

INTERR = 0 in all other cases

A list of all the possible combinations of NSTOP and INTERR is given

below:

1) NSTOP=O, INTERR=O

data-block is full, continues on next block, matching

times

2) NSTOP=I, INTERR=O

I data-records in this block, last block of data

3) NSTOP=-I, INTERR=O

I data-records in this block, continues on next block,

matching times

4) NSTOP•I, INTERR•1

I data-records in this block, continues on next block,

non-matching times

5) NSTOP=-I, INTERR=1

illegal

6) NSTOP•300, INTERR•O

invalid block, no more data

7) NSTOP-300, INTERR=1

invalid block, continues on next~block, non-matching

times

8) NSTOP=O, INTERR=1

illegal

164

0.4 THE REAL-TIME LOOP

The REAL-TIME loop is shown in Figure 1.

The action timers and action time intervals are stored in the JT

array, described in Section 0.1. Further details are given in the

description of the subroutines.

loop over
all actions i

N

get time
of day

N

find minimum of
all action timers

y

165

do action i

execute

sleep for maximum ..,_ _____,. ______ ___.
57 ticks

FIGURE 1. The Real-Time Loop.

(action timer)j =
time+ (action
time interval)i

XBL 826-1453

166

D.5 THE MESSAGE EXCHANGE PROCEDURE

Chapter 2, Section 2.4.2.2, gives a list of the procedures a user

can initiate by communicating with the REAL-TIME program. This communi­

cation is implemented through an organized message exchange between the

REAL-TIME program (in the foreground) and the WATCHDOG program (in the

background). It is always the WATCHDOG program which starts an

exchange. It sends a message to the REAL-TIME program, and the latter

returns a response. This is illustrated in Fig. 2.

The WATCHDOG program sends a message, and it waits until it receives

a response. The REAL-TIME program sends a response, but it does not

wait for the WATCHDOG program to send another message. This scenario

respects the more time-critical control operations performed by the

REAL-TIME program. It works with an 'automatic' message receiver, which

is a short routine that interrupts the normal program execution (REAL­

TIME loop) when it senses that there is a message from the WATCHDOG pro-

gram. The receiver sets a message flag and then once a second, the

REAL-TIME program transfers control to a message handler routine, which

determines if the message flag is set. If that is the case, the handler

organizes the execution of a task to respond to the particular message.

For some operations, one message exchange is required, for others,

two or three. At various times, an 'abort the procedure' message can be

sent to the REAL-TIME program. Fig. 3. illustrates a typical 2-pass

message exchange operation.

THE REAL-TIME PROGRAM
RECEIVES A MESSAGE,
SENDS A RESPONSE

MESSAGE

RESPONSE

THE WATCHDOG PROGRAM
SENDS A MESSAGE,
RECEIVES A RESPONSE

XBL 826-1457

FIGVRE 2. Flow of Information Between the REAL-TIME and WATCHDOG Programs.

~

0'\,

__ ~._/·
,, ... ,

l' message'\
; comes in j
\ set flag I
' ' ,, ,' ____ ,

FG

real-time
loop+ sleep

N

168

y

execute task (1, j};
send response v1• i

execute task (2, j);
send response v2• i

BG

send 'abort'
message

y

XBL 826-1454

FIGURE 3. Protocol for a Two-pass Message Exchange between the
REAL-TIME (Foreground) and the WATCHDOG (Background)
Programs.

I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I'
I
I

)

169

D.6 SUBROUTINE DIAGRAM

A schematic diagram of the subroutines of the REAL-TIME program

is given in Fig. 4. Arrows pointing down are for calls to subroutines,

and arrows pointing up for return from subroutines. Two completion rou­

tines (CRMESS and CRSTOP) are not in the diagram, and they are not

called from any of the other subroutines. Another subroutine, HDCONC,

is not shown on the diagram. It contains all the I/O commands, and is

called from various subroutines.

marked with a(*).

The subroutines that call HDCONC are

ANNOUNC

TIME AS
(*)

FIGURE 4. Subroutine Diagram of the REAL-TIME Program.
XBL 826-1450

Arrows pointing down are calls to subroutines, arrows pointing up are returns from subroutines;
asterisks indicate subroutines which call the I/O library; completion routines CRMESS and CRSTOP
are not included in the figure.

.......

.......
0

171

D.7 SUBROUTINE DESCRIPTIONS

The order in which the subroutines are described is the same as the

order in which their code is given, as shown in section D.10.

0.7.1 START

START is a short routine that calls the main program. It has no

other purpose than to allow the REAL-TIME program to run as a virtual

job (explained in Appendix B).

D.7.2 REALTIM

REALTIM initializes certain variables and opens a communication path

with the HD I/O driver.

D. 7.3 GMOPEN

GMOPEN opens FMAT.UNF and GMAT.UNF. It first reads JMAX, which is

the maximum number of cells in the loop, then closes FMAT.UNF.

D.7.4 GO

GO is the routine which implements the REAL-TIME loop. Its initial

section defines some timers and flags, activates the message receiver

completion routine, and activates a ACAC intercept function. Then it

enters the REAL-TIME loop, from which it never leaves unless a ACAC is

typed.

The first part of the REAL-TIME loop consists of a series of DO­

loops, each executed for all cells. The clock time is compared to the

action timers (see Section D.4) and if necessary, control is transferred

172

to specific routines.

1. The hardware check (CHECK) and parameter update (UPDATE) loop. If

an error is detected (A(1,J)=2), a last measurement is taken (INPUT)

and the cell's operation is terminated (FINISH).

2. The status change loop (charge, open-circuit, discharge). This is

done by repeated calls to various sections of the CHANGE routine,

with intermft tent calls to other routines (CHOOSE, INPUT). If a

stop flag is set (ISTOP), the cell's operation is terminated (FIN-

ISH). The loop for the status change of a cell is executed twice

for all cells (necessary for cells that run in series). For exam­

ple, if cell 15 is connected with 3, and at the first pass 15 needs

a status change, 3 will go through the same status change at the

second pass.

3. The current control loop (CHOOSE). If a stop flag is ·set

(!STOP), control is immediately transferred to the status change

loop.

4. The data taking loop (INPUT). If a limit flag is set (lEX) control

is immediately transferred to the status change loop.

The second part of the REAL-TIME loop consists of the following

operations:

1. A call to GDNITE, to define the minimum of all action timers for

all cells.

*

173

2. A check for a ACAC entered (!FLAG not= 0). In that case, a last

measurement is taken for all cells (INPUT), and then the REAL-TIME

loop is terminated by a call to FINISH.

3. A call to MSBOSS, which accommodates all message exchanges. If the

no-sleep flag is set (INITE), control is immediately transferred to

the start of the REAL-TIME loop.

4. ,A check, on a termination flag (A(l,J)=2), which might have been set

in various places in the program. In that case, a last measurement

is taken (INPUT) and the cell's operation is terminated (FINISH).

5. A call to GDNITE, which executes a sleep command.

D.7.5 GDNITE

GDNITE has two sections, which execute according to the value of the

input parameter IGD.

The first section finds the minimum of all action timers. The

second section checks if the time is 23:59:55, in which case it calls

RESET. It then checks if there is enough time to sleep, in which case

it sleeps for any time smaller or equal to 57 ticks. If there is no

time to sleep, it sets the no-sleep flag (INITE) and exits.

D.7.6 ANNOUNC

ANNOUNC types a time on the screen, in hrs,mins,secs,ticks.

174

D.7.7 IDATE

IDATE returns the current date.

D.7.8 CHANGE

CHANGE implements the CHANGE of status of a cell (from open-circuit

to charge or discharge, and vice-versa). It runs in parallel with the

status change loop of GO, with the different entry- and exit points

associated to values of IIN and IOUT. CHANGE connects or disconnects a

current controller. At the start of a charge or discharge, it measures

the offset of the current controller. CHANGE checks whether or not

data storage can continue on the same block in the data-file (see

section D.3). It looks at the pointer for the mode it is entering,

located in the BUF storage area (see INPUT). That pointer is at posi­

tion 120 + M, with M equal to 1 for charge, 2 for open-circuit, 3 for

discharge. If the pointer value is O, data for that mode can continue

on the block.

D.7.9 CHECK

This routine checks if a controller is in computer mode and if the

current has the right polarity (+ for discharge, - for charge). If an

error is detected, a termination flag is set (A(1,J)=2).

0.7.10 CHOOSE

CHOOSE transfers control to one of the current control routines,

according to the charge or discharge mode of the cell.

175

D. 7.11 CC

CC implements the "constant current" charge or discharge; it is

divided in three sections. In the initialization section, it defines

the maximum number of A-hrs to pass on charge (if it is in that mode).

In the control section, it updates the A-hrs and determines if they do

not exceed the limit, and calls CALIB. In the termination section,

it updates the A-hrs of that mode and initializes the A-hrs of the next

mode.

CC also takes care of 2 cells cycled in series: the cell with the

highest number is the one on which the controls are performed (i.e. the

one for which CALIB is called).

The last command pertains to the case of a charge mode that gets

interrupted: an imaginary number of discharged A-hrs is defined, so'when

the cell is restarted, the proper number of A-hrs to pass on charge is

computed in the initialization section of this routine.

D.7.12 CVLC

CVLC implements the "constant voltage - limited current" charge; it

is divided into three sections, which have the same basic functions as

in cc. In the control section, it decides on whether the control mode

should be constant current or constant voltage (if the voltage limit has

been reached), and calls CALIB or CALIBV. In the case of constant vol­

tage control, the channel to be watched for the data-storage rate

adjustment is set to channel 4 (current), and the adjustment interval is

20 mA (see TIMEAS).

176

CVLC also takes care of 2 cells cycled in series; for the constant

current part, the cell on which the controls are performed is the cell

with the highest number (i.e., the one for which CALIB is called). For

the constant voltage part, it is the cell with the highest voltage.

(i.e., the one for which CALIBV is called).

In CVLC, A(8,J) has a special significance (see Section 0.1):

1. A(8,J) = 0 start of a charge (or a discharge).

2. A(8,J) = 1 : set by TIMEAS after the 1st pass. For all the

other control modes, it stays at that value, but for CVLC, it

is further modified.

3. A(8,J) = 2 when current control is performed on the cell.

4. A(8,J) = 4 : when current or voltage control is performed on

the companion cell.

5. A(8,J) = 3 when voltage control is performed on the cell.

When voltage control is performed on a cell, and it has a companion

cell, control can switch to the other cell, if it exceeds its own

imposed voltage limit.

The last command in CVLC serves the same function as in cc.

0.7.13 CP

CP implements the "constant power'' discharge; it is divided into 3

sections, which have the same basic functions as in the CC and CVLC rou-

tines. The control section calls CALIBP. At the first pass, CP puts a

177

.2A charge current in the cell, for 3 ticks, then a .2A discharge

current, for the same time.

power regulation in CALIBP.

This provides a starting point for the

CP also takes care of 2 cells cycled in series; it is the cell with

the highest voltage on which the controls are performed, (i.e., the one

for which CALIBV is called).

D.7.14 EXCON

EXCON implements the "pulsed current" charge or discharge; it is

divided into 3 sections, which have the same basic functions as in the

CC, CVLC and CP routines. The control section does not call any other

routine, because the current is not regulated, rather, it is imposed by

an external voltage profile.

mode are:

A few important points concerning this

1. In the initialization section, the controller is set in the

external mode.

2. The cell voltage (channel 1), and eventually the reference vol­

tages (channels 2 3), are measured at the OFF-side of the

pulse. The cell voltage is also measured at the ON-side of

the pulse, as channel 5 (which is usually the temperature chan­

nel).

3. The current (channel 4) is not measured with its usual A/D

channel. The program automatically switches to an A/D channel

that is wired to an averager circuit. In the Buffer Box

interconnection diagram (see Appendix C, Table 1.), this A/D

178

channel number is always 1 higher than the usual A/D channel

for the current measurement.

4. A-hrs are not calculated until after 2.5 minutes from the

beginning of the charge or discharge; this allows the current

averager circuit to come to a stable value.

EXCON also takes care of 2 cells cycled in series; the cell with the

highest cell number is the one on which the controls are performed. The

last command serves the same function as in CC and CVLC. For additional

information on the pulsating mode, see RDLOGG. (Section 0.7.36)

D.7.15 CALIB

CALIB implements the constant current control. The algorithm is

(I set)i+1 =(I set)i*setpoint/(I meas.)i

The setpoint and the measured current are in volts.

made to amperes.

No conversion is

A parameter ANS is returned as Y, N or F. Y means that regulation

within the minimum specified accuracy range was obtained in at most 10

iterations. N means that regulation within the maximum specified accu­

racy range could not be obtained in 10 iterations. F means that some­

thing is really wrong, and that the cell should be taken out of opera­

tion.

179

0.7.16 CALIBV

CALIBV implements the constant voltage control. The algorithm is

(I set)1+1 =(I set)1+(setpoint-Vi)/X1

with Xi=(v1-vi_1)/((I meas.) 1 -(I meas.)i_1)

The setpoint and the measured voltage are in volts, the measured current

is converted to amperes. The parameter ANS is used in the same way as

for CALIB.

0.7.17 CALIBP

CALIBP implements the constant power control.

rithm is

The

(I set)i+1=(I set)i+(setpoint-Pi)/(Vi+Xi*(I meas.)1)

with Pi=Vi*(I meas.)i

and Xi=(Vi-Vi_1)/((I meas.)i-(I meas.) 1_1)

control algo-

The setpoint is in watts, the measured voltage in volts, and the meas­

ured current is converted to amperes. The parameter ANS is used in the

same way as for CALIB and CALIBV.

0.7.18 INPUT

INPUT regulates data taking, storage and lim~t checking. The struc­

ture of a block on a scratch data-file is explained in Section 0.3.

Each cell under test uses a 128 real word storage area, BUF(I,J) (with J

• cell number and I = 1 to 128), and a pointer, A(6,J), to the last

data-record stored in the area. The last 8 real words of the BUF area

are used for special pointers and for A-hr storage; the same 8 words are

found in each block of the scratch-files, as explained in Section 0.3.

In the same section, it is explained that a data-record consists of a

180

time and a number of real words: for example, for 4 measurements (cell

voltage, positive vs. reference, reference vs. negative, current), a

data-record is 5 real words long and the maximum number of records that

fit in a block is 24. When a new data-record is added to the storage

area, the pointer A(6,J) is increased by 1. At every other data record

that is stored for the cell, the 128 real word storage area is written

out to the scratch data file, at the current block number (A(7,J)).

Therefore, the block on the file is gradually filling with data. When

it is full, or for some other reason (see section 0.3), a new block has

to be used, the last 8 real words of the BUF storage area are reset to

0, A(6,J) is reset toO, the block number (A(7,J)) is increased by 1,

and the procedure re-starts.

INPUT is called in 4 different modes, associated to the value of the

input parameter IMODE.

1. IMODE = 0 : this is the normal mode. INPUT calls TIMEAS, which

decides whether or not data must be stored in the BUF storage

area (ANS = Y or N). Then, INPUT takes data, checks limits

(sets IEX=l if a limit is exceeded), eventually stores data

(depending on ANS) or writes the storage area to the file.

2. IMODE = l : INPUT does not take data, store data, or check for

limits. It writes the storage area to the file and re-

initializes for a new block.

3. IMODE = 2 : INPUT takes and stores data, and eventually writes

the storage area to the file, etc.

181

4. IMODE = 3 : INPUT calls IOATE and stores the date and cycle

number in the BUF storage area, eventually writes it to the

file but does not take data or check limits.

0.7.19 TIMEAS

TIMEAS implements the adjustment of the rate of data storage. It

is called by INPUT (only when INPUT runs in mode 0) and returns a flag,

ANS. ANS = Y when it is time to store a data-record in the BUF

storage area. ANS = N when a data-record must only be checked for lim­

its, then discarded. Two action time intervals are connected with sub­

routines INPUT and TIMEAS : ~inp and ~Tstore, or JT(10,J) and JT(4,J),

respectively (defined in Section 0.1). ~Tinp is the time interval

between successive runs through INPUT and TIMEAS, i.e., the time inter­

val between successive checks for limits (INPUT), or successive adjust­

ment of the data-storage rate (TIMEAS). ~store is the actual time

between the storage of 2 successive data records for a cell. ~store

is originally specified by the user, with a maximum of 16 minutes and a

minimum of 2 minutes. The user also assigns a channel (most often the

cell voltage, channel 1) to be followed for data-storage rate adjust­

ment. For example, the cell voltage is known to vary rapidly at the

beginning and end of a charge or discharge, but to have a steady plateau

value in the middle; that is the reason for a rate adjustment.

~Tstore, as specified by the user, is the storage time interval dur­

ing the period where the channel followed is at its plateau value. When

the measurements on that channel start to exhibit variation, ~Tstore is

reduced by the program. In parallel, ~Tinp is reduced, because adjust­

ment of the rate needs to happen more frequently. When the variation

182

decreases, l::Js tore and Al'inp are increased. ATinp is 15 seconds, 30

seconds, or 1 minute. The corresponding values of /::Jinp and ATstore

are given in the following table.

ATinp

15 SECS

30 SECS

1 MIN

ATstore

(FOR 2 MIN. PLATEAU

RATE)

30 SECS

1 MIN

2 MIN

ATstore

(FOR 16 MIN. PLATEAU

RATE)

30 SECS

APP 3 MIN

16 MIN

For other plateau rates, the intermediate times are between 1 and 3

minutes. The factor that is used to cut or multiply Axstore is called

JFAC(J) (J Q 1 to 16). Its value depends on the value of ATstore speci­

fied by the user CATstore,p). When ATstore,p is cut twice, it is equal

to 30 seconds.

JFAC=2**X

with X=[log(2*Arstore,p)]/2*log 2

this satisfies

. ATstore,p/[(2**X)**2]•.5 min

JFAC(J) is computed in routine MSRUN.

0.7.20 FILOPC

FILOPC opens (IOP not • O) or closes (ICLO not "' O) a file. It

encodes a file name from the number of the cell for which the operation

is carried out. To open a file, it fi..rst tries a LOOKUP command. If

183

the file does not exist, an error is returned, upon which it tries an

IENTER command and writes block 299 of the file, to define its length.

0.7.21 UPDATE

This routine updates GMAT. UNF. It is called from 4 different

\ places, corresponding to a value of the input parameter IMOD. In each

case, cell parameters that were modified are written to GMAT.UNF.

1. IMOD = 1 : called from the status change loop, in GO. The cell

is in a new mode.

2. IMOD = 2 called from FINISH. The cell goes out of operation.

3. IMOD = 3 : called from the hardware check loop, in GO time,

date and A-hrs are updated.

4. IMOD = 4 : called from MSUPDT a large part of the parameter

arrays is updated.

A special condition is that of the single half-cycle (charge or

discharge), with a time limit, rather than an A-hr limit, to terminate

'
the mode. When IMOD = 2 or 3, the time of day is subtracted from the

termination time, to give the remaining operation time.

At the end of UPDATE, the 1st and last record of GMAT.UNF are writ-

ten into; this guarantees that all the information is effectively writ-

ten into the file.

184

D.7.22 FINISH

FINISH terminates the operation of one (IALL = 0) or all (IALL = 1)

cells. A termination of all cells happens when a ACAC is typed on the

foreground terminal; in that case, execution stops in FINISH. If only

one cell is put out of operation (due to an error, a STOP or HOLD

request), control returns to the real-time loop.

D.7.23 RESET

RESET takes care of the 'midnight

time switches from 23:59:59:59 to 0.

roll-over'. At midnight, the

RESET is called from GDNITE, 5

seconds before midnight. It subtracts 24 hours from all timers, waits

until midnight has passed, then returns.

d.7.24 CRMESS

CRMESS is the message receiver. It is a completion routine which is

called when a message comes in from the background. It increments a

flag, MESCNT.

D.7.25 MSBOSS

MSBOSS is the message handler: it organizes the message exchanges.

Messages that come in from the WATCHDOG program are automatically put in

a global INTEGER array, MSG, with dimension 59. Responses that go to

the WATCHDOG program are stored in a local INTEGER array (in various

subroutines), RESP. The first word of a message that comes in is

always the number of INTEGERs transferred (RT-11 specification). In

other words, the first word that the sending program puts in its message

is to be found at the second position in the message that the receiving

186

BD: the operation has been aborted, because MSG(l) was BD or noth­

ing else the p~ogram could recognize

TH: the user wants to start a cell with a number higher than JMAX

-- abort

NG: for RUN the user wants to start a cell which is already· in

operation -- abort

for STOP or HOLD : there is already a STOP request pending for

the cell abort and cancel the STOP request

SC: the cell cannot be started on its own, it has a companion cell

(connected in series) -- wait

NC: the user wants to stop a cell which is not running -- abort

EF: error in opening FMAT.UNF, in RUN routine-- abort

MSBOSS decodes the first word of an incoming message and calls the

appropriate message routine. There are two cases where MSBOSS calls a

message routine (but not upon receival of a message):

1. When a cell goes in open-circuit, CHANGE sets a flag, !HOLD. In

that case, MSBOSS automatically calls MSHOLD, to check if any cell

must be interrupted at the end of a half-cycle.

2. When a timer request for the STOP operation expires, the completion

routine CRSTOP is called, which sets the flag IMSTOP. In that case,

MSBOSS calls MSNOW.

185

program gets. This is explained in the RT-11 documentation (1).

In the procedure adopted here, MSG(2) always contains a code identi­

fying the type of operation that is being implemented, and MSG(3) ·

always contains the cell number. The operations are:

1. Change the parameters of a cell (CHANGE);

2. Display the parameters of a cell (DISPLAY);

3. Stop a cell in time AT (STOP);

4. Stop a cell after a half-cycle to come (HOLD) ;

s. Start a cell (RUN).

The codes are

CH 1st pass of the CHANGE operation

DS only pass of the DISPLAY operation

T1 2nd pass of the CHANGE operation

ST 1st pass of the STOP operation

HD 1st pass of the HOLD operation

T2 2nd pass of the STOP operation

T3 2nd pass of the HOLD operation

RR 1st pass of the RUN operation

T4 2nd and 3RD pass of the RUN operation

BD bad, abort operation

The 1st word of RESP is a code which informs the WATCHDOG program of any

problems in the message exchange procedure. The codes are:

OK: everything is fine, the transfer is completed

187

The message routines cannot fully be understood without reading the

corresponding parts of the WATCHDOG program. The message data­

structures are not described; they are apparent from a comparison of the

corresponding parts of the REAL-TIME and WATCHDOG programs.

D.7.26 MSWHO

MSWHO is called at the first pass of the RUN operation. It returns

information to the WATCHDOG program, about the status of the cell and

the time and date when it was last in operation.

D.7.27 MSRUN

MSRUN is called at the second pass of the RUN operation. Depending

on the mode, 'initialize' or 're-start', it reads parameters from

FMAT.UNF or GMAT.UNF into the cell parameter arrays. If the user wants

a new scratch-file (ISCRAT = 0), A(7,J) is set to 0. Otherwise, the

INTERR flag (see Section D.3) is set in the last block where data were

stored (before interruption), and A(7,J) is incremented. MSRUN initial­

izes other parameters, such as JFAC(J) (see TIMEAS). If it senses that

a cell is in series with the cell that the user wants to run, it returns

the 'SC' response, and waits to be re-called· for the companion cell, so

it can start the two cells together.

D.7.28 MSCHNG

MSCHNG is called at the first pass of the CHANGE operation, or the

only pass of the DISPLAY operation. It sends the contents of the param­

eter arrays and the cycle number to the WATCHDOG program. If the cell

is not running, it first gets that information from GMAT.UNF.

188

0.7.29 MSUPDT

MSUPDT is called at the second pass of the CHANGE operation. It

updates some parameters in the parameter arrays, and calls UPDATE to

write them into GMAT.UNF. Some special cases are:

1. If the cell is in operation, the A(I,J) parameters are never

updated.

2. If MSG(32) and MSG(33) are zero, then JT(4,J) (= ATstore,p, see

TIMEAS routine) was not changed. If they are not zero, they contain

the modified value of JFAC(J) (see TIMEAS routine). Then,

JT(4,J) is immediately written out to GMAT.UNF. However, its value

for the program has to be modified, so that it corresponds to the

value of JT(lO,J) ~Tinp, see TIMEAS) at that precise moment.

3. If the cell is in the CVLC charge mode, the interval that regulates

the data-taking rate is not updated.

4. If the cell is in operation, the calibration factor of the con­

troller is not updated.

0.7.30 MSWHEN

MSWHEN is called at the first pass of the stop or hold operation.

It sends information to the WATCHDOG program, about how the cell is run­

ning. It also sends JCYCLE and KCYCLE, which are described in MSHOLD.

0.7.31 MSSTOP

189

MSSTOP is called at the second pass of the STOP operation It ini­

tiates a timer request for the cell.

D.7.32 CRSTOP

CRSTOP is a completion routine which is called when a timer request

initiated by MSSTOP expires. IMSTOP is set equal to the number of the

cell, for which the request was pending.

D.7.33 MSHOLD

MSHOLD is divided in two sections. The first section is called at

the second pass of the HOLD operation. It determines if the HOLD

request is valid, i.e., if the user does not ask to stop a cell at the

end of a half-cycle, when it is already operating at a further half­

cycle. Then it sets JCYCLE(J) and KCYCLE(J). When the cell is origi­

nally put in operation, K~YCLE(J) = -1 : that means that there is no

HOLD request pending. MSHOLD sets JCYCLE(J) equal to the cycle number,

and KCYCLE(J) to the mode of the last half-cycle before termination.

The second section is called when any cell goes in open-circuit. In

that case, CHANGE has set IHOLD = 1, which was detected by MSBOSS.

MSHOLD checks if any of these cells (among which the one that just went

in open-circuit) has a HOLD request pending. In that case, it sets

A(1,J)m2 for the cell (and for its eventual companion).

D.7.34 MSNOW

190

MSNOW is called when MSBOSS detects that the stop flag IMSTOP was

set by CRSTOP. It sets A(1,J)=2 for the cell (and for its eventual com­

panion).

D.7.35 HDCONC

HDCONC is a concatenated file of all the I/O library routines

SET, GET, PLACE, IMPOSE, RLOGG, EXT, RMLOGG. All these routines are

described in detail in Appendix C.

vided, RDLOGG

One additional I/O routine is pro-

D.7.36 RDLOGG (PULSED CURRENT CONTROL MODE)

RDLOGG is used for reading an A/D channel. It decides whether it

should use RLOGG or RMLOGG. RLOGG is the '~egular' A/D reading routine.

RMLOGG is specifically used when the cell operates in the pulsating

current mode (see EXCON). The I/O driver follows the pulse and measures

minimum (MAXMIN~O) or maximum (MAXMIN=1) values. It measures the cell

voltage and (eventually) the reference voltages at the OFF-side of the

pulse (MAXMIN=O), and the cell voltage at the ON-side of the pulse (MAX­

MIN=l). As explained in EXCON, this last measurement is automatically

assigned to channel 5 (when parameters for the cell are initially

entered). It measures on the same A/D channel as channel 1 (cell vol­

tage). The A/D range used is also the same, but to differentiate

between the 2 measurements, 100 is added to it (e.g., range 2 becomes

102). This is all decoded in RDLOGG.

191

The current is measured on a current averager channel. This is a DC

measurement; therefore, it uses subroutine RLOGG, not RMLOGG.

192

D.8 LIST OF GLOBAL PARAMETERS

COMMON/CHACHA/AREAC
AREAC(160): Space allocated for 32 I/O channels (INTEGER).

COMMON/CHANNELS/ICHAN
ICHAN(16) : For each cell, the RT-11 channel through which

it communicates with its data-file (INTEGER).
COMMON/CCHOLD/JCYCLE,MCYCLE,IHOLD

JCYCLE(16): For each cell, on a HOLD request, the number
of the last cycle before termination. Not
defined if no request (INTEGER).

KCYCLE(16): For each cell, on a HOLD request, the mode
(DS:O, CH:1) of the last half-cycle before
termination. Is -1 if no request is pending

I HOLD
(INTEGER).
Flag set (in CHANGE) when any cell goes in
open-circuit (INTEGER).

COMMON/CURCUR/CUR,COMP
CUR(16) Used in the current control routines (CC,

CVLC, ••) : for each cell, the last update of
the setpoint (in V) for its current controller
(REAL).

COMP(l6) Used in the TIMEAS routine : for each cell, the
last measurement on the channel that is followed
for the adjustment of the rate (REAL).

COMMON/CURTIM/JLAST,JREM
JLAST(16) : Used in the current control routines (CC, •••)

for each cell, the last time at which a current
regulation was performed (INTEGER*4).

JREM(l6) Used in the TIMEAS routine : for each cell,.
temporary storage of JT(4,J) (INTEGER*4).

COMMON/CYCLCT/ICYCLE,MCYCLE
ICYCLE(l6): For each cell, the cycle at which it is running

(INTEGER).
MCYCLE(l6): For each cell, 1 if a cycle starts with CH, 0 if

DS (INTEGER).
COMMON/GDNIT/JMIN

JMIN
COMMON/HNDLER/MCHAN

MCHAN

Minimum of all action timers (INTEGER*4).

Channel through which the program communicates
with the I/O driver HD (INTEGER).

COMMON/INT4/JTWO,JFOUR,JFAC
JTWO 2 (INTEGER*4).
JFOUR 4 (INTEGER*4).
JFAC(16) For each cell, the factor that cuts the data

storage time (INTEGER*4).
COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

MSG(59) Space allocated for incoming messages (INTEGER).
MESCNT Flag for message in (INTEGER).
AREA(4) Area for linkage information, used by the

AREA2(4)
IMSTOP

completion routine call for CRMESS (INTEGER).
idem for CRSTOP (INTEGER).
Flag set by CRSTOP, equal to the number of the
cell, which timer request expired (INTEGER).

193

COMMON/OFFSET/OFF
OFF(16) For each cell, the offset of its current

controller (REAL).
COMMON/PASS/A,B,JT,VAL,Q,QO

: Parameter arrays, described in Section D.1.
COMMON/PNTRS/KPOINT,LPOINT

KPOINT Pointer of FMAT.UNF (INTEGER).
LPOINT Pointer of GMAT.UNF (INTEGER).

COMMON/QUEUE/AREAQ _
AREAQ(100): Space allocated for 10 queue elements (INTEGER).

COMMON/RES/JTOP,JMAX
JTOP : Time of day (INTEGER*4).
JMAX :Maximum number of cells, default is 16 (INTEGER).

COMMON/TIMTIM/JCHECK,JSET,JCVLC
JCHECK 1 minute (INTEGER*4).
JSET 1 minute (INTEGER*4).
JCVLC 15 seconds (INTEGER*4).

BUF(128,16) Storage area for each cell

D.9 STARTING THE REAL-TIME PROGRAM; EMERGENCY STOP

To start the REAL-TIME program, the user must type @bL0 :REALTS on

the BG terminal. The REAL-TIME program and the WATCHDOG program start

run~ing. An emergency stop for the REAL-TIME program is a ACAC typed on

the FG-terminal. It is safer, however, if there is enough time, to stop

all cells separately (STOP request see Appendix E).

D.10 CODE

194

assign channel 16 to cell
17 to cell 2

.
31 to cell 16

define JCHECK,JSET,JCVLC,JTWO,JFOUR

declare that no cells are in operation
(all A(1,J)•0)

START
REAL TIM

195

GMOPEN

J•l,JHAX

G?

196

activate message receiver
initialize flags

initialize minimum
action timer

Gl

G0-1

G2

H

y

197

CHOOSE(MODE=3)
terminate current

control

CHOOSE(MODE~l.
!STOP); initialize

current control

CHAHGE(IIN=3,IOUT)

INPUT (MODE •1)
write last block;
no data, no limits

IHPUT(MODE•3)
date and time;

no data, no limits

INPUT(HODE=2)
data,

no 1 imits

CHANGE(IIN~4,IOUT)

G0-2

CHANGE(IIH=2,IOUT)

FINISH for
this cell
(A(2,J)=0)

GS

GR

G4

time to change
status of cell•

now!

G7

198

N

N

J•l, AX

INPUT(MODE•2)
data, no limits

G0-3

FINISH
for all cells

GR G7

N

199

G6

GDNITE(MODE=l,IN!TE)
get sleep time and
sleep for max. 57 ticks

INPUT(MODE=2)
data, no limits

FINISH for
this cell

G0-4

J•l,JMAX
find minimum

of th i s ce 11 ' s
and the previous
ce 11 s ' action
timer's • JMIN

N

GDN!TE
(IGD,INITE)

200
GDNITE
ANNOUNC

201

define offset M
in pointer storage

area (BUF)

defiM pointer for the
position of the 1st data•

record (for tftls .ode)
1 n the cu,...,nt b 1 ock

Cl

CHANGE-1

flag for open·c i n:u t t
.a<~e A(Z,J)•e

SET
connect the controller

1n the charge or
d1 scharge mode

202

y

CHANGE-2

EXT
nonnal mode

CHECK-action y
timer for companion

cell•NOW!

203

ill
BELL; cell has been

removed from the loop

CHECK

204

CHOOSE

CHOOSE(ISEC,ISTOP)

CC(ISEC,ISTOP)

CVLC(ISEC,ISTOP) CP(ISEC,ISTOP)

define
A-hrs

to pass

y

CHANGE­
action timer for
companion ce 11

•NOW!

~----~----~Y

N

CC4

205

..

N

N

A-hrs•A-hrs+JDIF*current

CC3

N

CC2

y

N

JDIF•time-JLAST(J)

1 i ne-~ri nter
eel ••• ,

A-hrs passed• ••• ,
on ch/ds, cycle •••

CCl

CC-1

CC4

set termination
flag A(l,J)•2

206

CC3

A-hrs• •••

JLAST of companion
•time

CC2

y

for re-start purposes,
define an imaginary

number of A-hrs passed
on the previous discharge

CC-?.

CHANGE action
timer for

companion cell
•NOW!

termination
flag

A(l,J)•2

y

207

N

CV3

reset data-taking
rate adjustment

variables

y

en

CVLC-1

CVl

A(B ,A(ll,J)•2)
companion ce 11
is cont ro 11 i ng

A(B,A(ll,J))•4
companion cell

is not controlling

thiS cell is

208

not controlling 1-----f
A(B,J)•4

JOIF•time-JLAST(J)

A-hrs•A-hrs+
JOIF*current t---<

y

CV4

CV2

CHANGE action timer
for companion cell

•NOW!

initialize A-hrs
for next half-cycle

for re-start
purposes •••

(see CC)

CVLC-2

CVl

y

CV7

change the parameter
data-taking rate

adjustment

CV6

209

JDIF•JT{S,J)

set termination
flag

CVLC-3

cv~

CV7

termination
flag

N

update JLAST and
CURR for companion

cell

y

210

companion cell stops
being controlled
A(B,A(ll,J))c~

companion

CVLC-4

cvs

reset these
parameters for .__ __ __.
the companion

N

y

CP3

N

initialize
slope for

power regulation

CHANGE-action
time for companion

cell•NOW!

211

CP(ISEC,ISTOP

CP2

1 i ne printer
cell ••• ,A-hrs= •••
on ds. ,cycle •••

CPl

CP-l

CP3

JLAST of
companion•

time

set

212

CP2

SET
controller fn

discharge

termination ,.---J'o
flag

CHANGE-action
timer for companion

cell•.NOW!

y

CP-2

CHANGE­
action timer
for companion

cell•NOW!

JLAST(J)•time

E4

N

N

213

update action timer
~th 2 minutes and

30 seconds

define current A/0
channel as output

of averager circuit

E3

EXCON-1

N

214

E4 E3 E2

CHANGE-action
timer for
companion
cell sNOW!

for re-start
purposes •••
(see CC)

EXCON-2

El

K=l,ll

CA4

CALIB(IBEG,ANS)

optimal current to be
set is value passed
from CC (or CVLC)

RLOGG
read current

use algorithm to
define new current

to be set

CA3

215

N define optimal current
to be set and optimal

reading

CA?

CALIB-1

C.Al

CA4

N

define current to be
set and reading as
the optimal values

216

y

CALIB-2

CA2 CAl

CV3

217

ICNT•-1
optimal voltage VOPT•0

optimal current to be set,
CUROPT, is value passed

from CVLC

y

RLQGG.AMPNEW
and VNEW

CV2

CALIBV-1

CVI

218

CALIBV-2

CV3
CVl

y

K=l,ll

CAP3

219

ICNT•-1
optimal power POPT•0;

optimal current to be set,
CUROPT, 1s value passed from CP

CAP2

CALIBP-1

CAPl

CAP3

220

POLDaPNEW
AHPOLD-AMPNEW

VOLD-VNEW

CALIBP-2

CAPl

TIME.AS(ANS)

I3

221

wait for 1/0 termination on
the channel for this cell

update the counter A(6,J) for
the next data-record; update a
pointer to the location of the
next data-record in BUF (INDEX)

12

rJ

if needed
increment the
cycle number

define a data­
record as the

date

I1

INPUT-1

!3

K= ,5

I~

222

define measurement
as part of the

data-record

convert voltage measurement
(from shunt) to a current

measurement

INPUT-2

11

N

14

16

223

IS

define offset H in
pointer storage area

(in BUF)

N

17

discard data-record;
decrement counter for 1----1

data records
A(6,J)•A(6,J)-l

define pointer in the BUF storage
area. The start position of the

data-records for this mode, in the
current block, is 1

INPUT-3

14

224

17

update block number: A(7,J)•A(7,J)+l
update data-record counter: A(6,J)=0

INPUT-4

I
determine A/0 channel

watched for the regulation
of the data-taking rate,

and determine its A/0 range

y

TS T4

225

T3

TIMEAS-1

N compute pointer INDEX,
.-:>---I to the last data-record

stored in the BUF area

y

determine channel watched
for the regulation of the

data-taking rate, and
determine its A/0 range

data-record
is in

previous
block

INDEX=120

define tolerance TOL, on the basis
of the interval for data-taking

rate adjustment

y

T1

T5

N

T3

y

JBUF+JREH(J)
•JNEXT

226

~T(inp)al5 sees

~T(inp)=lmin 1-----N:.:..:::::-

update timer for next run
through INPUT

JT(l,J)•t1me+6T(inp)

~T(store)•
~T(store)*
JFAC(J)

TIMEAS-2

Tl

227

N

do !CLOSE on
the channel

for this cell

reset flag for
file closed

A(S,J)=0

FILOPC

y

y

update channel watched
for data-taking rate
adjustment on charge

update the rest of
the B array

y

update data-taking rate
adjustment information

(for charge)

update Q and Q0 arrays

228

update eye 1 e I,
ON/OFF and ch./ds.

flags

y

(CHANGE-action
timer)-time•

JTOM

update JTOM

write first and last record
of GMAT.UNF, so as to physically
write all the updated information

update block number
currently used in

the data-file

N

update maximum A-hrs
and A-hrs passed

UPDATE

I

J•JS ART to
J NO

F2

N

229

wait for termination of an
1/0 transfer for this cell

cell goes out of operation
A(l.J)•9

CHOOSE (MODE•3)
ter~~~inate

FINISH-1

F2

230

Fl

write BUF area to
a block on the file

FILOPC
close file

N

FINISH-2

PLACE
set cuT"M!nt to l'

231

RESET

all action timers

232

announce that a message 1s pending
MESCNT•MESCNT+l

CRMESS

233

MSBOSS-1

MSHOLD(IDONE,MOOE•l)

MSCHNG(IDONE)

234

MSBOSS-2

MSRUN(IDONE,INITE)

235

put time and date of
interruption .in

response

put A(3,J) flag in response

put block number and cycle
information 1n response

MSWHO

response•'TH'

response•'NG'

y

236

from message, get:
- start mode flag (!START)

- scratch-file flag (ISCRAT)
- cycle information

- series connection flag (ISERIE)

response•'EF'

put information from file
into the 6 parameter arrays

A,B,JT,VAl,QI'J,Q

MRl

MSRUN-1

MR2

MRS

237

copy the parameters that were
read from FHAT.UNF, into

GHAT.UNF

set the INTERR flag
in the pointer storage

area, in BUF

Ml!4

MSRUN-2

read last block number written
into, from GMAT.UNF

MR3

MR6 MRS

MR9

238

MR4

declare that no HOLD
request 1s pending for

this cell
KCYCLE(J)•·1

y

N

MSRUN-3

MR3

the cycle number passed is
1 too high! It will be

incremented in subroutine
INPUT. Therefore decrement

it now.

MR7

MR9

send number of cell
declared a companion

to the WATCHDOG

this cell is not
allowed to start:

A(l,J)•0

send response and
activate message

receiver

N

239

declare that the companion cell
is put in operation (A(l,J)•l)
and that it was in open-circuit

(A(2,J)•0)

write these 2 parameters
(for each cell) into

GMAT.UNF

send response to WATCHDOG
and activate message receiver

MSRUN-4

MR7

240

if A(l,J)•l, from GMAT.UNF,
set it to I'

y

send the response to WATCHDOG

MSCHNG

241

MSUPDT-1

MU2 MUl

242

MU2

adjust JT(4,J) value so it
corresponds to the present
value of JT(l,J) used by

the program

MSUPOT-2

response•'NG'

send response, including the
time left in the cancelled

mark-time, to WATCHDOG

243

cancel an eventual
mark-time for the

cell

encode response with cycle number,
cycling situation, A-hrs. Include

information for HOLD requests

response,.'NC'

MSWHEN

send response
to WATCHDOG

I

244

MSSTOP(IDONE)

activate timer request for
this cell, with completion

routine CRSTOP

MSSTOP

245

set the shop flag
equal to the number
of the cell which
triggered this

completion routine

CRSTOP

246

find the mode of the present,
or if in open-circuit, of the
last half cycle (0 fords.,

1 for ch.).

MH2

MSHOLD-1

M~l

247

MSHOLD-2

MHl

y

KCYCLE(K)•-1

248

I~SHOLD-3

MHl

y

• y

N

K•1,16

N

KCYCLE(K)•-1

249

set its
termination

flag

MSNOH

250

PROGRAM START

C THIS PROGRAM CALLS THE MAIN PROGRAM, IN VIRTUAL MEMORY

COMMON/HNDLER/MCHAN

COMMON/CHANNELS/ICHAN(l6)

COMMON/QUEUE/AREAQ

COMMON/CHACHA/AREAC

INTEGER AREAQ(lOO),AREAC(l60)

CALL REALTIM

END

SUBROUTINE REALTIM

C THIS SUBROUTINE IS THE ACTUAL START OF THE PROGRAM

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CURTIM/JLAST,JREM

COMMON/CURCUR/CUR,COMP

COMMON/PNTRS/KPOINT,LPOINT

COMMON/RES/JTOP,JMAX

COMMON/INT4/JTWO,JFOUR,JFAC

COMMON/TIMTIM/JCHECK,JSET,JCVLC

COMMON/CHANNELS/ICHAN(l6)

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/CCHOLD/JCYCLE(l6),KCYCLE(l6),IHOLD

COMMON/HNDLER/MCHAN

COMMON/QUEUE/AREAQ

COMMON/CHACHA/AREAC

251

INTEGER A(22,16),B(14,16),DBLK(4),AREAQ(100),AREAC(160)

INTEGER*4 JT(10,16),JLAST(16),JREM(16),JTOP,JTWO,JFOUR,

1JCHECK,JSET,JCVLC,JFAC(16)

DIMENSION VAL(14,16),BUF(128,16),Q0(2,16),Q(2,16),CUR(16),

1COMP(16)

DATA DBLK/3RHD ,0,0,0/

C get channel, and do LOOKUP for i 0 driver

MCHAN=IGETC()

IF(MCHAN.LT.O) STOP 'CANNOT ALLOCATE CHANNEL'

II=LOOKUP(MCHAN,DBLK)

IF(II.LT.O) STOP 'BAD LOOKUP'

C call routine that will open the parameter files

CALL GMOPEN

C make RT-11 I/O queue larger

II~IQSET(10,AREAQ)

C get 32 I/O channels

II=ICDFN(32,AREAC)

252

IF(II.NE.O) STOP 'NOT ENOUGH FREE SPACE FOR CHANNELS'

C channel numbers are 16 for cell 1, 17 for cell 2, •••

DO 1 KK=1,16

1 ICHAN(KK)=15+KK

C initialize INT*4 parameters

CALL JTIME(0,1,0,0,JCHECK)

CALL JJCVT(JCHECK)

CALL JTIME(0,1,0,0,)SET)

CALL JJCVT(JSET)

CALL JTIME(0,0,15,0,JCVLC)

CALL JJCVT(JCVLC)

LL=JAFIX(2.,JTWO)

MM=JAFIX(4.,JFOUR)

C declare that there are no cells in operation

DO 5 J-l,JMAX

5 A(l,J)=O

C go bears !!!

CALL GO(BUF)

RETURN

END

SUBROUTINE GMOPEN

C THIS SUBROUTINE OPENS THE PARAMETER FILES

COMMON/RES/JTOP,JMAX

253

COMMON/PNTRS/KPOINT,LPOINT

INTEGER*4 JTOP

C open FMAT.UNF and GMAT.UNF

OPEN(UNIT=10,NAME='VOL:FMAT.UNF' ,TYPE='OLD',ACCESS='DIRECT',

1RECORDSIZE=1,ERR=888,ASSOCIATEVARIABLE=KPOINT)

C read: maximum number of cells in the test loop

READ(10'1) JMAX, IDUM

C close FMAT.UNF

CLOSE(UNIT=10)

GOTO 900

888 TYPE *,'ERROR IN OPENING FMAT.UNF'

STOP

900 OPEN(UNIT=12,NAME='VOL:GMAT.UNF',TYPE='OLD',ACCESS='DIRECT',

1RECORDSIZE=1,ERR=999,ASSOCIATEVARIABLE=LPOINT)

RETURN

999 TYPE *,'ERROR IN OPENING GMAT.UNF'

STOP

END

254

SUBROUTINE GO(BUF)

C THIS SUBROUTINE GENERATES THE REAL-TIME LOOP, KEEPING TRACK OF

C THE TIME AND COMPARING IT TO THE ADJUSTED VALUE OF ACTION TIMERS.

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/RES/JTOP,JMAX

COMMON/GDNIT/JMIN

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/CCHOLD/JCYCLE(l6),KCYCLE(l6),IHOLD

EXTERNAL RESET,CRMESS

INTEGER*2 LINK(4)

INTEGER A(22,16),B(l4,16),MSG(59),AREA(4),AREA2(4,16)

INTEGER*4 JT(l0,16),JTOP,JMIN,JSLEEP,J57

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16)

DIMENSION BUF(l28,16)

C activate message receiver

II•IRCVDF(MSG,3,AREA,CRMESS)

MESCNT~O

IHOLD=O

IMSTOPaQ

ICOUNT=O

C define smallest action timer • 25 hrs

CALL JTIME(2S,O,O,O,JMIN)

CALL JJCVT(JMIN)

C initialize a INT*4 number • 57 ticks

CALL JTIME(O,O,O,S7,J57)

CALL JJCVT(J57)

ISTOP•O

255

IFLAG=O

C get ready to intercept ACAC's

CALL SCCA(IFLAG)

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

c

C hardware check and parameter update loop

c

1 DO 2 K=l,JMAX

IND=K

C if cell not in operation, jump

IF(A(l,K).EQ.O)GOTO 2

C if not yet time for action, jump

IF(JCMP(JT(9,K),JTOP).GT.O) GOTO 2

C check the hardware

CALL CHECK(IND)

256

C update the parameters in GMAT.UNF

CALL UPDATE(IND,3)

C if no error flag set, jump

IF(A(l,K).NE.2) GOTO 2

C take data, no limits

CALL INPUT(IND,IEX,2,BUF)

C terminate the operation for the cell

CALL FINISH(IND,O,BUF)

2 CONTINUE

c

C status change loop

c

3 DO 5 K=l,JMAX

IND=K

ICOUNT=-ICOUNT+l

C if cell not in operation, jump

IF(A(l,K).EQ.O) GOTO 5

C if not yet time for action, jump

IF(JCMP(JT(3,K),JTOP).GT.O) GOTO 5

C status change, mode 1

CALL CHANGE(IND,l,IOUT,BUF)

C terminate control mode

IF(IOUT.EQ.l) CALL CHOOSE(IND,3,ISTOP,BUF)

C take data, no limits

IF(IOUT.EQ.l) CALL INPUT(IND,IEX,2,BUF)

C status change, mode 2

IF(IOUT.EQ.l) CALL CHANGE(IND,2,IOUT,BUF)

IF(IOUT.EQ.2) GOTO 5

IF(IOUT.NE.3) GOTO 4

ISTOP•O

257

C initialize control mode
'

CALL CHOOSE(IND,l,ISTOP,BUF)

C if no error, jump

IF(ISTOP.EQ.O) GOTO 4

C terminate operation

A(2,K)=O

CALL FINISH(IND,O,BUF)

ISTOP=O

GOTO 5

C status change, mode 3

4 IF(IOUT.EQ.3) CALL CHANGE(IND,3,IOUT,BUF)

C write BUF to file

IF(IOUT.EQ.4) CALL INPUT(IND,IEX,l,BUF)

C status change, mode 4

IF(IOUT.EQ.4) CALL CHANGE(IND,4,IOUT,BUF)

C store date and cycle number

IF(IOUT.EQ.5) CALL INPUT(IND,IEX,3,BUF)

258

C update parameters in GMAT.UNF

CALL UPDATE(IND,l)

5 CONTINUE

C make a second pass for all cells

IF(ICOUNT.EQ.JMAX) GOTO 3

ICOUNT=O

c

c

c

current control loop

DO 7 K=l,JMAX

IND=K

C if cell not in operation, jump

IF(A(l,K).EQ.O) GOTO 7

C if not yet time for action, jump

IF(JCMP(JT(2,K),JTOP).GT.O) GOTO 7

C do current control

CALL CHOOSE(IND,2,ISTOP,BUF)

C if no error, jump

IF(ISTOP.EQ.O) GOTO 7

ISTOP=O

C get ready to change cell status

II•JMOV(JTOP,JT(3,K))

GOTO 3

7 CONTINUE

c

C data-taking loop

c

DO 10 K .. l,JMAX

IND•K

C if cell not in operation, jump

259

IF(A(l,K).EQ.O) GOTO 10

C if not yet time for action, jump

IF(JCMP(JT(l,K),JTOP).GT.O) GOTO 10

C take data, check limits

CALL INPUT(IND,IEX,O,BUF)

C if no limit exceeded, jump

IF(IEX.NE.1) GOTO 10

IEX=O

C get ready to change cell status

II=JMOV(JTOP,JT(3,K))

GOTO 3

10 CONTINUE

C find smallest action timer

CALL GDNITE(O,INITE,J57)

C if no ACAC has been detected, terminate

15 IF(IFLAG.EQ.O) GOTO 25

DO 20 K::al, JMAX

IND::aK

260

C if cell not in operation, jump

IF(A(l,K).EQ.O) GOTO 20

C take data, no limits

CALL INPUT(IND,IEX,2,BUF)

20 CONTINUE

C terminate operation for all cells

CALL FINISH(JMAX,l,BUF)

25 CONTINUE

C give control to message handler

CALL MSBOSS(INITE,BUF)

C if no sleep, jump to the beginning of the real-time loop

IF(INITE.EQ.l) GOTO 1

DO 30 K=l,JMAX

IND=K

C if terminatin flag not set, jump

IF(A(l,K).NE.2) GOTO 30

C take data, no limits

CALL INPUT(IND,IEX,2,BUF)

C terminate cell operation

CALL FINISH(IND,O,BUF)

30 CONTINUE

C go and take a nap, if you can

CALL GDNITE(l,INITE,J57)

C if no more sleep, jump back to start of real-time loop

GOTO(lS,l) INITE+l

RETURN

END

261

SUBROUTINE GDNITE(IGD,INITE,J57)

C THIS SUBROUTINE DETERMINES IF A CELL IS ALLOWED TO SLEEP, AND

C IF SO, FOR HOW LONG

COIDfON/PASS/ A,B,JT, VAL,QO, Q

COMMON/RES/JTOP,JMAX

COMMON/GDNIT/JMIN

INTEGER A(22,16),B(14,16)

INTEGER*4 JT(10,16),JTOP,JMIN,JSLEEP,J57

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

IF(IGD.EQ.1) GOTO 20

DO 15 K=1, JMAX

C if cell not in operation, jump

IF(A(l,K).EQ.O) GOTO 15

C get minimal action timer

DO 10 L=1,3

10 IF(JCMP(JT(L,K),JMIN).LT.O) II=JMOV(JT(L,K),JMIN)

IF(JCMP(JT(9,K),JMIN).LT.O) II=JMOV(JT(9,K),JMIN)

15 CONTINUE

INITE=O

TYPE 1000

1000 FORMAT(/)

RETURN

262

C get time of day and convert

20 CALL GTIM(JTOP)

CALL CVTTIM(JTOP,IHR,IMIN,ISCND,ITICK)

CALL JJCVT(JTOP)

C if time is 23:59:55, call RESET

IF(IHR.EQ.23.AND.IMIN.EQ.59.AND.ISCND.GT.55) CALL RESET(O)

C define sleep time

IIDJSUB(JMIN,JTOP,JSLEEP)

C if no sleep, jump

IF(II.LE.O) GOTO 25

~J•JCMP(JSLEEP,J57)

CALL JJCVT(JSLEEP)

C if sleep time > 57 ticks, sleep for that time. Otherwise,

C sleep for less time.

IF(JJ.GT.O) CALL ISLEEP(0,0,0,57)

IF(JJ.LE.O) CALL ITWAIT(JSLEEP)

INITE=-0

TYPE 2000,IHR,IMIN,ISCND

2000 FORMAT('+',T2,I2,':',I2,':',I2)

RETURN

c define minimal action timer a 25 hrs

25 CALL JTIME(25,0,0,0,JMIN)

CALL JJCVT(JMIN)

INITE""l

RETURN

263

END

SUBROUTINE ANNOUNC(B)

C THIS SUBROUTINE GIVES THE TIME IN HRS,MINS,SECS AND TICKS

INTEGER*4 B

CALL JJCVT(B)

CALL CVTTIM(B,IHR,IMIN,ISEC,ITICK)

TYPE 9000,IHR,IMIN,ISEC,ITICK

9000 FORMAT('0',3X,I2,':',I2,':',I2,':',I2)

RETURN

END

264

.TITLE !DATE

.GLOBL !DATE

;+

;THIS PROGRAM CAN BE ASSEMBLED SEPARATELY AND LINKED WITH A USER PROGRAM.

;IT MUST BE CALLED FROM A FORTRAN PROGRAM

CALL IDATE(IMONTH,IDAY,IYEAR)

;INPUT: NONE

;OUTPUT: !MONTH (1-12)

!DAY (1-31)

!YEAR

;ERRORS: RO=O IF NO DATE ENTERED

;REF: RT-11 V0.4 MANUAL 3A, 2-26

·-'
.MCALL .DATE

!DATE: .DATE

MOV RO,R2

BEQ 1$

BIC 11177740,R2

ADD 1172. ,R2

MOV RO,R1

ASL R1

ASL R1

ASL R1

SWAB R1

BIC 11177740,R1

265

SWAB RO

ASR RO

ASR RO

BIC 11177740,RO

MOV R0,@2(R5)

MOV Rl,@4(R5)

MOV R2,@6(R5)

1$: RETURN

.END IDATE

SUBROUTINE CHANGE(J,IIN,IOUT,BUF)

C THIS SUBROUTINE IMPLEMENTS THE CHANGE OF OPERATING MODE OF

C A CELL DURING THE CYCLING SEQUENCE. IT REDEFINES A TIMER FOR

..

266

C COMPLETION OF THE NEWLY ENTERED MODE.

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/TIMTIM/JCHECK,JSET,JCVLC

COMMON/RES/JTOP,JMAX

COMMON/OFFSET/OFF(16)

COMMON/CCHOLD/JCYCLE(16),KCYCLE(16),IHOLD

INTEGER A(22,16),B(14,16)

INTEGER*4 JT(10,16),JTOP,BB,JCHECK,JSET,JCVLC

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

DIMENSION BUF(128,16)

D TYPE *,'CHANGE'

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

GOT0(5,35,40,50) IIN

C start of a new mode

5 A(8,J)~O

C next time for INPUT is now

II~JMOV(JTOP,JT(1,J))

II~JMOV(JTOP,BB)

CALL ANNOUNC(BB)

C ring bell to announce that something is changing

10 IF(ITTOUR("007).NE.O) GOTO 10

C if cell was in open circuit, jump

IF(A(2,J).EQ.O) GOTO 15

IOUT•1

RETURN

C check if controller is in computer mode

15 CALL GET(ICOM,A(9,J))

C if yes, jump

IF(ICOM.EQ.O) GOTO 30

267

C if no, wait one more open-circuit period

II=JADD(JTOP,JT(7,J),JT(3,J))

II=JMOV(JT(3,J),JT(2,J))

II=JMOV(JT(2,J),JT(l,J))

C ring bell to wake the user up

DO 25 I=l,5

20 IF(ITTOUR("007).NE.O) GOTO 20

25 CONTINUE

TYPE 1000,A(9,J)

1000 FORMAT(lX,'PLEASE PUT CURRENT CONTROLLER ',I2,' BACK IN'

l'COMPUTER MODE')

IOUT=2

RETURN

C we start an active mode

30 A(2,J)=l

IOUTa3

RETURN

268

C go in open circuit

35 A(2,J)=O

IHOLD=1

C define next status of cell (charge or discharge: opposite to

C the one it exited from)

A(3,J)=1-A(3,J)

C adjust action timer for end of open circuit and for next current

C control of the cell

II=JADD(JTOP,JT(7,J),JT(3,J))

II=JMOV(JT(3,J),JT(2,J))

II=JMOV(JT(3,J),BB)

IF(A(3,J).EQ.O) TYPE 1100,J

IF(A(3,J).EQ.1) TYPE 1200,J

1100 FORMAT(1X,'CELL ',I2,' IS NOW IN OPEN-ciRCUIT. '

1'I WILL START A DISCHARGE AT')

1200 FORMAT(1X,'CELL ',I2,' IS NOW IN OPEN-CIRCUIT. '

1'I WILL START A CHARGE AT')

CALL ANNOUNC(BB)

GOTO 45

C adjust action timer for end of charge or discharge (will be

C irrelevant if no time limit was requested (only single modes):

C the value added will be 24 hrs)

40 II~JADD(JTOP,JT(6-A(3,J),J),JT(3,J))

II~JMOV(JTOP,JT(2,J))

IF(A(3,J).EQ.O) TYPE 1300,J

IF(A(3,J).EQ.1) TYPE 1400,J

1300 FORMAT(1X,'I HAVE STARTED A DISCHARGE OF CELL ',I2)

1400 FORMAT(1X,'I HAVE STARTED A CHARGE OF CELL ',I2)

C define offset M in the pointer storage area

C M • 1 for charge, 2 for open circuit, 3 for discharge

269

45 M=l+(l-A(2,J))+A(2,J)*(2-2*A(3,J))

C if the pointer for this mode, in the storage area, is 0, jump

IF(BUF(l20+M,J).EQ.O) GOTO 55

C we have to start a new block in the scratch-file

C define the end of the block as the last data-record stored

BUF(l24,J)=-A(6,J)

IOUT=4

RETURN

C define M (see above)

50 M=l+(l-A(2,J))+A(2,J)*(2-2*A(3,J))

C define pointer to the first data-record for this mode, in the

C BUF storage area (• data block)

55 BUF(l20+M,J)=A(6,J)+l

IF(A(2,J).EQ.O) IOUT=6

IF(A(2,J).EQ.l) IOUT=5

C if no companion, jump

IF(A(ll,J).EQ.O) GOTO 57

C if not controlling cell, return

IF(A(2,A(ll,J)).NE.A(2,J)) RETURN

270

C set current to 0

57 CALL PLACE(A(9,J),O.,A(lO,J),IDUM)

C if cell was in pulse mode and goes in open circuit, set

C the controller in the normal mode

IF(A(2,J).EQ.O.AND.B(4-A(3,J),J).GE.7) CALL EXT(O,A(9,J))

C disconnect the controller

CALL SET(O,O,A(9,J))

C if cell goes in open circuit, return

IF(A(2,J).EQ.O) RETURN

C sleep for 3 ticks and measure current offset

CALL ISLEEP(0,0,0,3)

OFF(J)=RLOGG(A(l9,J),A(20,J),l6,2000)

TYPE *,'OFFSET ',OFF(J),' V'

C if there is a companion, update its offset

IF(A(ll,J).NE.O) OFF(A(ll,J))=OFF(J)

C connect the controller

CALL SET(A(2,J),A(3,J),A(9,J))

RETURN

END

SUBROUTINE CHECK(J)

C THIS SUBROUTINE CHECKS IF THE HARDWARE IS PROPERLY OPERATING

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/TIMTIM/JCHECK,JSET,JCVLC

COMMON/RES/JTOP,JMAX

INTEGER*4 JT(l0,16),JTOP,JCHECK,JSET,BB,JCVLC

271

INTEGER A(22,16),B(l4,16)

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

D TYPE *,'CHECK'

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

C update action timer

II=JADD(JTOP,JCHECK,JT(9,J))

C check if controller in computer mode

CALL GET(ICOM,A(9,J))

C if cell in open circuit, it does not matter: return

IF(A(2,J).EQ.O) RETURN

C if not in computer mode, jump

IF(ICOM.EQ.l) GOTO 5

C if the current has the wrong sign, jump

CURR•RLOGG(A(19,J),A(20,J),8,0)

IF(((A(3,J).EQ.O.AND.CURR.LT.O.).OR.(A(3,J).EQ.l.AND.CURR.GT.O.

1))) GOTO 5

RETURN

272

C ring bell

5 DO 10 I=1,5

7 IF(ITTOUR("007).NE.O) GOTO 7

10 CONTINUE

TYPE 1000,J

1000 FORMAT(1X,'CELL ',I2,' HAS BEEN REMOVED FROM CIRCUIT')

C set termination flag

A(1,J)=2

IF(A(11,J).EQ.O) RETURN

C if there is a companion cell, and it is still in operation,

C force it to call this routine ASAP

IF(A(1,A(11,J)).NE.O) II=JMOV(JTOP,JT(9,A(11,J)))

·RETURN

END

SUBROUTINE CHOOSE(J,ISEC,ISTOP,BUF)

C THIS ROUTINE CALLS THE APPROPRIATE CONTROL ROUTINE FOR A CELL

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/RES/JTOP,JMAX

INTEGER A(22,16),B(14,16)

INTEGER*4 JT(10,16),JTOP

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

DIMENSION BUF(l28,16)

D TYPE 1000

1000 FORMAT(lX,'CHOOSE')

C if control mode exists, jump

273

IF(B(3+A(3,J),J).GT.O.AND.B(3+A(3,J),J).LE.9) GOTO 2

C set error flag

ISTOP=l

RETURN

2 GOT0(5,50) A(3,J)+l

c

c discharge control modes

c

5 GOTO(l0,10,10,15,15,15,20,20,20) B(3,J)

10 CALL CC(J,ISEC,ISTOP,BUF)

RETURN

15 CALL CP(J,ISEC,ISTOP,BUF)

RETURN

20 CALL EXCON(J,ISEC,ISTOP,BUF)

RETURN
~

c

c ~barge control modes

c

50 GOT0(55,55,55,70,70,70,75,75,75) B(4,J)

55 CALL CC(J,ISEC,ISTOP,BUF)

D TYPE *,'END OF CHOOSE'

RETURN

274

65 CONTINUE

70 CALL CVLC(J,ISEC,ISTOP,BUF)

RETURN

75 CALL EXCON(J,ISEC,ISTOP,BUF)

RETURN

END

SUBROUTINE CC(J,ISEC,ISTOP,BUF)

C THIS SUBROUTINE ORGANIZES THE CONSTANT CURRENT OPERATION

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CURTIM/JLAST,JREM

COMMON/CURCUR/CUR,COMP

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/RES/JTOP,JMAX

COMMON/OFFSET/OFF(l6)

INTEGER A(22,16),B(l4,16)

INTEGER*4 JT(l0,16),JLAST(l6),JREM(l6),JDIF,JTOP,BB

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16),CUR(l6),COMP(l6)

DIMENSION BUF(l28,16)

LOGICAL*l ANS

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

GOT0(5,10,20) ISEC

c

c initialization section

275

c

C if single charge or discharge, jump

5 IF(B(3+A(3,J),J).EQ.2) GOTO 8

C define the A-hrs to pas on charge

IF(A(3,J).EQ.1) Q0(2,J)=VAL(4,J)*Q(1,J)

8 CONTINUE

D TYPE 900

900 FORMAT(1X,'CC INIT')

C if no cells in series, return

IF(B(A(3,J)+3,J).NE.3) RETURN

C if cell in series is still in open circuit, force it to start

C a charge or a discharge

c

IF(A(2,A(11,J)).EQ.O) II=JMOV(JTOP,JT(3,A(11,J)))

RETURN

C control section

c

C if start of mode, compute current to be set

10 IF(A(8,J).EQ.O) CUR(J)=VAL(11+A(3,J),J)*A(10,J)/5.

D TYPE 1000

1000 FORMAT(1X,'CC CONTROL')

I

276

C update action timer

II=JADD(JTOP,JT(8,J),JT(2,J))

C if new mode, jump

IF(A(8,J).EQ.O) GOTO 14

C if cell not controlling, jump

IF(J.LT.A(11,J)) GOTO 13

C compute A-hrs for this cell, and eventually for its companion

II=JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR=FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READCH=(RLOGG(A(19,J),A(20,J),8,0)-QFF(J))*VAL(3,J)

Q(A(3,J)+1,J)=Q(A(3,J)+1,J)+HR*ABS(READCH)

TYPE *,'CELL ',J,', A-HRS PASSED ',Q(A(3,J)+l,J)*A(lO,J)/5.

IF(B(3+A(3,J),J).NE.3) GOTO 12

Q{A(3,A{ll,J))+1,A(ll,J))=Q(A(3,A(11,J))+l,A(11,J))+HR*ABS(READCH)

TYPE *,'CELL ',A{ll,J),', A-HRS PASSED ',Q{A(3,A(ll,J))+1,

1A(11,J))*A(10,A(1l,J))/5.

C update JLAST timers

II=JMOV(JTOP,JLAST{A(ll,J)))

12 II•JMOV(JTOP,JLAST(J))

C if A-hrs exceeded, set ISTOP flag

13 IF(Q(A(3,J)+l,J).LT.QO(A(3,J)+1,J)) GOTO 15

ISTOP•l

RETURN

C update JLAST timer

14 II•JMOV(JTOP,JLAST(J))

C if cell not controlling, return

15 IF(J.LT.A(11,J)) RETURN

/.

277

C define setpoint and accuracy for current regulation, call CALIB

SETPNT=VAL(ll+A(3,J),J)*(l-2*A(3,J))/VAL(3,J)

ACC=.OOl

CALL CALIB(SETPNT,CUR(J),A(9,J),A(10,J),A(l9,J),A(20,J),OFF(J),

1ACC,.005,A(8,J),ANS)

C if ANS = F, set termination flag for this cell, and eventually

C for its companion

c

c

c

20

D

1100

c

c

IF(ANS.EQ.'F') A(l,J)=2

IF(ANS.EQ.'F'.AND.A(ll,J).NE.O) A(l,A(ll,J))=2

RETURN

termination section

CONTINUE

TYPE 1100

FORMAT(lX,'CC TERMIN')

if !STOP was set in the control section (A-hrs exceeded), no

need for the next commands

IF(ISTOP.EQ.l) GOTO 25

278

C update A-hrs

Il=JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR=FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READCH=(RLOGG(A(19,J),A(20,J),8,0)-0FF(J))*VAL(3,J)

Q(A(3,J)+1,J)=Q(A(3,J)+1,J)+HR*ABS(READCH)

25 ISTOP=O

C convert V-hrs to A-hrs, and store them in BUF area

BUF(125+A(3,J),J)=Q(A(3,J)+1,J)*A(10,J)/5.

WRITE(6,*) 'CELL ',J,' , A-HRS PASSED: ',BUF(125+A(3,J),J)

IF(A(3,J).EQ.O) WRITE(6,*) 'ON DISCHARGE, CYCLE',ICYCLE(J)

IF(A(3,J).EQ.1) WRITE(6,*) 'ON CHARGE, CYCLE',ICYCLE(J)

REWIND 6

C if no cells i~ series, jump

IF(B(A(3,J)+3,J).NE.3) GOTO 27

C if companion cell still in active mode, force it to go in open

C circuit

IF(A(2,A(11,J)).EQ.1) II~JMOV(JTOP,JT(3,A(11,J)))

C initialize A-hrs for the next half-cycle

27 Q(2-A(3,J),J)m0.

C if single half-cycle mode, return

IF(B(3+A(3,J),J).EQ.2.0R.B(3+A(3,J),J).EQ.5) RETURN

C if cell was on charge and is put out of operation, apply trick,

C so that, when it re-starts (on charge), the right number of

C A-hrs to pass are defined

IF(A(3,J).EQ.1.AND.A(1,J).EQ.O) Q(1,J)=Q0(2,J)/VAL(4,J)

RETURN

END

279

SUBROUTINE CVLC(J,ISEC,ISTOP,BUF)

C THIS SUBROUTINE ORGANIZES CONSTANT CURRENT - LIMITED VOLTAGE CONTROL

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CURTIM/JLAST,JREM

COMMON/CURCUR/CUR,COMP

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/TIMTIM/JCHECK,JSET,JCVLC

COMMON/RES/JTOP,JMAX

COMMON/OFFSET/OFF(l6)

INTEGER A(22,16),B(l4,16)

INTEGER*4 JT(l0,16),JLAST(16),JREM(l6),JDIF,JTOP,JCVLC,

lJCHECK,JSET

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16),CUR(l6),COMP(l6)

DIMENSION BUF(l28,16),STTMP(l6),X(l6)

LOGICAL*l ANS

280

c

c

WHEN RUN IN FB, A COMMON FOR STTMP() NEEDS TO BE ADDED !!!

WHEN RUN IN FB, A COMMON FOR X() NEEDS TO BE ADDED!!!

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

IFLAG=O

GOTO(S,l0,65) !SEC

c

c

c

initialization section

C if not single mode, update A-hrs to pass on charge

5 IF(B(4,J).NE.5) Q0(2,J)=VAL(4,J)*Q(l,J)

C initialize slope for voltage regulation

X(J)::ol.

D TYPE 900

900 FORMAT(lX,'CVLC !NIT')

C if no cells in series, return

IF(B(4,J).NE.6) RETURN

C if companion cell still in open circuit, force it to start a

C charge

c

IF(A(2,A(11,J)).EQ.O) II::oJMOV(JTOP,JT(3,A(11,J)))

RETURN

C control section

c

10 CONTINUE

D TYPE 1000

1000 FORMAT(1X,'CVLC CONTROL')

C if not new mode, jump

IF(A(8,J).NE.O) GOTO 12

c

c

c

subsection

281

1st pass

C define current to be set

CUR(J)=VAL(l2,J)*VAL(3,J)*A(l0,J)/5.

C update action timer and JLAST timer

II=JADD(JTOP,JCVLC,JT(2,J))

II=JMOV(JTOP,JLAST(J))

C if cell not controlling, jwnp

IF(J.LT.A(ll,J)) RETURN

C define setpoint, call CALIB

SETPNT•-VAL(l2,J)/VAL(3,J)

CALL CALIB(SETPNT,CUR(J),A(9,J),A(lO~J),A(l9,J),A(20,J),

10FF(J),.001,.005,A(8,J),ANS)

C if ANS = F, set termination flag for this cell (and eventually

C for its companion)

IF(ANS.EQ.'F') A(l,J)=2

IF(ANS.EQ.'F'.AND.A(ll,J).NE.O) A(l,A(ll,J))•2

C if there is a companion cell, define its CUR

IF(B(3.,J) .EQ. 6) CUR(A(11 ,J))=CUR(J)

RETURN

282

C if this is the second pass through the control section, execute

C the next commands; otherwise jump

12 IF(A(8,J).NE.1) GOTO 20

c

C subsection: 2nd pass

c

C start by saying that this cell is controlling

A(8,J)=2

C if there is no companion cell, no need to worry more about which

C is controlling

IF(B(3,J).NE.6) GOTO 20

C if companion cell is controlling, jump

IF(J.LT.A(11,J)) GOTO 15

C companion cell is not controlling

A(8,A(ll,J))s4

GOTO 20

C companion cell is controlling, inverse flags

15 A(8;J)s4

A(8,A(1l,J))=2

c

C subsection: A-hr update

c

C compute A-hrs for this cell and (eventually) for its companion.

C If the cell is not controlling, just get the time and read the

C current : this will be useful if the cells switch in their

C control

20 II•JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR•FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

283

1216000.

READC=(RLOGG(A(19,J),A(20,J),8,0)-QFF(J))*VAL(3,J)

IF(A(8,J).EQ.4) GOTO 25

Q(2,J)=Q(2,J)+HR*ABS(READC)

TYPE *,'CELL ',J,', A-HRS PASSED ',Q(2,J)*A(10,J)/5.

IF(B(3,J).NE.6) GOTO 25

Q(2,A(11,J))=Q(2,A(11,J))+HR*ABS(READC)

TYPE *,'CELL ',A(11,J),', A-HRS PASSED ',Q(2,A(11,J))*

1A(10,A(11,J))/5.

C if A-hrs exceeded, set ISTOP flag, otherwise jump

25 IF(Q(2,J).LT.Q0(2,J)) GOTO 30

ISTOP=1

RETURN

C if cell is already controlled on the voltage, jump

30 IF(A(8,J).EQ.3) GOTO 55

c

C subsection: current control

c

C if cell is not controlling, jump

IF(A(8,J).EQ.4) GOTO 35

284

C define setpoint and call CALIB

SETPNT=-VAL(l2,J)/VAL(3,J)

CALL CALIB(SETPNT,CUR(J),A(9,J),A(lO,J),A(l9,J),A(20,J),

10FF(J),.001,.005,A(8,J),ANS)

C if ANS = F, set termination flag for this cell (and eventually

C for its companion)

IF(ANS.EQ.'F') A(l,J)=2

IF(ANS.EQ.'F'.AND.A(ll,J).NE.O) A(l,A(ll,J))=2

C read the voltage on the desired channel for voltage regulation

35 READV=RLOGG(A(ll+2*B(l4,J),J),A(l2+2*B(l4,J),J),8,0)

C if voltage close to be exceeded, jump to the section where the

C cell is defined as regulated on the voltage

IF(READV.GE.(VAL(l4,J)*(l~.002))) GOTO 40

C store time interval for current control in JDIF

II~JMOV(JT(8,J),JDIF)

C regulation on the current terminated, jump

GOTO 60

c

C subsection: change from constant current to constant voltage mode

c

C if this cell was not controlling on current, set !FLAG

40 IF(A(8,J).EQ.4) IFLAG=l

C cell is now controlling on voltage

A(8,J)=3

C if the current channel was watched for data taking rate

C adjustment, jump

IF(B(2,J).EQ.4) GOTO 45

C otherwise, save the old specs for rate adjsutment, and now,

C watch the current channel, with a step of 20 mA

B(l2,J)•B(2,J)

B(2,J)=4

STTMP(J)=VAL(2,J)

VAL(2,J)=.020*5./A(lO,J)

285

C if no companion cell, jump

45 IF(B(4,J).NE.6) GOTO 55

C companion cell is not controlling anymore

A(8 ,A(ll,J))=4

C if for the companion cell, the current channel was watched for

C adjustment of the data-taking rate, reset the old specs

IF(B(2,A(ll,J)).EQ.4) GOTO 50

B(12,A(ll,J))=B(2,A(ll,J))

B(2,A(ll,J))=4

STTMP(A(ll,J))=VAL(2,A(ll,J))

VAL(2,A(ll,J))=VAL(2,J)

C if IFLAG was set, then the cell just became controlling : before,

C its comapnion was controlling; update its A-hrs; otherwise, jump

286

50 IF(IFLAG.NE.l) GOTO 55

Q(2,J)=Q(2,J)+HR*ABS(READC)

c

TYPE *,'CELL ',J,', A-HRS PASSED ',Q(2,J)*A(lO,J)/5.

Q(2,A(11,J))=Q(2,A(11,J))+HR*ABS(READC)

TYPE *,'CELL ',A(11,J),', A-HRS PASSED ',Q(2,A(11,J))*

1A(10,A(l1,J))/5.

IF(Q(2,J).LT.Q0(2,J)) GOTO 55

ISTOP=1

RETURN

C subsection: voltage control

c

C define setpoint and call CALIBV

55 SETPNT=VAL(l'4,J)

CALL CALIBV(SETPNT,CUR(J),A(9,J),A(10,J),A(19,J),A(20,J),

1A(11+2*B(14,J) ,J) ,A(12+2*B(14,J) ,J) ,OFF(J) ,X(J), .001, .OOS,ANS)

C if ANS 3 F, set termination flag for this cell (and eventually

C for its companion)

IF(ANS.EQ.'F') A(1,J)•2

IF(ANS.EQ.'F'.AND.A(11,J).NE.O) A(1,A(11,J))=2

C put 15 seconds in JDIF

c

C subsection: timer update

c

II•JMOV(JCVLC,JDIF)

C update action timer with JDIF

60 II•JADD(JTOP,JDIF,JT(2,J))

C if cell not controlling, return

IF(A(8,J).EQ.4) RETURN

C update JLAST for this cell and eventually for its companion

287

II=JMOV(JTOP,JLAST(J))

IF(B(3,J).NE.6) RETURN

II=JMOV(JTOP,JLAST(A(11,J)))

C update CUR for the companion

CUR(A(11,J))=CUR(J)

RETURN

c

C termination section

c

65 CONTINUE

D TYPE 1100

1100 FORMAT(1X,'CVLC TERM!N')

C if necessary, re-store the old specs for data-taking rate adjustment

IF(B(2,J).NE.4) GOTO 70

B(2,J)=B(12,J)

VAL(2,J)=STTMP(J)

C if !STOP was set, no need for next commands

288

70 IF(ISTOP.EQ.1) GOTO 75

II=JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR=FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READC=(RLOGG(A(19,J),A(20,J),8,0)-0FF(J))*VAL(3,J)

Q(2,J)=Q(2,J)+HR*ABS(READC)

75 ISTOP=O

C convert V-hrs to A-hrs, and store them in the BUF area

BUF(125+A(3,J),J)=Q(2,J)*A(10,J)/5.

WRITE(6,*) 'CELL ',J,' , A-HRS PASSED :',BUF(125+A(3,J),J)

WRITE(6,*) 'ON CHARGE, CYCLE',ICYCLE(J)

REWIND 6

C if no companion cell, jwnp

IF(B(4,J).NE.6) GOTO 80

C if companion cell still in active mode, force it to go in

C open circuit

IF(A(2,A(11,J)).EQ.1) II=JMOV(JTOP,JT(3,A(11,J)))

C initialize A-hrs for next half-cycle

80 Q(2-A(3,J),J)=O.

C if single half-cycle charge, return

IF(B(4,J).EQ.5) RETURN

C trick, see CC subroutine

IF(A(l,J).EQ.O) Q(l,J)=Q0(2,J)/VAL(4,J)

RETURN

END

I

289

SUBROUTINE CP(J,ISEC,ISTOP,BUF)

C THIS SUBROUTINE ORGANIZES CONSTANT POWER CONTROL

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CURTIM/JLAST,JREM

COMMON/CURCUR/CUR,COMP

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/TIMTIM/JCHECK,JSET,JCVLC

COMMON/RES/JTOP,JMAX

COMMON/OFFSET/OFF(l6)

INTEGER A(22,16),B(l4,16) '

INTEGER*4 JT(l0,16),JLAST(l6),JREM(l6),JDIF,JTOP,JCHECK,JSET,

lJCVLC

c

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16),CUR(l6),COMP(l6)

DIMENSION BUF(l28,16),X(l6)

LOGICAL*l ANS

WHEN RUN IN FB, A COMMON FOR X() NEEDS TO BE ADDED!!!

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

GOT0(5,10,40) !SEC

c

290

c

c

initialization section

C initialize slope for power regulation

5 X(J)=-.1

D TYPE 900

900 FORMAT(1X,'CP INIT')

C if no cells in series, jump

IF(B(3,J).NE.6) RETURN

C if companion cell still in open circuit, force it to start a

C discharge

c

c

c

IF(A(2,A(11,J)).EQ.O) II~JMOV(JTOP,JT(3,A(11,J)))

RETURN

control section

10 CONTINUE

D TYPE 1000

1000 FORMAT(1X,'CP CONTROL')

C update action timer (with 15 seconds)

IlmJADD(JTOP,JCVLC,JT(2,J))

c if not new mode, jump

IF(A(8,J).NE.O) GOTO 15

c

C subsection: first pass

c

291

CUR(J)=.2

c update JLAST

II=JMOV(JTOP,JLAST(J))

C highest cell controls at 1st pass

IF(J.LT.A(ll,J)) RETURN

C how about getting ourselves started on the regulation •••

C charge for 3 ticks, @ .2 A; then discharge the same amount

CALL SET(l,l,A(9,J))

CALL IMPOSE(A(9,J),.2,A(lO,J),IDUM)

CALL ISLEEP(0,0,0,3)

CALL IMPOSE(A(9,J),O.,A(lO,J),IDUM)

CALL SET(O,O,A(9,J))

CALL SET(l,O,A(9,J))

CALL IMPOSE(A(9,J),.2,A(lO,J),IDUM)

CALL ISLEEP(0,0,0,3)

C jump to power control subsection

GOTO 35

c

C subsection: 2nd and later passes

c

C if no companion cell, no worry about which one is controlling

15 IF(B(3,J).NE.6) GOTO 25

292

C measure the voltages on the desired channels, for the 2 cells

ICHV1=A(11+2*B(13,J),J)

IRV1=A(12+2*B(13,J),J)

ICHV2=A(11+2*B(13,A(11,J)),A(11,J))

IRV2=A(12+2*B(13,A(11,J)),A(11,J))

C compute difference between this cell's and its companion's voltage

DELTAV=RLOGG(ICHV1,IRV1,8,0)-RLOGG(ICHV2,IRV2,8,0)

C if this cell's voltage is lower, it may not control

IF(DELTAV.LE.(-.010)) GOTO 20

IF(DELTAV.GE.(.010)) GOTO 25

C if not well defined (+/- 10 mV), then highest cell controls

IF(J.GT.A(ll,J)) GOTO 25

C if A-hrs exceeded, set ISTOP flag

20 IF(Q(1,J).GE.Q0(1,J)) ISTOPa1

RETURN

c

C subsection: A-hr update

c

C update JLAST timer and A-hrs passed for this cell (and eventually

C for its companion)

25 IIaJSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HRmFLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READCH•(RLOGG(A(19,J),A(20,J),8,0)-QFF(J))*VAL(3,J)

Q(1,J)-Q(1,J)+HR*ABS(READCH)

TYPE *,'CELL ',J,', A-HRS PASSED ',Q(1,J)*A(10,J)/5.

IF(B(3,J).NE.6) GOTO 30

Q(1 ,A(11, J))-Q(1 ,A(11,J))+HR*ABS(READCH)

293

TYPE *,'CELL ',A(ll,J),', A-HRS PASSED ',Q(l,A(ll,J))*

lA(lO,A(ll,J))/5.

II=JMOV(JTOP,JLAST(A(ll,J)))

30 II=JMOV(JTOP,JLAST(J))

C if A-hrs exceeded, set ISTOP flag

IF(Q(l,J).LT.QO(l,J)) GOTO 35

ISTOP=l

RETURN

c

C subsection: power control

c

C define setpoint, call CALIBP

35 SETPNT=VAL(l3,J)/VAL(3,J)

CALL CALIBP(SETPNT,CUR(J),A(9,J),A(l0,J),A(l9,J),A(20,J),

1A(ll+2*B(l3,J),J),A(l2+2*B(l3,J),J),OFF(J),X(J),.Ol0,ANS)

C if ANS = F, set termination flag for this cell, and eventually

C for its companion

IF(ANS.EQ.'F') A(l,J)=2

IF(ANS.EQ.'F'.AND.A(ll,J).NE.O) A(l,A(ll,J))=2

294

C if there is a companion cell, update its CUR

IF(B(3,J).EQ.6) CUR(A(11,J))=CUR(J)

RETURN

c

C termination section

c

40 CONTINUE

D TYPE 1100

1100 FORMAT(1X,'CP TERMIN')

C if ISTOP was set, no need for the next commands

IF(ISTOP.EQ.1) GOTO 45

C update A-hrs

II=JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR=FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READCH=(RLOGG(A(19,J),A(20,J),8,0)-QFF(J))*VAL(3,J)

Q(1,J)-Q(1,J)+HR*ABS(READCH)

45 ISTOPaO

C convert V-hrs to A-hrs and store it in BUF area

BUF(125+A(3,J),J)=Q(1,J)*A(10,J)/5.

WRITE(6,*) 'CELL ',J,' , A-HRS PASSED : ',BUF(125+A(3,J),J)

IF(A(3,J).EQ.O) WRITE(6,*) 'ON DISCHARGE, CYCLE',ICYCLE(J)

IF(A(3,J).EQ.1) WRITE(6,*) 'ON CHARGE, CYCLE',ICYCLE(J)

REWIND 6

C if no companion cell, jump

IF(B(3,J).NE.6) GOTO 50

C if companion cell still in active mode, force it to go in

C open-circuit

295

IF(A(2,A(ll,J)).EQ.l) II=JMOV(JTOP,JT(3,A(ll,J)))

C initialize A-hrs for next half-cycle

50 Q(2-A(3,J),J)=O.

RETURN

END

SUBROUTINE EXCON(J,ISEC,ISTOP,BUF)

C THIS SUBROUTINE ORGANIZES THE PULSED CURRENT CONTROL

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CURTIM/JLAST,JREM

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/RES/JTOP,JMAX

COMMON/OFFSET/OFF(l6)

INTEGER A(22,16),B(l4,16)

INTEGER*4 JT(l0,16),JLAST(l6),JREM(l6),JDIF,JTOP,J230

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16),BUF(l28,16).

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

GOT0(5,10,20) ISEC

c

296

c

c

initialization section

C if single half-cycle mode, jump

5 IF(B(3+A(3,J),J).EQ.8) GOTO 6

C define A-hrs to pass on charge

IF(A(3,J).EQ.l) Q0(2,J)=VAL(4;J)*Q(l,J)

6 CONTINUE

D TYPE 900

900 FORMAT(lX,'EXCON !NIT')

C if no cell in series, return

IF(B(A(3,J)+3,J).NE.9) RETURN

C if companion cell still in open-circuit, force it to start a

C charge or discharge

c

c

c

10

D

1000

c

c

c

IF(A(2,A(ll,J)).EQ.O) II~JMOV(JTOP,JT(3,A(ll,J)))

RETURN

control section

CONTINUE

TYPE 1000

FORMAT(lX,'EXCON CONTROL')

if not new mode, jump

IF(A(8,J).NE.O) GOTO 11

subsection: 1st pass

297

c

C define INT*4 timer = 2 minutes & 30 seconds

CALL JTIME(0,2,30,0,J230)

CALL JJCVT(J230)

C update action timer

II=JADD(JTOP,J230,JT(2,J))

C switch from regular A/D current channel to A/D channel

C connected to averager circuit (always 1 higher !)

A(19,J)=A(19,J)+1

C if controlling cell, set the controller in external mode

IF(J.GT.A(11,J)) CALL EXT(1,A(9,J))

GOTO 14

c

C subsection: 2nd and later passes

c

C update action timer

11 II=JADD(JTOP,JT(8,J),JT(2,J))

C if cell not controlling, jump

IF(J.LT.A(11,J)) GOTO 13

298

C update A-hrs for this cell (and eventually for companion)

II=JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR=FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READCH=(RLOGG(A(19,J),A(20,J),8,0)-QFF(J))*VAL(3,J)

Q(A(3,J)+1,J)=Q(A(3,J)+1,J)+HR*ABS(READCH)

TYPE *,'CELL ',J,', A-HRS PASSED ',Q(A(3,J)+1,J)*A(10,J)/5.

IF(B(3+A(3,J),J).NE.9) GOTO 12

Q(A(3,A(11,J))+1,A(11,J))=Q(A(3,A(11,J))+1,A(11,J))+HR*ABS(READCH)

TYPE *,'CELL ',A(11,J),', A-HRS PASSED ',Q(A(3,A(11,J))+1,

1A(11,J))*A(10,A(11,J))/5.

C update JLAST timers

II~JMOV(JTOP,JLAST(A(11,J)))

12 II•JMOV(JTOP,JLAST(J))

C if A-hrs not exceeded, return

13 IF(Q(A(3,J)+1,J).LT.QO(A(3,J)+1,J)) RETURN

C set !STOP flag and return

ISTOP•1

RETURN

C update JLAST timer

14 II=JMOV(JTOP,JLAST(J))

RETURN

c

C termination section

c

20 CONTINUE

D TYPE 1100

1100 FORMAT(1X,'EXCON TERMIN')

299

C if ISTOP flag set, no need for next commands

IF(ISTOP.EQ.1) GOTO 2S

C update A-hrs

II=JSUB(JTOP,JLAST(J),JDIF)

CALL JJCVT(JDIF)

CALL CVTTIM(JDIF,IHR,IMIN,ISCND,ITICK)

HR=FLOAT(IHR)+FLOAT(IMIN)/60.+FLOAT(ISCND)/3600.+FLOAT(ITICK)/

1216000.

READCH=(RLOGG(A(19,J),A(20,J),8,0)-0FF(J))*VAL(3,J)

Q(A(3,J)+1,J)=Q(A(3,J)+1,J)+HR*ABS(READCH)

25 ISTOP=O

C convert V-hrs to A-hrs and store in BUF area

BUF(125+A(3,J),J)aQ(A(3,J)+l,J)*A(10,J)/5.

WRITE(6,*) 'CELL ',J,' , A-HRS PASSED : ',BUF(l25+A(3,J),J)

IF(A(3,J).EQ.O) WRITE(6,*) 'ON DISCHARGE, CYCLE',ICYCLE(J)

IF(A(3,J).EQ.l) WRITE(6,*) 'ON CHARGE, CYCLE',ICYCLE(J)

REWIND 6

C re-store regular A/D channel for current

A(l9,J)~A(19,J)-l

300

C if no companion cell, jump

IF(B(A(3,J)+3,J).NE.9) GOTO 27

C if companion cell is still in active mode, force it to go in

C open circuit

IF(A(2,A(ll,J)).EQ.l) II=JMOV(JTOP,JT(3,A(ll,J)))

C initialize A-hrs of next half-cycle

27 Q(2-A(3,J),J)=O.

C if single half-cycle mode, return

IF(B(3+A(3,J),J).EQ.8) RETURN

C trick, see CC subroutine

IF(A(3,J).EQ.l.AND.A(l,J).EQ.O) Q(l,J)=Q0(2,J)/VAL(4,J)

RETURN

END

SUBROUTINE CALIB(SETPNT,CON,ICC,IFULL,ICHAN,IRAN,OFF,

lTOLMIN,TOLMAX,IBEG,ANS)

C THIS SUBROUTINE REGULATES THE CURRENT THROUGH A CELL

LOGICAL*l ANS

C define optimal values

CONOP==CON

READOP•O.

ICNT•-1

DO 5 K•l, 11

ICNT•ICNT+l

C if first pass in DO loop, jump

301

IF(K.EQ.l) GOTO 3

C if current to be set is out of bounds, error

IF(CON.GT.lO •• OR.CON.LT.O.) GOTO 15

C set current

CALL IMPOSE(ICC,CON,IFULL,IDUM)

C sleep for 3 tickS

CALL ISLEEP(0,0,0,3)

C read current

3 READCH=RLOGG(ICHAN,IRAN,8,0)-QFF

C if first pass through the subroutine, since the start of the

C half-cycle, jump

IF(IBEG.NE.O) GOTO 4

C if current to be set is out of bounds, error

IF(CON.GT.lO •• OR.CON.LT.O.) GOTO 15

C set current

CALL IMPOSE(ICC,CON,IFULL,IDUM)

C sleep for 3 ticks

CALL ISLEEP(0,0,0,3)

302

C read current

READCH=RLOGG(ICHAN,IRAN,8,0)-GFF

GOTO 10

C if current within the minimum tolerance of SETPNT, done

4 IF(ABS(SETPNT-READCH).LE.TOLMIN) GOTO 10

C if current is not best one so far, jump

IF(ABS(SETPNT-READCH).GE.ABS(SETPNT-READOP)) GOTO 45

C define optimal current setpoint and current

CONOP=CON

READOP=READCH

C if no current through current controller, error

45 IF(ABS(READCH).LT.1.E-04) GOTO 15

C iterate

CON=CON*SETPNT/READCH

C if current to be set is out of bounds, error

IF(CON.GT.10 •• 0R.CON.LT.O.) GOTO 15

5 CONTINUE

C if current is not within the maximum tolerance of SETPNT, ANS = N

IF(ABS(SETPNT-READOP).GT.TOLMAX) ANS='N'

C remember the best current reading

READCH=READOP

C remember the best current setpoint

CON=CONOP

C if current to be set is out of bounds, error

IF(CON.GT.lO •• OR.CON.LT.O.) GOTO 15

C set best current

CALL PLACE(ICC,CON,IFULL,IDUM)

10 CONTINUE

D TYPE lOOO,ANS,ICNT,(READCH*IFULL/5.)

1000 FORMAT(1X,A1,3X,I2,3X,Fl0.5)

303

RETURN

C error

15 ANS='F'

WRITE(6,*) 'CONTROLLER ',ICC,': CANNOT REGULATE ON THE CURRENT'

REWIND 6

C set current to 0

CALL IMPOSE(ICC,O.,IFULL,IDUM)

RETURN

END

SUBROUTINE CALIBV(SETPNT,CUR,ICC,IFULL,ICHAMP,IRAMP,ICHv,IRV,

lOFF,X,TOLMIN,TOLMAX,ANS)

C THIS SUBROUTINE REGULATES THE VOLTAGE OF A CELL

LOGICAL*l ANS

304

C read current (and convert it) and voltage

AMPNEW={RLOGG{ICHAMP,IRAMP,8,0)-0FF)*IFULL/5.

VNEW=RLOGG(ICHV,IRV,8,0)

ICNT=-1

C define best current setpoint and best voltage

VOPT=O.

CUROPT=CUR

ANS='Y'

DO 20 K=1, 11

ICNT=ICNT+1

C if first DO loop pass, jump

IF(K.EQ.1) GOTO 10

C iterate

CUR=CUR+(SETPNT-VOLD)/X

C if current setpoint is out of bounds, error

IF(CUR.GT.10 •• 0R.CUR.LT.O.) GOTO 30

C set current

CALL IMPOSE(ICC,CUR,IFULL,IDUM)

C sleep for 3 ticks

CALL ISLEEP(0,0,0,3)

C read current, convert

AMPNEW~(RLOGG(ICHAMP,IRAMP,B,O)-QFF)*IFULL/5.

C read voltage

VNEW•RLOGG(ICHV,IRV,8,0)

C if new and old current almost the same, skip next commands

IF(ABS(AMPNEW-AMPOLD).LE.1.E-02) GOTO 10

C update slope for regulation

X•(VNEW-VOLD)/(AMPNEW-AMPOLD)

C if bad, set back to 1

IF(X.LE.O) X•1.

305

C if voltage within the minimum tolerance of SETPNT, done

10 IF(ABS(SETPNT-VNEW).LE.TOLMIN) GOTO 25

C define old values

AMPOLD=AMPNEW

VOLD=VNEW

C if voltage not best so far, jump

IF(ABS(SETPNT-VNEW).GE.ABS(SETPNT-VOPT)) GOTO 20

C define optimal values

VOPT=VNEW

CUROPT=CUR

20 CONTINUE

C remember best voltage

VNEW=VOPT

C remember best current setpoint

CUR=CUROPT

C if current to be set is out of bounds, error

IF(CUR.GT.lO •• OR.CUR.LT.O.) GOTO 30

C set current

CALL IMPOSE(ICC,CUR,IFULL,IDUM)

C if voltage not within the maximum tolerance of SETPNT, ANS = N

IF(ABS(SETPNT-VNEW).GT.TOLMAX) ANS='N'

25 CONTINUE

D TYPE lOOO,ANS,ICNT;VNEW,X

1000 FORMAT(lX,Al,3X,I2,3X,Fl0.5,3X,Fl0.5)

RETURN

306

C error

30 ANS='F'

WRITE(6,*) 'CONTROLLER ',ICC,': CANNOT REGULATE ON THE VOLTAGE'

REWIND 6

C set current 0

CALL IMPOSE(ICC,O.,IFULL,IDUM)

RETURN

END

SUBROUTINE CALIBP(SETPNT,CUR,ICC,IFULL,ICHAMP,IRAMP,ICHV,IRV,

lOFF,X,TOLMAX,ANS)

C THIS SUBROUTINE REGULATES THE POWER THROUGH A CELL

LOGICAL*l ANS

C read current and convert

AMPNEW=(RLOGG(ICHAMP,IRAMP,S,O)-QFF)*IFULL/5.

C read voltage

VNEWmRLOGG(ICHV,IRV,8,0)

C compute power

PNEWmAMPNEW*VNEW

ICNT=-1

C define optimal values

POPT=-0.

CUROPT•CUR

ANS•'Y'

DO 20 K•l, 11

ICNT•ICNT+l

I .

307

C if 1st pass of DO loop, jump

IF(K.EQ.l) GOTO 10

C compute denominator for iteration expression

DENOM=VOLD+X*AMPOLD

c

c

if very small, error

IF(ABS(DENOM).LT.l.E-04) GOTO 30

iterate

CUR=CUR+(SETPNT-POLD)/DENOM

C if current setpoint is out of bounds, error

IF(ABS(CUR).GT.2*ABS(FLOAT(IFULL))) GOTO 30

C set current

CALL IMPOSE(ICC,CUR,IFULL,IDUM)

C sleep for 3 ticks

CALL ISLEEP(0,0,0,3)

C read current and convert, read voltage, compute power

AMPNEW•(RLOGG(ICHAMP,IRAMP,S,O)-QFF)*IFULL/5.

VNEW=RLOGG(ICHV,IRV,8,0)

PNEW~AMPNEW*VNEW

C if new and old currents almost the same, skip next commands

IF(ABS(AMPNEW-AMPOLD).LE.l.E-02) GOTO 10

308

C update slope for iteration

X=(VNEW-VOLD)/(AMPNEW-AMPOLD)

C if no good, set back to -.1

IF(X.GT.O.) X=-.1

C define precision on a power measurement (.5 mV on voltage,

C 1 mA on current)

10 ACC=.0005*AMPNEW+.001*VNEW

C if power within precision range of SETPNT, done

IF(ABS(SETPNT-PNEW).LE.ACC) GOTO 25

C define old values

POLD=PNEW

AMPOLD=AMPNEW

VOLD=VNEW

C if not best power so far, jump

IF(ABS(SETPNT-PNEW).GE.ABS(SETPNT-POPT)) GOTO 20

C define optimal values

POPT=PNEW

CUROPT=CUR

20 CONTINUE

C remember best power and best current setpoint

PNEW=POPT

CUR=CUROPT

C if current setpoint is out of bounds, error

IF(ABS(CUR).GT.2*ABS(FLOAT(IFULL))) GOTO 30

C set current

CALL IMPOSE(ICC,CUR,IFULL,IDUM)

C if power is not within maximum tolerance of SETPNT,

C ANS • N

IF(ABS(SETPNT-PNEW).GT.TOLMAX) ANS='N'

C reset X to -.1

I

25

D

1000

c

30

c

X=-.1

CONTINUE

309

TYPE lOOO,ANS,ICNT,PNEW,X

FORMAT(lX,Al,3X,I2,3X,Fl0.5,3X,Fl0.5)

RETURN

error

ANS="'F"'

WRITE(6,*) "'CONTROLLER "',ICC,"': CANNOT REGULATE ON THE POWER"'

REWIND 6

set current to 0

CALL IMPOSE(ICC,O.,IFULL,IDUM)

RETURN

END

310

SUBROUTINE INPUT(J,IEX,IMODE,BUF)

C THIS SUBROUTINE TAKES CARE OF DATA STORAGE AND LIMIT CHECKING

c

c

c

c

IMODE=O

IMODE=l

IMODE=2

IMODE=3

NORMAL MODE

WRITE BUF TO FILE, NO DATA, NO LIMITS

DATA, NO LIMITS

DATE & TIME, NO DATA, NO LIMITS

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CHANNELS/ICHAN(l6)

COMMON/RES/JTOP,JMAX

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/OFFSET/OFF(l6)

LOGICAL*l ANS

INTEGER A(22,16),B(l4,16),ICOUNT(4)

INTEGER*4 JT(l0,16),JTOP,BB

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16)

DIMENSION BUF(l28,16)

EQUIVALENCE(REALl,ICOUNT(l))

EQUIVALENCE(REAL2,ICOUNT(3))

D TYPE *,'INPUT :MODE ',IMODE

IEX=O

ITAKE=l

IF(IMODE.EQ.l) GOTO 27

C wait for I/O on the cell's channel to be completed

II•IWAIT(ICHAN(J))

ITAKE•O

C update data storage counter

311

A(6,J)=A(6,J)+1

C update column number in BUF where storage of next data record

C will start

INDEX=(A(6,J)-1)*(A(12,J)+1)+1

C get time

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

GOT0(1,1,102,101) IMODE+1

C check if you must store data

1 CALL TIMEAS(ANS,J,BUF)

C if you mustn't, you shan't

IF(ANS.NE.'Y') ANS='N'

GOTO 102

C get date

101 CALL IDATE(ICOUNT(1),ICOUNT(2),ICOUNT(3))

C if time to increment cycle #, please do it

IF(MCYCLE(J).EQ.A(3,J)) ICYCLE(J)=ICYCLE(J)+1

ICOUNT(4)•ICYCLE(J)

C store date and cycle #

BUF(INDEX,J)=REAL1

INDEX=INDEX+1

BUF(INDEX,J)=REAL2

GOTO 25

C if no data storage, jump

102 IF(ANS.EQ.'N') GOTO 2

312

C convert JTOP to INT*4

II=IAJFLT(JTOP,BUF(INDEX,J))

TYPE *,'INPUT'

2 TYPE 1550,J

1550 FORMAT(1X,'CELL ',12)

DO 15 K=1,5

L=K-1

C if channel is programmed 0 0, skip it

IF(A(l4+2*L,J).EQ.O) GOTO 15

C see previous INDEX update

INDEX=INDEX+1

C read an A/D channel

BUF(INDEX,J)=RDLOGG(A(13+2*L,J),A(14+2*L,J),8,0,J)

C if not current measurement, jump

IF(K.NE.4) GOTO 3

C go from V to A (50 mV shunt) and use calibration factor

BUF(INDEX,J)=((BUF(INDEX,J)-QFF(J))/5.)*A(lO,J)*VAL(3,J)

C if in open-circuit, or if no-limit mode, or if data storage

C but start of mode, jump

3 IF(A(2,J).EQ.O.OR.IMODE.EQ.2.0R.(ANS.EQ.'Y'.AND.A(8,J).EQ.O))

lGOTO 15

TYPE *,BUF(INDEX,J)

DO 4 KK•l,3

313

C if present channel number (1 to 5) has a limit assigned to

C it, jmp to 5

IF(K.EQ.IABS(B(4+KK+3*A(3,J),J))) GOTO 5

4 CONTINUE

GOTO 15

C MM is 5, 6 or 7 fords., 8, 9 or 10 for ch.

5 MM~4+KK+3*A(3,J)

C if upper limit, jump

IF(B(MM,J).GT.O) GOTO 10

C if lower limit exceeded, set !EX

IF(BUF(INDEX,J).LT.VAL(MM,J)) IEX=1

GOTO 15

C if upper limit exceeded, set !EX

10 IF(BUF(INDEX,J).GT.VAL(MM,J)) IEX=l

15 CONTINUE

TYPE 1900,A(l2,J),J

1900 FORMAT(lX,'THERE ARE ',!2,' CHANNELS ACTIVE FOR CELL ',!2)

C skip next commands if no limits exceeded

IF(IEX.NE.l) GOTO 25

TYPE 2000

314

2000 FORMAT(1X,'LIMIT EXCEEDED')

DO 20 1=1,5

C ring bell 5 * to announce that something is changing

17 IF(ITTOUR("007).NE.O) GOTO 17

20 CONTINUE

C if data must be stored, jump

25 IF(ANS.NE.'N') GOTO 26

C no data stored, reset counter

A(6,J)=A(6,J)-1

RETURN

C decrement flag for data storage

26 A(4,J)=A(4,J)-l

C M is 1 for ch, 2 for o-c, 3 for ds

M=l+(l-A(2,J))+A(2,J)*(2-2*A(3,J))

C if 1st data record (new block), set pointer in BUF pointer area

IF(A(6,J).EQ.l) BUF(l20+M,J)=1

C if block (BUF) is full, have to write it to the file

IF(A(6,J).GE.(240/(2*(A(l2,J)+l)))) ITAKE=1

C if flag for data storage > 1 and block not full, return

IF(A(4,J).GT.1.AND.ITAKE.EQ.O) RETURN

C if needed, open a data file for cell J

27 IF(A(5,J).EQ.O) CALL FILOPC(J,O)

C reset data storage flag

A(4,J)a3

C write data

II•IWRITE(256,BUF(l,J),A(7,J),ICHAN(J))

D TYPE 9250,J

9250 FORMAT(lX,'I PUT DATA OF CELL'',I2,' ON THE APPROPRIATE FILE')

C if block is not full, return

IF(ITAKE.EQ.O) RETURN

315

C update block number for next transfer

A(7,J)=A(7,J)+l

C re-initialize data-storage counter

A(6,J)=O

C initialize pointer and A-hr storage area (in BUF)

DO 30 K=l,8

30 BUF(l20+K,J)=O

C get time

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

RETURN

END

316

SUBROUTINE TIMEAS(ANS,J,BUF)

C THIS SUBROUTINE DECIDES ON WHETHER A DATA RECORD MUST BE STORED

C OR NOT. IT ALSO REGULATES THE INTERVAL FOR DATA STORAGE AND

C LIMIT CHECKING

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/INT4/JTWO,JFOUR,JFAC

COMMON/TIMTIM/JCHECK,JSET,JCVLC

COMMON/CURTIM/JLAST,JREM

COMMON/CURCUR/CUR,COMP

COMMON/RES/JTOP,JMAX

LOGICAL*l ANS

INTEGER*4 JT(10,16),JREM(16),JSET,JTOP,JBUF,JDIF,JNEXT,

1JTWO,JFOUR,JCHECK,BB,JCVLC,JLAST(16),JFAC(16)

INTEGER A(22,16),B(14,16)

DIMENSION VAL(14,16),COMP(16),Q0(2,16),Q(2,16),CUR(l6)

DIMENSION BUF(l28,16)

D TYPE 97

97 FORMAT(lX,'TIMEAS')

C get time

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

C if not 1st pass through the routine since the beginning of this

C half-cycle, jump

IF(A(S,J).NE.O) GOTO 5

A(8,J)•l

C get A/D channel and range for channel which is watched for

C data storage rate adjustment

317

ICH=A(l3,J)*(1-A(2,J))+A(2,J)*A(13+2*(B(1+A(3,J),J)-1),J)

IR=A(14,J)*(1-A(2,J))+A(2,J)*A(14+2*(B(1+A(3,J),J)-1),J)

C read that channel

TEST=RDLOGG(ICH,IR,8,0,J)

IFAC=O

C if o-c, jump

IF(A(2,J).EQ.O) GOTO 25

· C divide DTinp by 2; if > or = 15 seconds, jump

1 II=JDIV(JT(10,J),JTWO,JT(10,J))

IF(JCMP(JT(10,J),JCVLC).GE.O) GOTO 2

C DTinp Q 15 seconds

II=JMOV(JCVLC,JT(10,J))

GOTO 25

C divide DTstore by JFAC

2 II=JDIV(JT(4,J),JFAC(J),JT(4,J))

IFAC•IFAC+1

C execute the previous commands a second time

IF(IFAC.EQ.1) GOTO 1

GOTO 25

318

C find column in BUF where last data record stored ends

5 INDEX=(A(6,J)-1)*(A(12,J)+1)

C if result is 0, then it was in previous block; it is still

C stored in BUF, terminating at column 120

IF(INDEX.EQ.O) INDEX=120

C convert the time of that last data record to INT*4

II=JAFIX(BUF((INDEX-A(12,J)),J),JBUF)

II=JSUB(JTOP,JBUF,JDIF)
'

C if the last stored time and the present time differ by less

C than JREM, jump

IF(JCMP(JDIF,JREM(J)).LT.O) GOTO 10

C data must be stored

ANS='Y'

GOTO 15

C data must not be stored

10 ANS='N'

C get A/D channel and range for channel which is watched for

C data storage rate adjustment

15 ICH•A(13,J)*(1-A(2,J))+A(2,J)*A(13+2*(B(l+A(3,J),J)-1),J)

IR=A(14,J)*(l-A(2,J))+A(2,J)*A(l4+2*(B(1+A(3,J),J)-l),J)

C read that channel

TEST•RDLOGG(ICH,IR,8,0,J)

C tolerance is 30 mV at o-c or what user entered for ch or ds

TOL•.030*(1-A(2,J))+A(2,J)*VAL(l+A(3,J),J)

C if new (TEST) value within tolerance of old (COMP) value, jump

IF(ABS(TEST-cOMP(J)).LT.TOL) GOTO 20

C if difference is more than twice the tolerance, data must be

C stored

IF(ABS(TEST-cOMP(J)) .GT. (2*TOL)) ANS.,.'Y'

C divide DTinp by 2; if > or • 15 seconds, jump

319

II=JDIV(JT(10,J),JTWO,JT(10,J))

IF(JCMP(JT(10,J),JCVLC).GE.O) GOTO 17

C DTinp = 15 seconds

II=JMOV(JCVLC,JT(10,J))

GOTO 25

C divide DTstore by JFAC

17 II=JDIV(JT(4,J),JFAC(J),JT(4,J))

C put DTstore in JREM

II=JMOV(JT(4,J),JREM(J))

GOTO 25

C if DTinp ~ 1 min., jump

20 IF(JCMP(JT(10,J),JSET).EQ.O) GOTO 25 ·

C multiply Dtinp by 2; if < or= 1 min., jump

II~JMUL(JT(10,J),JTWO,JT(10,J))

IF(JCMP(JT(10,J),JSET).LE.O) GOTO 21

C DTinp ~ 1 min.

II~JMOV(JSET,JT(10,J))

GOTO 25

320

C multiply DTstore by JFAC

21 II=JMUL(JT(4,J),JFAC(J),JT(4,J))

C update action timer for subroutine INPUT

25 II=JADD(JTOP,JT(10,J),JT(1,J))

C keep last value of TEST

COMP(J)=TEST

D TYPE 1000,ANS

1000 FORMAT(1X,A1)

C if no storage, jump

IF(ANS.EQ.'N') GOTO 30

C put DTstore in JREM

II=JMOV(JT(4,J),JREM(J))

RETURN

C add JREM to time of last data record stored

30 II=JADD(JBUF,JREM(J),JNEXT)

C if that time < action timer for INPUT, update the latter

IF(JCMP(JNEXT,JT(1,J)).LT.O) II=JMOV(JNEXT,JT(1,J))

RETURN

END

SUBROUTINE FILOPC(IOP,ICLO)

C THIS SUBROUTINE OPENS OR CLOSES A SCRATCH-DATA-FILE FOR CELL J

COMMON/CHANNELS/lCHAN(16)

COMMON/PASS/A,B,JT,VAL,QO,Q

INTEGER A(22,16),B(14,16),DBLK(4)

INTEGER*4 JT(l0,16)

321

DL~NSION VAL(l4,16),Q0(2,16),Q(2,16)

LOGICAL*l FNAME(3),GNAME(3)

DATA DBLK/3RVOL,3RDAT,3ROO ,3RUNF/

C which cell needs a file to be opened or closed ?

J=IOP+ICLO

C if need to close, jump

IF(ICLO.NE.O) GOTO 10

TYPE 99

99 FORMAT(1X,'FILOPC- OPEN')

C encode the name of the file for cell J

GNAME(1)=IOP/10

GNAME(2)=MOD(IOP,10)

GNAME(3)=-'0'

ENCODE(3,100,FNAME)GNAME

100 FORMAT(2Il,Al)

N•IRAD50(3,FNAME,DBLK(3))

TYPE 900,ICHAN(J),(FNAME(KK),KK=1,3)

900 FORMAT(lX,'CHANNEL ',I2,3X'N~~ ',3Al)

C open a file that already exists

TYPE 910

322

910 FORMAT(lX,'LOOKUP')

II=LOOKUP(ICHAN(J),DBLK)

IF(II.LT.O.AND.II.NE.-2) TYPE 350,II

IF(II.GE.O) GOTO 5

C if II is -2, then file does not exist: create a new one

TYPE 920

920 FORMAT(lX,'IENTER')

II=IENTER(ICHAN(J),DBLK,300)

IF(II.LT.O) TYPE 450,II

C write (anything) to las.t block on new file, to define its

C length

II=IWRITW(30,VAL,299,ICHAN(J))

C file is open

5 A(5,IOP)=l

RETURN

C close file

10 TYPE 999

999- FORMAT(1X,'FILOPC- CLOSE').

CALL ICLOSE(ICHAN(J),II)

TYPE 1000,ICHAN(J),II

1000 FORMAT(lX,'CLOSING, CHANNEL ',I2,' CODE ',I2)

C file is closed

A(5,ICLO)::o0

RETURN

350 FORMAT(1X,'LOOKUP ERROR. RETURN CODE IS ',I3)

450 FORMAT(1X,'IENTER ERROR. RETURN CODE IS ',I3)

END

323

SUBROUTINE UPDATE(J,IMOD)

C THIS SUBROUTINE UPDATES CELL PARAMETERS IN GMAT.UNF

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/RES/JTOP,JMAX

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

DATA IO,I3/0,3/

INTEGER A(22,16),B(l4,16)

INTEGER*4 JT(l0,16),JTOP,JTOM

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16)

C IMOD=l AFTER CHANGE

C IMOD=2 FROM FINISH

C IMOD=3 AFTER CHECK

C IMOD=4 FROM MSUPDT

IF(IMOD.EQ.4) GOTO 20

IF(IMOD.GT.l) GOTO 5

c

C after CHANGE, update new cycling specifications

c

c

324

KPOINT=785+J

WRITE(12'KPOINT) ICYCLE(J),MCYCLE(J)

KPOINT=5+49*(J-1)

WRITE(12'KPOINT) A(1,J),A(2,J)

KPOINT=6+49*(J-1)

WRITE(12'KPOINT) A(3,J),I3

RETURN

C after CHECK or FINISH, update general parameters

c

5 CALL GTIM(JTOP)

CALL JJCVT(JTOP)

CALL IDATE(IMONTH,IDAY,IYEAR)

KPOINT=2+49*(J-1)

WRITE(12'KPOINT) IMONTH,IDAY

KPOINT=KPOINT+1

WRITE(12'KPOINT) IYEAR,IO

KPOINT=KPOINT+1

WRITE(12'KPOINT) JTOP

IF(IMOD.GT.2) GOTO 10

KPOINT=5+49*(J-1)

C if called from FINISH, update IN/OUT and ON/OFF flags

WRITE(l2'KPOINT) A(1,J),A(2,J)

10 KPOINT•8+49*(J-l)

WRITE(12'KPOINT) A(7,J),IO

C if not single mode, jump

IF(B(3+A(3,J),J).NE.2.AND.B(3+A(3,J),J).NE.5.AND.

1B(3+A(3,J),J).NE.8) GOTO 15

C subtract time from end-of-half-cycle action timer

325

II=JSUB(JT(3,J),JTOP,JTOM)

KPOINT=28-A(3,J)+49*(J-1)

C update DTch or DTds, according to mode

WRITE(l2'KPOINT) JTOM

15 KPOINT=47+A(3,J)+49*(J-1)

.c

WRITE(l2'KPOINT) QO(l+A(3,J),J)

KPOINT=49+49*(J-1)

WRITE(l2'KPOINT) Q(l,J)

KPOINT=KPOINT+l

WRITE(l2'KPOINT) Q(2,J)

GOTO 50

C if called from MSUPDT, update all relevant parameters

c

C if in operation, jump : A array not updated

20 IF(A(l,J).EQ~l) GOTO 30

KPOINTa9+49*(J-1)

DO 25 KK=l,7

WRITE(12'KPOINT) A(7+2*KK,J),A(8+2*KK,J)

25 KPOINT=KPOINT+l

326

30 KPOINT=l6+49*(J-l)

READ(l2'KPOINT) B(l,J),IDUM

C if not in operation, or in discharge mode, or not in CVLC

C charge mode, update B(2,J)

IF(A(l,J).EQ.O.OR.A(3,J).EQ.O.OR.B(4,J).LT.4.0R.

1B(4,J).GT.6) IDUM=B(2,J)

WRITE(l2'KPOINT) B(l,J),IDUM

KPOINT=l8+49*(J-l)

DO 35 KK=2,6

WRITE(l2'KPOINT) B(l+2*KK,J),B(2+2*KK,J)

35 KPOINT=KPOINT+l

KPOINT=29+49*(J-l)

WRITE(l2'KPOINT) JT(7,J)

KPOINT=KPOINT+l

WRITE(l2'KPOINT) JT(8,J)

KPOINT=33+49*(J-l)

WRITE(12'KPOINT) VAL(l,J)

KPOINT=KPOINT+l

C if not in operation, or in discharge mode, or not in CVLC

C charge mode, update VAL(2,J)

IF(A(l,J).EQ.O.OR.A(3,J).EQ.O.OR.B(4,J).LT.4.0R.

1B(4,J).LT.4) WRITE(12'KPOINT) VAL(2,J)

KPOINT=KPOINT+l

C update calibration factor only if not in operatio~

IF(A(l,J).EQ.O) WRITE(12'KPOINT) VAL(3,J)

KPOINT=KPOINT+l

DO 40 KK .. 1,9

WRITE(12'KPOINT) VAL(3+KK,J)

40 KPOINT•KPOINT+l

KPOINTD47+49*(J-1)

327

WRITE(12'KPOINT) QO(l,J)

C write to 1st and last record of GMAT.UNF; this ensures

C that the information is actually written on the file

50 READ(12'1) JDUM,IDUM

WRITE(l2'1) JDUM,IDUM

READ(12'785) QQ

WRITE(l2'785) QQ

RETURN

END

SUBROUTINE FINISH(IND,IALL,BUF)

C THIS SUBROUTINE TERMINATES THE OPERATION OF 1 (IALL=O) OR

)

328

C ALL (IALL=1) CELLS

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CHANNELS/ICHAN(16)

COMMON/RES/JTOP,JMAX

INTEGER A(22,16),B(14,16)

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

DIMENSION BUF(128,16)

INTEGER*4 JT(10,16),JTOP

TYPE 9300

9300 FORMAT(1X,'FINISH')

IF(IALL.EQ.1) TYPE 9400

9400 FORMAT(1X,'A DOUBLE Ac wAs TYPED')

C get time

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

C if all cells are terminated, jump

IF(IALL.EQ.1) GOTO 1

C only one pass in coming DO loop

JSTART=IND

JEND=IND

GOTO 2

C coming DO loop is for all cells

1 JSTART:al

JEND•JMAX

2 DO 10 J=-JSTART ,JEND

C if cell not in operation, jump

· IF(A(l,J).EQ.O) GOTO 10

C wait for I/O termination on the cell's channel

I:aiWAIT(ICHAN(J))

C if data file open for cell, skip

329

IF(A(5,J).EQ.l) GOTO 5

C open file

CALL FILOPC(J,O)

C set NSTOP flag in pointer storage area (in BUF)

5 BUF(124,J)=A(6,J)

C if no data records stored on the present block, NSTOP=300

IF(A(6,J).EQ.O) BUF(124,J)=300.

C cell goes out of operation

A(l,J)=O

C if not in o-c, terminate control

IF(A(2,J).EQ.l) CALL CHOOSE(J,3,0,BUF)

C update parameters in GMAT.UNF

CALL UPDATE(J,2)

C write data of present block to the file

II=IWRITW(256,BUF(l,J),A(7,J),ICHAN(J))

C close the file

CALL FILOPC(O,J)

C if cell not controlling, jump

IF(A(ll,J).GE.J) GOTO 10

330

C set current 0

CALL PLACE(A(9,J),O.,A(lO,J),IDUM)

C if cell was in pulsed current mode, set Controller in normal

C mode

IF(B(3+A(3 ,J) ,J). GE. 7) CALL EXT(O ,A(9, J))

C disconnect ·

CALL SET(A(l,J),O,A(9,J))

10 CONTINUE

C if only one cell, return

IF(IALL.EQ.O) RETURN

C disable ACAC intercept function

CALL SCCA

STOP

END

SUBROUTINE RESET(ID)

C THIS SUBROUTINE TAKES CARE OF THE TRANSITION FORM MIDNIGHT

C TO THE NEXT DAY: AT THAT MOMENT, THE TIME OF DAY GOES BACK

C TO 0

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CURTIM/JLAST,JREM

COMMON/RES/JTOP,JMAX

COMMON/GDNIT/JMIN

INTEGER A(22,16),B(l4,16)

INTEGER*2 LINK(4)

INTEGER*4 JT(l0,16),JLAST(l6),JREM(l6);JTOP,JMID,JTIP,JMIN

331

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

C JMID = 24 hrs

CALL JTIME(24,0,0,0,JMID)

CALL JJCVT(JMID)

C JTIP = 23:59:50 hrs

CALL JTIME(23,59,50,0,JTIP)

CALL JJCVT(JTIP)

C subtract 24 hrs from all timers

DO 10 J=1,JMAX

DO 5 K=1,3

5 II=JSUB(JT(K,J),JMID,JT(K,J))

II=JSUB(JT(9,J),JMID,JT(9,J))

II=JSUB(JLAST(J) ,JMID,JLAST(J))

II=JSUB(JREM(J),JMID,JREM(J))

10 CONTINUE

II=JSUB(JMIN,JMID,JMIN)

11 DO 15 K=1,1000

C get time of day

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

C if time of day < JTIP, done

15 IF(JCMP(JTOP,JTIP).LE.O) GOTO 20

GOTO 11

20 RETURN

END

332

SUBROUTINE CRMESS

C THIS COHPLETION ROUTINE IS THE MESSAGE RECEIVER

COMMON/MESSAG/MSG,MESCNT,AREA

INTEGER MSG(59),AREA(4)

C set flag for message pending

MESCNT=MESCNT+l

RETURN

END

SUBROUTINE MSBOSS(INITE,BUF)

C THIS SUBROUTINE IS THE MESSAGE HANDLER

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/CCHOLD/JCYCLE(l6),KCYCLE(l6),IHOLD

EXTERNAL CRMESS

INTEGER MSG(59),AREA(4),RESP(l),AREA2(4,16)

DIMENSION BUF(l28,16)

IDONE-0

IF(IHOLD.EQ.l) CALL MSHOLD(IDONE,l)

IF(IMSTOP.NE.O) CALL MSNOW

C if no message pending, return

IF (MESCNT. EQ. 0) RETURN

TYPE 1000

1000 FORMAT(61X, 'THERE IS A MESSAGE')

C call appropriate routine

IF(MSG(2).EQ.'CH') CALL MSCHNG(IDONE)

IF(MSG(2).EQ.'DS') CALL MSCHNG(IDONE)

I

333

IF(MSG(2).EQ.'Tl') CALL MSUPDT(IDONE)

IF(MSG(2).EQ.'ST') CALL MSWHEN(IDONE)

IF(MSG(2).EQ.'HD') CALL MSWHEN(IDONE)

IF(MSG(2).EQ.'T2') CALL MSSTOP(IDONE)

IF(MSG(2).EQ.'T3') CALL MSHOLD(IDONE,O)

IF(MSG(2).EQ.'RR') CALL MSWHO(IDONE)

IF(MSG(2).EQ.'T4') CALL MSRUN(IDONE,INITE,BUF)

IF(IDONE.EQ.l) TYPE 2000,MSG(2)

2000 FORMAT(51X,'MESSAGE-ACTION ',A2,' EXECUTED')

IF(IDONE.EQ.l) RETURN

C if no action done, send back response 'BD'

RESP(l)='BD'

c

c

CALL ISDAT(RESP,l)

reset message flag

MESCNT=MESCNT-1

activate message receiver

II=IRCVDF(MSG,3,AREA,CRMESS)

TYPE 3000,MSG(2)

3000 FORMAT(31X,'NO MESSSAGE-ACTION EXECUTED. MESSAGE CODE WAS ',A2)

RETURN

END

SUBROUTINE MSWHO(IDONE)

C THIS SUBROUTINE EXECUTES AT THE 1ST PASS OF THE RUN OPERATION

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/PASS/A,B,JT,VAL,QO,Q

c

COMMON/RES/JTOP,JMAX

COMMON/PNTRS/NPOINT

EXTERNAL CRMESS

334

INTEGER A(22, 16) ,B(14, 16) ,MSG(59) ,AREA(4) ,RESP(12) ,NPOINT(2),

1AREA2(4,16)

INTEGER*4 JT(10,16),JTOM,JTOP

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

EQUIVALENCE(JTOM,RESP(5))

reset message flag

MESCNT=MESCNT-1

MM=MSG(3)

C if cell # < or = JMAX, jump

IF(MM.LE.JMAX) GOTO 5

C too high !

RESP(1)='TH'

GOTO 15

C if cell not in operation, jump

5 IF(A(1,MM).EQ.O) GOTO 10

C no good !

RESP(l).,.'NG'

GOTO 15

10 RESP(1)•'0K'

C read latest cycling information from GMAT·. UNF

NPOINT(2)•2+49*(MM-1)

READ(l2'NPOINT(2)) RESP(2),RESP(3)

READ(12'NPOINT(2)) RESP(4),IDUM

READ(l2'NPOINT(2~) JTOM

NPOINT(2)m5+49*(MM-l)

READ(l2'NPOINT(2)) RESP(7),RESP(8)

READ(12'NPOINT(2)) IA3,IDUM

I

335

C if things look too funny for you, jump

IF(IABS(RESP(7)).GT.1.0R.IABS(RESP(8)).GT.l.OR.IABS(IA3).GT.1)

1GOTO 15

C RESP(9) will contain flag for last active mode (0 for ds, 1

C for ch)

RESP(9)=IA3*RESP(8)+(1-IA3)*(1-RESP(8))

NPOINT(2)=8+49*(MM-1)

READ(12'NPOINT(2)) RESP(10),IDUM

NPOINT(2)=785+MM

READ(12'NPOINT(2)) RESP(11),RESP(12)

C send back response

15 li=ISDAT(RESP,12)

IDONE=1

C activate receiver

II=IRCVDF(MSG,8,AREA,CRMESS)

RETURN

END

SUBROUTINE MSRUN(IDONE,INITE,BUF)

C THIS SUBROUTINE EXECUTES AT THE 2ND (AND 3RD) PASS OF THE

C RUN OPERATION

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/PNTRS/NPOINT

COMMON/INT4/JTWO,JFOUR,JFAC

COMMON/CHANNELS/ICHAN(l6)

336

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/CCHOLD/JCYCLE(l6),KCYCLE(l6),IHOLD

EXTERNAL CRMESS

INTEGER A(22,16),B(l4,16),MSG(59),AREA(4),RESP(2),NPOINT(2),

1AREA2(4,16)

INTEGER*4 JT(l0,16),JTWO,JFOUR,JFAC(l6)

DIMENSION VAL(l4,16),BUF(l28,16),Q0(2,16),Q(2,16)

EQUIVALENCE(NPOINT(l),JPOINT)

NN1=7

C reset message flag

MESCNT=MESCNT-1

INITE=l

MM=MSG(3)

C decode cycling specifications, including the following flags:

C !START: 1 for 'initialize', 2 for 're-start' mode

C ISCRAT: 1 for new scratch-file, 0 otherwise

C !SERlE: 1 for 2nd pass of RUN operation

C 2 for 3rd pass (only if 2 cells in series)

ISTART=MSG(4)

ISCRAT=MSG(7)

ICYCLE(MM)=MSG(5)

MCYCLE(MM)=MSG(6)

ISERIE=MSG(8)

C open FMAT.UNF

OPEN(UNIT=10,NAME•'VOL:FMAT.UNF',TYPE='OLD',ACCESS='DIRECT',

1RECORDSIZE•1,ERR=999,ASSOCIATEVARIABLE=JPOINT)

GOT0(5,10) !START

999 WRITE(NNl,lOOO)

1000 FORMAT(lX,'ERROR IN OPENING FMAT.UNF')

C error !

RESP(1)='EF'

GOTO 110

C 'initialize' mode

5 1PT=1

1UN=10

GOTO 15

C 're-start' mode

10 1PT=2

1UN=12

337

C read parameters from FMAT.UNF or GMAT.UNF

15 NP01NT(1PT)=5+49*(MM-1)

DO 20 1=1,21,2

20 READ(1UN'NP01NT(1PT)) A(1,MM),A(1+1,MM)

D0•25 !a1,13,2

25 READ(1UN'NP01NT(1PT)) B(1,MM),B(1+1,MM)

DO 30 1=1,10

30 READ(1UN'NP01NT(1PT)) JT(I,MM)

DO 35 1•1,14

35 READ(1UN'NP01NT(1PT)) VAL(1,MM)

DO 40 1""1,2

40 READ(1UN'NP01NT(IPT)) QO(I,MM)

DO 45 1•1,2

45 READ(1UN'NPOINT(IPT)) Q(1,MM)

C if 're-start' mode, jump

1F(ISTART.EQ.2") GOTO 80

NP01NT(2)m8+49*(MM-1)

C if no new scratch-file, get number of last block written into

IF(ISCRAT.EQ.O) READ(12'NPOINT(2)) A(7,MM),IDUM

C copy all FMAT.UNF parameters into GMAT.UNF

NP01NT(2)•5+49*(MM-1)

338

DO 50 1=1,21,2

50 WR1TE(12'NP01NT(2)) A(1,MM),A(1+1,MM)

DO 55 1=1,13,2

55 WR1TE(12'NP01NT(2)) B(1,MM),B(1+1,MM)

DO 60 1=1,10

60 WR1TE(12'NP01NT(2)) JT(1,MM)

DO 65 1=1,14

65 WR1TE(12'NP01NT(2)) VAL(I,MM)

DO 70 1=i,2

70 WR1TE(12'NP01NT(2)) Q0(1,MM)

DO 75 1=1,2

75 WR1TE(12'NP01NT(2)) Q(1,MM)

C if no new scratch-file, jump

1F(1SCRAT.EQ.O) GOTO 85

GOTO 90

C if no new scratch-file, jump

80 1F(1SCRAT.EQ.O) GOTO 85

C set block number = 0 in GMAT.UNF

NP01NT(2)•8+49*(MM-1)

READ(12'NPOINT(2)) A(7,MM),A(8,MM)

A(7,MM)=O

NPOINT(2)=NPOINT(2)-1

WRITE(l2'NPOINT(2)) A(7,MM),A(8,MM)

GOTO 90

C open scratch-file

85 CALL FILOPC(MM,O)

NPOINT(2)=8+49*(MM-1)

READ(l2'NPOINT(2)) A(7,MM),A(8,MM)

C set INTERR • 1 in the last block's pointer storage area

II•IREADW(256,BUF(1,MM),A(7,MM),ICHAN(MM))

339

BUF(127,MM)=l

II=IWRITW(256,BUF(l,MM),A(7,MM),ICHAN(MM))

C close scratch-file

CALL FILOPC(O,MM)

C increment block number and update it in GMAT.UNF

A(7,MM)=A(7,MM)+l

NPOINT(2)=NPOINT(2)-1

WRITE(12'NPOINT(2)) A(7,MM),A(8,MM)

C initialize pointer and A-hr storage area in BUF

90 DO 95 I=1,8

95 BUF(120+I,MM)=O.

C compute JFAC (see explanation of TIMEAS routine)

CALL JJCVT(JT(4,MM))

CALL CVTTIM(JT(4,MM),IHR,IMIN,ISCND,ITICK)

CALL JJCVT(JT(4,MM))

FAC=FLOAT(IMIN)+FLOAT(ISCND)/60.+FLOAT(ITICK)/3600.

IF(FAC.GT.l6.) FAC=l6.

FAC=ALOG(FAC*2.)/ALOG(2.)

IFAC=FAC

IF((FAC-IFAC).GT.(.5)) IFAC=IFAC+l

FAC•2.**(FLOAT(IFAC)/2)

II•JAFIX(FAC,JFAC(MM))

C if cycle-update mode is the same as starting mode, then the

C cycle U transferred from WATCHDOG is 1 too high: it will

C automatically get incremented in subroutine INPUT;

C decrement it now

IF(MCYCLE(MM).EQ.A(3,MM)) ICYCLE(MM)•ICYCLE(MM)-1

C no HOLD request pending for the cell

KCYCLE(MM)--1

C close FMAT.UNF

340

CLOSE(UNIT=lO)

C if no cell in series, jump

IF(A(ll,MM).EQ.O) GOTO 105

C if 3rd pass of RUN operation, jump

IF(ISERIE.EQ.2) GOTO 100

C there is a cell in series ! ••

RESP(l)="'SC"'

C ••• and that's its number

RESP(2)=A(ll,MM)

C the 1st cell must wait

A(l,MM)=O

C send response

II=ISDAT(RESP,2)

IDONE=l

C activate receiver

II~IRCVDF(MSG,8,AREA,CRMESS)

RETURN

C set the ignition for the companion cell

100 A(l,A(ll,MM))~l

C it starts from an o-c condition

A(2 ,A(l't,MM))"'0

NPOINT(2)=5+49*(A(ll,MM)-l)

C quick I update these parameters

WRITE(l2"'NPOINT(2)) A(l,A(ll,MM)),A(2,A(ll,MM))

C set the ignition

105 A(l,MM)=l
.

C start from an o-c condition

A(2,MM)•O

NPOINT(2)•5+49*(MM-l)

C n"'oubliez pas to update these parameters

341

WRITE(l2'NPOINT(2)) A(l,MM),A(2,MM)

C here we go ••••

RESP(l)='OK'

C send response

110 II=ISDAT(RESP,l)

IDONE=l

C activate receiver

II=IRCVDF(MSG,3,AREA,CRMESS)

RETURN

END

SUBROUTINE MSCHNG(IDONE)

C THIS SUBROUTINE EXECUTES AT THE 1ST PASS OF THE CHANGE OR

C DISPLAY OPERATION

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/PNTRS/NPOINT

COMMON/CYCLCT/ICYCLE(16),MCYCLE(l6)

EXTERNAL CRMESS

INTEGER MSG(59),AREA(4),RESP(80),A(22,16),B(l4,16),AREA2(4,16),

1NPOINT(2)

INTEGER*4 JT(10,16),JJT(5)

DIMENSION VAL(14,16),Q0(2,16),Q(2,16),VVAL(l4),QQ0(2)

EQUIVALENCE (RESP(38),JJT(l))

EQUIVALENCE (RESP(48),VVAL(l))

EQUIVALENCE (RESP(76),QQO(l))

MESCNT=MESCNT-1

MM=MSG(3)

RESP(1)='0K'

342

C if cell in operation, jump

1F(A(1,MM).EQ.1) GOTO 30

C read parameters from GMAT.UNF

NP01NT(2)=5+49*(MM-1)

DO 5 1=1,21,2

5 READ(12'NP01NT(2)) A(1,MM),A(1+1,MM)

C do not allow cell to go in operation

1F(A(1,MM).EQ.1) A(1,MM)=O

DO 10 1=1,13,2

10 READ(12'NP01NT(2)) B(1,MM),B(1+1,MM)

DO 15 1=1,10

15 READ(12'NP01NT(2)) JT(1,MM)

DO 20 1•1,14

20 READ(12'NPOINT(2)) VAL(1,MM)

DO 25 1•1,2

25 READ(12'NP01NT(2)) Q0(1,MM)

NP01NT(2)=785+MM

READ(12'NP01NT(2)) 1CYCLE(MM),MCYCLE(MM)

C encode response

30 DO 35 K=1,22

35 RESP(1+K)mA(K,MM)

DO 40 K•1,14

40 RESP(23+K)•B(K,MM)

DO 45 K•1,5

45 II•JMOV(JT(3+K,MM),JJT(K))

DO 50 K•1, 14

50 VVAL(K)=VAL(K,MM)

DO 55 K=l,2

55 QQO(K)=QO(K,MM)

RESP(80)=ICYCLE(MM)

C send response

II=ISDAT(RESP,80)

IDONE=l

343

C activate message receiver

II=IRCVDF(MSG,59,AREA,CRMESS)

RETURN

END

SUBROUTINE MSUPDT(IDONE)

C THIS SUBROUTINE EXECUTES AT THE 2ND PASS OF THE CHANGE OPERATION

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/INT4/JTWO,JFOUR,JFAC

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(l6)

COMMON/TIMTIM/JCHECK,JSET,JCVLC

EXTERNAL CRMESS

INTEGER MSG(59),MSG1(59),AREA(4),RESP(l),A(22,16),B(l4,16),

1AREA2(4,16)

INTEGER*4 JT(l0,16),JT4,JT7,JT8,JTWO,JFOUR,JFAC(l6),JTEST,

lJCHECK,JSET,JCVLC,JFF

DIMENSION VAL(l4,16),VVAL(l2),Q0(2,16),Q(2,16)

EQUIVALENCE (MSG1(26),JT4)

EQUIVALENCE (MSG1(28),JT7)

344

EQUIVALENCE (MSG1(30),JT8)

EQUIVALENCE (MSG1(32),JFF)

EQUIVALENCE (MSG1(34),VVAL(1))

EQUIVALENCE (MSG1(58),QQO)

C reset message flag

MESCNT=MESCNT-1

C copy message

DO 5 K=1,59

5 MSG1(K)=MSG(K)

MM=MSG1(3)

C if cell in operation, do not update A array

IF(A(1,MM).EQ.1) GOTO 15

c

c

c

update of A array

DO 10 K=1,14

10 A(8+K,MM)=MSG1(3+K)

c

C update of B array

c

15 B(1,MM)=MSG1(18)

C if not in operation, or in discharge mode, or not in CVLC

C charge mode, update B(2,J)

IF(A(1,MM).EQ.O.OR.A(3,MM).EQ.O.OR.B(4,MM).LT.4.0R.

1B(4,MM).GT.6) B(2,MM)=MSG1(19)

DO 20 K=1,6

20 B(4+K,MM)=MSG1(19+K)

c

C update of JT array .

c

345

C if JFAC (and DTstore) was not modified, jump

IF(MSG1(32).EQ.O.AND.MSG1(33).EQ.O) GOTO 30

C update JFAC

II=JMOV(JFF,JFAC(MM))

KPOINT=26+49*(MM-1)

C update DTstore in GMAT.UNF

WRITE(12'KPOINT) JT4

C what is the present value of DTinp ? (JSET = 1 min.)

II=JDIV(JSET,JT(lO,J),JTEST)

C if DTinp is more than 30 seconds, jump

IF(JCMP(JTEST,JTWO).LT.O) GOTO 25

C if it is less or equal to 30 seconds, divide DTstore by JFAC

II~JDIV(JT4,JFAC(MM),JT4)

C if it is less than 30 seconds, divide DTstore by JFAC a 2nd

C time

IF(JCMP(JTEST,JFOUR).GE.O) II=JDIV(JT4,JFAC(MM),JT4)

25 II=JMOV(JT4,JT(4,MM))

30 II~JMOV(JT7,JT(7,MM))

c

c

c

II•JMOV(JT8,JT(8,MM))

update of VAL array

VAL(l,MM)=VVAL(l)

C if not in operation, or in discharge mode, or not in CVLC

C charge mode, update VAL(2,J)

IF(A(l,MM).EQ.O.OR.A(3,MM).EQ.O.OR.B(4,MM).LT.4.0R.

1B(4,MM).GT.6) VAL(2,MM)=VVAL(2)

C if not in operation, update calibration factor

IF(A(l,MM).EQ.O) VAL(3,MM)•VVAL(3)

40 DO 45 K•l,9

346

45 VAL(3+K,MM)=VVAL(3+K)

c

c

c

update of Q and QO arrays

QO(l,MM)=QQO

C update all these parameters in GMAT.UNF

CALL UPDATE(MM,4)

RESP(l)="'OK"'

C send response

II=ISDAT(RESP,l)

IDONE=l

C activate message receiver

II=IRCVDF(MSG,3,AREA,CRMESS)

RETURN

END

SUBROUTINE MSWHEN(IDONE)

C THIS SUBROUTINE EXECUTES AT THE 1ST PASS OF THE HOLD OR STOP

C REQUEST

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

COMMON/PASS/A,B,JT,VAL,QO,Q

COMMON/CYCLCT/ICYCLE(l6),MCYCLE(16)

COMMON/CCHOLD/JCYCLE(l6),KCYCLE(l6),IHOLD

EXI'ERNAL CRMESS

INTEGER MSG(59),AREA(4),RESP(lO),A(22,16),B(l4,16),AREA2(4,16)

INTEGER*4 JT(l0,16),JTLEFT

347

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

EQUIVALENCE (RESP(2),JTLEFT)

EQUIVALENCE (RESP(5),QQO)

EQUIVALENCE (RESP(7),QQ)

C reset message flag

MESCNT=MESCNT-1

MM=MSG(3)

C if cell in operation, jump

IF(A(1,MM).NE.O) GOTO 1

C not connected

RESP(1)='NC'

C send response

II=ISDAT(RESP,l)

GOTO 10

C cancel eventual marktime for the cell

1 II=ICMKT(MM,JTLEFT)

C if there was no marktime, jump

IF(II.NE.O) GOTO 5

CALL JJCVT(JTLEFT)

C no good !

RESP{1)='NG'

C send back response (with the time that was left for the

C marktime when it got cancelled)

II-ISDAT(RESP,3)

GOTO 10

C response will contain cycling information

5 RESP{l)='OK'

RESP{2)•ICYCLE(MM)

RESP(3)-A(2,MM)

RESP(4)-A(3,MM)

348

QQO=Q0(1+A(3,MM),MM)*A(10,MM)/5.

QQ=Q(1+A(3,MM),MM)*A(10,MM)/5.

RESP(9)=JCYCLE(MM)

RESP(10)=KCYCLE(MM)

C send response

II=ISDAT(RESP,10)

10 IDONE=1

C activate message receiver

II=IRCVDF(MSG,7,AREA,CRMESS)

C this is a mistery to me ! -- do not remove this statement, or

C the program will occasionally bom

MESCNT=O

RETURN

END

SUBROUTINE MSSTOP(IDONE)

C THIS SUBROUTINE EXECUTES AT THE 2ND PASS OF THE STOP OPERATION

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

EXTERNAL CRSTOP,CRMESS

INTEGER MSG(59),AREA(4),RESP(1),AREA2(4,16)

C reset message flag

MESCNT=MESCNT-1

C activate timer request for the cell

II•ITIMER(MSG(4),MSG(5),MSG(6),MSG(7),AREA2(1,MSG(3)),MSG(3),

1CRSTOP)

RESP(1)a'OK'

349

C send response

II=ISDAT(RESP,l)
c

IDONE=l

C activate receiver

II=IRCVDF(MSG,3,AREA,CRMESS)

RETURN

END

SUBROUTINE CRSTOP(MM)

C THIS COMPLETION ROUTINE IS CALLED WHEN A STOP-TIMER REQUEST

C EXPIRES

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

INTEGER MM,MSG(59),AREA(4),AREA2(4,16)

C set flag for timer request expired

IMSTOP=MM

RETURN

END

SUBROUTINE MSHOLD(IDONE,MODE)

C THIS SUBROUTINE EXECUTES AT THE 2ND PASS OF THE HOLD OPERATION

C (IMODE~O), OR WHEN A CELL GOES IN OPEN-CIRCUIT (IMODE=l)

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

350

CO~lliON/PASS/A,B,JT,VAL,QO,Q

COMMON/CYCLCT/ICYCLE(16),MCYCLE(16)

CO~lliON/CCHOLD/JCYCLE(16),KCYCLE(16),IHOLD

EXTERNAL CRMESS

INTEGER MSG(59),AREA(4),RESP(1),A(22,16),B(14,16),AREA2(4,16)

INTEGER*4 JT(10,16)

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

GOT0(5,20) MODE+1

5 MM=MSG(3)

C reset message flag

c

C now we are going to check whether or not the request is valid:

C this depends on the cycle and half-cycle at which the cell

C is operating, and the cycle and half-cycle at which the cell

C is requested to stop; the latter information is contained

C in MSG(4) and MSG(5)

C MSG(4) contains the cycle number at which the cell

C must stop

C MSG(S) contains the mode (0 for ds, 1 for ch) of

C the half-cycle (for that cycle number)

C after which the cell must stop

MESCNT=MESCNT-1

C if you are not yet at the cycle where you are asked to

C stop, jump: the request is valid

IF(MSG(4).GT.ICYCLE(MM)) GOTO 10

C !MODE is the mode (0 for ds, 1 for ch) of the present or last

C half-cycle (last if already in o-c)

IMODE=A(3,MM)*A(2,MM)+(l-A(3,MM))*(1-A(2,MM))

C if the present and the requested cycle number are the same

C then:

c

c

c

c

c

c

c

c

c

c

c

c

351

case of a cell in o-c:

if the mode of the requested half-cycle is

the same as that of the last half-cycle,

valid; jump

case of a cell on ch or ds:

if the mode of the requested half-cycle is

the same as that of the present half-cycle,

valid; jump

case of cell in o-c, chords:

if the mode of the requested half-cycle is not

the same as the mode at which a cycle number

gets incremented, valid; jump

IF(MSG(4).EQ.ICYCLE(MM).AND.((MCYCLE(MM).NE.MSG(5)).0R.

1(IMODE.EQ.MSG(5)))) GOTO 10

C no good !

RESP(1)='NG'

GOTO 15

C the request is vaild (OK):

C define cycle and half-cycle at which the cell must stop

10 JCYCLE(MM)=MSG(4)

KCYCLE(MM)=MSG(5)

RESP(1)='0K'

C send response

15 IImiSDAT(RESP,1)

IDONEa1

C activate message receiver

II•IRCVDF(MSG,3,AREA,CRMESS)

C if 'cell in o-c and request is valid, jump: maybe the cell

C has to be stopped right now !

IF(A(2,MM).EQ.O.AND.RESP(1).EQ.'OK') GOTO 20

352

RETURN

C reset flag that was set when 'a' cell went in o-c

20 IHOLD=O

C DO loop for all cells

DO 25 K=l,l6

C if no request pending for the cell, or cell not in o-c, jump

IF(KCYCLE(K).EQ.-l.OR.A(2,K).NE.O) GOTO 25

C if mode of last half-cycle (l-A(3,K)) not equal to mode of

C requested half cycle, or cycle number not equal number of

C requested cycle, jump

IF((l-A(3,K)).NE.KCYCLE(K).OR.JCYCLE(K).NE.ICYCLE(K)) GOTO 25

C set termination flag

A(l,K)=2

C if there is a companion, set its termination flag

IF(A(ll,K).NE.O) A(l,A(ll,K))=2

C no more HOLD request pending for the cell

KCYCLE(K)=-1

25 CONTINUE

RETURN

END

SUBROUTINE MSNOW

C THIS SUBROUTINE IS CALLED BY THE MESSAGE HANDLER:

C THIS HAPPENS WHEN THE HANDLER IS NOTIFIED (IMSTOP FLAG SET)

C THAT A STOP-TIMER REQUEST JUST EXPIRED

COMMON/PASS/A,B,JT,VAL,QO,Q

353

COMMON/MESSAG/MSG,MESCNT,AREA,AREA2,IMSTOP

INTEGER MM,A(22, 16) ,B(14,16) ,MSG(59) ,AREA(4) ,AREA2(4, 16)

INTEGER*4 Jt(10,16),JTOP

DIMENSION VAL(14,16),Q0(2,16),Q(2,16)

C get cell number from IMSTOP flag

MM=IMSTOP

C get time

CALL GTIM(JTOP)

CALL JJCVT(JTOP)

C reset IMSTOP

IMSTOP=O

C if cell not in operation, set termination flag

IF(A(1,MM).NE.O) A(1,MM)=2

C if there is a companion cell, set its termination flag

IF(A(11,MM).NE.O) A(1,A(11,MM))=2

RETURN

END

FUNCTION RDLOGG(ICHAN,IRAN,IREAD,ITIME,JCEL)

C THIS FUNCTION DECIDES WHETHER RLOGG OR RMLOGG SHOULD BE

C USED FOR READING AN A/D CHANNEL

COMMON/PASS/A,B,JT,VAL,QO,Q

INTEGER A(22,16),B(14,16)

INTEGER*4 JT(l0,16)

DIMENSION VAL(l4,16),Q0(2,16),Q(2,16)

C if control mode > or ~ 7 (pulsed mode), jump

354

IF(B(3+A(3,JCEL),JCEL).GE.7) GOTO 10

C regular A/D function: result of RDLOGG is result of RLOGG

5 RDLOGG=RLOGG(ICHAN,IRAN,IREAD,ITIME)

RETURN

c

C pulsed current mode

c

C if current measurement, jump back to regular A/D function

10 IF(ICHAN.EQ.A(19,JCEL)) GOTO 5

C if A/D range < 100, jump

IF(IRAN.LT.100) GOTO 15

C this is a measurement at the ON-side of the pulse: track

C the pulse and find the maximum value

MAXMIN=1

C actual A/D range is given one - 100

JRAN=-IRAN-100

GOTO 20

C this is a measurement at the OFF-side of the pulse: track

C the pulse and find the minimum value

15 MAXMIN=O

C actual A/D range is given one

JRAN=-IRAN

C measure for 100 msec.

20 IPER•1000

C result of RDLOGG is result of RMLOGG

RDLOGG=RMLOGG(ICHAN,JRAN,IREAD,ITIME,MAXMIN,IPER)

RETURN

END

355

REFERENCES

1. RT-11 Documentation, Version 4, Volume 3A, REF, p.1-22, pp.3-34

to 3-36 and 3-45 to 3-48, March 1980. Ditigal Equipment Cor­

poration, Maynard, Mass.

2. RT-11 Documentation Directory, Version 4, Vol. 4, Fortran

Language Reference Manual,Jan. 1980. Digital Equipment Corpora­

tion, Maynard, Massachusetts.

356

APPENDIX E

THE WATCHDOG PROGRAM - ORGANIZING CYCLING REGIMES

E.1 CYCLING REGIMES

The WATCHDOG program is written in FORTRAN IV programming

language for LSI-11/23 computers.(1) A cycling regime is a combina­

tion of a charge and a discharge mode. Charge modes are :

1. constant current

2. constant current - limited voltage (the current is kept

constant up to the point where a voltage limit is

reached, then the voltage is kept constant)

3. pulsed current

Discharge modes are:

1. constant current

2. constant power

3. pulsed current

Each of these modes has 3 variations:

1. Regular cycling:

discharged (a

a cell

regular

is continuously charged and

charge and discharge mode must be

combined). A charge or discharge can be terminated when a

limit on a measured variable is exceeded (e.g. cutoff vol­

tage) or a required number of A~hrs have been passed in

that mode. An excess factor is provided, that is multi­

plied with the discharged A-hrs, so as to define the A-hrs

to pass on charge (this accounts for the inefficiency of

the cell on charge).

357

2. One half-cycle: this must be combined with a mode 0 (i.e no

mode) for the other half-cycle. A cell is charged or

discharged, with the termination procedures described above.

An additional feature is the possibility of entering a time

limit for the half-cycle, rather than an A-hr limit. When the

half-cycle is terminated, the cell stays in open-circuit, tak­

ing data for a specified amount of time, then its operation is

terminated.

3. Regular cycling for 2 cells in series: two such modes must be

combined for charge and dicharge. Both cells under test must

have these modes specified. Even though the cycling specifi-

cations for each cell are entered separately, it is essential

that they be well matched, otherwise the results are unpredict­

able. In any other aspect, this mode and the first one perform

identical functions.

E.2 FUNCTIONS OF THE WATCHDOG PROGRAM

The WATCHDOG program is run in conjunction with the REAL-TIME pro~

gram. It is the main interface between the user and the electrochemical

cell test system. It is through this program that the user can control

his experiments: without the WATCHDOG program, the REAL-TIME program is

virtually useless.

The watchdog program uses the cell parameters (described in Section

D.l) and the files FMAT.UNF and GMAT.UNF (described in Section D.2). It

communicates with the REAL-TIME program through a set of messages, with

a handling procedure that is described in Section D.5. Subroutines of

358

the WATCHDOG program are matched with subroutines of the REAL-TIME

program: therefore, a view of the routines at both ends is necessary in

order to understand the message exchanges.

The WATCHDOG program has the following functions:

IN for INITIALIZE

EX for EXAMINE

DS for DISPLAY

CH for CHANGE

HD for HOLD

ST for STOP

RR for RUN (RRl and RR2)

E.2.1 INITIALIZE

This function initializes all parameters that characterize the

operation of a cell, and stores them in the file FMAT.UNF. There is no

communication between the WATCHDOG and the REAL-TIME program: the use

of the function is valid regardless of whether the REAL-TIME program

runs or not.

E.2.2 EXAMINE

This function displays all the parameters, for a cell, as they were

last entered in FMAT.UNF, by the INITIALIZE function. There is no com­

munication between the WATCHDOG and REAL-TIME programs: the use of the

function is valid regardless of whether the REAL-TIME program runs or

not.

359

E.2.3 DISPLAY

This function displays all the parameters that describe how a cell

is operating at that precise moment. If a cell with a certain number

never was in operation, DISPLAY gives inconsistent results.

When the REAL-TIME program is not running (and the cell is, there­

fore, not in operation), DISPLAY reads the parameters straight from the

file GMAT. UNF. When the REAL-TIME program is running, the parameters

are sent to the WATCHDOG program by use of a message.

there are two possibilities:

In that case,

1. If the cell is not in operation, the REAL-TIME program reads

the parameters from GMAT.UNF and puts them in the message.

2. If the cell is in operation, the REAL-TIME program sends the

contents of the parameter arrays (A,B,JT, VAL,Q,QO - see Sec.

D.1) at that precise moment. An example of what DISPLAY out-

puts, in this case, is shown in Table 1.

E.2.4 CHANGE

This function changes selective cell parameters: this can be done

while the cell in question is running, and it is, therefore, a way to

interactively modify the experiment. In Table 1, only the parameters

referenced with a number can be changed: for example, the control modes

cannot be changed. This is because they would require too many other

changes to be made, in order to keep the cycling conditions meaningful:

it is a protection from user errors. When the cell is in operation,

some other parameters will not be modified. For example, the current

360

controller cannot be changed unless the cell is put out of operation and

its connections physically modified. A list of parameters that are not

modified when the cell is running is given in the description of the

MSUPDT subroutine, sec. D.7.29.

When the REAL-TIME program is not running (and the cell is therefore

not in operation), CHANGE modifies parameters straight in GMAT.UNF.

When the REAL-TIME program is running, the parameters are sent to it in

a message. In that case, there are 2 possiblities:

1. if the cell 'is not in operation, the REAL-TIME program writes

the parameters to the file GMAT.UNF.

2. If the cell is in operation, the parameters are read into the

parameter arrays, and also written out to GMAT.UNF.

E.2.5 HOLD

This function activates a request to stop a cell after a half-cycle

to come. The use of the function is not valid when the REAL-TIME pro­

gram is not running, or when the cell is not in operation.

HOLD uses subroutine HOLD.

E.2.6 STOP

This function activates a request to stop a cell after a specified

amou~t of time. The use of the function is not valid when the REAL-TIME

program is not running, or when the cell is not in operation.

I

361

E.2.7 RUN

This function puts a cell in operation. There are 2 modes, RR1 and

RR2 (see also sec. 0.2).

1. RR1 is the initialize mode. It starts a cell with the parame-

ters that were entered in FMAT.UNF, with the INITIALIZE func-

tion, and does not otherwise refer to any previous "history" of

the cell. It is up to the user to take that into account when

initializing the parameters. He/she has the option of starting
\

a new scratch-data-file, or adding data to the existing one for

that cell number, and he/ she can also decide at which cycle

number the cell starts operating. New cells must always be

started in this mode (at cycle 1).

2. RR2 is the re-start mode. It starts a cell with the parameters

that are stored in GMAT. UNF. These parameters describe what

the cell was doing at the moment it was put out of operation:

they reflect its "cycling history". Here, too, the user can

choose to start a new scratch-data-file or add data to the

existing one, and he can specify the cycle number.

The use of the function is not valid when the REAL-TIME program is

not running, or when the cell is already in operation.

E.3 SOME USEFUL HINTS

This section gives a list of useful hints for using the real-time

program.

362

1. The following can happen when a controller is switched in the

local mode during a cell's operation:

1. If the cell is charging or discharging, the current can no

longer be controlled by the computer: the control routine

sets a termination flag. Possibly, the error can be

intercepted first by the hardware check routine. In both

cases, the cell is put out of operation.

2. If the cell is in open-circuit, it is not allowed to start

a charge or discharge. The open-circuit period is

extended (with the open-circuit time interval), until the

controller is set back in the computer mode. The cell

stays in operation (data continue to be taken).

2. Only single-charge or single-discharge modes accept time limits

instead of A-hr limits. Moreover, they do not put a cell out

of operation immediately after the half-cycle: it stays in

open-circuit, and data are taken for a specified amount of

time. Then, the cell goes out of operation.

3. For the operation of two cells in series, the program does not

check whether or not the parameters entered are consistent.

The EXAMINE and DISPLAY functions are provided for that use.

4. A half-cycle can be interrupted with a STOP request. The user

can re-start it where it left off, but he can also continue the

half-cycle with initialized parameters. For example, it is

perfectly legal to discharge a cell at constant power to 1 V

cutoff voltage, then interrupt it, and continue the same

363

discharge with new parameters, at constant current, down to 0 V

cutoff voltage. However, as in this case, when the cell is run

in the "initialize" mode, the A-hrs start counting back at

zero: the previous A-hr count not used.

5. A test on 2 cells in series can be interrupted during a half­

cycle or at open-circuit, and continued for only one of the

cells. The parameters must be re-initialized, to specify that

the cell is cycled on its own; if a half-cycle was interrupted,

the A-hrs start counting back at zero.

6. During an interruption in a cell's operation, a user can change

the current controller it runs on, by using the CHANGE func­

tion. However, to do it in that way (rather than with the

INITIALIZE function) is only allowed if the range of the con­

troller remains the same (2 A or 10 A).

7. When a cell is in open-circuit, a change in its open-circuit

time only takes effect at the next open-circuit.

8. When a cell is in open-circuit, a HOLD request for the previous

half-cycle is valid.

9. In order to comply with the restrictions of the data-reducing

program, the number of A/D channels should not be changed dur­

ing the course of a cycle (e.g between charge and discharge).

A change between two cycles is allowed.

364

10. The largest block number used in a scratch-file should never

exceed 256.

11. As described in Section E.2. 7, when a user places a cell in

operation with the RUN function, he/she can choose to start a

new scratch-file or add data to an old one.

12. In message exchange procedures (and related WATCHDOG func­

tions), no action is taken until the message "TRANSFER COM­

PLETED" appears on the screen.

13. A message procedure can be aborted at various points: this has

been provided for in the code. However, it can also be aborted

by interrupting the WATCHDOG program with a ACAC.

E.4 SUBROUTINES OF THE WATCHDOG PROGRAM

E.4.1 WATCHD

This is the main program, which types the list of functions on the

CRT. The subroutines it calls are located in the extended memory.

E.4.2 ASK

This subroutine is called by MODIF and MATIN. According to the

value of the input parameter ITYPE, it types one out of 27 statements on

the CRT.

E.4.3 MATIN

I

365

MATIN is used by the INITIALIZE function: it asks the user for cell

cycling information, and stores it in FMAT.UNF. MATIN checks whether

the control modes entered for charge and discharge are consistent with

each other, but does not check any other input. The EXAMINE function

must be used for that purpose.

E.4.4 MODIF

Depending on the value of the input parameter !CHANG, MODIF is used

by the EXAMINE function (-1), the DISPLAY function (0) or the CHANGE

function (1).

The first part of the routine is executed for the three functions:

the cell parameters are read from FMAT. UNF, GMAT. UNF, or transferred

from the REAL-TIME program (see Sections E.2.2 to E.2.4). In the

latter case, MODIF communicates with subroutine MSCHNG (Section D.7.28)

of the REAL-TIME program. The second part of MODIF is only executed for

the CHANGE function: the user can change the value of some cell parame­

ters. A list of parameters that cannot be modified during cell opera­

tion is given in Section D.7.29. This part of MODIF communicates with

subroutine MSUPDT (Section D.7.29) of the REAL-TIME program.

E.4.5 HOLD

Depending on the value of the input parameter !HOLD, this subroutine

is used by the function STOP (0) or HOLD (1). The first part of HOLD is

executed for the two functions: it communicates with subroutine MSWHEN

(Section D.7.30) of the REAL-TIME program.

366

The second part of HOLD is executed for the STOP function, and com­

municates with subroutine MSSTOP (Section D.7.31) of the REAL-TIME pro­

gram.

The third part is executed for the HOLD function, and communicates

with subroutine MSHOLD (Section D.7.33) of the REAL-TIME program.

E.4.6 RUN

This subroutine is used by the RUN function. The first part of RUN

communicates with subroutine MSWHO (Section D. 7 .26) of the REAL-TIME

program.

The second part is executed for the "re-start" mode, and the third

for the 'initialize' mode. The last part communicates with subroutine

MSRUN (Section D.7.27) of the REAL-TIME program.

I

367

T A B L E 1

Output of the DISPLAY and the CHANGE(*) Functions, for Cell 10

CELL 10 IS RUNNING, CYCLE 44
PRESENT MODE IS CHARGE

LAST BLOCK ON SCRATCH-FILE THAT HAS BEEN WRITTEN TO IS BLOCK NUMBER 118

CURRENT CONTROLLER 2. FULL-SCALE CURRENT IS 2 A.
WITH CALIBRATION FACTOR 1.00100

4 A/D CHANNELS ACTIVE
CHANNEL 1 A/D CHANNEL 11

RANGE NUMBER 2
CHANNEL 2 A/D CHANNEL 12

RANGE NUMBER 2
CHANNEL 3 A/D CHANNEL 13

RANGE NUMBER 2
CHANNEL 4 A/D CHANNEL 14

RANGE NUMBER 2
CHANNEL 5 A/D CHANNEL 0

RANGE NUMBER 0

II 1

II 2

ON DISCHARGE: # 21
CHANNEL WATCHED FOR REGULATION OF DATA-TAKIING RATE IS 1
INTERVAL THAT REGULATES THE RATE IS 0.01000

(IN APPROPRIATE UNITS)

ON CHARGE:
CHANNEL WATCHED FOR REGULATION OF DATA-TAKIING RATE IS 1
INTERVAL THAT REGULATES THE RATE IS 0.01000

(IN APPROPRIATE UNITS)

DISCHARGE MODE IS 1

CHARGE MODE IS 1

LOWER LIMIT 1 ON DISCHARGE CHANNEL 1
VALUE 1.10000

UPPER LIMIT 4 ON CHARGE CHANNEL 1

DT-MEASUREMENT

DT-QPEN-CIRCUIT

DT-CONTROL

CHARGE EXCESS FACTOR

CURRENT ON DISCHARGE

CURRENT ON CHARGE

VALUE 2.15000

0 15 0 0

0 10 0 0

0 0 15: 0

1.04000

0.54000 A

0.22500 A

MAXIMUM A-HRS TO BE PASSED ON DISCHARGE 1.35000

MAXIMUM A-HRS TO BE PASSED ON CHARGE 1.40513

II 22

II 23

II 24

II 31

II 32

II 33

II 41

II 42

43

51

(*) For the CHANGE function, only the parameters referenced with
a member can be modified.

368

PROGRAM WATCHD

CALL ASSIGN(6, "'LP: / C"' ,5)

NN1=7

1 WRITE(NN1,1000)

1000 FORMAT(1X,"'TYPE IN FOR INITIALIZATION' ,/,1X,T8,"'EX FOR"',

1"'EXAMINE"' ,/,1X,T8,"'DS FOR DISPLAY',/,1X,T8,"'CH FOR CHANGE',

2/,1X,T8,'HD FOR HOLD' ,/,1X,T8,'ST FOR STOP' ,/,1X,T8,"'RR '

3'FOR RUN')

1100

1

READ(5, 1100) I MODE

FORMAT(A2)

IF(IMODE.EQ."'IN') CALL MATIN

IF(IMODE.EQ.'EX') CALL MODIF(-1)

IF(IMODE.EQ."'DS') CALL MODIF(O)

IF(IMODE.EQ.'CH') CALL MODIF(1)

IF(IMODE.EQ.'HD') CALL HOLD(1)

IF(IMODE.EQ.'ST') CALL HOLD(O)

IF(IMODE.EQ.'RR') CALL RUN

GOTO 1

END

SUBROUTINE ASK(ITYPE,IND)

NN1•7

GOTO (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,

123,24,25,26,27) ITYPE

369

1 WRITE(NN1,1400) IND

1400 FORMAT(1X,'CURRENT CONTROLLER NUMBER ASSOCIATED WITH',

1'CELL ',I2,'?')

RETURN

2 WRITE(NN1,1500)

1500 FORMAT(1X,'GIVE CALIBRATION VALUE FOR THIS CURRENT',

1' CONTROLLER :(REAL)')

RETURN

3 WRITE(NN1,1600)

1600 FORMAT(lX,'VALUE(IN A) OF FULL-SCALE CURRENT FOR 50 MV '

1'SHUNT :(INTEGER)')

RETURN

4 WRITE(NN1,1700)

1700 FORMAT(1X,'THERE ARE 5 MEASURING CHANNELS AVAILABLE.' ,/,1X,

1'INDICATE NUMBER OF ACTIVE CHANNELS')

RETURN

370

5 WRITE(NN1,1800)

1800 FORMAT(1X,'FOR EACH CHANNEL, GIVE THE CORRESPONDING A/D CHA',

1'NNEL NUMBER AND A/D RANGE' ,/,1X,'CHANNEL 1',

2' IS CELL VOLTAGE' ,/,9X,'2' ,4X,'POSITIVE-REFERENCE' ,/ ,9X,

3'3'·,4X,'REFERENCE-NEGATIVE' ,/ ,9X,'4' ,4X,'CURRENT',

4/,9X,'5' ,4X,'TEMPERATURE',//,1X,'RANGE 0 IS',

5' SKIP' ,/,7X,'1',4X,'(+/-)5V' ,/,7X,'2' ,4X,'(+/-)2.5V',/ ,7X,'4',

64X,'(+/-)1.25V' ,/,7X,'8',4X,'(+/-).625V',

7//,1X,'IF CHANNEL NOT ACTIVE, WRITE 0,0')

RETURN

6 WRITE(NN1,1900) lND

1900 FORMAT(1X,'CHANNEL ',I2,' :A/D CHANNEL NUMBER,RANGE')

RETURN

7 WRITE(NN1,2000)

2000 FORMAT(1X,'AVERAGE TIME INTERVAL BETWEEN SUCCESSIVE MEASUREMENTS',

1'(0F ALL CHANNELS)',/ ,1X,'FOR THIS CELL(TEMPORARY: ADJUSTED',

2' BY PROGRAM)',/ ,1X,'MINS,SECS,TICKS')

RETURN

8 WRITE(NN1,2100)

2100 FORMAT(1X,'INDICATE CHANNEL(l-5) TO BE WATCHED FOR REGULATION ',

l'OF DATA-TAKING RATE' ,/,lX,'ON DISCHARGE AND ON CHARGE, AND',

2'GIVE(IN APPROPRIATE UNITS: V,A OR DEG C) ',/ ,lX,'THE MINIMAL',

3' STEP WHICH SHOULD CAUSE A CHANGE OF RATE.' ,/,lX,'(NOTE: ',

4'FOR THE FIRST PART OF A CONSTANT VOLTAGE-LIMITED CURRENT',

5'CHARGE,' ,/,lX,'SELECT A VOLTAGE CHANNEL TO BE WATCHED. AS THE',

6' SECOND PART STARTS, THE CHANNEL' ,/,lX,'TO BE FOLLOWED IS'

7'AUTOMATICALLY SET AS CHANNEL 4)' ,/ ,lX,

371

8'INTEGER(1-5),REAL FOR DISCHARGE',/,1X,

9'INTEGER(1-5),REAL FOR CHARGE' ,/,1X,'(USUAL CASE IS' ,/,1X,

1'1,.01' ,/,1X,'1,.01)')

RETURN

9 WRITE(NN1,2200)

2200 FORMAT(1X,'DOES CELL INITIALLY HAVE TO BE CHARGED OR DISCHARGED

1/,1X,'TYPE 1(CH) OR O(D)')

RETURN

10 WRITE(NN1,2300)

WRITE(NN1,2400)

2300 FORMAT(1X,'DISCHARGE')

2400 FORMAT(1X,'CONTROL MODES:',/ ,3X,'1: CONSTANT CURRENT',/,3X,

1'2: CONSTANT CURRENT, ONE DISCHARGE' ,/,3X,'3: CONSTANT',

2'CURRENT, TWO CELLS IN SERlE',/ ,3X,'4: CONSTANT POWER',

3/,3X,'5: CONSTANT POWER, ONE DISCHARGE',/,3X,'6: CONSTANT'

4'POWER, TWO CELLS IN SERlE' ,/,3X,'7: PULSED CURRENT',

5/,3X,'8: PULSED CURRENT, ONE DISCHARGE' ,/,3X,'9: PULSED'

6'CURRENT, TWO CELLS IN SERlE')

RETURN

11 WRITE(NN1,2500)

WRITE(NN1,2600)

?' . ,

372

2500 FORMAT(1X,'CHARGE')

2600 FORMAT(1X,'CONTROL MODES :' ,/,3X,'1: CONSTANT CURRENT' ,/,3X,

1'2: CONSTANT CURRENT, ONE CHARGE',/,3X,'3: CONSTANT CURRENT, '

2'TWO CELLS IN SERIE' ,/,3X,'4: CONSTANT VOLTAGE-LIMITED CURRENT',

3/,3X,'5: CV-LC, ONE CHARGE' ,/,3X,'6: CV-LC, TWO CELLS IN',

4'SERIE',/,3X,'7: PULSED CURRENT',/,3X,'8: PULSED CURRENT, ',

5'0NE CHARGE',/,3X,'9: PULSED CURRENT, TWO CELLS IN SERIE')

RETURN

12 WRITE(NN1,2700)

2700 FORMAT(1X,'CONTROL MODE ? TYPE 0 IF NONE')

RETURN

13 WRITE(NN1,2800)

2800 FORMAT(1X,'IF YOU WANT TO SPECIFY A TIME LIMIT FOR THIS MODE,',

1/,1X,'NOT A CHARGE LIMIT, TYPE Y, OTHERWISE N')

RETURN

14 WRITE(NN1,2900)

2900 FORMAT(1X,'GIVE DURATION OF MODE: HRS,MINS,SECS,TICKS' ,/,1X,

1'MAXIMUM IS 24 HRS')

RETURN

15 WRITE(NN1,2950)

2950 FORMAT(1X,'GIVE TIME AT OPEN-CIRCUIT DURING WHICH THE PROGRAM',

1/,lX,'MUST CONTINUE TO TAKE MEASUREMENTS ON THE CELL',/ ,lX,

2'HRS,MINS,SECS,TICKS (0,0,0,0 IS A VALID ANSWER)')

RETURN

16 WRITE(NN1,3000)

3000 FORMAT(1X,'MAXIMUM NUMBER OF A-H TO BE PASSED ON DISCHARGE:',

1' (REAL)')

373

RETURN

17 WRITE(NN1,3100)

3100 FORMAT(1X,'NUMBER OF A-H TO BE PASSED ON CHARGE: (REAL)' ,/,1X,

1'NOTE: FOR A MULTIPLE CYCLE OPERATION, THIS VALUE WILL BE '

2/,1X,'CHANGED BY THE PROGRAM AS CYCLING GOES ON')

RETURN

18 WRITE(NN1,3200)

3200 FORMAT(lX,'EXCESS FACTOR, WHICH MULTIPLIES A-HRS PASSED ON',

1' DISCHARGE',/ ,1X,'TO DEFINE THE A-HRS FOR THE NEXT CHARGE:',

2' (REAL)')

RETURN

19 WRITE(NN1,3300)

3300 FORMAT(1X,'DURATION OF OPEN-CIRCUIT HRS,MINS,SECS,TICKS')

RETURN

20 IF(IND.EQ.1) WRITE(NN1,2300)

IF(IND.EQ.2) WRITE(NN1,2500)

WRITE(NN1,3400)

374

3400 FORMAT('+',T11,': LIMITS. GIVE CHANNEL(1-5) & LIMIT(REAL)',

1/,1X,'+ SIGN ON CHANNEL NUMBER IS UPPER LIMIT',

2/,1X,'- SIGN ON CHANNEL NUMBER IS LOWER LIMIT',/,1X,'IF ALL'

3'NECESSARY LIMITS ENTERED FOR THIS MODE, TYPE 0,0.',

4/,1X,'FOR EXAMPLE: 2 LIMITS SPECIFIED, UPPER LIMIT 2. VON'

5'CELL VOLTAGE',/ ,1X,'AND LOWER LIMIT .05 A ON CURRENT.',

6/,1X,'ENTER: 1,2.' ,/ ,BX,'-4,.05',/ ,9X,'O,O.' ,/,1X,

7'NOTE: NEGATIVE LIMIT VALUES ARE ALLOWED !')

RETURN

21 WRITE(NN1,3500) IND

3500 FORMAT(1X,'LIMIT ',I2,' :CHANNEL,VALUE')

RETURN

22 IF(IND.EQ.1) WRITE(NN1,2300)

IF(IND.EQ.2) WRITE(NN1,2500)

WRITE(NN1,3600)

3600 FORMAT('+',T11,': CURRENT CONTROL VALUE (REAL)')

RETURN

23 WRITE(NN1,3700)

3700 FORMAT(1X,'GIVE VOLTAGE CHANNEL(1-3) TO BE USED FOR POWER',

1' REGULATION' ,/,1X,'AND GIVE VALUE(REAL,IN WATTS) : CHANNEL',

2' ,VALUE')

RETURN

24 WRITE(NN1,3800)

3800 FORMAT(lX,'CONSTANT VOLTAGE-LIMITED CURRENT MODE',/,1X,

l'GIVE, FIRST, VALUE OF CURRENT FOR START OF CHARGE: (REAL)')

RETURN

25 WRITE(NN1,3900)

I

375 .

3900 FORMAT(1X,'THEN, GIVE VOLTAGE CHANNEL(1-3) TO BE CONTROLLED, '

1' AND VALUE(REAL)' ,/,1X,'TYPE : CHANNEL,VALUE')

26

4000

27

4100

1

RETURN

WRITE(NN1,4000) IND

FORMAT(1X,'THIS CELL(' ,I2,') IS CONNECTED TO ANOTHER ONE,',

1/,lX,'TYPE IT"S NUMBER')

RETURN

WRITE(NN1,4100)

FORMAT(1X,'TIME INTERVAL BETWEEN SUCCESSIVE CURRENT CONTROLS:',/,

11X,'SECS,TICKS')

RETURN

END

376

SUBROUTINE MATIN

COMMON/PASS/A,B,JT,VAL,QO,Q

INTEGER*4 JT(10)

LOGICAL*1 ANS

DIMENSION VAL(14),Q0(2),Q(2)

INTEGER A(22),B(14)

NN1=7

IDUM=O

JMAX=16

WRITE(NN1,900)

900 FORMAT(1X,'DEFAULT # OF CELLS IS 16. CHANGE ? Y OR N')

ACCEPT 1000,ANS

1000 FORMAT(A1)

IF(ANS.NE.'Y') GOTO 3

WRITE(NN1, 1100)

1100 FORMAT(1X,'NUMBER OF CELLS ?')

ACCEPT *,JMAX

WRITE(NN1, 1150)

1150 FORMAT(1X,'YOU CANNOT CHANGE THE DEFAULT' ,/,'UNLESS SOME'

1'STATEMENTS ARE REMOVED FROM SUBROUTINE MATIN',/,1X,

2'THE NUMBER OF CELLS WILL REMAIN EQUAL TO 16')

JMAX=16

3 OPEN(UNIT=10,NAME~'VOL:FMAT.UNF',TYPE='UNKNOWN' ,ACCESS='DIRECT',

1RECORDSIZE=1,ERR•5,ASSOCIATEVARIABLE=NPOINT)

377

GOTO 10

5 WRITE(NN1,1200)

1200 FORMAT(1X,'ERROR IN FILE OPENING')

STOP

10 WRITE(10'1)JMAX,IDUM

WRITE(NN1,1300)

1300 FORMAT(1X,'CELL NUMBER ?')

ACCEPT *,JCEL

DO 115 J=1 ,JMAX

C if this is the cell, jump

IF(JCEL.EQ.J) GOTO 15

C increment the pointer in FMAT.UNF­

NPOINT=NPOINT+49

WRITE(NN1,1999) NPOINT

1999 FORMAT(1X,'NPOINT=',I3)

GOTO 115

C flag for cell in operation

15 A(l)•l

DO 16 K=2,22

378

C initialize the A array

16 A(K)=O

C flag for storage on the data-file

A(4)=3

DO 17 K=1,14

C initialize B array

17 B(K)=O

C initialize timers

II=JICVT(O,JT(1))

II=JICVT(O,JT(2))

II=JICVT(O,JT(3))

II=JICVT(O,JT(9)) ·

CALL JTIME(24,0,0,0,JT(5))

CALL JJCVT(JT(5))

CALL JTIME(24,0,0,0,JT(6))

CALL JJCVT(JT(6))

CALL JTIME(24,0,0,0,JT(7))

CALL JJCVT(JT(7))

CALL JTIME(0,1,0,0,JT(10))

CALL JJCVT(JT(10))

C initialize the Q and QO arrays

Q0(1)=100.

Q0(2) ... 100.

Q(l):::oQ.

Q(2)=0.

C ask for c.c #, calibration, full-scale current

CALL ASK(l,J)

ACCEPT *,A(9)

CALL ASK(2,0)

ACCEPT *,VAL(3)

CALL ASK(3,0)

ACCEPT *,A(10)

379

C ask for U active channels, A/D channels and ranges

CALL ASK(4,0)

ACCEPT * ,A(12).

CALL ASK(5,0)

DO 20 1=1,5

L=I-1

CALL ASK(6,I)

20 ACCEPT *,A(13+2*L),A(14+2*L)

C ask for DT-measurement, convert to INT*4

CALL ASK(7,0)

ACCEPT *,IMIN,ISEC,ITICK

CALL JTIME(O,IMIN,IS~C,ITICK,JT(4))

CALL JJCVT(JT(4))

C ask for channels which regulate data-taking rate, and steps

C which change the rate

CALL ASK(8,0)

DO 25 Ia1,2

ACCEPT *,B(I),VAL(I)

380

25 IF(B(I).EQ.4) VAL(I)=VAL(I)*5./A(10)

26 CALL ASK(9,0)

ACCEPT * ,A(3)

C main do loop, 1 is ds, 2 is ch

DO 110 I=1 ,2

GOT0(30,35)I

C ask for ds control mode

30 CALL ASK(10,0)

GOTO 40

C ask for ch control mode

3S CALL ASK(11,0)

40 CALL ASK(12,0)

ACCEPT *,B(I+2)

C if mode defined (not= 0), jump to 45

IF(B(I+2).NE.O) GOTO 4S

C if mode = 0, but specified as initial mode -- error

IF(A(3).EQ.(I-1)) GOTO SO

C if ds specification and not defined(= 0), jump to end of DO loop

IF(I.EQ.1) GOTO 110

C if ch specification and not defined(= 0), and ds mode was spe-

C cified as single, jump to end of DO loop

IF(B(3).EQ.2.0R.B(3).EQ.S.OR.B(3).EQ.8) GOTO 110

C we have a non defined ch and a non single mode ds -- error

GOTO SO

C the following tests are for a mode not = 0

45 IZERO•O

ISING=O

381

C if single mode specified, set ISING

IF(B(I+2).EQ.2.0R.B(I+2).EQ.5.0R.B(I+2).EQ.8) ISING=l

C if ISING set, but the mode is not the initial mode -- error

IF(ISING.EQ.l.AND.A(3).NE.(I-l)) GOTO 50

C if ds specification, no more tests needed at this point

IF(I.EQ.l.AND.ISING.EQ.O) GOTO 60

IF(I.EQ.l.AND.ISING.EQ.l) GOTO 55

C the following tests get executed only after the ch specification

C if ds mode is single -- error

IF(B(3).EQ.2.0R.B(3).EQ.5) GOTO 50

C if ds mode = 0, set IZERO

IF(B(3).EQ.O) IZERO~l

C if IZERO & ISING not both set or 0 -- error

IF(IZERO.NE.ISING) GOTO 50

C if ISING set; jump to 55

IF(ISING.EQ.l) GOTO 55

MSERIE~O

NSERIE=O

C if 2 cells in serie for ds, set MSERIE

IF(B(3).EQ.3.0R.B(3).EQ.6.0R.B(3).EQ.9) MSERIE=l

C if 2 cells in serie for ch, set NSERIE

IF(B(4).EQ.3.0R.B(4).EQ.6.0R.B(4).EQ.9) NSERIE=l

C if MSERIE & NSERIE both set or O, then OK

IF(MSERIE.EQ.NSERIE) GOTO 60

382

1

C error

50 WRITE(NN1,2800)

2800 FORMAT(lX,'WRONG COMBINATION OF CONTROL MODES')

GOTO 26

C the following questions are for single ch or ds

C time limit or A-hr limit ?

55 CALL ASK(l3,0)

ACCEPT lOOO,ANS

IF(ANS.NE.'Y') GOTO 56

C ask for time limit, convert to INT*4 time

CALL ASK(l4,0)

ACCEPT *,IHR,IMIN,ISEC,ITICK

CALL JTIME(IHR,IMIN,ISEC,ITICK,JT(7-I))

CALL JJCVT(JT(7-I))

GOTO 58

C if ch, skip

56 IF(I.EQ.2) GOTO 57

C ask for ds A-hrs, convert to V-hrs, using full-scale current

CALL ASK(l6,0)

ACCEPT *,QO(l)

QO(l)=QO(l)*5./A(l0)

GOTO 58

C ask for ch A-hrs, convert to V-hrs, using full-scale current

57 CALL ASK(17,0)

ACCEPT *,Q0(2)

Q0(2) .. Q0(2)*5./A(l-O)

383

C ask for o-c time after single mode, convert to INT*4 time

58 CALL ASK(l5,0)

ACCEPT *,IHR,IMIN,ISEC,ITICK

CALL JTIME(IHR,IMIN,ISEC,ITICK,JT(7))

CALL JJCVT(JT(7))

C single mode, skip next questions

GOTO 80

C the following questions are for non-single ch or ds

C if ch, skip

60 IF(I.EQ.2) GOTO 65

C ask for ds A-hrs, convert to v-hrs, using full-scale current

CALL ASK(l6,0)

ACCEPT*,QO(l)

QO(l)=QO(l)*S./A(lO)

C ds, skip next.

GOTO 80

C if starting mode is ds, skip

65 IF(A(3).EQ.O) GOTO 70

C ask for ch A-hrs, convert to V-hrs, using full-scale current

CALL ASK(17,0)

ACCEPT *,Q0(2)

Q0(2)=Q0(2)*5./A(10)

384

C ask for excess factor

70 CALL ASK(18,0)

ACCEPT *,VAL(4)

C if starting mode is ch, initialize Q(1): this is needed because,

C in the real-time program, at the start of every ch, the A-hrs

C of the previous ds are multiplied by the excess factor, to de-

C fine the maximum number of A-hrs to pass on ch

IF(A(3).EQ.1) Q(1)=Q0(2)/VAL(4)

C if starting mode is ds, initialize Q0(2) to Q0(1) (safety)

IF(A(3).EQ.O) Q0{2)=Q0(1)

C ask for o-c time, convert to INT*4

75 CALL ASK(19,0)

ACCEPT *,IHR,IMIN,ISEC,ITICK

CALL JTIME(IHR,IMIN,ISEC,ITICK,JT(7))

CALL JJCVT(JT(7))

C ask for limits

80 CALL ASK(20,I)

C ds limits are numbered 1 to 3, ch limits 4 to 6

DO 85 KK=1+(I-1)*3,3+(I-1)*3

CALL ASK(21,KK)

ACCEPT *,B(4+KK),VAL(4+KK)

C if not limit on current channel, skip

IF(IABS(B(4+KK)).NE.4) GOTO 82

C on ch, the current is < 0, so switch the sign of the limit value

VAL(4+KK)=(3-2*I)*VAL(4+KK)

C on ch, an upper limit on the current becomes a lower limit, and

C vice-versa

385

C (< x amp becomes > -x amp)

IF(VAL(4+KK).LT.O.) B(4+KK)=-B(4+KK)

C if limit channel is entered 0, then no more limits specified

82 IF(B(4+KK).EQ.O) GOTO 90

85 CONTINUE

C if not constant current ch or ds, skip

90 IF(B(I+2).GT.3) GOTO 95

C ask for current, convert to volts, using full-scale current

CALL ASK(22,I)

ACCEPT *,VAL(10+I)

VAL(10+I)=VAL(10+I)*5./A(10)

GOTO 110

C if external modes, skip

95 IF(B(2+I).GT.6) GOTO 110

GOT0(100,105) I

C constant power ds, ask for power level

100 CALL ASK(23,0)

ACCEPT *,B(13),VAL(13)

GOTO 110

386

C CVLC, ch, ask for current, convert to V-hrs, ask for voltage

105 CALL ASK(24,0)

ACCEPT *,VAL(12)

VAL(12)=VAL(12)*5./A(10)

CALL ASK(25,0)

ACCEPT *;B(14),VAL(14)

110 CONTINUE

C if not external modes, skip

IF(B(3).LE.6.AND.B(4).LE.6) GOTO 112

C define channel 5 as cell voltage @ high side of pulse, with a

C range = range + 100

A(12)=A(12)+1

A(21)=A(13)

' A(22)=A(14)+100

WRITE(NN1,2900) A(21),A(12)

2900 FORMAT(1X,'BECAUSE ONE OF YOUR MODES IS AN EXTERNAL PULSE MOD',

l'E, CHANNEL 5',/,lX,'HAS BEEN DECLARED ACTIVE AND ASSIGNED',

2'THE SAME A/D CHANNEL(' ,I2,')' ,/,lX,'AS CHANNEL 1. IT WILL',

3'MEASURE THE CELL VOLTAGE AT THE HIGH SIDE',/ ,lX,'OF THE PUL',

4'SE. YOU NOW HAVE ',I2,' CHANNELS ACTIVE.')

C if cell in serie, ask which one

112 IF(MSERIE.EQ.1) CALL ASK(26,J)

IF(MSERIE.EQ.1) ACCEPT *,A(11)

C ask for DT-control, convert to INT*4 time

CALL ASK(27,0)

ACCEPT *,ISEC,ITICK

CALL JTIME(O,O,ISEC,ITICK,JT(8))

c

c

200

. 210

220

230

240

250

115

c

387

CALL JJCVT(JT(8))

skip the first 3 records of FMAT.UNF

NPOINT=NPOINT+3

write all the arrays out to FMAT.UNF

DO 200 KK=1,21,2

WRITE(10'NPOINT) A(KK),A(KK+1)

DO 210 KK=1,13,2

WRITE(10'NPOINT) B(KK),B(KK+1)

DO 220 KK=1,10

WRITE(lO'NPOINT) JT(KK)

DO 230 KK=1,14

WRITE(10'NPOINT) VAL(KK)

DO 240 KK=l,2

WRITE(10'NPOINT) QO(KK)

DO 250 KK""l, 2

WRITE(10'NPOINT) Q(KK)

TYPE 1999,NPOINT

CONTINUE

write record number 786 of the file, to define its length

WRITE(l0'(NPOINT+49)) IDUM

CLOSE(UNIT:o10)

RETURN

END

1

388

SUBROUTINE MODIF(ICHANG)

COMMON/PASS/A,B,JT,VAL,QO,Q

LOGICAL*l ANS,MODENM(9,2),MODELM(5,2)

INTEGER A(22),B(l4),MSG(58),RESP(8l),AREA(4),LIST(20)

INTEGER*4 JT(8),JFAC

DIMENSION VAL(l4),Q0(2),Q(2),QQ0(2)

DATA MODENM/'D' ,'I' ,'S','C','H' ,'A' ,'R','G' ,'E' ,'C' ,'H','A','R',

l'G' 'E' ' ' ' ' ' '/ , , , ,

DATA MODELM/'U' ,'P' ,'P' ,'E' ,'R' ,'L' ,'0' ,'W' ,'E' ,'R'/

EQUIVALENCE (RESP(39),JT(4))

EQUIVALENCE (RESP(49),VAL(l))

EQUIVALENCE (RESP(77),QO(l))

EQUIVALENCE(MSG(3l),JFAC)

NN1=7

NN2=6

LCHAN~O

II=JICVT(O,JFAC)

WRITE(NNl,lOOO) ·

1000 FORMAT(lX,'CELL NUMBER ?')

READ(S,*) JCEL

IF(JCEL.LT.l.OR.JCEL.GT.l6) TYPE *,'INVALID CELL NUMBER'

389

IF(JCEL.LT.1.0R.JCEL.GT.16) RETURN

C if EX mode, no message

IF(ICHANG.EQ.-1) GOTO 8

IF(ICHANG.EQ.O) MSG(1)='DS'

IF(ICHANG.EQ.1) MSG(1)='CH'

MSG(2)=JCEL

C send message

NFG=ISDATW(MSG,2)

C if no foreground, jump

IF(NFG.EQ.1) GOTO 5

C wait for response

II=IRCVDW(RESP, 81)

IF(RESP(2).EQ.'OK') GOTO 1

WRITE(NN1,1100)

1100 FORMAT(1X,'COMMUNICATION PROBLEM')

WRITE(NN1,1200)

1200 FORMAT(1X,'CHANGE PROCEDURE ABORTED')

RETURN

390

C decode response from REAL-TIME program (see equivalence

C statements)

1 DO 2 K=1,22

2 A(K)=RESP(2+K)

DO 3 K=1,14

3 B(K)=RESP(24+K)

ICYCLE=RESP(81)

GOTO 35

C no foreground, read from GMAT.UNF

5 WRITE(NN1,1300)

1300 · FORMAT(1X,~NO FOREGROUND JOB ACTIVE. DIRECT COMMUNICATION WITH~,

1~ GMAT.UNF~ ,/)

IUN=12

OPEN(UNIT=12,NAME=~VOL:GMAT.UNF~ ,TYPE=~OLD~ ,ACCESS='DIRECT~,

1RECORDSIZE=1,ERR=1395,ASSOCIATEVARIABLE=NPOINT)

GOTO 9

1395 WRITE(NN1,1400)

1400 FORMAT(1X,'ERROR IN FILE OPENING')

STOP

C EX mode: read from FMAT.UNF

8 IUN=10

OPEN(UNITm10,NAME='VOL:FMAT.UNF' ,TYPE='OLD' ,ACCESS='DIRECT',

1RECORDSIZE=1,ERR=1395,ASSOCIATEVARIABLE=NPOINT)

9 NPOINT=5+49*(JCEL-1)

C read file (FMAT.UNF or GMAT.UNF)

DO 10 I•1,21,2

10 READ(IUN'NPOINT) A(I),A(I+1)

391

DO 15 1=1,13,2

15 READ(1UN'NP01NT) B(1),B(1+1)

NP01NT=NP01NT+3

DO 20 1=4,8

20 READ(IUN'NPOINT) JT(I)

NP01NT=NP01NT+2

DO 25 1=1,14

25 READ(IUN'NPOINT) VAL(!)

DO 30 1=1,2

30 READ(IUN'NPOINT) QO(I)

C if EX mode, no cycle information

IF(ICHANG.EQ.-1) GOTO 35

NPOINT=785+JCEL

READ(12'NPOINT) ICYCLE,MCYCLE

35 WRITE(NN1,1500)

1500 FORMAT(1X,'DISPLAY OF PARAMETERS FOLLOWS. IN THE CHANGE MODE, ',

1'0NLY THE ONES',/,1X,'REFERENCED WITH A NUMBER CAN BE CHANGED',

2//,1X,'DEFAULT PRINTOUT IS ON TT: • DO YOU WANT LS: ? Y OR N')

READ(5,1600) ANS

1600 FORMAT(A1)

IF(ANS.EQ.'Y') NN=NN2

IF(ANS.NE.'Y') NN=NN1

392

C new page

IF(NN.EQ.NN2) WRITE(NN,1650)

1650 FORMAT('1')

c

c

c

cycling conditions

C if EX mode, no cycle information

IF(ICHANG.EQ.-1) GOTO 37

IF(A(1).EQ.O) WRITE(NN,1700) JCEL,ICYCLE

IF(A(1).EQ.1) WRITE(NN,1800) JCEL,ICYCLE

1700 FORMAT(1X,'CELL ',I2,' STOPPED RUNNING AT CYCLE ',I3)

1800 FORMAT(1X,'CELL ',I2,' IS RUNNING, CYCLE ',I3)

37 IF(A(2).EQ.O) WRITE(NN,1900) JCEL,(MODENM(KK,A(3)+1),KK=1,9)

IF(A(2).EQ.1) WRITE(NN,2000) (MODENM(KK,A(3)+1),KK=1,9)

1900 FORMAT(1X,'CELL ',I2,' IS IN OPEN-CIRCUIT. NEXT MODE IS ',9Al,/)

2000 FORMAT(1X,'PRESENT MODE IS' ,9A1,/)

c·

C scratch-data-file information

c

C if EX mode, none

IF(ICHANG.EQ.-1) GOTO 38

WRITE(NN,2050) A(7)

2050 FORMAT(1X,'LAST BLOCK ON SCRATCH-FILE THAT HAS BEEN WRITTEN TO',

1' IS BLOCK NUMBER ',I3,/)

c

c

c

current controller information

393

38 WRITE(NN,2100) A(9),A(10),VAL(3)

2100 FORMAT(1X,'CURRENT CONTROLLER' ,I1,'. FULL-SCALE CURRENT IS',

1I2,' A,'/,SX,'WITH CALIBRATION FACTOR' ,F10.5,T65,'# 1',/)

IF(A(11).NE.O) WRITE(NN,2200) A(11)

2200 FORMAT(1X,'CELL IN SERIE WITH CELL ',I2,/)

WRITE(NN,2300) A(12),(KK,A(11+2*KK),A(12+2*KK),KK=1,5)

2300 FORMAT(1X,I2,' A/D CHANNELS ACTIVE',T65,'# 2',

15(/,SX,'CHANNEL ',I2,': A/D CHANNEL' ,I3,/,17X,'RANGE'

2'NUMBER ',I3),/)

c

c

c

data taking rate adjustment information

DO 40 K=1,2

VVAL=VAL(K)

C if current channel followed for rate adjustment, convert to

C Amperes

IF(B(K).EQ.4) VVAL=VVAL*A(10)/5.

40 WRITE(NN,2400) (MODENM(KK,K),KK=1,9),K,B(K),VVAL

2400 FORMAT(1X,'ON ',9A1':',T65,'# 2',Il,

1/,SX,'CHANNEL.WATCHED FOR REGULATION OF',

1' DATA-TAKING RATE IS ',I2,/,5X,'INTERVAL THAT REGULATES THE',

2' RATE IS' ,F10.5,/,10X,' (IN APPROPRIATE UNITS)',/)

WRITE(NN,2500) (MODENM(KK,1),KK=1,9),B(3)

WRITE(NN,2500) (MODENM(KK,2),KK=l,9),B(4)

394

2500 FORMAT(1X,9A1,' MODE IS ',I1,/)

1

c

c

limit information

IJUMP=O

45 DO 55 1=1,2

C if call from somewhere below and this is not the right mode,

C jump

IF(IJUMP.NE.O.AND.L.NE.IJUMP) GOTO 55

KKK=2+L

DO 50 1=1,3

C get limit channel & value

IBB=B(1+3*L+I)

VVAL=VAL(1+3*L+I)

C if no more limits. for the mode, jump

IF(IABS(IBB).EQ.O) .GOTO 55

IF(I.EQ.1) WRITE(NN,2600) KKK

2600 FORMAT(lX,T65,'U 2' ,Il)

C limit number (1,2,3 for ds, 4,5,6 for ch)

· II=I+3*(L-1)

C upper (+) or lower (-) limit ?

ISIGN=IABS(IBB)/IBB

C if lower, set ISIGN=2. If upper, ISIGN=1.

IF(ISIGN.EQ.-1) ISIGN=2

C current is a special case : on charge, the current is always

C negative, therefore, a lower limit becomes an upper limit

C and vice-versa

395

C e.g. charge current smaller than .2 A becomes larger than

C - .2 A

IF(L.EQ.l.OR.IABS(IBB).NE.4) GOTO 50

C for a current limit, show only the absolute value

ISIGN=3-ISIGN

VVAL=ABS(VVAL)

50 WRITE(NN,2700) (MODELM(KK,ISIGN),KK=l,S),II,(MODENM(KK,L),KK=l,9),

liABS(IBB),VVAL
I

2700 FORMAT(lX,SAl,' LIMIT' ,Il,' ON' ,9Al,': CHANNEL ',I2,

l/,29X,'VALUE ',Fl0.5)

55 WRITE(NN,2800)

2800 FORMAT(lX)

C if call from somewhere below, jump back

IF(IJUMP.NE.O) GOTO 92

c

c timer information

c

JJUMP=O

57 DO 60 L=4,8

C if call from somewhere below, and this i·s not the right timer,

C jump

IF(JJUMP.NE.O.AND.L.NE.JJUMP) GOTO 60

396

C don't show charge or discharge time, unless it's a single

C half-cycle mode

IF((L.EQ.5.AND.(B(4).NE.2.AND.B(4).NE.5.AND B(4).NE.8)).0R.

(L.EQ.6.AND.(B(3).NE.2.AND.B(3).NE.5.AND.B(3).NE.8))) GOTO 60

CALL JJCVT(JT(L))

CALL CVTTIM(JT(L),IHR,IMIN,ISEC,ITICK)

CALL JJCVT(JT(L))

C if timer = 24 hrs exactly, then it has no significance

IF(IHR.EQ.24.AND.IMIN.EQ.O.AND.ISEC.EQ.O.AND.ITICK.EQ.O) GOTO 60

IF(L.EQ.4) WRITE(NN,2900)

IF(L.EQ.S) WRITE(NN,3000)

IF(L.EQ.6) WRITE(NN,3100)

IF(L.EQ.7) WRITE(NN,3200)

IF(L.EQ.8) WRITE(NN,3300)

WRITE(NN,3400) IHR,IMIN,ISEC,ITICK

2900 FORMAT(1X,'DT-MEASUREMENT' ,T65,'# 31')

3000 FORMAT(1X,'DT-CHARGE')

3100 FORMAT(1X,'DT-DISCliARGE')

3200 FORMAT(1X,'DT-OPEN-CICUIT' ,T65,'# 32')

3300 FORMAT(1X,'DT-CONTROL' ,T65,'# 33')

3400 FORMAT('+',T20,I2,':' ,I2,':',I2,':',I2,/)

60 CONTINUE

C if call from somewhere below, jump back

IF(JJUMP.NE.O) GOTO 110

c

c excess factor information
I

c

397

C if single half-cycle, no excess factor

IF(B(3).NE.2.AND.B(3).NE.5.AND.B(3).NE.8.AND.B(4).NE.2

l.AND.B(4).NE.5.AND.B(4).NE.8) WRITE(NN,3500) VAL(4)

3500 FORMAT(lX,'CHARGE EXCESS FACTOR' ,Fl0.5,T65,'# 41' ,/)

c

c

c

current information

DO 65 K=l,2

C if the control mode is not constant current, jump

IF((K. EQ.l.AND. (B(3) .GE .4. OR. B(3) .EQ.O)) .OR. (K. EQ. 2 .AND.

l(B(4).GE.7.0R.B(4).EQ.O))) GOTO 65

C convert to Ampere

VAL(lO+K)=VAL(lO+K)*A(l0)/5.

WRITE(NN,3600) (MODENM(KK,K),KK=l,9),VAL(l0+K),K+l

3600 FORMAT(lX,'CURRENT ON' ,9Al,3X,Fl0.5,' A' ,T65,'# 4',Il,/)

C convert back to Volt

VAL(l0+K)=VAL(l0+K)*5./A(l0)

65 CONTINUE

c

c

c

power information

C if not constant power mode, skip

IF(B(3).EQ.4.0R.B(3).EQ.5.0R.B(3).EQ.6) WRITE(NN,3700)

1VAL(l3),B(l3)

398

3700 FORMAT(lX,'POWER ON DISCHARGE' ,2X,F10.5,' W' ,/,5X,'WITH'

l'VOLTAGE CHANNEL ',Il,/)

c

C voltage information

c

C if not constant voltage-limited current mode, skip

IF(B(4).GT.3.AND.B(4).LT.7) WRITE(NN,3800) VAL(14),B(14)

3800 FORMAT(lX,'VOLTAGE PLATEAU ON CHARGE' ,2X,F10.5,' V' ,/,5X,

l'CHANNEL ',11,/)

c

c

c

A-hr information

DO 70 K-1,2

C if control mode is 0, jump

IF((K.EQ.l.AND.B(3).EQ.O).OR.(K.EQ.2.AND.B(4).EQ.O)) GOTO 70

C convert V-hr to A-hr

QQO(K)=QO(K)*A(l0)/5.

WRITE(NN,3900) (MODENM(KK,K),KK=1,9),QQO(K)

3900 FORMAT(lX,'MAXIMUM A-HRS TO BE PASSED ON' ,9Al,2X,F10.5)

C skip if charge A-hrs

IF(K.EQ.l) WRITE(NN,4000)

4000 FORMAT('+' ,T65,'U 51')

WRITE(NN,2800)

70 CONTINUE

REWIND NN

C unless in the 'CH' mode, done

IF(ICHANG.NE.l) GOTO 185

I
I

399

WRITE(NN1,4100)

4100 FORMAT(1X,'YOU CAN ONLY CHANGE THE P~~TERS REFERENCED WITH '

1'A NUMBER')

WRITE(NN1,4200)

4200 FORMAT(1X,'DO YOU FEEL LIKE CHANGING SOMETHING ? TYPE y·oR N')

READ(5,1600) ANS

C if (more) changes, jump

IF(ANS.EQ.'Y') GOTO 80

C if no more changes, and something changed already, jump to

C where the changes are made permanent

IF(LCHANG.EQ.1) GOTO 120

C if no more changes, and nothing changed, abort 'CH' procedure

72 MSG(1)='BD'

C if no foreground active, jump

IF(NFG.EQ.1) GOTO 75

C if foreground active, send abort message

II=ISDATW(MSG,1)

II=IRCVDW(RESP,2)

IF(RESP(2).NE.'BD') WRITE(NN1,1100)

IF(RESP(2).EQ.'BD') WRITE(NN1,1200)

RETURN

75 CLOSE(UNITal2)

WRITE(NN1,1200)

RETURN

400

C set flag for 'some changes'

80 LCHANG=1

84 WRITE(NN1,4300) JCEL

4300 FORMAT(1X,'CHANGES FOR CELL ',I2,/,1X,'CONSTRUCT A STRING OF',

1'AT MOST 20 NUMBERS (INCLUDING TERMINATOR),',/ ,1X,'CONTAINING ',

2'THE REFERENCE NUMBERS OF THE PARAMETERS YOU WANT',/,1X,'TO'

3'CHANGE' ,/,1X,'TERMINATE THE STRING WITH 0/' ,/ ,1X,'E.G.'

4'2,21,32,0/')

READ(5,*) LIST

1

C start a loop

K=O

85 K=K+1

C if end of the input string, go back for new display of parameters

IF(K.EQ.20.0R.LIST(K).EQ.O) GOTO 35

IF(LIST(K).GE.50) GOTO 89

IF(LIST(K).GE.40) GOTO 88

IF(LIST(K).GE.30) GOTO 87

IF(LIST(K).GE.20) GOTO 86

GOTO (5501,5502) LIST(K)

86 GOTO (5521,5521,5523,5523) LIST(K)-20

87 GOTO (5531,5532,5533) LIST(K)-30

88 GOTO (5541,5542,5542) LIST(K)-40

89 GOTO (5551) LIST(K)-50

WRITE(NN1,4400) LIST(K)

4400 FORMAT(lX, 'BAD ENTRY : I} ', I2)

GOTO 84

c

c

c

401

current controller information

5501 WRITE(NN1,2100) A(9),A(lO),VAL(3)

WRITE(NN1,4500)

4500 FORMAT(lX,'CHANGE ? Y OR N')

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

C ask for controller specifications

CALL ASK(l,JCEL)

READ(5,*) A(9)

CALL ASK(3,0)

READ(5,*) A(lO)

CALL ASK(2,0)

READ(5,*) VAL(3)

GOTO 85

c

C A/D information

c

5502 WRITE(NN1,2300) A(l2),(KK,A(ll+2*KK),A(l2+2*KK),KK=l,5)

WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

402

C ask for A/D information

CALL ASK(4,0)

READ(5, *) A(12)

CALL ASK(5,0)

DO 90 1=1,5

CALL ASK(6,I)

90 READ(5,*) A(11+2*I),A(12+2*I)

GOTO 85

c

C information on the adjustment of the data taking rate

c

5521 L~LIST(K)-20

WRITE(NN1,2400) (MODENM(KK,L),KK=1,9),L,B(L),VAL(L)

WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

C ask for data-taking rate specifications

WRITE(NN1,4600)

4600 FORMAT(lX,'ENTER CHANNEL(1-5),INTERVAL(REAL)')

READ(S,*) B(L),VAL(L)

c

IF(B(L).EQ.4) VAL(L)=VAL(L)*S./A(lO)

GOTO 85

C limit information

c

C jump to previous part of the program, for limit display

C come back at statement label 92

5523 IJUMP=LIST(K)-22

GOTO 45

92 WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

403

C ask for limit information

CALL ASK(20,IJUMP)

DO 93 I=1+(IJUMP-1)*3,3+(IJUMP-1)*3

93 B(4+I)=O

DO 100 I=1+(IJUMP-1)*3,3+(IJUMP-1)*3

CALL ASK(21, I)

READ(5,*) B(4+I),VAL_(4+I)

C special case for the current (see subroutine MATIN)

IF(IABS(B(4+I)).NE.4) GOTO 95

VAL(4+I)=(3-2*IJUMP)*VAL(4+I)

IF(VAL(4+I).LT.O.) B(4+I)=-B(4+I)

95 IF(B(4+I).EQ.O) GOTO 105

100 CONTINUE

404

C reset jump flag

105 IJUMP=O

GOTO 85

c

c

c

timer information

C jump to previous section of the program, for timer display

C come back at statement label 110

5531 JJUMP=4

GOTO 57

5532 JJUMP=7

GOT0_57

5533 JJUMP=8

GOTO 57

110 WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

C enter timer information

WRITE(NN1,4700)

4700 FORMAT(1X,'ENTER HR,MIN,SEC,TICK')

READ(S,*) IHR,IMIN,ISEC,ITICK

CALL JTIME(IHR,IMIN,ISEC,ITICK,JT(JJUMP))

CALL JJCVT(JT(JJUMP))

C if JT(4,J) not modified, or no foreground running, jump

IF(JJUMP.NE.4.0R.NFG.EQ.1) GOTO 112

C compute factor that cuts DTstore (JT(4,J))

CALL FACADJ(JFAC,IHR,IMIN,ISEC,ITICK)

405

112 JJUMP=O

c

c

c

GOTO 85

excess factor information

5541 WRITE(NN1,3500) VAL(4)

c

WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

CALL ASK(18,0)

READ(5,*) VAL(4)

GOTO 85

C current information

c

5542 L=LIST(K)-31

C convert to Ampere

VAL(L)aVAL(L)*A(10)/5.

WRITE(NN1,3600) (MODENM(KK,LIST(K)-41),KK=1,9),VAL(L),LIST(K)-40

WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 113

CALL ASK(22,LIST(K)-41)

READ(S,*) VAL(L)

IF(A(ll).NE.O) WRITE(NN1,4750) JCEL,A(11)

406

4750 FORMAT(1X,'CELL ',I2,' IS CONNECTED WITH CELL' ,I2,' .' ,/ ,1X,

1'WARNING !!!!!--CHANGE THE CURRENT FOR THE OTHER CELL, TOO.')

C convert back to Volt

113 VAL(L)=VAL(L)*5./A(10)

c

c

c

GOTO 85

A-hr information

5551 WRITE(NN1,3900) (MODENM(KK,1),KK=1,9),QQ0(1)

WRITE(NN1,4500)

READ(5,1600) ANS

IF(ANS.NE.'Y') GOTO 85

C ask for A-hrs

CALL ASK(l6,0)

READ(S,*) QO(l)

C convert to V-hr

QO(l)=QO(l)*5./A(l0)

C done with changes, go back for new display of parameters

GOTO 35

120 WRITE(NN1,4800)

4800 FORMAT(lX, 'YOU HAVE MADE SOME CHANGES. HOWEVER, THEY HAVEN"T ',

l'BEEN MADE PERMANENT' ,/,lX,'YET. DO YOU WANT THAT TO HAPPEN?',

2/,lX,'TYPE Y OR N')

READ(5,1600) ANS

C changes don't go through, go back to abort point

IF(ANS.NE.'Y') GOTO 72

GOTO(l25,160) NFG+l

407

c if foreground running, encode message

125 MSG(1)='T1'

MSG(2)=JCEL

130 DO 135 K=1,14

135 MSG(2+K)=A(8+K)

MSG(17)=B(1)

MSG(18)=B(2)
' I

DO 140 K=1,6

140 MSG(18+K)=B(4+K)

MSG(25)=RESP(39)

MSG(26)=RESP(40)

DO 145 K=1,4

145 MSG(26+K)=RESP(44+K)

DO 150 K=1,24

150 MSG(32+K)=RESP(48+K)

MSG(57)=RESP(77)

MSG(58)=RESP(78)

c send message

NFG=ISDATW(MSG,58)

c if foreground not running (anymore), jump

IF(NFG.EQ.1) GOTO 160

I' c wait for 'OK' response

II=IRCVDW(RESP,2)

IF(RESP(2) .EQ. 'OK') WRITE(NN1,4900)

408

4900 FORMAT(1X,'TRANSFER COMPLETED')

IF(RESP(2).NE.'OK') WRITE(NN1,1100)

RETURN

C if no foreground running, write to GMAT.UNF

160 WRITE(NN1,1300)

165

NPOINT=9+49*(JCEL-1)

DO 165 !=9,21,2

WRITE(12'NPOINT) A(I),A(I+1)

WRITE(12'NPOINT) B(1),B(2)

NPOINT=NPOINT+1

DO 170 !=5,9,2

170 WRITE(12'NPOINT) B(I),B(I+1)

NPOINT==NPOINT+5

DO 175 !=4,8

175 WRITE(12'NPOINT) JT(I)

NPOINT=NPOINT+2

DO 180 !=1,12

180 WRITE(12'NPOINT) VAL(!)

NPOINT=NPOINT+2

WRITE(12'NPOINT) Q0(1)

c

c

185

if no foreground running and 'CH' or 'DS' mode, close GMAT.UNF.

if 'EX' mode, close FMAT.UNF

IF(NFG.EQ.1.0R.ICHANG.EQ.-1) CLOSE(UNIT=IUN)

IF(ICHANG.EQ.1) WRITE(NN1,4900)

RETURN

END

SUBROUTINE FACADJ(JFAC,IHR,IMIN,ISEC,ITICK)

I I

I

409

INTEGER*4 JFAC

C compute the factor that cuts DTstore (JT(4,J))

FAC=FLOAT(IMIN)+FLOAT(ISEC)/60.+FLOAT(ITICK)/3600.

IF(FAC.GT.16.) FAC=16.

1

FAC=ALOG(FAC*2.)/ALOG(2.)

IFAC=FAC

IF((FAC-IFAC).GT.(.5)) IFAC=IFAC+l

FAC=2.**(FLOAT(IFAC)/2)

II=JAFIX(FAC,JFAC)

RETURN

END

410

SUBROUTINE HOLD(IHOLD)

COMMON/PASS/A,B,JT,VAL,QO,Q

LOGICAL*l ANS,MODENM(9,2)

INTEGER A(22),B(l4),MSG(6),RESP(l2)

INTEGER*4 JT(lO),JTLEFT

DIMENSION VAL(l4),Q0(2),Q(2)

DATA MODENM/'D' 'I' 'S' 'C' 'H' 'A' 'R' 'G' 'E' 'C' 'H' 'A' 'R'
' ' ' ' ' ' . ' ' ' ' ' ' '

l'G' 'E' ' ' ' ' ' '/
' ' ' '

EQUIVALENCE (RESP(3),JTLEFT)

EQUIVALENCE (RESP(6),QQO)

EQUIVALENCE (RESP(8),QQ)

NN1~20

WRITE(NNl,lOOO)

1000 FORMAT(lX,'CELL NUMBER ?')

READ(5,*) JCEL

IF(JCEL.LT.l.OR.JCEL.GT.l6) TYPE *,'INVALID CELL NUMBER'

IF(JCEL.LT.l.OR.JCEL.GT.l6) RETURN

MSG(2)=JCEL

IF(IHOLD.EQ.l) MSG(l)m'HD'

IF(IHOLD.EQ.O) MSG(l)•'ST'

C send message

NFG-ISDATW(MSG,2)

411

C if foreground active, jump

IF(NFG.EQ.O) GOTO 5

C if no foreground job active, invalid request

1 WRITE(NN1,1100)

1100 FORMAT(1X,'NO FOREGROUND JOB ACTIVE. YOUR REQUEST IS INVALID')

RETURN

C wait for response from REAL-TIME program

5 II=IRCVDW(RESP,11)

C if 'OK', jump

IF(RESP(2).EQ.'OK') GOTO 20

C if not 'OK' and not 'NG', jump

IF(RESP(2).NE.'NG') GOTO 10

C if 'NG', request aborted

C convert time left for request that got cancelled

CALL JJCVT(JTLEFT)

CALL CVTTIM(JTLEFT,IHR,IMIN,ISEC,ITICK)

WRITE(NN1,1200) JCEL,IHR,IMIN,ISEC,ITICK

1200 FORMAT(1X,'YOUR REQUEST CAUSED THE CANCELLATION OF A SCHEDU',

1'LED EVENT FOR CELL' ,I2,'.' ,/ ,1X,'NO REQUEST AT ALL WILL BE',

2' EXECUTED FOR THIS CELL.' ,/,1X,I2,' HRS, ',I2,' MINS, ',I2,

3' SECS, ',I2,' TICKS REMAINED UNTIL THE EVENT' ,/,1X,

4'WOULD HAVE OCCURED.')

RETURN

412

C if 'NC' response, cell not in operation, request aborted

10 IF(RESP(2).NE.'NC') GOTO 15

WRITE(NN1,1300)

1300 FORMAT(1X,'THE CELL YOU WANT TO STOP IS NOT IN OPERATION')

RETURN

C if can't recognize the response, communication problem

C request aborted

15 WRITE(NN1,1400) RESP(2)

1400 FORMAT(1X,'COMMUNICATION PROBLEM',/ ,1X,'CODE RETURNED FROM FG',

1' IS ',A2)

RETURN

C describe the cell status

20 IF(RESP(4).EQ.O) WRITE(NN1,1500) JCEL,RESP(3),

1(MODENM(KK,2-RESP(5)),KK=1,9)

1500 FORMAT(1X,'CELL ',I2,' IS IN OPEN-CICUIT. THE LAST HALF-CYCLE '

1'WAS ',I3,2X,9A1)

IF(RESP(4).EQ.1) WRITE(NN1,1600) JCEL,RESP(3),

1(MODENM(KK,RESP(5)+1),KK=1,9),QQO,QQ

1600 FORMAT(1X,'CELL ',I2,' IS RUNNING ON CYCLE ',I3,' AND IS IN ',

19A1,' .' ,/,1X,'OF THE' ,F8.5,' A-HRS TO BE PASSED IN THIS'

2'MODE, ALREADY' ,F8.5,' A-HRS' ,/,1X,'HAVE BEEN PASSED.')

GOTO (25,35) IHOLD+1

c

C STOP request

c

25 WRITE(NN1,1700) JCEL

1700 FORMAT(1X,'YOU NOW MAKE A REQUEST TO STOP THE EXPERIMENT ON'

413

1'CELL ',I2,' IN A',/ ,1X,'SPECIFIED AMOUNT OF TIME. THE CELL',

2'WILL STOP CYCLING AND IT''S' ,/,1X,'PARAMETERS WILL BE SAVED'

3'0N A FILE.' ,/,1X,'NOTE THAT THIS WILL ONLY BE CONSIDERED AS'

4'AN INTERRUPTION OF A HALF-CYCLE,',/ ,1X,'WHICH MEANS THAT THE',

5' SAME HALF-CYCLE WILL BE COMPLETED ON RESUMPTION',/ ,1X,'OF ',

6'THE EXPERIMENT.' ,/,1X,'IS THIS WHAT YOU WANT? TYPE Y OR N')

READ(5,1800) ANS

1800 FORMAT(A1)

C if STOP request does not go through, jump to abort point

IF(ANS.NE.'Y') GOTO 30

MSG(1)='T2'

C ask for time

WRITE(NN1,1900)

1900 FORMAT(1X,'GIVE HRS,MINS,SECS,TICKS UNTIL INTERRUPTION OF THE '

1'EXPERIMENT')

READ(5,*) MSG(3),MSG(4),MSG(5),MSG(6)

WRITE(NN1,2000) (MSG(2+KK),KK=1,4)

2000 FORMAT(1X,'YOU WANT THE EXPERIMENT ON THIS CELL TO STOP IN',/,

11X,I2,' HRS, ',I2,' MINS, ',I2,' SECS, ',I2,' TICKS.' ,/,1X,

2'ARE YOU SURE ? Y OR N')

READ(5,1800) ANS

414

C if information no good, re-try

IF(ANS.NE.'Y') GOTO 25

C send message

NFG=ISDATW(MSG,6)

C if no foreground active, jump back

IF(NFG.EQ.1) GOTO 1

C wait for response

II=IRCVDW(RESP,2)

C if not 'OK' response, communication problem

IF(RESP(2).EQ.'OK') WRITE(NN1,2100)

2100 FORMAT(1X,'TRANSFER COMPLETED')

IF(RESP(2).NE.'OK') WRITE(NN1,2200) RESP(2)

2200 FORMAT(1X,'COMMUNICATION PROBLEM',/,1X,'CODE RETURNED FROM FG',

1' IS ',A2)

RETURN

C abort

30 MSG(1)='BD'

C send abort message

NFG=ISDATW(MSG,1)

C if no foreground active, jump back

IF(NFG.EQ.1) GOTO 1

C wait for response

II=IRCVDW(RESP,2)

C if response is not 'BD', then communication problem

IF(RESP(2).NE.'BD') WRITE(NN1,2200) RESP(2)

C if response is 'BD', then properly aborted

IF(IHOLD.EQ.O) WRITE(NN1,2300)

415

2300 FORMAT(lX,'STOP')

IF(IHOLD.EQ.l) WRITE(NN1,2400)

2400 FORMAT(lX,'HOLD')

WRITE(NN1,2500)

2500 FORMAT('+',6X,'REQUEST ABORTED')

RETURN

c

C HOLD request

c

35 WRITE(NN1,2600) JCEL

2600 FORMAT(lX,'YOU NOW MAKE A REQUEST TO STOP THE EXPERIMENT ON',

l'CELL ... ,I2,' AT THE' ,/,lX,'END OF "A" HALF-CYCLE TO CO~m.',

2' THIS CELL, AND ANY OTHER CELL' ,/,lX,'ATTACHED TO IT, WILL ...

3'BE PUT IN OPEN-CIRCUIT.')

IF(RESP(ll).NE.-1) WRITE(NN1,2700)RESP(lO),(MODENM(KK,

l(RESP(ll)+l)),KK=l,9)

2700 FORMAT(lX, 'THERE ALREADY IS A SIMILAR TYPE OF REQUEST PENDING ... ,

l'FOR THIS CELL ,/ ,lX,'THE EXPERIMENT IS SUPPOSED TO STOP',

2'AFTER HALF-CYCLE ... ,I3,'-',9Al,/,1X,'IF YOU ABORT THE PRESENT',

3' REQUEST, THE ONE PENDING WILL REMAIN ACTIVE')

WRITE(NN1,2800)

416

2800 FORMAT(1X,'ARE YOU SURE YOU WANT TO GO THROUGH WITH THIS ? TYPE',

1' Y OR N')

READ(5,1800) ANS

C if HOLD request does not go through, jump back to abort point

IF(ANS.NE.'Y') GOTO 30

MSG(1)='T3'

C enter information

WRITE(NN1,2900)

2900 FORMAT(1X,'GIVE CYCLE NUMBER,MODE (1 FOR CH, 0 FORDS) OF THE '

1'LAST HALF-CYCLE',/ ,1X,'BEFORE INTERRUPTION')

READ(5,*) MSG(3),MSG(4)

WRITE(NN1,3000) (MODENM(KK,(MSG(4)+1)),KK=1,9),MSG(3)

3000 FORMAT(1X,'YOU WANT THE EXPERIMENT STOPPED AFTER THE ',9A1,

1' OF CYCLE' ,13,'.' ,/,1X,'IS THIS OK? Y OR N')

READ(5,1800) ANS

C if information no good, re-try

IF(ANS.NE.'Y') GOTO 35

C send message

NFG=ISDATW(MSG,4)

C if no foreground active, jump back

IF(NFG.EQ.1) GOTO 1

C wait for response

II~IRCVDW(RESP,2)

C if 'OK', jump

IF(RESP(2).EQ.'OK') GOTO 45

C if 'NG', then properly aborted, jump

IF(RESP(2).EQ.'NG') GOTO 40

C communication problem

WRITE(NN1,2200) RESP(2)

RETURN

40 WRITE(NN1,3100)

417

3100 FORMAT(lX,'REQUEST CANNOT BE CARRIED OUT: THE EXPERIMENT IS ',

1'ALREADY PAST THE ',/ ,lX,'POINT WHERE YOU WANT TO STOP IT')

C re-try request

GOTO 35

45 WRITE(NN1,2100)

RETURN

END

1

418

SUBROUTINE RUN

INTEGER MSG(7),RESP(14)

INTEGER*4 JTOU

LOGICAL*1 MODENM(9,2),ANS,ASTRNG(8)

DATA MODENM/'D' 'I' 'S' 'C' 'H' 'A' 'R' 'G' 'E' 'C' 'H' 'A' 'R' , , , , , , , , , , , , ,

l'G' 'E' ' ' ' ' ' '/ , , , ,

EQUIVALENCE(JTOM,RESP(6))

MSG(7)=0

NN1=20

NN2=30

WRITE(NN1,1000)

1000 FORMAT(lX,'CELL NUMBER?')

READ(S,*) JCEL

IF(JCEL.LT.1.0R.JCEL.GT.16) TYPE *,'INVALID CELL NUMBER'

IF(JCEL.LT.1.0R.JCEL.GT.16) RETURN

1 MSG(1)='RR'

MSG(2)=JCEL

C send message

NFG=ISDATW(MSG,2)

IF(NFG.EQ.O) GOTO 5

C if no FG active, invalid request

2 WRITE(NN1,1100)

1100 FORMAT(1X,'NO FOREGROUND JOB ACTIVE. YOUR REQUEST IS INVALID')

RETURN

C wait for response

5 II=IRCVDW(RESP,13)

419

, ..
•. 'i;

C if 'OK', jump

IF(RESP(2).EQ.'OK') GOTO 10

C if not 'NG' or 'TH', communication problem

IF(RESP(2).NE.'NG' .AND.RESP(2).NE.'TH') WRITE(NN1,1200)

1200 FORMAT(1X,'COMMUNICATION PROBLEM')

C request aborted

IF(RESP(2).EQ.'TH') WRITE(NN1,1250) JCEL

1250 FORMAT(1X,'THIS CELL NUMBER(' ,I2,') IS HIGHER THAN· WHAT THE ...

1'REAL-TIME PROGRAM ... ,/,1X,'KNOWS ABOUT. IF YOU WANT TO RUN ... ,

2'THIS CELL, YOU ARE GOING TO HAVE ... ,/ ,1X,'TO STOP THE PROGRAM')

IF(RESP(2).EQ.'NG') WRITE(NN1,1275) JCEL

1275 FORMAT(1X,'CELL ... ,I2,' IS ALREADY RUNNING. YOUR REQUEST IS ... ,/,

llX, 'INVALID')

WRITE(NN1,1300)

1300 FORMAT(1X,'RUN PROCEDURE ABORTED')

RETURN

10 WRITE(NN1,1400)

1400 FORMAT(3X,'IF NO OPERATION, TYPE 0' ,/,3X,'IF INITIALIZE, TYPE 1',

1/,3X,'IF RE-START, TYPE 2')

READ(S,*) INIT

GOT0(20,25,15) INIT+1

c

c

c

420

RUN 're-start' mode

C show how the cell was running

15 CALL JJCVT(JTOM)

CALL TIMASC(JTOM,ASTRNG)

WRITE(NN1,1500) JCEL,RESP(3),RESP(4),RESP(5),ASTRNG

1500 FORMAT(1X,'CELL ',I2,' STOPPED OPERATING ON' ,I2,'-' ,I2,'-',I2,

1', AT ',8Al)

IF(RESP(8).EQ.l) WRITE(NN1,1600)

1600 FORMAT(lX,'IT DID SO BECAUSE THE PROGRAM CRASHED')

WRITE(NN1,1700) (MODENM(KK,(RESP(10)+l)),KK=1,9),RESP(l2)

1700 FORMAT(1X,'THE LAST ACTIVE MODE FOR THIS CELL. WAS' ,9Al,

1', ON CYCLE' ,I3,'.')

IF(RESP(9).EQ.O) WRITE(NN1,1800)

1800 FORMAT(1X,'IT WAS PUT IN OPEN-CIRCUIT BY THE PROGRAM, SO IT '

. l'IS NOW READY' ,/,lX,'FOR THE NEXT MODE.')

WRITE(NN1,1900) RESP(ll)

1900 FORMAT(1X,'THE LAST BLOCK ON THE SCRATCH-FILE THAT HAS BEEN'

1'WRITTEN TO IS' ,/,1X,'BLOCK NUMBER' ,I3,' .')

WRITE(NN1,2000) JCEL

2000 FORMAT(lX,'ARE YOU SURE YOU WANT TO RE-START CELL ',I2,

1' ? TYPE Y OR N')

READ(5,2100) ANS

2100 FORMAT(Al)

C if RUN 're-start' request does not go through, jump to

C abort point

421

IF(ANS.NE.'Y') GOTO 20

C cycle number is the one transferred

MSG(4)=RESP(l2)

C , if in open-circuit, and next mode is one where the cycle number

C gets incremented, then increment it

IF(RESP(9).EQ.O.AND.RESP(lO).NE.RESP(l3)) MSG(4)=RESP(l2)+1

MSG(S)=RESP(l3)

C jump

GOTO 30

C abort

20 MSG(l)='BD'

C send abort message

NFG:ISDATW(MSG,l)

C if no FG active, jump back

IF(NFG.EQ.l) GOTO 2

C wait for response

II=IRCVDW(RESP,2)

C if not 'BD', communication problem

IF(RESP(2).NE.'BD') WRITE(NN1,1200)

C request aborted

WRITE(NN1,1300)

RETURN

422

c

c

c

RUN 'initialize' mode

25 WRITE(NN1,2200) JCEL

2200 FORMAT(1X,'YOU WANT TO INITIALIZE CELL ,.,I2,'. THIS MEANS THAT',

1' YOU EITHER START A NEW',/ ,1X,'CELL, AT CYCLE 1, OR RE-START',

2' ONE WHOSE PARAMETERS HAVE BEEN RE-INITIALIZED.' ,/ ,1X,'IN ',

3'EITHER ONE OF THESE TWO CASES, YOU''D BETTER MAKE SURE YOU ~

4'HAVE',/,1X,'PROPERLY ENTERED THESE PARAMETERS.',/ ,1X,

5'ARE YOU SURE YOU WANT TO INITIALIZE THE CELL ? TYPE Y OR N')

READ(5,2100) ANS

C if Run ~initialize' request does not go through, jump to

C abort point

IF(ANS.NE.'Y') GOTO 20

C cell will start at cycle 1

MSG(4)=1

C default for mode at the beginning of which a cycle number is

C updated is charge

MSG(5)~1

30 MSG(3)=INIT.

WRITE(NN1,2300)

2300 FORMAT(lX,'DO YOU WANT TO START A NEW SCRATCH-FILE ?' ,/ ,lX,

l'HERE, YOU HAVE TO BE VERY CAREFUL: IF THIS IS A NEW CELL, '

2'IT IS ALWAYS',/,lX,'BETTER TO START A NEW SCRATCH-FILE. IN',

3'ANY CASE, IF YOU DO THAT, WHATEVER',/,lX,'YOU HAD IN THE',

4'SCRATCH-FILE FOR THIS CELL NUMBER WILL BE DELETED.' ,/,lX,

5'NOW, ANSWER Y OR N TO THE ORIGINAL QUESTION.')

423

READ(5,2100) ANS

IF(ANS.EQ.'Y') MSG(6)=1

IF(ANS.NE.'Y') MSG(6)=0

WRITE(NN1,2400) JCEL,MSG(4),(MODENM(KK,(MSG(5)+l)),KK=l,9)

2400 FORMAT(lX,'CELL ',12,' WILL START AT CYCLE' ,I3,' .' ,/,lX,

l'FOR THIS CELL, THE CYCLE NUMBER IS UPDATED AT THE BEGINNING',

2' OF A ',/,1X,9Al,'.')

WRITE(NN1,2450)

2450 FORMAT('+',T13,'(THE USUAL CASE IS CHARGE)')

WRITE(NN1,2500)

2500 FORMAT(lX,'IF YOU NEED TO MODIFY THIS, TYPE Y, OTHERWISE N')

READ(5,2100) ANS

IF(ANS.EQ.'N') GOTO 35

WRITE(NN1,2600)

2600 FORMAT(lX,'GIVE CYCLE NUMBER (INTEGER)')

READ(5,*) MSG(4)

WRITE(NN1,2700)

2700 FORMAT(lX,'TYPE 1 IF CYCLE NUMBER TO BE UPDATED AT THE '

!'BEGINNING OF A' ,/,lX,'CHARGE, 0 IF DISCHARGE').

READ(5,*) MSG(5)

35 WRITE(NN1,2750)

2750 FORMAT(//,lX,'ON YOUR REQUEST:',/)

IF(MSG(3).EQ.l) WRITE(NN1,2800) MSG(2)

IF(MSG(3).EQ.2) WRITE(NN1,2900) MSG(2)

424

2800 FORMAT(1X,'CELL ',I2,' WILL BE INITIALIZED.')

2900 FOR}1AT(1X,'CELL ',I2,' WILL BE RE-STARTED.')

IF(MSG(6).EQ.l) WRITE(NN1,3000)

IF(MSG(6).EQ.O) WRITE(NN1,3100)

3000 FORMAT(1X,'A NEW SCRATCH-FILE WILL BE STARTED FOR THIS CELL.') .

3100 FORMAT(1X,'DATA WILL BE ADDED TO THE ALREADY EXISTING SCRATCH-',

1'FILE FOR THIS CELL.')

WRITE(NN1,2400) MSG(2),MSG(4),(MODENM(KK,MSG(5)+1),KK=1,9)

WRITE(NN1,3200)

3200 FORMAT(1X,'IF YOU AGREE WITH ALL THIS, TYPE Y, OTHERWISE N')

READ(5,2100) ANS ·

C if information is no good, re-try

IF(ANS.NE.'Y') GOTO 10

C get ready to run

40 WRITE(NN1,3250)

3250 FORMAT(lX,'MAKE SURE THAT THE CONTROLLER USED IS IN COMPUTER',

l'MODE AND THAT',/,lX,'THE MAGIC ENABLE BUTTON IS PUSHED.',/,

21X,'WHEN READY, TYPE/ AND RETURN')

READ(S, *) NDUM

MSG(l)='T4'

C increment counter for cells in series

MSG(7)=MSG(7)+1

C send message

NFG=ISDATW(MSG,7)

C if no FG active, jump back

IF(NFG.EQ.l) GOTO 2

C wait for response

425

II=IRCVDW(RESP;3)

C if not 'OK', jump

IF(RESP(2).NE.'OK') GOTO 45

WRITE(NN1,3300)

3300 FORMAT(lX,'TRANSFER COMPLETED')

RETURN

C if 'SC', jump

45 IF(RESP(2).EQ.'SC') GOTO 50

C if 'EF', jump

IF(RESP(2).EQ.'EF') GOTO 60

WRITE(NN1,1200)

RETURN

C this cell is in series with another

50 WRITE(NN1,3400) MSG(2),RESP(3),MSG(2),RESP(3)

426

3400 FORMAT(1X,'CELL ',I2,' HAPPENS TO BE ATTACHED TO CELL ',I2,

1'.',/,1X,'SUPPOSEDLY, THESE TWO CELLS HAVE BEEN CYCLING',

2'TOGETHER SINCE THEY WERE',/,1X,'FIRST INITIALIZED, SO THAT'

3'THE CONDITIONS YOU ENTERED FOR CELL ',I2,' ARE',/,1X,'ALSO'

4'VALID FOR CELL ',I2,'. HOWEVER, IF THIS IS NOT THE CASE, YOU',

5' HAVE T0',/,1X,'RE-STATE THESE CONDITIONS. YOU HAVE TO BE ',

6'EXTREMELY CAREFUL HERE, BECAUSE IF',/,1X,'YOUR TWO CELLS ARE',

7' NOT WELL MATCHED, YOU WILL END UP HAVING VERY STRANGE',/,1X,

8'RESULTS! !!',/,1X,'SO, IF YOU WANT THE SAME CONDITIONS, TYPE'

9'Y, OTHERWISE N')

READ(5,2100) ANS

C if same conditions, jump

IF(ANS.NE.'N') GOTO 55

C if different conditions, jump back

JCEL~RESP(3)

GOTO 1

55 MSG(2)~RESP(3)

C jump back, get ready to run

GOTO 40

RETURN

C request aborted

60 WRITE(NN1,*) 'COULD NOT OPEN FMAT.UNF'

WRITE(NN1, 1300)

RETURN

END

REFERENCES

1. RT-11 Documentation Directory, Version 4, Vol. 4, Fortran
Language Reference Manual, Jan., 1980. Digital Equipment Corpo­
ration, Maynard, Massachusetts.

427

APPENDIX F

THE DATA REDUCING PROGRAMS

F.l DATA GATHERING ORGANIZATION

The data reducing programs are w~itten in FORTRAN IV programming

language for LSI-11/23 computers (1). As explained in Section D.3,

the REAL-TIME program takes data for each cell under test, and puts

the data in a scratch-data-file. The name of the file is encoded

with the number of the cell (DAT0J0.UNF with J from 1 to 9, or

DAT0JJ0.UNF with JJ from 10 to 16). When a cell is put out of

operation (STOP or HOLD request, see sections E.2.5 and E.2.6), its

scratch-data-file is closed. The user can copy the file to a backup

file, on another disk; the backup file has a name which contains the

cell's identification (e.g., PlDT1.UNF for cell PWR1).

When DAT0J0.UNF is full (maximum 256 blocks), the user must ask

for a new scratch-file: the REAL-TIME program starts accumulating

data back in block 0 of DAT0J0.UNF. A second backup file must be

used (e.g. P1DT2.UNF for PWR1) into which the new data are copied.

In general, backup files are necessary because if by error, the user

asks for a new scratch-file, part of the original data is erased.

The contents of a (backup) scratch-file can be displayed with a

program called DATCHK. A (backup) scratch-file can be decoded and

put in a final archive format, by an archiving program called

428

MASSAG; the archive file is given a name that contains the cell's

identification (e.g., DTPl.ARl for PWRl).

Programs that display the contents of the archive file or plot

the data are not described in this work (2).

F.2 THE SCRATCH-DATA-FILE DISPLAY PROGRAM DATCHK

This program has two functions:

1. Search for a cycle in the scratch-file: the user can start the

search at the beginning of the file, or at any block in the mid­

dle of the file.

2. Display a block of the scratch-file on the CRT or the line­

printer.

DATCHK is a virtual job, which runs in the background with the

command R DATCHK.

F.3 THE ARCHIVING PROGRAM MASSAG

The main function of this program is to put the data in an

archive file. As other options, the program displays the file

header (Section F.3.1.1) and cycle table (Section F.3.1.2), initial­

izes or deactivates the file (Section F.3.1.1), or modifies a cycle

leader (Section F.3.1.3). MASSAG is a virtual job, which runs in

the background.

F.3.1. STRUCTURE OF THE ARCHIVE FILES

429

The first block of an archive file is a file header, which contains

general information about the file and the cell to which it belongs.

The second and third blocks contain a table of cycles and their location

in the file. The fourth block is where the data-storage starts. Every

cycle has its own header, which is a 40 real-word long area, that is

partly filled with information about the particular cycle.

F. 3. 1. 1 THE FILE HEADER

The file header contains the following information:

1) A file-initialize flag (INTEGER). The value of this flag is set to

10 when the file is initialized.

2) The date at which the file was initialized (3 INTEGER).

3) The cell identification (maximum 10 ASCII).

4) The name of the archive file, if any, that preceeds this one and

contains data for the same cell (maximum 10 ASCII).

5) The name of the archive file, if any, that follows this one and con­

tains data for the same cell (maximum 10 ASCII).

6) The name of the file which contains the program that can read this

active file (maximum 10 ASCII).

7) The total number of cycles stored (INTEGER).

430

8) The block number at which the cycle table starts (INTEGER).

9) The block number at which the cycle data start (INTEGER).

The file header is in block ~; the cycle table starts in block 1,

and by default, the cycle data start in block 3. Only 27 of the 256

words in block 0 are used, which leaves ample roomfor expansion.

The program has an initialize function, which permits the user to

enter information in the file header. Once the file is initialized, the

program will not allow re-initialization, unless the file is first deac­

tivated. This is another function of the program, which erases block 0

of the file.

F.3.1.2 THE CYCLE TABLE

The table of cycles contains a 3-integer-word entry for each cycle

stored in the file.

1st word cycle number

2nd word : number of the block in which data storage for the cycle

starts, as an offset, in number of blocks, relative to the last

block of the table · (2), e.g., if cycle 2 starts in block 5, the

offset is 5-2=3.

3rd word : location in the block at which the cycle data start,

given in number of integer words (total number of integer words in

block is 256).

431

F.3.1.3 CYCLE HEADER

A cycle header contains the following information:

1) The cycle number (INTEGER).

2) The total number of words for the cycle's data (INTEGER).

3) The data-point at which charge information starts, counting

REAL numbers from after the end of the cycle header (INTEGER)

(default is 1).

4) Same, for discharge (INTEGER).

5) The number of types of data for each data-record, including

time (INTEGER) •

6) A string of symbols identifying the types of data (12 ASCII).

7) The A-hrs on charge and discharge (2 REAL).

8) The shunt identification (4 ASCII).

9) The shunt resistance (REAL).

10) The W-hrs on charge and discharge (2 REAL).

11) The average voltage on charge and discharge (2 REAL).

There are 14 words of header space that are unused at this moment.

432

F.3.1.4 DATA STRUCTURE

The first part of the cycle data are charge data; the second part

are discharge data. Each data-record contains a time and a number of

measurements associated with that time. Charge data are recognized by

their negative current, discharge data by their positive current, and

open-circuit data by their zero current. The times are in hours, rela­

tive to the start of charge, discharge or open-circuit. The last data­

record of any open-circuit period is a time, in hours, indicating how

long the open-circuit period lasted.

433

For example:

TIME MEAS.l MEAS.X CURRENT
o. -.5

charge

2. -. 5

o. o. } open-circuit
• 5 o .

6. 0. 0. o. Length of open
circuit is 6 hours

2. -.5

} continuation of
charge

5. -.5

o. o. } • 5 o . open-circuit
1. o.

1.5 o. o. o. length of open
circuit is 1.5 hr

o. .9 } discharge

3. .9

o. o. } . s o . open-circuit
1. o.

1.5 o. o. o. length of open
circuit is 1.5 hrs

F.3.2 TRANSFER OF DATA FROM A SCRATCH-FILE TO AN ARCHIVE FILE

The archiving program is invoked with the command R MASSAG. The user

must specify the following information:

434

1) The name of the archive file where the data will get stored

2) The name of the scratch-file from which the data is retrieved

3) Whether the transfer starts at the beginning or the middle of the

scratch-file

4) The number of the first cycle to be transferred

5) The number of cycles to be transferred

6) If the transfer starts in the middle of the scratch-file, then the

following information must be specified for a search:

6a) whether the search starts in the beginning of the

scratch-file or not

6b) if 6a) answered NO, then the block number at which it

starts

6c) the number of measurements per data-record (time not

included) for the length of the file over which the pro­

gram must search

The following information is on a cycle-per-cycle basis: for each

point, the user must specify for how many cycles, among those to

be transferred, the information is valid.

7) The number of data types per data-record and their identification.

435

8) Whether default storage (= all data-records) is selected or not;

if not default then some parameters for data-screening.

9) Whether or not the potential of each cell electrode was measured

against the reference electrode; if yes, the discrepancy allowed

between the sum of these two measurements and the cell voltage.

10) The measuring shunt identification and its resistance in Ohms.

F.3.3 NOTES

1) The program does not correctly handle cycle sequences with missing

cycles

2) The maximum number of data-records per cycle is 150. If the actual

number exceeds 150, non-default storage must be used.

3) The program can fail if the scratch-data file is corrupted (see next

section) or if the user tries to transfer more cycles than the

scratch-file contains. In that case, the user should re-initialize

the archive file and completely re-start the archiving process for

that cell.

F.4 PATCHING A SCRATCH-FILE DATPAT

Each block of a scratch-data-file is read according to the values of

the pointers stored in the block's pointer area (see D. 3). lf a block

is partly corrupted, the user can change the way it is read by modifying

the pointers. This typically happens after a crash of the REAL-TIME

436

program. The NSTOP flag (see D.3) for the last block that was writ­

ten into must be set to a value different from zero, equal to the

number of valid data-records in the block. The user must run pro­

gram DATPAT with the command R DATPAT, which allows him/her to

change the pointers and the A-hrs of any block in a scratch-file.

Data for PWR-cells can be found:

1) on disk 8, in the scratch-files with name PJDT1.UNF and/or

PJDT2.UNF, with J:1~7;

2) on disk 11, in the archive-files with name DTPJ.ARI,

with J:1~7.

REFERENCES

1) RT-11 Documentation Directory, Version 4, Vol. 4, Fortran

Language Reference Manual, January 1980. Digital Equipment Cor­

poration, Maynard, Massachusetts.

2) Jim Nichols, M.S. Thesis, University of California at Berkeley

(1982).

437

APPENDIX G

APPLICATION OF THE EPA DRIVING PROFILE

TO Zn/NiOOH CELL TESTING

G.l INTRODUCTION

The EPA Urban Driving profile is shown in Figure 1. It plots the

speed of a vehicle in urban driving conditions over a total time of 1372

seconds, and an approximate distance of 7.5 miles.

G.1.1 BATTERY POWER

The driving profile can be converted to an equivalent power profile,

by using the velocity of the vehicle and the resistive forces to which

it is subjected. These include acceleration (linear and rotational) and

aerodynamic drag force, rolling resistance of the tires and the force to

climb a grade. The resulting expression for the power needed to propel

the vehicle is given by Cairns et.al. (1):

PP .. MvV [1.1 AV/At + gK(1*4.7x1o-3v + l.Jxlo-4 v2) + g sin 8]

+ flACoAf V3 /2

with

Pp Q propulsion power at the wheels (Watts)

Mv • mass of the vehicle (kg)

V • velocity of the vehicle (m/s)

t • time (s)

g • gravitational constant (9.80665 m/s2

K • rolling resistance constant (dimensionless)

8 • angle of the grade

438

60
1-
1-

(V\ 1-
~ 50 ,.
~
~

40 f-.

~
,...,

A tl N

~v I J)

J ~ 20

1-

10

1-
1-

j __ L -- .. - '- '-J I I I ·- _I

ra e 600 trarara 1200 I 400 800 200 400

SECONDS

EPA URBAN DRIVING PROFILE VELOCITIES

XBL 826-801

FIGURE 1. EPA Urban Driving Profile, Federal Register 11/10/70.

439

p = density of air

(1.2255 kg/m3 at 15°C and 1 atm)

C0 = air drag coefficient (dimensionless)

Af = frontal area of the vehicle (m3)

The power to be supplied by the battery is

with

9m = mechanical efficiency of the drive train

~e = electrical efficiency of the drive train

Pace = accessory power required from the battery

The values selected for this application were:

M, ::0 1000 kg

K • .012

c0 = .45

8 ... o.

Af = 2 m2

9m Ue • .7

Pace"" 250W (no air conditioning)

440

G.1.2 SCALING OF POWER REQUIREMENTS FOR A Zn/NiOOH CELL

The power to be delivered by a cell was calculated as

pcell = pb x Mcell/Mb

With Mcell the weight of a cell and Mb the weight of the battery. The

weight of the battery was taken as 300 kg, for a 30% battery fraction

The weight of a 2. 6 A-hr Zn/NiOOH cell was estimated as follows:

average discharge voltage a 1.6 V ~ energy delivered on discharge is

2.6 A-hr X 1.6 V = 4.16 Wh

with a state-of-the-art specific energy of 70 Wh/kg, one gets:

4.16 Wh/70 Wh/kg = .059 kg

The discharge power profile is shown in Figure 2.

Four computer programs were written for this application: they are

described in the following sections. Note that none of these programs

have been written to. work with the Extended Memory Monitor.

Cl)
I­
I­
<
3

441

8
1-
1-
1-
1-
I-
~

7
~
~
~
~
~

6
~

~
1-

5

~
1-
I-
1-

~
~
~ 3

2
1-

~" ' ~ 1-

II u ., w
e 9 2ee 499 6ee see Ieee 12ee 1400

SECONDS

EPA URBAN DRIVING PROFILE POUER

XBL 826-800

FIGURE 2. EPA Urban Driving Profile, Federal Register 11/10/70.

Power requirements are scaled to a 2.6 A-hr Zn/NiOOH
cell.

442

G.2 THE POWERS PROGRAM

This program has five functions:

1) Initialize the files containing the velocity and power tables

(VELOC.UNF and POWERS.UNF).

2) Construct the velocity table

3) Construct the power table (from the velocity table)

4) Display the velocity and power tables

5) Perform range and W-hr calculations. The user specifies either a

number of kilometers, or a number of W-hrs or a number of profiles,

and the two equivalent values are computed.

G. 3 THE PLTPWR PROGRAM

This program plots the velocity or power profile.

G.4 THE PRFPLS PROGRAM

This program organizes a cycling test on one cell, on current con­

troller 8. The charge and discharge requirements are scaled for a 2.6

A-hr Zn/NiOOH cell.

1) The cell is charged with a 10ms-on/90ms-off pulse for 5 hours (.52 A

average, 5.2 A ~eak).

\

' '

443

2) The cell is repeatedly discharged with the EPA power profile, until

its voltage reaches 1 v.

3) The power regulation algorithm is

Ii + 1/Ii = (Pi+1/Ei+1)/(Pi/Ei)

With

and

Ei+1 = Ei + f.AI./AI) AI.

This gives

~ ~ (Pi+1- Pi)/(Ei + Xiii),

with

Xi • (Ei - Ei-1)/(Ii - Ii-1)

(see subroutine CP of the REAL-TIME program).

4) The charge profile .is generated by software,using the programmable

clock.

5) The program does not use the I/O driver, but rather the regular I/O

library.

6) The program uses a file called PRFPLS. UNF for data-storage. This

file has a 16 real-word general header, a 7 real-word header for

each charge, and a 7 real-word header for each discharge.

7) On charge, the program takes data every 15 minutes, at the on- and

off-side of the pulse. On discharge, the program takes data at

three power load values:

- b~se load

- peak load

444

.049 w

7.28 w

- intermediate load : 2.90 W

Figure 3 illustrates the power regulation performance of the PRFPLS

program, for a 4 A-hr Cd/NiOOH cell.

G.5 THE PRFCHK PROGRAM

This program plots or prints the cycling results for a cell cycled

with the PRFPLS program. A typical voltage plot is shown in Figure 4.

REFERENCES

1. E. J. Cairns, and E. H. Hietbrink, "Electrochemical Power for Tran­

sportation", from Comprehensive Treatise of Electrochemistry, Vol.3,

p. 421, Editors T. o. M. Bockris, B. E. Conway, E. Yeager, and R. E.

White, Plenum Publishing Corporation, 1981.

I

(I)
1-
1-
c(
3 e

445

50.0r---

40.0

20.0

10.0

0.0

-10.0

-20.0

-30.0

1200 1400

SECONDS

EPA URBAN DRIVING PROFILE Pprf-P
XBL 626-799

FIGURE 3. Comparison of Computer-Implemented EPA Urban Driving
Profile with Specified Profile.

ORDINATE: Specified Power minus Actual Power.

ABSCISSA: Time (sec).

0
>

v

0

.....
c
41
0

Q..

446

2.5.---------------------------~~--------------------~

2.0

I. 5 I

A-hrs 2.3565
W-hrs 4.5640

VCEL

-·-·-·-·-·

r..: =--= =--- =--·~·:::.· """'" ... -= =.£=-~ =-~=-..J---

1 0~

0 J ~+R,..,..,EF....-""'='".........,,...._.-.-.--
-·.-·-

A-hrs
W-hrs

2.2641
3.6064

~
~a 1

.. t;.. £::. ~
0"" .. ~ .£::. f::. f::. f::. f::. A o 0 · ... ·.. . u t::..

[j 0. ·0· •• · .•.. ·.. . '
0 !

~.~- ~4 -.Ji. ~.!:F-.~-~£- -E- if- ~--..:.r;..j
0 0 [j [j. 0 .. 0 ... D ·.~ .. j]

REF- 0 ..

0 ~

l

·+J~ ·<!<J &. .. ~
--------- .J;l_ ~-~·:.'fi-t::~- -15.

L CHARGE DISCHARGE [j

0.0~[--~~--~-~--~_l_~--~~--~~--~~--~~--~~~~
0 2 3 4 5 0 2 3 4

Time Ch)

CELL VOLTAGE AND REFERENCE VOLTAGES FOR CYCLE 6 CELL 3A
XBL 826-798

FIGURE 4. Charge/Discharge Curves for a 2.6 Ah Zn/NiOOH Cell Cycled with
10 Hz Pulsed-Current Charging (9/1 off/on) and EPA Power-Profile
Discharging.

CHARGE: Solid curves: measurements at current-on time
Dotted-dashed curves: measurements at current-off time

VCEL: NiOOH eleCtrode vs Zn electrode
REF-: Hg/HgO reference electrode vs Zn electrode
+REF: NiOOH electrode vs Hg/HgO reference electrode
Dashed lines: open-circuit values of REF- and +REF

DISCHARGE: Triangles:
Squares:
Dots:

at base load (0.49 W)
at peak load (7.28 W)
at intermediate load (2.90 W)

Other notation as in charge portion of this figure.

I I

., .,

This report was done with support from the
Department of Energy. Any conclusions or opinions
expressed in this report represent solely those of the
author(s) and not necessarily those of The Regents of
the University of California, the Lawrence Berkeley
Laboratory or the Department of Energy.

Reference to a company or product name does
not imply approval or recommendation of the
product by the University of California or the U.S.
Department of Energy to the exclusion of others that
may be suitable. ·

~ L 1

TECHNICAL INFORMATION DEPARTMENT

LAWRENCE BERKELEY LABORATORY

UNIVERSITY OF CALIFORNIA

BERKELEY, CALIFORNIA 94720

-----------··-·

