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Abstract

This dissertation aims to study effective and efficient ways for both travelers and trans-

portation authorities to consider the actions of the other side when they make their corre-

sponding travel or management decisions, such that certain common goals, such as mit-

igating congestion, reducing cost in travel expenses and improving the overall reliability

of the transportation system can be achieved.

A novel dynamic traffic routing (DTR) with an adaptive signal control framework is

developed to utilize the fast developing wireless communication technologies that makes

V2X (Vehicle To Everything) possible. The hyper-path based dynamic traffic routing method

takes stochasticity of link travel time into consideration, which ensures robust and reliable

routing decisions. In addition, online travel time updating is incorporated into the DTR

model. The online updating presented in this dissertation uses both historical information

(a priori knowledge) and new information, thanks to the V2X system, to form a posteriori

knowledge about the link travel time. Various distributed traffic signal control methods

are proposed and tested concurrently with the DTR model to cope with the different lev-

els of the traffic demand. Simulation models are built to test and compare the models

developed in this dissertation against the traffic routing methods and traffic signal con-

trol models in the literature. In the extensive simulation tests, we discover that enabling

vehicle re-routing in the network can reduce the average travel time as well as reduce the

average queue length at the intersections.

The joint dynamic traffic routing and adaptive signal control model developed in this

dissertation performs well in terms of average travel time and average travel delay in most

cases. However, there are still possibilities that in some extreme cases the proposed rout-

ing and control model may fail to produce satisfying results. The underlying logic of DTR

does not guarantee to prevent deadlock, a.k.a gridlock, from happening. To address the

possibility that deadlock occurs, following the study of dynamic traffic routing and adap-

tive signal control, I formulate a deadlock avoidance model under dynamic user equilib-

rium with queue spillback. In the proposed model, travelers’ route choice is governed by

a simple "DLA (DeadLock Avoidance) Routing" rule which is proved to generate deadlock

-xi-



free routing result. Potential deadlocks during the optimization of the model are detected

with an algorithm modified based on Floyd Warshall Algorithm. The algorithm then assigns

a deadlock potential value to each potential deadlock. The model minimizes this poten-

tial, and meanwhile tries to maintain the total travel time in the network at a reasonably

low level.

Many transportation applications can potentially take advantage of the research results

in this dissertation. We explored one interesting and important application scenario-the

parking search problem in Chapter 6 of this dissertation.
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Chapter 1

Introduction

1.1 Background and motivations
Transportation systems nowadays are like complex organisms, within which different

parts on the one hand support each other, and on the other hand are tightly constrained

by each other. Different traffic modes (cars, buses, bicycles, etc.), different groups and

entities (travelers, transportation authorities, legislation, consultant agencies, etc.), trans-

portation infrastructures (different types of roadways, road signages, traffic lights, etc.)

and other components are mixed together forming an immensely complex system. It re-

quires enormous and decades of research endeavor to understand, model and optimize

such a system.

As the communication technology advances so rapidly in the past decades, the long

existed concept of V2X (connect Vehicle to Everything), and hence the broader concept

Vehicular Ad-Hoc Network (a.k.a. VANET), finally becomes possible to be implemented

in real world. There are now many companies and agencies that develop and provide

V2X products all over the world, Continental (Germany), Qualcomm (US), NXP Semicon-

ductors (Netherlands), Robert Bosch (Germany), and Delphi Automotive (U.K.), to name

a few 1. Vehicles in the near future will be equipped with devices that allow them to talk

to central control stations to get the most up-to-date information, and to report/publish

1V2X Market: 2018 Global Key Players, Regional Analysis, Size, Share, Trends, and Competitive
Landscape Forecast To 2023. MarketWatch. https://www.marketwatch.com/press-release/v2x-market-
2018-global-key-players-regional-analysis-size-share-trends-and-competitive-landscape-forecast-to-2023-
2018-05-25. Published 2018. Accessed April 1, 2019.

1



their own information to the public. Vehicles can also directly communicate with nearby

vehicles to share information like location, speed, headings, destinations, etc. It is a critical

component in the Cooperative Adaptive Cruise Control, a.k.a CACC. Vehicles negotiate

with other neighboring vehicles in some established protocols the right of way, merge

and split maneuver, lane change, overtaking, etc (Milanés et al., 2014; Amoozadeh et al.,

2015; Dey et al., 2016). The benefits from CACC are significant, including but not limited

to enhancing driving safety, increasing road network throughput, improving string sta-

bility of the system, reducing fuel consumptions, etc (Lu et al., 2002; Ploeg et al., 2011;

Suthaputchakun et al., 2012; Öncü et al., 2012; Zohdy and Rakha, 2012; Dey et al., 2015;

Li and Kockelman, 2016). Furthermore, some cities and companies are planning to build

infrastructures that support V2I to facilitate vehicular traffic. Audi, an automotive com-

pany, are bringing their talking traffic light technology to 10 U.S. cities2. In those 10 cities,

Audi cars that are equipped with V2I devices can obtain intersection traffic light informa-

tion (red/green/yellow signals) before they actually get to that intersection. This allows

drivers to make decisions about their driving speeds and route choices ahead of time,

which in turn can either save the driver some time by choosing a detour that avoids red

light as much as possible or reduce fuel usage by choosing cruising speed appropriately.

The example of the Audi’s talking traffic lights reveals that by knowing the traffic light

status in advance can benefit travelers greatly. On the other way around, it is also possible

to optimally adjust the traffic signal control to adapt to the on-road traffic when knowing

travelers’ position, speed and route choice. The easiest and simplest adaptive strategy is to

increase green time to the approach when vehicle volume in that approach increases, or to

reduce green time otherwise. Most of the traffic routing and signal control methods in the

past are developed without consideration of V2X technology, and hence it lacks the ability

to take advantage of the benefits from the promising V2X technology aforementioned.

An efficient, effective and robust framework that jointly routes and controls traffic in the

concurrent network is desirable.

2Davies C. AudiâĂŹs talking traffic lights tech expands to 10 US cities. SlashGear.
https://www.slashgear.com/audi-v2i-traffic-light-information-10-cities-expansion-11530481/. Published
May 11, 2018. Accessed April 1, 2019.
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1.2 Research objectives and contributions
This dissertation aims to investigate the relationship between traffic control and travelers’

route choice behavior, and to develop a novel framework which systematically coordinate

those two parts in a concurrent manner to improve the performance of the transportation

system in the context of Vehicular Ad-Hoc Network (VANET). The central idea is to take

advantage of on-line information availability boosted by VANET, which can help reduce

uncertainties and stochasticity while traveling in the network and, in the same time, help

guide traffic to their destinations more quickly. Hyperpath based models are convenient

and capable to handle routing problems with stochastic link travel time. By incorporating

certain link travel time distribution updating paradigms, a traditional hyperpath routing

model can be modified into a dynamic traffic routing model. Taking a step further from

the study of joint traffic signal control with dynamic routing under VANET environment,

the possible deadlock occurrence is another important research problem. By utilizing the

"DLA routing" strategy, which guarantees deadlock free in networks, as an additional con-

straint in the user’s route choice, it is possible to achieve deadlock free in traffic assignment.

However, such strict routing strategy could have high overheads in terms of increased

travel time, increased VMT, extra emission, etc. One solution is to find a balance between

deadlock occurrence and overall system performance by optimally selecting the percent-

age of "DLA routing" vehicles in the network. Last but not least, I explore the potential of

applying the proposed research to some real world applications, such as parking search

and management problem.

The work in this dissertation has several contributions to transportation research and

current real world practice. They are summarized as follows:

• Developed a hyper-path based dynamic traffic routing method that works jointly

with signalized intersections in a connected environment. The effects of different

penetration rates of DTR vehicles are studied.

• Developed a traffic control method based on max-pressure algorithm that takes down-

stream queue, downstream queue capacity and incoming flow rate into considera-

tion. The performance of the proposed signal control method outperforms most of
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the popular signal control strategies in the literature.

• Developed an optimal routing strategy under dynamic user equilibrium with queue

spill-back that minimizes the potential of deadlock via "DLA routing". The DLA

model not only reduces the deadlock potential in the network, but also maintains a

reasonable total travel cost.

• The overall DTR and DLA frameworks are ready to be applied to various real world

applications. Specifically, the proposed DTR with adaptive signal control framework

is applied to solve a practical parking search and management problem.

1.3 Thesis organization
The structure of this dissertation is organized as follows. In Chapter 2 and Chapter 3 a

literature review on traffic routing methods and traffic signal control models, respectively,

is presented. In Chapter 4, a joint dynamic traffic routing and adaptive signal control

framework is developed in stochastic and time-dependent context. Simulation results are

presented in the same chapter testing the proposed coherent framework. Some stability

analysis is present with respect to dynamic traffic routing and traffic signal control where

online information is available to travelers. Deadlock analysis in traffic routing is provided

in Chapter 5, with insights from Dynamic Traffic Assignment (DTA). In this chapter, a dy-

namic user equilibrium model considering queue spillback is developed to minimize the

possibility of deadlock occurrence. Chapter 6 sheds some light upon the possible applica-

tions of the research in this dissertation in real world scenarios. A study case that applies

the dynamic traffic routing developed in earlier chapters to the problem of parking search

is presented. Chapter 7 concludes the dissertation with a summary and some discussions

about future works.
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Chapter 2

Literature Review PART 1: Traffic
Routing And Traffic Assignment

In this chapter, we present a literature review on the history as well as the state-of-art of

the traffic routing methods and algorithms. Following that an introduction of traffic as-

signment models is present. The difference between traffic routing and traffic assignment

is discussed in the end of this chapter.

2.1 Shortest path algorithms
Shortest path algorithms are the most essential pieces in traffic routing problem. Every

traffic routing problem, eventually, will encounter certain types of generalization of the

shortest path problem, such as the most reliable path (Fan et al., 2005; Xing and Zhou, 2011;

Pan et al., 2013), the shortest path with resource constraints (Beasley and Christofides,

1989), kth shortest path (Yen, 1971), and many other routing problems. Deo and Pang

(1984) conducted a thorough survey and taxonomy on different shortest path algorithms.

They did an outstanding work summarizing studies on shortest path from the last century.

Here in this chapter, we first give an introduction on some of the most important shortest

path algorithms, and then introduce some of the state-of-the-art shortest path algorithms.

Before going into different shortest path problems and algorithms, a brief description

on the general setting for the shortest path problem is provided. Let G = (E, V ) denote

a graph (or “network”, another term for network, and it is used interchangeably in this

dissertation hereafter) with V as the set of vertices (or nodes) and E as the set of edges
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(or links). Links E can be directional, or non-directional. Graph in the former case is

known as the directed graph, while in the latter case it is known as the undirected graph.

Each link in the network can be associated with a certain weight, we, where e ∈ E. In the

transportation network, this weight, for instance, can be link travel time or link length. If

the weight of every link is homogeneous, the shortest path problem becomes identical to

the problem of identifying a path with the least intermediate hops.

2.1.1 One-to-One/One-to-Many/Many-to-One shortest path
The simplest and most fundamental problem in the shortest path problem is the one-to-

one shortest path. It seeks to find the shortest path in a network from one origin node (it

is also called source node in some literature) to one destination node (it is also called sink

node in some literature).

Bellman (1956) first introduced the one-to-one shortest path problem as a problem to

determine the path in the network of cities from one given city to another given city which

minimizes the travel time. A dynamic programming approach is proposed to solve the

aforementioned shortest path problem. In the original Bellman-Ford formulation, there

are N cities, arbitrarily numbered from 1 to N . Every pairs of cities are connected by a

bi-directional road, with a given travel time tij as the required travel time from city i to

city j. The problem is to find the shortest path from city 1 to city N . Let ci be the minimum

travel time from city i to city N , where i = 1, 2, . . . , N . It is obvious that cN = 0.

From the principle of optimality, ci should satisfy the following equation:

ci =

⎧⎪⎨
⎪⎩

min
(i,j)∈E

(tij + cj), i = 1, 2, . . . , N − 1

0, i = N

The problem is then solved iteratively by using DP to approximate in policy space. Let

cki be the minimum cost from node i to node N in kth iteration, with initial condition:

c0i =

⎧⎨
⎩ tiN , i = 1, 2, . . . , N − 1

0, i = N
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Successive approximation (it is also a form of relaxation) yields:

ck+1
i =

⎧⎪⎨
⎪⎩

min
(i,j)∈E

(tij + ckj ), i = 1, 2, . . . , N − 1

0, i = N

By iterating the above approximationN−1 times, the final result is the minimum travel

time from node 1 to node N , which is cN−1
1 . The actual shortest path can be obtained by

traversing from node 1 all the way to node N . The rule is at any node i, the next node to

take will be the node j that holds the above relaxation equation. In the above formulation,

it does not only calculate the shortest path from node 1 to node N , it also computes the

shortest path from any node to Node N at the same time as a by-product. It is sometimes

called a “many-to-one” shortest path. It takes trivial work to modify the original Bellman-

Ford formulation to a “one-to-many” variant. Let ci be the minimum travel time from city

1 to city i. The principle of optimality now becomes:

cj =

⎧⎪⎨
⎪⎩

min
(i,j)∈E

(tij + ci), i = 1, 2, . . . , N − 1

0, i = 1

The initialization and relaxation processes are now:

c0i =

⎧⎨
⎩ ti1, i = 1, 2, . . . , N − 1

0, i = 1

ck+1
j =

⎧⎪⎨
⎪⎩

min
(i,j)∈E

(tij + cki ), i = 1, 2, . . . , N − 1

0, i = 1

The “one-to-many” variant of Bellman-Ford algorithm is provided in Algorithm 1. The

time complexity of Bellman-Ford algorithm is O(V + V E + E) = O(V E).
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Algorithm 1 Bellman-Ford Shortest Path Algorithm

1: procedure

2: Input Vertices: V , Edges: E, Source Vertex: s

3: for each vertex v in V do

4: dist[v] ← ∞ // minimum distance from s to v

5: pred[v] ← NULL // preceding node of v on the shortest path from s to v

6: end for

7: dist[s] ← 0

8: for i from 1 to |V|-1 do

9: for each edge (u,v) in E do

10: if dist[v] > dist[u] + weight(u,v) then

11: dist[v] ← dist[u] + weight(u,v)

12: pred[v] ← u

13: end if

14: end for

15: end for

16: // optional: negative cycle detection

17: for each edge (u,v) in E do

18: if distance[u] + weight(u,v) < dist[v] then

19: There is a negative cycle in the graph.

20: end if

21: end for

22: end procedure

Following Bellman (1956), Dijkstra (1959) proposed another method to solve the short-

est path problem between a pair of nodes without the need to iteratively relax every edge

|V |−1 times. A temporary list is used to store the vertices that its label of distance is not

yet finalized. Every iteration in the “while” loop, the vertex, u, with minimum label of dis-

tance is picked and removed from the list. Then the algorithm tries to visit any neighbor-

ing vertices of the selected vertex, u. To speed up the algorithm, any neighboring vertices
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that are not in Q, i.e. the vertices have been finalized with a permanent label of distance

previously, will be ignored in the visit. During the visit, if the current label of distance of

any neighboring vertex, v, is larger than the summation of the label of vertex u and weight

of edge (u, v), the label of such vertex v will get updated to dist[u] + weight(u, v). At the

same time, vertex u becomes a temporary predecessor vertex of v. The process is repeated

until all vertices are visited and have been finalized with a permanent label of distance,

i.e. Q becomes an empty list. Algorithm 2 shows the details about how Dijkstra’s Algorithm

works.

Algorithm 2 Dijkstra’s Shortest Path Algorithm

1: procedure

2: Input Vertices: V , Edges: E, Source Vertex: s

3: Temporary vertices container Q ← []

4: for each vertex v in V do

5: dist[v] ← ∞ // minimum distance from s to v

6: pred[v] ← NULL // preceding node of v on the shortest path from s to v

7: add v to Q

8: end for

9: dist[s] ← 0

10: while Q is not empty do

11: u ← argminu∈Q dist[u]

12: remove u from Q

13: for each (u,v) in E and v in Q do

14: alt ← dist[u] + weight(u,v)

15: if dist[v] > alt then

16: dist[v] ← alt

17: pred[v] ← u

18: end if

19: end for

20: end while

21: end procedure
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In the literature, the Dijkstra’s Algorithm is sometimes categorized as a Label Setting

Algorithm, while the Bellman-Ford’s Algorithm is categorized as a Label Correcting Al-

gorithm. The major difference between these two classes of shortest path algorithms is

that in the Label Setting Algorithm once the label of a node is set as permanent or vis-

ited it is not changed in the following iterations, while in the Label Correcting Algorithm

the label of a certain node is subject to change until the termination of the algorithm. In

terms of the performance, Dijkstra’s Algorithm is faster than Bellman-Ford Algorithm in

some cases. However, Bellman-Ford Algorithm is able to cope with graphs with negative

weighted links. It is also capable to detect any negative weight cycles inside the graph. In

the context of a transportation network, a negative weight is rare (with exceptions in the

cases where subsidy or credit is so high that the actual cost to traverse a link may become

negative). In most cases, Dijkstra’s Algorithm is a better choice.

2.1.2 k-shortest path
Sometimes a single shortest path may not be enough. For instance, when the uncertainty

of road traffic is extremely high, a single shortest path planned ahead of time may fail due

to the occurrence of unexpected incidents. In such cases, knowing some alternative paths

(though not optimal) can be beneficial. This is one motivation in real life for computing k

shortest path. The k shortest path algorithm is a generalized form of the general shortest

path algorithm aiming to find out a sequence of k paths from origin to destination in an

increasing order of cost 1.

There are two variants of k-shortest path problem. The first variant allows loops to exist

in the paths, while the second variant requires the paths to be loopless. In a transportation

network, loops in a path are usually not desirable as travelers generally tend to avoid loops

when they plan their routes or when they travel en-route. Paths with loops in them are less

interesting to travelers in general. For this reason, only the second type of the k shortest

path algorithm is discussed hereafter in this subsection.

Yen (1971), on top of many other excellent works on the k shortest path algorithm (Bock

et al., 1957; Pollack, 1961; Clarke et al., 1963; Sakarovitch, 1966), proposed a new k shortest

1Wikipedia Contributors (2019). k shortest path routing. [online] Wikipedia. Available at:
https://en.wikipedia.org/wiki/K_shortest_path_routing [Accessed 8 May 2019].
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path algorithm that guarantees the upper bound computational complexity increases lin-

early with the value of k. Therefore, Yen (1971)’s algorithm is extremely efficient compar-

ing to its predecessors, achieving an approximate complexity upper bound of O(1
2
KN2)

when there are no negative weights 2. Yen’s k-shortest path algorithm is also capable to

deal with graph with negative weights. However, to simplify the illustration, in this intro-

duction we assume all the edges have positive weights. The algorithm is summarized as

following.

Table 2.1: Notations: Yen’s k-shortest path algorithm.

Notation Definition

N Total number of nodes in the network.

(i) ith node in the network with (1) being the source node and (N)

being the sink node.

dij The length (cost) of the directed arc from i to j. Note that dij > 0.

Ak The kth shortest path from (1) to (N), with k = 1, 2, . . . , K. The

path is (1) → (2k) → (3k) → . . . → (Qk
k) → (N), where ik is the ith

node on the kth shortest path.

Ak
i A deviation from path Ak−1 at node (i), where i = 1, 2, . . . , Qk. A

k
i

and Ak−1 share the same path until node (ik), i.e. (1) → (2k) →
. . . → (ik). After (ik), arc from ik to (i+1)k on path Ak

i is different

from any path Aj , where j = 1, 2, . . . , k − 1.

Rk
i The root path of Ak

i . It is the sub-path of Ak
i that overlaps with

path Ak−1, i.e. (1) → (2k) → . . . → (ik).

Sk
i The spur path of Ak

i . It starts at node ik and ends at node (N), i.e.

(ik) → . . . → (N), i.e. Ak
i .

In Yen’s k-shortest path algorithm, there are two lists A and B used to store shortest

paths. List A contains the k-shortest paths, i.e. Ak, whereas list B holds the potential

2The time complexity is highly depending on the shortest path algorithm used within Yen’s k-shortest
path algorithm. The computational complexity that the author claims is achieved under the assumption
that one uses the shortest path specified in Yen (1972).
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k-shortest paths.

Step 1: The first step is to find the shortest path A1. Any efficient shortest path algo-

rithm can be used to compute A1. After obtaining A1, store it in list A.

Step 2: The next step is to compute the rest Ak, where k = 2, . . . , K. It is done in a

iterative way. In order to find Ak, the shortest paths A1, A2, . . . , Ak−1 are required to be

known in advance. The computation of Ak is further divided into two parts:

For each i = 1, 2, . . . , Qk−1, repeat the following step 2.1:

Step 2.1: Compute all the deviation paths Ak
i . There are three sub-procedures to com-

pute all the deviation paths:

(a) Identify the root path, Rk
i , by searching the sub-path in Ak−1 that overlaps for the

first i nodes with Aj , where j = 1, 2, . . . , k− 1. If Rk
i is found, set diq = ∞, where (q)

is the (i+ 1)th node of Aj ; otherwise, do nothing. Then go to (b).

(b) Compute the spur path Sk
i from node (i) to node (N) using any efficient shortest path

algorithm. Since the arc between (i) and (q) is set to ∞, the spur path, Sk
i , found is

guaranteed to be different from those of Aj .

(c) If both Rk
i and Sk

i are found, combine the two together to form Ak
i = Rk

i + Sk
i . And

put this potential k-shortest path into list B. After that, reset the cost of arc from (i)

to (q) back to its initial value.

Step 2.2: Choose the path with minimum cost from list B to be put into list A as Ak.

Now move on to the next iteration to compute Ak+1.

As aforementioned, the Yen’s k-shortest path algorithm can achieve a performance of

O(1
2
KN2) in terms of the upper bound of the complexity when all edges have positive

weights. The space complexity is N2 + KN with N2 to store the graph and KN to store

list A and list B. Since Yen’s k-shortest path algorithm scales up linearly with the value of

K for both the time complexity and space complexity, it has a significant advantage over

other algorithms that scale exponentially with the value of K, e.g. Pollack (1961). Follow-

ing Yen (1971). There are numerous research works trying to improve the performance

of k-shortest path algorithm. However, a thorough review of all the k-shortest path algo-

rithms is beyond the scope and purpose of this dissertation work. Readers are referred
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to the related literature (Brander and Sinclair, 1996; Martins et al., 1998; Eppstein, 1998;

Borgwardt and Kriegel, 2005; Hershberger et al., 2007) if interested.

2.2 Shortest hyper-path algorithms
In k shortest path routing, the possible choices of paths are selected within the set of k

shortest paths which are computed ahead of time. Though the k shortest path routing

gives traveler some extra freedom and reliability in making trip plans, it still lacks the

ability to adaptively adjust routing decisions en-route. Once a traveler picks one path and

travels on the road, the choice is limited to that path unless a new shortest path calculation

is performed. If recalculation is not possible and there are some unexpected incidents on

the chosen path, the traveler could experience longer than expected total travel time. In a

broader context, link travel time in reality has randomness and uncertainty. The k shortest

path by its nature is not sufficient to handle this type of uncertainty and randomness.

To address the uncertainty discussed above, another type of routing method is de-

veloped called hyper-path routing. The central idea of hyper-path routing is to design a

routing policy or strategy at each node in the network so that travelers can re-course dur-

ing their trips according to the policy. This routing policy is one instantiation of a more

general concept known as hyper-path or hyper-graph (Nguyen and Pallottino, 1989; Gallo

et al., 1993; Nielsen et al., 2005). At each node on the hyper-path, an outgoing hyper-link is

used to represent the diversion options of travelers’ route choices. Each branch of a hyper-

link has a certain probability to be chosen depending on the re-routing policy used. In the

remaining part of this section, a formal definition of the hyper-path is presented and its

application in vehicles routing in a transportation network is discussed.

A hyper-graph (Gallo et al., 1993) is a pair of GH = (V,E), where V = {v1, v2, . . . , vn}
is the set of n nodes and E = {e1, e2, . . . , em} is the set of m hyper-links, with ei ⊆ V

for i = 1, 2, . . . ,m. Hyper-graph is a generalization of a standard graph representation

of a network where links (called hyper-links) can have multiple tail nodes or head nodes.

When |ei|= 2, i = 1, 2, . . . ,m, a hyper-graph GH becomes a traditional graph. Similar to a

directed graph, a directed hyper-graph is connected by directed hyper-links. A directed

hyper-link e ∈ E is an ordered pair e = (T (e), H(e)) of disjoint subsets of nodes, where
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T (e) ⊂ V is the tail nodes connected to hyper-link e and H(e) ⊂ V is the head nodes

of hyper-link e. There are two different types of basic hyper-links known as forward-

hyperlinks and backward-hyperlinks (in Gallo et al. (1993), they are called F-arc and B-

arc). A backward hyper-link is a hyper-link with |H(e)|= 1, while a forward hyper-link is

a hyper-link with |T (e)|= 1. Figure 2.1 shows the structure of a backward hyper-link and

a forward hyper-link.

(a) Backward hyper-links. (b) Forward hyper-links.

Figure 2.1: Two types of hyper-links.

For traffic routing in a transportation network, the forward hyper-link representation is

of particular interest as it is very well representing traveler’s route choice division behavior

(re-course) at a node (Kanturska et al., 2013). In the sequel, we are mostly discussing

hyper-graph with forward hyper-links, unless specified otherwise. Denote

FS(i) = {e ∈ E|i ∈ T (e)}, BS(i) = {e ∈ E|i ∈ H(e)}

It is clear that for forward hyper-graph the following holds:

|T (e)|= 1

A hyper-path (Gallo et al., 1993; Nielsen et al., 2005) Πst of origin s and destination t is

an acyclic minimal hyper-graph GΠ = (VΠ, EΠ) that satisfies:

(a) EΠ ⊆ E

(b) s, t ∈ VΠ =
⋃

e∈EΠ
(T (e) ∪ {H(e)})

(c) v ∈ VΠ \ {s} ⇒ v is connected to s in GΠ.
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Given a hyper-graph GΠ, for each arc (i, j) ∈ EΠ there is an associated conditional proba-

bility, πΠ
ij , defined as:

πΠ
ij = Prob{traversing(i, j) ∈ EΠ|i ∈ VΠ}

The above term can be interpreted as the conditional probability to traverse arc (i, j) from

node i. As shown in the text above, in forward hyper-graph a hyper-link has only one tail

node. Assume for hyper-link e, the tail node is i, i.e. T (e) = {i}. Then we shall have the

following as the conditional probability of route division at a node should sum up to 1:

∑
j∈T (e)

πΠ
ij = 1

Let PΠ denote the set of all paths connecting origin s and destination t in hyper-graph GΠ.

The probability of a certain elementary path p ∈ PΠ, πΠ
p , being chosen is then equal to:

πΠ
p = Π(i,j)∈EΠ

(πΠ
ij)

δpij

where δpij = 1 is path p traverses arc (i, j), and δpij = 0, otherwise. πΠ
p can also be interpreted

as the proportion of a unit flow going though path p from s to t. Apparently, the following

equation holds as the total flow through all paths should sum up to 1:

∑
p∈PΠ

πΠ
p = 1

Consider a scenario where the cost to traverse a link (i, j) consists of two parts: 1) the or-

dinary link cost cij , and 2) a node traversing cost wΠ
i . Note that different hyper-path could

have different node traversing cost wΠ
i . Introduce another boolean variable δpi denoting if

path p traverses node i: δpi = 1 if path p goes through node i, and δpi = 0, otherwise. With

all the ingredients needed for calculating the total cost of a hyper-path, we shall have:

CΠ =
∑
p∈PΠ

cp · πΠ
p (2.1)

where

cp =
∑

(i,j)∈EΠ

δpijcij +
∑
i∈VΠ

δpiw
Π
i (2.2)

The hyper-path cost defined in Equation (2.1-2.2) requires the exhaust enumeration of all

the paths connecting source node s and target node t. This is impractical and intractable
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when the size of the network becomes large. A dynamic programming approach is hence

proposed by Nguyen and Pallottino (1989). Let CΠ(i, t) denote the cost from node i on

hyper-path Πst to target node t. We should have:

CΠ = CΠ(s, t) =
∑

(s,j)∈FS(s)

πΠ
sj · (wΠ

s + csj + CΠ(j, t))

= wΠ
s +

∑
(s,j)∈FS(s)

πΠ
sj · (csj + CΠ(j, t))

Similar relation should hold for all node i heading to target node t on hyper-path Πst:

CΠ(i, t) =

⎧⎨
⎩ 0, i = t

wΠ
i +

∑
(i,j)∈FS(i) π

Π
ij · (cij + CΠ(j, t)), i ∈ VΠ \ {t}

With the above dynamic programming formulation, it is possible to calculate the hyper-

path cost for Πst in a backward manner.

Let C∗(s, t) denote the minimum cost for any hyper-path connecting s and t. By Bell-

man’s Principle of Optimality, the above dynamic programming relation then becomes

the following:

C∗(i, t) =

⎧⎨
⎩ 0, i = t

minΓi∈FS(i)

{
wΓi

i +
∑

(i,j)∈Γi
πΓi
ij · (cij + C∗(j, t))

}
, i ∈ VΠ \ {t}

where Γi ⊆ FS(i) is any subset of the links that have node i as tail node. wΓi and πΓi are

the node traversing cost and route division probability at node i, respectively.

Following the work in Nguyen and Pallottino (1989) and Nguyen and Pallottino (1988),

there are many research works on applying hyper-path to different applications in trans-

portation, especially in traffic assignment (Marcotte and Nguyen, 1998; Lozano and Storchi,

2002; Unnikrishnan and Waller, 2009), transit operations (Wu et al., 1994; Nguyen et al.,

1998; Kurauchi et al., 2003; Li et al., 2015), traffic routing (Miller-Hooks and Mahmassani,

1998, 2000; Miller-Hooks, 2001; Yang and Miller-Hooks, 2004; Gao and Chabini, 2006; Kan-

turska et al., 2013; Chai et al., 2017) and so on. With its flexibility in network representation

that could be easily modified for different application purposes, hyper-path and hyper-

path based routing shall have great potential in the future.
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2.3 Backpressure based routing
In packet routing and network communication area, there is a popular approach called

backpressure routing for scheduling packets, network resources, etc. It is a routing method

designed to direct traffic in a network in the way to maximize the total throughput. The

key idea in backpressure routing is to dynamically route traffic based on backpressure

gradient between different hops. The term “back pressure” is a concept adapted from

the field of fluid dynamics describing the resistance force when fluid flows through pipe

systems 3.

Tassiulas and Ephremides (1990) first brought the idea of using backpressure to route

traffic in communication networks and developed the original backpressure routing algo-

rithm. In their study they considered a queuing network with multiple-hops and arbitrary

topology for a communication network. They assumed that the global knowledge of the

queuing lengths at each hop in the network is known. The arrival rates are assumed to

be random. At each time step, the backpressure routing algorithm picks the eligible sets

of servers(links) to activate, and corresponding routing decisions are made in a central-

ized fashion, in contrast to fixed scheduling sequences that are set in advance in other

static routing schemes. The algorithm is made of two stages: 1) in the first stage select

links with maximum weight for certain type of packet. 2) in the second stage route packet

based on backlog differential. The algorithm is summarized hereafter.

First step is to identify the set of links for activation for each type of flow f :

W(a,b)(t) � max{max
f

[Qf
a(t)−Qf

b (t)], 0} (2.3)

where Qf
a is the queue backlog of flow f at node a at time t. max

f
[Qf

a(t)−Qf
b (t)] finds the

type of flow f opt on link (a, b) that has the maximum queue backlog differential between

head and tail nodes. Link (a, b) is then included in the set of activated links for flow f opt,

and it is closed for all other types of flow on link (a, b). The weight of link (a, b), i.e. W(a,b)(t),

is then assigned as that backlog differential of flow f opt. If the maximum differential is

negative, W(a,b)(t) = 0.

3Wikipedia Contributors (2019). Back pressure. [online] Wikipedia. Available at:
https://en.wikipedia.org/wiki/Back_pressure [Accessed 12 May 2019].
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The next step is to choose the rate to send flow f opt via link (a, b), i.e. μ(a,b)(t). This is

done by solving the following optimization problem:

Maximize :
∑

(a,b),μ(a,b)(t)∈Γ(t)
μ(a,b)(t) ·W(a,b)(t) (2.4)

where Γ(t) is the set of all feasible transmission rates that are supported by the network

conditions at time t. The backpressure algorithm allocates the full link capacity μ(a,b)(t)

to flow f opt at time t, and route flow f opt via link (a, b). The rest types of flows can not

transmit via link (a, b) at time t. Note, the same type of f opt may have multiple activated

transmission links. For example, beside link (a, b) it may have another link (a, c) where

flow f opt also has the maximum backlog differential. Flow f opt then also transmit via link

(a, c) at a rate of μ(a,c)(t).

The dynamic link activation method by selecting the links with maximum backpres-

sure was proved to yield a maximized throughput for the constrained queuing network.

It is also proved that when following the maximum throughput routing policy they pro-

posed, the network is stabilized for any arrival rate for which it is stabilizable. Proofs

can be found in Tassiulas and Ephremides (1990). Readers are referred to Tassiulas and

Ephremides (1990) for more details. Following Tassiulas and Ephremides (1990), there

have been many research works on backpressure routing from many different perspec-

tives, Neely and Urgaonkar (2009); Georgiadis et al. (2006); Dvir and Vasilakos (2011);

Moeller et al. (2010); Ying et al. (2011) to name a few. As per Neely and Urgaonkar (2009)

and Georgiadis et al. (2006), backpressure routing algorithm has several unique attractive

features: 1) by following the algorithm, it leads to maximum network throughput. 2) it is

possible to implement the backpressure algorithm without information of traffic arrival

rates and link state probabilities. 3) it is proved to be robust to time-dependent network

conditions. These three features are ideal for the purpose of routing traffic in a transporta-

tion network where overall throughput and system robustness are critical.
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2.4 Other routing methods
2.4.1 Learning based routing
Besides the traditional routing algorithms and techniques discussed previously, there is

another whole new method that is drawing more and more attention nowadays. It is

using different kinds of learning techniques like machine learning, deep learning, particle

swarm (swarm intelligent), genetic algorithm, evolutionary algorithm and so on to assist

in the task of traffic routing, e.g. Boyan and Littman (1994), Bonabeau et al. (1998), Peshkin

and Savova (2002), Fadlullah et al. (2017), to name a few. Some methods have explicit

models for optimization like the ant colony optimization algorithm, while others may not

have well-defined models for optimization in route planing like deep learning methods

that use a deep neural network structure to make predictions.

One of the advantages of the learning based routing method is that it does not neces-

sarily require full and accurate knowledge of the road conditions in the network, and still

be able to produce satisfactory routing results. Take reinforcement learning as an example.

Reinforcement learning works just like what a normal traveler does in everyday traveling.

Every time a traveler makes a trip, it learns the realization of network information and

updates its knowledge about the network. This knowledge includes relations and inter-

ference between different roads, the historical distribution of network information and so

on. The knowledge is stored in the form of a reward function. Next time when the traveler

plans his route, he does not need to know exactly the condition of every roads. Based on

the knowledge learned and a limited new knowledge obtained for the current network,

the traveler can infer an “optimal” route. It is even possible to do adaptive routing during

trips as long as a proper reinforcement learning framework is presented.

With all these different existing learning techniques and more new ones to come up,

it is almost impossible to thoroughly review and compare each technique. And it is also

beyond the scope and targets of this dissertation. This section only serves an elementary

introduction to learning based traffic routing techniques. Readers are advised to search

in the literature for more in depth understanding of those techniques if one finds them

interesting.
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2.4.2 Network-On-Chip routing
In Network-On-Chip (NoC) design, efficient routing algorithms also play a very crucial

role. As the number of processing elements (PE) integrated on a System-On-Chip (SoC)

is increasing at a dramatic rate over the past two decades, the need to communicate be-

tween different PEs on SoC is emerging. Though the scale and routing paradigm are quite

different from that of a transportation system, there are some similarities in terms of the

routing protocol design philosophy and guidelines between the two that can be shared.

A NoC network topology can have different forms depending on the application. Ac-

cording to Palesi and Daneshtalab (2014), there are six commonly seen and commercially

used network typologies for NoC design: Shared-Bus, Ring, Crossbar, Mesh, Torus and

Butterfly Flat Tree. Different designs of typologies have their own unique strengths and

weaknesses. The most similar structure to a road network is the mesh design. See Fig-

ure 2.2. It resembles a commonly seen grid network structure in many metropolitan down-

town areas.
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Figure 2.2: A mesh network in NoC.

Various routing mechanisms have been proposed and implemented for NoC applica-

tions. For switching mechanisms, two common types are circuit switching and packet

switching. The former provides low latency and guaranteed bandwidth, but may have

low channel utilization, low throughput and long connection initialization time (Palesi

and Daneshtalab, 2014). Packet switching, on the other hand, improves channel utiliza-
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tion and network throughput, but may suffer from packet loss, high latency and channel

contention. Packet switching relies on buffered flow control to deal with channel allo-

cation and packets buffering (Palesi and Daneshtalab, 2014). Store-and-forward, virtual

cut-through and wormhole routing are three commonly used buffer control mechanisms.

The first variant, store-and-forward, is the most similar to how individual vehicles are

routed through a physical transportation network. In this mechanism, packets buffering

works like vehicles being withheld in an intersection. Forwarding a packet to a nearby

router resembles the process of routing a vehicle to a neighboring intersection node.

Chiu (2000) developed a deadlock free NoC routing algorithm without the use of vir-

tual channels. The routing rules are simple, as stated below:

Rule 1 Packets are not allowed to take EN turns in an even column, and they are not allowed

to make a NW turn in an odd column.

Rule 2 Packets are not allowed to take ES turns in an even column, and they are not allowed

to make a SW turn in an odd column.

Rule 3 Packets are not allowed to make 180◦ turns.

The routing rules specified above is proved to be deadlock-free. In Chiu (2000), a mini-

mal Odd-Even routing algorithm is also presented. Following work in Chiu (2000), Hu

and Marculescu (2004) proposed a smart routing algorithm named DyAD-OE for NoC

routing that combines Odd-Even routing and XY routing (Intel, 1991) to achieve a dead-

lock free, dynamic, adaptive and deterministic routing scheme. Short after Hu and Mar-

culescu (2004), Li et al. (2006) in their work re-designed the XY routing algorithm to a

congestion-aware deadlock free dynamic routing method called DyXY. They claimed the

DyXY algorithm can adaptively route traffic based on congestion condition in the prox-

imity to improve system performance under load, and still guarantee deadlock-free and

live-lock free. Lotfi-Kamran et al. (2010) published an enhanced version of DyXY that

further reduces latency and strengthens link failure tolerance.
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2.5 Traffic assignment models
Traffic assignment models are models built to estimate how traffic flows distribute in a

network. These models take traffic demand, network topology and configuration as in-

puts, and analytically or numerically calculate the way that the traffic flows are loaded

onto and distributed in the network. This process can be static, i.e. all demands and/or

network configuration are not changing over time, or dynamic, i.e. demands and network

configuration are time-dependent. The former is categorized as static traffic assignment,

while the latter is dynamic traffic assignment.

Traffic assignment is becoming more and more important to planners, traffic engineers

and some government agencies. It is widely used to predict traffic performances in the

future for urban traffic management purposes. The estimation results can also serve as

an important input for land use planning, as well as for traffic demand analysis includ-

ing mode choices, trip distribution, destination choices and so on. With its wide range of

applications and significant impacts on transportation engineering, it is unwise to omit

traffic assignment models in the review of different routing methods. Though there are

some clear differences between the two, they are inevitably mingling with each other in

many cases. The remaining part of this section gives a brief review on the history of dif-

ferent traffic assignment models, their unique characteristics and their potential usage in

a V2X world.

2.5.1 Static traffic assignment
As discussed previously, static traffic assignment is a model that deals with time-invariant

traffic demand, and network configuration is static too. Beckmann et al. (1956), first pro-

posed a mathematical model to compute traffic flow distribution in the network. Within

their work, they solved the distribution problem both for the User Equilibrium (UE) case

and the System Optimal (SO) case. Their model relies on an important while intuitive as-

sumption that each road in the network has a cost function. The cost function is a mono-

tonically increasing function of the quantity of traffic on the road. Following Beckmann

et al. (1956), there are numerous studies on solving the traffic assignment problem from

different perspectives, Sheffi (1985); De Palma et al. (1998); Koutsoupias and Papadim-
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itriou (1999); Correa et al. (2004); Boyce et al. (2005); Nagurney (2013), to name a few.

Under the UE case, travelers are following Wardrop’s First Principle (Wardrop, 1952)

when they make their route decisions. When more and more people are choosing the

same road, the road becomes more and more congested which causes the cost to increase.

The cost will keep increasing to a point that new travelers will choose some alternative

road as those roads are now with lower cost to travel. In the end, traffic equilibrium is

reached as no one has the incentive to change choice.

The SO case, on the other hand, is quite different in terms of travelers’ rationale. Travel-

ers are no longer always choosing their actions “selfishly” as opposite to the UE case where

everyone seeks to find the best option of their own. In SO, travelers will “cooperate” with

each other to make the overall performance better. By operation, some individuals may

experience worse than UE cost, while some other individuals may improve their cost com-

pared to UE case. SO is important as it usually has good performance improvement over

UE. It is especially interesting to organizations like transportation management author-

ities. However, SO is not easy to implement as it is not what a “rational” traveler does.

To manually force travelers to follow SO rules, certain administrative interventions are

needed. Approaches like congestion taxes and tolls are useful tools that nowadays trans-

portation administrative authorities are using widely over the world (Small, 1992; Verhoef

et al., 1996; Small and Gómez-Ibáñez, 1997; Zhang and Yang, 2004; de Palma and Lindsey,

2011).

2.5.2 Dynamic traffic assignment
Static traffic assignment discussed in the last subsection, however, is not capable to cope

with cases with time-dependent traffic demand, such as scenarios with fluctuated traf-

fic flows intraday. To characterize the time varying characteristics, a more sophisticated

and complex traffic assignment model is needed. Merchant and Nemhauser (1978a) and

Merchant and Nemhauser (1978b) was the first to formulate a discretized mathematical

programming model to solve the dynamic traffic assignment problem. In their model, the

demand is fixed and deterministic. There is only one destination with single type of agent.

The problem is also limited to the SO case (Peeta and Ziliaskopoulos, 2001). Their model

is simple and can be criticized in some aspects, but as a pioneer model in DTA it does illus-
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trate the concept of DTA well. Following the track of Merchant and Nemhauser (1978a),

different DTA models have been proposed and developed using different approaches and

from different research perspectives covering both SO and UE, single destination and mul-

tiple destinations, deterministic demand and stochastic demand, and many other interest-

ing scopes. Some of the works are Smith (1984); Friesz et al. (1989); Papageorgiou (1990);

Carey (1992); Janson (1991); Ran et al. (1993); Ziliaskopoulos (2000); Mahmassani (2001);

Szeto and Lo (2006); Ben-Akiva et al. (2012); Ban et al. (2012a); Qian et al. (2012); Shen and

Zhang (2014); Ma et al. (2014); Zhu and Ukkusuri (2015); Patriksson (2015), to name a few.

There are different ways to formulate a DTA problem. Peeta and Ziliaskopoulos (2001)

categorizes different DTA models into four groups based on the approaches used: math-

ematical programming formulation, optimal control formulation, variational inequality

formulation and simulation based models. A typical DTA model consists the following

components:

1. An objective function for minimization: Z(·)

2. A network loading model. For example, the M-N model (Merchant and Nemhauser,

1978a): ⎧⎨
⎩ xt+1 = xt + ut − vt

vt = g(xt)

3. Flow conservation. ∑
ut =

∑
vt + Ft

4. Other constraints, including traveler’s route choice model.

One of the most essential pieces in the DTA model is the network loading model. The

network loading model controls how a given inflow is loaded and distributed into a net-

work (Xu et al., 1999). According to Nie and Zhang (2005), there are four types of main-

stream dynamic network loading models present in the literature: 1) the M-N model; 2) the

delay function link model; 3) the point queue model; and 4) the cell transmission model.

Each dynamic network loading (DNL) model has its own strengths and weaknesses. A

proper DNL model should be selected depending on the scope of the dynamic traffic as-

signment that one tries to solve.
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DTA models, due to its formidable complexity from all the time varying ingredients

in the formulation, can be extremely difficult to solve analytically or numerically. Spe-

cial techniques have been developed to solve different variants of DTA models, includ-

ing model discretization, approximation, using heuristics and many other innovative ap-

proaches. A comprehensive review of all computational methods for solving DTA models

is not a focus of this dissertation. Readers are encouraged to delve into the literature for

more details.
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Chapter 3

Literature Review PART 2: Traffic Signal
Control

The following chapter gives a literature review on traffic signal control. We look through

the development of the most simple, fundamental signal control designs, as well as the

most state-of-art, intelligent and popular signal control strategies. Brief introductions on

how each method is designed and implemented are outlined in each section. In addition

to that, advantages and limitations of each presented methods are discussed alongside

each section.

3.1 Basics of traffic signal control
Traffic is more chaotic and complex at an intersection than on normal road segments due

to conflicts of different movements within the intersection. These conflicting movements

can come from various of traffic modes, like cars, motorcycles, bicycles, pedestrians and

even trains. The conflicts between different movements can greatly increase the risk of

traffic collision, which makes traffic intersections more prone to causing traffic accidents

especially for unsignalized intersections. According to U.S.DOT Federal Highway Admin-

istration, there are over 40% of total U.S. traffic fatalities that are related to intersections

(See Table 3.1 1). One intuitive and effective solution is to signalize intersections to avoid

or limit the possibility of traffic conflicts. This section aims to explain the basics of traffic

1Intersection Safety - Safety | Federal Highway Administration. Dot.gov.
https://safety.fhwa.dot.gov/intersection/conventional/unsignalized/. Published 2010. Accessed April 1,
2019.
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signal control in practice.

Table 3.1: Numbers of U.S. traffic fatalities from year 2010 to 2016.

Year Total

U.S.

Traffic

Fatalities

Inter-

section

Fatali-

ties

Unsignal-

ized

Intersection

Fatalities

Unsignalized

Intersection

Fatalities involving a

Pedestrian

Unsignalized

Intersection

Fatalities involving

a Bicyclist

2010 32,999 8,633 6,156 752 171

2011 32,479 8,317 5,875 778 156

2012 33,782 8,851 6,233 860 154

2013 32,894 8,676 6,054 814 179

2014 32,675 8,661 5,986 872 195

2015 35,485 9,665 6,811 864 214

2016 37,461 10,267 7,122 985 200

Cycle Length Total time duration for an entire sequence of signal phases.

Green Split The percentage of effective green time of a certain phase in total cycle length.

Minimum Green/Minimum Red/Yellow Duration The minimum green/red/yellow

time required for any signal plan.

Phase A group of movements that are served at the same time.

Movement Turning movement taken by vehicle or pedestrian at an intersection.

Ring Barrier Graph A graph of phases within a set of rings and phases within a set of

barriers.

3.2 Fixed time control
Fixed time control, or pretimed control in some literature, is the most commonly seen and

simplest traffic signal control method. In such control schemes, the entire traffic signal

control plan is pre-defined and fixed over specified time frame, and hence the name fixed

time control or pretimed control. Though the concept of fixed time control is simple and

straightforward, some use quite sophisticated optimization method to obtain fixed time
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plans. The cycle length, green/red time duration and phase sequence are allocated based

on the traffic patterns observed historically. As the name indicates, these values are fixed

per each plan. There are no detectors necessary in this control mode.

Since the fixed time control lacks the ability to detect sudden changes in traffic demand

pattern and the ability to adapt signal control plans to the change of traffic, this kind of

control mode is mostly suitable for intersections with little fluctuation in traffic demand.

For intersections with high fluctuation in traffic demand, fixed time control will result

either in starvation (for approaches with sudden decease in traffic demand) or in serve

queuing (for approaches with sudden increase in traffic demand).

3.3 Actuated control
Actuated control, however, does not have a fixed cycle length or fixed phase sequence. Com-

pared to fixed time control systems, actuated control system is quicker and more flexible in

responding to dynamically changing traffic demand.

In actuated control mode, there are different types of sensors to detect the presence of

vehicles near intersections to actuate signal control. The amount of green time allocated

to each phase depends on the traffic demand detected by the sensors. Different from fixed

time control, actuated control works best at isolated intersections with low traffic demand

on average. Once the sensor detects vehicles upstream, a signal is sent to the controller to

actuate the green time for that approach. Green time is extended if vehicles are detected

continuously until maximum green is reached.
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Figure 3.1: Actuated control types.

Based on different applications, actuated control can be further divided into two groups:

semi-actuated control and fully-actuated control. See Figure 3.1. In a scenario where there
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are a major road and a minor road connected to the same intersection, semi-actuated con-

trol works best. The major road approach is not installed with sensors and operates in

“non-actuated” manner while the minor road is under actuated control. Normally, the con-

troller is programmed to give green time to the major road until the minor road receives

an “actuated” signal. Semi-actuated control performs best for intersections with low speed

major road and low traffic demand on minor road (Koonce and Rodegerdts, 2008). In

fully-actuated control, both major road and minor road are installed with sensors to de-

tect incoming traffic. Whichever approach detects vehicles will actuate the corresponding

traffic signal control. This type of control is most ideal for intersections where daily traffic

demands and patterns vary significantly (Koonce and Rodegerdts, 2008). See Figure 3.2

for a simple illustration of the two different types actuated signal controlled intersection.
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(a) Semi-actuation control.
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(b) Fully-actuated control.

Figure 3.2: Two different types of actuated signal control.

3.4 Adaptive control
One step further, Adaptive signal control is another type of signal control technology that

utilizes traffic detection sensors. In contrast to fixed time control discussed in the last sec-

tion, adaptive control is capable to addresses the problem of detecting and adapting to the

sudden traffic changes. Upstream and/or downstream traffic flows are detected by sen-

sors. Based on the time and location of the detection, a prediction of when and where
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those traffic will be is made (Koonce and Rodegerdts, 2008). Some sophisticated algo-

rithms then utilize the prediction to calculate optimal signal timing settings and make

appropriate adjustment to the current signal plan.

According to Koonce and Rodegerdts (2008), adaptive control can improve average per-

formance metrics by 10%. In some special cases, this improvement can be as high as 50%

or more. Adaptive control is particularly suitable for scenarios where there are fluctuated

traffic demands. For instance, accidents, disruptive events and natural disasters that result

in sudden changes to traffic demands. In such cases, fixed time control will fail to detect the

change and fail to make appropriate adjustment. Actuated control, on the other hand, is

also not capable to deal with this kind of random and unexpected scenarios. It may per-

form slightly better than fixed time control in these cases. But with random and unexpected

traffic flow coming from all directions, the simple actuated plan is very unlikely to be an

optimized control plan.

There have been many traffic signal control applications that uses adaptive control

methods in the U.S. as well as over the world. Different manufacturers and vendors de-

sign different products. The most popular ones that got deployed in the U.S. in the past 20

years (Koonce and Rodegerdts, 2008) include Split Cycle Offset Optimization Technique

(SCOOT), Sydney Co-ordinated Adaptive Traffic System (SCATS), Real Time Hierarchical

Optimized Distributed Effective System (RHODES) and Adaptive Control Software Lite

(ACS-Lite). Though the percentage of adaptive control signals are still low (less than 1%

according to Koonce and Rodegerdts (2008)), the future of adaptive control is bright with

nowadays rapidly developing communication and detection technologies. When tech-

nologies like V2X become mature, adaptive control will have many more profound appli-

cations.

3.5 Coordinated control
In the context of the multiple intersections application, coordinated control mode is used

to control traffic movements in a cooperative manner. By carefully selecting signal con-

trol plans and offsets between different signalized intersections, it synchronizes multiple

intersections to improve the operation of the traffic movements in the system.
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A very simple but effective way to determine offset between two consecutive intersec-

tions is:

Δ =
L

v

where Δ is the offset, L is the distance between the two intersections and v is the average

travel speed of the link between the two intersections. If vehicle platoons move at a speed

close to v, it takes
L

v
for the platoon to traverse that link. Since this travel time matches

the offset between upstream and downstream intersections, i.e. Δ, the signal is in green

when the platoon arrives downstream. In such way, the system forms a “green wave” of

platoon traveling through the corridor without any stops. The corresponding amount of

green time available to a group of vehicles in a progressive signal system is called “green

band” in traffic signal control operation. This naive approach might suffers many potential

drawbacks, such as low throughput. However, it suffices for illustration purpose.

Figure 3.3: A green band (time-space diagram) on a coordinated control corridor.

There are many different methods depending on one’s control objective to do coordi-

nated control for intersections, including but not limited to cycle/split/offset methods to

coordinate traffic. Sydney Co-ordinated Adaptive Traffic System (SCATS), for example, al-

lows traffic engineers to implement maximum throughput, minimum stops and minimum

delays based on the vehicle data detected from sensors. It is a cycle-to-cycle system which

means the system tries to optimize cycle length, green split and offsets in each cycle 2.

2Scats.com.au. (2019). Adaptive control | SCATS. [online] Available at:
https://www.scats.com.au/how-scats-works-adaptive.html [Accessed 25 Apr. 2019].
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After getting the coordinated signal plan from various software and manual tools, traf-

fic engineers should check and verify the selected plans yield expected outcomes. One ap-

proach recommended by Federal Highway Administration (FHWA) (Koonce and Rodegerdts,

2008) is to use a time-space diagram. Figure 3.3 shows a time-space diagram for a coor-

dinated corridor with signal timing plans illustrated for each intersection on the major

road. Traffic is allowed to progress within the green/blue (different colors for different

directions) regions without the need to stop for red lights. Outside those regions, vehicles

are required to stop at least once assuming traffic does not change speed. From this time-

space diagram, one can quantify the maximum bandwidth of a certain coordination plan.

A common practice is to maximize the bandwidth which means it allows the maximum

number of vehicles to travel through the corridor without stops.

Intersection coordination control can reduce travel time, delays and queues in the sys-

tem for the coordinated movements, it might, however, create negative impacts on the

other uncoordinated movements. That being said, coordinated control suits best for appli-

cations where there is a major corridor (or a network with main arterials and side roads)

with multiple signalized intersections. The corresponding crossing roads are minor roads

with relatively low traffic demand, while the vehicular traffic on major road is relatively

high. Vehicular traffic on major road benefits from shorter travel time, delays, queues and

fewer stops, while the impact to traffic on minor roads is kept at a low level due to low

traffic demand on those roads.

3.6 Other types of signal control
3.6.1 Max backpressure control
Backpressure is a term originally used in fluid dynamics describing the opposite resistance

to the desired flowing direction that causes the pressure drop between high pressure end

and low pressure end. The concept is then borrowed and used widely in packet routing,

network communication, network control and software development areas (Tassiulas and

Ephremides, 1990; Georgiadis et al., 2006; Moeller et al., 2010; Ying et al., 2011; Ji et al.,

2013). Backpressure routing algorithm, for instance, seeks to route packets in the direc-

tion that has the maximum differential backlog between neighboring hops. This behavior
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mimics the natural behavior of liquid fluid flowing through a pipe network via pressure

differential 3.

Tassiulas and Ephremides (1990) was the first to propose and develop a backpressure

algorithm for scheduling policies in a multi-hop radio network. In their backpressure al-

gorithm, a weight is assigned to each possible link based on the queue difference between

neighboring nodes and the service rate of the corresponding link. See Equation (3.1). After

computing all the weights, the set of links (servers) that maximize the weighted backpres-

sure are selected for activation. See Equation (3.2). This gives the final activation vector

ĉ.

Dij(t) =

⎧⎨
⎩ (Xq(i)j(t− 1)−Xh(i)j(t− 1))mi, if h(i) /∈ Vj

Xq(i)j(t− 1)mi, if h(i) ∈ Vj

(3.1)

ĉ = argmax
c∈S

{DT (t)c} (3.2)

Xq(i)j(t− 1): Number of queued customers of class j in queue q(i) at server i by the end of

time t− 1.

mi: Service rate at server i.

q(i), h(i): Queues at tail and head of link i, respectively.

DT (t): Weight vector at time t.

c: One activation vector.

ĉ: The activation vector that maximizes backpressure.

Vj : Final destination set of customers of class j.

The type of queue that activates each link i correspondingly are then released via link

i at a rate of mi. Tassiulas and Ephremides (1990) showed that by following the backpres-

sure algorithm, network can obtain maximum throughput. They also proved that with any

arrival rate a ∈ C ′, the optimal policy is stabilizing the system. C ′ is defined as:

C ′ = {a : there exists f ∈ Fa, c ∈ co(S) such that for the corresponding f̂

we have m−1
i f̂i < ci if f̂i > 0 and f̂i = 0 if ci = 0}

3Wikipedia Contributors (2019). Backpressure routing. [online] Wikipedia. Available at:
https://en.wikipedia.org/wiki/Backpressure_routing [Accessed 25 Apr. 2019].
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where co(S) is the convex hull of the constraint set S.

Backpressure algorithm looks promising in applying to other fields besides network

communication area where throughput of the system is one of the system performance

goals. One of such applications is traffic light control in transportation networks. Trans-

portation networks and packets transmission/communication networks share many sim-

ilarities. Packets in communication networks are like vehicles in transportation networks,

where queues can be observed in both types of networks. Servers in communication net-

works are like intersection controllers in transportation networks controlling which move-

ments are allowed to pass the intersection.

However, there are also a few differences between the two that need to be addressed.

First of all, the queues in Tassiulas and Ephremides (1990) can be distinguished by their

destinations into different groups. This is not feasible in transportation networks context

as the queues with different destinations are physically mixed together. Therefore, it is

impossible to calculate the activation link set in the maximum backpressure algorithm

based on queue types.

Secondly, weight calculation (Equation 3.1) are based on the backlog differential be-

tween tail node and head node of a link. Different queues share the same transmission

link. However, in transportation networks queues at intersections can have different move-

ments, i.e. after they pass through the intersection they can be at different locations. See

Figure 3.4. Links W,E,N, S are links connected to node C. An example of flows within

this intersection is a traffic flow moves from link W to link N by taking a left turn. To

account for this difference between a transportation network and a communication net-

work, one solution is to convert the intersection into a hyper-graph. See Figure 3.4. Links

in the original graph now become nodes, and nodes in the original graph becomes hyper-

links. Links W,E,N, S in the original network (on the left) becomes nodes W,E,N, S in

the hyper-graph (on the right). Node C in the original network expands to a hyper-link

C that connects all surrounding four nodes. By doing this conversion, the network setup

is similar to that in the original backpressure algorithm: 1) traffic flow travels from one

end of a hyper-link to the other end of a hyper-link via the hyper-link. 2) Weights and

the corresponding backpressure are calculated using the backlog differential between two
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neighboring nodes, e.g. the weight of arc (M,N) equals to the queuing difference between

node W and node N , or (QW −QN), the backpressure then equals to c(M,N) · (QW −QN).

3) The pair of nodes with the highest backpressure get the right of way to flow through

the hyper-link C.

�� �

�

�

� �

�

� Hyper link C

Figure 3.4: An intersection in hyper-graph representation.

Thirdly, the server in communication network has full control of the transmission rate

via the link. However, a traffic signal light controller only controls which movement has

the right of way. It has no control of how fast the queue in a certain movement can dis-

charge. The discharging flow rate is a value bounded between 0 and fmax, i.e. the satura-

tion flow rate. This depends on the traffic conditions for that movement at the intersection.

Finally, the max backpressure algorithm assumes that the server has infinite buffer stor-

age for queues. This is particularly not true for transportation networks as roads usually

have a small queue capacities.

With the differences discussed above, the original max backpressure algorithm needs a

few modifications before it can be applied to control traffic signal lights. In the remaining

of this section, we introduce some works that follow Tassiulas and Ephremides (1990)’s

work, and are successfully adapted to transportation traffic signal control.

3.6.1.1 Queue-based max backpressure control

Based on the work by Tassiulas and Ephremides (1990) and Georgiadis et al. (2006), Wong-

piromsarn et al. (2012) proposed a distributed signal control method using max backpres-
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sure approach that maximizes throughput of the network. Their max backpressure control

framework is a specialization of Tassiulas and Ephremides (1990)’s original backpressure

algorithm with single commodity. To address the lack of flow rate control, Wongpirom-

sarn et al. (2012) slightly modified the definition of weights and backpressure as Equa-

tion (3.3-3.4).

Wab(t) � Qa(t)−Qb(t) (3.3)

Sp(t) �
∑

(La,Lb)∈p
Wab(t)ξi(p, La, Lb, zi(t)) (3.4)

Weights are still calculated by the backlog differential. But the differential is now taken

between the “from” link (La) and the “to” link (Lb) of a movement. Flow rate used to

calculate backpressure is no longer the maximum throughput of the intersection. Instead,

it is a function (ξi(·)) of current phase (p), incoming link (La), outgoing link (Lb) and current

traffic state (zi(t)). The rest procedures are similar to Tassiulas and Ephremides (1990).

Wongpiromsarn et al. (2012) proved in their work that using the modifications specified

the distributed max backpressure control method for signal control inherits the properties

of the original backpressure algorithm, including maximum throughput, stability and so

on.

Almost at the same time as Wongpiromsarn et al. (2012), Varaiya (2013) proposed a

signal control method based on max backpressure algorithm. It adopts the same idea of

backpressure algorithm for routing and scheduling of packet transmission in a wireless

network developed by Tassiulas and Ephremides (1990). However, as the author claims

the network model and the notion of stability in Varaiya (2013) is significantly different

from those in Wongpiromsarn et al. (2012). We present here the max pressure signal con-

trol model from Varaiya (2013).

w(l,m)(X) = χ(l,m)−
∑

p∈Outm

r(m, p)χ(m, p) (3.5)

γ(S)(X) =
∑
l,m

c(l,m)w(l,m)(X)S(l,m) =
∑

l,m:S(i,m)=1

c(l,m)w(l,m)(X) (3.6)
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u∗(X) = argmax{γ(S)(X)|S ∈ S} (3.7)

(l,m): A traffic movement with in an intersection: input link is l, output link is m.

χ(l,m): Queue length of movement (l,m).

r(l,m): Turning ratio for movement (l,m).

w(l,m)(X): Weight of movement (l,m) under state X .

c(l,m): Saturation flow rate of movement (l,m).

S(l,m): Entry of intersection control matrix. S(l,m) = 1 indicates that phase (l,m) is ac-

tuated, S(l,m) = 0 otherwise.

γ(S)(X): The pressure of the intersection under state X and with intersection control ma-

trix S.

X : Intersection state, indicating queuing lengths at the intersection.

At every state X , their max pressure selects the intersection control matrix that has the

maximum pressure for network signal control, i.e. selecting the phase with maximum

pressure as the phase to be actuated. The author in their paper also proved properties of

stability and maximum throughput in their max pressure signal control.

3.6.1.2 Delay-based max backpressure control

Motivated also by the backpressure routing from Tassiulas and Ephremides (1990), Wu

et al. (2018) proposed a delay-based backpressure signal control method to address the fair-

ness concerns in traffic signal control while applying the maximum backpressure algo-

rithm. The control methods in both Varaiya (2013) and Wongpiromsarn et al. (2012) use

the number of queuing vehicles as the backlog to calculate weights and the corresponding

backpressure. However, this queue-based approach may result in the situations where ve-

hicles in some movements experience excessively long waiting time (or delay). Consider

the following scenario. In an intersection with a major road and a minor road, the major

road has large traffic demand. Consequently, queues on major roads are long. The minor

road has small traffic demand and queue length is short. In this case, the queue-based max

backpressure control will always allocate the right-of-way at the intersection to the major

road, leaving the vehicles on the minor road being delayed forever. The overall fairness of
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this intersection under the scenario described above can be poor.

The so-called delay-based max backpressure control in Wu et al. (2018) modified the

weight calculation method. In their method, they measured the sojune time of the Head-

Of-Line (HOL) vehicle of Qi,j in the network at time slot t, Wi,j(t), and use that as the

weight.

Wi,j(t) � Ti,j,1(t)

where Ti,j,1(t) is the sojune time of the kth vehicle of Qi,j in the network at time slot t. Time

is measured from the point when the vehicle first arrives in the network. Optimal phase

selection is based on the modified backpressure calculation method:

−→p ∗
(t) ∈ argmax

−→p ∈SP

∑
pi,j=1

γi,j ·Wi,j(t) · μi,j(
−→p )

They proved that by using the delay-based max backpressure control, the system is stable

as long as the arrival rate is strictly within the region of Λ, with the definition of Λ listed

below. The property of maximum throughput is also maintained. Simulation tests con-

firms that the fairness performance regarding delay is better than that of the queue-based

approaches, especially in busty and heterogeneous traffic conditions.

Λ = {−→λ |∃−→φ ∈ Co(SP ) s.t.λi ≤ φi,j, ∀(i, j) ∈ M}

Furthermore, to achieve better flexibility, Wu et al. (2018) also proposed a maximum

backpressure control with a combination of queuing length and HOL delay. The optimal

selection is based on the following:

−→p ∗
(t) ∈ argmax

−→p ∈SP

∑
pi,j=1

γi,j · [η(W )
i,j Wi,j(t) + η

(Q)
i,j Qi,j(t)] · μi,j(

−→p )

The performance of the “hybrid” method is similar to delay-based method, but has better

flexibility to adjust strategies in response to different traffic conditions intraday by assign-

ing different weights to queuing length and delays, respectively.

The max backpressure control shines with a lot of great features and benefits when

applying in transportation applications. However, there are still some drawbacks. One

of the drawbacks of the above backpressure control method in applying in transportation
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network is that it does not consider the maximum/minimum green/red time constraints.

However, this can be easily fixed by limiting the minimum/maximum number of time slot

that a selected phase can be actuated by max backpressure control. Note, this modifica-

tion could potentially affect the stability and maximum throughout properties. Also, it

does not explicitly address green waves in coordination. So it may not perform as well as

coordinated control in lightly loaded networks where queuing can be eliminated.
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Chapter 4

On Dynamic Traffic Routing And
Adaptive Signal Control

4.1 Introduction
Regular vehicles like the ones most of us are driving today don’t have real-time road traffic

information. The routing strategies used are either based on past experience or based

on limited local information. This leads to the fact that regular vehicles can’t respond

to road incidents in a timely manner to avoid long delay. However, with the emergence

of connected vehicles technology it is possible to access both local and global real-time

traffic information via the V2X infrastructure. It is an important and challenging research

problem to study how to take advantage of the extraordinarily rich information we can

get from the connect vehicle system. The main objective of this chapter is to study the

interaction between two major components: dynamic vehicle routing and adaptive traffic

signal control in a connected vehicle environment. We consider different combinations

of route choice strategies and various traffic signal control methods to obtain an effective

joint vehicle routing and signal control scheme which will reduce the average travel time

within the network.

Vehicle routing problems have been very well studied over the years. A great part of

the existing papers studies how to route vehicles in a network efficiently to meet some

constraints like location routing (Perl and Daskin, 1985; Min et al., 1998; Nagy and Salhi,

2007) or time constrained routing (Desrosiers et al., 1984; Solomon and Desrosiers, 1988;
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Desrosiers et al., 1995; Nie and Wu, 2009). The routing problem in this study is focused

particularly on how to route vehicles in the network so that the total time for the vehicles

to get to their destinations can be minimized. The underlying problem for that is the well-

known shortest path problem(SPP).

In the study of shortest path problem, the existing work can be categorized in two

main groups: deterministic shortest path problem(DSPP) and stochastic shortest path

problem(SSPP). Bellman (1956) proposed a dynamic programming method to solve the

optimal route from one point to another with all link travel time to be deterministic and

known ahead of time. SSPP is more interesting than DSPP as in real word link cost is usu-

ally not known deterministically but has many uncertainties. In stochastic scenarios, the

shortest path problem can be further categorized into two groups according to Gao and

Chabini (2006): path problem and optimal routing policy problem. Path problem aims to

find a specific path(a deterministic link set) to destination that will attain a certain objec-

tive, such as least expected travel time (Miller-Hooks and Mahmassani, 2000) or maximum

on-time arrival probability (Fan et al., 2005). Optimal routing policy problem, however, is

more complicated than the path problem. According to Gao and Chabini (2006), a routing

policy is defined as a decision rule that specifies which node to take next at each decision

node based on realized link travel times and the current time. Compared with path prob-

lem, optimal routing policy problem in most cases can give a routing solution that is more

efficient and reliable. The reason for that is because as the traveller travels in the network,

he gains knowledge of the network (in this example, the travel time experienced after the

traveller traverses a link). With this knowledge and the dependency of links being known,

his anticipation of the future can be changed. The traditional path finding method does

not take advantage of the newly learned information and the dependency between links.

In order to take these advantages to improve the routing decision, the aforementioned op-

timal routing policy is needed. The optimal routing policy will not give one fixed path but

a decision tree that will guide the traveller to the next node based on the current state(in

most of the cases it is the arrival time at the current node) at the decision node. The opti-

mal routing policy is particularly useful in stochastic and time-dependent networks. This

routing policy is sometimes known as hyper-path in some literature. Miller-Hooks and
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Mahmassani (2000) studied the least expected travel time problem using hyper-path algo-

rithm in a stochastic and time-varying network. Fu (2001) also studied an adaptive routing

approach with real-time information. Chen and Nie (2015) studied the stochastic optimal

routing problem for vehicles with a limited travelling limit. The problem is formulated

as a two-stage stochastic shortest path problem: both stages are a stochastic shortest path

problem respectively. A label correcting based algorithm is used to solve the problem.

However, their model does not consider time-variant link cost. Wu (2015) studied the

travel reliability as an extension to the traditional shortest path problem in stochastic and

time-dependent networks by adding the standard deviation to the mean travel time to

represent the reliability of a certain route. However, the work does not explicitly consider

the time-dependent problem in their formulation.

For signal control, most of the existing papers do not consider the interaction with traf-

fic routing. The traditional control method, no matter adaptive or fixed-time, isolated or

coordinated, only aims to reduce the delay or maximize the throughput of the intersection

with known and perhaps time-dependent traffic demand (Rosdolsky, 1973; Hunt et al.,

1982; Lo, 1999; Mirchandani and Head, 2001; Choy et al., 2003; Tatomir and Rothkrantz,

2004; Cheng et al., 2006; Haddad et al., 2013). This in reality might cause inefficient traffic

routing, as traffic may oscillate between different routes due to the impact on travel delay

caused by the signal control. Vehicles may make unnecessary reroute to avoid a red light at

a certain intersection: for example when they see a red signal for the through movement,

they may change their route and take a right turn in order not to wait at that intersection.

This myopic behavior not necessarily guarantees to reduce the total travel time as the trav-

eler may experience more red light stops (more delay) at the downstream intersections. It

also causes fluctuations of road traffic as travelers are switching their routes too frequently.

The fluctuation of road traffic has many negative effects on traffic control (Horowitz, 1984;

Friesz, 1985; Zhang and Nagurney, 1996). So a good signal control strategy should take

the interaction with vehicle routing behavior into consideration to achieve a better over-

all performance: not only reducing average travel time, but also maintaining a relatively

stable on-road traffic. It requires the work to integrate traffic routing together with signal

control. The problem is no longer a simple shortest path problem but a more complicated
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time-constrained shortest path problem(TCSPP).

In early literature, there have been many papers trying to solve the combined traffic

assignment and traffic control problems, known as CTAC. Smith and Ghali (1990) studied

the dynamics of traffic assignment and traffic control. When demand was constant, they

were able to get a steady (equilibrium) state, but for dynamic demand they were unable

to obtain such results. Later on, Yang and Yagar (1995) formulated the CTAC problem in

a bi-level programming formulation. The upper level tried to minimize the system cost

by varying the signal settings while the lower level modeled travellers’ routing behavior

which will give an equilibrium flow state given the signal settings. They also proposed

an efficient method to solve the bi-level optimization problem. All the aforementioned

papers were focusing on static networks. In reality traffic flows are varying from time-to-

time and from day-to-day. A more sophisticated model should be used in order to solve the

real world problem. Xiao and Lo (2014) formulated a joint dynamical traffic system that

considered both travellers’ route choices and traffic light control. The dynamical system

permitted the signal controller to interact with and adapt to route choices of travellers, and

vice versa in a day-to-day setting. Zaidi et al. (2015) applied the back-pressure algorithms

from communication networks to the traffic network with adaptively re-routing traffic.

The aforementioned papers that jointly consider traffic assignment and signal control

are all path based, and most of them consider static user equilibrium rather than adaptive

control, which means they are unable to provide real-time routing guidance to individ-

ual travellers. In real world applications, it is more useful and has more significant im-

pact to travellers if a system can offer good routing guidance at an individual level. This

brings attention to combined traffic routing and signal control. Chen and Yang (2000)

studied the shortest path problem in traffic-light networks. The constraints in their work

were called time-windows which were actually a mathematical representation of phases

in traffic light cycles. Their shortest path algorithm could achieve a time complexity of

O(r × n3), where n denotes the number of nodes in the network and r is the number

of different time-windows in a node. However, this work only considered deterministic

and static link travel times. Yang and Miller-Hooks (2004) extended the work of Miller-

Hooks and Mahmassani (2000) to incorporate the traffic signal operations. Their network
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flow was time-varying and stochastic. They studied two different sub-problems: one with

actual signal timing known a priori, and the other with probabilistically known signal

timings. They proposed algorithms for both problems to solve the adaptive routing in a

signalized network. The underlying assumption in their paper was that the distribution of

time-varying stochastic link travel times is known a priori. This assumption is too strong

when applying to real world scenarios. In reality, travellers might know the distribution

of link travel times in the near future (Zhang and Rice, 2003; Chien and Kuchipudi, 2003;

Lin et al., 2004). But in a longer scale of time, it is impossible for travellers to know the

future link travel time accurately.

The work in this chapter addresses the issues of existing methods with the following

contributions:

1. We have proposed a dynamic routing strategy that can constantly update travellers’

knowledge of link travel time with consideration of adaptive signal control for ef-

ficient routing in real world transportation networks. The joint model of dynamic

traffic routing and adaptive signal control developed in this chapter is shown to re-

duce the average queue length and average travel time, as well as increase the average

speed in the network. It shows significant advantage over the other traditional ways

of routing and signal control.

2. We have proposed, tested and compared different signal control methods under dif-

ferent scenarios.

3. We have used the OmNet++ and SUMO simulation platform to study the benefit of

VANET on the joint routing and signal control strategy proposed. The effect of using

real-time information is studied and evaluated.

The rest of the chapter is organized as follows: Section 4.2 exposes some difficulties and

existing problems in routing and signal control that motivate us to study the topic. The

challenges to address these issues are also stated later in the same section. The joint routing

and control problem is stated and algorithms are proposed in Section 4.3. Some numerical

experiments are designed and carried out in Section 4.4. Results and analysis are given
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in Section 4.5. Section 4.6 summarizes the main results of this work, and discusses future

extensions to the current work.

Figure 4.1: Connected vehicles in VANET.

4.2 Context and motivation
We have briefly talked about the problems associated with the traditional routing and

signal control methods in Section 4.1. In this section, more details on the existing prob-

lems that motivate us to study the topic are discussed and explained. Figure 4.1 shows a

typical suburban road network in the future that are facilitated by Vehicular Ad hoc NET-

work (VANET) technology. It consists of a freeway (in the middle), some main arterial

roads and some minor local roads. The vehicles travelling in the network are all equipped

with wireless devices that enable them to communicate with each other (V2V technol-

ogy). Base towers are served as communication hubs to collect and distribute information

to individual vehicles (V2I technology). Technically, the VANET technology provides an

opportunity to adopt more sophisticated routing and control methods. Here we list the

three most critical aspects of the problems we are facing in joint routing and traffic signal

control in real life. These are also the difficulties and challenges that drive us to study the

problem.
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• Time-dependency: The traffic on the road is evolving at all times. A road segment

that is not congested during the last hour can become congested in the current hour.

Moreover, for the same time-of-day, the same location can be congested today but

not congested tomorrow. Such within day and between day fluctuations in traffic

conditions and travel times make traffic routing and signal control a difficult task. A

dynamic framework that can update the routing decision and signal control timing

dynamically should be studied in order to fully consider the time-dependency.

• Uncertainty: There are many uncertainties on the road: accidents may happen un-

expectedly; disasters like hurricane and flood may destroy and block road segments

without early notice. These uncertainties can cause significant delays to travelers if

there are no appropriate solutions to deal with them. Uncertainties are hard if not

impossible to predict. Instead of predicting the unexpected incidents, we can come

up with a good real-time updating framework that can respond to any unexpected

incidents in a timely manner.

• Stochasticity: Even with the most up-to-date technologies we have today, it is im-

possible to capture the absolutely precise traffic state. For example, we can use float-

ing cars to estimate the travel time for a certain road segment. But, the penetration

rate of such floating cars limits the accuracy of the estimation. Uncertainties dis-

cussed previously can also impose difficulties to traffic state estimation. Thus, there

is stochasticity residing in the joint routing and signal control problem: link travel

time estimation and signal timing estimation. A comprehensive approach which

should take careful consideration of such stochasticity is desired to make the rout-

ing and signal control strategy reliable, robust and effective.

We show two examples of the problems travelers might encounter if the aforementioned

three aspects are not addressed appropriately. As a precursor to this study, we carried

out simulations that use traditional routing and signal control methods to observe any

possible problems. By traditional routing and signal control methods, we mean that the

default traffic routing algorithm (deterministic shortest path algorithm) and the default

signal control methods (fixed timing or simple adaptive control) implemented by SUMO
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are used in the simulation. Other inputs and parameters are the same as the simulation

setups described in Section 4.4.

• Longer travel time: When we run simulations using the traditional routing algo-

rithm, we observe that many travellers are not taking the “optimal” routes in terms

of expected total travel time to destinations. The reason is that travellers have no ac-

cess to the most up-to-date travel time information when they plan their routes, and

the routes deemed optimal earlier may no longer be optimal later as traffic conditions

change. The accuracy of the knowledge of the current and future traffic conditions

becomes even more important when traffic signals are considered as one might en-

counter unexpected delays at intersections. A well designed joint routing and signal

control model that can select routes with shorter travel times and avoid waiting at

intersections is desired.

• “Looping” en-route: Another interesting observation is that a great number of ve-

hicles are travelling back and forth on some links even when new link travel time

is available to travellers. They loop in the network and spend much longer time

before reaching their destinations. When travellers receive new information and re-

plan their route, sometimes they will find that going back to the previous link will

be a “best” choice at the moment. Thus, they would make a “U-turn” and travel

backwards. This is due to uncertainties in the network and also the inaccuracy in

estimating the future network states, especially the traffic signal timing plans and

link travel times. The current link travel time alone is usually not a good resource

to calculate the shortest path in a stochastic and time-dependent network. In order

to better describe the link travel time characteristics, a well designed travel time up-

dating model that considers both current information and historical information is

needed.

With the help of rapidly developing VANET technology, it becomes possible to gain

on-line information of on-road traffic like queues, average speed, delay at intersections

and so on. In the future, most of the on-road vehicles will be equipped with wireless

devices which will enable the vehicles to communicate with each other and with the con-
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trol centers. These vehicles are known as Connected Vehicles. They use V2V (vehicle-to-

vehicle) and V2I (vehicle-to-infrastructure) technologies to share information in the net-

work. There will be two networks: one is the traditional physical transportation network,

and the other is the so-called VANET that uses connected vehicles as mobile nodes. With

real time traffic information being available, dynamic routing and adaptive signal control

become possible. In our work, we also consider a stochastic and time-varying network.We

propose a strategy that will constantly update the knowledge of network, then use this new

information to update travellers’ route choice. A hyper-path based solution is developed

in this work. We also propose five different adaptive signal control strategies (including

one method from other’s work and one modified based on it) that are interacting with

the dynamic routing to achieve a better system performance, which most of the existing

papers do not consider.

4.3 Model formulation
We have a general transportation network, which is denoted using graph representation

G = (V,A). V is the set of nodes in the network, |V |= v ; A is the set of edges in the network,

|A|= m. Vs ⊂ V , is a subset of nodes that are controlled by the traffic lights. τij(t) is the

link travel time for link (i, j) at time t. It is a time variant variable. In reality, link time cost

is determined by many factors, including background traffic flow, link condition, driver’s

preference and so on. Table 4.1 shows all the symbols used in the following sections and

their corresponding definitions.

There are two components interacting with each other in our problem: dynamic traffic

routing and adaptive signal control. Each of these two components has specific inputs,

and yields outputs which can be inputs to the other component. Figure 4.2 illustrates

the whole system framework for joint traffic routing and signal control. The simulations

discussed in the later sections are all designed based on this system framework.

4.3.1 Dynamic traffic routing
There are many different adaptive routing strategies having been studied in the literature.

To keep the problem as simple as possible first, this study uses the strategy stated as fol-

lows: when a vehicle arrives at a node, it will get updated link travel time, queuing length
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Table 4.1: Symbols used in the chapter.

Symbol Definition

A Set of edges

V Set of nodes

v Number of nodes

m Number of edges

Vs Set of nodes that are controlled by traffic lights

τij(t) Travel time on link (i, j) at time t

λi Minimum cost from node i to destination node

λh
i Minimum cost from node i to destination node with upstream node to

be node h

πi Previous node of node i in the shortest path

φ Intersection delay

ρij(t) Probability of link travel time τij(t)

ωl
i The lth phase at intersection i

Ωi The set of phases at intersection i

Γ(i) The set of adjacent nodes of node i

T The time horizon for stochastic and time-varying network, after which

the network becomes static

and traffic signal plans at the time it arrives. Based on that new information, the traveller

will perform a new shortest path calculation (the algorithm used is given in the follow-

ing parts of this section), and follow the new calculated shortest path thereafter until he

reaches the next node. However, this procedure doesn’t have to be performed every node

for the purpose of calculation efficiency. Since the routing strategy here is changing dy-

namically over time, we refer it as Dynamic Traffic Routing (DTR) in the following sections

in this chapter. In contrast, Adaptive Routing without dynamic information updating is

simply referred as AR.

In a general transportation network setting, traffic conditions are changing constantly.

In the old days when real-time traffic information is not available, travellers plan their
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Figure 4.2: Interactions between dynamic traffic routing and adaptive signal control.

routes before their trips using the information that is available at that time. Once a route

is selected, the choice is fixed. When some unexpected incidents happen on the links in the

route, the travellers will experience longer than expected travel time. However, with the

real-time traffic information being available, travellers are able to change their routes en-

route. Their knowledge of traffic information will keep refreshing. Once the knowledge

is updated, routes can also be updated.

Traditional routing usually uses deterministic shortest path algorithm to obtain new

route. A well-known and widely used shortest path algorithm is Dijkstra’s Algorithm

(Dijkstra, 1959). A simple Dijkstra’s Algorithm can be formulated as below:

λi = min
j∈Γ(i)

{λj + τij}

where λi is the minimum travel time from node i to destination; τij is the link cost for

link (i, j. This formulation assumes that link travel time is constant during the entire trip.

However, this assumption is not realistic in most real world scenarios. Link cost varies

from time-to-time and from day-to-day. It is intuitive to formulate link travel time τij as a

function of time t. So the link cost for link (i, j) at time twill be τij(t). A modified Dijkstra’s

Algorithm is then

λi(t) = min
j∈Γ(i)

{λj(t+ τij(t)) + τij(t)}
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4.3.1.1 Stochastic link travel time

In the formulation above, we can see that calculation of the minimal travel time cost to

destination depends on the travel cost to destination, i.e. λj(t + τij(t)), of the nodes that

have not yet been traveled. This requires an estimation of the future link cost. Due to the

randomness and uncertainties mentioned in the previous sections, this estimated link cost

subjects to some stochastic fluctuations. It is straightforward to formulate the problem in

a stochastic manner.

A link (i, j) can have K possible costs:

τ kij(t), k = 1, 2, · · · , K.

Each of these link costs τ kij(t) will have an associated probability:

ρkij(t), k = 1, 2, · · · , K.

4.3.1.2 Hyper-path based stochastic shortest path

Taking the stochastic link cost into consideration, the formulation for the hyper-path based

shortest path formulation becomes:

λi(t) = min
j∈Γ(i)

{
K∑
k=1

{[
λj(t+ τ kij(t)) + τij(t)

]× ρij(t)
}}

(4.1)

The solution of the problem is a hyper-path (Miller-Hooks, 2001). Figure 4.3 shows an

example of a hyper-path tree. For every node, we maintain two different vectors: 1) the

vector of next node to take at every time step; 2) the vector of the cost from current node

to destination at every time step. By tracking down the tree by the labels, one can retrieve

the shortest path to destination for any time step.

4.3.1.3 Link travel time updating

The fact that a dynamic shortest path algorithm outperforms a static shortest path algo-

rithm is because the dynamic algorithm can use the most up-to-date traffic information to

make the shortest path calculation more accurate. In order to achieve this, a dynamic link

travel time updating scheme is needed. In the setting of this study, every link maintains

a set of possible link travel time realizations as well as their corresponding probabilities.

After a certain period of time, every link will have a set of new link travel time realizations
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Figure 4.3: An example for hyper-path tree.

(they can be new values or values that are overlapped with the initial set). An updating

scheme will merge the old set and the new set.

Figure 4.4: An example for travel time updating.

Figure 4.4 shows the updating method used in this study. Travellers will have different

preferences towards old information and newly received information. It is characterized

by the weights, i.e. b and c respectively, shown in the figure. This preference can be af-

fected by travelers’ experience, traffic conditions, time of day and so on. In the example in

Figure 4.4, weight for old information is b = 0.5, and weight for new information is c = 0.5.

Updated travel time distribution can be calculated using the following equation:
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ρupdated(t = τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b · ρold(t = τ), if τ ∈ T old

c · ρnew(t = τ), if τ ∈ T new

b · ρold(t = τ) + c · ρnew(t = τ), if τ ∈ T old ∩ T new

(4.2)

T updated = T old ∪ T new (4.3)

Where T old, T new are the sets of old and new link travel times.

4.3.2 Adaptive signal control
Our research work considers a VANET environment which means the traffic information

can be very detailed. The most important feature is that this information is real-time. In

the old days, accurate real-time traffic information is not always available. Most traffic

research papers use the so-called “forecast” or “predicted” data to design traffic control

scheme. Due to the nature of the inaccuracy of the data source, the control algorithm is

sometimes not working effectively especially under congestion scenarios in which traffic

usually has larger unpredictability (Noland and Polak, 2002; Zheng and Van Zuylen, 2010).

With real-time traffic information being available, it now becomes possible for real-

time adaptive signal control. Different adaptive control methods are proposed and tested

in this study. The first one is a low-density control algorithm which is designed for low

traffic volume situations. The second is a high-density algorithm which is for more con-

gested situations. There is also a third control method called Phase Selection Control algo-

rithm which chooses a phase candidate to switch to and determines its green duration to

give the maximum throughput of the intersection. Varaiya (2013) proposed a traffic con-

trol algorithm called Max Pressure control. Their control algorithm selects the “optimal”

phase based on the calculated pressure for each stage. A stage that has the maximum

pressure is then selected as the next stage for the intersection. In their paper, the pres-

sure term is determined by the queues on the in-coming links, queues on the out-going

links and the saturation flow rates for those links. Details on the model can be found in

Appendix A and in Varaiya (2013). They claimed that their control method can achieve a

stable network state in terms of average queue length in the network. However, there are

several shortcomings in their work that need remedy. The way they determine green time
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split is too simple. By assigning most of the green time to the selected “optimal” phase will

increase queue length on the approaches that are not permitted to pass in that phase, and

hence increase travel time. This becomes quite significant especially in a homogeneously

congested scenario in which each approach has almost the same demand. Another aspect

is that their algorithm fails to consider upstream demand which is a very important com-

ponent for designing an adaptive signal control algorithm, especially if coordination is

considered. To address those problems, we further propose a control method called Mod-

ified Max Pressure control based on the aforementioned Phase Selection Control and Max

Pressure Control, which considers pressures derived from both the queues at the current

intersection and the upstream traffic demands. All the algorithms mentioned above are

described in details in the following sections.

4.3.2.1 Low density control

When the traffic demand in the network is low, a low density control algorithm is used

to control traffic. The algorithm is a fully vehicle-actuated control method. Traffic light

will turn green for a certain approach if there are vehicles detected on the lanes of that

approach (detectors are located at both ends of a certain link. See Figure 4.8). Green

time extension is also based on traffic actuation, which means if there are vehicles coming

continuously the green time will extend correspondingly. Green time is subjected to min-

imum and maximum green times.

Our low density control algorithm works as Figure 4.5:

Figure 4.5: Low-density signal control algorithm.
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4.3.2.2 High density control

When the traffic demand in the network is high, a high density control algorithm is used

to control traffic. In this algorithm, phase split is set to be proportional to the incoming

flow for each phase (More rigorously, flow ratio, i.e. flow/saturation flow, should be used.

However, in our scenario saturation flow rates are the same for each phase.). Before every

updating period for the traffic signal timing, the incoming flows for every phase are col-

lected by the detectors located on the lanes. Minimum and maximum green times are still

respected in this case.

Our high density control algorithm works as Figure 4.6:

Figure 4.6: High-density signal control algorithm.

4.3.2.3 Phase selection control

The aforementioned control algorithms do not change the phase sequence. In some cases,

the choice of the next permitted phase can have a great effect on the traffic. Therefore, it is

important to choose a good phase sequence for the time-being other than simply setting it

to be fixed. The phase selection control proposed in this study simultaneously determine

the next permitted phase and the duration of that phase as following formulation states:

(ωl
i, Gωl

i
(t)) = arg max

(ωl
i∈Ωi,tg∈[Gmin,Gmax])

{N
ωl
i

tg

tg
} (4.4)

Note:

N
ωl
i

tg : is the estimated number of vehicles that will arrive at intersection i within time tg

that are also permitted in phase ωl
i.
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4.3.2.4 Modified max pressure control

As mention previously, a Modified Max Pressure Control is proposed as follows:

(ωl
i, Gωl

i
(t)) = arg max

(ωl
i∈Ωi,tg∈[Gmin,Gmax])

{α×N
ωl
i

tg + β × γ(ωl
i)

tg
} (4.5)

γ(ωl
i) =

∑
n,m

c(n,m)w(n,m)S(n,m)

=
∑

n,m;S(n,m)=1

c(n,m)w(n,m)
(4.6)

w(n,m) = x(n,m) +
∑

p∈Outm

γ(m, p)[d(m, p)− x(m, p)] (4.7)

Note:

N
ωl
i

tg : is the estimated number of vehicles will arrive at intersection i within time tg that

are also permitted in phase ωl
i.

α, β: are weights on upstream flow and queue pressure, respectively.

m, p: link m and link p.

c(n,m): saturation flow of movement (n,m), vehicles per period.

γ(ωl
i): the portion of vehicles passing intersection i in phase ωl

i. The
∑

in Equation 4.6

sums up the number of passing vehicles in all the permitted movements (n,m) that belong

to phase ωl
i.

d(m, p): the length of the corresponding lane on link m for the connection between link

m and link p.

x(m, p): the queue length on the corresponding lane on link m for the connection be-

tween link m and link p.

w(n,m): the queue pressure for movement (n,m).

For comparison purpose, the original MP Control is included in the Appendix A. From

the formulations for Phase Selection Control and Modified MP Control, one can see that

the main difference between these two is the queue length term. Phase Selection Control
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only considers upstream demand to determine the phase sequence and duration, while

Modified MP Control considers both upstream demand and queue length.

The Modified Max Pressure Control algorithm is presented as Algorithm 4 in Appendix

A.

4.3.3 A combined adaptive signal control and DTR
Now we have a proper dynamic routing algorithm as well as several signal control schemes

(low-density control, high-density control, phase selection control, max pressure control

or modified max pressure control). While planning their routes, travellers now not only

have to consider travel time on each link but also the delay caused by signal control at

intersections. With that being said, we adopted the non-adaptive hyper-path approach

from Yang and Miller-Hooks (2004) to incorporate the signal control methods and the

Bayesian link travel time updating scheme proposed in the previous context to explicitly

take into account signal delays and link travel time dynamics:

(4.8)

μh
i (t) = min

j∈Γ(i)

{
K∑
k=1

{[
φ
ωl
i

ij (t) + τ kij

(
t+ φ

ωl
i

ij (t)
)
+ λi

j

(
t+ φ

ωl
i

ij (t) + τ kij

(
t+ φ

ωl
i

ij (t)
))]

· ρkij
(
t+ φ

ωl
i

ij (t)
)}}

μh
i (t): is the temporary label (travel cost to the destination) of node i at time t, the upstream

node is h.

λi
j(t): is the current label (travel cost to the destination) of node j at time t, the upstream

node is i.

τij(t): is the link travel time of link (i, j) at time t.

φ
ωl
i

ij : is the delay caused by the signal light at intersection i at time t, ωl
i is the lth phase of

intersection i, the downstream node is j.

Γ(i): is the set of all all adjacent nodes of node i.

With the adaptive signal control methods and periodically updated link travel times,

the traffic routing algorithm become adaptive and dynamic. The adaptive algorithm this

study uses is described in Algorithm 3 in Appendix A:
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4.3.4 Computational issues
Consider the DTR algorithm alone, the computational complexity is O(V 2 · T ) per vehicle

per re-routing if implemented using the priority-queue data structure. If we adopt vehicle-

based DTR implementation, i.e. every vehicle will perform its own re-routing calculation,

the complexity will be O(V 2 · T · N), where N is the number of vehicles running in the

network. When a network gets very large, the number of nodes (V ) and number of vehicles

(N ) could also get very large which can make the computation so slow that the results it

provides are not suitable for real-time applications.

One possible approach to conquer this computational barrier is to use O-D based DTR

algorithm instead of vehicle-based. O-D based DTR means we compute a stochastic short-

est path using the algorithm mentioned in Algorithm 3 for each possible O-D pair every

updating interval tupdate. This updating interval tupdate can be wisely chosen that it can

reduce computation time, while can still yield an acceptable result. Here we make some

approximations. We assume the shortest path solution is the same during tupdate as long

as it’s the same O-D pair. We store the stochastic shortest path for every O-D pair in a

table, and set the table to be active. After tupdate, old tables will be discarded by simply

setting them to be in-active. Whenever a vehicle has a need for re-routing, it can look up

in the current active table using its origin and destination information so that it can obtain

a route (which is a hyper-path) to guide itself to the destination. In this way, the computa-

tional complexity becomes O(V 2 ·T ·V ). For networks with very large number of vehicles

(N ) and small number of nodes (V ), it can reduce the computation time substantially.

4.4 Simulation
In this section, the DTR algorithm and adaptive signal control methods are tested on a

synthetic signalized street network. We run simulations with different settings of param-

eters to explicitly compare the performance of our DTR algorithm and control methods

with the traditional routing and control methods. The metrics we used include average

travel time, average speed, average queue length and so on. The goal is to find an “op-

timal” solution for various traffic conditions. More details on the metrics are discussed

later in Section 4.5.
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4.4.1 Simulation tools
The VANET provides not only real-time traffic information that can be used for traffic rout-

ing and signal control purposes, but also the possibility to launch CACC programs so that

freeway capacity and safety can be enhanced (Van Arem et al., 2006; Shladover et al., 2012).

The work in this chapter is based on the VANET setting. We use a simulation platform to

test the algorithms and control methods proposed: a microscopic traffic simulation tool

called SUMO is used to simulate the physical road network and the vehicles travelling in

the network; a communication simulator called OmNet++ is used to simulate the commu-

nication network. These two simulators have interfaces that allow them to interact with

each other. More information about the simulation platforms can be found here (Arellano

and Mahgoub, 2013; Amoozadeh et al., 2015).

4.4.2 Simulation network
The network used is a 10× 3 grid network which replicates a portion of a typical city road

network. The middle East-West (EW) road and all the North-South (NS) cross streets are

bi-directional. The other two EW roads are one-way roads. The EW roads have a speed

limit of 40 mph or 17.78 m/s, while the cross roads have a speed limit of 25 mph or 11.11

m/s. The block size is 500 meters long. There are a total of 30 nodes and 47 links within

the network. All the intersections are controlled by traffic lights. The geometry and layout

of the network are shown in Figure 4.7. Each link in the network has double loop detectors

located at both entry point and exit point of that link. Figure 4.8 shows the location of loop

detectors. The detectors can capture the flow and speed of the road traffic.

Figure 4.7: A synthetic 10× 3 grid network used for simulation.
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Figure 4.8: Each link has double loop detectors at both ends.

The default signal timings for the intersections are all fixed control but with different

cycle lengths: the traffic lights on the middle main street have a default cycle length of

94 s; the traffic lights at the four corners of the network have a default cycle length of

34 s; the rest of the traffic lights have a default cycle length of 68 s. There is no signal

coordination in the network. Through VANET, it assumes that each traveler has precise

knowledge of current signal status and timing plans throughout the network. The detailed

implementations of the information acquisition process for each traveler, however, is not

the focus of this research study and therefore is not described here.

4.4.3 Input parameters
Vehicles in the network are generated randomly with a uniform distribution in a certain

period of time (different traffic demands will have different loading time, which is given

in Table 4.3). The ODs are also randomly generated and assigned to vehicles. All nodes

can serve as an origin as well as a destination of a vehicle. Vehicles are generated at nodes.

In order to see the performance of the proposed algorithms under different levels of traffic

loads, three different levels of traffic demand are used to replicate the free flow, the mildly

congested and the heavily congested scenarios. Vehicles that reach their destinations will

not re-enter into the network. The simulation terminates when the last vehicle exits the

network.

Before the actual run of simulation, a set of small scale pre-run simulations are needed

in order to generate the historical set of link travel times which serves as initial inputs

for the DTR algorithm. For different traffic demands, the pre-run simulations should use

different demand correspondingly. With trial-and-error, we find that usually a number

of 10 or more pre-run simulations are needed in order to generate such a historical set.

An example of link travel time set is given in Table 4.2. Between time t = 0 and time
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t = T , all links have stochastic link travel times. Each link may have a different number

of possible link travel time realizations (in Table 4.2 all links have 3 different possible link

travel times.).

Table 4.2: An example of historical set of link travel time.

link 1 link 2 · · · link N

t=0
τ(s) 10 6 8 2 3 4 · · · 4 5 6

ρ 0.1 0.2 0.7 0.4 0.2 0.4 · · · 0.1 0.2 0.7

t=1
τ(s) 5 6 7 2 3 5 · · · 5 6 7

ρ 0.3 0.2 0.5 0.1 0.3 0.6 · · · 0.2 0.4 0.4

...
τ(s) · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
ρ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·

t=T
τ(s) 10 15 20 5 7 9 · · · 8 9 10

ρ 0.8 0.1 0.1 0.2 0.5 0.3 · · · 0.1 0.5 0.4

In real world applications, this table is maintained by an information center. The center

takes charge of maintaining and updating this table from time to time. In the setting of

this study, the updating frequency of the table is 1 second. Every time step, the center

will collect the travel time realizations in the last second on all the links to obtain a new

dataset, denoted as Inew. The dataset in the old table, denoted as Iold, is then updated to a

new dataset (Iupdated) using the method explained in Section 4.3.

b · Iold + c · Inew → Iupdated (4.9)

Every time a vehicle needs to do a re-route, it sends request to the center to request the

most up-to-date traffic information. Any new shortest path will be calculated based on

that information. The simulation configurations are given in Table 4.3.

Vehicles are loaded onto the network randomly following a uniform distribution dur-

ing time TL. TL is the vehicle loading time, which is given in Table 4.3. There are three

levels of traffic demand respectively, which are 500 vehicles, 3000 vehicles and 6000 vehi-

cles.
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Table 4.3: Simulation parameters.

Link Travel Time Table Updating Interval 1s

Vehicle Re-routing Interval Per intersection

Vehicle Loading Time (TL) 3 min/5 min/10 min

Traffic Signal Updating Interval 120s

4.4.4 Simulation scenarios
We design different simulation scenarios to test our algorithms: different combinations of

routing strategies and traffic signal control methods under different traffic demand levels.

Table 4.4: Different combinations of simulation scenarios.

Number of

Vehicles in The

Simulation

Traffic Routing Method Traffic Signal Control

500

⊗
Dijkstra’s Algorithm

⊗

Fix Timing Control

Low Density Control

3000 Adaptive Routing
High Density Control

Phase Selection Control

6000 Dynamic Traffic Routing
Modified Max Pressure Control

Max Pressure Control

For the purpose of comparison, the fixed timing control is also implemented. There

are three different types of intersections(see network in Section 4.4). Each has a different

timing plan.

• Cycle length=94s:

Table 4.5: Duration of phases for type 1 intersections.

Phase

# 1

Phase

# 2

Phase

# 3

Phase

# 4

Phase

# 5

Phase

# 6

Phase

# 7

Phase

# 8

Phase Duration (s) 31 5 6 5 31 5 6 5
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• Cycle length=83s:

Table 4.6: Duration of phases for type 2 intersections.

Phase # 1 Phase # 2 Phase # 3 Phase # 4 Phase # 5 Phase # 6

Phase Duration (s) 31 5 6 5 31 5

• Cycle length=68s:

Table 4.7: Duration of phases for type 3 intersections.

Phase # 1 Phase # 2 Phase # 3 Phase # 4

Phase Duration (s) 31 3 31 3

For each simulation run, there is a maximum simulation time limit which is preset to

1 hour (3600 seconds). In most cases, all vehicles can reach their destinations before this

time limit unless there is gridlock in which vehicles are stalled in the network. In rare

cases where there are still vehicles in the network after the time limit, the simulation is

forced to terminate. We will show in the following section an example of gridlock under

a less effective signal control method.

4.5 Results and discussion
Results of different simulation scenarios (see Table 4.4) are analyzed here. To eliminate

the effect of stochasticity in our problem due to stochastic link travel time, we run 10 times

of simulations for each scenario and analyze the results based on the average of those

ten simulation runs from different aspects to study the effect of that particular aspect.

It consists of four sub-parts: effects of different traffic signal control methods, effects of

different number of re-routing vehicles, effects of link travel time updating and effects on

the macroscopic fundamental diagram. The main metrics are average travel time, average

travel speed and average queue length in the network. These metrics are good indicators to

evaluate the performances among different strategies. Strategies that have smaller travel

time, higher travel speed and less queue are favored over the ones that have larger travel

time, lower travel speed and more queue. The MFD analysis is to study how the joint
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traffic routing and signal control algorithm proposed can affect the network throughput

in an aggregated way.

In order to see the performance of the proposed methods under some extreme condi-

tions, an accident scenario is also tested and analyzed.

4.5.1 Effects of different traffic signal control methods
First, we study the performance of the four different control methods with DTR: Low Den-

sity Control, High Density Control, Phase Selection Control, and Modified Max Pressure

Control. Comparisons are made among the four together with Fixed Timing Control and

the original Max Pressure Control under the three different traffic demand levels. Various

metrics are studied in the following sections.

(a) Case 1: 500 vehicles (b) Case 2: 3000 vehicles

(c) Case 3: 6000 vehicles

Figure 4.9: Average speed in the network with different number of vehicles.
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(a) Case 1: 500 vehicles (b) Case 2: 3000 vehicles

(c) Case 3: 6000 vehicles

Figure 4.10: Average queue length in the network with different number of vehicles.

Figure 4.9 and Figure 4.10 show the results for different control methods under differ-

ent percentage of travelers who seek re-routing. We can see that Phase Selection Control

and Modified MP Control always have the smallest average queue length and largest aver-

age speed in all three scenarios with different traffic demands. The performances of Phase

Selection Control and Modified MP Control are very similar to each other in all cases. This

indicates that in this network, pressure from upstream demand has a dominant impact on

designing the “optimal” signal timing, while the queue at an intersection is a less im-

portant factor. It is also interesting to note that the performance of Phase Selection and

Modified Max Pressure controls are in most cases not sensitive to the number of travelers

who engage in re-routing, while this is not true for other controls when traffic demand
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in the network is heavy. In the latter cases, more re-routing travelers does not necessarily

lead to better network performance, an observation consistent with earlier literature on

the adoption of Advanced Traveler Information Systems.

In the low demand scenario (500 vehicles), the rest four control methods perform very

similarly, with the original MP Control working slightly better than the other three. This

is because in such low density, there is very little probability to form a long queue at in-

tersections. Incoming flows can be easily accommodated by even a fixed timing plan in

every cycle. The benefit of allowing changing of phase sequence and duration, which is

a key point of Phase Selection Control and Modified MP Control, becomes important in

this case. That’s why these two methods can outperform the rest.

In the mid-range demand scenario, the High Demand Control tends to work better

than the Fix Timing Control, the Low Density Control and the original MP Control. In

this range of demand, queues are formed from time to time. It is beneficial to give more

preference to the movements that have greater demands to dissipate any potential queues

by assigning longer green times to the corresponding phases. With the fact that High

Density Control works better than the original MP Control, it confirms that upstream de-

mand has a greater impact on designing traffic signal timing than the queue length in this

demand level. Again, the Phase Selection and Modified MP control still outperform the

other four control methods.

When the network is highly congested, like the case with 6000 vehicles, the perfor-

mances of the rest four control methods (not including Phase Selection Control and the

Modified MP Control) become complex. In this scenario, queues will be formed frequently

at intersections, and normally can’t be dissipated completely in one cycle when the cycle

length is fixed, which is the case of all these four control methods. Performance will be

random, and highly depend on the initial input which is stochastic in our simulation.

By examining the three different traffic demand scenarios, one important conclusion

is that upstream demand plays a very important role in designing a good signal control

method. Per signalized intersection point of view, the phase sequence and phase duration

can be equally important when demand gets high. Failing to consider either one will result

in degraded performance.
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4.5.2 Effects of different number of re-routing vehicles
The x-axis in Figure 4.9 and Figure 4.10 is the percentage of re-routing vehicles in the

network. Different number of re-routing vehicles can have quite a different effect on the

overall performance even when the signal control remains the same. This is intuitive to

understand when the percentages are 0 and 100%, representing all vehicles to be normal

vehicles and all vehicles are re-routing vehicles, respectively.

In the low density case (The case of 500 vehicles), the average speed in the network is al-

most the same when the number of re-routing vehicles changes from 0 to 100%. However,

the average queue length is slightly decreasing when the number of re-routing vehicles

in the network becomes larger. When densities get higher (the cases of 3000 and 6000 ve-

hicles), the relation is no longer monotonic. Average speed is highest, and average queue

length is smallest when the percentage of re-routing vehicles is somewhere between 0 and

100%. This shows that in congested scenarios, it is not always true that the more re-routing

vehicles the better. In those cases, the network is already packed with vehicles. It is hard

for vehicles to move around. Any attempt to change route will incur further congestion

burden to the network, which will possibly in turn exacerbate the current congestion level.

Furthermore, if all travellers have access to the same piece of information, after re-

routing the result will be that the least congested links will be chosen as their preferred

links. Hence traffic will flood to those links making them become congested. If another re-

routing is performed, the newly allocated traffic will further shift to some other links that

are not congested. So the traffic will periodically oscillate between different links, which

will always leave some links congested and some links not congested. The consequence

of this is underusing the capacity of the network. This is very similar to the concept of

Herd Behavior in behavioral finance (Scharfstein and Stein, 1990; Banerjee, 1992). A sweet

spot for those cases in terms of average speed and average queue length lies between 0 and

100% which depends on the demand, the signal control methods and many other latent

factors yet to be identified. To overcome the negative effect of all-people re-routing, we can

limit the accessibility to information so that only a portion of travellers can have the most

up-to-date traffic information and be able to do re-routing. The proportion of re-routing

travellers is an optimizable variable that can be closely related to traffic conditions and
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network geometry.

4.5.3 Effects of link travel time updates
As mentioned already in Section 4.1, the major difference between our work and the exist-

ing work is that the link travel time is constantly updated with the most current link travel

time. Here, we study the performance difference between our method and the traditional

one which does not have the functionality to update the link travel time. In Figure 4.11, we

have two different routing methods: Adaptive routing (AR) and Dynamic traffic routing

(DTR). The former is a traditional stochastic routing policy mentioned in Section 4.1. It

does not have the ability to update link travel time dynamically. The latter is the routing

method we proposed. It allows dynamic updating of link travel time.

Figure 4.11: Average travel time with and without link travel time updating.

The dash lines are for AR, while the solid lines are for DTR. We compare these two

under three different signal control methods: fixed timing control, low-density control

and high-density control (No Phase Selection Control or Modified Max Pressure Control

Method was tested in this case). Network traffic loads from 200 up to 2800 vehicles with

an increment of 200 are tested. From the figure, we can see that all dash lines are above

the corresponding solid lines (hence longer average travel time) which means the DTR

algorithm consistently works better than traditional AR algorithm. As traffic load becomes
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heavier, this benefit becomes larger.

4.5.4 Effects on the macroscopic fundamental diagram
Another metric to evaluate the overall performance of a network is the throughput. In

this subsection, we measure the throughput (in veh/h) of the network under different

signal control methods. The results are shown in Figure 4.12. The x-axis is the number of

running vehicles in the network, meanwhile the y-axis is the corresponding throughput

(a.k.a. network exit flow) at that moment. we use different colors to indicate the temporal

evolution of the simulation process: starting from the blue end and finishing in the red

end. We combine simulation results from different demand levels into one figure: 500,

3000 and 6000 vehicles. In this way, we can construct an MFD as complete as possible to

include both the free flow part and congested part. The 1-second data are quite noisy and

moving average (with 50 steps) is applied to filter the noise. From the figure we can see

that the relationship between throughput and number of running vehicles can be varying

as the signal control method changes. In this experiment, 50% vehicles are re-routing

vehicles and traffic signal control methods are: Phase Selection Control, Max Pressure Control

and Modified Max Pressure Control. The small circles are for 500-vehicle case; the “+” signs

are for the 3000-vehicle case and the small squares are for 6000-vehicle case. The colors

are in a time sequence that corresponds to the simulation time. It starts from the bluish

color and ends with the reddish color.

All three sub-figures have a portion of data points starting from the lower part of the

figure (blue end), and are deviating from the “MFD curve”. This portion belongs to the

initial vehicle loading part while subjects to a very large uncertainty as the demand is

generated randomly. This variation can be eliminated if we leave out the loading part (see

Figure 4.13). From the MFD plot, we can see that with Phase Selection Control and Modified

Max Pressure Control, the MFD is closer to a trapezoidal shape than the Max Pressure Control

with a fairly large density region that sustains high exit flow. The Max Pressure Control case

is more noisy. Under this control method, the network is gridlocked so the simulation

terminates after the maximum simulation time is reached. The flow rate in the network

is close to 0 while the density of the network is some positive value. This is represented

as the rising part starting at a density of around 40 veh/km and a flow of about 0 veh/h
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(normal MFD should originate from (0,0)). The former two control methods also have a

higher maximum flow which is the highest point in the MFD, which indicates that the

network has a higher throughput under Phase Selection Control and Modified Max Pressure

Control. Between these two control methods, there is no significant difference from the

MFD point of view.

Figure 4.12: Throughput vs. number of vehicles in the network.
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Figure 4.13: Throughput vs. number of vehicles in the network (No initial loading).

4.5.5 Traffic accident scenario
The previous simulations are all under normal traffic conditions, which showed that the

routing algorithm and traffic signal light control algorithm we proposed work satisfac-

torily. We still want to see how the proposed algorithms will perform under unusual

scenarios. Here, a traffic accident scenario is designed in order to test that. We manually

pick three links on the main arterial to be the locations where the accidents occur (see Fig-

ure 4.14). This is to mimic a typical traffic accident scenario in down-town road networks.
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The links with accidents are assumed to be blocked during the time of accidents. Vehicles

on those links are forced to stop behind the accident location. They are allowed to resume

moving only after the accidents clear. The detailed information of duration and locations

of accidents are given in Table 4.8.

Figure 4.14: A traffic accident scenario: three links with accidents.

Table 4.8: Links with accidents.

Link Begin Time (s) End Time (s) Position Lane Index

12to15 40 200 250 1

19to18 60 250 150 0

15to16 200 450 300 1

We tested three different scenarios: 500 vehicles, 3000 vehicles and 6000 vehicles. The

traffic light control method is Phase Selection Control. The results are shown in Figure 4.15.

From the figure, we can see that in the 500-vehicle and 3000-vehicle cases, the average

travel time decreases as the percentage of re-routing vehicles increases; however, in the

6000-vehicle case the average travel time shows a slight “U” shape pattern where the min-

imum is reached when re-routing vehicle percentage is between 0.6∼0.8. The observation

of these simulations also confirms the explanation in the previous sections. When traffic

demand is relatively low (500 and 3000 vehicles), most of the links are not congested yet.

When some of the links are blocked or partially blocked by accidents, vehicles can reduce

their travel time by taking some detours prior their entering into the blocked links. The

network is not highly congested so these re-routing vehicles won’t cause new congestions

when they re-route and the network performs better when more vehicles re-route to avoid

the accident locations. However, when the network is already heavily congested, if all ve-
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hicles are able to re-route, the result will not necessarily be the best since their routing

decisions are not aimed at reducing network-wide travel time, and in some cases even be-

comes worse. The simulation suggests that in the 6000-vehicle case, a good choice will be

allowing 60% ∼ 80% vehicles to re-route. This percentage range, however, is likely to vary

by network, traffic demand level, and driver population.

(a) Case 1: 500 vehicles (b) Case 2: 3000 vehicles

(c) Case 3: 6000 vehicles

Figure 4.15: Average travel time under accident scenario.

4.6 Conclusions and future work
In this chapter, we proposed a joint adaptive routing and traffic signal control algorithm to

improve traffic operations in a VANET enabled traffic environment. Our dynamic routing

algorithm (DTR) is an extension of the LET algorithm of Miller-Hooks and Mahmassani

(2000) with periodic updates of link travel times. The proposed algorithm also takes into

account the delay caused by real-time traffic signal operations. Besides several traditional

traffic signal control strategies, namely fixed-timing, vehicle actuated control (known as

low density control in this chapter) and adaptive Webster’s (known as high density con-

trol in this chapter), we also proposed two new traffic signal control strategies, the Phase

Selection Control and the Modified Max Pressure Control, to take into account the effects

of both incoming demand and current queues on traffic signal operations.
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The most difficult part of tackling the joint routing and signal control problem is mod-

eling the interaction between these two components. The interaction is implicit, and thus

hard to model analytically. Also, the routing problem is user-based and time-dependent.

Hence, the computation cost for running simulation is not negligible as route needs to

be re-calculated per traveller and per time interval which can be as small as a second de-

pends on the resolution desired. This puts a significant burden on computation. In order

to test the effects of different parameters on the performance of the proposed algorithms,

a sizable number of simulations with various parameters need to be run. This is another

computationally demanding task. So it needs a computationally efficient algorithm to

speed up the simulations. Furthermore, some approximation techniques are needed to

shorten the simulation time even more. These tasks are not trivial both from algorithmic

point of view and implementation point of view.

Our simulation results shows that the DTR algorithm works well under higher demand

scenarios together with the adaptive traffic signal control methods proposed in this study.

Enabling vehicle re-routing in the network can reduce the average travel time as well as

reduce the average queue length at the intersection. The optimal re-routing ratio lies be-

tween 0-1.0, which our simulation tells us for 6000 vehicles this number is around 0.5. This

number will likely vary over networks, traffic demand, and driver population. With the

dynamic travel time updating model proposed in this chapter, the re-routing algorithm

can further reduce the average travel time in the network by taking advantage of the most

current link travel time information.

The different signal control methods proposed and tested in this study under different

scenarios tells us that the Phase Selection Control and the Modified Max Pressure Con-

trol work better than the rest four control methods (including the original Max Pressure

Control and fixed timing control). They tend to respond to traffic and accommodate traffic

better than the rest. Average speed is higher and average queue length is shorter when

these two control methods are applied. Among all the six control methods (including the

original Max Pressure Control), the original Max Pressure Control performs the worst as

its logic to find the optimal phase and its corresponding duration is not well designed.

With the Phase Selection Control and the Modified Max Pressure Control, the MFD of the
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network is closer to a trapezoidal shape compared to that of the Original Max Pressure

Control. For the latter, its MFD is more chaotic and fluctuating. The maximum flow rate

is also lowered compared to the former two.

The joint dynamic traffic routing and adaptive signal control approach is tested against

a traffic accident scenario. With links blocked or partially blocked by accidents, the dy-

namic traffic routing (DTA) can efficiently re-route traffic to other uncongested links to

avoid long delay. According to the simulation results, the average travel time in the net-

work can be reduced by 17% ∼ 27% when the percentage of re-routing vehicles is chosen

properly. The optimal percentage of re-routing vehicles in this case relies heavily on the

traffic demand level. In uncongested or mildly congested scenarios, the more re-routing

vehicles in the network, the less the average travel time. In a highly congested network,

however, the optimal number of re-routing vehicles lies somewhere between 0% ∼ 100%,

which again depends on the traffic demand, driver population, network geometry and so

on.

A possible extension of this work would be to consider global signal optimization. The

signal control methods proposed in this work are all distributed ones. The phase selection

method, for example, seeks local optimality but not global optimality. Coordination could

be another extension to the current work. These new research directions will be even more

challenging than the current joint routing and distributed signal control problem that we

have dealt with in this research study and are worthy of serious investigation.
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Chapter 5

Deadlock Avoidance In Traffic Routing
and Assignment

5.1 Introduction
In traffic routing, most of the existing literatures focus primarily on reducing experienced

or expected total travel time (Bellman, 1958; Fleischmann et al., 2004; Kim et al., 2005;

Gueziec, 2008; Gendreau et al., 2015; Chai et al., 2017). However, travel time alone some-

times does not suffice as a measurement to evaluate the performance of a transportation

system. In some cases, the objective to minimize the travel time for travelers will result in

the other way around: deadlock in the network (in some literature, it is interchangeably

called gridlock). When a deadlock occurs, no traffic can move forward until a manual

intervention is taken to break the deadlock. Travelers within a deadlock will experience

extremely high travel time. Beyond that, urban deadlock has other undesirable conse-

quences: increase driving fatigue, increase accidents under stressful conditions and in-

crease pollution from vehicles (Semiz, 2016). Since deadlock has a great negative impact

on the performance of a transportation system and the travelers in the system, a proper

mechanism should be designed and studied to reduce the possibility of deadlock occur-

rence.

Deadlock avoidance is a long-established research topic in network communication

community. There are many research work in the past studying the deadlock free packets

routing strategies. The various strategies implement different methods or use different
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technologies to impose certain routing restriction on traffic to ensure a deadlock free rout-

ing result. In network communication and packets routing, deadlock can postpone packet

delivery indefinitely. A set of packets could been blocked for ever in a deadlock. One ap-

proach to resolve the deadlock situation is to use preemption of packets in such cases by

either discarding or re-routing the preempted packets (Ni and McKinley, 1993). However,

a more realistic and commonly used technique is to avoid deadlock from happening in

the first place by carefully designing the routing rules. Such routing algorithms order the

network resources and let the packets use those resources in strictly monotonic orders so

that the circular waiting can be avoided (Ni and McKinley, 1993). There are two main

categories of deadlock free routing techniques: one utilizes virtual channels to facilitate

deadlock free routing, the other one imposes certain restriction on certain turning move-

ments to ensure deadlock free routing, a.k.a the turn model (Glass and Ni, 1992). Virtual

channels are the abstraction that share the same physical channel (Chiu, 2000). Dally and

Seitz (1988) used virtual channels in their work to design a deadlock free non-adaptive

routing algorithm. Following that, virtual channel techniques have been used by many

other researchers to design partially and fully adaptive routing algorithms that ensure

deadlock free routing (Duato, 1993; Su and Shin, 1993; Dally and Aoki, 1993). Though the

virtual channel technique is powerful and effective, adding virtual channels to the net-

work can be costly and could bring significant overhead. It needs to add buffer space and

design complex control scheme for routers which could affect the communication perfor-

mance of the network and the reliability of the routers (Glass and Ni, 1992; Chien, 1993;

Chiu, 2000). Furthermore, there are applications where virtual channels are not physi-

cally possible to implement. For instance, routing in transportation network can not rely

on virtual channel based routing algorithms as links in the transportation network do not

permit adding any “virtual” lanes. To deal with the aforementioned problems, Glass and

Ni (1992) proposed a deadlock-free routing algorithm that did not use virtual channels.

Their model prohibits the minimum number of turns that break all of the cycles to avoid

deadlock and achieve partially adaptive routing. Following their work, there have been

many more improved works done by other researchers (Chiu, 2000; Hu and Marculescu,

2004; Li et al., 2006; Lotfi-Kamran et al., 2010). It has been applied to dealing with both
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partial and full adaptive routing. One of the merits of turn models is that it only requires

control at specific router nodes. Hence, the design and implementation of such a model is

easy and causes less overhead to the network. It also fits the needs of routing in transporta-

tion networks perfectly as specific routing strategies can be implemented by controlling

traffic via traffic lights to either permit or forbid certain turning movements.

In the context of transportation research, there are also numerous studies tackling the

problem of deadlock in traffic network. Mendes et al. (2012) studied how a traffic jam

spreads in complex networks when demands increase significantly between certain ori-

gin and destination nodes using two different traffic models. Their models can be used to

reveal the links most vulnerable to deadlock and hence provide solutions to network de-

sign. It is generally recognized that queue spillback is one of the major cause of deadlock

in the transportation network (Daganzo, 1995, 1998). Under high traffic demand, the in-

flux at upstream of a road becomes larger than the exit flow at downstream. Queue builds

up quickly if the inflow keeps entering into the congested road until the point that the

built-up queue reaches back to the upstream point. At this point, congestion propagates

to the upstream road and starts to spread out in the network if traffic demand keeps at a

sufficiently high level, and eventually deadlock could occur. Besides the microscopic ex-

planation of the occurrence of deadlock, Daganzo (2007) proposed a macroscopic model

to describe urban gridlock from network level. The author in the paper described an adap-

tive control approach that monitors and controls aggregated vehicular accumulations to

mitigate and alleviate gridlock in urban areas. However, the macroscopic model fails to

characterize the dynamics of the deadlock system. The existence of exit flows and its re-

covery period in the dynamic traffic assignment context are not well answered. Mahmas-

sani et al. (2013) explored some limiting properties of network-wide traffic flow conditions

in a large-scale urban street network in the context of dynamic traffic assignment. Their

study provides some insights on the characteristics and dynamics of gridlock in urban

network with regards to different traffic conditions and patterns. In the study of traffic

assignment, both static and dynamic, there is no guarantee that the traffic assigned to the

network is free of deadlock. According to Geroliminis et al. (2007), after the occurrence of

a deadlock, it is extremely difficult if not impossible for the transportation system to re-
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cover back to better states even if the traffic demand decreases significantly. This indicates

that it is more preferable to avoid deadlock from happening by preventing road network

from entering the states of high traffic accumulation than to mitigate or resolve deadlock

after deadlock occurred. Osorio et al. (2015) proposed a simulation-based signal control

method to reduce the probability of gridlock. There are other similar approaches to ad-

dress the problem of deadlock (Zhang et al., 2010; Claes and Holvoet, 2011; Lämmer and

Treiber, 2012). However, there are two major things that most of the existing works fail to

consider: 1) deadlock avoidance/prevention is not studied under equilibrium traffic flow;

2) the efficiency of the deadlock avoidance/prevention strategies. In this chapter, we pro-

pose a novel DLA model that explicitly addresses these two aspects of deadlock avoidance

problem in traffic assignment.

The rest of this chapter is organized as follows: Section 5.2 states the problem and

the notations used in the chapter. An brief introduction to "Odd-Even routing" method in

packets routing and its similarity to traffic routing problem are presented in Section 5.3.

Section 5.4 defines the deadlock potential studied in this chapter. Following that, the dead-

lock avoidance (DLA) model with DUE constraints is formulated in Section 5.5. Section 5.6

talks about approximation of link travel time, route travel time and user’s route choice

complementarity. Section 5.7 describes the scheme used to discretization for the DLA

model. Numerical studies with different control strategies are presented in Section 5.8.

Section 5.9 concludes the chapter with some discussions on future research.

5.2 Problem statement
A network with multiple O − D pairs is denoted as G(N,E). The time horizon for the

problem setting is T . It should be noted that the time horizon T in this problem is large

enough so that all vehicles can exit the network at the end of the time horizon. Dummy

origins o′ ∈ O and dummy destinations s′ ∈ S are added to the original network to form

an extended network. Between each pair of (o, o′), there are two dummy links added,

i.e. (o, o′) and (o′, o). The same applies to destination node pairs (s, s′). The purpose of

adding two dummy links are twofold: 1) in the DLA model specified in Section 5.5, there

is a penalty term defined at each node (φr
(i,j;h)) that requires the information of incoming
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node (h) from upstream. Without dummy link (o, o′) or (s′, s), the model at origin nodes

and destination nodes will become ill-defined; 2) as mentioned in Ma et al. (2014) and

Yu et al. (2018), the user’s route choice model requires that travel time from each node to

destination node to be well-defined. Without dummy link (s′, s), the travel time from a

certain dummy destination node s′ to some other dummy destination nodes will become

infinity as there is no outgoing link from s′ back to s. This leads to the user’s route choice

model to be ill-defined at dummy destination nodes. The notations used in this chapter

are listed in Table 5.1.

Table 5.1: Notations used in the chapter.

Type Notation Definition

N set of nodes in the network

L set of links in the network

Lo set of dummy origin links

Sets Ls set of dummy destination links

Le set of links in the expanded network, i.e. Le = L ∪ Lo ∪ Ls

S set of dummy destination nodes

Ξt set of transitive closures in the network at time t.

ξit ith transitive closure in the network at time t.

Lξit
set of links in ith transitive closure at time t.

τ 0(i,j) free flow travel time of link (i, j)

Constants τω(i,j) shockwave travel time of link (i, j)

T total time horizon

Q(i,j) queue capacity of link (i, j)

C(i,j) homogeneous flow capacity of link (i, j)

H(o′,s′) traffic demand between origin-destination pair (o′, s′)

φr
(i,j;h) penalty of movement h → i → j at node i for group r travelers

αr percentage of group r travelers in the entire population.

TTT total travel time.
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A(t) adjacency matrix of the network(considering queue) at time t.

Only links with queue that are higher than threshold are included

in the adjacency matrix.

Variables A(t) adjacency matrix considering queues.

A∗(t) transitive closure computation matrix

Pij(t) possibility of a link (i, j) get congested

ps
′,r
(i,j;h)(t) inflow rate for group r of link (i, j) from node h towards destina-

tion s′ at time t.

p(i,j)(t) inflow rate of link (i, j) at time t.

vs
′,r

(i,j)(t) exit flow rate for group r of link (i, j) towards destination s′ at

time t.

v(i,j)(t) exit flow rate of link (i, j) at time t.

qu,s
′,r

(i,j) (t) upstream queue for group r of link (i, j) towards destination s′ at

time t.

qu(i,j)(t) upstream queue of link (i, j) at time t.

qd,s
′,r

(i,j) (t) downstream queue for group r of link (i, j) towards destination

s′ at time t.

qd(i,j)(t) downstream queue of link (i, j) at time t.

πs′,r
(i,j)(t) minimum travel time at time t from node j, with incoming node

as i, to destination s′ for group traveler r.

τ(i,j)(t) actual link travel time of link (i, j) at time t.

θs
′,r

(i,j)(t) approximation coefficient of actual travel time from node i to des-

tination s′ via link (i, j) at time t for group traveler r.

When traffic demand increases or there are accidents happening on some links, queues

may build up within the network. If the discharging flow rate of a queue is always less

than the incoming flow rate, the queue will propagate towards upstream and eventually

spill back to upstream links. In cases where spill-back happens, traffic on upstream links

can no longer travel to the downstream links that are fully occupied by queues. Note
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in this study, only vehicular traffic is considered. Therefore, “vehicle” and “traffic” are

used interchangeably in the remaining of this chapter. If the queue spill-back propagation

spreads further upstream in the network, there is a probability that a cycle, i.e. deadlock,

will form (See Figure 5.1). When a deadlock is formed, the vehicles within the deadlock

can not proceed any further. Without proper manual intervention, the deadlock can not

resolve by itself. As mentioned in Section 5.1, deadlock can significantly deteriorate the

Figure 5.1: Deadlock in the network.

performance of a transportation system. To avoid deadlock from happening, in this study,

we want to “guide” some vehicles in the network to some special routes so that the network

can have a minimal possibility of getting deadlocked. To accomplish this, two different

groups of vehicles are introduced in the network: one is normal vehicle group, the other

is DeadLock-Avoidance-routing vehicle group (it will be referred as DLA-routing vehicle

hereafter in this chapter). The DLA-routing vehicles are vehicles that comply to some

certain routing restrictions, which are explained in details in Section 5.3. For instance,

DLA-routing vehicles may not allow to turn left at some certain intersections; meanwhile,

normal vehicles do not have such restrictions. In the model we use r to indicate different

group of vehicles: r = 0 for normal vehicles and r = 1 for DLA-routing vehicles. In

the extreme case where all vehicles in the network are DLA-routing vehicles, then the

network is guaranteed to be deadlock free. Details of proof are provided in Theorem 1 in

Section 5.3. However, eliminating deadlock does not come free. There are certain overhead
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introduced by the "Odd-Even" routing rule specified in Section 5.3. By strictly following

the "Odd-Even" routing rule, most of the vehicles are not traveling via the shortest route

to their destinations. Therefore, travel time is inevitably increased for some travelers. On

the other hand, the extra detours made by the DLA-routing vehicles also contribute to

the increased VMT in the network, and hence more GHG and other pollutants into the

environment. One of the objectives in the research is to find the “sweet point” between

deadlock free and less travel time by carefully selecting the ratio between normal vehicles

and DLA-routing vehicles in the network.

In this study all travelers are assumed to be rational. This assumption implies that

travelers always tend to choose the best possible options. Under this assumption, Dynamic

User Equilibrium (DUE) holds within the problem studied in this chapter. The work in

this chapter tries to solve the following problems in order to obtain the "optimal" outcome

for the network.

1. The ratio between normal vehicles and DLA-routing vehicles in the network.

2. The departure time of vehicles from their origin nodes.

3. The optimal route choice for each type of vehicles in the network to their destination.

5.3 Odd-Even routing
Before we delve into the optimal deadlock free strategy under DUE, we first look at a rout-

ing technique studied in network communication that guarantees deadlock free in the net-

work. Chiu (2000) proposed an adaptive routing method called “odd-even” routing (OE

routing for short) designing adaptive wormhole routing algorithms for mesh networks

without virtual channel. In their model the locations where some turns can be taken are

restricted to explicitly avoid deadlock from happening in the network.

In a mesh network, columns are numbered with integer numbers starting from 0. A

column is called odd column if it is numbered with an odd index. The same for even

column. In Chiu (2000), their adaptive OE routing model is governed by two rules which

basically specify how packets can route at nodes in the network. There is a comprehensive
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proof in Chiu (2000) to show that deadlock is guaranteed not to exist in the mesh network

if every packet follows the routing rules specified in the paper.

The transportation network is similar to the mesh network studied in the network com-

munication, especially for road networks in most downtown areas where most of the roads

are in grid-net patterns. The Odd-Even Routing method proposed in Chiu (2000) for 2-D

mesh network can also be applied to the transportation network with some minor adap-

tations. Vehicles in a transportation network are like packets in a communication mesh

network. Traffic signal lights at intersections that control the movement of traffic are anal-

ogous to the routers at each node in communication network that control the movements

of packets. From any perspective, the two networks work in a resembling way. The most

significant difference between a 2-D mesh network in communication field and a trans-

portation road network is that there can be multiple queues at each nodes going to dif-

ferent directions instead of just one queue in the communication network. However, this

difference dose not limit the applicability of the Odd-Even Routing method in a transporta-

tion network. Hereafter in this section, a brief proof in the context of the transportation

network will be given to prove the fact that with every vehicle following Odd-Even Routing

rules specified as follows, the network is guaranteed to be deadlock-free.

Odd-Even turn model:

Rule 1: Any vehicle is not allowed to take an EN turn at any intersection located in

an even column, and it is not allowed to take an NW turn at any intersection located

in an odd column.

Rule 2: Any vehicle is not allowed to take an ES turn at any intersection located in

an even column, and it is not allowed to take an SW turn at any intersection located

in an odd column.

Rule 3: No U-turns are allowed in the network.

Note: The directions in the space are denoted as SOUTH, NORTH, EAST and WEST.

A turn is called a ES turn if the direction of the movement is from EAST to SOUTH. The

same is for EN, SW and NW turns.
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Theorem 1. A grid transportation network is free of deadlock as long as all vehicles in the network

follow the turning rules specified in the Odd-Even turn model.

Proof. We prove the theorem by contradiction. Assume there is a set of links l1, l2, . . . , lm

that are in deadlocked state, which indicates the links are connected in a cyclic path, de-

noted as C . Since U-turns are not allowed in the routing rule specified above, it is safe to

conclude that this cyclic path must contain both horizontal and vertical links. Otherwise,

it is impossible to form a close cyclic path in the grid network. In the cyclic path C , let’s de-

note set of the rightmost links as Cr. Links in Cr are connected in a sequence and heading

in the same direction. Assume the starting node and ending node of these connected links

are node S and node E. There are two different ways to connect the links in Cr illustrated

in Figure 5.2: one is clockwise and the other is counter-clockwise.

(a) Case 1: Counter Clock-

wise Deadlock Loop

(b) Case 2: Clockwise Dead-

lock Loop

Figure 5.2: The rightmost links on the cyclic path.

In the first case, the links orient from SOUTH to NORTH. In this case, vehicles at node

S are taking a EN turn and vehicles at node E are taking a NW turn. According to Rule

1 in Odd-Even turn model, EN and NW turns are not allowed to co-exist in the same col-

umn. This contradicts our assumption that node S and node E are in the same right-most

column of the deadlock link loop. For the second case, the links orient from NORTH to

SOUTH. In this case, vehicles at node S are taking a ES turn and vehicles at node E are

taking a SW turn. According to Rule 2 in Odd-Even turn model, ES and SW turns are not

allowed to co-exist in the same column. This also contradicts out assumption that node S
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and node E are in the same right-most column of the deadlock link loop. With the above

contradictions, we prove the theorem.

5.3.1 Similarity anddifference between transportationnetwork andmesh
network

The adaptive routing model in Chiu (2000) only works in regular shaped grid communica-

tion networks. However, the idea of regulating turning maneuvers at certain locations to

avoid deadlocks can be adapted to different applications, and used for different network

configurations. It is especially applicable to grid networks commonly seen in downtown

areas. Figure 5.3 are maps of the City of San Francisco and the City of Chicago showing

that the majority of the road network are in regular grid shape. It is relatively easy to im-

plement a similar regulatory routing rule as the one in Chiu (2000) in physical transporta-

tion network. There are a few differences that needs to be considered before implementing

such rules in real world.

(a) Map of Downtown San Francisco. (b) Map of Downtown Chicago.

Figure 5.3: Maps of Downtown San Francisco and Downtown Chicago (from Google Maps).

First of all, the packets in a communication network occupy no physical space which

means the queues in such network have no physical length. However, in transportation
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network, vehicles have physical lengths and thus queues have a spatial length.

Secondly, queues in a communication network do not distinguish different directions

which means they all share the same queue. However, queues in a transportation road

network spread out different queues into different lanes based on the direction to go. For

instance, left turn traffic usually has a dedicated left turn lane, while right turn traffic and

through traffic might share the same lane.

Except for the differences aforementioned, the transportation network studied in this

chapter is very similar to the communication network studied in Chiu (2000).

5.4 Deadlock potential and transitive closure
In order to avoid deadlock from happening, it is intuitive to define a probability that a

deadlock occurs and then try to minimize that probability. Here we introduce a deadlock

probability measurement called deadlock potential. It defines the probability of a cycle of

links to be in a deadlock state.

5.4.1 Deadlock potential
A link a has a queuing capacity ofQa. When there is traffic going through this link, a queue

could build up on the link. Let’s denote the downstream queue as qda, where 0 ≤ qda ≤ Qa.

If qda = Qa, it means queue on this link completely occupies the link, and thus queue spill-

back occurs.

(a) a link with queue (b) a cycle with queue

Figure 5.4: Links with queues in the network.

Definition: A link with queue has a potential to spill-back. Such spill-back potential
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is defined as: Pa = qda/Qa.

In a cycle of links L = {a1, a2, ...ak}, if every link has spill-back, then there is a deadlock

in this cycle L.

Definition: Deadlock potential of a cycle L is defined as: DLPL =
∑

a∈L Pa.

At time t, there could be nt number of deadlock cycles in the network.

5.4.2 Transitive closure
To find deadlocks in a network is equivalent to identify the cycles in the corresponding

graph. Transitive closure algorithm is an algorithm used to compute reachability in a

graph. With trivial modifications, it can be applied to identify cycles in a graph (Aho et al.,

1972; Koskinen and Herlihy, 2008; Mak et al., 2011). Various methods and techniques have

been proposed in the past to find the transitive closure of a graph. The most well-known

algorithm was proposed by Floyd (1962) and Warshall (1962), known as Floyd-Warshall

algorithm. The original Floyd-Warshall algorithm is used to compute all possible paths

with costs through the graph between each pair of vertices . The computational complexity

isO(V 3). A detailed description of Floyd-Warshall algorithm is provided in Appendix B.1.

With some trivial modifications, the Floyd-Warshall algorithm can be applied to calcu-

late the connectivity between any pair of vertices in the graph, i.e. compute the transitive

closure of the graph. A slightly modified algorithm based on Floyd-Warshall algorithm is

present in Appendix B.2 to calculate transitive closures in a graph.

5.5 Optimal deadlock avoidance strategy under DUE with
queue spillbacks

As discussed in Section 5.2, one of the objective is to balance between avoiding deadlock

in the network and reducing total travel cost by optimally choosing the number of DLA-

routing vehicles in the network and the departure time of each vehicle. The total travel time

(TTT ) can be written as Equation (5.1). It consists of two parts: travel time on links which

corresponds to the first part on the right-hand-side, and queue waiting time at origins

which corresponds to the second part on the right-hand-side.
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TTT =
∑
s′∈S

∫ T

0

[
∑

(o′,o)∈Lo

∫ t

0

vs
′

(o′,o)(ξ)dξ −
∑

(s,s′)∈Ls

∫ t

0

ps
′
(s,s′)(ξ)dξ]dt+

∑
s′∈S

∫ T

0

qd,s
′

(o′,o)(t)dt (5.1)

According to Ma et al. (2014), it is proved that the total travel time of a network with

a single destination can be re-written as Equation (5.2). Details of the proof can be found

in Ma et al. (2014).

TTT =
∑

(s,s′)∈Ls

∫ T

o

t · p(s,s′)(t)dt (5.2)

Yu et al. (2018) extends the single destination case to multiple destinations case, as

shown in Equation (5.3). In this study we adopt Yu et al. (2018)’s multiple destinations

formulation as in Equation( 5.3).

TTT =
∑
s′∈S

∑
(s,s′)∈Ls

∫ T

0

t · ps′(s,s′)(t)dt (5.3)

In this section, an optimal control framework aimed to find the optimal percentage of

DLA-routing vehicle is proposed with DUE, queue spill-backs and other constraints. The

optimization objective is to minimize the potential of deadlock through optimally choos-

ing the number of DLA-routing vehicle in the network, and meanwhile maintain the total

travel time within a reasonable range. The objective function is shown in Equation (5.4).

The first term on the right-hand-side is the summation of downstream queues in all dead-

locks over all time steps, while the second term is the total travel time. α and β in the

formulation are weight scalars for deadlock potential and total travel time.

min
γr

z � α ·
∑

t∈[0,T ]

∑
ξνt ∈Ξt

∑
(i,j)∈Lξνt

∑
s′

∑
r

qd,s
′,r

(i,j) (t) + β · TTT (5.4)

Assume that at any time t, there are NTC(t) deadlock cycles, i.e. |Ξt|= NTC(t). The

transitive closure algorithm in Appendix B.2 can be used to compute NTC(t) given Pij(t).

The equivalent algebra formulation is (Fischer and Meyer, 1971):

A∗(t) = I ⊕ A
1
(t)⊕ A

2
(t)⊕ · · · ⊕ A

n−1
(t) (5.5)
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A(t) = A(t) ◦ P (t) (5.6)

, where ⊕ is an operator in Max-Plus algebra and ◦ is the element-wise production op-

erator. A(t) is the adjacency matrix. Link deadlock potential matrix, P(t), is calculated

by Equation (5.7). More details about max-plus algebra can be found in Heidergott et al.

(2014).

Pij(t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∑
s′
∑

r q
d,s′,r
(i,j) (t)

Q(i,j)

if(i, j) ∈ Le

0 otherwise

(5.7)

In Equation (5.7), each link is calculated at every time step t a spill-back potential Pij(t).

The term qd,s
′,r

(i,j) (t) in Equation (5.7) is the downstream queue at link (i, j). The vehicles in

this queue are from group r and heading toward destination s′. Though each downstream

queue is divided into different groups based on their destinations and vehicle groups, in

Double Queue (DQ) model there is no segregation between those queues. Hence, as the

definition given in Section 5.4, all queues at downstream of link (i, j) are summed up

before it is divided by the queue capacity of that link to get the link deadlock potential.

5.5.1 Flow dynamics and constraints
In this study, we assume inflow carries the information of where it comes from. Once it

enters a link, it is mixed with other flows (from different incoming links) on that link. It

loses the information of what node it comes from when it is exiting this link. With that

explained, inflow to a link is denoted as ps
′,r
(i,j;h)(t), and exit flow is denoted as vs

′,r
(i,j)(t). The

notation (i, j;h) is designed to keep track of the information of incoming node. Note that

exit flow, vs
′,r

(i,j)(t), does not have h in its subscript. This notation scheme makes it possi-

ble to distinguish inflows with regards to their corresponding turning movements. Later

in the traveler’s route choice model, different turning movements will be given different

penalties to influence travelers’ behavior.

Flow conservation:
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In the nodal DUE model, flow conservation is usually applied at each individual node.

The total inflows to a node should be equal to the total exit flows out of a node. In Fig-

ure 5.5a, total inflow to node j equals:
∑

i:(i,j)∈Le
vs

′,r
(i,j)(t) and total exit flow out from node j

equals
∑

i:(i,j)∈Le

∑
k:(j,k)∈Le

ps
′,r
(j,k;i)(t). A nodal flow conservation is shown as Equation (5.8).

∑
i:(i,j)∈Le

∑
k:(j,k)∈Le

ps
′,r
(j,k;i)(t) =

∑
i:(i,j)∈Le

vs
′,r

(i,j)(t) ∀i ∈ N \ S, s′ ∈ S, t ∈ [0, T ] (5.8)

(a) Flow conservation at a node. (b) Flow conservation of a link.

Figure 5.5: Flow conservation at node and link level.

As discussed earlier in this section, flows are associated with different attributes: des-

tination (s′), groups (r) and incoming direction (using (i, j;h) to denote a movement of

h → i → j). Different from a generic nodal DUE model, flow conservation has to be held

at each individual link level as well. In Figure 5.5b, the exit flow of link (i, j) is equal

to vs
′,r

(i,j)(t). This exit flow of link (i, j) is then distributed among all the outgoing links

from node j, i.e. (j, k1), (j, k2), . . . , (j, km). Hence, there is a link level flow conservation as

shown in Equation (5.9).

vs
′,r

(i,j)(t) =
∑

k:(j,k)∈Le

ps
′,r
(j,k;i)(t) ∀i ∈ N \ S, s′ ∈ S, t ∈ [0, T ] (5.9)

UE route choice:

We assume travelers are all rational. They always choose the minimum cost paths to

their destinations. From a link-node point of view, at each node, flows are assigned to the

next link that is on the minimal cost path from current node to destination. In static traf-

fic assignment case, this route choice model is referred as Wardrop’s principle (Wardrop,
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1952). The same principle holds in dynamic traffic assignment (Mahmassani and Her-

man, 1984; Friesz et al., 1993; Ban et al., 2012b; Ma et al., 2014). In this particular study,

the principle is slightly adapted to accommodated the movement-based incoming flow

ps
′,r
(i,j;h)(t). At every time step t, the minimal travel time from node i, with incoming node

as h, to destination s′ is denoted as πs′
(h,i)(t). If any downstream node j of node i is on a

minimal cost path, i.e. φr
(i,j;h)(t) + τ(i,j)(t) + πs′,r

(i,j)(t + τ(i,j)(t)) − πs′,r
(h,i)(t) = 0, there shall be

some non-negative flow ps
′,r
(i,j;h)(t) flowing from node h through node i to node j bounding

for destination s′; otherwise, ps
′,r
(i,j;h)(t) = 0. This principle translates into the complemen-

tarity constraint as shown in Equation (5.10). φr
(i,j;h)(t) is a penalty term associated with

turn (i, j;h) for group r travelers at time t. For DLA-routing vehicles, according to the rout-

ing rule specified in Section 5.3, they are not permitted to make certain turns at certain

intersections. A penalty φr
(i,j;h)(t) works perfectly to serve the purpose of regulating turn-

ing maneuvers of Odd-Even routing vehicles at certain intersections in Equation (5.10). For

Odd-Even routing vehicles, a turn (i, j;h) that is not permitted by the OE Routing Rules has

a large penalty (for illustration purpose, this penalty can be set to ∞). In this case, the

right-hand-side of Equation (5.10) is positive, which implies that ps
′,r
(i,j;h)(t) = 0. Therefore,

no OE Routing vehicle flow is moving through turn (i, j;h). For OE Routing vehicles at per-

mitted turns or normal vehicles at any turns, the penalty is zero reflecting the fact that no

regulation is imposed for these cases.

0 ≤ ps
′,r
(i,j;h)(t) ⊥ [φr

(i,j;h)(t) + τ(i,j)(t) + πs′,r
(i,j)(t+ τ(i,j)(t))− πs′,r

(h,i)(t)] ≥ 0 (5.10)

Equations (5.11-5.12) are the queue dynamics of the Double Queue Model for upstream

queue and downstream queue, respectively.

qu,s
′,r

(i,j) (t) =

∫ t

0

[
∑
h

ps
′,r
(i,j;h)(ξ)− vs

′,r
(i,j)(ξ − τω(i,j))]dξ + qu,s

′,r
(i,j) (0) (5.11)

qd,s
′,r

(i,j) (t) =

∫ t

0

[
∑
h

ps
′,r
(i,j;h)(ξ − τ 0(i,j))− vs

′,r
(i,j)(ξ)]dξ + qd,s

′,r
(i,j) (0) (5.12)

Equations (5.13-5.14) are summations of the upstream queues and downstream queues,

respectively, on link (i, j) at time t over different destinations, different traveler groups and

different incoming nodes.
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qu(i,j)(t) =
∑
s′

∑
r

qu,s
′,r

(i,j) (t) (5.13)

qd(i,j)(t) =
∑
s′

∑
r

qd,s
′,r

(i,j) (t) (5.14)

Equations (5.15-5.16) are summations of the incoming flow and exit flow, respectively,

on link (i, j) at time t over different destinations, different traveler groups and different

incoming nodes.

p(i,j)(t) =
∑
s′

∑
h

∑
r

ps
′,r
(i,j;h)(t) (5.15)

v(i,j)(t) =
∑
s′

∑
r

vs
′,r

(i,j)(t) (5.16)

Upstream queues are capped by the total queue capacity Q(i,j), see Equation (5.17).

Total inflow p(i,j)(t) to link (i, j) is capped by the total link flow capacity C(i,j), see Equa-

tion (5.18). Total exit flow v(i,j)(t) out of link (i, j) is capped by the effective link flow

capacity δ(i,j)(t)C(i,j), see Equation (5.19).

In this study, the primary focus is exploring how OE Routing could benefit the overall

system in regard to deadlock potential and total travel cost. Therefore, signal control is

not explicitly studied. To keep problem concise and solvable, all intersection nodes are

controlled by fixed-timing signal lights in contrast to optimal control studied in Yu et al.

(2018). For fixed timing control, green split remains the same between cycles. Each incom-

ing link (j, i) at node i gets a fixed (pre-given) green time allocation δ(j,i)(t), which reduces

the effective exist flow capacity as in Equation (5.19).

qu(i,j)(t) ≤ Q(i,j) (5.17)

p(i,j)(t) ≤ C(i,j) (5.18)

v(i,j)(t) ≤ δ(i,j)(t)C(i,j) (5.19)
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qd,s
′,r

(i,j) (t), q
u,s′,r
(i,j) (t), ps

′,r
(i,j;h)(t), v

s′,r
(i,j)(t) ≥ 0 ∀(i, j) ∈ Le, s

′ ∈ S, t ∈ [0, T ] (5.20)

Ma et al. (2014) derived the relation between the link queue capacity Q(i,j) and the link

flow capacity C(i,j) based on triangular fundamental diagram. The relation between those

two is adopted in this study, and is shown in Equation (5.21).

Q(i,j) = (τ 0(i,j) + τω(i,j)) · C(i,j) (5.21)

At time t = 0, vehicles are not entering the network yet. All downstream and upstream

queues, as Equations (5.22-5.23) present, equal 0 except for the dummy links (o, o′). On

dummy links (o, o′), initially, all vehicles are queued up waiting to enter the network. Up-

stream and downstream queues are equal to total demand at that dummy link (o, o′), as

Equation (5.22) shows. Note that γr, r ∈ {0, 1} is homogeneous in the network among

different origins. Equation (5.24) indicates there is no inflow to the dummy links (o, o′) at

origins.

qu,s
′,r

(o′,o) (0) = qd,s
′,r

(o′,o)(0) = γrH(o′,s′), where
∑
r

γr = 1, r ∈ {0, 1} (5.22)

qu,s
′,r

(i,j) (0) = qd,s
′,r

(i,j) (0) = 0 (5.23)

ps
′,r
(o′,o)(t) = 0 (5.24)

In Section 5.2, we assume a large enough time horizon T is picked to guarantee there

are no vehicles left in the network at the end of time T . This explicitly means that: 1) for

every link there is no upstream queue nor downstream queue, and 2) for every link there is

no inflow coming into link (i, j) after time T −τ 0(i,j). The first is true otherwise there will be

queues at time T , which contradicts the assumption of simulation horizon T . The second

is also true due to the fact that if there are incoming flow ps
′,r
(i,j;h)(t) during [T−τ 0(i,j), T ], these

flows can not exit their link (i, j) in less than free flow travel time τ 0(i,j). Therefore, there will

be flows left on link (i, j) at time T , which also contradicts the assumption of simulation

horizon T . These two constraints are described in Equation (5.25) and Equation (5.26).
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qu,s
′,r

(i,j) (T ) = qd,s
′,r

(i,j) (T ) = 0, ∀(i, j) ∈ Le, r = {0, 1} (5.25)

ps
′,r
(i,j;h)(t) = 0, ∀t ∈ [T − τ 0(i,j), T ], r = {0, 1} (5.26)

Extra Constraints:

ps
′,r
(i,j;h)(t) = 0 s′ ∈ S (5.27)

qu,s
′,r

(i,j) (tL) = qd,s
′,r

(i,j) (tL) = 0 s′ ∈ S, (i, j) ∈ Lo (5.28)

Equation (5.27) states that no u-turns are allowed in the network. This is not only a

requirement of OE Routing Rule, but also an implicit requirement for the double queue

model with dummy links to behave close to real scenario. We discover that without such

a constraint, sometimes in the network, flows will enter dummy links and circulate in

the dummy links for certain amount of time before re-entering the regular links (see Fig-

ure 5.6) even if destination node s′ is not its final destination. This behavior is due to the

fact that dummy links have infinity queue capacities and trivial (0, in this study) link travel

time. By sending flows into dummy links and circulating flows in dummy links, the sys-

tem avoids those flows being queued up on regular links. Since fewer flows are queued

on regular links, links become less congested. However, such flow circulation is not well

characterizing flow propagation and traffic queuing in real world. In real world scenario,

traffic is only allowed to queue on regular links except for dummy origin links where flows

initially enter the network. In order to model such regulations, we impose the constraint

to limit circulation flows, see Equation (5.27).
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Figure 5.6: Flow circulates in dummy links.

Equation (5.28) states the latest departure time requirement: at time t = tL, both down-

stream and upstream queues at dummy origin links are cleared. This requirement resem-

bles the case where travelers are required to depart within a certain time frame. This

constraint has another purpose in the DLA model. Since the objective function consists of

two parts: queue length on regular links and total travel time in the network, traffic tends

to stay in dummy links as much as possible to prevent queues being built up on regular

links when optimizing the objective function. However, this behavior does not well reflect

how travelers in real word behave. In real world scenario, travelers have no incentive to

stay in dummy links as long as their total travel cost is minimized. Equation (5.28) is thus

designed to cope with this problem. This constraint forces all traffic to load onto regular

links before t = tL so that queues can be observed on regular links as expected.

5.5.2 Feasibility of the proposed problem
In the subsection, a brief proof is presented to show the feasibility of the proposed problem

by manually constructing a feasible solution to the DLA model described in Section 5.5.

Proof. Assume there are K total O−D pairs in the network. Randomly number the O−D

pairs with subscripts from 1 to K. All travelers in the network are from group r = 0, i.e.

all travelers are driving normal vehicles.

For kthO−D pair (o′, s′)k, find the shortest path between this pair of origin and destina-

tion pair. Identify the link on the shortest path with lowest link flow capacity. Denote this

link flow capacity as C(o′, s′)k. Load and discharge flow between origin and destination

pair (o′.s′)k at a flow rate equal to C(o′, s′)k. With such flow discharging scheme, the total
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discharging time T(o′,s′)k for traffic demand between origin and destination pair (o′, s′)k,

i.e. H(o′,s′)k , is

�H(o′,s′)k

C(o′,s′)k
� ≤ T(o′,s′)k ≤ �H(o′,s′)k

C(o′,s′)k
� (5.29)

After the traffic flow between origin and destination pair (o′, s′)k is completely dis-

charged, move on the (k + 1)th origin and destination pair (o′, s′)k+1 and repeat the dis-

charging step described above. Repeat this process until all K origin destination pairs are

served.

Let T(o′,s′)k
Δ
= �H(o′,s′)k

C(o′,s′)k
�, and T

Δ
=

K∑
k=1

T(o′,s′)k =
K∑
k=1

�H(o′,s′)k

C(o′,s′)k
�. By setting the time hori-

zon T to be significantly larger than T , it is guaranteed that all demand flows can be served

and no flow remains in the network at the end of T .

By following the above steps, the constructed solution is proved to be a feasible solu-

tion. Hence, we proved the DUE problem has at least one feasible solution, i.e. is feasible.

Figure 5.7: Link travel time in double queue model.
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5.6 Approximation
5.6.1 Link travel time approximation
In DUE constraint (5.10), a delay term πs′,r

(i,j)(t+τ(i,j)(t)) that depends on future time (t) and

state (τ(i,j)(t)) is used to describe travelers’ route choice in a dynamic setting. It depends

on knowing link travel time τ(i,j)(t) to evaluate the DUE constraints. Since this link travel

time τ(i,j)(t) is implicitly defined in the DUE model (see Figure 5.7 for an illustration), it

is difficult to explicitly keep track of travel time in the network. In this study, we adopt a

similar link travel time approximation scheme with Ma et al. (2017) and Yu et al. (2018). An

approximation coefficient α(i,j)(t) is used to approximate link travel time at time t based

on free flow travel time τ 0(i,j), downstream queue qd(i,j)(t+ τ 0(i,j)) and link capacity C(i,j). See

Equation (5.30).

τ(i,j)(t) = τ 0(i,j) + α(i,j)(t) ·
qd(i,j)(t+ τ 0(i,j))

C(i,j)

(5.30)

5.6.2 Time-dependent delay terms approximation
Similar to Ma et al. (2015) and Yu et al. (2018), a “pseudo derivative” (PD) term σs′,r

(i,j)(t) is

used to approximate the time-dependent and state-dependent delay term πs′,r
(i,j)(t+τ(i,j)(t))

with a time-dependent delay term πs′,r
(i,j)(t+τ 0(i,j)). The latter does not depend on any future

states. See Equation (5.31).

πs′,r
(i,j)(t+ τ(i,j)(t)) = πs′,r

(i,j)(t+ τ 0(i,j)) + σs′,r
(i,j)(t) ·

(
τ(i,j)(t)− τ 0(i,j)

)
(5.31)

Substitute Equation (5.30) into Equation (5.31), we get:

πs′,r
(i,j)(t+ τ(i,j)(t)) = πs′,r

(i,j)(t+ τ 0(i,j)) + σs′,r
(i,j)(t) ·

(
τ 0(i,j) + α(i,j)(t) · qd

(i,j)
(t+τ0

(i,j)
)

C(i,j)
− τ 0(i,j)

)
= πs′,r

(i,j)(t+ τ 0(i,j)) +
(
σs′,r
(i,j)(t) · α(i,j)(t)

)
· qd

(i,j)
(t+τ0

(i,j)
)

C(i,j)

(5.32)

5.6.3 Travels’ route choice complementarity approximation
With the approximation of link travel time in Equation (5.30) and route travel time ap-

proximation in Equation (5.31), the DUE route choice complementarity in Equation (5.10)
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is therefore becoming Equation (5.33).

0 ≤ ps
′,r
(i,j;h)(t) ⊥ [φr

(i,j;h)(t)+τ 0(i,j)+πs′,r
(i,j)(t+τ 0(i,j))+

qd(i,j)(t+ τ 0(i,j))

C(i,j)

·α(i,j)(t)·(σs′,r
(i,j)(t)+1)−πs′,r

(h,i)(t)] ≥ 0

(5.33)

Similar to Yu et al. (2018), a combined approximation coefficient θs
′,r

(i,j)(t) is introduced:

θs
′,r

(i,j)(t) = α(i,j)(t) ·
(
σs′,r
(i,j)(t) + 1

)
(5.34)

5.7 Discretization of the DLA model
As stated in Ma et al. (2014), it is very difficult if not impossible to obtain analytical so-

lutions to state-constrained optimal control problems with time delay in continuous time

domain. To find numerical solutions, the continuous-time model in Section 5.5 has to been

properly discretized in time to convert into a finite-dimensional optimization problem. Af-

ter such discretization, numerical solutions can be solved using various methods. There

are different choices in time discretization. In order to avoid possible negative queues in

the network (Ban et al., 2012b; Ma et al., 2014; Yu et al., 2018), in this study a similar implicit

time step discretization scheme to the one used in Ma et al. (2017) is adopted. Specifically,

the time step λ should be small enough so that all the time-dependent variables in the

model should be multiples of the time step length selected. Let integer Nλ denote the total

number of time steps, hence we have the following relations:

0
Δ
= tλ,1 < · · · < tλ,Nλ

< th,Nλ+1
Δ
= T (5.35)

tλ,n = λ · (n− 1), n = 1, 2, . . . , Nλ + 1 (5.36)

We also define n0;λ
(i,j)

Δ
= τ 0(i,j)/λ and nω;λ

(i,j)

Δ
= τω(i,j)/λ for any (i, j) ∈ L. With the dis-

cretization scheme described above, the deadlock avoidance model routing under DUE

and queue spillback in discrete-time form is then present in the remaining of this section.

In Subsection 5.7.5, an iterative solving algorithm is used to solve the proposed problem.

The superscript l denotes the lth iteration in the solving process.
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5.7.1 Objective function

min
{γr}

zl = α ·
Nλ∑
n

∑
ξνn∈Ξn

∑
(i,j)∈Lξνn

∑
s′∈S

∑
r

qd,s
′,r,l

(i,j) (n) + β · [
∑
s′∈S

∑
(s,s′)∈Ls

λ ·
Nλ∑
n=1

n · ps′,l(s,s′)(n)] (5.37)

5.7.2 Flow dynamics and constraints

qu,s
′,r,l

(i,j) (n) = λ ·
n∑

t=1

∑
h

ps
′,r,l
(i,j;h)(t) + qu,s

′,r,l
(i,j) (1) s′ ∈ S, (i, j) ∈ Le, (h, i) ∈ Le, n = 2, . . . , nω,λ

(i,j)

(5.38)

qu,s
′,r,l

(i,j) (n) = λ ·
n∑

t=1

∑
h

ps
′,r,l
(i,j;h)(t)− λ ·

n−nω,λ
(i,j)∑

t=1

vs
′,r,l

(i,j) (t) + qu,s
′,r,l

(i,j) (1) s′ ∈ S, (i, j) ∈ Le, (h, i) ∈ Le,

n = nω,λ
(i,j) + 1, . . . , Nλ + 1

(5.39)

qd,s
′,r,l

(i,j) (n) = −λ ·
n∑

t=1

vs
′,r,l

(i,j) (t) + qd,s
′,r,l

(i,j) (1) s′ ∈ S, (i, j) ∈ Le, n = 2, . . . , n0,λ
(i,j) (5.40)

qd,s
′,r,l

(i,j) (n) = λ ·
n−n0,λ

(i,j)∑
t=1

∑
h

ps
′,r,l
(i,j;h)(t)− λ ·

n∑
t=1

vs
′,r,l

(i,j) (t) + qd,s
′,r,l

(i,j) (1) s′ ∈ S, (i, j) ∈ Le, (h, i) ∈ Le,

n = n0,λ
(i,j) + 1, . . . , Nλ + 1

(5.41)

Flow conservation:

vs
′,r

(i,j)(n) =
∑

k:(j,k)∈Le

ps
′,r
(j,k;i)(n) s′ ∈ S, (i, j) ∈ Le, n = 1, . . . , Nλ + 1 (5.42)

Flow and queue summation:

qu,l(i,j)(n) =
∑
s′

∑
r

qu,s
′,r,l

(i,j) (n) (i, j) ∈ Le, n = 1, . . . , Nλ + 1 (5.43)

qd,l(i,j)(n) =
∑
s′

∑
r

qd,s
′,r,l

(i,j) (n) (i, j) ∈ Le, n = 1, . . . , Nλ + 1 (5.44)
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pl(i,j)(n) =
∑
s′

∑
h

∑
r

ps
′,r,l
(i,j;h)(n) (i, j) ∈ Le, n = 1, . . . , Nλ + 1 (5.45)

vl(i,j)(n) =
∑
s′

∑
r

vs
′,r,l

(i,j) (n) (i, j) ∈ Le, n = 1, . . . , Nλ + 1 (5.46)

qu,l(i,j)(n) ≤ (n0
(i,j) + nω

(i,j)) · C(i,j) (5.47)

pl(i,j)(n) ≤ C(i,j) (5.48)

vl(i,j)(n) ≤ δl(i,j)(n) · C(i,j) (5.49)

5.7.3 Dynamic UE route choice

ps
′,r,l
(i,j;h)(n) ·

[
φr
(i,j;h)(n) + n0,λ

(i,j) + πs′,r,l
(i,j) (n+ n0,λ

(i,j)) +
qd,l(i,j)(n+ n0,λ

(i,j))

C(i,j)

· θs′,r,l(i,j) (n)− πs′,r,l
(h,i) (n)

]
= 0

(5.50)

s′ ∈ S, (i, j) ∈ Le, n = 1, . . . , Nλ − n0,λ
(i,j) + 1

n0,λ
(i,j) + πs′,r,l

(i,j) (n+ n0,λ
(i,j)) +

qd,l(i,j)(n+ n0,λ
(i,j))

C(i,j)

· θs′,r,l(i,j) (n)− πs′,r,l
(h,i) (n) ≥ 0 (5.51)

s′ ∈ S, (i, j) ∈ Le, n = 1, . . . , Nλ − n0,λ
(i,j)

5.7.4 Initial conditions and other constraints∑
r

qu,s
′,r,l

(o′,o) (1) =
∑
r

qd,s
′,r,l

(o′,o) (1) = H(o′,s′),λ (o′, s′) ∈ W, s′ ∈ S, (o′, o) ∈ Lo (5.52)

∑
r

qu,s
′,r,l

(i,j) (1) =
∑
r

qd,s
′,r,l

(i,j) (1) = 0 s′ ∈ S, (i, j) ∈ L ∪ Ls (5.53)

ps
′,r,l
(o′,o)(n) = 0 s′ ∈ S, (i, j) ∈ Lo, n = 1, . . . , Nλ + 1 (5.54)
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ps
′,r,l
(i,j;h)(n) = 0 s′ ∈ S, (i, j) ∈ L, n = Nh − n0,λ

(i,j) + 2, . . . , Nh (5.55)

qu,s
′,r,l

(i,j) (Nh + 1) = qd,s
′,r,l

(i,j) (Nh + 1) = 0 s′ ∈ S, (i, j) ∈ Le (5.56)

qu,l(i,j)(n), q
d,l
(i,j)(n), q

u,s′,l
(i,j) (n), q

d,s′,l
(i,j) (n), p

s′,r,l
(i,j;h)(n), v

s′,r,l
(i,j) (n) ≥ 0 (5.57)

s′ ∈ S, (i, j) ∈ Le, j ∈ Π, n = 1, . . . , Nh + 1

ps
′,r,l
(i,j;h)(n) = 0 s′ ∈ S, (i, j) ∈ L, h = j, n = 1, . . . , Nh (5.58)

qu,s
′,r,l

(i,j) (NL + 1) = qd,s
′,r,l

(i,j) (NL + 1) = 0 s′ ∈ S, (i, j) ∈ Lo (5.59)

Equation (5.60) describes the penalty imposed at every turn. The first row in the equa-

tion specifies that for DLA-routing vehicles the turning penalty is ∞ if turn (h → i → j) is

not permitted per OE routing rule. For other cases, there is no penalty.

φr
(i,j;h) =

⎧⎨
⎩ ∞, r = 1 and turn (h → i → j) is not permitted

0, otherwise
(5.60)

5.7.5 An iterative solution procedure
Similar to Ma et al. (2015), in the study an iterative algorithm illustrated in Figure 5.8 is

developed to solve the DLA problem.

The detailed steps are summarized as follows.

Step 1: Set iteration count l = 1. Randomly generate the set of theta {θs′,r,l(i,j) (t)}. Since there

are no previous link queue information prior iteration l = 1, we can not calculate

transitive closures using Algorithm 5 and Algorithm 6 in Appendix B. To serve as the

initialization purpose, we set Ξl
t ≡ ∅, ∀t ∈ [0, T ], which means there is no transitive

closure in the 1st iteration.
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Figure 5.8: A heuristic-based iterative solving algorithm.

Step 2: Feed {θs′,r,l(i,j) (t)} and {Ξl
t}, ∀t ∈ [0, T ] as inputs to GAMS/NLPEC solver. Solve the

optimization problem in GAMS to obtain:

zl, TTT l, ps
′,r,l
(i,j;h)(t), v

s′,r,l
(i,j) (t), q

u,s′,r,l
(i,j) (t), qd,s

′,r,l
(i,j) (t), πs′,r,l

(i,j) (t)

Step 3: Check for convergence. A convergence measuring term δl based on mean absolute

percentage deviation (MAPD) is used to check model convergence.

δl � 100%

l

l∑
l∗=1

|zl − zl−l∗ |
zl−l∗

l is a predefined fixed number. It controls how many previous iterations the MAPD

takes into consideration. If l < l, skip Step 3 and go to Step 4. If MAPD δl ≤ δ,
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where δ is the convergence threshold, stop the iteration algorithm. Otherwise, check

if iteration number l ≥ lmax, Stop iterative algorithm.

Step 4.1: Update transitive closure set. Use qu,s
′,r,l

(i,j) (t) and Q(i,j) as input to Algorithm 6 in Ap-

pendix B.2 to calculate transitive closures: {Ξl
t}, ∀t ∈ [0, T ].

Step 4.2: Update route travel time approximation coefficient. In Step 2, inflow and exit flow

to each link (i, j) have been calculated. As Figure 5.7 shows, link travel time τ(i,j)(t)

can be derived using cumulative curves. A detailed explanation and illustration can

be found in Yu et al. (2018).

τ(i,j)(t) =

∑m
k0=1 p

s′,l
(i,j)(t)k0 · nl

(i,j)(t)k0

ps
′,l
(i,j)(t)

Then use the following equation to calculate new θs
′,r,l

(i,j) (t):

θs
′,r,l

(i,j) (t) =
(
τ(i,j)(t)− τ 0(i,j)

) · C(i,j)

qd,l(i,j)(t+ τ 0(i,j))
·
(
πs′,r,l
(i,j) (t+ τ(i,j)(t))− πs′,r,l

(i,j) (t+ τ 0(i,j))

τ(i,j)(t)− τ 0(i,j)
+ 1

)

Step 5 : Set l = l + 1. Go to Step 2.

5.8 Numerical results
5.8.1 A two-by-two grid network
Figure 5.9 is a 2x2 grid network. Nodes are connected by bi-directional links. There are

4 sets of ODs (see Table 5.2). The node numbers in parenthesis are dummy ODs. For

instance, node 5 is a dummy node connected to node 1 via dummy links (5, 1) and (1, 5).

Link flow capacity and free flow link travel time are displayed along with the links shown

on Figure 5.9.

Destinations

1(5) 2(6) 3(7) 4(8)

Origins

1(5) - - - 30

2(6) - - 15 -

3(7) - 15 - -

4(8) 30 - - -

Table 5.2: OD for the 2x2 grid network: high demand case.
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Destinations

1(5) 2(6) 3(7) 4(8)

Origins

1(5) - - - 15

2(6) - - 15 -

3(7) - 15 - -

4(8) 15 - - -

Table 5.3: OD for the 2x2 grid network: high demand case: low demand case.

� �

� �

� �

� 	

� ��������	
	�

�
���
�	�������������	��

������������������	��

� ����������	���	��

 �
������	��

�������	��

�
���

�!���

�!���

�
���

�

��
��


��
��


��
��


��
�

�"�!�

�"����

�"����

�"�!�

�"�!�

�"�!�

�"����

�"����

Figure 5.9: A 2x2 grid network.

Travelers in the network will seek their own shortest paths to destinations. In this

particular network with all link travel time shown in Figure 5.9, the “possible” flow pattern

is shown in Figure 5.10. Different colors represent traffic flow between different OD pairs.

If everyone in the network follows their desired paths, this will lead to a deadlock cycle,

1 → 3 → 4 → 2 → 1, in the network.

On the contrary, if everyone in the network follows the OE-routing rules specified in
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Section 5.3, traffic flows will be re-distributed in the network as Figure 5.11 shows. As

OE-routing rules specifies, EN turn and ES turn are not permitted. Hence, travelers are

not allowed to make turn “5 → 2 → 4” or turn “3 → 4 → 2” when traveling in the

network. Therefore, travelers from node 3 to node 2 can only travel via node 1. Traffic

demand between dummy origin node 7 and dummy destination 6 now only travels via

path “7 → 3 → 1 → 2 → 6”. Traffic flows between the rest OD pairs are not affected. Note

in Figure 5.11 that the deadlock cycle in the middle is now resolved.
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Figure 5.10: Gridlock in a 2x2 grid net-
work.
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Figure 5.11: OE routing in a 2x2 grid net-
work.

To assess how the performance of the proposed DLA model varies under different lev-

els of traffic demand, in this numerical study section, two scenarios with different traffic

demand levels are tested against the DLA model proposed: 1) a high traffic demand case

representing congestion scenario where heavy queues are built across the network (Ta-

ble 5.2); 2) a low traffic demand case where the majority of the links are free of queues (Ta-

ble 5.3). The two scenarios share the same network configuration. With in each scenario,

various sub-scenarios consist of different percentages of OE Routing vehicles are tested.

5.8.2 Performance under high-demand scenario
In this study, an optimal OE Routing ratio is solved using the procedures described in

Section 5.7.5 with traffic demand specified in Table 5.2. This testing scenario is designed

for a relatively high demand case, i.e. high level of congestion or long queues are expected

to occur within the network. In order to create such a congested scenario, several ways
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besides setting higher OD demands in 5.2, are carefully designed to accomplish that. They

will be explained in details below.

First of all, dummy destination links in Figure 5.9 has a flow capacity of 2, meanwhile

the regular links have 5 or 10 link flow capacities. Each dummy link, in this case, becomes

a bottleneck in the system. This is different with the setups in Ma et al. (2014) and Yu

et al. (2018) where dummy links have infinity flow capacities. There are two reasons to

have dummy links with small flow capacities: 1) this setup is closer to real world scenario.

Dummy destinations are like parking structures in real world with dummy links as en-

trance links to the parking structure. In reality, the entrances have finite flow capacity.

And this capacity is often smaller than that of a regular road. 2) In Yu et al. (2018) they

have traffic signal light to control flows at intersections. This reduces the effective flow

capacity of a link controlled by signal light based on the corresponding green split ratio.

Thus, inflow capacity sometime is greater than exit flow capacity. This makes it possible

to build up downstream queues on links. In this study, however, there is no traffic light to

control flows. Exit flow capacity is equal to inflow capacity of a link. If downstream link

(dummy link) has infinity flow capacity, any flow flowing from a regular link that con-

nects directly to dummy link to that dummy link will get “absorbed” by the dummy link.

Thus, it is unlikely to have downstream queue built up on that regular link. In addition to

the low flow capacities on dummy destination links, tL is set to be 5 so that all traffic from

origins should depart before t = 5. This forces traffic to load onto the regular links in a

relatively short period of time to create queues or congestion.

5.8.2.1 Convergence test

In this part, we evaluate how the DLA model converges using the iterative procedures

described in 5.7.5. The optimal DLA model is solved iteratively until convergence. Fig-

ure 5.12a and Figure 5.12b show the convergence curve of the objective value and iteration

errors over iterations, respectively. The model converges quickly in the first 60 iterations.

After iteration 60, the objective value does not change too much with a fluctuation range

between 1360 and 1450. At iteration 117, the optimal objective value is 1360.
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Table 5.6: The performance improvement of scenario with γ = 0% over γ = 100%.

Objective value Total queues Total travel time

24% 65% 12%

5.9 Conclusions and future work
In this chapter, we formulated a link-based Deadlock Avoidance model (or DLA model)

to minimize the probability of having deadlocks in the network. City road networks are

sometimes vulnerable to deadlocks, especially for those with heavy traffic demands fre-

quently. A strategy that prevents or reduces the possibility of deadlock occurrence can

be extremely helpful to improve the city core traffic. The DLA model in this chapter in-

corporates the idea of deadlock free routing algorithm by restricting certain movements

at certain locations in the network for a special type of vehicles, i.e. DLA-routing vehicles.

By optimally selecting the number of DLA-routing vehicles in the network, the DLA model

is able to reduce the possibility of having deadlocks while still maintaining reasonable

average total travel cost.

Numerical studies for both high and low demand cases have been designed, tested

and compared. The results show that the proposed DLA model performs well in con-

gested, high demand scenarios, reducing the total number of queues in the network by

27%. Therefore, the deadlock potential is lowered correspondingly. The optimal percent-

age of DLA routing vehicles in high demand case is equal to 33.33% which implies that by

introducing only 33.33% DLA routing vehicles in the whole vehicle population, it is possi-

ble to significantly reduce the possibility of having deadlocks in the network. In addition

to reduction in total number of queues, there are two other unique characteristics that the

DLA model exhibits. Fisrt, the DLA model tends to spread queues evenly among different

road links to utilize queuing capacity in the network as fully as possible. Furthermore, the

DLA model also spreads out queues over temporally to make queues much more evenly

distributed over time compared to cases without DLA routing vehicles. With these two

queue smoothing, the DLA model is able to further reduce the deadlock potential. In

low demand scenario, however, having DLA routing vehicles does not provide much bene-

fits. Instead, the extra detours made by DLA routing vehicles contribute to total travel cost
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increasing. Numerical test confirms that within the low demand scenario, the optimal so-

lution is with 0% DLA routing vehicles. The more DLA routing vehicles in this situation, the

worse the overall performance will be.

To sum up, the DLA model proposed in this chapter provides an efficient and effective

approach to reduce the deadlock probability. Networks with high congestion benefit the

most from the DLA model with respect to deadlock potential reduction. While the model

of DLA is self-explanatory and working, to implement the proposed DLA routing scheme

in real world may not be as straightforward. Traditional human-driven cars lack the ca-

pability to talk to traffic controllers. As a consequence, it is difficult, if not impossible,

to completely prevent traditional human-driven cars from making certain turns that are

prohibited by the OE Routing rules through imposing a turning penalty as what the model

does. However, with V2I technology and autonomous driving technology making great

break-through in the near future, monitoring and controlling vehicles will become easier

and easier. Thus, imposing a special turning penalty to some special vehicles, i.e. DLA

routing vehiles, will become a feasible task.

There are a few possible extensions to the current work. Currently, there is no traffic

signal control modeled in the framework. In the future, signal control can be added into

the optimization model to make it more realistic. Another possible extension could be

dynamically changing the market penetration rate of DLA routing vehicles in response to

the traffic demand and overall network conditions, instead of one fixed percentage in the

current model.

116



Chapter 6

An Application of DTR in Parking
Search Problem

6.1 Introduction
The difficulty of finding parking spots for travelers, as well as the congestion and other ex-

ternalities produced by the parking process, have become a major issue in many metropoli-

tan areas. Travelers usually have to cruise on streets to search available parking facilities

due to the lack of information on the parking availability ahead of time. Travelers search

for parking suffer additional delay, and the search process itself causes more congestion

and environmental impacts on the streets (Caicedo, 2010; Waterson et al., 2001; Höglund,

2004; Guo et al., 2013).

Parking availability used to be visible only at the facility so that travelers have to be

physically present at the parking facilities to check parking availability, which was either

shown on board signs as “full or available”, or digital signs with the number of available

spaces. Once travelers find a garage is full, they have to keep driving to the next park-

ing garage, which introduces extra trips in the traffic networks. Even a parking garage is

not full, drivers may encounter difficulties of finding a space and experience longer cruis-

ing times within the parking facilities due to higher occupancy. Without the knowledge

of parking availability before the arrivals at a parking facility, drivers cannot make good

parking decisions and usually, suffer from extra trips and more time for finding available

parking spaces.
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In this chapter, we propose a parking guidance system to assist travelers to make better

parking and routing choices to reduce the travel cost for each traveler, by utilizing both on-

line parking information and real-time and historical link travel time information. In the

last decade, enabled by smart infrastructure and smart phones, travelers are able to receive

the information of the availability of parking spaces via websites or apps without being at

the parking facilities. In this way, travelers can choose from the available parking garages,

and avoid the extra trips for parking searches. Along with parking space availability, the

online information system can also release parking charges to the drivers, so that travel-

ers can calculate their expected costs for choosing certain parking facilities. Besides the

parking cruising time and monetary costs, the cost of travel time from the origin to the

parking facility also influence drivers’ decisions on parking selection. Rational travelers

tend to minimize their own costs by choosing proper routes and parking garages. Chai

et al. (2017) proposed a joint dynamic traffic routing and adaptive signal control model,

which provided dynamic routing guidance to travelers and help them reach their desti-

nations quicker. Simulation results show that the joint routing and signal control model

reduces the average travel time by 15-20%. The dynamic routing component of that model

is chosen in this study to guide drivers to travel from their origins to their chosen parking

garages.

The parking search process is a well-studied topic in the literature (Thompson and

Richardson, 1998; Bellés et al., 2007; Benenson et al., 2008; Boyles et al., 2015). Network

models with parking searches are generally categorized as analytical or simulation-based.

Analytical models usually apply equilibrium traffic assignment as the foundation with

parking as an integral component. Parking facilities are treated as additional links and

nodes in the studied networks, and the traffic is usually modeled as system variables.

One advantage of analytical models is that optimality conditions and equilibrium analy-

sis can be studied, and analytical relations among system variables can be derived. For

instance, Boyles et al. (2015) proposed an equilibrium formulation to incorporate parking

searches into traffic network assignment models. They considered a stochastic network

with uncertainty of parking availability on certain network links, where on-street parking

is associated with availability probabilities. Travelers that seek parking are parked propor-
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tional to the corresponding probability. However, it is usually quite difficult to character-

ize dynamical behavior of driver’s route and/or parking destination choices in analytical

approaches. The simulation models, on the other hand, can explicitly apply route and

parking choice behavioral rules to travelers/agents (Caliskan et al., 2007; Dieussaert et al.,

2009). In other words, the simulation models are amenable to modeling various types of

parking choice behaviors. For instance, a driver may have a fixed choice of parking garage

if it is available. When it is fully occupied and becomes unavailable, the driver cruises to

other parking garages (Leurent and Boujnah, 2012), and this process can be easily mod-

eled in simulations. A driver in the simulation can also cruise without a pre-set parking

destination, and stop searching once an available parking garage is reached. Drivers with

more information on parking availability may behave in a more complex manner, which

is modeled in this chapter. Simulation approaches can explicitly show how the drivers

would act with exogenous information, and it is relatively easy to test the performance

of different parking policies. In this study, we adopt the simulation approach to evaluate

how our proposed parking guidance system can affect both individual and network level

performance in terms of travel costs and utilization of parking facilities.

In this study, we propose a parking guidance system with dynamic parking destination

choice and routing model (see Figure 6.1). The routing and parking searches are modeled

as a time-dependent process, where the parking and travel time information is updated

periodically, and new recommendations for a parking location and the route to reach it are

provided to drivers based on the updated information. It is noted that link travel times

are treated as stochastic so that variations of travel times due to demand fluctuations and

measurement errors can be modeled in traffic routing. The dynamics of choice switching

have been well studied for the day-to-day traffic dynamics. Studies on dynamic choice

switching usually focus on the path choices, see a comprehensive review in Yang and

Zhang (2009), with some recent exceptions on link choices, such as He et al. (2010) and

Guo et al. (2015). Among various dynamic choice switching processes, the proportional-

switch adjustment process proposed by Smith (1984) is considered as the most intuitive

formulation, and many studies are developed based on this pioneering work in Smith

(1984), such as Smith and Wisten (1995), Huang and Lam (2002), Peeta and Yang (2003),
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Smith and Mounce (2011), Mounce and Carey (2011), Zhang et al. (2015), to name a few.

The basic concept of the proportional-switch adjustment process is that the percentage

of population switching from one choice to another is proportional to the cost difference

between the choices before and after the switch. Apparently, for an individual driver, the

parking choice switching is not deterministic, and the switching probability can be derived

from the cost difference of the corresponding choices.

The contributions of this work are: (1) we propose a dynamical parking destination

choice switching model that can balance the parking demands on different parking garages

and reduce the average cost of the travelers; (2) we develop a parking guidance system

that combines the dynamic traffic routing with the parking destination choice switching

model, and evaluate its performance under different levels of traffic demand and mar-

ket penetration rates. The simulation results show that the proposed parking guidance

system can significantly reduce the system total costs and balance the parking demand

over multiple parking garages under various scenarios, especially for scenarios with high

traffic demand. The rest of the chapter is organized as follows: Section 6.2 states the prob-

lem, describes the routing algorithm and gives the general dynamic parking garage choice

switching model. Simulation setup and numerical results are presented and discussed in

Section 6.3. Section 6.4 summarizes the results of this work and discusses its future exten-

sions.

6.2 Modeling of the system
In this study, each driver equipped with the parking guidance system is able to make

real-time decisions of their parking destination, as well as the routes from the current lo-

cation to the chosen parking destination during their trips. Through the parking guidance

system, drivers have access to the dynamic online updated traffic information, including

expected link travel times, parking garage occupancy, expected incremental usage of the

garage in the near future and so on. Based on the information received, travelers evaluate

the cost of each available choice: travel time, parking fee, inside parking garage search-

ing cost and walking cost respectively (See Figure 6.1). After obtaining cost information,

drivers can choose their parking destination by simply choosing the parking garage with
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Figure 6.1: System framework.

the lowest cost among all. Then for each driver with a destination chosen, dynamic traffic

routing is performed to identify the least expected cost route for the driver. Drivers can

receive online information during the trip so that the above-mentioned decision-making

process is conducted every time step iteratively. Figure 6.1 shows the framework of pro-

posed decision-making process.

We here list the notation used throughout this chapter in Table 6.1. The network is

composed of all nodes in N and O and the bi-directional links connecting them so that the

network is fully connected.

6.2.1 Costs associated with parking destination choices
In this study, we apply a parking destination choice model as an analogy of the dynamic

choice swapping mechanism in Smith (1984). Note that in Smith (1984), the choice swap-

ping was proposed to determine the change of route choices, while in this study, the

choice swapping is for the change of parking destination choices. The route choices in this

study do not involve the Smith’s choice swapping mechanism; rather, the dynamic route

choices are determined by the hyper-path based stochastic shortest path algorithm pro-

posed in Chai et al. (2017). From the perspective of destination-specified vehicle groups,

i.e., destination-specified traffic flows, a proportion of each group may switch their desti-

nations if the cost of the original destination is higher than that of the other destination.

From the perspective of a single driver, such a proportion means the probability of switch-
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Table 6.1: Notations

Symbol Definition

i ∈ N Regular Node i in the network

o ∈ O Origin Node o in the network

t ∈ {0, 1, 2, . . . , T} Time Step within the study time period [0, T ]

p, q ∈ P Parking garages

OCp(t) Expected occupancy of parking garage p at time t

Cp(t) Generalized parking cost for parking in parking garage p at time

t

Fp(OCp(t)) Parking fee($); Monetary cost for parking garage p at time t (ex-

ogenously given)

Sp(OCp(t)) Cost ($) for searching parking in parking garage p, given the oc-

cupancy as OCp(t)

W d
p Constant walking cost ($) from parking garage p to final destina-

tion d

xi
p(t) Number of vehicles at node i (including vehicles traveling on links

to node i) choosing parking garage p as the parking place at time

t

yip(t) Generalized total cost for vehicles at node i choosing parking

garage p as the parking place at time t

τ ip(t) The (discrete) expected travel time (converted to monetary cost)

from node i to parking garage p at time t (exogenously given)

εC Initial parking fee

εS Expected inside parking garage searching cost when the parking

garage is empty

ing his or her original destination to the new one. Since such proportions are determined

by the cost difference of every two destination choices, in the following, we show how to

calculate the costs associated with the parking destination choice.

As shown in Figure 1, a driver considers the summation of following expected costs
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for selecting a certain parking destination.

• Expected travel time cost τ ip(t) - the time spent on road before reaching the selected

parking garage.

• Expected searching cost inside a parking garage Sp(OC) - the corresponding mone-

tary cost (converted using the value of time) of the time spent in the parking garage

before an available parking space is found. In some literature, it is also known as the

Cruising Cost (Qian and Rajagopal, 2014a), which is a function of the garage occu-

pancy. In Axhausen et al. (1994) they proposed that the searching time is a function

of garage occupancy in an off-street parking garage as:

Sp(OC) =
εC

1− OC
K

(6.1)

where Sp(OC) is the searching cost, OC is the occupancy, K is the capacity of the

parking garage, εC is the average time spent on searching an available space in an

empty parking garage.

This is a hyperbolic function. When the parking occupancy approaches 100%, the

searching cost becomes extremely large so that it penalizes vehicles from parking

in this parking garage. Such a setting fits the reality, as the time needed to find an

available parking slot increases dramatically when the parking garage is almost fully

occupied.

• Expected parking fees Fp(OC) - the monetary cost charged by the parking service

provider. As dynamic parking pricing schemes are emerging to better coordinate the

parking demand and supply in some pioneering projects such as SFPark, we define

the parking fee as a function of current occupancy of the parking garage. In this

study, we apply a hyperbolic function, which is similar to the in-garage searching

time function.

Fp(OC) =
εS

1− OC
K

(6.2)
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Note that the function of parking fee can be in other forms, and the current one is

used for illustration purposes. Constant parking fee, as a special case, can be imple-

mented as well when needed. There are many existing studies (He et al., 2015; Qian

and Rajagopal, 2014a,b) on the parking pricing strategies. However, it is beyond the

scope of this study. Therefore, we simply pick one parking pricing scheme in this

chapter and leave the study on parking pricing strategies as a future research topic.

• Walking cost W d
p - the corresponding monetary cost (converted using the value of

time) of the constant time spent in walking from the parking garage p to the final

destination d.

Some discussion on the choice of cost functions

Under the current parking fee function discussed above the parking fee may become large

when the occupancy approaches its capacity. Such construction of the parking fee is not

the same as the contemporary parking fee policies at most parking facilities in the real

world. However, the parking fee function is purposely constructed as the current form.

The first reason is that mathematically we would like to guarantee that the parking fa-

cilities cannot be full by setting such exceedingly large cost when the parking occupancy

approaches its capacity. The second reason is that we would like to have similar function

types for the searching cost and the parking fee cost, so that their proportionality helps us

evaluate the generalized cost function. Since the searching cost and parking fee cost share

the same structure and are proportion to each other, neither of them would dominate its

influence on the parking choices.

The current settings are used for better illustration. As shown in the analysis and the

numerical results in Section 6.3, under such settings, drivers without the searching for

parking guidance system would suffer from high costs, while drivers with such a system

can reduce their generalized costs. It is straightforward that any monotonically increasing

function can be used to replace the current cost functions for searching and parking fee

costs, as long as the travelers’ choices on highly occupied parking facilities are discour-

aged.

The generalized parking cost for parking garage p at time t is the sum of the monetary
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cost (parking fee), the inside parking garage searching cost and the walking cost to the

final destination.

Cp(t) = Fp(OCp(t)) + Sp(OCp(t)) +W d
p (6.3)

Then the generalized total cost yip is the summation of the generalized overall parking

costCp and the expected travel time τ ip (See Equation (6.4) below). The model in our work is

built on the assumption that travelers make their choices to minimize the (expected) total

cost. When parking destination is determined, only travel cost τ ip is used to dynamically

route the travelers to the parking destination.

yip(t) = τ ip(t) + Cp(t+ τ ip(t)) = τ ip(t) + Sp(OCP (t+ τ ip(t))) + Fp(OCp(t+ τ ip(t))) +W d
p (6.4)

In the above cost function, parking occupancy at “future” time instants (t + τ ip) are

involved. An estimation method based on current destination choices of all vehicles in

the network is shown in Equation (6.10). Other than instantaneous ones, using estimated

parking occupancy may help to avoid the “all-or-nothing” assignment and thus reduce

possible oscillations in the system.

At each time step, the expected travel time τ ip(t) from any node to any parking garage

can be calculated using the dynamic traffic routing algorithm and historical link travel

times. The detailed calculation method can be found in Chai et al. (2017) and thus is

omitted in this chapter due to space budget. We only outline the routing process in the

following subsection.

6.2.2 Dynamic traffic routing
In the real world, traffic conditions change constantly. It is difficult to know ahead of time

link travel time, link flow and other information accurately. Traditionally, travelers can

only rely on their experience or very limited information about the current traffic state

to make their route choice decisions. When a route is planned, the traveler is not able to

re-plan a new route easily. Usually, the pre-planned route is not the best route, especially

when unexpected incidents occur on the route. This may increase the total travel times of

impacted travelers significantly. With the rapid growth of modern technologies, now it is
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possible for the travelers to acquire recent traffic information from various sources before

and during traveling. In this way, travelers can re-plan their routes accordingly to avoid

potentially congested roads and thus reduce their travel times.

Chai et al. (2017) developed a joint model of dynamic traffic routing and adaptive signal

control. In their work, a hyper-path based stochastic shortest path algorithm was used, and

different traffic signal control methods were proposed and tested. We use the Dynamic

Traffic Routing (DTR) algorithm from Chai et al. (2017) to calculate a hyper-path for each

traveler, and use that hyper-path to dynamically route vehicles to the shortest routes to

destinations. The inputs of the DTR algorithm are traffic signal plans and link travel time

distributions.

Once a hyper-path is calculated, travelers follow the routing suggestion of the hyper-

path thereafter until a new hyper-path is calculated (depends on how frequency the travel-

ers update their route decision, the hyper-path can be re-calculated as frequently as every

second as long as the computation power allows).

To fully take advantage of the online traffic information, a dynamic link travel time up-

dating scheme is used to integrate the most up-to-date traffic information into the model.

Every link maintains a set of possible link travel time realizations as well as their corre-

sponding probabilities. After a certain period of time, every link will have a set of new

link travel time realizations (they can be new values or have some overlapped part with

the initial set).

For detailed formulations and algorithms for DTR and dynamic link travel time up-

dating scheme, please refer to the work by Chai et al. (2017).

6.2.3 Dynamic parking garage choice switching model
In Smith (1984), they proposed a deterministic flow switching model which characterizes

the flow swapping between two different routes to be proportional to the cost difference

between the two. In this study, we propose a parking destination choice model as an

analogy of the dynamic choice swapping mechanism in Smith (1984). Note that original

Smith’s swapping mechanism is for day-to-day dynamics of a group of drivers, and they

can switch their route choices every day according to the costs of routes. In this study,

the choice swapping inheres similar pattern from Smith’s swapping, but the concept is
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distinguishably different. There are two significant differences. The first one is that the

choices are on parking destinations in this study, while the original Smith’s swapping was

on route choices. The second difference is that the change of flow in this study is made

from time step to time step within a day, while the change of flow in Smith’s swapping

was made every day in day-to-day dynamics.

Δxi
p(t) = α

[
−
∑
q∈P

(yip(t)− yiq(t))+ · xi
p(t) +

∑
q∈P

(yiq(t)− yip(t))+ · xi
q(t)

]
(6.5)

Where (a)+ = {
a, if a ≥ 0

0, otherwise
, and α > 0 is a scalar to translate the unit of cost to a

proportion of flow.

Equation (6.5) presents the flow swapping between two different parking destination

choices. Δxi
p(t) is the change of the number of drivers at node i selecting destination p

at time t, which is calculated as the number of leaving drivers switching to other parking

destinations minus the number of incoming drivers switching from other parking destina-

tions. Note that xi
p(t), of drivers at node i choosing destination p, means the number of all

drivers who are on the road segments heading to node i and have chosen destination p at

time t. Any driver of such a group can switch her/his destination choice at the sequential

time step, while they are still on the road segment heading to node i.

However, Equation (6.5) requires the time step τ → 0 so that the group of travelers

xi
p(t) remains the same. Otherwise, the flow at node i in the next time step, i.e. xi

p(t + 1),

will probably not be the same group of travelers in the current time step, i.e. xi
p(t). Such

a requirement may not be feasible in real-world applications as parking choice switching

frequency might not be set to be extremely high due to cost and efficiency considerations.

Furthermore, it is observed from the right-hand-side of Equation (6.5) that the change of

flow with certain parking destination choices is determined by the number of drivers with

all parking destination choices. Such information may not be necessarily needed if we fur-

ther rewrite the swapping rules in probabilistic terms in Equation (6.6). In Equation (6.6),

each driver with a selected parking destination may switch his/her destination with a

probability, if the current choice does not have the least expected cost. Such a probability
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is taken to be proportional to the cost difference between two parking destination choices.

Simplified from Equation (6.6), from the perspective of each driver chosen destination

p, the probability of switching from the current destination choice to the other one is

Probi;vp→q(t) =

⎧⎨
⎩ 0 if yip(t) < yiq(t)

α′(yip(t)− yiq(t)) otherwise
, p �= q (6.6)

whereProbi;vp→q(t) is the probability of the individual vehicle v at node i at time t switch-

ing its parking destination from parking garage p to parking garage q. Drivers are willing

to switch to a new parking destination only if the new parking destination can lower their

total costs. If the total cost towards a certain parking garage q is greater than the total

cost of the current choice p, the driver will not consider switching to that parking garage

at all, which means Probi;vp→q(t) = 0. α′ is a regularizer to ensure that the summation of

Probi;vp→q(t) is within a reasonable range. Aggregating all drivers, the probability shown in

Equation (6.6) is equivalent to Equation (6.5).

There have been a number of studies on choosing so that the swapping behavior is well-

defined between different choices. For instance, Leurent and Boujnah (2012) proposed the

following method to calculate the regularizer α′:

α′ =
1∑

q �=p(y
i
p(t)− yiq(t)) +H

(6.7)

where H in Equation (6.7) represents the willingness to stay with the current choice. In

this study, we assume there is only a single group of drivers among which all the drivers

share the same “H”. We did not study the effects of different preference of “H”. However,

in reality, “H” could be different for different drivers. This would be an interesting prob-

lem to study in the future research, which is beyond the scope of this study. We will treat

“H” as a homogeneous variable in the context of this study.

The probability that a driver keeps the current choice in the next time step is
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1−
∑
q �=p

Probi;vp→q(t) = 1−
∑

q �=p(y
i
p(t)− yiq(t))+∑

q �=p(y
i
p(t)− yiq(t))+ +H

(6.8)

=
H∑

q �=p(y
i
p(t)− yiq(t))+ +H

. (6.9)

It shows that the larger H is, the more likely the driver would not change the current

parking destination choice. In the simulation we conducted in this study, H = $1.0 is used.

6.2.4 Parking garage occupancy dynamics
Between the current time instant and the expected arrival time instant at the parking des-

tination, the parking garage will receive incoming vehicles for parking, which means a

proper estimation of the parking occupancy should consider these incoming vehicles dur-

ing a future time period. In this study, we consider the period of morning commute during

which vehicles arrive at the parking garage and remain in the garage thereafter.

Given the parking destination choices of all drivers in the network at the current time

instance, the best estimation of the future parking occupancy at garage p is calculated as

the sum of the current occupancy and the number of expected arrival vehicles in Equa-

tion (6.10).

For i ∈ N ,

OCp

(
t+ τ ip(t)

)
= OCact

p (t) +
∑
j∈N

t+τ jp(t)≤t+τ ip(t)

xj
p(t). (6.10)

OCact
p (t) is the actual occupancy of parking garage p at time step t, which is provided

by the real-time counts at the garage. The second term is the summation of number of

vehicles from all nodes i ∈ N to parking garage p.

The constraint in Equation (6.10) t + τ jp (t) ≤ t + τ ip(t) ensures that we only count the

vehicles that will arrive at the parking garage p at the same time t without duplication

counts, as no vehicles can appear at multiple nodes at the current time t. It excludes the

vehicles that are expected to arrive later than time t+ τ ip(t) from the counts in the second

term in Equation (6.10).

129



The expected occupancy of a parking garage in the future is of great importance, be-

cause the calculation of future parking costs, which underpins the driver’s parking des-

tination and route choices, relies on the future occupancy. In the simulation, the future

occupancies are built as a vector of occupancy at each time step in the future. The vector

is then updated by Equation (6.10) every updating interval tpupdate = 10 seconds, which is

ten times to the simulation time step length 1 second.

6.3 Simulation results and analysis
Simulations are carried out using SUMO and OmNet++. SUMO is a microscopic traffic

simulator which can simulate the network and vehicle movements in the network using

various car-following models. OmNet++ is a simulation framework used to simulate com-

puter networks and network protocols. We use it to simulate the online information re-

lease mechanism in our framework. See Amoozadeh et al. (2015) and Chai et al. (2017)

for more details on the simulation tools. The synthetic network used for the simulation is

shown in Figure 6.2.

Figure 6.2: A synthetic network.

In this network, there are 2 origins (DO1 and DO2) and 2 destinations (D1 and D2).

There are 2 parking garages (P1 and P2) associated with the destinations, which means

both destinations have access to both parking garages with different walking cost W d
p .

Each parking garage has its corresponding capacity and parking fee policy. The parking
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garage information is shown in Table 6.2. In this study, we assume all time costs can con-

vert into monetary costs in dollar with the value of time 0.5 dollar per minute, i.e., 1/120

dollar per second. Other nodes in the network are all regular intersections that are con-

trolled by a fixed traffic signal plan (Since signal control is not a focus of this study, we use

fixed timing control to simplify the problem. Nevertheless, other more complicated signal

control methods are also applicable.).

Table 6.2: Parking garage capacity, parking cost and walking cost for the synthetic network.

Parking Garage Initial Parking Fee ($) Capacity
Walking Cost To Node (s)

D1 D2

P1 0.3 800 10 60

P2 0.3 1500 60 10

Vehicles are generated at the two origin nodes. Each vehicle is initially assigned to one

destination node, while it can park at either parking garage. All nodes except origin and

destination nodes are controlled by traffic lights, which are considered in the dynamic traf-

fic routing algorithm. There are two types of vehicles running in the network - traditional

vehicles without the access to online information and re-routing vehicles that have online

information access. Only re-routing vehicles are able to change their route choices and

parking destination choices during the trip when necessary. For those unguided vehicles,

they drive directly to the pre-set parking destination. If they find the parking garage is

full when they reach the parking garage, they randomly select a nearby parking garage as

a second choice.

To guarantee proper configurations of the simulation, we need to have the following

assumptions for the simulation:

• Assumption 1: In this research, we only consider the scenarios where the total park-

ing demand is less than the total parking supply. In the final state of simulation,

every vehicle should find a parking space. The scenarios where parking demand

exceeds parking supply are beyond the scope of this study.

• Assumption 2: All drivers have bounded rationalities when making a decision on
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which parking garage to go to. Drivers tend to choose the choices that minimize

their total costs as a primary goal. But their choices may also be affected by some

other constraints like familiarity to/preference for some specific parking garages,

hence the parking garage choice switch model discussed in the last section is not an

all-or-nothing model but a proportional switch model.

• Assumption 3: Re-routing vehicles have full access to the online information of link

travel times and parking garage information.

6.3.1 Effects of penetration rates of re-routing vehicles
In this subsection, we present the effects of penetration rates (i.e. the percentage of re-

routing vehicles in the entire vehicles entity. These vehicles are equipped with the park-

ing guidance system.) on network performance under different demand levels. Figure 6.3

shows the results of various costs, i.e. travel times, parking cost and total cost, with dif-

ferent market penetration rates ranging from 0 to 1.0. All time costs are converted into

monetary value (in dollar) for comparison purpose using the value of time as $0.5/min.

Two different levels of total traffic demand are tested: 500 vehicles and 2000 vehicles. When

loaded to the network, the origin and destination nodes of a vehicle are randomly selected

from two origin nodes and two destination nodes, respectively. The vehicles depart during

the first 1500 seconds simulation time, which is further divided into three time periods,

including 600 seconds before peak period, 450 seconds peak period and 450 seconds after

peak period. Within each time period, the flow rate is constant. The demand rate at the

peak period is 6 times of that in the off-peak periods: during peak hours the demand rate

is 0.8 veh/s and 0.15 veh/s for off-peak hours.

Figure 6.3a shows the average travel time on the roads before reaching the parking

garage. Figure 6.3b shows the average parking cost. Figure 6.3c shows the average total

costs in the network. The x-axis is the percentage of vehicles with routing and parking

guidance, that can switch routes and parking lots en-route. Figure 6.3 shows that the av-

erage travel time is at its minimal when market penetration rate is higher than 80%, though

the difference is not significant compared to other penetration rates when the demand is

light. The effect of enabling en-route route and parking choices in the network is more sig-

132



(a) Average travel time ($). (b) Average parking cost ($).
(c) Average total cost for indi-

vidual travelers ($).

Figure 6.3: Average costs comparison over different penetration rates.

nificant when the network is more congested. This result is consistent with the findings

in Chai et al. (2017). In their study, the vehicles cannot change their destinations en-route,

while in this study vehicles are able to switch their parking destinations if necessary. The

result indicates that by allowing drivers switch their destinations en-route, the Dynamic

Traffic Routing (DTR) algorithm (originally not designed for such destination switching)

can also reduce average travel time.

On the parking cost side, since the parking garages are always at low occupancy under

low demand level (500 vehicles case), the cost does not change much across market pene-

tration rates. When the demand gets much higher (2000 vehicles), at least one of the park-

ing garages is relatively packed with parked vehicles, so that the parking cost increases

dramatically. In Figure 6.3b, when there are 2000 vehicles of total demand and market

penetration rate is below 0.3, the average parking cost is almost constant. When market

penetration rate is over 0.3, the average parking cost decreases monotonically as the pen-

etration rate increases until it reaches 0.6, after which the cost curve becomes flat. This

indicates that the penetration rate plays a great role in reducing the parking cost when the

network is congested, and there is a critical range (0.4-0.6) of the penetration rate where

parking and routing guidance provides the most benefits. This is consistent with findings

from earlier Advanced Traveler Information Studies with respect to market penetration

rates, e.g. Al-Deek and Kanafani (1993) stated in their paper that the benefits of guiding

traffic in an accident scenario will decrease when the percentage of guided traffic exceeds

some critical threshold.

Figure 6.3c combines the average travel time and average parking cost for an individual
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traveler to provide his/her commuting cost. As we can observe, individual’s total com-

muting cost curves have similar patterns as in the average parking cost case. When the

demand is low (500 vehicles), the individual’s average commuting cost does not change

much. When the demand is high (2000 vehicles), the decrease of commuting cost is more

dramatic after the penetration rate reaches 0.5, compared with no vehicles are provided

routing and parking guidance. Again, a thresh value of market penetration exists for ob-

taining the most benefits in the high traffic demand case.

6.3.2 Balanced utilization of parking garages
Figure 6.4 and Figure 6.5 show the occupancy and other parameters of the parking garages

over the entire simulation horizon with a total number of vehicles equal to 500 and 2000 re-

spectively. We run two sets of simulations with market penetration ranges from 0 and 1.0.

The variables we are looking at are occupancy of each parking garage over time and the

parking cost without walking cost of each parking garage over time, which is the summa-

tion of parking fee and inside parking garage searching cost. For simplicity, we use pure

parking cost to denote the parking cost without walking cost. Figure 6.4d and Figure 6.5d

describe the demand profiles for the two different cases.

(a) Occupancy over time. (b) Pure parking cost over time.

(c) Occupancy difference over time. (d) Vehicle demand profile.

Figure 6.4: Case 1 - 500 vehicles.

Figure 6.4a and Figure 6.5a show the parking garage occupancies over time with 500

and 2000 vehicles respectively. In the 500 vehicles case, when there are 100% guided ve-

134



(a) Occupancy over time. (b) Pure parking cost over time.

(c) Occupancy difference over time. (d) Vehicle demand profile.

Figure 6.5: Case 2 - 2000 vehicles.

hicles the simulation terminates (the time the last vehicle in the network finds its parking

space) about 20s earlier than the case in which all vehicles are not guided. However, in the

2000 vehicles case, the one with 100% penetration terminates about 250s later than the one

with 0% penetration. The dynamic routing and parking guidance system tries to reduce

the overall cost for the travelers, which includes both travel cost and parking related cost.

It does not necessarily guarantee that the travel time is reduced. Hence, it is possible that

with re-routing enabled, a certain traveler may experience longer travel time en-route and

simulation takes longer time to terminate as what is observed in 2000 vehicles. However,

this observation depends highly on the simulation settings like parking demand, parking

lot capacities and parking fee schemes. Sometimes the simulation with parking guidance

system might terminate earlier than the one without guidance system, which is exactly

what happens in the 500 vehicles case.

Figure 6.4b shows that in 500 vehicles case, the pure parking cost difference between

different parking garages is reduced when vehicles are 100% assisted by the parking and

route guidance system compared to the case that there is no guidance at all. Figure 6.5b

shows a more extreme scenario where the pure cost of one parking garage explodes to

infinity when there is no parking and route guidance system implemented. This implies

that that garage is at full capacity when simulation ends (See Equation (6.2)).
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The simulation results also show that the parking switching mechanism enables more

efficient utilization of the parking facilities. The occupancy difference between two park-

ing garages are reduced, and parking garages are less likely to get fully occupied as de-

mands can be routed to other parking garages, as shown in Figure 6.5a. Parking garage

P1 has a 100% occupancy and P2 has a final occupancy around 80% when there is no

parking and routing guidance. When guidance is enabled, the occupancies of parking

garage P1 and P2 approach to 90% asymptotically and never reach 100%. The difference

between red and light blue lines gets smaller and smaller and approaches to 0 asymptot-

ically after time 1500s, when all vehicles are loaded into the network (see the green line

in Figure 6.5c); meanwhile the difference between dark blue and green lines remains over

0.2, which doesn’t show the asymptotic pattern (see the dark blue line in Figure 6.4c). In

the low demand scenario, the occupancy difference does not diminish to 0, no matter how

many guided vehicles are in the network. Nevertheless, when guidance is enabled in the

low demand scenario, the occupancy difference between parking garages is still decreas-

ing, as shown in Figure 6.4c.

Since the demands are better allocated to the available parking garages, the pure park-

ing cost is much lower when our guidance system is deployed, as shown in Figure 6.5b.

Without guidance, the pure parking cost of parking garage P1 will rise sharply to unten-

able levels at around t=2300s when that parking garage is fully occupied. When guidance

is enabled, the pure parking costs of both parking garages are kept within a reasonable

amount (under $20). In the 500 vehicles case, however, the pure parking cost of each park-

ing garage remains at a relatively low level regardless of the penetration rate, largely be-

cause both lots have adequate capacity to handle all parking demand.

6.3.3 Sioux Falls network
To evaluate the performance of the proposed framework in a more realistic setting, a

medium size network of Sioux Falls city is used. See Figure 6.6. The network is an ab-

straction of the real Sioux Falls network with 5 parking garages locating at node 9, node

10, node 11, node 15 and node 16. The capacity and parking cost related information are

given in Table 6.3.

Two different demand levels are tested with the Sioux Falls network: 3000 vehicles
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Figure 6.6: Sioux Falls network with 5 parking garages.

and 5000 vehicles separately. Vehicles are generated with the randomly selected origin

and destination from the OD list in Table 6.4. Node 10 gets the highest probability to be

chosen as destination since it represents the downtown area. There is a peak period from

400s to 700s during which the flow rate is six times of that during off-peak hours. See

Figure 6.7c and Figure ??c for demand profile details.

Two parking garages, P9 and P10, are selected to study the performance of the guidance

system. Figure 6.7 and Figure 6.8 show the occupancy and pure parking cost over time
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Table 6.3: Parking garage capacity, parking cost and walking cost for the Sioux Falls net-
work.

Parking Garage Initial Parking Fee ($) Capacity
Walking Cost To Node (s)

9 10 11 15 16

PG_1 0.3 1500 15 1 20 30 20

PG_2 0.3 1000 1 15 35 45 35

PG_3 0.3 1000 35 20 1 50 40

PG_4 0.3 1000 45 30 50 1 50

PG_5 0.3 1000 35 20 40 50 1

Table 6.4: Origin and destination nodes for the Sioux Falls network.

Origin Nodes Destination Nodes

1 2 3 6 7 8
9 10 11 15 16

12 13 18 20 21 24

for 3000 vehicles and 5000 vehicles cases respectively. From the figures, we can see that

with 100% of re-routing vehicles in the network, the occupancy difference between the two

parking garages is reduced compared to 0% re-routing vehicles case for both 3000 vehicles

and 5000 vehicles. The pure parking cost follows the same pattern. This is consistent with

the results from the simple synthetic network.

Figure 6.9 shows how the costs change when the penetration rate of re-routing vehicles

varies from 0% to 100%. Figure 6.9a shows that the average travel time decreases as the

penetration rate of re-routing vehicles increases from 0% to 100% for both 3000 vehicles

and 5000 vehicles cases. The average travel times for 3000 vehicles and 5000 vehicles are

roughly the same for most of the penetration rates. This is because both 3000 vehicles and

5000 vehicles make the network quite congested with these many vehicles. The demand

difference between the two does not make much difference in terms of average travel time.

Figure 6.9b shows the average parking-related costs. We show three types of costs in

the figure: walking cost, parking fee plus searching cost and total parking cost, to see how

the penetration rate of re-routing vehicles affects each of the costs. Parking fee and search-

ing cost remains almost the same as re-routing vehicles percentage changes in the 3000
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(a) Occupancy over time. (b) Pure parking cost over time.

(c) Vehicle demand profile.

Figure 6.7: Case 1 - 3000 vehicles.

(a) Occupancy over time. (b) Pure parking cost over time.

(c) Vehicle demand profile.

Figure 6.8: Case 2 - 5000 vehicles.

vehicles case. In this case, the total demand (3000 vehicles in total) is low, and the garages

have sufficient capacities (5500 slots in total) to meet the parking demand. Flow switch-

ing between different parking garages are kept within a moderate range. The switching

has small impact on the parking fee and searching cost. In the 5000 vehicles case, the

switching between different garages is more unbalanced: more drivers switch their park-

ing choices from Garage 1 to other garages than the reversed switching. If there was no

parking and routing guidance system, vehicles heading to Garage 1 would not be able to
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switch to other parking garages. Under this circumstance, parking fee and searching cost

at parking Garage 1 will be very high. In the meanwhile, the other 4 parking garages may

have very low utilization, leaving those unused capacities wasted. With parking and rout-

ing guidance system, vehicles can be guided to less occupied parking lots to avoid high

parking fee and searching cost, and parking garage occupancies are more balanced.

Walking cost goes up as the penetration rate of re-routing vehicles increases. This is

because when vehicles are not re-routing, their walking costs are at minimum since they

always parked at the nearest parking garage to their final destinations. With re-routing,

some of them may park at some other parking garages which increase the walking costs

compared to the former case. Even though walking cost may increase after the re-routing,

drivers may still prefer to do so. The reason is that by re-routing, drivers can reduce

their generalized(overall) costs. Figure 6.9c shows that with higher penetration rate of

re-routing vehicles, the average travel cost decreases for both the 3000 vehicles case and

the 5000 vehicles case.

(a) Average travel time ($).

(b) Average parking related

cost ($).

(c) Average total cost for indi-

vidual travelers ($).

Figure 6.9: Average costs comparison over different penetration rates.

Figure 6.10 shows the total number of failed parking attempts to a fully occupied park-

ing lot. When a traveler arrives at a parking lot in hope to find an available parking space,

he/she is forced to search for a new parking lot as the one he/she is currently at is fully oc-

cupied. The failed parking attempts not only will increase the VMT/VHT (Vehicle Miles

Traveled/Vehicle Hours Traveled) of that vehicle, but also will introduce more conges-

tion to other traffic on road. The higher number of failed parking attempts to some extent

indicates the poorer performance of a network. Travelers in a network without dynamic

routing and parking guidance system are not able to know the occupancy information of
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(a) A synthetic network with 2 origins and 2

destinations.

(b) Sioux Falls network.

Figure 6.10: Number of failed parking attempts to a full parking lot.

a certain parking lot ahead of time. This will inevitably result in some failed parking at-

tempts. In Figure 6.10a when there are 2000 vehicles and 0% of re-routing vehicles, there

are a total of 226 failed parking attempts in the network. This number decreases signifi-

cantly as the percentage of re-routing vehicles increase. When there are greater than or

equal to 70% re-routing vehicles in the network, the failed parking attempts become 0.

When there are 500 vehicles in the network, there are no failed parking attempts as the

parking lots are operating well below their capacities. Same results can be observed in the

larger network as Figure 6.10b shows. Failed parking attempts are decreasing monotoni-

cally when the percentage of re-routing vehicles are increasing from 0% to 30% with 5000

vehicles presented. Failed parking attempts remain 0 when the percentage of re-routing

vehicles exceeds 30%. The above results indicate that with the proposed dynamic parking

and routing guidance system, vehicles can choose their parking destinations more effi-

ciently.

6.3.4 Computational efficiency
All the simulation tests are run on a Xeon E5-2963 v3 (18 cores, 2.3 GHz) server, one sim-

ulation run per thread. For the smaller synthetic network, it takes 300 seconds on aver-

age to run a single simulation with 2000 vehicles. For the larger Sioux Falls network, it

takes 1500 seconds on average to run a single simulation with 5000 vehicles. The parking
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garage choice model takes trivial computation effort to perform a single calculation. The

main computation cost comes from the DTR calculation as we are re-calculating a new

hyper-path every couple of seconds. In real implementation, some of the computation

tasks like DTR calculation can be distributed to every individual vehicle to speed up the

computation.

6.4 Conclusion
In this chapter, we proposed a dynamic parking and route guidance system with Dynamic

Traffic Routing (DTR) and parking choice. By iteratively updating the travel and parking

costs using online information and estimation, travelers can switch their parking destina-

tions with least expected costs en-route before reaching their destinations.

The proposed system was implemented and tested on a microscopic simulation plat-

form. Simulation results showed that the average travel time and the total commuting cost

of individuals can be significantly reduced when the penetration dates exceed a critical

threshold value (60% in our case) under heavy traffic demand. From the system perspec-

tive, the benefit of real-time guidance becomes more significant when the traffic demand

level is high. From the parking resource administrator’s point of view, unbalanced parking

garages mean inefficient use of parking resources and high parking costs in certain parking

garages. The former results in a waste of parking resources, while the latter will increase

the out-of-pocket costs of travelers. In the proposed system, vehicles can have access to the

online traffic and parking garage information, so that they can switch to alternative park-

ing garages to reduce their total costs. Simulation results showed that the proposed system

can better allocate the parking demand so that the usage of parking resources is balanced.

The occupancy difference between different parking garages becomes less compared to

that without the proposed guidance system. The simulation results showed that neither

of the parking garages would be fully occupied when total supply of parking resource is

greater than the total demand. The results also showed that when parking destination

switching was not enabled, some parking garage would be 100% occupied, which results

in extremely high parking costs; when all vehicles can switch their parking destinations,

the parking cost is kept at a reasonable level. For now, the system is only tested in simula-
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tion, which many complicated relationships may be oversimplified. Later on, field imple-

ment in a small scale (maybe on campus) will be carried out to see if the proposed system

can work in the real world as expected. Another possible challenge of the proposed system

is the implementation cost. Gathering and distributing the real-time information require

advanced infrastructures and equipment. Thanks to the rapidly developing technologies

nowadays, access to that information is much easier and its cost is much lower than before:

1) most parking facilities have already started to collect real-time occupancies and parking

prices; 2) map/traffic providers like HERE Maps, INRIX and Waze have very detailed and

accurate link travel time information. Once the proposed system obtains that information

from individual parking garages and the online map service providers, broadcasting the

information to the travelers through mobile apps should be the major task to complete the

proposed system. Most of the information is either public and open-sourced or can be

purchased at reasonable costs.

For future research, one possible extension to the current work is to study the effects

of different pricing schemes. In the real world, parking garage usually employs differ-

ent parking charge policy during a different time of day to regulate the incoming flow to

the parking garage, which can be further studied with the proposed destination switch-

ing algorithm. Also, in the current work, we did not distinguish and examine the effects

of dynamic pricing and dynamic re-routing separately. In the next step, those two parts

will be studied separately. Analysis and evaluations will be performed to see whether

those two can benefit each other or there are some canceling effects, and how significant

the effects are. Another interesting extension topic is to study the effects of incomplete

information on the performance of the proposed system. The assumption in the current

research assumes that perfect information is available to re-routing vehicles. Perfect infor-

mation means every detailed information is available, which is not realistic in real-world

application. It is an interesting but also challenging problem to study how to use partial

information to make reliable and efficient parking guidance. One last interesting topic

is to consider both short term and long term parking reservation behaviors in dynamic

parking and route guidance system. Overall, the implementation and expansion of the

proposed system may benefit urban travelers in the long run and thus merit more future
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research.
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Chapter 7

Conclusion and Future Work

7.1 Summary of contributions
This dissertation aims to investigate the relationship between traffic control and travel-

ers’ route choice behavior, and to develop a novel framework to systematically coordinate

those two parts in a concurrent manner to improve the performance of the transportation

system in the context of Vehicular Ad-Hoc Network (VANET). The central idea is to take

advantage of on-line information availability boosted by VANET to reduce uncertainties

and stochasticities while traveling in the network and, in the same time, to guide traffic to

their destinations more quickly and efficiently. Traffic stability and deadlock concerns are

also explicitly considered and studied. Based on the dynamic traffic routing and adap-

tive traffic signal control framework proposed, possible applications that can utilize the

framework are discussed.

Firstly, we proposed a joint adaptive routing and traffic signal control algorithm to im-

prove traffic operations in a VANET enabled traffic environment. Our dynamic routing

algorithm (DTR) is an extension of the LET algorithm of Miller-Hooks and Mahmassani

(2000) with periodic updates of link travel times. The hyper-path based dynamic traffic

routing method takes stochasticity and randomness of link travel time into consideration,

which ensures routing decision to be robust and reliable. In addition, the periodic link

travel time online updating presented in this dissertation uses both historical information

(a priori knowledge) and new online information, thanks to the V2X system, to form a

posteriori knowledge about link travel time. Furthermore, the proposed algorithm also
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takes into account the delay caused by real-time traffic signal operations. Besides several

traditional traffic signal control strategies, namely fixed-timing, vehicle actuated control

(known as low density control in our paper) and adaptive Webster’s (known as high den-

sity control in our paper), I also proposed two new traffic signal control strategies, the

Phase Selection Control and the Modified Max Pressure Control, to take into account the

effects of both incoming demand and current queues on traffic signal operations.

Simulation models are built to test and compare the models developed in this disserta-

tion against the traffic routing methods and traffic signal control models in the literature.

Our simulation results show that the DTR algorithm works well under higher demand

scenarios together with the adaptive traffic signal control methods proposed. Enabling

vehicle re-routing in the network can reduce the average travel time as well as reduce the

average queue length at the intersection. However, the more is not necessary the better.

We discover that with a certain percentage between 0% to 100% of DTR vehicles in the net-

work, the average travel time can reach its minimal, which our simulation tells us for 6000

vehicles this number is around 50%. This number will likely vary over networks, traffic

demand, and driver population. With the dynamic travel time updating model proposed

in the paper, the re-routing algorithm can further reduce the average travel time in the

network by taking advantage of the most current link travel time information.

The different signal control methods proposed and tested under different scenarios

tells us that the Phase Selection Control and the Modified Max Pressure Control work

better than the rest four control methods (including the original Max Pressure Control

and fixed timing control). They tend to respond to traffic and accommodate traffic better

than the rest. Average speed is higher and average queue length is shorter when these two

control methods are applied. Among all the six control methods (including the original

Max Pressure Control), the original Max Pressure Control performs the worst as its logic

to find the optimal phase and its corresponding duration is not well designed. With the

Phase Selection Control and the Modified Max Pressure Control, the MFD of the network

is closer to a trapezoidal shape compared to that of the Original Max Pressure Control.

For the latter, its MFD is more chaotic and fluctuating. The maximum flow rate is also

lowered compared to the former two.
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The joint dynamic traffic routing and adaptive signal control approach is also tested

against a traffic accident scenario. With links blocked or partially blocked by accidents,

the dynamic traffic routing (DTA) can efficiently re-route traffic to other uncongested links

to avoid long delay. According to the simulation results, the average travel time in the

network can be reduced by 17% ∼ 27% when the percentage of re-routing vehicles is

chosen properly. The optimal percentage of re-routing vehicles in this case relies heav-

ily on the traffic demand level. In uncongested or mildly congested scenarios, the more

re-routing vehicles in the network are, the less the average travel time is. In a highly con-

gested network, however, the optimal proportion of re-routing vehicles lies somewhere

between 0% ∼ 100%, which again depends on the traffic demand, driver population, net-

work geometry and so on.

Secondly, we investigate one crucial issue in traffic routing and dynamic traffic assign-

ment that most of the literature, current and past, failed to consider: deadlock avoidance

in traffic routing and traffic assignment. The dynamic traffic routing and adaptive signal

control interaction model developed earlier in this dissertation behaves well in terms of

average travel time and average travel delay in most cases. However, there is possibility

that in some extreme cases the proposed routing and control model may fail to produce

satisfying results. The underlying logic of DTR does not guarantee to prevent deadlock,

a.k.a gridlock, from happening. To address the possibility that deadlock occurs, following

the study of dynamic traffic routing and adaptive signal control, I formulate a deadlock

avoidance dynamic user equilibrium model with queue spillback. Travelers’ route choice

is governed by a simple "Odd-Even Routing" rule which is proved to generate deadlock

free routing result. Potential deadlocks are detected with an algorithm modified based on

Floyd Warshall Algorithm, and assigned a deadlock potential value to each potential dead-

lock. The model minimizes this potential, and meanwhile tries to maintain the total travel

time in the network at a reasonably low level.

Numerical studies for both high and low demand cases have been designed, tested

and compared. The results show that the proposed DLA model performs well in con-

gested, high demand scenarios, reducing the total number of queues in the network by

27%. Therefore, the deadlock potential is lowered correspondingly. The optimal percent-
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age of OE Routing vehicles in high demand case equals 33.33%, which implies that by in-

troducing only 33.33% OE Routing vehicles in the whole vehicle population, it is possible to

significantly reduce the possibility of having deadlocks in the network. In addition to re-

duction in total number of queues, there are two other unique characteristics that the DLA

model exhibits. Fisrt, the DLA model tends to spread queues evenly among different road

links to utilize queuing capacity in the network as fully as possible. Furthermore, the DLA

model also spreads out queues over temporally to make queues much more evenly dis-

tributed over time compared to cases without OE Routing vehicles. With these two queue

smoothing, the DLA model is able to further reduce the deadlock potential. In low de-

mand scenario, however, having OE Routing vehicles does not provide much benefits. In-

stead, the extra detours made by OE Routing vehicles contribute to total travel cost increase.

Numerical test confirms that with low demand scenario the optimal solution is with 0%

OE Routing vehicles. The more OE Routing vehicles in this situation, the worse the overall

performance will be.

The DLA model proposed in this dissertation provides an efficient and effective ap-

proach to reduce the deadlock probability. Networks with high congestion benefit the

most from the DLA model with respect to deadlock potential reduction. While the model

of DLA is self-explanatory and working, it may not be straightforward to implement the

proposed OE Routing scheme in real world. Traditional human-driven cars lack the ca-

pability to talk to traffic controllers. As a consequence, it is difficult, if not impossible,

to completely prevent traditional human-driven cars from making certain turns that are

prohibited by the OE Routing rules through imposing a turning penalty as what the model

does. However, with V2I technology and autonomous driving technology making great

break-through in the near future, monitoring and controlling vehicles will become eas-

ier and easier. Thus, imposing a special turning penalty to some special vehicles, i.e. OE

Routing vehiles, will become a feasible task.

Finally, we explored the possibility of applying the dynamic traffic routing and adap-

tive traffic signal control in VANET environment to various applications. One particular

application studied in this dissertation is on parking search via dynamic traffic routing. In

the last chapter of this dissertation, we proposed a dynamic parking and route guidance
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system with Dynamic Traffic Routing (DTR) and parking choice. By iteratively updating

the travel and parking costs using online information and estimation, travelers can switch

their parking destinations with least expected costs en-route before reaching their desti-

nations.

The proposed system was implemented and tested on a microscopic simulation plat-

form. Simulation results showed that the average travel time and the total commuting

cost of individuals can be significantly reduced when the penetration rates exceed a crit-

ical threshold value (60% in our case) under heavy traffic demand. From the system per-

spective, the benefit of real-time guidance becomes more significant when the traffic de-

mand level is high. From the parking resource administrator’s point of view, unbalanced

parking garages mean inefficient use of parking resources and high parking costs in cer-

tain parking garages. The former results in a waste of parking resources, while the latter

will increase the out-of-pocket costs of travelers. In the proposed system, vehicles can

have access to the online traffic and parking garage information, so that they can switch

to alternative parking garages to reduce their total costs. Simulation results showed that

the proposed system can better allocate the parking demand so that the usage of park-

ing resources is balanced. The occupancy difference between different parking garages

becomes less compared to that without the proposed guidance system. The simulation

results showed that neither of the parking garages would be fully occupied when total

supply of parking resource is greater than the total demand. The results also showed that

when parking destination switching was not enabled, some parking garage would be 100%

occupied, which results in extremely high parking costs; when all vehicles can switch their

parking destinations, the parking cost is kept at a reasonable level. For now, the system is

only tested in simulation, which many complicated relationships may be oversimplified.

Later on, field implement in a small scale (maybe on campus) will be carried out to see if

the proposed system can work in the real world as expected. Another possible challenge

of the proposed system is the implementation cost. Gathering and distributing the real-

time information require advanced infrastructures and equipment. Thanks to the rapidly

developing technologies nowadays, accessing to that information is much easier and its

cost is much lower than before: 1) most parking facilities have already started to collect
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real-time occupancies and parking prices; 2) map/traffic providers like HERE Maps, IN-

RIX and Waze have very detailed and accurate link travel time information. Once the

proposed system obtains that information from individual parking garages and the on-

line map service providers, broadcasting the information to the travelers through mobile

apps should be the major task to complete the proposed system. Most of the information

is either public and open-sourced or can be purchased at reasonable costs.

7.2 Outlook of future work
Our future work will extend the current work based on (deadlock free) dynamic traffic

routing with adaptive signal control to multiple directions.

A possible extension of this work would be to consider global signal optimization.

The signal control methods proposed in this work are all distributed methods. The phase

selection method, for example, seeks local optimality but not global optimality. Coordi-

nation could be another extension to the current work. These new research directions will

be even more challenging than the current joint routing and distributed signal control

problem that we have dealt with in this paper and are worthy of serious investigation.

Another possible extension could be dynamically changing the market penetration rate

of DLA-routing vehicles in response to the traffic demand and overall network conditions,

instead of one fixed percentage in the current model.

For parking search application, one possible extension to the current work is to study

the effects of different pricing schemes. In the real world, parking garage usually employs

different parking charge policy during a different time of day to regulate the incoming flow

to the parking garage, which can be further studied with the proposed destination switch-

ing algorithm. Also, in the current work, we did not distinguish and examine the effects

of dynamic pricing and dynamic re-routing separately. In the next step, those two parts

will be studied separately. Analysis and evaluations will be performed to see whether

those two can benefit each other or there are some canceling effects, and how significant

the effects are. Another interesting extension topic is to study the effects of incomplete

information on the performance of the proposed system. The assumption in the current

research assumes that perfect information is available to re-routing vehicles. Perfect infor-
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mation means every detailed information is available, which is not realistic in real-world

application. It is an interesting but also challenging problem to study how to use partial

information to make reliable and efficient parking guidance. One last interesting topic

is to consider both short term and long term parking reservation behaviors in dynamic

parking and route guidance system. Overall, the implementation and expansion of the

proposed system may benefit urban travelers in the long run and thus merit more future

research.
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Appendix A

Chapter 4

A.1 Algorithm 1: DTR algorithmwith adaptive signal con-
trol

Algorithm 3 DTR algorithm with adaptive signal control

1: procedure Initialization

2: for each node i ∈ V do

3: for each node h ∈ {Γ(i), i} do
4: for each t ∈ S do

5: if i �= D then

6: λh
i (t) = ∞

7: πh
i (t) = ∞

8: else

9: λh
i (t) = 0

10: πh
i (t) = 0

11: end if

12: end for

13: end for

14: end for

15: Create an empty vector H

16: Insert D into H: H ← D

17: end procedure
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18:

19: procedure Update labels

20: for each i ∈ Γ(j) do

21: for each h ∈ {Γ(i), i} do
22: for each t ∈ T do

23:

μh
i (t) = min

j∈Γ(i)

{
K∑
k=1

{[
φ
ωl
i

ij (t) + τ kij

(
t+ φ

ωl
i

ij (t)
)
+ λi

j

(
t+ φ

ωl
i

ij (t) + τ kij

(
t+ φ

ωl
i

ij (t)
))]

·ρkij
(
t+ φ

ωl
i

ij (t)
)}}

24: if μh
i (t) < λh

i (t) then

25: λh
i (t) = μh

i (t)

26: πh
i (t) = j

27: H = H
⋃

i

28: end if

29: end for

30: end for

31: end for

32: Go to procedure INITIALIZATION

33: end procedure

34:

35: procedure Check vehicle state

36: if next node is reached and destination node is not reached then

37: Go to Procedure Updating Queue Distribution

38: else if next node is reached and it is destination node then

39: Go to Procedure Stop

40: else

41: t ← t+ 1

42: Go to Procedure RE-ROUTING

43: end if

44: end procedure
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45: procedure Update link travel time

46:

ρupdated(t = τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

b · ρold(t = τ), if τ ∈ T old

c · ρnew(t = τ), if τ ∈ T new

b · ρold(t = τ) + c · ρnew(t = τ), if τ ∈ T old ∩ T new

T updated = T old ∪ T new

47: end procedure

48:

49: procedure Re-routing

50: Go to Procedure Initialization

51: end procedure

52: procedure Stop

53: STOP

54: end procedure
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A.2 Algorithm 2: Modified Max Pressure Algorithm

Algorithm 4Modified Max Pressure Algorithm

1: procedure Choose phase and duration

2: for each t ∈ [Gmin, Gmax] do

3: for each movement m do

4: fm(t) =
α×Nm

t +β×Qm
t

t

5: (Nm
t : is the number of vehicles that will arrive within time t that will move

in movement m)

6: (Qm
t : is the queue length on the link of movement m)

7: end for

8: end for

9: fhigh = −1

10: for each t ∈ [Gmin, Gmax] do

11: for each phase p do

12: sum the flow rates of each movement in the phase at that time

13: if summed flow rate ≥ fhigh then

14: fhigh=summed flow rate

15: next phase = p

16: next phase duration = t

17: end if

18: end for

19: end for

20: end procedure

A.3 Original MP Control
The MP Control policy (Varaiya (2013)) u∗ : χ → S . For X ∈ χ assign the weight of each

movement (n,m)

w(n,m)(X) = x(n,m)−
∑

p∈Outm

r(m, p)x(m, p) (A.1)
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and assign the pressure of each network signal control matrix S ∈ S

γ(S)(X) =
∑
n,m

c(n,m)w(n,m)(X)S(n,m) =
∑

n,m;S(n,m)=1

c(n,m)w(n,m)(X) (A.2)

The MP policy u∗ is:

u∗(X) = argmax{γ(S)(X)|S ∈ S} (A.3)
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Appendix B

Chapter 5

B.1 Floyd-Warshall Algorithm

Algorithm 5 Floyd-Warshall Algorithm

1: procedure

2: let dist be a |V| × |V| array of minimum distances

3: for u from 1 to |V| do

4: for v from 1 to |V| do

5: if w(u,v) is not NULL then // the weight of the edge (u,v)

6: dist[u][v] ← w(u,v)

7: else

8: dist[u][v] ← ∞
9: end if

10: end for

11: end for

12: for each vertex v do

13: dist[v][v] ← 0

14: end for

15: for k from 1 to |V| do

16: for i from 1 to |V| do

17: for j from 1 to |V| do

18: if dist[i][j] > dist[i][k] + dist[k][j] then

19: dist[i][j] ← dist[i][k] + dist[k][j]
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20: end if

21: end for

22: end for

23: end for

24: end procedure
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B.2 Modified Transitive Closure Algorithm

Algorithm 6Modified Transitive Closure Algorithm

1: procedure Initialization

2: Input Vertices: V , Edges: E, Link Deadlock Potential: Pij(t) =
∑

s′
∑

r q
d,s′,r
(i,j) (t)

3: for each edge (u, v) in E do

4: if Pij(t) > 0 then

5: w(u, v) = 1

6: else

7: w(u, v) = 0

8: end if

9: end for

10: end procedure

11: procedure Transitive Closure

12: Input Vertices: V , Edges: E, Link Weights: w(u, v)

13: let reach be a |V| × |V| array

14: for u from 1 to |V| do

15: for v from 1 to |V| do

16: if w(u,v) is not NULL then // the weight of the edge (u,v)

17: reach[u][v] ← w(u, v)

18: else

19: reach[u][v] ← 0

20: end if

21: end for

22: end for

23: for each vertex v do

24: reach[v][v] ← 1

25: end for
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26: for k from 1 to |V| do

27: for i from 1 to |V| do

28: for j from 1 to |V| do

29: reach[i][j] ← reach[i][j] or (reach[i][k] and reach[k][j])

30: end for

31: end for

32: end for

33: end procedure

34: procedure Compute Cycles

35: Input Reachability Matrix: reach

36: let Ξt be the list of cycles in the network at time t

37: let indices be the indices where diagonal(reach) == 1

38: for each index i in indices do

39: for each index j in indices and i �= j do

40: if reach[i][j] == 1 then

41: if index i ∈ cycle c in Ξt then

42: if index j /∈ c then

43: c ← c ∪ {j}
44: end if

45: else

46: Add a new cycle (i, j) to the list of cycles Ξt

47: end if

48: end if

49: end for

50: end for

51: end procedure
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