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ABSTRACT OF THE THESIS

Wave-Slope Soaring of the Brown Pelican

by

Ian Alexander Stokes

Master of Science in Mechanical and Aerospace Engineering

University of California San Diego, 2019

Professor Andrew Lucas, Chair
Professor Stefan Llewellyn-Smith, Co-Chair

We theoretically assess the energy savings associated with wave-slope soaring of the

brown pelican over near-shoaling ocean surface waves. The steady, constant altitude flight of a

pelican is analyzed as a control. The airflow induced by a passing wave, or the “wave-induced

wind,” is theoretically analyzed for shallow water solitary waves. These waves are assumed to

be well described by the KdV equation. We use potential flow theory to describe the wave-

induced wind. Using a regular expansion of the Stokes stream function and the Green’s function

for Laplace in 2D with Dirichlet boundary conditions, we obtain integral expressions for the

horizontal and vertical components of the wave-induced wind in a frame of reference moving

with the wave. The theory results in expressions wherein provided with the amplitude and

period of an incoming swell, horizontal and vertical components of the wave-induced wind in a

frame of reference moving with the wave are produced. Wave-slope soaring flight is analyzed

over near-shoaling solitary waves on size scales corresponding to wind swell, with amplitude of

1m and period of 10s. We find an upper bound benefit of 57.6% decrease in required mechanical

power output as compared with flight out of ground effect and 52.4% benefit as compared with

standard ground effect flight. The theory in this work define sufficient evidence that wave-

slope soaring could become a viable strategy for energy efficient flight of unmanned autonomous

vehicles (UAVs).
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Introduction

We theoretically assess the energy savings associated with wave-slope soaring flight. In

particular, we study the brown pelican practicing wave-slope soaring over near-shoaling, coastal,

ocean surface waves. Wave slope soaring is a common practice of seabirds whereby updrafts

resulting from near-shoaling waves are utilized in combination with ground effect to achieve

energy efficient flight. Some birds, such as cormorants, flap throughout this process while others,

such as the brown pelican, soar through these updrafts. This paper will focus on soaring flight

as opposed to flapping flight.

Studies of the various means of soaring used by birds have gained attention in industry

due to their practical application to programming unmanned autonomous vehicles (UAVs). Al-

batrosses have received significant attention with their practice of “dynamic soaring.” Dynamic

soaring has been a topic of research for decades and remains active, particularly for biomimicry

by UAVs. The dynamic soaring process has been detailed by Wilson (1975), formalized by Denny

(2009), and experimentally verified by Sachs (2013), to name a few of those who have studied

this flight mechanism. In short, the birds use the shear layer above the ocean on windy days to

accelerate and soar for extended periods of time without flapping. The mechanism is comparable

to the tacking of a sailboat in order to make way upwind.

Richardson (2011) studied the conditions wherein dynamic soaring becomes a cost-

effective method of flight. It was found that when the winds are strong, dynamic soaring was

preferred, regardless of sea surface conditions. When the winds are light, but surface conditions

provide swell, wave-slope soaring becomes the albatross’ dominant method of travel. In condi-

tions of light wind and minimal surf, rather than flight via flapping, albatrosses simply sit on the

ocean surface until the wind or waves return. As the albatrosses are reluctant to fly without using

either dynamic or wave-slope soaring flight, it seems clear that there must be significant benefit

to both of these means of flight. While dynamic soaring has been widely studied, wave-slope

soaring has not received much attention in the literature. There is no proper formalism regarding

wave-slope soaring, and it has rarely been mentioned outside of the study by Richardson (2011).

In this paper we aim to create a theoretical formalism from which experimental research as well

as application for UAV mimicry can stem.
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Chapter 1

Pelican Flight in Absence of

Ocean Waves

1.1 Assumptions and Parameters

First off, we will make some assumptions about the nature of the air flow over a brown pelican’s

wings. The dynamic viscosity of air is small (µ ≈ 1.8 ∗ 10−5 N·s
m � 1) over the relevant

temperature range, thus (1) we assume inviscid flow. The Mach number can be expressed as

Ma = uc/c where c is the speed of sound. As we model the flow of the air over the pelicans

wings, c → cair ≈ 343 m/s. Pennycuick (1982), through observational studies, determined the

average speed of a brown pelican in straight flight to be roughly 10 m/s, which we will use

as the characteristic velocity uc for Mach and Reynolds number analyses. Plugging into the

relation for Ma we see that (Ma ≈ 10/343 ≈ 0.03) is much less than the critical Mach number

(Mac = 0.2). Consequently, (2) we may ignore compressible effects in this flow. The air above

the ocean typically does not exhibit large changes of density over the length scales of soaring

flight, thus (3) assume the density of air (ρ) to be constant throughout the flow.

As the flow is now assumed to be inviscid and exists within an incompressible fluid of

constant density, it is appropriate to (4) assume that the air flowing over the pelican’s wing will

act as an ideal fluid and the flow will be governed by Euler’s equations. As the flow in the bird’s

frame of reference is ideal and also irrotational, we can look at the cross section of a pelican wing

and use potential flow theory to analyze the flow. This allows us to use the Kutta-Joukowski

2



Table 1.1: Average Brown Pelican Parameters, as given by Pennycuick (1982).

Mass M 2.65 kg
Wingspan b 2.10 m
Total Wing Area S 0.45 m2

Wing Loading W/S 57.8 N/m2

Aspect Ratio A 9.8

theorem to discuss lift and drag experienced by the bird. From observation, the angle of attack

of pelican soaring flight is sufficiently small, as these birds do not tend to stall. Therefore (5)

we use the small angle approximation to set the planform area (Ap) equal to the full area of the

wing (S). Furthermore, the small angle of attack and low Mach number allows us to assume

that (6) to first approximation flow separation will not occur.

Pennycuick (1982) used the study of elliptic wing loading to obtain the lift coefficient

of the Brown Pelican in straight flight out of ground effect. (7) Elliptic loading is a reasonable

approximation for the shape of the pelican represented as an airfoil, as viewed from above or

below. The value of coefficient of lift was experimentally determined by Pennycuick (1982)

as CL = 0.72. Pennycuick (1982) also took measurements of various average brown pelican

parameters, given in table 1.1. In a later study, Pennycuick et al (1987) deliver an experimentally

derived relation for determining the body drag coefficients of large waterfowl and raptors, CD,

as a function of Reynolds number. This relation is given

∀ Re ∈ (5 ∗ 105, 2 ∗ 106) =⇒ CD ≈ 1.57− 0.108 ln(Re). (1.1)

Using characteristic velocity and length scales corresponding to the flow over a pelican’s wing,

we can assess the associated Reynolds number. The relevant characteristic length and velocity

scales are the average chord length of a pelican’s wing and the average speed of slope-soaring

flight, respectively. Martin (2017) took a 3D scan of a Brown Pelican wing and recorded a

sectional dataset of various wing properties. From this table we find the average chord length

(c̄) of the particular pelican wing that Martin (2017) studied to be c̄ ≈ 0.233 m. As a sanity

check, we calculate the standard mean chord (SMC) assuming a straight tapered wing using

the average pelican measurements given by Pennycuick (1982). This calculation yields

SMC =
S

b
= 0.21 m. (1.2)
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With this quick check we find close agreement with the average chord derived from the 3D

scan. The study by Martin (2017) deals with one particular pelican and therefore we may not

assume this result accurately reflects the entire population. Measurements given by Pennycuick

(1982) however, were taken from a sufficiently large dataset such that the average values given

do represent the population reasonably well, thus we will continue using c̄ = 0.21 m. Carrying on

with these characteristic values as well as the density and viscosity of air at room temperature,

we obtain the Reynolds number as

Re =
lcucρ

µ
≈ 150, 000. (1.3)

Our calculated Reynolds number lies between 50,000 and 200,000, and consequently we may

determine the approximate body drag coefficient using the relation given by Pennycuick et al

(1987) yielding

CD = 1.57− 0.108 ln(150, 000) ≈ 0.28. (1.4)

This value falls within the predicted range for large waterfowl, CD ∈ (0.20, 0.40), as given by

Pennycuick et al (1987).

1.2 Flight out of Ground Effect

In order to analyze cost benefits of flight in ground effect, we must first obtain a baseline

comparison through analysis of the steady, constant altitude flight of a pelican in still air, out

of ground effect. Throughout this section we will use a standard force balance approach. We

will define a coordinate system such that ẑ represents the vertical unit vector and x̂ represents

the horizontal unit vector. Furthermore, we will follow the lifting line theory of flight in ground

effect with a fixed wing detailed by Rayner (1991). Starting with the Kutta-Joukowski theorem

we obtain an expression for the total lift (L) across full wingspan in terms of air density (ρ),

wingspan (b), wing root circulation (Γ0), and overwing airspeed in pelican’s frame of reference

(u) as

L =
πρbuΓ0

4
ẑ. (1.5)

4



From the balance of lift and weight (L = Mgẑ) which is required for steady, level flight, we

derive an expression for the wing root circulation Γ0 as a function of u yielding

Γ0(u) =
4Mg

πρbu
(1.6)

Total drag D can be expressed in terms of induced drag Di and the sum of profile and parasitic

drag Dp as

D = Di + Dp. (1.7)

Induced drag is related to the wing root circulation, while profile and parasitic drag are related

to the airspeed over wing and the body drag coefficient. For the body drag coefficient we will

continue to use CD ≈ 0.28 we calculated using the experimental relation from Pennycuick (1987)

in equation 1.4. Continuing to follow Rayner (1991), we have a few expressions for Di and Dp

using x̂ as the direction of flight.

Di(Γ0) = − πρΓ2
o

8
x̂, (1.8)

As the image vortex experienced in ground effect alters the wing root circulation, the definition

of induced drag in equation 1.8 is useful for assessing the influence of ground effect. We can plug

in equation 1.6 to obtain an expression for induced drag as a function of airspeed over wing as

Di(u) = − 2

πρ

(
Mg

bu

)2

x̂. (1.9)

Equation 1.9 will be useful for assessing the drag experienced out of ground effect. The parasitic

drag equation comes from the standard Kutta-Joukowski approach and can be written as

Dp(u) = − ρSCDu
2

2
x̂. (1.10)

Plugging equations 1.8 and 1.10 into equation 1.7 then projecting into the flight direction gives

the following expression for the magnitude of the total drag as a function of wing root circulation

and airspeed over wing, written

D(Γ0, u) =
πρΓ2

0

8
+

ρSCDu
2

2
. (1.11)
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Plugging equations 1.9 and 1.10 into equation 1.7 then projecting into the flight direction gives

the following expression for the magnitude of the total drag as a function of airspeed over wing

only, written

D(u) =
2

πρ

(
Mg

bu

)2

+
ρSCDu

2

2
. (1.12)

Minimizing the magnitude of total drag using airspeed u as the independent variable, Rayner

(1991) shows that the magnitude of the minimum energy cost velocity (umc) can be expressed

as

umc =

√
2Mg

ρb
√
πSCD

. (1.13)

The power output by the animal to overcome the drag force and maintain constant velocity is

given by P = D · u, where u is the velocity of airflow over the wing in absence of any external

wind influence. As D and u both act in x̂, we can simply multiply the magnitudes, yielding the

following general expression for the required power output out of ground effect (oge)

Poge = uDi + uDp. (1.14)

Substitution gives the following equivalent expressions for power output. In equation 1.15 we

write the expression as a function of wing root circulation and velocity, while in equation 1.16

we write the expression for power output as a function of velocity only. This gives

Poge(Γ0, u) =
πρuΓ2

0

8
+

ρSCDu
3

2
, (1.15)

Poge(u) =
2

πρu
·
(
Mg

b

)2

+
ρSCDu

3

2
. (1.16)

Plugging in the density of air and values corresponding to the brown pelican as given in table

1.1 and using the coefficient of drag from equation 1.4, we find that

umc = 5.7 m/s, for Pelicanus Occidentalus. (1.17)

In assessment of Poge(umc) for the brown pelican we see that

Poge(umc = 5.7m/s) = 28.2 W. (1.18)
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1.3 Flight in Ground Effect

To assess how the required power output changes in ground effect, Rayner (1991) numerically

computed two ground effect interference coefficients, σ and τ . σ and τ are functions of the

nondimensional height defined as β ≡ 2H/b where H is the height above the ground and b is

the wingspan. The image vortex experienced in ground effect changes the wing root circulation

required to maintain flight at constant speed. The coefficient τ captures this effect, as shown by

Rayner (1991) in the vertical force balance, given

Mg =
πρbu

4
Γ0 −

πρτ

8
Γ2
0. (1.19)

This leads to a quadratic expression for the wing root circulation as

Γ0 =
bu

τ
−

√(
bu

τ

)2

− 8Mg

πρτ
(1.20)

Hainsworth (1987) found the average height of soaring flight in ground effect for a Brown Pelican

to be Hge ≈ 0.33m± 0.05m, which yields β ∈ (0.27, 0.36) with βavg ≈ 0.31. From the numerical

results of Rayner (1991) and the observed soaring height of the brown pelican from Hainsworth

(1987), we obtain values for Γ0(β, umc) displayed in Table 1.1.

Rayner uses the second ground effect coefficient, σ, to relate the induced drag in and

out of ground effect by the expression

Di,ge/Di,oge = 1− σ. (1.21)

It follows from substituting equation 1.21 into equation 1.15 that the required mechanical power

output in ground effect, Pge can be expressed as

Pge(u) =
πρu(1− σ)Γ2

o(β, u)

8
+
ρSCDu

3

2
(1.22)

Plugging in values for a Pelican flying at umc = 5.7m/s, we obtain results displayed in table 1.2.

Comparing to Poge(umc) = 28.2 W, we see that the bird achieves a maximum of 14.2% decrease

in required mechanical power output while flying at H = 0.28m and an average decrease in

required mechanical power output of 11.0% for ground effect flight. Furthermore we see how the

7



Table 1.2: Ground Effect Interference Coefficients and resulting Wing Root Circulation for
Pelican traveling at height H ∈ Hge and velocity umc

H 0.28 0.33 0.38

β 0.27 0.31 0.36

σ 0.40 0.35 0.32

τ 0.81 0.64 0.57

Γo(β, umc) 2.52 2.46 2.44

Table 1.3: Mechanical Power Advantage for a Brown Pelican flying in Ground Effect at height
H ∈ Hge and velocity umc

H 0.28 0.33 0.38

Pge(umc) 24.2 25.1 25.6

%Advantage 14.2 11.0 9.2

wing root circulation increases with lower flying height. Compared with Γ0,oge = 2.30 m2/s we

see a reasonable increase for flight in ground effect. These results are displayed in table 1.3.

8



Chapter 2

Airflow over Near-Shoaling Waves

2.1 Introduction

As ocean waves translate, they induce airflow as a result of the no-penetration condition on a

rigid boundary. Even in the case where there is no ambient wind, traveling waves move the

air above them to create what is referred to as “wave-induced wind.” This phenomenon has

been suggested in the literature by Sullivan et al (2008), Hogstrom et al (2009), Smedman et

al (2009), Soloviev and Kudryavtsev (2010), Hogstrom et al (2015), and Wu et al (2017). The

upward transfer of momentum from ocean swell to the wind was experimentally verified by Grare

et al. (2018). We quantitatively investigate wave-induced wind in the solitary limit of shallow

water waves where pelicans have been observed to perform wave-slope soaring.

2.2 Mechanics of Near-Shoaling Waves

In order to quantify the effects of wave-induced wind, we make a few assumptions. From ob-

servation, we see that the pelicans utilize this effect in shallow, near-shoaling waves, just before

they reach the breaking point. These shallow-water near-shoaling waves exhibit properties simi-

lar to the solitons described by the Korteweg-de Vries (KdV) Equation. To model near-shoaling

waveforms, we will use KdV solitons. The KdV equation is valid in the limit of (λ� h) where λ

is the wavelength and h is the local water depth. Solutions to the KdV equation then describe

a phenomenon known as solitary waves, where nonlinear steepening is balanced by diffusion

9



resulting in a waveform which maintains constant shape as it translates. We will begin with the

original KdV equation derived by Korteweg & de Vries (1895), which can be expressed as

ηt =
√
gh ηx +

3

2

√
g

h
ηηx +

h2

2

√
gh

(
1

3
− T
ρgh2

)
ηxxx. (2.1)

Here we use standard notation where subscripts denote partial derivatives. η represents the

displacement of the ocean surface from equilibrium. g represents the acceleration due to gravity.

h represents the water depth, which we have assumed to be uniform in this analysis. This is

a reasonable assumption, for as the pelican translates along the wave front, she remains over a

waveform of nearly constant shape, thus in the frame of reference of the bird the water depth

remains roughly constant in the idealized case. T represents the surface tension at the interface

of seawater and air. ρ represents the density of seawater. The dimensionless group T /ρgh2 is

known as the Bond number, which relates surface tension to the gravitational force. Note that

in Korteweg & de Vries (1895), the notation

σ ≡ h3
(

1

3
− T
ρgh2

)
, (2.2)

was used to clean up the full dimensional KdV equation. We now plug in values to the expression

for σ given in equation 2.2 for an order of magnitude estimate. In this analysis we use T ≈ 0.073

N/m for the surface tension at the interface between water and air, and ρ ≈ 1030 for the density

of seawater. Using the standard value for g of 9.8 m/s we see that

σ =
h3

3
− hT
ρg

,

= O(h3)−O(h · 10−6).

(2.3)

In the region of interest for our problem, h ranges on the order of a meter to tens of meters.

Consequently, the surface tension term in σ is negligible compared with the ocean depth term.

Thus we will make the approximation that

σ ≈ h3/3. (2.4)

10



We will continue to use the sigma notation for consistency, and nondimensionalize the KdV

equation by introducing the scaled coordinates

τ ≡ 1

2

√
g

h
t, ξ ≡ x−

√
gh t

σ1/3
, u ≡ σ−1/3

(
η

2
+
h

3

)
. (2.5)

This gives the canonical nondimensional form of the KdV as

uτ − 6uuξ + uξξξ = 0. (2.6)

From Hereman (2009), we write the solution to this canonical form of the KdV as

u(ξ, τ) =
Ω− 4κ3

6κ
+ 2κ2 sech2(κξ − Ωτ). (2.7)

In this expression the wave number κ and angular frequency Ω are arbitrary nondimensional

constants. Satisfying the boundary conditions that limξ→±∞ u(ξ, τ) = 0 gives Ω = 4κ3, from

which we can write the nondimensional traveling wave solution

u(ξ, τ) = 2κ2 sech2(κξ − 4κ3τ). (2.8)

Here u(ξ, τ) gives the scaled vertical displacement for any scaled position ξ and scaled time τ

for arbitrary nondimensional wave number.

We now will replace the scaled free surface elevation (u), the characteristics (ξ) and the

scaled time (τ) with their original definitions, yielding

η(x, t) = 4σ1/3κ2 sech2

[
(κσ−1/3)x−

(
κ
√
gh

σ1/3
+ 2κ3

√
g

h

)
t

]
. (2.9)

We notice that the argument of sech2 is of the form (x/λ̄− t/T̄ ) for

λ̄−1 ≡ κσ−1/3, (2.10)

T̄−1 ≡ κ
√
gh

σ1/3
+ 2κ3

√
g

h
. (2.11)

Here, λ̄ represents half of the characteristic pulse width and T̄ represents the solitary time-scale

as shown in figure 2.1. Furthermore, we can express the coefficients on the sech2 in terms of the

11



Figure 2.1: The half pulse width λ̄ and the characteristic time T̄ are displayed. T̄ is defined as
the elapsed time required for the crest to move to the previous location of λ̄.

wave’s amplitude as a function of κ, yielding

A ≡ 4σ1/3κ2. (2.12)

As we will be using near-shore oceanographic buoy data to determine characteristics of the

incoming swells, we can use the shallow water dispersion relation to write c0 =
√
gh0, where c0

is the phase velocity at the buoy and h0 is the ocean depth of the buoy. Note that from the

buoys we can easily obtain the swell period and amplitude. The depth of oceanographic buoys

are known, thus we can calculate the phase speed c0 with the shallow water dispersion relation.

From the solitary dispersion relation, it follows that the phase speed of the soliton defined as c

can be expressed as c = λ̄/T̄ .

This approximation allows us to simplify the expressions for A, λ̄−1, and T̄−1 as

A =
4hκ2

31/3
, (2.13)

λ̄−1 =
κ · 31/3

h
, (2.14)

T̄−1 = κ
c0
h

[
31/3 + 2κ2

]
. (2.15)
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We can now write the soliton’s phase speed (c) in terms of the phase speed at the buoy and κ as

c = c0

[
1 +

2

31/3
κ2
]
. (2.16)

As the solitons evolve out of shallow water wave trains, we estimate the wavelength using linear

shallow water wave theory with the nonlinear dispersion relation. Here we denote the period by

T and wavelength by λ. This gives

λ = T · c,

= T
√
gh0

[
1 +

2

31/3
κ2
]
.

(2.17)

Now the last piece we need to write equation 2.7 entirely in terms of dimensional coordinates is

an expression for κ in terms of known quantities. For this we will use linear wave theory, with

flux (F ), defined as

F ≡ cgroup(x) · E(x) = constant, (2.18)

where E is the total energy, defined as

E =
1

16
ρgA2. (2.19)

As the buoys we collect our data from are near-shore, the waves in this regime obey the shallow

water dispersion relation. This gives

cgroup = cphase =
√
g · h(x). (2.20)

The amplitude of the wave varies with ocean depth, so the amplitude read out by the buoy will

not be the same as the amplitude in the wave-slope soaring zone. Consequently we will write

A → A(x). Setting the flux at the buoy equal to the flux at some distance x inshore from the

buoy, we find that

A(x) = A0

[
h0
h(x)

]1/4
, (2.21)

where A0 is the significant wave height measured by the buoy. Rearranging equation 2.13 gives

an expression for κ, now that we have an expression for amplitude in terms of known quantities.
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This results in

κ =

[
A(x) · 31/3

4 · h(x)

]1/2
. (2.22)

Now we can write equation 2.7 in terms of known quantities as

η(x, t) = A(x)sech2
[
x/λ̄− t/T̄

]
. (2.23)

Using the derived definition of κ, phase velocity and wavelength can be expressed in terms of

local amplitude and local ocean depth as

c =
√
gh0

[
1 +

A(x)

2h(x)

]
,

λ = T ·
√
gh0

[
1 +

A(x)

2h(x)

]
.

(2.24)

For reasonable ocean depth, the second term in brackets acts as a correction term for soliton

behavior. As the local ocean depth becomes small however, the correction term grows and our

theory no longer holds, for at this point the nonlinear steepening overpowers dispersive effects

and the soliton model is no longer valid.

As the expression forA(x) contains h(x), for a simplified model we will consider bathymetry

with a linear slope. For instance, the Scripps nearshore buoy is located approximately 0.6 miles

offshore from the Scripps Pier. Sitting in water depth of h0 = 38.7 m, this results in a slope

of roughly 0.04. We can then write an expression for h(x) as h(x) = 38.7 − 0.04x. This sort

of equation could be adapted for any nearshore buoy to get a zero order approximation of the

spatial dependence of the amplitude. Generally this becomes

h(x) = h0 − αx, (2.25)

where h0 is the depth of water at the buoy location, α is the slope, and x is the distance from

the buoy towards shore. Now, if we are provided with some oceanographic buoy data, we have

a full mathematical description for the conditions where wave-slope soaring can be employed.
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2.3 Boundary Layer Effects

In order to accurately assess the wave-induced wind, it is critical to gain an understanding the

boundary layer effects corresponding to ocean waves. Full treatment of the boundary layer over

the ocean is in general, complex. Immediately above the ocean is the viscous boundary layer,

which exists within the atmospheric boundary layer (ABL). Following the review by Garratt

(1994) it is clear from the typical length scales of the ABL that the entire wave-slope soaring

process will take place within the ABL. We will be assessing the wave-induced wind in the case

of a still atmosphere. Accordingly, the upper edge of the atmospheric boundary layer will have

no effect on the solution.

In a theoretical study by Banner and Melville (1976) it is argued that the viscous bound-

ary layer will not separate if a waveform maintains a smooth and steady shape. They propose

that only upon the onset of shoaling will the boundary layer proceed to separate. In this case,

the boundary layer will separate at the point of the crest where the shoaling process begins,

resulting in a connected boundary layer on the front side of the wave and a detached boundary

layer in the rear. This theory is confirmed by Reul et al (1999), who show that for shoaling

waves, the viscous boundary layer separates when a discontinuity in slope develops at the crest.

Their work is in agreement with the conjecture of Banner and Melville (1976) that the separated

boundary layer reattaches at the front slope of the following wave.

As wave-slope soaring takes place on the front (shore side) of ocean swells before shoaling

occurs, it is reasonable to assume a viscosity-dominated, well attached boundary layer over the

zone of interest. As the wave-slope soaring bird will in general not fly in the region behind the

near-shoaling wave where boundary layer separation may occur, it is reasonable to ignore any

possible separation effects. We now focus on the viscous boundary layer immediately above the

front side of a solitary wave. We estimate a length scale of this boundary layer in the limit of

wave-induced wind through analysis of the Reynolds and Mach numbers.

For the evaluation of these dimensionless parameters corresponding to the wave-induced

wind, we use characteristic velocity scale uc = v and characteristic length scale lc = λ. Here v is

the velocity of the wave and λ is the wavelength. Plugging in some typical values for ocean waves

we see that Re = O(107), and Ma � 0.2. With such a small Mach number we will continue to

assume that the compressible effects are negligible. Thus, our prior assumption that ρ is constant

throughout the flow remains accurate in the description of wave-induced wind. As the Reynolds

15



number is large (Re � 1000) it is evident that a turbulent boundary layer must exist. Inside

the boundary layer, viscous forces dominate. We now introduce a viscous length scale δ which

corresponds to the length scale of this turbulent boundary layer. Within the boundary layer, the

viscous term and the convective term of the Navier-Stokes equations must balance, which gives

an order of magnitude estimate for the length scale of the boundary layer. To give an upper

bound on δ, we plug in characteristic values corresponding to flow over large, fast waves, which

gives

O(µ∇2u) = O(ρ(u · ∇)u),

µ
uc
δ2

= ρ
u2c
lc
,

δ ≤

√
µlc
ρuc

,

=⇒ δ ≤ O(10−2) m.

(2.26)

In typical, smaller swells where wave-slope soaring is more commonly observed, the turbulent

boundary layer has a calculated length scale of O(10−3) m. These calculated length scales are in

reasonable agreement with numerical simulations by Yang et al (2018) and theoretical estimates

of Reul et al (1999). Due to the length scale of a pelican and the fact that it cannot risk crashing,

the bird flies on height scales of O(10−1) while wave-slope soaring. As the bird’s soaring height

is much greater than the thickness of the turbulent boundary layer, we will neglect the boundary

layer in calculations. Outside of the boundary layer, viscous effects are negligible and therefore

we can assume inviscid flow in the regime relevant to wave-slope soaring.

2.4 Potential Flow over Solitary Waves

At this point, the wave-induced wind that we aim to describe is reasonably assumed to be inviscid,

irrotational, and incompressible within our region of interest. As a result, it is appropriate to

approximate the flow induced on the front side of passing solitary waves using potential flow

theory. The goal is to model potential flow over the soliton

η = A sech2(kx), (2.27)
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Figure 2.2: Schematic of the potential flow problem setup in the x− z plane.

moving at a speed c. Here, k is defined as κσ−1/3 and is meant to represent a wavenumber.

Although the solitons themselves are not periodic, as they evolve from periodic shallow water

wave trains, this is a reasonable approximation. We first boost to a frame of reference moving

with the soliton such that U∞ = −c, as shown in figure 2.2. As we are assuming potential flow

conditions, the system is governed by the Laplacian of the stream function

∆ψ = 0. (2.28)

Again, due to potential flow conditions, rather than no slip we impose the no penetration bound-

ary condition

[u · n̂ = 0]z=A sech2(kx) . (2.29)

This is problematic for obtaining an analytical solution, as we have to solve Laplace’s equation

with troublesome geometry. We can get around this issue by expanding the boundary condition.

First, we will nondimensionalize by defining

ζ = kz, ξ = kx. (2.30)

We will continue to use the approximation written in equation 2.12 that

σ ≈ h3/3. (2.31)
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From equations 2.8, 2.10, and 2.12 we see that

Ak =
4

3
(kh)3. (2.32)

As the soliton was derived in the limit of λ� h, it follows that kh� 1. We will define another

nondimensional coordinate ε ≡ Ak such that ε = 4
3 (kh)3 � 1. Thus we can express the boundary

in terms of nondimensional coordinates as

ζ = ε sech2(ξ). (2.33)

Now, because ε is small, in the scaled geometry to first approximation we simply have to solve

Laplace’s equation in the upper half plane. By the definition of the stream function, we have

u =
∂ψ

∂ζ
, (2.34)

w = −∂ψ
∂ξ
. (2.35)

In terms of the stream function, the no penetration boundary condition (equation 2.29) can be

expressed as

ψ = constant everywhere on sea surface. (2.36)

Integrating equation 2.34, using the condition that as ξ → ± ∞, ψ → −c ζ, and using equation

2.36 gives the condition that

ψ = 0 everywhere on sea surface. (2.37)

We can equivalently express equation 2.37 as

ψ(ξ, ε sech2ξ) = 0. (2.38)

Now, as ε� 1 we will Taylor expand equation 2.38. This gives

ψ(ξ, 0) + ε sech2(ξ)ψζ(ξ, 0) +
1

2
ε2sech2(ξ)ψζζ(ξ, 0) +O(ε3) = 0, (2.39)
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where subscripts denote partial derivatives. We now expand ψ in a regular expansion, yielding

ψ = ψ0 + ε ψ1 + ε2 ψ2 +O(ε3), (2.40)

where for all ψn with n ∈ [0,∞), ∆ψn = 0. Looking at O(ε0) gives ∆ψ0 = 0. Integration yields

ψ0 = −c ζ, =⇒ ψ = −c ζ + ε ψ1 + ε2 ψ2 +O(ε3). (2.41)

Now plugging into the Taylor expanded, scaled boundary condition we obtain

[ε ψ1(ξ, 0)+ε2 ψ2(ξ, 0)+O(ε3)]+ε sech2(ξ)[−c+ε ψ1,ζ(ξ, 0)+O(ε2)]+
1

2
ε2sech2(ξ)[0]+O(ε3) = 0.

(2.42)

Looking at O(ε1) gives

ψ1(ξ, 0) = c sech2(ξ). (2.43)

Looking at O(ε2) gives

ψ2(ξ, 0) + sech2(ξ)ψ1,ζ(ξ, 0) + sech2(ξ)ψ1,ζ(ξ, 0) = 0. (2.44)

Using the Green’s function for Laplace in 2D with the Dirichlet boundary condition in equation

2.43, we obtain an expression for ψ1(ξ, ζ) as

ψ1(ξ, ζ) =
c

π

∫ ∞
−∞

ζ sech2(ξ̄)

(ξ − ξ̄)2 + ζ2
dξ̄, (2.45)

where ξ̄ is the variable of integration. This is a near-singular integral with no analytical solution.

To cope with this issue we will divide the domain of integration at the singularity where ξ̄ = ξ.

Using this tactic and equation 2.41, we obtain a full expression for ψ as

ψ = −cζ +Ak
c

π

∫ ∞
0

ζ

ξ′2 + ζ2
[
sech2(ξ − ξ′) + sech2(ξ + ξ′)

]
dξ′ +O(ε2), (2.46)

where ξ′ is our new variable of integration. This expression can now be evaluated numerically

if values of ξ and ζ are specified. Using equation 2.34, we can carry out the differentiation to

obtain an integral expression for the horizontal flow speed u in the frame of reference moving
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Figure 2.3: Wave-induced wind scaled with surface orbital velocity is shown on the x-axis and
scaled height is shown on the y-axis in a log-log plot. The black line represents the exponential
dependence (e−kz) predicted by Grare et al (2018). The green dots show our predicted values
of scaled flow velocity.

with the wave to the order of ε in terms of scaled coordinates as

u = −c+
Akc

π

∫ ∞
0

ξ′2 − ζ2

(ξ′2 + ζ2)2
[
sech2(ξ − ξ′) + sech2(ξ + ξ′)

]
dξ′, (2.47)

where we have substituted the definition of ε (ε ≡ Ak) back into the expression. Similarly, we

can use equation 2.35 to write an integral expression for the vertical flow speed w to the order

of ε in terms of scaled coordinates as

w =
2Akc

π

∫ ∞
0

ζ

ξ′2 + ζ2
[
sech2(ξ − ξ′)tanh(ξ − ξ′) + sech2(ξ + ξ′)tanh(ξ + ξ′)

]
dξ′. (2.48)

As a verification of our theory, we consider waves of amplitude varying from 0.5 to 2.0 meters

and period varying from 5 to 20 seconds. To compare with experimental data from Grare et al

(2018), we nondimensionalize wave-induced wind with the orbital velocity at the ocean surface

(Akc), and use the previously defined nondimensional vertical height ζ = kz. Plotting the

scaled wave-induced wind on the x-axis and scaled height on the y-axis in a log-log plot, we see

reasonable agreement with experimental data from Grare et al (2018) in figure 2.3.

We now select values of x and z where we are interested in obtaining the flow velocity for

wave-induced wind created by a passing soliton of given amplitude and period, then substitute

into equations 2.47 and 2.48 to obtain the horizontal and vertical components of the wave-induced

wind in the boosted frame, representing the flow experienced in the bird’s frame of reference.
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Chapter 3

Wave-Slope Soaring Flight

3.1 Introduction

In Wave-Slope Soaring, a few things occur that further improve the efficiency of the pelican’s

flight. First, by positioning itself on a sloping surface, the pelican is able to bring one wingtip

significantly closer to the water. This allows the bird to significantly decrease its ratio of H/b

over the wing semi-span, thereby improving its efficiency of flight. Second, the wave induced

wind discussed in chapter two results in an incoming flow at an angle. As the bird maintains

level flight through the wave induced wind, circulation over the wing is increased. This helps

to satisfy the previous requirement that Γ0 increases as H decreases. Furthermore, the inherent

increase of circulation eliminates the wing supination, or manual increase in angle of attack, that

is required for standard ground effect flight, consequently decreasing drag. In wave-slope soaring

flight, the bird flies through a zone where the air is constantly rising, producing a similar effect

to that of thermal soaring by raptors. Collectively, these factors help the pelican to save energy

in flight. We will quantitatively discuss these phenomena in this chapter.

3.2 Coordinate System for Wave-Slope Soaring

We will define coordinates such that x̂ is in the direction of wave propagation, ŷ is parallel to

the wave front, and ẑ is in the vertical direction. This enables us to make a few observations

and assumptions. First we note that in order to gain benefit from the wave for extended periods

21



Figure 3.1: Coordinate system for the trajectories of a pelican in wave-slope soaring on a solitary
wave

of time, the bird must translate in x̂ such that its velocity in the direction of wave propagation

(Ux) will match the phase velocity of the wave, V (x, t). As stated above, we assume that the

bird translates in ŷ such that the slope of the waveform underneath of it remains constant. This

results in soaring over a waveform that will remain constant in time, in the pelican’s frame of

reference. We also assume that in wave-slope soaring, the bird finds the optimum location in ẑ

and remains at this location. All of these assumptions enable us to perform analyses wherein the

slope of the wave under the bird will remain constant, as shown in Figure 3.1. Consequently, as

the propagation and slope of the waveform are the only time-dependent features of the waveform,

these assumptions allow us to ignore the system’s time evolution and assume that the relevant

wave-induced air flow is steady and irrotational in the bird’s frame of reference. As we are

studying the time independent case of solitons, the velocity of the wave is constant everywhere

in space and time such that V (x, t) = c. Using the formalism developed in chapter 2, given an

arbitrary swell with known period and amplitude we can determine c.

Now as the waves are propagating towards the shore and eventually shoaling, this ideal-

ized process we have described clearly cannot go on forever. From observing pelicans practicing

wave-slope soaring, one can see that these assumptions are reasonable over timescales of 10-20

seconds. After 10-20 seconds the entire wave front moves beyond the solitary limit into a shoal-

ing situation. At this point when the birds reach the shoaling section of the wave, they gain

considerable altitude without flapping before soaring down to the next shore-bound wave and

repeating the process. The analysis of benefits from the shoaling section are omitted in this

paper. Hence, we will be considering the ideal case within this 10-20 second time frame where
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Figure 3.2: Coordinate System defining Leff which relates the position of the pelican’s center
of mass to the position of its wingtip

wave-slope soaring is practiced.

In calculation of the wave-slope soaring power distribution, the effective height of the

pelican’s center of mass as a function of its wingtip location (Heff (xwt)) will be necessary. To a

first approximation, we will consider the case where the bird is exactly level. From observation,

this is often the case. In order to assess this we set up a coordinate system where γ is defined as

the angle between the bird’s trajectory and lines parallel to the wave front. The perpendicular

distance from the pelican’s center of mass to the line parallel to the wave front that passes

through the bird’s wing tip, will be referred to as the effective length (Leff ). This coordinate

system is shown in Figure 3.2. This setup, along with a simple Pythagorean argument gives us

the following relations which can be combined to give Leff in terms of known parameters:

Leff =
b

2

√
U2 − U2

x

U
. (3.1)

As the pelican must match Ux to the wave’s phase velociity c in order to utilize beneficial

effects from the wave, and she will strive to set U = umc. Thus we can further reduce the equation

for Leff in the case of ideal wave-slope soaring. Here, ideal is meant to imply that the bird is

able to set U = umc. This gives

Leff =
b

2

√
u2mc − c2
umc

. (3.2)

From figure 3.3 we see that Heff and H(x) can both be described in terms of xwt in the
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Figure 3.3: Profile view of a solitary wave. Geometric definitions of variables η(x), Leff , Heff ,
H(x), xwt, and φ are displayed

time-independent, steady case as

H(x) = [η(xwt)− η(x)] + s. (3.3)

Heff = [η(xwt)− η(xwt + Leff )] + s,

=

[
η(xwt)− η

(
xwt +

b

2
·
√
u2mc − c2
umc

)]
+ s,

(3.4)

where s is the safety margin employed by the pelican to avoid crashing. To maximize use of

the updrafts created by waves, the bird will position itself over the zone of the wave where the

vertical component of the wave induced wind is the greatest. It follows from chapter 2 that this

location is where the slope of the wave is the most negative. Denoting the slope of the wave as

mwave we obtain an equation for xwt as

xwt = Min (mwave)− Leff ,

xwt = Min

(
∂η

∂x

)
− Leff ,

xwt = Min
(
−2Ak tanh(kx)sech2(kx)

)
− Leff .

(3.5)

3.3 Analysis and Results

We will study this idealized case now, with the approximation that the bird flies exactly level

with horizontal and positions itself exactly over the inflection zone of the wave. We will begin

from first principles and consider the mechanical energy balance of the system following Taylor

et al (2016), assuming that the energy lost to the sound of flight is negligible. The total energy
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of the system is given as

E =
1

2
Mubird · ubird +Mg · x, (3.6)

where x is the bird’s inertial position and ubird is the velocity of the airflow over the bird’s wings.

As we are interested in the required power output by the bird, we differentiate with respect to

time. This gives

dE

dt
= Mubird ·

dubird
dt

+Mg · dx
dt
. (3.7)

The rate of change of the bird’s inertial position is given by the vector sum of the bird’s velocity

relative to the air and the air’s velocity relative to the ground. Formally, we can express this as

dx

dt
= ubird + uwind. (3.8)

Taking another time derivative and rearranging gives

dubird
dt

=
d2x

dt2
− duwind

dt
. (3.9)

in the case we are considering of steady, constant altitude wave-slope soaring on a soliton with no

ambient wind, the resulting wave-induced wind is steady. Accordingly, duwind/dt = 0. Plugging

everything back into equation 3.7 we have

dE

dt
=

[
M
dubird
dt

+Mg

]
· ubird +Mg · uwind −Mubird ·

duwind
dt

. (3.10)

As the term dubird

dt is always negative in the case with no external energy input as a result of

drag, we may take the absolute value and tack on a negative sign. Evaluating the dot products,

we obtain

dE

dt
= Mgwwind −M

∣∣∣∣dubirddt

∣∣∣∣ · ubird. (3.11)

The first term on the right hand side corresponds to the potential energy harvesting benefit

resulting from positioning over the updraft induced by the wave, while the second term cor-

responds to the loss due to drag. The difference, dE
dt , corresponds to the required mechanical

power output if the bird is to maintain flight at constant velocity and altitude. For the analysis

of the power associated with drag forces that the bird must overcome, we will again follow the

lifting line theory of flight in ground effect with a fixed wing detailed by Rayner (1991) that we
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Table 3.1: Relevant values for wave-slope soaring over a soliton generated from wind swell at
s = 0.2 m.

T A c u1 u2 w1 w2 H1 H2

10 s 1 m 5.24 m/s 5.47 m/s 5.44 m/s 0.40 m/s 0.39 m/s 0.22 m 0.26 m

discussed in chapter 1. For an initial approximation, we will consider the effect of each wing

separately. From equation 3.4, the effective height of the wing closer to the crest denoted H1 is

given as

H1 = η(xwt)− η

(
xwt +

b

4
·
√
u2mc − c2
umc

)
+ s. (3.12)

Analogously, the height of the wing further from the crest can be written as

H2 = η(xwt)− η

(
xwt +

3b

4
·
√
u2mc − c2
umc

)
+ s. (3.13)

The scaled heights β1 and β2 are then simply given by

βi =
2Hi

b
, (3.14)

for i = 1, 2. The safety margin s is a function of the slope of the wave and the shape of the bird

employing wave-slope soaring. For the brown pelican the lowest point of the bird’s airfoil is its

belly. For a pelican with a wingspan of 2.1m, using photo scaling we find that the belly extends

roughly ten centimeters below the wing line. We then assume that for a margin of safety, the

bird will keep the low point of its belly at least ten centimeters above the surface of the ocean

throughout the wave slope soaring process. We will accordingly take s to be roughly 0.2m in

order to account for the belly and airspace beneath. Now we have all of the pieces together to

analyze the power benefit of wave slope soaring. In assessment of typical wind swell conditions,

we will assume a dominant swell period of ten seconds with an amplitude of one meter. From

chapter 2, we obtain values of the phase velocity, horizontal and vertical flow speeds in the

bird’s frame of reference at the height of the pelican for each wing’s central location. These are

denoted c, ui, and wi respectively for i = 1, 2 according to the convention in equation 3.14. From

equations 3.12 and 3.13, we obtain H1 and H2. This data is displayed in table 3.1. From the

values of H1 and H2, we obtain values for β1 and β2 as 0.21 and 0.25, respectively.

With the airflow impinging at an angle determined by the ratio of vertical to horizontal
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Table 3.2: Ground-effect interference coefficients and wing root circulation for wave-slope soaring.

s 0.29 0.20 0.11
β 0.31 0.23 0.14
σ 0.35 0.46 0.54
τ 0.64 0.92 1.16
Γ0 2.46 2.55 2.64
u 5.49 5.46 5.44
w 0.38 0.40 0.41

flow velocities, circulation over the wing is consequently increased. As the wavelength is large

compared to the wingspan of the bird and the wave-induced wind varies little over the wingspan

of the bird, we take the average from contributions to each wing in calculation of the ground

effect interference coefficients and wing root circulation. To form an upper bound on the benefits

of wave-slope soaring, we allow the safety margin s to drop to 0.11m. This is an unrealistic case

as it only allows for 1cm of space before the pelican’s belly hits the water, but it will provide

the maximum benefit. In this case, β drops to 0.14. For a lower bound/control parameter, we

set s = 0.29 such that the average height of the bird above the wave equals the average height

of brown pelican ground effect flight as observed by Hainsworth (1988). In this case, β remains

unchanged from the studies in chapter 1. This data along with the average components of the

wave induced wind in a frame of reference moving with the wave is displayed in table 3.2 for

each value of s.

In the case with a safety margin of 0.29 m, the drag forces require 25.1W of power to

maintain flight. The benefit from the updraft at this altitude is 9.87W, yielding a required power

output of 15.23W from our pelican. At a safety margin of 0.2m the drag forces require 23.4W

of power to maintain flight. At this height, the benefit from the updraft (Mgw) amounts to

10.39W, resulting in a required power output of 13.01W from the bird. In the extreme case

where we let the safety margin drop to 0.11m, power output required for steady flight drops to

22.6W. Benefit from the updraft has a meager uptick to 10.65W. This results in a required power

output of 11.95W from the bird. These results are compared with the out-of-ground-effect and

standard-ground-effect power distributions in table 3.3. A breakdown of the sources of power is

detailed in table 3.4.
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Table 3.3: Mechanical power output required from bird and percent advantage for ground effect
and wave-slope soaring as compared to standard flight out of ground effect.

Mechanical Power Output Poge Pmaxge P avgge Pminge P controlws P avgws Pminws

Value 28.2 25.6 25.1 24.2 15.23 13.01 11.95
% Advantage Compared to OGE 0 9.2 11.0 14.2 46.0 53.9 57.6

Table 3.4: Breakdown of the various sources of power benefit.

OGE GE, WS GE, WS GE, WS
β ∞ 0.31 0.23 0.14
Total Power Required 28.2 25.1 23.4 22.6
Power Reduction from Ground Effect 0 3.1 4.8 5.6
Power Reduction from W-S Soaring 0 9.87 10.39 10.65
Power Output Required from Bird 28.2 15.23 13.01 11.95
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Chapter 4

Discussion

4.1 Setup and Assumptions

We theoretically assess the energy savings associated with wave-slope soaring flight. In particular,

we study the brown pelican practicing wave-slope soaring over near-shoaling coastal waves. We

assume inviscid, incompressible, constant density flow throughout the regime where wave-slope

soaring is employed. We assume a small angle of attack, such that flow separation over the

pelican’s wings does not occur. To model the brown pelican, we use elliptic wing-loading theory.

An experimental value for the brown pelican’s coefficient of lift determined by Pennycuick (1982)

is used, while the coefficient of lift is derived based on theory by Pennycuick et al (1987). Average

pelican dimensions determined by Pennycuick (1982) are used throughout the paper. We find

the Reynold’s number of the flow over the pelican’s wings to be 150,000.

4.2 Flight out of Ground Effect

We analyze the steady, constant altitude flight of a pelican in still air, out of ground effect as

a control. We use the Kutta˙Joukowski theorem to assess lift and wing-root circulation as a

function of flight speed. Total drag is decomposed into induced, profile, and parasitic drag.

Following Rayner (1991), we determine expressions for the various elements of drag. Minimizing

the total drag using the speed of the air flow over wings as the independent variable gives an

expression for the minimum cost velocity in terms of known parameters. This speed, denoted
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umc is found to be 5.7 m/s for the brown pelican. We then find the required power output for a

brown pelican to remain in steady, constant altitude flight to by 28.2 Watts.

4.3 Flight in Ground Effect

We use the ground effect interference coefficients numerically derived by Rayner (1991) to assess

how the required power output changes in ground effect. We find that in ground effect, the wing

root circulation increases, the minimum cost velocity remains constant, and the required power

output decreases. Based on data detailing the typical height of pelican flight in ground effect

from Hainsworth (1987), we find an average of an 11% decrease in power output for a pelican

utilizing ground effect. The range of benefit was found to be 9.2% benefit on the upper end of

ground effect flight height and 14.2% benefit on the lower end of the range of flight heights given

by Hainsworth (1987).

4.4 Airflow over Near-Shoaling Waves

The airflow induced by a passing wave, or the “wave-induced wind” is theoretically analyzed

for near-shoaling shallow water solitary waves. These waves are assumed to be well described

by the KdV equation. We follow Korteweg & De Vries (1895) and Hereman (2009) to derive

a dimensional solution to the KdV equation for shallow water waves. We ignore the effects

of surface tension as we are dealing with large gravitational ocean surface waves to develop a

framework wherein when supplied with buoy data of the period and amplitude of an incoming

swell, the variation in amplitude, phase velocity, and wavelength as the swell approaches shore

are produced.

In deriving the wave-induced wind, we assume negligible boundary layer effects within

the regime where wave-slope soaring will be employed. Thus, with our previous assumptions, we

are able to use potential flow theory to describe the wave-induced wind. We nondimensionalize

with wavenumber in order to expand the boundary condition such that our problem reduces

to solving Laplace’s equation in the upper half plane. Using a regular expansion of the Stokes

stream function and the Green’s function for Laplace in 2D with Dirichlet boundary conditions,

we obtain integral expressions for the horizontal and vertical components of the wave-induced

wind in a frame of reference moving with the wave. We split the range of the integral expressions
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in order to eliminate the near-singularity, resulting in numerically soluble expressions. The

theory results in expressions wherein provided with the buoy data of amplitude and period of

an incoming swell, horizontal and vertical components of the wave induced wind in a frame of

reference moving with the wave are produced.

4.5 Wave-Slope Soaring Flight

Wave-slope soaring flight is analyzed over near-shoaling solitary waves on size scales correspond-

ing to windswell, as these are the most commonly observed ocean surface waves. We assume

that the pelican matches its velocity in the direction of wave propagation to match the phase

velocity of the wave. This enables the bird to make use of the wave-induced wind for extended

periods of time. As we are working in the solitary limit of shallow water waves, we ignore any

time dependence of the system resulting in a waveform that is constant in time. We further

idealize by assuming symmetry along the wave-front.

We put the bird in the picture centered at the inflection point of the waveform, such that

it can maximize use of the updraft produced from a translating wave. A safety factor is set to

account for efforts the bird will take to balance the necessity of avoiding a crash with the aim to

maximize benefit. Initially, effects from each wing are considered independently. Upon inputting

values, we find it is reasonable to average over the length of the wing as the wavelength is much

greater than the projected wingspan of the bird. Wing root circulation and the ground effect

interference coefficients are calculated for different safety factors under sea surface conditions

with 1 meter amplitude and 10 second period. The mechanical power output is calculated and

compared to the values for flight out of ground effect as well as standard ground effect flight. We

find an upper bound benefit of 57.6% decrease in required mechanical power output as compared

with flight out of ground effect and 52.4% benefit as compared with standard ground effect.

Even in our bounding case for minimum benefit from the wave’s effects, the resulting

benefit is extraordinary with 46.0% advantage as compared to flight out of ground effect. In

the case with a plausible safety factor, we find 53.9% decrease in the required mechanical power

output for wave-slope soaring flight. The maximum possible percent advantage we find for wave-

slope soaring on standard wind swell was 57.6%. This provides a significant incentive for birds

to utilize the practice. With a sufficient safety factor, this benefit in flight performance could
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be enough to incentivize use of the practice by manmade UAVs. It is possible that the aircraft

could be designed with the use of wave-slope soaring in mind, resulting in even larger percent

advantages. The theory in this work present sufficient evidence that the use of wave-slope soaring

by UAVs should be considered, provided that the margin of safety is sufficient to avoid crashing.

4.6 Further Research

The primary limitation of the theory presented in this work is the restriction to solitary waves.

In reality, when observing pelicans employing wave-slope soaring, it is common for them to soar

well beyond the solitary limit. They often will maintain wave-slope soaring all the way to the

point of shoaling, where the updraft becomes so strong it sends them several meters in the

air without flapping. When all the conditions align, this allows the birds to soar to the next

incoming wave and repeat the process, all without flapping. With these observations it is clear

that the benefit from the shoaling sections of incoming ocean waves must be considered to fill

out the theory.

In the period of time beyond solitary limit where nonlinear steepening is increasing,

this also increases the wave-induced wind. It is evident that this zone can provide significant

benefit as pelicans are often observed using wave-slope soaring in this region. Furthermore, we

saw that for an uptick in vertical wave-induced velocity from 0.38m/s to 0.41m/s, the power

input from the wind jumped all the way from 9.87W to 10.39W. This is a significant increase

for such a small change in windspeed. When waves surpass the solitary limit and move closer

to shoaling, the vertical component of the wave-induced wind increases significantly. This could

vastly improve the bird’s efficiency of flight, perhaps to the point where the power delivered by

the wind outweighs the power required by drag. In short, to fully develop this theory we need to

account for the time evolution of the system. This would involve tracking the evolution of the

wave form from the solitary limit all the way to the point of shoaling. It would be interesting to

observe how the percent advantage changes as the wave tracks towards shoaling.

We have considered wave-slope soaring in the case where the bird is able to fly with a

net velocity equal to the minimum cost velocity as derived in chapter 1. It is clear that there is

significant benefit to be gained from wave-slope soaring, as shown in chapter 3. We studied the

case of common wind swell as the phase velocity of wind swell is less than the minimum cost

32



velocity for a brown pelican, allowing the bird to perform wave-slope soaring while flying at its

minimum cost velocity. Larger waves move faster, so for a pelican to soar on such a wave it will

have to exceed its minimum cost velocity which will result in an increase in drag. However, if the

wave is steep enough such that the vertical component of the wave induced wind is significant,

the benefit from the wave could outweigh the loss from increased drag. It would be useful for

this theory to study this cost-benefit relationship in greater detail, for waves that have moved

beyond the solitary limit into a situation that is closer to shoaling.
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