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C E L L  B I O L O G Y

Histone H3 cysteine 110 enhances iron metabolism and 
modulates replicative life span in 
Saccharomyces cerevisiae
Chen Cheng1, Brenna S. McCauley2, Nedas Matulionis1, Maria Vogelauer1, Dimitrios Camacho3, 
Heather R. Christofk1,3,4,5, Weiwei Dang2, Nicholas A. T. Irwin6*, Siavash K. Kurdistani1,3,5,7*

The discovery of histone H3 copper reductase activity provides a novel metabolic framework for understanding 
the functions of core histone residues, which, unlike N-terminal residues, have remained largely unexplored. We 
previously demonstrated that histone H3 cysteine 110 (H3C110) contributes to cupric (Cu2+) ion binding and its 
reduction to the cuprous (Cu1+) form. However, this residue is absent in Saccharomyces cerevisiae, raising ques-
tions about its evolutionary and functional significance. Here, we report that H3C110 has been lost in many fungal 
lineages despite near-universal conservation across eukaryotes. Introduction of H3C110 into S. cerevisiae increased 
intracellular Cu1+ levels and ameliorated the iron homeostasis defects caused by inactivation of the Cup1 metallo-
thionein or glutathione depletion. Enhanced histone copper reductase activity also extended replicative life span 
under oxidative growth conditions but reduced it under fermentative conditions. Our findings suggest that a 
trade-off between histone copper reductase activity, iron metabolism, and life span may underlie the loss or re-
tention of H3C110 across eukaryotes.

INTRODUCTION
Histones compact eukaryotic DNA and affect many DNA-dependent 
processes by controlling access to regulatory DNA sequences and 
through posttranslational modifications on various residues, par-
ticularly within their N-terminal tails (1, 2). Epigenetic machinery, 
including writers, readers, and eraser proteins, links the presence of 
these modifications to gene expression and virtually all other DNA-
dependent functions (1). Although the N-terminal residues and their 
modifications have been extensively studied, the roles of residues in 
the core, globular domains of histones are much less understood. A 
key challenge in studying the core residues has been the lack of clear 
hypotheses for their functions, especially when they cannot be post-
translationally modified or are distant from modified residues. As a 
result, studies of core residues often default to the conventional epi-
genetic framework as it is the only available model for interpreting 
their roles in chromatin structure and function (2).

Previously, we found that histone H3, in complex with histone 
H4 or within nucleosomes, exhibits catalytic activity as a copper re-
ductase enzyme, facilitating the conversion of cupric (Cu2+) to cuprous 
(Cu1+) ions (3, 4). This activity is important for effective distribution 
of copper to various copper-dependent enzymes in the cytoplasm 
and mitochondria as intracellular copper chaperones specifically 
bind the reduced, Cu1+ form of copper ions (5). This finding has 
introduced a novel metabolic framework for exploring chromatin 

structure and function. Through this new enzymatic perspective, we 
recently uncovered the role of an otherwise unremarkable residue, 
histone H3 leucine 126 (H3L126), which acts as the axial ligand 
for copper binding and is essential for fine-tuning the nucleosome 
enzyme activity (3). Recognizing this residue and discerning its 
function would have been challenging within the conventional 
epigenetic framework.

Histone H3 cysteine 110 (H3C110) is a unique core residue, be-
ing the only cysteine present in the four major core histones (H2A, 
H2B, H3, and H4), except for H3C96, which is found in the histone 
H3.1 variant in mammals. H3C110 is located at the interface of 
two opposing histone H3 proteins within the nucleosome, positioned 
6.2 Å from the adjacent cysteine. This distance prevents it from con-
tributing to the H3-H3′ interaction and makes the formation of a 
disulfide bridge unlikely (6). A nucleosome consists of a tetramer of 
histones H3 and H4, along with two pairs of H2A-H2B dimers, col-
lectively wrapping 146 base pairs of DNA. The histone H3-H4 tetra-
mer is itself composed of two dimers of H3 and H4 histones that 
interact exclusively through histone H3 residues. We identified the 
H3-H3′ interface, where the H3-H4 dimers interact, as the probable 
enzyme active site as it is where Cu2+ binds and is likely reduced (4). 
H3C110 is crucial for optimal copper binding, and mutating this 
residue to alanine substantially reduced the enzymatic activity of 
human H3-H4 tetramers in vitro (4).

The histone H3 of Saccharomyces cerevisiae lacks this cysteine, in-
stead having an alanine at the equivalent position (H3A110). How-
ever, genetic, molecular, and biochemical data indicated that yeast 
histone H3 still functions as a copper reductase in cells (3, 4, 7). In-
troducing the cysteine through the H3A110C mutation significantly 
increased the enzyme activity of yeast histone H3 in vitro and acted 
as a gain-of-function mutation in vivo (4). These findings raised impor-
tant questions about why budding yeast lacks this cysteine and the 
broader evolutionary pattern of its conservation.

Moreover, in eukaryotes, copper homeostasis does not occur in 
isolation as the regulation of other metals such as iron is interdependent 
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with copper (8). Several genes involved in copper homeostasis also 
exhibit transcriptional responses to changes in iron levels (9). Copper 
is essential for iron uptake through the activity of the copper-dependent 
Fet3 iron oxidase in yeast (10) and plays a role in intracellular iron mo-
bilization, although the precise mechanisms remain unclear. This, in 
turn, raises additional questions about the role of H3C110 in a broader 
metabolic context and leads to the hypothesis that iron homeostasis 
and intracellular redox regulation may also be affected by H3C110.

To investigate the evolutionary history and cellular consequences 
of H3C110, we conducted a phylogenetic analysis of H3C110 and 
studied the biological effects of reintroducing this residue into bud-
ding yeast. We found that H3C110 has been nearly universally con-
served throughout eukaryotic evolution but has notably been lost in 
most fungi, including the Saccharomycetaceae lineage. However, 
some eukaryotes have histone H3 variants with and without H3C110, 
suggesting that histone variants may enable the functional regula-
tion of H3C110 activity. The loss of H3C110 correlates with the ab-
sence of a similarly positioned cysteine in the centromeric histone 
H3 variant (cenH3C204). The reintroduction of C110 into yeast his-
tone H3 (i.e., H3A110C mutation) led to increased intracellular levels 
of Cu1+ in cells where the copper-binding protein, the Cup1 metallo-
thionine, was inactivated to prevent adsorption of cuprous ions. Un-
expectedly, the expression of iron regulon genes was increased upon 
Cup1 inactivation, signifying an iron deficiency response. However, 
the H3A110C mutation mitigated this response, significantly improv-
ing the growth of Cup1 mutant strains, especially in oxidative media 
when demand for iron is high. This effect of H3C110 was generaliz-
able as the H3A110C mutation also alleviated the iron deficiency 
response resulting from glutathione deficiency. The H3A110C muta-
tion also improved the growth of strains deficient in copper delivery 
to cytochrome c oxidase, linking the nucleosome copper reductase 
directly to mitochondria. We further found that the H3A110C muta-
tion extended the replicative life span (RLS) of yeast under oxidative 
growth conditions but reduced it in fermentative media. Another 
copper reductase gain-of-function mutation, H3L126M, exhibited 
similar phenotypes of improving iron homeostasis and modulating 
life span. Our results suggest that increasing the copper reductase 
activity of nucleosomes enhances iron homeostasis, benefiting cells in 
oxidative environments while potentially reducing fitness under fer-
mentative conditions.

RESULTS
The histone H3C110 residue is lost in most fungi
To determine the distribution of H3C110 across eukaryotes, we as-
sessed histone sequences derived from species representing the 
breadth of eukaryotic diversity (Fig. 1A). H3C110 encoding core 
histones were identified across most eukaryotes, with the exception 
of multiple fungal lineages and a few green algal species including 
Haematococcus and Helicosporidium. Nearly all fungi lacked H3C110, 
except for the Cryptomycota, represented by Rozella, and some 
members of the Ascomycota. A more detailed examination of the 
H3C110 distribution across the ascomycetes revealed that, although 
lineages retain H3C110, it diverged in the Saccharomycetaceae, a 
group including S. cerevisiae. Together, this distribution can most 
parsimoniously be explained by an H3C110 substitution in a fungal 
ancestor following the divergence of the Cryptomycota, followed by an 
H3C110 reversion in the ascomycetes, and a subsequent substitution 
in the Saccharomycetaceae. In addition, some eukaryotes, including 

several algal lineages such as Nannochloropsis and Coccomyxa, as 
well as the trypanosomatids Strigomonas and Angomonas, have his-
tone H3 variants with and without H3C110 (Fig. 1A). These para-
logs could provide a potential regulatory mechanism for controlling 
the presence and, in turn, activity of H3C110.

Given the multimeric nature of the nucleosome, and the impor-
tance of histone residues for inter-histone contact, particularly with-
in H3-H3′ dimerization region (6, 11), we sought to identify additional 
residues whose diversification correlates with that of H3C110. By 
comparing the amino acids of each core histones and histone vari-
ants CenH3 (Cse4) and H2AZ, in ascomycetes with and without 
H3C110 using the groupsim metric, we identified several residues 
that diverged at a similar point in time as H3C110 (Fig. 1B). How-
ever, only a single residue in CenH3, CenH3C204, was inferred to 
have diverged at approximately the same time as H3C110 into a leu-
cine (CenH3C204L) (Fig. 1, C to E). In contrast, additional residues 
with high groupsim scores were only correlated with H3C110 di-
vergence but were substituted at alternative points in time, such 
as CenH3D200H (Fig. 1E). Notably, in S. cerevisiae, H3A110 and 
CenH3L204 occupy equivalent positions near the C terminus of 
histone H3 (Fig. 1F), implying that similar evolutionary pressures 
may have driven convergent functional changes in both H3 paralogs.

H3C110 increases intracellular Cu1+ levels
To investigate the biological effects of H3C110, we introduced the 
H3A110C mutation in chromosomal copies of the two histone H3 
genes in yeast, HHT1 and HHT2, leaving the genes under their 
natural promoters, generating the H3A110C strain. Gene expression 
analysis in fermentative [synthetic complete (SC)] or oxidative me-
dium [SC with ethanol and glycerol (SCEG)] revealed only one gene, 
MIC19, that is significantly up-regulated in the H3A110C strain com-
pared to wild-type (WT) (fig. S1, A and B). MIC19 encodes a com-
ponent of the MICOS complex, a mitochondrial inner membrane 
complex that helps maintain crista junctions (12). Deleting MIC19 
(mic19Δ) in H3A110C did not preferentially affect viability or growth 
under oxidative conditions compared to mic19Δ alone (fig. S1C). The 
significance of MIC19 up-regulation in H3A110C remains unclear.

Next, to assess whether the H3A110C mutation affected intracel-
lular Cu1+ abundance, we used a previously constructed reporter 
plasmid (4) (fig. S2A). This plasmid contains a green fluorescent 
protein (GFP) gene under the control of the CUP1 promoter, a main 
target of Cup2, a transcription factor that is directly activated by 
Cu1+ but not Cu2+ ions (13, 14). In both fermentative (SC) and oxi-
dative (SCEG) media, GFP expression was similar between the WT 
and H3A110C strains (Fig. 2A and fig. S2B). This led us to consider 
whether the effects of H3A110C on Cu1+ levels were being masked 
by sequestration of Cu1+ ions by the Cup1 metallothionein (15, 16). 
To test this, we introduced a stop codon into every copy of CUP1 
(cup1F8*) to eliminate Cup1 function (7). This resulted in a substan-
tial increase in GFP expression, equivalent to the addition of over 
100 μM exogenous copper, likely highlighting Cup1’s significant ca-
pacity to buffer intracellular Cu1+ levels (Fig. 2B). In the cup1F8* 
background, the H3A110C mutation showed even higher GFP lev-
els, an effect that was further enhanced by predepleting the media of 
iron (Fig. 2C). These findings indicate that introduction of H3C110 
increases intracellular Cu1+ levels.

Considering that intracellular Cu1+ can be toxic at high levels 
(17, 18), we expected the H3A110C mutation to weaken the cup1F8* 
strain due its already elevated Cu1+ ions. However, contrary to our 



Cheng et al., Sci. Adv. 11, eadv4082 (2025)     11 April 2025

S c i e n c e  A d v a n c e s  |  R e s e arc   h  A r t i c l e

3 of 12

expectation, the H3A110C mutation significantly improved the 
growth of cup1F8* in both fermentative (Fig. 2D) and oxidative me-
dia (Fig. 2E), where the demand for iron and copper is higher due to 
increased mitochondrial respiration. Addition of a small amount of 
exogenous copper also enhanced the growth of the cup1F8* strains, 
with cells reaching higher densities (fig. S2C).

To understand the molecular basis of this effect, we performed 
gene expression and ontology analyses, which revealed significant 

enrichment of iron homeostasis genes among the up-regulated 
genes in cup1F8*, indicating an activation of iron deficiency response 
(Fig. 2F and fig. S2, D and E). In yeast, the iron regulon is activated 
in response to a decrease in the production or supply of iron-sulfur 
(Fe-S) clusters (19)—molecular assemblies of iron and sulfur pro-
duced in mitochondria that serve as enzymatic and structural cofac-
tors in numerous proteins throughout the cell (20). Several genes 
that are typically induced in response to zinc deficiency (21, 22) are 
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also up-regulated in the cup1F8* strain compared to WT (Fig. 2F and 
fig. S2, D and E). The up-regulation of the iron and zinc regulons 
indicates a previously unrecognized role for Cup1 in iron and zinc 
homeostasis. In the cup1F8* background, the H3A110C mutation 
lowered the expression of iron and zinc regulon genes, indicating 
that introduction of H3C110 improved iron and zinc homeostasis 
(Fig. 2G and fig. S2F), likely explaining the improved growth of the 
cup1F8* strain with the H3A110C mutation.

H3C110 improves iron homeostasis and alleviates metabolic 
stress during glutathione deficiency
Glutathione plays a key role in supporting Fe-S cluster biogenesis by 
facilitating iron uptake into mitochondria (23). To determine whether 
the H3A110C mutation could improve iron homeostasis in the absence 

of adequate glutathione, we deleted the γ-glutamylcysteine synthe-
tase (GSH1) gene, which catalyzes the first step in glutathione bio-
synthesis (24), in both WT and H3A110C strains, and examined their 
growth on solid and in liquid oxidative media. Neither the gsh1Δ 
nor the H3A110Cgsh1Δ strain was able to grow in medium without 
supplemental glutathione. However, adding low levels of glutathi-
one rescued their growth defect, with the H3A110Cgsh1Δ strain re-
quiring significantly less glutathione to restore respiratory growth 
compared to the gsh1Δ strain (Fig. 3A). This effect was consistent 
across both solid and liquid media (Fig. 3B), as well as in an inde-
pendently derived H3A110Cgsh1Δ strain in a different strain back-
ground (fig. S3A). In addition, the H3L126M mutation, which also 
enhances the copper reductase activity of nucleosomes (3), similarly 
reduced the requirement for glutathione supplementation in the 
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gsh1Δ strain (fig. S3B). Together, these results suggest that enhanc-
ing histone H3 copper reductase activity lowers the need for glu-
tathione supplementation in yeast strains lacking the ability to 
synthesize it.

To determine whether the effect of H3C110 on lowering gluta-
thione requirement of gsh1Δ strain was related to the activity of 
glutathione reductase, we deleted the GLR1 gene, which encodes 
glutathione reductase 1 in WT and H3A110C strains. Unlike the 
gsh1Δ strain, glr1Δ cells did not exhibit a growth defect in fermenta-
tive or oxidative media lacking glutathione, making it difficult to 
assess the impact of the H3A110C mutation (fig. S3C). To overcome 
this, we generated a glr1Δgsh1Δ double mutant, which required sig-
nificantly more supplemental glutathione for growth under oxida-
tive conditions (fig. S3D). Despite this increased dependency, the 
H3A110C mutation (glr1Δgsh1ΔH3A110C) still reduced the glutathi-
one requirement, indicating that the effects of H3C110 are indepen-
dent of Glr1 activity.

Gene expression and ontology analyses revealed a significant up-
regulation of the iron regulon in the gsh1Δ strain (Fig. 3C and fig. S3, 
E and F), consistent with the expected impairment of Fe-S cluster me-
tabolism. Consistent with its effects in the cup1F8* background, the 
H3A110C mutation reduced the expression of iron regulon genes in 
the gsh1Δ strain (Fig. 3D and fig. S3G), indicating an improvement in 
iron homeostasis. A broader analysis showed that the H3A110C mu-
tation partially restored the gene expression changes observed in 
gsh1Δ back toward WT levels. Genes that were up-regulated in gsh1Δ 
returned partially to normal levels, whereas down-regulated genes 
also showed partial restoration in the presence of the H3A110C 
mutation (Fig. 3E). These findings suggest that the reduced need for 
supplemental glutathione in the H3A110Cgsh1Δ strain is associated 
with an overall shift in gene expression toward a WT pattern includ-
ing that of the iron regulon.

Rescue of gsh1Δ by H3A110C is not linked to iron uptake but 
to improvements in cellular redox balance
To explore how the H3A110C mutation enhances iron homeostasis, 
we first investigated whether Fet3, a copper-dependent iron oxidase 
required for iron uptake (10), was involved. Although fet3Δ did im-
pair the growth of both gsh1Δ and H3A110Cgsh1Δ, due to further 
limitations in iron availability, the H3A110C mutation still reduced 
the need for glutathione supplementation in the fet3Δgsh1Δ strain, 
ruling out a role for Fet3-mediated iron uptake (Fig. 4A). In addi-
tion, we observed no changes in total intracellular iron levels as 
measured by inductively coupled plasma mass spectrometry (ICP-
MS) (25), confirming that the H3A110C mutation does not affect 
iron uptake (Fig. 4B). The H3A110Cgsh1Δ strain exhibited higher lev-
els of intracellular copper, although the nature and intracellular lo-
calization of this copper remain to be determined (Fig. 4B).

We next investigated whether the H3A110C mutation enhances 
glutathione import into mitochondria. This process is mediated by the 
transporter SLC28A39, which depends on its ability to sense or bind 
Fe-S clusters through four cysteine residues in its matrix-facing region 
(26). To test this, we mutated two of these cysteines in the orthologous 
gene, MTM1 (27), in both gsh1Δ and H3A110Cgsh1Δ strains. Despite 
the mutations in MTM1, the H3A110C mutation still improved the 
growth of gsh1Δ in this background (fig. S4A), suggesting that enhanced 
mitochondrial glutathione uptake is unlikely to be the mechanism be-
hind the improved iron homeostasis in the H3A110Cgsh1Δ strain.

Given glutathione’s role in regulating cellular redox balance and 
the interplay of redox balance with copper and iron homeostasis 
(23), we used a redox-sensitive GFP to assess the cellular oxidation 
state (28). In oxidative, but not fermentative medium, H3A110C showed 
a small but reproducible decrease in GFP oxidation compared to 
WT cells (Fig. 4C and fig. S4B). As expected, gsh1Δ cells displayed a 
substantial increase in oxidized GFP signal in both media, reflecting 
glutathione depletion (Fig. 4C). In H3A110Cgsh1Δ cells, there was a 
modest shift toward lower GFP oxidation, indicating that the H3A110C 
mutation reduces intracellular oxidation in gsh1Δ cells (Fig. 4C). A 
similar effect was observed in the cup1F8* strain (fig. S4C). Although 
cup1F8* did not show substantially higher GFP oxidation compared 
to WT, the H3A110Ccup1F8* exhibited lower GFP oxidation than 
cup1F8* in oxidative but not fermentative medium (fig. S4C). This 
suggests that the effects of H3A110C on cellular oxidation state may 
be a common phenotype shared by cup1F8* and gsh1Δ cells.

We next measured over 200 cellular metabolites to investigate 
the effects of the H3A110C mutation on cellular metabolism in cells 
grown in oxidative media (data S1). As expected, levels of glutathi-
one and related metabolites were significantly reduced in both 
gsh1Δ and H3A110Cgsh1Δ cells compared to WT or H3A110C cells (fig. 
S4D). Among the major metabolites, we observed a significant de-
pletion of amino acids in gsh1Δ cells, with most of these amino acid 
levels being modestly restored in H3A110Cgsh1Δ cells (Fig. 4D). Many 
other metabolites showed similar trends (fig. S4E).

Together, our data suggest that the reduced need for supplemen-
tal glutathione in H3A110Cgsh1Δ cells is associated with a general al-
leviation of the impact of glutathione deficiency on gene expression 
including the iron regulon, cellular redox balance, and metabolite 
levels such as amino acids.

Histone H3C110 compensates for defects in mitochondrial 
copper delivery
Considering that mitochondria are the site of Fe-S cluster synthesis 
and play a critical role in cellular redox balance, we next asked 
whether the effects of H3C110 could be linked more directly to mi-
tochondrial function. To test this, we deleted the COX17 gene, 
which encodes a copper metallochaperone required for delivery of 
copper to cytochrome c oxidase (complex IV) in mitochondria. The 
cox17Δ strain is unable to grow on oxidative medium without high 
levels of exogenous copper in the medium (29). However, we found 
that introducing H3A110C into the cox17Δ strain (cox17Δ H3A110C) 
substantially improved growth in oxidative medium [yeast peptone 
ethanol glycerol (YPEG)] compared to cox17Δ alone (Fig. 4E). This 
finding suggests that H3C110 and the copper reductase activity of 
histone H3 are directly linked to mitochondrial function, specifi-
cally complex IV activity.

Histone H3C110 modulates RLS
Yeast RLS, defined as the number of times a mother cell buds to 
produce progeny daughter cells, has been a valuable model for aging 
research (30). Previous studies have shown that iron homeostasis 
plays a key role in RLS, with iron supplementation delaying aging 
and iron limitation accelerating it, primarily through its effects on 
mitochondrial function (31–33). Mitochondria are critical for oxi-
dative growth, and consistently, increased iron uptake extends RLS 
under oxidative, but not fermentative, conditions (34). Given that 
the H3A110C mutation improves iron homeostasis, we used a 
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Fig. 4. Introduction of H3C110 into S. cerevisiae improves cellular redox and metabolic profile under glutathione deficiency. (A) Spot test assays of the indicated 
strains in oxidative medium (SCEG) with iron supplementation. Note that the baseline levels of iron in SCEG do not support the growth of fet3Δ strains. (B) Intracellular 
iron and copper content of exponentially growing strains as measured by ICP-MS/MS. Bars are means ± SD from five independent experiments (*P < 0.05; **P < 0.01, 
t test). n.s., not significant. (C) Average normalized flow cytometry distributions of cells containing the redox-sensitive ro2GFP grown in the indicated media from eight 
experiments. The x axis indicates the ratio of oxidized/reduced green fluorescence signal. (D) Heatmap showing intracellular levels of the indicated amino acids in the 
specified strains from four independent experiments. The scale represents log2 average-normalized levels of each amino acid. P values indicate the significance of com-
parisons between gsh1Δ and H3A110Cgsh1Δ data points (*P < 0.05, **P < 0.01, ***P < 0.005, t test). (E) Bar graph depicts the OD600 for the indicated strains and media 
after 5 days of growth, based on four cultures. P values were calculated using a t test.
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combination of microfluidic single-cell analysis and high-resolution 
time-lapse microscopy to measure its impact on yeast RLS (35, 36). 
In oxidative medium, the H3A110C mutation extended RLS by ~23% 
compared to WT cells in two independent experiments (Fig. 5A and 
fig. S5A). Similarly, the H3L126M mutation, which also enhances 
nucleosome copper reductase activity, extended RLS by about 14% 
in two separate experiments under the same oxidative growth con-
dition (Fig. 5B and fig. S5B). The opposite effect on RLS was ob-
served when the strains were grown under fermentative conditions. 
Both H3A110C and H3L126M mutations reduced RLS by ~13% in 
two independent experiments (Fig. 5, C and D, and fig. S5, C and 
D). These findings suggest that, although enhancing the copper re-
ductase activity of histone H3 extends RLS during respiratory growth, 
this benefit comes at the cost of reduced RLS in the presence of glu-
cose, the preferred carbon source.

DISCUSSION
Histone H3 copper reductase activity offers a novel paradigm for un-
derstanding the contributions of histones to the evolution, structure, 
and functions of chromatin (37). By viewing the nucleosome through 
the lens of histone H3 enzyme activity, we can identify previously 
unrecognized features and generate novel hypotheses—insights that 
are not easily derived from the epigenetic framework centered around 
histone regulation of DNA functions. We have previously demon-
strated the utility of this metabolic model by identifying the H3L126 
residue as the axial ligand for copper binding, which fine-tunes nucleo-
some enzymatic activity (3). In this study, we applied this metabolic 

framework to investigate the role of the H3C110 residue, the only 
cysteine in canonical core histones. The H3.1 mammalian variant 
histone contains a second cysteine. We found that the presence of 
H3C110 and the resulting enhancement of histone H3 copper reduc-
tase activity contribute to improved iron homeostasis, benefiting 
growth and replication under oxidative conditions. However, this ad-
vantage comes with a trade-off under fermentative conditions, where 
the same activity may impair RLS. This functional trade-off may ex-
plain the evolutionary pattern of H3C110 retention, loss, or regain 
observed in eukaryotes, especially across the fungal kingdom.

The H3C110 residue is located near the H3-H3′ interface but is not 
predicted to contribute to the stability of this surface (6). In addition, 
the two opposing cysteines are too far apart to readily form a disulfide 
bond (6). Although disulfide-bonded histone H3 has been observed 
in nucleosome preparations from cells (38), such bonding would re-
quire significant displacement of protein-protein and protein-DNA 
interactions, making it unlikely under normal cellular conditions (6). 
However, despite its position deep within the nucleosomes, H3C110 is 
accessible as modifications such as S-acylation (39), glutathionylation 
(40), S-sulfenylation, and other oxidative modifications (41–43) have 
been reported.

The role of H3C110 had remained unknown until we found that 
it plays a key role in Cu2+ binding and its catalysis to Cu1+. Although 
the absence of this cysteine significantly reduced the copper reduc-
tase activity of human histone H3 in vitro, it did not completely abol-
ish the activity (4). Consistently, genetic and molecular data from the 
budding yeast, whose histone H3 lacks the C110 residue, supported 
the notion that it also functions as a copper reductase enzyme (4, 7). 
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Fig. 5. Gain-of-function mutations in the copper reductase activity of histone H3 extend RLS in oxidative medium but reduce it in fermentative medium. (A and 
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This finding raised the question of what evolutionary pressures have 
driven the loss of this residue in yeast.

We addressed this question by introducing the H3C110 residue 
into yeast histone H3, replacing the naturally occurring alanine. In a 
previous work, we demonstrated that the H3A110C mutation in-
creases the copper reductase activity of yeast histone H3 in vitro and 
acts as a gain-of-function mutation in vivo (4). Here, we further 
characterized the H3A110C strain and found that it increases intracel-
lular Cu1+ levels and improves iron homeostasis. This improvement 
was evident when intracellular balance was disrupted, such as by 
inactivation of the Cup1 metallothionein or reduction of the gluta-
thione pool, and was independent of iron uptake. These findings 
suggest that H3C110 may regulate iron metabolism by influencing 
intracellular iron distribution or utilization rather than directly af-
fecting iron uptake. In both cup1F8* and gsh1Δ cells, the H3A110C 
mutation also made the overall cellular milieu more reducing. 
Whether this effect results from improved iron homeostasis or 
contributes to it—potentially by preventing the oxidation of Fe-S 
clusters—remains to be determined. It is also possible that the ability 
of H3C110 to compensate for defects in mitochondrial copper 
delivery is linked to its role in improving iron homeostasis.

The improvement in intracellular iron homeostasis may explain 
the extension of RLS under oxidative growth conditions, where the 
demand for iron is high due to increased mitochondrial activity. How-
ever, as an oxidoreductase enzyme, histone H3 consumes reducing 
equivalents that could otherwise be used by various anabolic pathways 
(44). Thus, the improved iron homeostasis likely comes at the cost of 
increased consumption of reducing equivalents. Consistent with this, 
under fermentative conditions—where the demand for iron is lower—
the enhanced copper reductase activity of histone H3 shortens RLS. It 
is conceivable that the trade-off between improved iron metabolism 
and the consumption of reducing equivalents by histone enzyme ac-
tivity may represent the molecular cost-benefit balance behind the 
evolution and function of H3C110 in eukaryotes.

MATERIALS AND METHODS
Preparation of solutions and glassware
Removal of contaminating metals from glassware and solutions is a 
critical precaution to ensure the reproducibility of experiments. All 
glassware was treated with 3.7% hydrochloric acid for ≥12 hours, 
followed by 7% nitric acid for ≥12 hours and extensive rinsing with 
Milli-Q (MilliporeSigma) ultrapure water to remove trace metal 
contamination. All solutions, buffers, and washes were prepared and 
done using Milli-Q ultrapure water. Solutions were prepared using 
BioUltra grade (Sigma-Aldrich) reagents, when available. For yeast 
media, the addition of all components was done without the use of 
metal spatulas. Media were filtered through 0.2-μm membranes.

Strain generations and growth conditions
All S. cerevisiae strains used in this study are either based on 
OCY1131, which was generated from BY4741, or YLK1879 (both 
are from the S288C background) (4). A complete list of strains and 
their genotypes is listed in table S1. The CRISPR-Cas9 system opti-
mized for S. cerevisiae was used to generate the H3A110C and 
MTM1 C49/51A mutations and to delete GLR1 (45). GSH1, FET3, 
COX17, and MIC19 were deleted by a standard gene replacement 
and targeted insertion methodology using selectable marker inte-
gration (46, 47). All strains were routinely maintained on YPD (1% 

yeast extract, 2% peptone, and 2% d-glucose) plates. Fermentative 
media were synthetic complete medium (SC) consisting of yeast ni-
trogen base (BD Biosciences or Sunrise Science), ammonium sulfate 
(Sigma-Aldrich), 2% glucose (Sigma-Aldrich), all amino acids, ura-
cil, and adenine (Sunrise Science) and SC lacking uracil (SC-ura). 
For oxidative media, 2% glucose was replaced with 2% each of etha-
nol and glycerol (SCEG, SCEG-ura, or YPEG). All strains were grown 
at 30°C in all experiments.

Comparative genomics and phylogenetics
Histone H3 proteins were identified across eukaryotes using a taxo-
nomically diverse dataset made up of genome- and transcriptome-
predicted proteomes obtained from UniProt (48), EukProt V3 (49), and 
the SRA (Short Read Archive) (n = 184, downloaded 26 June 2024). 
To balance the dataset, the best two proteomes per genus based on 
BUSCO (Benchmarking Universal Single Copy Orthologs) (50) 
completeness were selected from UniProt. For animals, fungi, and 
plants, stricter taxonomic criteria were used to reduce overrepre-
sentation, by selecting the best proteome per phyla for animals 
(n = 17), the best proteome per order for plants (max three per class, 
n = 6), and the best proteome per class for fungi (max two per phyla, 
n = 12). The dataset was also supplemented with transcriptome-
predicted proteomes (n = 6) obtained from EukProt V3 and two 
species of CRuMs (Rigifila ramosa: SRR5997435; Diphylleia rotans: 
SRR5997435).

Histone H3 homologs were identified from the eukaryotic dataset 
using hidden Markov models (HMMs) and phylogenetically curated. 
The eukaryotic dataset was searched using a previously developed his-
tone H3 profile HMM (51) using HMMER v3.4 (E < 10−5, domE < 
10−5), and hits greater than 300 amino acids were excluded to avoid 
mispredicted proteins (52). To further exclude nonhomologous re-
gions, the histone H3 HMM was mapped to each of the resulting pro-
teins using HMMScan (E < 10−5, domE < 10−5) and corresponding 
regions were extracted. To remove redundancy resulting from recent 
paralogs, identical proteins derived the same species were clustered 
using CD-HIT v4.8.1 (53). To discriminate between core H3 and cen-
tromeric H3, the clustered proteins were aligned using the L-INS-i al-
gorithm of MAFFT v7.5.20 and trimmed with a gap threshold of 30% 
using trimAl v1.4.rev15 (54, 55). A phylogeny was then inferred using 
IQ-Tree v2.2.6 using the LG4M+R9 substitution model, as selected by 
ModelFinder based on the Bayesian information criterion (56, 57). 
Topological support was assessed using Shimodaira-Hasegawa ap-
proximate likelihood ratio tests (n = 1000) (58). The phylogeny was 
visualized in FigTree v1.4 (http://tree.bio.ed.ac.uk/software/figtree/) 
and iTOL v6 (59). After isolating core H3 homologs, histones were 
realigned and classified as containing or lacking C110 based on the 
presence or absence of a cysteine within five aligned positions of C110, 
based on manual inspection of the alignment using AliView v1.28.

To examine histones across the ascomycetes, an additional data-
base containing genome-predicted proteomes from UniProt was as-
sembled (downloaded 23 November 2023). In particular, the best 
proteome per species based on BUSCO completeness was obtained for 
the Saccharomycotina (n = 80) and the best proteome per order for 
other Ascomycetes (n = 51) were collected. Histones, including those 
belonging to the H3, H4, H2A, and H2B families, were identified and 
extracted as described above. H3C110 distributions were visualized 
across the ascomycete phylogeny using IToL based on a species tree in-
ferred using a set of 242 previously curated phylogenetic marker genes 
(60). Individual proteins were identified from reference proteomes 

http://tree.bio.ed.ac.uk/software/figtree/
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using HMMER, and single gene phylogenies were generated with IQ-
Tree (LG+G4 model, fast mode) and manually curated to exclude 
paralogs. Orthologs were realigned using L-INS-I and trimmed with a 
gap threshold of 80%, and a phylogeny was generated using IQ-Tree 
and the Q.yeast+I+R10 substitution model, selected using Model
Finder. Statistical support was inferred using ultrafast bootstraps 
(n = 1000) (61). Last, using the ascomycete histones, coevolving sites 
were identified using GroupSim and the Blosum62 matrix (62), amino 
acid context was assessed using WebLogo (63), and protein structures 
were visualized using PyMOL v2.5.0.

Spot tests
Cells from exponentially growing cultures were 10-fold serially di-
luted and spotted on agar plates with various media conditions as 
indicated in the figures. Spotted plates were incubated at 30°C for up 
to 6 days and imaged daily. Images shown in the figures were cap-
tured when sufficient growth had occurred, and growth differences 
could be assessed (typically 3 to 5 days).

Redox-sensitive GFP reporter plasmid
The gene encoding for roGFP2 was cloned from pRSETB-ro2GFP 
(Addgene, no. 82366) (28) and introduced into a modified pRS416 
backbone containing TDH3 promoter and ADH1 terminator (URA3 
PTDH3 ADH1term CEN6/ARSH4). The reduction-oxidation–sensitive 
GFP (roGFP) was created by substituting surface-exposed residues 
with cysteines on the Aequorea victoria GFP to allow disulfide bond 
formation under oxidizing conditions (28).

Flow cytometry
Single colonies of cells bearing the Cup2 reporter plasmid or the 
roGFP2 reporter plasmid were grown in liquid SC-ura or SCEG-ura 
media overnight and diluted in fresh media the next day and allowed 
to grow to exponential phase before flow cytometry analysis. Replicate 
experiments were from different clones from the same transforma-
tion. Cells were directly assayed in the liquid media using a BD LSR-
Fortessa X-20 instrument. Green fluorescence signal was collected 
using a 488-nm laser for excitation and a 515- to 545-nm band-pass 
filter for emission. For assaying roGFP2, the green fluorescence signal 
was excited with lasers simultaneously at 410 and 488 nm and emis-
sion for both excitation wavelengths was collected using 515- to 545-nm 
band-pass filter. For each replicate experiment, data from 30,000 
events were collected and analyzed for each clone and the average 
profiles of four to eight independent transformants were reported.

Inductively coupled plasma mass spectrometry
Cells from logarithmically growing cells were collected and washed 
twice in 1 mM EDTA for removal of extracellular metals and once in 
water. Cell pellets were frozen and stored at −20°C until further pro-
cessed for ICP–tandem mass spectrometry (MS/MS. Cell pellets 
were overlaid with 70% nitric acid and digested at room temperature 
for 24 hours, followed by incubation at 65°C for at least 2 hours, be-
fore being diluted to a final nitric acid concentration of 2% (v/v). 
ICP-MS was performed on the Agilent 8900 ICP-MS/MS. 63Cu and 
56Fe were used to determine the total cellular copper and iron levels 
using He as a cell gas and 89Y as an internal standard (Inorganic Ven-
tures MSY-100PPM) and calibrated with an environmental calibra-
tion standard (Agilent, 5183-4688). All measurements were within 
the calibrated linear ranges. The average of four technical replicate 
measurements was used from five independent biological samples 

where the technical variation never exceeded 5% for any individual 
sample. ICP-MS/MS data were then analyzed using the Agilent ICP-
MS MassHunter software (v4.4).

RNA-seq and differential gene expression analysis
Cells grown in fermentative (SC) or oxidative media (SCEG) were 
collected by centrifugation and frozen at −20°C until processed for 
RNA extraction and RNA sequencing (RNA-seq). RNA was extracted 
using previously published methods (4) from four independent 
experiments. Contaminating DNA was digested using Turbo DNase 
(Thermo Fisher Scientific). Sequencing libraries were prepared and 
sequenced by the UCLA Technology Center for Genomics & Bioin-
formatics. High-throughput sequencing was performed on Illumina’s 
NovaSeq system. Total read count per library ranged from ~8 million 
to 15 million. Demultiplexed reads, in FASTQ file format, were 
aligned in a strand-specific manner to the R64-1-1 S288C reference 
genome assembly (sacCer3) using HISAT2. Assigning and counting 
reads for 6692 annotated open reading frames were performed using 
featureCounts. Determination of adjusted P values for differential 
gene expression comparisons was done using DESeq2.

Mass spectrometry analysis of metabolites
Cells (6 × 108) from exponentially growing cultures were collected by 
centrifugation. The cells were washed once in 43% ice-cold methanol-
water solution. To extract the metabolites, the washed cells were re-
suspended in 200 μl of ice-cold (stored at −80°C) 80% methanol 
containing 10 nM trifluoromethanesulfonate (TFMS). The resus-
pended cells were vortexed for 5 s, frozen immediately in liquid nitro-
gen for 5 min, and then allowed to thaw in an ice bath for 5 min. The 
cells were pelleted at 16,000g to collect the supernatant. The cell pellet 
was resuspended in another 100 μl of methanol-TFMS solution and 
pelleted to collect the supernatant. The combined supernatant was 
dried under vacuum, and the dried metabolites were stored at −80°C 
until mass spectrometry analysis. Extracted dried metabolites were 
reconstituted in a 50% acetonitrile:50% dH2O solution and processed 
further for analysis by mass spectrometry as previously described (7).

Yeast RLS assay
RLSs of yeast strains were determined by using a microfluid platform 
as previously described (35, 36) and analyzed by an Invitrogen EVOS 
FL Auto Imaging System. Briefly, cells were grown overnight in filter-
sterilized YPD or glycerol (YPGlycerol) medium, diluted 20-fold with 
fresh medium, and loaded onto a microfluidic chip. Medium flow 
speed was set at 1 μl/min, and pictures were taken at 15-min intervals 
for 65 hours. The microfluidic chips were maintained at 30°C for the 
duration of the experiment. The pictures were taken using an EVOS 
FL Auto system (Thermo Fisher Scientific) using a 20x objective. 
Time-lapse image series were analyzed using ImageJ (NIH). Statisti-
cal assessment of life-span differences was determined using the 
Wilcoxon rank sum test in the R statistics software package.

Supplementary Materials
The PDF file includes:
Figs. S1 to S5
Table S1
Legend for data S1

Other Supplementary Material for this manuscript includes the following:
Data S1
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